diff --git a/README.md b/README.md index 06fcfd4..3ed38c3 100644 --- a/README.md +++ b/README.md @@ -1,373 +1,47 @@ ------------------------------------------------------------------------------- -CIS565: Project 5: WebGL +
Project 5: WebGL ------------------------------------------------------------------------------- -Fall 2013 +
Fall 2013 ------------------------------------------------------------------------------- -Due Friday 11/08/2013 -------------------------------------------------------------------------------- - -------------------------------------------------------------------------------- -NOTE: -------------------------------------------------------------------------------- -This project requires any graphics card with support for a modern OpenGL -pipeline. Any AMD, NVIDIA, or Intel card from the past few years should work -fine, and every machine in the SIG Lab and Moore 100 is capable of running -this project. - -This project also requires a WebGL capable browser. The project is known to -have issues with Chrome on windows, but Firefox seems to run it fine. - -------------------------------------------------------------------------------- -INTRODUCTION: -------------------------------------------------------------------------------- -In this project, you will get introduced to the world of GLSL in two parts: -vertex shading and fragment shading. The first part of this project is the -Image Processor, and the second part of this project is a Wave Vertex Shader. - -In the first part of this project, you will implement a GLSL vertex shader as -part of a WebGL demo. You will create a dynamic wave animation using code that -runs entirely on the GPU. - -In the second part of this project, you will implement a GLSL fragment shader -to render an interactive globe in WebGL. This will include texture blending, -bump mapping, specular masking, and adding a cloud layer to give your globe a -uniquie feel. - -------------------------------------------------------------------------------- -CONTENTS: -------------------------------------------------------------------------------- -The Project4 root directory contains the following subdirectories: - -* part1/ contains the base code for the Wave Vertex Shader. -* part2/ contains the base code for the Globe Fragment Shader. -* resources/ contains the screenshots found in this readme file. - -------------------------------------------------------------------------------- -PART 1 REQUIREMENTS: -------------------------------------------------------------------------------- - -In Part 1, you are given code for: - -* Drawing a VBO through WebGL -* Javascript code for interfacing with WebGL -* Functions for generating simplex noise - -You are required to implement the following: - -* A sin-wave based vertex shader: - -![Example sin wave grid](resources/sinWaveGrid.png) - -* A simplex noise based vertex shader: - -![Example simplex noise wave grid](resources/oceanWave.png) - -* One interesting vertex shader of your choice ------------------------------------------------------------------------------- -PART 1 WALKTHROUGH: +
INTRODUCTION: ------------------------------------------------------------------------------- -**Sin Wave** +This project is an introductory project into the world of GLSL. In the first part of this project, I implemented a GLSL vertex shader as part of a WebGL demo. I created three dynamic wave animations using code that runs entirely on the GPU. -* For this assignment, you will need the latest version of Firefox. -* Begin by opening index.html. You should see a flat grid of black and white - lines on the xy plane: - -![Example boring grid](resources/emptyGrid.png) - -* In this assignment, you will animate the grid in a wave-like pattern using a - vertex shader, and determine each vertex’s color based on its height, as seen - in the example in the requirements. -* The vertex and fragment shader are located in script tags in `index.html`. -* The JavaScript code that needs to be modified is located in `index.js`. -* Required shader code modifications: - * Add a float uniform named u_time. - * Modify the vertex’s height using the following code: - - ```glsl - float s_contrib = sin(position.x*2.0*3.14159 + u_time); - float t_contrib = cos(position.y*2.0*3.14159 + u_time); - float height = s_contrib*t_contrib; - ``` - - * Use the GLSL mix function to blend together two colors of your choice based - on the vertex’s height. The lowest possible height should be assigned one - color (for example, `vec3(1.0, 0.2, 0.0)`) and the maximum height should be - another (`vec3(0.0, 0.8, 1.0)`). Use a varying variable to pass the color to - the fragment shader, where you will assign it `gl_FragColor`. - -* Required JavaScript code modifications: - * A floating-point time value should be increased every animation step. - Hint: the delta should be less than one. - * To pass the time to the vertex shader as a uniform, first query the location - of `u_time` using `context.getUniformLocation` in `initializeShader()`. - Then, the uniform’s value can be set by calling `context.uniform1f` in - `animate()`. - -**Simplex Wave** - -* Now that you have the sin wave working, create a new copy of `index.html`. - Call it `index_simplex.html`, or something similar. -* Open up `simplex.vert`, which contains a compact GLSL simplex noise - implementation, in a text editor. Copy and paste the functions included - inside into your `index_simplex.html`'s vertex shader. -* Try changing s_contrib and t_contrib to use simplex noise instead of sin/cos - functions with the following code: - -```glsl -vec2 simplexVec = vec2(u_time, position); -float s_contrib = snoise(simplexVec); -float t_contrib = snoise(vec2(s_contrib,u_time)); -``` - -**Wave Of Your Choice** - -* Create another copy of `index.html`. Call it `index_custom.html`, or - something similar. -* Implement your own interesting vertex shader! In your README.md with your - submission, describe your custom vertex shader, what it does, and how it - works. +In the second part of this project, I implemented a GLSL fragment shader to render an interactive globe in WebGL. This includes texture blending, bump mapping, specular masking, and adding a cloud layer. ------------------------------------------------------------------------------- -PART 2 REQUIREMENTS: +
RENDERS: ------------------------------------------------------------------------------- -In Part 2, you are given code for: - -* Reading and loading textures -* Rendering a sphere with textures mapped on -* Basic passthrough fragment and vertex shaders -* A basic globe with Earth terrain color mapping -* Gamma correcting textures -* javascript to interact with the mouse - * left-click and drag moves the camera around - * right-click and drag moves the camera in and out - -You are required to implement: -* Bump mapped terrain -* Rim lighting to simulate atmosphere -* Night-time lights on the dark side of the globe -* Specular mapping -* Moving clouds +Here are some renders: -You are also required to pick one open-ended effect to implement: +
![vert_wave](https://raw.github.com/josephto/Project5-WebGL/master/vert_wave.png "screenshots") -* Procedural water rendering and animation using noise -* Shade based on altitude using the height map -* Cloud shadows via ray-tracing through the cloud map in the fragment shader -* Orbiting Moon with texture mapping and shadow casting onto Earth -* Draw a skybox around the entire scene for the stars. -* Your choice! Email Liam and Patrick to get approval first +First wave calculated using a producto of sin and cosine waves. Link: http://josephto.github.io/Project5-WebGL/part1/vert_wave.html -Finally in addition to your readme, you must also set up a gh-pages branch -(explained below) to expose your beautiful WebGL globe to the world. +
![simplex_wave](https://raw.github.com/josephto/Project5-WebGL/master/simplex_wave.png "screenshots") -Some examples of what your completed globe renderer will look like: +Second simplex wave. Link: http://josephto.github.io/Project5-WebGL/part1/simplex_wave.html -![Completed globe, day side](resources/globe_day.png) +
![wave_wave](https://raw.github.com/josephto/Project5-WebGL/master/wave_wave.png "screenshots") -Figure 0. Completed globe renderer, daylight side. +Third original wave that mimics a wave of water as it experiences initial turbulence and then calms down. The screen shot doesn't really depict the motion of the wave. Its better to watch the video. Link: http://josephto.github.io/Project5-WebGL/part1/wave_wave.html -![Completed globe, twilight](resources/globe_twilight.png) +
![globe](https://raw.github.com/josephto/Project5-WebGL/master/globe.png "screenshots") -Figure 1. Completed globe renderer, twilight border. - -![Completed globe, night side](resources/globe_night.png) - -Figure 2. Completed globe renderer, night side. +A globe render. Link: http://josephto.github.io/Project5-WebGL/part2/frag_globe.html ------------------------------------------------------------------------------- -PART 2 WALKTHROUGH: +
PERFORMANCE REPORT: ------------------------------------------------------------------------------- -Open part2/frag_globe.html in Firefox to run it. You’ll see a globe -with Phong lighting like the one in Figure 3. All changes you need to make -will be in the fragment shader portion of this file. - -![Initial globe](resources/globe_initial.png) - -Figure 3. Initial globe with diffuse and specular lighting. - -**Night Lights** - -The backside of the globe not facing the sun is completely black in the -initial globe. Use the `diffuse` lighting component to detect if a fragment -is on this side of the globe, and, if so, shade it with the color from the -night light texture, `u_Night`. Do not abruptly switch from day to night; -instead use the `GLSL mix` function to smoothly transition from day to night -over a reasonable period. The resulting globe will look like Figure 4. -Consider brightening the night lights by multiplying the value by two. - -The base code shows an example of how to gamma correct the nighttime texture: - -```glsl -float gammaCorrect = 1/1.2; -vec4 nightColor = pow(texture2D(u_Night, v_Texcoord), vec4(gammaCorrect)); -``` - -Feel free to play with gamma correcting the night and day textures if you -wish. Find values that you think look nice! - -![Day/Night without specular mapping](resources/globe_nospecmap.png) - -Figure 4. Globe with night lights and day/night blending at dusk/dawn. - -**Specular Map** - -Our day/night color still shows specular highlights on landmasses, which -should only be diffuse lit. Only the ocean should receive specular highlights. -Use `u_EarthSpec` to determine if a fragment is on ocean or land, and only -include the specular component if it is in ocean. - -![Day/Night with specular mapping](resources/globe_specmap.png) - -Figure 5. Globe with specular map. Compare to Figure 4. Here, the specular -component is not used when shading the land. - -**Clouds** - -In day time, clouds should be diffuse lit. Use `u_Cloud` to determine the -cloud color, and `u_CloudTrans` and `mix` to determine how much a daytime -fragment is affected by the day diffuse map or cloud color. See Figure 6. - -In night time, clouds should obscure city lights. Use `u_CloudTrans` and `mix` -to blend between the city lights and solid black. See Figure 7. - -Animate the clouds by offseting the `s` component of `v_Texcoord` by `u_time` -when reading `u_Cloud` and `u_CloudTrans`. - -![Day with clouds](resources/globe_daycloud.png) - -Figure 6. Clouds with day time shading. - -![Night with clouds](resources/globe_nightcloud.png) - -Figure 7. Clouds observing city nights on the dark side of the globe. - -**Bump Mapping** - -Add the appearance of mountains by perturbing the normal used for diffuse -lighting the ground (not the clouds) by using the bump map texture, `u_Bump`. -This texture is 1024x512, and is zero when the fragment is at sea-level, and -one when the fragment is on the highest mountain. Read three texels from this -texture: once using `v_Texcoord`; once one texel to the right; and once one -texel above. Create a perturbed normal in tangent space: - -`normalize(vec3(center - right, center - top, 0.2))` - -Use `eastNorthUpToEyeCoordinates` to transform this normal to eye coordinates, -normalize it, then use it for diffuse lighting the ground instead of the -original normal. - -![Globe with bump mapping](resources/globe_bumpmap.png) - -Figure 8. Bump mapping brings attention to mountains. - -**Rim Lighting** - -Rim lighting is a simple post-processed lighting effect we can apply to make -the globe look as if it has an atmospheric layer catching light from the sun. -Implementing rim lighting is simple; we being by finding the dot product of -`v_Normal` and `v_Position`, and add 1 to the dot product. We call this value -our rim factor. If the rim factor is greater than 0, then we add a blue color -based on the rim factor to the current fragment color. You might use a color -something like `vec4(rim/4, rim/2, rim/2, 1)`. If our rim factor is not greater -than 0, then we leave the fragment color as is. Figures 0,1 and 2 show our -finished globe with rim lighting. - -For more information on rim lighting, -read http://www.fundza.com/rman_shaders/surface/fake_rim/fake_rim1.html. - -------------------------------------------------------------------------------- -GH-PAGES -------------------------------------------------------------------------------- -Since this assignment is in WebGL you will make your project easily viewable by -taking advantage of GitHub's project pages feature. - -Once you are done you will need to create a new branch named gh-pages: - -`git branch gh-pages` - -Switch to your new branch: - -`git checkout gh-pages` - -Create an index.html file that is either your renamed frag_globe.html or -contains a link to it, commit, and then push as usual. Now you can go to - -`.github.io/` - -to see your beautiful globe from anywhere. - -------------------------------------------------------------------------------- -README -------------------------------------------------------------------------------- -All students must replace or augment the contents of this Readme.md in a clear -manner with the following: - -* A brief description of the project and the specific features you implemented. -* At least one screenshot of your project running. -* A 30 second or longer video of your project running. To create the video you - can use http://www.microsoft.com/expression/products/Encoder4_Overview.aspx -* A performance evaluation (described in detail below). - -------------------------------------------------------------------------------- -PERFORMANCE EVALUATION -------------------------------------------------------------------------------- -The performance evaluation is where you will investigate how to make your -program more efficient using the skills you've learned in class. You must have -performed at least one experiment on your code to investigate the positive or -negative effects on performance. - -We encourage you to get creative with your tweaks. Consider places in your code -that could be considered bottlenecks and try to improve them. - -Each student should provide no more than a one page summary of their -optimizations along with tables and or graphs to visually explain any -performance differences. - -------------------------------------------------------------------------------- -THIRD PARTY CODE POLICY -------------------------------------------------------------------------------- -* Use of any third-party code must be approved by asking on the Google groups. - If it is approved, all students are welcome to use it. Generally, we approve - use of third-party code that is not a core part of the project. For example, - for the ray tracer, we would approve using a third-party library for loading - models, but would not approve copying and pasting a CUDA function for doing - refraction. -* Third-party code must be credited in README.md. -* Using third-party code without its approval, including using another - student's code, is an academic integrity violation, and will result in you - receiving an F for the semester. - -------------------------------------------------------------------------------- -SELF-GRADING -------------------------------------------------------------------------------- -* On the submission date, email your grade, on a scale of 0 to 100, to Liam, - liamboone@gmail.com, with a one paragraph explanation. Be concise and - realistic. Recall that we reserve 30 points as a sanity check to adjust your - grade. Your actual grade will be (0.7 * your grade) + (0.3 * our grade). We - hope to only use this in extreme cases when your grade does not realistically - reflect your work - it is either too high or too low. In most cases, we plan - to give you the exact grade you suggest. -* Projects are not weighted evenly, e.g., Project 0 doesn't count as much as - the path tracer. We will determine the weighting at the end of the semester - based on the size of each project. - - ---- -SUBMISSION ---- -As with the previous project, you should fork this project and work inside of -your fork. Upon completion, commit your finished project back to your fork, and -make a pull request to the master repository. You should include a README.md -file in the root directory detailing the following +It was hard for me to figure out how exactly to do a good performance evaluation for this project so I just printed out the FPS for each of the programs. The table is as follows: -* A brief description of the project and specific features you implemented -* At least one screenshot of your project running. -* A link to a video of your project running. -* Instructions for building and running your project if they differ from the - base code. -* A performance writeup as detailed above. -* A list of all third-party code used. -* This Readme file edited as described above in the README section. +Program | Frames per second +------------------|------------------------ +Sin/Cos Wave | around 36 fps +Simplex Wave | around 38 fps +Wave Wave | around 37 fps +Globe | around 33 fps \ No newline at end of file diff --git a/globe.png b/globe.png new file mode 100644 index 0000000..72747c7 Binary files /dev/null and b/globe.png differ diff --git a/part1/simplex_wave.html b/part1/simplex_wave.html new file mode 100644 index 0000000..6d24265 --- /dev/null +++ b/part1/simplex_wave.html @@ -0,0 +1,88 @@ + + + +Vertex Wave + + + + + +
+ + + + + + + + + + + + diff --git a/part1/vert_wave.html b/part1/vert_wave.html index 57107ca..4e83cff 100644 --- a/part1/vert_wave.html +++ b/part1/vert_wave.html @@ -14,10 +14,15 @@ attribute vec2 position; uniform mat4 u_modelViewPerspective; + uniform float u_time; + varying vec3 color; void main(void) { - float height = 0.0; + float s_contrib = sin(position.x*2.0*3.14159 + u_time); + float t_contrib = cos(position.y*2.0*3.14159 + u_time); + float height = s_contrib*t_contrib; + color = mix(vec3(1.0,0.2,0.0), vec3(0.0,0.8,1.0), (height+1.0)/1.0); gl_Position = u_modelViewPerspective * vec4(vec3(position, height), 1.0); } @@ -25,9 +30,11 @@ diff --git a/part1/vert_wave.js b/part1/vert_wave.js index b90b9cf..3d267d7 100644 --- a/part1/vert_wave.js +++ b/part1/vert_wave.js @@ -3,8 +3,8 @@ /*global window,document,Float32Array,Uint16Array,mat4,vec3,snoise*/ /*global getShaderSource,createWebGLContext,createProgram*/ - var NUM_WIDTH_PTS = 32; - var NUM_HEIGHT_PTS = 32; + var NUM_WIDTH_PTS = 100; + var NUM_HEIGHT_PTS = 100; var message = document.getElementById("message"); var canvas = document.getElementById("canvas"); @@ -19,6 +19,8 @@ context.clearColor(1.0, 1.0, 1.0, 1.0); context.enable(context.DEPTH_TEST); + var time = 0.0; + var persp = mat4.create(); mat4.perspective(45.0, 0.5, 0.1, 100.0, persp); @@ -31,6 +33,7 @@ var positionLocation = 0; var heightLocation = 1; var u_modelViewPerspectiveLocation; + var u_time; (function initializeShader() { var program; @@ -40,6 +43,7 @@ var program = createProgram(context, vs, fs, message); context.bindAttribLocation(program, positionLocation, "position"); u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); + u_time = context.getUniformLocation(program,"u_time"); context.useProgram(program); })(); @@ -138,10 +142,13 @@ var mvp = mat4.create(); mat4.multiply(persp, mv, mvp); + time += 0.01; + /////////////////////////////////////////////////////////////////////////// // Render context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); + context.uniform1f(u_time, time); context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); diff --git a/part1/vert_waveTEST.html b/part1/vert_waveTEST.html new file mode 100644 index 0000000..3505ace --- /dev/null +++ b/part1/vert_waveTEST.html @@ -0,0 +1,46 @@ + + + +Vertex Wave + + + + + +
+ + + + + + + + + + + + diff --git a/part1/vert_waveTEST.js b/part1/vert_waveTEST.js new file mode 100644 index 0000000..56cbcf0 --- /dev/null +++ b/part1/vert_waveTEST.js @@ -0,0 +1,158 @@ +(function() { + "use strict"; + /*global window,document,Float32Array,Uint16Array,mat4,vec3,snoise*/ + /*global getShaderSource,createWebGLContext,createProgram*/ + + var NUM_WIDTH_PTS = 1024; + var NUM_HEIGHT_PTS = 512; + + var message = document.getElementById("message"); + var canvas = document.getElementById("canvas"); + var context = createWebGLContext(canvas, message); + if (!context) { + return; + } + + /////////////////////////////////////////////////////////////////////////// + + context.viewport(0, 0, canvas.width, canvas.height); + context.clearColor(1.0, 1.0, 1.0, 1.0); + context.enable(context.DEPTH_TEST); + + var time = 0.0; + + var persp = mat4.create(); + mat4.perspective(45.0, 0.5, 0.1, 100.0, persp); + + var eye = [2.0, 1.0, 3.0]; + var center = [0.0, 0.0, 0.0]; + var up = [0.0, 0.0, 1.0]; + var view = mat4.create(); + mat4.lookAt(eye, center, up, view); + + var positionLocation = 0; + var heightLocation = 1; + var u_modelViewPerspectiveLocation; + var u_time; + + (function initializeShader() { + var program; + var vs = getShaderSource(document.getElementById("vs")); + var fs = getShaderSource(document.getElementById("fs")); + + var program = createProgram(context, vs, fs, message); + context.bindAttribLocation(program, positionLocation, "position"); + u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); + u_time = context.getUniformLocation(program,"u_time"); + + context.useProgram(program); + })(); + + var heights; + var numberOfIndices; + + (function initializeGrid() { + function uploadMesh(positions, heights, indices) { + // Positions + var positionsName = context.createBuffer(); + context.bindBuffer(context.ARRAY_BUFFER, positionsName); + context.bufferData(context.ARRAY_BUFFER, positions, context.STATIC_DRAW); + context.vertexAttribPointer(positionLocation, 2, context.FLOAT, false, 0, 0); + context.enableVertexAttribArray(positionLocation); + + if (heights) + { + // Heights + var heightsName = context.createBuffer(); + context.bindBuffer(context.ARRAY_BUFFER, heightsName); + context.bufferData(context.ARRAY_BUFFER, heights.length * heights.BYTES_PER_ELEMENT, context.STREAM_DRAW); + context.vertexAttribPointer(heightLocation, 1, context.FLOAT, false, 0, 0); + context.enableVertexAttribArray(heightLocation); + } + + // Indices + var indicesName = context.createBuffer(); + context.bindBuffer(context.ELEMENT_ARRAY_BUFFER, indicesName); + context.bufferData(context.ELEMENT_ARRAY_BUFFER, indices, context.STATIC_DRAW); + } + + var WIDTH_DIVISIONS = NUM_WIDTH_PTS - 1; + var HEIGHT_DIVISIONS = NUM_HEIGHT_PTS - 1; + + var numberOfPositions = NUM_WIDTH_PTS * NUM_HEIGHT_PTS; + + var positions = new Float32Array(2 * numberOfPositions); + var indices = new Uint16Array(2 * ((NUM_HEIGHT_PTS * (NUM_WIDTH_PTS - 1)) + (NUM_WIDTH_PTS * (NUM_HEIGHT_PTS - 1)))); + + var positionsIndex = 0; + var indicesIndex = 0; + var length; + + for (var j = 0; j < NUM_WIDTH_PTS; ++j) + { + positions[positionsIndex++] = j /(NUM_WIDTH_PTS - 1); + positions[positionsIndex++] = 0.0; + + if (j>=1) + { + length = positionsIndex / 2; + indices[indicesIndex++] = length - 2; + indices[indicesIndex++] = length - 1; + } + } + + for (var i = 0; i < HEIGHT_DIVISIONS; ++i) + { + var v = (i + 1) / (NUM_HEIGHT_PTS - 1); + positions[positionsIndex++] = 0.0; + positions[positionsIndex++] = v; + + length = (positionsIndex / 2); + indices[indicesIndex++] = length - 1; + indices[indicesIndex++] = length - 1 - NUM_WIDTH_PTS; + + for (var k = 0; k < WIDTH_DIVISIONS; ++k) + { + positions[positionsIndex++] = (k + 1) / (NUM_WIDTH_PTS - 1); + positions[positionsIndex++] = v; + + length = positionsIndex / 2; + var new_pt = length - 1; + indices[indicesIndex++] = new_pt - 1; // Previous side + indices[indicesIndex++] = new_pt; + + indices[indicesIndex++] = new_pt - NUM_WIDTH_PTS; // Previous bottom + indices[indicesIndex++] = new_pt; + } + } + + uploadMesh(positions, heights, indices); + numberOfIndices = indices.length; + })(); + + (function animate(){ + /////////////////////////////////////////////////////////////////////////// + // Update + + var model = mat4.create(); + mat4.identity(model); + mat4.translate(model, [-0.5, -0.5, 0.0]); + var mv = mat4.create(); + mat4.multiply(view, model, mv); + var mvp = mat4.create(); + mat4.multiply(persp, mv, mvp); + + time += 0.01; + + /////////////////////////////////////////////////////////////////////////// + // Render + context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); + + context.uniform1f(u_time, time); + context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); + context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); + + window.requestAnimFrame(animate); + })(); + +}()); diff --git a/part1/wave_wave.html b/part1/wave_wave.html new file mode 100644 index 0000000..df1cadb --- /dev/null +++ b/part1/wave_wave.html @@ -0,0 +1,47 @@ + + + +Vertex Wave + + + + + +
+ + + + + + + + + + + + diff --git a/part1/wave_wave.js b/part1/wave_wave.js new file mode 100644 index 0000000..ab5646e --- /dev/null +++ b/part1/wave_wave.js @@ -0,0 +1,158 @@ +(function() { + "use strict"; + /*global window,document,Float32Array,Uint16Array,mat4,vec3,snoise*/ + /*global getShaderSource,createWebGLContext,createProgram*/ + + var NUM_WIDTH_PTS = 50; + var NUM_HEIGHT_PTS = 50; + + var message = document.getElementById("message"); + var canvas = document.getElementById("canvas"); + var context = createWebGLContext(canvas, message); + if (!context) { + return; + } + + /////////////////////////////////////////////////////////////////////////// + + context.viewport(0, 0, canvas.width, canvas.height); + context.clearColor(1.0, 1.0, 1.0, 1.0); + context.enable(context.DEPTH_TEST); + + var time = 0.0; + + var persp = mat4.create(); + mat4.perspective(45.0, 0.5, 0.1, 100.0, persp); + + var eye = [2.0, 1.0, 3.0]; + var center = [0.0, 0.0, 0.0]; + var up = [0.0, 0.0, 1.0]; + var view = mat4.create(); + mat4.lookAt(eye, center, up, view); + + var positionLocation = 0; + var heightLocation = 1; + var u_modelViewPerspectiveLocation; + var u_time; + + (function initializeShader() { + var program; + var vs = getShaderSource(document.getElementById("vs")); + var fs = getShaderSource(document.getElementById("fs")); + + var program = createProgram(context, vs, fs, message); + context.bindAttribLocation(program, positionLocation, "position"); + u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); + u_time = context.getUniformLocation(program,"u_time"); + + context.useProgram(program); + })(); + + var heights; + var numberOfIndices; + + (function initializeGrid() { + function uploadMesh(positions, heights, indices) { + // Positions + var positionsName = context.createBuffer(); + context.bindBuffer(context.ARRAY_BUFFER, positionsName); + context.bufferData(context.ARRAY_BUFFER, positions, context.STATIC_DRAW); + context.vertexAttribPointer(positionLocation, 2, context.FLOAT, false, 0, 0); + context.enableVertexAttribArray(positionLocation); + + if (heights) + { + // Heights + var heightsName = context.createBuffer(); + context.bindBuffer(context.ARRAY_BUFFER, heightsName); + context.bufferData(context.ARRAY_BUFFER, heights.length * heights.BYTES_PER_ELEMENT, context.STREAM_DRAW); + context.vertexAttribPointer(heightLocation, 1, context.FLOAT, false, 0, 0); + context.enableVertexAttribArray(heightLocation); + } + + // Indices + var indicesName = context.createBuffer(); + context.bindBuffer(context.ELEMENT_ARRAY_BUFFER, indicesName); + context.bufferData(context.ELEMENT_ARRAY_BUFFER, indices, context.STATIC_DRAW); + } + + var WIDTH_DIVISIONS = NUM_WIDTH_PTS - 1; + var HEIGHT_DIVISIONS = NUM_HEIGHT_PTS - 1; + + var numberOfPositions = NUM_WIDTH_PTS * NUM_HEIGHT_PTS; + + var positions = new Float32Array(2 * numberOfPositions); + var indices = new Uint16Array(2 * ((NUM_HEIGHT_PTS * (NUM_WIDTH_PTS - 1)) + (NUM_WIDTH_PTS * (NUM_HEIGHT_PTS - 1)))); + + var positionsIndex = 0; + var indicesIndex = 0; + var length; + + for (var j = 0; j < NUM_WIDTH_PTS; ++j) + { + positions[positionsIndex++] = j /(NUM_WIDTH_PTS - 1); + positions[positionsIndex++] = 0.0; + + if (j>=1) + { + length = positionsIndex / 2; + indices[indicesIndex++] = length - 2; + indices[indicesIndex++] = length - 1; + } + } + + for (var i = 0; i < HEIGHT_DIVISIONS; ++i) + { + var v = (i + 1) / (NUM_HEIGHT_PTS - 1); + positions[positionsIndex++] = 0.0; + positions[positionsIndex++] = v; + + length = (positionsIndex / 2); + indices[indicesIndex++] = length - 1; + indices[indicesIndex++] = length - 1 - NUM_WIDTH_PTS; + + for (var k = 0; k < WIDTH_DIVISIONS; ++k) + { + positions[positionsIndex++] = (k + 1) / (NUM_WIDTH_PTS - 1); + positions[positionsIndex++] = v; + + length = positionsIndex / 2; + var new_pt = length - 1; + indices[indicesIndex++] = new_pt - 1; // Previous side + indices[indicesIndex++] = new_pt; + + indices[indicesIndex++] = new_pt - NUM_WIDTH_PTS; // Previous bottom + indices[indicesIndex++] = new_pt; + } + } + + uploadMesh(positions, heights, indices); + numberOfIndices = indices.length; + })(); + + (function animate(){ + /////////////////////////////////////////////////////////////////////////// + // Update + + var model = mat4.create(); + mat4.identity(model); + mat4.translate(model, [-0.5, -0.5, 0.0]); + var mv = mat4.create(); + mat4.multiply(view, model, mv); + var mvp = mat4.create(); + mat4.multiply(persp, mv, mvp); + + time += 0.01; + + /////////////////////////////////////////////////////////////////////////// + // Render + context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); + + context.uniform1f(u_time, time); + context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); + context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); + + window.requestAnimFrame(animate); + })(); + +}()); diff --git a/part2/frag_globe.html b/part2/frag_globe.html index 6aa5609..01d5cfd 100644 --- a/part2/frag_globe.html +++ b/part2/frag_globe.html @@ -62,6 +62,7 @@ uniform sampler2D u_Bump; uniform float u_time; + uniform float u_water; uniform mat4 u_InvTrans; varying vec3 v_Normal; // surface normal in camera coordinates @@ -70,6 +71,47 @@ varying vec3 v_positionMC; // position in model coordinates mat3 eastNorthUpToEyeCoordinates(vec3 positionMC, vec3 normalEC); + float rand(vec2 seed); + + vec3 permute(vec3 x) { + x = ((x*34.0)+1.0)*x; + return x - floor(x * (1.0 / 289.0)) * 289.0; + } + + float simplexNoise(vec2 v) + { + const vec4 C = vec4(0.211324865405187, 0.366025403784439, -0.577350269189626, 0.024390243902439); + + vec2 i = floor(v + dot(v, C.yy) ); + vec2 x0 = v - i + dot(i, C.xx); + + vec2 i1; + i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); + + vec4 x12 = x0.xyxy + C.xxzz; + x12.xy -= i1; + + i = i - floor(i * (1.0 / 289.0)) * 289.0; + + vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + + i.x + vec3(0.0, i1.x, 1.0 )); + + vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); + m = m*m ; + m = m*m ; + + vec3 x = 2.0 * fract(p * C.www) - 1.0; + vec3 h = abs(x) - 0.5; + vec3 ox = floor(x + 0.5); + vec3 a0 = x - ox; + + m *= inversesqrt( a0*a0 + h*h ); + + vec3 g; + g.x = a0.x * x0.x + h.x * x0.y; + g.yz = a0.yz * x12.xz + h.yz * x12.yw; + return 130.0 * dot(m, g); + } void main(void) { @@ -77,21 +119,68 @@ vec3 normal = normalize(v_Normal); // normalized eye-to-position vector in camera coordinates vec3 eyeToPosition = normalize(v_Position); - - float diffuse = clamp(dot(u_CameraSpaceDirLight, normal), 0.0, 1.0); - vec3 toReflectedLight = reflect(-u_CameraSpaceDirLight, normal); + float center = texture2D(u_Bump, v_Texcoord).r; + float top = texture2D(u_Bump, v_Texcoord+vec2(0.0,1.0/512.0)).r; + float right = texture2D(u_Bump, v_Texcoord+vec2(1.0/1024.0,0.0)).r; + + vec3 normalBump = normalize(vec3(center - right, center - top, 0.2)); + + if (texture2D(u_EarthSpec, v_Texcoord).r > 0.3){ + normalBump.x = .0125 * simplexNoise(45.0*vec2(v_positionMC)-22.0*vec2(u_time*0.1, u_time*0.1)) * + simplexNoise(20.0*vec2(v_positionMC.z-15.0*u_time*0.1,v_positionMC.y-7.0*u_time*0.1)); + } + + vec3 normalBumpEye = eastNorthUpToEyeCoordinates(v_positionMC, normal) * normalBump; + + // float a =2.0; + + // float s_contrib = a*sin(v_Texcoord.s*200.0*3.14159 + u_water); + // float t_contrib = a*cos(v_Texcoord.t*200.0*3.14159 + u_water); + // float centerWater = s_contrib*t_contrib; + // s_contrib = a*sin(v_Texcoord.s*200.0*3.14159 + u_water); + // t_contrib = a*cos(v_Texcoord.t*200.0*3.14159 + u_water)+1.0/512.0; + // float topWater = s_contrib*t_contrib; + // s_contrib = a*sin(v_Texcoord.s*200.0*3.14159 + u_water+1.0/1024.0); + // t_contrib = a*cos(v_Texcoord.t*200.0*3.14159 + u_water+1.0/512.0); + // float rightWater = s_contrib*t_contrib; + // vec3 normalWaterBump = normalize(vec3(centerWater - rightWater, centerWater - topWater, 0.2)); + // vec3 normalWaterBumpEye = eastNorthUpToEyeCoordinates(v_positionMC, normal) * normalWaterBump; + //vec3 waterColor = vec3(height+.5, height+.5, height+.5)*texture2D(u_EarthSpec, v_Texcoord).r; + + float diffuse = clamp(dot(u_CameraSpaceDirLight, normalBumpEye), 0.0, 1.0); + + vec3 toReflectedLight = reflect(-u_CameraSpaceDirLight, normalBumpEye); float specular = max(dot(toReflectedLight, -eyeToPosition), 0.0); - specular = pow(specular, 20.0); + specular = pow(specular, 10.0); + specular *= texture2D(u_EarthSpec, v_Texcoord).r; float gammaCorrect = 1.0/1.2; //gamma correct by 1/1.2 vec3 dayColor = texture2D(u_DayDiffuse, v_Texcoord).rgb; vec3 nightColor = texture2D(u_Night, v_Texcoord).rgb; + vec3 cloudColor = texture2D(u_Cloud, v_Texcoord-vec2(u_time*0.05,0.0)).rgb; + float cloudAlpha = texture2D(u_CloudTrans, v_Texcoord-vec2(u_time*0.05,0.0)).r; + + // dayColor += normalBumpWater*specular; + + specular *= cloudAlpha; + //apply gamma correction to nighttime texture nightColor = pow(nightColor,vec3(gammaCorrect)); - vec3 color = ((0.6 * diffuse) + (0.4 * specular)) * dayColor; + nightColor = mix( vec3(.2,.2,.3), nightColor, cloudAlpha); + dayColor = mix(cloudColor, dayColor, cloudAlpha); + + vec3 color = mix(nightColor, ((0.6 * diffuse) + (0.4 * specular)) * dayColor, (diffuse+1.0)/2.0); + + float rim = dot(v_Normal, v_Position)+1.0; + + if (rim > 0.0){ + color += vec3(rim/4.0, rim/2.0, rim/2.0); + } + + gl_FragColor = vec4(color, 1.0); } @@ -109,6 +198,10 @@ bitangentEC.x, bitangentEC.y, bitangentEC.z, normalEC.x, normalEC.y, normalEC.z); } + + float rand(vec2 co){ + return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453); + } diff --git a/part2/frag_globe.js b/part2/frag_globe.js index 1d8a877..e067c57 100644 --- a/part2/frag_globe.js +++ b/part2/frag_globe.js @@ -55,6 +55,7 @@ var u_EarthSpecLocation; var u_BumpLocation; var u_timeLocation; + var u_waterLocation; (function initializeShader() { var vs = getShaderSource(document.getElementById("vs")); @@ -75,6 +76,7 @@ u_EarthSpecLocation = gl.getUniformLocation(program,"u_EarthSpec"); u_BumpLocation = gl.getUniformLocation(program,"u_Bump"); u_timeLocation = gl.getUniformLocation(program,"u_time"); + u_waterLocation = gl.getUniformLocation(program,"u_water"); u_CameraSpaceDirLightLocation = gl.getUniformLocation(program,"u_CameraSpaceDirLight"); gl.useProgram(program); @@ -176,6 +178,7 @@ })(); var time = 0; + var water = 0; var mouseLeftDown = false; var mouseRightDown = false; var lastMouseX = null; @@ -287,8 +290,11 @@ gl.bindTexture(gl.TEXTURE_2D, specTex); gl.uniform1i(u_EarthSpecLocation, 5); gl.drawElements(gl.TRIANGLES, numberOfIndices, gl.UNSIGNED_SHORT,0); + gl.uniform1f(u_timeLocation, time); + gl.uniform1f(u_waterLocation, water); time += 0.001; + water += 0.001;//*Math.Random(); window.requestAnimFrame(animate); } diff --git a/simplex_wave.png b/simplex_wave.png new file mode 100644 index 0000000..4a0cbd2 Binary files /dev/null and b/simplex_wave.png differ diff --git a/vert_wave.png b/vert_wave.png new file mode 100644 index 0000000..bca56bd Binary files /dev/null and b/vert_wave.png differ diff --git a/wave_wave.png b/wave_wave.png new file mode 100644 index 0000000..e917c4f Binary files /dev/null and b/wave_wave.png differ