Skip to content

pretrained #10

@06Liz

Description

@06Liz

const.py文件中,import os
from pathlib import Path

Use environment variables to auto-detect whether we are running an a Compute Canada cluster:

Thanks to https://github.com/DM-Berger/unet-learn/blob/master/src/train/load.py for this trick.

COMPUTECANADA = False
TMP = os.environ.get("SLURM_TMPDIR")

if TMP:
COMPUTECANADA = True

if COMPUTECANADA:
INPUT_FOLDER = Path(str(TMP)).resolve() / "work" / "inputs"
MASK_FOLDER = Path(str(TMP)).resolve() / "work" / "inputs" / "masks"
PRETRAINED_MODEL_FOLDER = Path(str(TMP)).resolve() / "work" / "trained_models"
PRETRAINED_MODEL_DDPM_PATH = (
Path(str(TMP)).resolve() / "work" / "trained_models" / "ddpm"
)
PRETRAINED_MODEL_VAE_PATH = (
Path(str(TMP)).resolve() / "work" / "trained_models" / "vae"
)
PRETRAINED_MODEL_DECODER_PATH = (
Path(str(TMP)).resolve() / "work" / "trained_models" / "decoder"
)
PRETRAINED_MODEL_VGG_PATH = (
Path(str(TMP)).resolve() / "work" / "trained_models" / "vgg16.pt"
)
OUTPUT_FOLDER = Path(str(TMP)).resolve() / "work" / "outputs"
else:
INPUT_FOLDER = Path(file).resolve().parent.parent.parent / "data" / "IXI"
MASK_FOLDER = Path(file).resolve().parent.parent / "masks"
OASIS_FOLDER = Path(file).resolve().parent.parent.parent / "data" / "OASIS"
PRETRAINED_MODEL_FOLDER = (
Path(file).resolve().parent.parent.parent / "data" / "trained_models"
)这些预训练的模型都在哪里啊,数据在哪啊?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions