diff --git a/.gitignore b/.gitignore index d6e4e8b..bf8d612 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,5 @@ build/ *.cmd +*.tmp *.o *:Zone.Identifier diff --git a/.gitmodules b/.gitmodules index 1b969f4..1202314 100644 --- a/.gitmodules +++ b/.gitmodules @@ -1,6 +1,9 @@ +[submodule "apps/eigen_test/Eigen"] + path = apps/eigen_test/Eigen + url = https://gitlab.com/libeigen/eigen.git +[submodule "TinyMPC"] + path = TinyMPC + url = https://github.com/moisesmata/TinyMPC [submodule "crazyflie-firmware"] path = crazyflie-firmware - url = https://github.com/bitcraze/crazyflie-firmware.git -[submodule "TinyMPC"] - path = src/TinyMPC - url = https://github.com/moisesmata/TinyMPC.git \ No newline at end of file + url = https://github.com/moisesmata/crazyflie-firmware.git diff --git a/Kbuild b/Kbuild deleted file mode 100644 index 5ad4ae8..0000000 --- a/Kbuild +++ /dev/null @@ -1 +0,0 @@ -obj-y += src/ \ No newline at end of file diff --git a/Makefile b/Makefile deleted file mode 100644 index 58c2c87..0000000 --- a/Makefile +++ /dev/null @@ -1,25 +0,0 @@ -CRAZYFLIE_BASE := $(PWD)/crazyflie-firmware - -# Add TinyMPC directory to the build -# PROJ_ROOT = $(PWD)/src/TinyMPC/src/tinympc - -# Include paths -EXTRA_CFLAGS += -I$(PWD)/src/TinyMPC/include -EXTRA_CFLAGS += -I$(PWD)/src/TinyMPC/include/Eigen -EXTRA_CFLAGS += -I$(PWD)/src/TinyMPC/src - -# Eigen flags -EXTRA_CFLAGS += -DEIGEN_INITIALIZE_MATRICES_BY_ZERO -EXTRA_CFLAGS += -DEIGEN_NO_MALLOC -EXTRA_CFLAGS += -DNDEBUG -EXTRA_CFLAGS += -DEIGEN_FAST_MATH -EXTRA_CFLAGS += -Wno-error - -# -# We override the default OOT_CONFIG here, we could also name our config -# to oot-config and that would be the default. -# -OOT_CONFIG := $(PWD)/app-config -OOT_USES_CXX := 1 - -include $(CRAZYFLIE_BASE)/tools/make/oot.mk \ No newline at end of file diff --git a/TinyMPC b/TinyMPC new file mode 160000 index 0000000..c191397 --- /dev/null +++ b/TinyMPC @@ -0,0 +1 @@ +Subproject commit c191397aec98b8d1fb43738012072212c766a442 diff --git a/apps/controller_tinympc_eigen/.gitignore b/apps/controller_tinympc_eigen/.gitignore new file mode 100644 index 0000000..834a188 --- /dev/null +++ b/apps/controller_tinympc_eigen/.gitignore @@ -0,0 +1,3 @@ +bin/* +cf2.* +build/* diff --git a/apps/controller_tinympc_eigen/Kbuild b/apps/controller_tinympc_eigen/Kbuild new file mode 100644 index 0000000..9d80433 --- /dev/null +++ b/apps/controller_tinympc_eigen/Kbuild @@ -0,0 +1 @@ +obj-y += src/ diff --git a/apps/controller_tinympc_eigen/Makefile b/apps/controller_tinympc_eigen/Makefile new file mode 100644 index 0000000..df86709 --- /dev/null +++ b/apps/controller_tinympc_eigen/Makefile @@ -0,0 +1,38 @@ +# The firmware uses the Kbuild build system. There are 'Kbuild' files in this +# example that outlays what needs to be built. (check src/Kbuild). +# +# The firmware is configured using options in Kconfig files, the +# values of these end up in the .config file in the firmware directory. +# +# By setting the OOT_CONFIG (it is '$(PWD)/oot-config' by default) environment +# variable you can provide a custom configuration. It is important that you +# enable the app-layer. See app-config in this directory for example. + +# +# We want to execute the main Makefile for the firmware project, +# it will handle the build for us. +# +CRAZYFLIE_BASE := ../../crazyflie-firmware + +# +# To include header files from other directories +# +# EXTRA_CFLAGS += -lstdc++ +# EXTRA_CFLAGS += -lgcc +# EXTRA_CFLAGS += -lc +# EXTRA_CFLAGS += -lm +EXTRA_CFLAGS += -I$(PWD)/TinyMPC-ADMM/ext/Eigen +EXTRA_CFLAGS += -I$(PWD)/TinyMPC-ADMM/src +EXTRA_CFLAGS += -DEIGEN_INITIALIZE_MATRICES_BY_ZERO +EXTRA_CFLAGS += -DEIGEN_NO_MALLOC +EXTRA_CFLAGS += -DNDEBUG +EXTRA_CFLAGS += -Wno-unused-result +# +# We override the default OOT_CONFIG here, we could also name our config +# to oot-config and that would be the default. +# +OOT_CONFIG := $(PWD)/app-config + +OOT_USES_CXX := 1 + +include $(CRAZYFLIE_BASE)/tools/make/oot.mk diff --git a/apps/controller_tinympc_eigen/README.md b/apps/controller_tinympc_eigen/README.md new file mode 100644 index 0000000..b5174c3 --- /dev/null +++ b/apps/controller_tinympc_eigen/README.md @@ -0,0 +1,44 @@ +# TinyMPC-ADMM Controller for Crazyflie + +This is a TinyMPC-ADMM based controller for the Crazyflie, adapted for the latest firmware API. It's based on the original implementation by Ishaan's team but updated to work with the new crazyflie firmware structure. + +## Features + +- Uses TinyMPC-ADMM for Model Predictive Control +- Supports trajectory tracking and setpoint following +- Eigen-based matrix operations for efficient computation +- Configurable solver parameters and trajectory options + +## Key Changes from Original Implementation + +1. Updated controller function signature to use `stabilizerStep_t` instead of `uint32_t tick` +2. Adapted for new firmware build system and structure +3. Maintained compatibility with TinyMPC-ADMM library +4. Added proper includes for new firmware API (`stabilizer_types.h`) + +## Build Instructions + +1. Navigate to this directory +2. Run `make` to build the controller +3. Flash the resulting firmware to your Crazyflie + +## Configuration + +- Trajectory parameters and model matrices are defined in header files (e.g., `params_500hz.h`, `traj_fig8_12.h`) +- Controller parameters can be adjusted in the main controller file +- MPC solver settings (iterations, tolerances) are configurable + +## Logging + +The controller provides several logging variables for monitoring: +- `ctrlMPC.iters`: Number of solver iterations +- `ctrlMPC.mpcTime`: Solver execution time in microseconds +- `ctrlMPC.primal_residual`: Primal residual from ADMM solver +- `ctrlMPC.dual_residual`: Dual residual from ADMM solver +- `ctrlMPC.ref_x/y/z`: Reference trajectory coordinates + +## Notes + +- The controller runs at 500Hz by default +- Trajectory execution can be enabled/disabled via `en_traj` parameter +- Hover values are preconfigured for specific Crazyflie units and may need adjustment diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/LICENSE.md b/apps/controller_tinympc_eigen/TinyMPC-ADMM/LICENSE.md new file mode 100644 index 0000000..7663464 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/LICENSE.md @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2023 Robotic Exploration Lab + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/README.md b/apps/controller_tinympc_eigen/TinyMPC-ADMM/README.md new file mode 100644 index 0000000..76fa38a --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/README.md @@ -0,0 +1 @@ +# TinyMPC-ADMM diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen.h new file mode 100644 index 0000000..1820a72 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen.h @@ -0,0 +1,82 @@ +/* +Eigen.h +Brian R Taylor +brian.taylor@bolderflight.com +2017-02-08 + +Copyright (c) 2017 Bolder Flight Systems + +Permission is hereby granted, free of charge, to any person obtaining a copy of this software +and associated documentation files (the "Software"), to deal in the Software without restriction, +including without limitation the rights to use, copy, modify, merge, publish, distribute, +sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or +substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING +BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, +DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +*/ + +// Credits: @rpavlik for writing the original header for the Eigen313 library, which this +// was derived from: +// http://forum.arduino.cc/index.php?PHPSESSID=a86gv50nb3e3ireijfmli63260&topic=144446.msg1089371#msg1089371 + +// Disable debug asserts. +#define EIGEN_NO_DEBUG 1 + +// Hint to number of registers +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16 + +#ifdef A0 +# define NEED_A0_RESTORED A0 +# undef A0 +#endif +#ifdef A1 +# define NEED_A1_RESTORED A1 +# undef A1 +#endif +#ifdef B0 +# define NEED_B0_RESTORED B0 +# undef B0 +#endif +#ifdef B1 +# define NEED_B1_RESTORED B1 +# undef B1 +#endif +#ifdef round +# define NEED_round_RESTORED round +# undef round +#endif + +namespace std { + struct nothrow_t; +} + +// Include main EIGEN Core header +#include + +#ifdef NEED_A0_RESTORED +# define A0 NEED_A0_RESTORED +# undef NEED_A0_RESTORED +#endif +#ifdef NEED_A1_RESTORED +# define A1 NEED_A1_RESTORED +# undef NEED_A1_RESTORED +#endif +#ifdef NEED_B0_RESTORED +# define B0 NEED_B0_RESTORED +# undef NEED_B0_RESTORED +#endif +#ifdef NEED_B1_RESTORED +# define B1 NEED_B1_RESTORED +# undef NEED_B1_RESTORED +#endif +#ifdef NEED_round_RESTORED +# define round NEED_round_RESTORED +# undef NEED_round_RESTORED +#endif diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/CMakeLists.txt b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/CMakeLists.txt new file mode 100644 index 0000000..9eb502b --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/CMakeLists.txt @@ -0,0 +1,19 @@ +include(RegexUtils) +test_escape_string_as_regex() + +file(GLOB Eigen_directory_files "*") + +escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}") + +foreach(f ${Eigen_directory_files}) + if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/src") + list(APPEND Eigen_directory_files_to_install ${f}) + endif() +endforeach(f ${Eigen_directory_files}) + +install(FILES + ${Eigen_directory_files_to_install} + DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel + ) + +install(DIRECTORY src DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel FILES_MATCHING PATTERN "*.h") diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Cholesky b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Cholesky new file mode 100644 index 0000000..1332b54 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Cholesky @@ -0,0 +1,46 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CHOLESKY_MODULE_H +#define EIGEN_CHOLESKY_MODULE_H + +#include "Core" +#include "Jacobi" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup Cholesky_Module Cholesky module + * + * + * + * This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices. + * Those decompositions are also accessible via the following methods: + * - MatrixBase::llt() + * - MatrixBase::ldlt() + * - SelfAdjointView::llt() + * - SelfAdjointView::ldlt() + * + * \code + * #include + * \endcode + */ + +#include "src/Cholesky/LLT.h" +#include "src/Cholesky/LDLT.h" +#ifdef EIGEN_USE_LAPACKE +#ifdef EIGEN_USE_MKL +#include "mkl_lapacke.h" +#else +#include "src/misc/lapacke.h" +#endif +#include "src/Cholesky/LLT_LAPACKE.h" +#endif + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_CHOLESKY_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/CholmodSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/CholmodSupport new file mode 100644 index 0000000..bed8924 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/CholmodSupport @@ -0,0 +1,48 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H +#define EIGEN_CHOLMODSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +extern "C" { + #include +} + +/** \ingroup Support_modules + * \defgroup CholmodSupport_Module CholmodSupport module + * + * This module provides an interface to the Cholmod library which is part of the suitesparse package. + * It provides the two following main factorization classes: + * - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization. + * - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial). + * + * For the sake of completeness, this module also propose the two following classes: + * - class CholmodSimplicialLLT + * - class CholmodSimplicialLDLT + * Note that these classes does not bring any particular advantage compared to the built-in + * SimplicialLLT and SimplicialLDLT factorization classes. + * + * \code + * #include + * \endcode + * + * In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies. + * The dependencies depend on how cholmod has been compiled. + * For a cmake based project, you can use our FindCholmod.cmake module to help you in this task. + * + */ + +#include "src/CholmodSupport/CholmodSupport.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_CHOLMODSUPPORT_MODULE_H + diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Core b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Core new file mode 100644 index 0000000..bb8ad46 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Core @@ -0,0 +1,361 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2007-2011 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CORE_H +#define EIGEN_CORE_H + +// first thing Eigen does: stop the compiler from committing suicide +#include "src/Core/util/DisableStupidWarnings.h" + +// then include this file where all our macros are defined. It's really important to do it first because +// it's where we do all the compiler/OS/arch detections and define most defaults. +#include "src/Core/util/Macros.h" + +// This detects SSE/AVX/NEON/etc. and configure alignment settings +#include "src/Core/util/ConfigureVectorization.h" + +// We need cuda_runtime.h/hip_runtime.h to ensure that +// the EIGEN_USING_STD_MATH macro works properly on the device side +#if defined(EIGEN_CUDACC) + #include +#elif defined(EIGEN_HIPCC) + #include +#endif + + +#ifdef EIGEN_EXCEPTIONS + #include +#endif + +// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3) +// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details. +#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_LEAST(4,6) + #pragma GCC optimize ("-fno-ipa-cp-clone") +#endif + +#include + +// this include file manages BLAS and MKL related macros +// and inclusion of their respective header files +#include "src/Core/util/MKL_support.h" + + +#if defined(EIGEN_HAS_CUDA_FP16) || defined(EIGEN_HAS_HIP_FP16) + #define EIGEN_HAS_GPU_FP16 +#endif + +#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE) + #define EIGEN_HAS_OPENMP +#endif + +#ifdef EIGEN_HAS_OPENMP +#include +#endif + +// MSVC for windows mobile does not have the errno.h file +#if !(EIGEN_COMP_MSVC && EIGEN_OS_WINCE) && !EIGEN_COMP_ARM +#define EIGEN_HAS_ERRNO +#endif + +#ifdef EIGEN_HAS_ERRNO +#include +#endif +#include +#include +#include +#include +#include +#ifndef EIGEN_NO_IO + #include +#endif +#include +#include +#include +#include // for CHAR_BIT +// for min/max: +#include + +#if EIGEN_HAS_CXX11 +#include +#endif + +// for std::is_nothrow_move_assignable +#ifdef EIGEN_INCLUDE_TYPE_TRAITS +#include +#endif + +// for outputting debug info +#ifdef EIGEN_DEBUG_ASSIGN +#include +#endif + +// required for __cpuid, needs to be included after cmath +#if EIGEN_COMP_MSVC && EIGEN_ARCH_i386_OR_x86_64 && !EIGEN_OS_WINCE + #include +#endif + +#if defined(EIGEN_USE_SYCL) + #undef min + #undef max + #undef isnan + #undef isinf + #undef isfinite + #include + #include + #include + #include + #include + #ifndef EIGEN_SYCL_LOCAL_THREAD_DIM0 + #define EIGEN_SYCL_LOCAL_THREAD_DIM0 16 + #endif + #ifndef EIGEN_SYCL_LOCAL_THREAD_DIM1 + #define EIGEN_SYCL_LOCAL_THREAD_DIM1 16 + #endif +#endif + + +#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT +// This will generate an error message: +#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information +#endif + +namespace Eigen { + +// we use size_t frequently and we'll never remember to prepend it with std:: every time just to +// ensure QNX/QCC support +using std::size_t; +// gcc 4.6.0 wants std:: for ptrdiff_t +using std::ptrdiff_t; + +} + +/** \defgroup Core_Module Core module + * This is the main module of Eigen providing dense matrix and vector support + * (both fixed and dynamic size) with all the features corresponding to a BLAS library + * and much more... + * + * \code + * #include + * \endcode + */ + +#include "src/Core/util/Constants.h" +#include "src/Core/util/Meta.h" +#include "src/Core/util/ForwardDeclarations.h" +#include "src/Core/util/StaticAssert.h" +#include "src/Core/util/XprHelper.h" +#include "src/Core/util/Memory.h" +#include "src/Core/util/IntegralConstant.h" +#include "src/Core/util/SymbolicIndex.h" + +#include "src/Core/NumTraits.h" +#include "src/Core/MathFunctions.h" +#include "src/Core/GenericPacketMath.h" +#include "src/Core/MathFunctionsImpl.h" +#include "src/Core/arch/Default/ConjHelper.h" +// Generic half float support +#include "src/Core/arch/Default/Half.h" +#include "src/Core/arch/Default/TypeCasting.h" +#include "src/Core/arch/Default/GenericPacketMathFunctionsFwd.h" + +#if defined EIGEN_VECTORIZE_AVX512 + #include "src/Core/arch/SSE/PacketMath.h" + #include "src/Core/arch/SSE/TypeCasting.h" + #include "src/Core/arch/SSE/Complex.h" + #include "src/Core/arch/AVX/PacketMath.h" + #include "src/Core/arch/AVX/TypeCasting.h" + #include "src/Core/arch/AVX/Complex.h" + #include "src/Core/arch/AVX512/PacketMath.h" + #include "src/Core/arch/AVX512/TypeCasting.h" + #include "src/Core/arch/AVX512/Complex.h" + #include "src/Core/arch/SSE/MathFunctions.h" + #include "src/Core/arch/AVX/MathFunctions.h" + #include "src/Core/arch/AVX512/MathFunctions.h" +#elif defined EIGEN_VECTORIZE_AVX + // Use AVX for floats and doubles, SSE for integers + #include "src/Core/arch/SSE/PacketMath.h" + #include "src/Core/arch/SSE/TypeCasting.h" + #include "src/Core/arch/SSE/Complex.h" + #include "src/Core/arch/AVX/PacketMath.h" + #include "src/Core/arch/AVX/TypeCasting.h" + #include "src/Core/arch/AVX/Complex.h" + #include "src/Core/arch/SSE/MathFunctions.h" + #include "src/Core/arch/AVX/MathFunctions.h" +#elif defined EIGEN_VECTORIZE_SSE + #include "src/Core/arch/SSE/PacketMath.h" + #include "src/Core/arch/SSE/TypeCasting.h" + #include "src/Core/arch/SSE/MathFunctions.h" + #include "src/Core/arch/SSE/Complex.h" +#elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX) + #include "src/Core/arch/AltiVec/PacketMath.h" + #include "src/Core/arch/AltiVec/MathFunctions.h" + #include "src/Core/arch/AltiVec/Complex.h" +#elif defined EIGEN_VECTORIZE_NEON + #include "src/Core/arch/NEON/PacketMath.h" + #include "src/Core/arch/NEON/TypeCasting.h" + #include "src/Core/arch/NEON/MathFunctions.h" + #include "src/Core/arch/NEON/Complex.h" +#elif defined EIGEN_VECTORIZE_ZVECTOR + #include "src/Core/arch/ZVector/PacketMath.h" + #include "src/Core/arch/ZVector/MathFunctions.h" + #include "src/Core/arch/ZVector/Complex.h" +#elif defined EIGEN_VECTORIZE_MSA + #include "src/Core/arch/MSA/PacketMath.h" + #include "src/Core/arch/MSA/MathFunctions.h" + #include "src/Core/arch/MSA/Complex.h" +#endif + +#if defined EIGEN_VECTORIZE_GPU + #include "src/Core/arch/GPU/PacketMath.h" + #include "src/Core/arch/GPU/MathFunctions.h" + #include "src/Core/arch/GPU/TypeCasting.h" +#endif + +#if defined(EIGEN_USE_SYCL) + #include "src/Core/arch/SYCL/SyclMemoryModel.h" + #include "src/Core/arch/SYCL/InteropHeaders.h" +#if !defined(EIGEN_DONT_VECTORIZE_SYCL) + #include "src/Core/arch/SYCL/PacketMath.h" + #include "src/Core/arch/SYCL/MathFunctions.h" + #include "src/Core/arch/SYCL/TypeCasting.h" +#endif +#endif + +#include "src/Core/arch/Default/Settings.h" +// This file provides generic implementations valid for scalar as well +#include "src/Core/arch/Default/GenericPacketMathFunctions.h" + +#include "src/Core/functors/TernaryFunctors.h" +#include "src/Core/functors/BinaryFunctors.h" +#include "src/Core/functors/UnaryFunctors.h" +#include "src/Core/functors/NullaryFunctors.h" +#include "src/Core/functors/StlFunctors.h" +#include "src/Core/functors/AssignmentFunctors.h" + +// Specialized functors to enable the processing of complex numbers +// on CUDA devices +#ifdef EIGEN_CUDACC +#include "src/Core/arch/CUDA/Complex.h" +#endif + +#include "src/Core/util/IndexedViewHelper.h" +#include "src/Core/util/ReshapedHelper.h" +#include "src/Core/ArithmeticSequence.h" +#ifndef EIGEN_NO_IO + #include "src/Core/IO.h" +#endif +#include "src/Core/DenseCoeffsBase.h" +#include "src/Core/DenseBase.h" +#include "src/Core/MatrixBase.h" +#include "src/Core/EigenBase.h" + +#include "src/Core/Product.h" +#include "src/Core/CoreEvaluators.h" +#include "src/Core/AssignEvaluator.h" + +#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874 + // at least confirmed with Doxygen 1.5.5 and 1.5.6 + #include "src/Core/Assign.h" +#endif + +#include "src/Core/ArrayBase.h" +#include "src/Core/util/BlasUtil.h" +#include "src/Core/DenseStorage.h" +#include "src/Core/NestByValue.h" + +// #include "src/Core/ForceAlignedAccess.h" + +#include "src/Core/ReturnByValue.h" +#include "src/Core/NoAlias.h" +#include "src/Core/PlainObjectBase.h" +#include "src/Core/Matrix.h" +#include "src/Core/Array.h" +#include "src/Core/CwiseTernaryOp.h" +#include "src/Core/CwiseBinaryOp.h" +#include "src/Core/CwiseUnaryOp.h" +#include "src/Core/CwiseNullaryOp.h" +#include "src/Core/CwiseUnaryView.h" +#include "src/Core/SelfCwiseBinaryOp.h" +#include "src/Core/Dot.h" +#include "src/Core/StableNorm.h" +#include "src/Core/Stride.h" +#include "src/Core/MapBase.h" +#include "src/Core/Map.h" +#include "src/Core/Ref.h" +#include "src/Core/Block.h" +#include "src/Core/VectorBlock.h" +#include "src/Core/IndexedView.h" +#include "src/Core/Reshaped.h" +#include "src/Core/Transpose.h" +#include "src/Core/DiagonalMatrix.h" +#include "src/Core/Diagonal.h" +#include "src/Core/DiagonalProduct.h" +#include "src/Core/Redux.h" +#include "src/Core/Visitor.h" +#include "src/Core/Fuzzy.h" +#include "src/Core/Swap.h" +#include "src/Core/CommaInitializer.h" +#include "src/Core/GeneralProduct.h" +#include "src/Core/Solve.h" +#include "src/Core/Inverse.h" +#include "src/Core/SolverBase.h" +#include "src/Core/PermutationMatrix.h" +#include "src/Core/Transpositions.h" +#include "src/Core/TriangularMatrix.h" +#include "src/Core/SelfAdjointView.h" +#include "src/Core/products/GeneralBlockPanelKernel.h" +#include "src/Core/products/Parallelizer.h" +#include "src/Core/ProductEvaluators.h" +#include "src/Core/products/GeneralMatrixVector.h" +#include "src/Core/products/GeneralMatrixMatrix.h" +#include "src/Core/SolveTriangular.h" +#include "src/Core/products/GeneralMatrixMatrixTriangular.h" +#include "src/Core/products/SelfadjointMatrixVector.h" +#include "src/Core/products/SelfadjointMatrixMatrix.h" +#include "src/Core/products/SelfadjointProduct.h" +#include "src/Core/products/SelfadjointRank2Update.h" +#include "src/Core/products/TriangularMatrixVector.h" +#include "src/Core/products/TriangularMatrixMatrix.h" +#include "src/Core/products/TriangularSolverMatrix.h" +#include "src/Core/products/TriangularSolverVector.h" +#include "src/Core/BandMatrix.h" +#include "src/Core/CoreIterators.h" +#include "src/Core/ConditionEstimator.h" + +#include "src/Core/BooleanRedux.h" +#include "src/Core/Select.h" +#include "src/Core/VectorwiseOp.h" +#include "src/Core/PartialReduxEvaluator.h" +#include "src/Core/Random.h" +#include "src/Core/Replicate.h" +#include "src/Core/Reverse.h" +#include "src/Core/ArrayWrapper.h" +#include "src/Core/StlIterators.h" + +#ifdef EIGEN_USE_BLAS +#include "src/Core/products/GeneralMatrixMatrix_BLAS.h" +#include "src/Core/products/GeneralMatrixVector_BLAS.h" +#include "src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h" +#include "src/Core/products/SelfadjointMatrixMatrix_BLAS.h" +#include "src/Core/products/SelfadjointMatrixVector_BLAS.h" +#include "src/Core/products/TriangularMatrixMatrix_BLAS.h" +#include "src/Core/products/TriangularMatrixVector_BLAS.h" +#include "src/Core/products/TriangularSolverMatrix_BLAS.h" +#endif // EIGEN_USE_BLAS + +#ifdef EIGEN_USE_MKL_VML +#include "src/Core/Assign_MKL.h" +#endif + +#include "src/Core/GlobalFunctions.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_CORE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Dense b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Dense new file mode 100644 index 0000000..5768910 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Dense @@ -0,0 +1,7 @@ +#include "Core" +#include "LU" +#include "Cholesky" +#include "QR" +#include "SVD" +#include "Geometry" +#include "Eigenvalues" diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Eigen b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Eigen new file mode 100644 index 0000000..654c8dc --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Eigen @@ -0,0 +1,2 @@ +#include "Dense" +#include "Sparse" diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Eigenvalues b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Eigenvalues new file mode 100644 index 0000000..7d6ac78 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Eigenvalues @@ -0,0 +1,61 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EIGENVALUES_MODULE_H +#define EIGEN_EIGENVALUES_MODULE_H + +#include "Core" + +#include "Cholesky" +#include "Jacobi" +#include "Householder" +#include "LU" +#include "Geometry" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup Eigenvalues_Module Eigenvalues module + * + * + * + * This module mainly provides various eigenvalue solvers. + * This module also provides some MatrixBase methods, including: + * - MatrixBase::eigenvalues(), + * - MatrixBase::operatorNorm() + * + * \code + * #include + * \endcode + */ + +#include "src/misc/RealSvd2x2.h" +#include "src/Eigenvalues/Tridiagonalization.h" +#include "src/Eigenvalues/RealSchur.h" +#include "src/Eigenvalues/EigenSolver.h" +#include "src/Eigenvalues/SelfAdjointEigenSolver.h" +#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h" +#include "src/Eigenvalues/HessenbergDecomposition.h" +#include "src/Eigenvalues/ComplexSchur.h" +#include "src/Eigenvalues/ComplexEigenSolver.h" +#include "src/Eigenvalues/RealQZ.h" +#include "src/Eigenvalues/GeneralizedEigenSolver.h" +#include "src/Eigenvalues/MatrixBaseEigenvalues.h" +#ifdef EIGEN_USE_LAPACKE +#ifdef EIGEN_USE_MKL +#include "mkl_lapacke.h" +#else +#include "src/misc/lapacke.h" +#endif +#include "src/Eigenvalues/RealSchur_LAPACKE.h" +#include "src/Eigenvalues/ComplexSchur_LAPACKE.h" +#include "src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h" +#endif + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_EIGENVALUES_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Geometry b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Geometry new file mode 100644 index 0000000..16b4bd6 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Geometry @@ -0,0 +1,60 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GEOMETRY_MODULE_H +#define EIGEN_GEOMETRY_MODULE_H + +#include "Core" + +#include "SVD" +#include "LU" +#include + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup Geometry_Module Geometry module + * + * This module provides support for: + * - fixed-size homogeneous transformations + * - translation, scaling, 2D and 3D rotations + * - \link Quaternion quaternions \endlink + * - cross products (\ref MatrixBase::cross, \ref MatrixBase::cross3) + * - orthognal vector generation (\ref MatrixBase::unitOrthogonal) + * - some linear components: \link ParametrizedLine parametrized-lines \endlink and \link Hyperplane hyperplanes \endlink + * - \link AlignedBox axis aligned bounding boxes \endlink + * - \link umeyama least-square transformation fitting \endlink + * + * \code + * #include + * \endcode + */ + +#include "src/Geometry/OrthoMethods.h" +#include "src/Geometry/EulerAngles.h" + +#include "src/Geometry/Homogeneous.h" +#include "src/Geometry/RotationBase.h" +#include "src/Geometry/Rotation2D.h" +#include "src/Geometry/Quaternion.h" +#include "src/Geometry/AngleAxis.h" +#include "src/Geometry/Transform.h" +#include "src/Geometry/Translation.h" +#include "src/Geometry/Scaling.h" +#include "src/Geometry/Hyperplane.h" +#include "src/Geometry/ParametrizedLine.h" +#include "src/Geometry/AlignedBox.h" +#include "src/Geometry/Umeyama.h" + +// Use the SSE optimized version whenever possible. +#if defined EIGEN_VECTORIZE_SSE +#include "src/Geometry/arch/Geometry_SSE.h" +#endif + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_GEOMETRY_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Householder b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Householder new file mode 100644 index 0000000..89cd81b --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Householder @@ -0,0 +1,30 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOUSEHOLDER_MODULE_H +#define EIGEN_HOUSEHOLDER_MODULE_H + +#include "Core" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup Householder_Module Householder module + * This module provides Householder transformations. + * + * \code + * #include + * \endcode + */ + +#include "src/Householder/Householder.h" +#include "src/Householder/HouseholderSequence.h" +#include "src/Householder/BlockHouseholder.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_HOUSEHOLDER_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/IterativeLinearSolvers b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/IterativeLinearSolvers new file mode 100644 index 0000000..957d575 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/IterativeLinearSolvers @@ -0,0 +1,48 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H +#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H + +#include "SparseCore" +#include "OrderingMethods" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** + * \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module + * + * This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse. + * Those solvers are accessible via the following classes: + * - ConjugateGradient for selfadjoint (hermitian) matrices, + * - LeastSquaresConjugateGradient for rectangular least-square problems, + * - BiCGSTAB for general square matrices. + * + * These iterative solvers are associated with some preconditioners: + * - IdentityPreconditioner - not really useful + * - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices. + * - IncompleteLUT - incomplete LU factorization with dual thresholding + * + * Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport. + * + \code + #include + \endcode + */ + +#include "src/IterativeLinearSolvers/SolveWithGuess.h" +#include "src/IterativeLinearSolvers/IterativeSolverBase.h" +#include "src/IterativeLinearSolvers/BasicPreconditioners.h" +#include "src/IterativeLinearSolvers/ConjugateGradient.h" +#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h" +#include "src/IterativeLinearSolvers/BiCGSTAB.h" +#include "src/IterativeLinearSolvers/IncompleteLUT.h" +#include "src/IterativeLinearSolvers/IncompleteCholesky.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Jacobi b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Jacobi new file mode 100644 index 0000000..17c1d78 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Jacobi @@ -0,0 +1,33 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_JACOBI_MODULE_H +#define EIGEN_JACOBI_MODULE_H + +#include "Core" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup Jacobi_Module Jacobi module + * This module provides Jacobi and Givens rotations. + * + * \code + * #include + * \endcode + * + * In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation: + * - MatrixBase::applyOnTheLeft() + * - MatrixBase::applyOnTheRight(). + */ + +#include "src/Jacobi/Jacobi.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_JACOBI_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ + diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/KLUSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/KLUSupport new file mode 100644 index 0000000..b23d905 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/KLUSupport @@ -0,0 +1,41 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_KLUSUPPORT_MODULE_H +#define EIGEN_KLUSUPPORT_MODULE_H + +#include + +#include + +extern "C" { +#include +#include + } + +/** \ingroup Support_modules + * \defgroup KLUSupport_Module KLUSupport module + * + * This module provides an interface to the KLU library which is part of the suitesparse package. + * It provides the following factorization class: + * - class KLU: a sparse LU factorization, well-suited for circuit simulation. + * + * \code + * #include + * \endcode + * + * In order to use this module, the klu and btf headers must be accessible from the include paths, and your binary must be linked to the klu library and its dependencies. + * The dependencies depend on how umfpack has been compiled. + * For a cmake based project, you can use our FindKLU.cmake module to help you in this task. + * + */ + +#include "src/KLUSupport/KLUSupport.h" + +#include + +#endif // EIGEN_KLUSUPPORT_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/LU b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/LU new file mode 100644 index 0000000..6418a86 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/LU @@ -0,0 +1,50 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LU_MODULE_H +#define EIGEN_LU_MODULE_H + +#include "Core" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup LU_Module LU module + * This module includes %LU decomposition and related notions such as matrix inversion and determinant. + * This module defines the following MatrixBase methods: + * - MatrixBase::inverse() + * - MatrixBase::determinant() + * + * \code + * #include + * \endcode + */ + +#include "src/misc/Kernel.h" +#include "src/misc/Image.h" +#include "src/LU/FullPivLU.h" +#include "src/LU/PartialPivLU.h" +#ifdef EIGEN_USE_LAPACKE +#ifdef EIGEN_USE_MKL +#include "mkl_lapacke.h" +#else +#include "src/misc/lapacke.h" +#endif +#include "src/LU/PartialPivLU_LAPACKE.h" +#endif +#include "src/LU/Determinant.h" +#include "src/LU/InverseImpl.h" + +// Use the SSE optimized version whenever possible. At the moment the +// SSE version doesn't compile when AVX is enabled +#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX + #include "src/LU/arch/Inverse_SSE.h" +#endif + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_LU_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/MetisSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/MetisSupport new file mode 100644 index 0000000..85c41bf --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/MetisSupport @@ -0,0 +1,35 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_METISSUPPORT_MODULE_H +#define EIGEN_METISSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +extern "C" { +#include +} + + +/** \ingroup Support_modules + * \defgroup MetisSupport_Module MetisSupport module + * + * \code + * #include + * \endcode + * This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis). + * It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink + */ + + +#include "src/MetisSupport/MetisSupport.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_METISSUPPORT_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/OrderingMethods b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/OrderingMethods new file mode 100644 index 0000000..29691a6 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/OrderingMethods @@ -0,0 +1,70 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ORDERINGMETHODS_MODULE_H +#define EIGEN_ORDERINGMETHODS_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** + * \defgroup OrderingMethods_Module OrderingMethods module + * + * This module is currently for internal use only + * + * It defines various built-in and external ordering methods for sparse matrices. + * They are typically used to reduce the number of elements during + * the sparse matrix decomposition (LLT, LU, QR). + * Precisely, in a preprocessing step, a permutation matrix P is computed using + * those ordering methods and applied to the columns of the matrix. + * Using for instance the sparse Cholesky decomposition, it is expected that + * the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A). + * + * + * Usage : + * \code + * #include + * \endcode + * + * A simple usage is as a template parameter in the sparse decomposition classes : + * + * \code + * SparseLU > solver; + * \endcode + * + * \code + * SparseQR > solver; + * \endcode + * + * It is possible as well to call directly a particular ordering method for your own purpose, + * \code + * AMDOrdering ordering; + * PermutationMatrix perm; + * SparseMatrix A; + * //Fill the matrix ... + * + * ordering(A, perm); // Call AMD + * \endcode + * + * \note Some of these methods (like AMD or METIS), need the sparsity pattern + * of the input matrix to be symmetric. When the matrix is structurally unsymmetric, + * Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method. + * If your matrix is already symmetric (at leat in structure), you can avoid that + * by calling the method with a SelfAdjointView type. + * + * \code + * // Call the ordering on the pattern of the lower triangular matrix A + * ordering(A.selfadjointView(), perm); + * \endcode + */ + +#include "src/OrderingMethods/Amd.h" +#include "src/OrderingMethods/Ordering.h" +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_ORDERINGMETHODS_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/PaStiXSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/PaStiXSupport new file mode 100644 index 0000000..234619a --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/PaStiXSupport @@ -0,0 +1,49 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PASTIXSUPPORT_MODULE_H +#define EIGEN_PASTIXSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +extern "C" { +#include +#include +} + +#ifdef complex +#undef complex +#endif + +/** \ingroup Support_modules + * \defgroup PaStiXSupport_Module PaStiXSupport module + * + * This module provides an interface to the PaSTiX library. + * PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver. + * It provides the two following main factorization classes: + * - class PastixLLT : a supernodal, parallel LLt Cholesky factorization. + * - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization. + * - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern). + * + * \code + * #include + * \endcode + * + * In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies. + * This wrapper resuires PaStiX version 5.x compiled without MPI support. + * The dependencies depend on how PaSTiX has been compiled. + * For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task. + * + */ + +#include "src/PaStiXSupport/PaStiXSupport.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_PASTIXSUPPORT_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/PardisoSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/PardisoSupport new file mode 100644 index 0000000..340edf5 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/PardisoSupport @@ -0,0 +1,35 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARDISOSUPPORT_MODULE_H +#define EIGEN_PARDISOSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +#include + +/** \ingroup Support_modules + * \defgroup PardisoSupport_Module PardisoSupport module + * + * This module brings support for the Intel(R) MKL PARDISO direct sparse solvers. + * + * \code + * #include + * \endcode + * + * In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies. + * See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration. + * + */ + +#include "src/PardisoSupport/PardisoSupport.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_PARDISOSUPPORT_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/QR b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/QR new file mode 100644 index 0000000..1be1863 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/QR @@ -0,0 +1,51 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QR_MODULE_H +#define EIGEN_QR_MODULE_H + +#include "Core" + +#include "Cholesky" +#include "Jacobi" +#include "Householder" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup QR_Module QR module + * + * + * + * This module provides various QR decompositions + * This module also provides some MatrixBase methods, including: + * - MatrixBase::householderQr() + * - MatrixBase::colPivHouseholderQr() + * - MatrixBase::fullPivHouseholderQr() + * + * \code + * #include + * \endcode + */ + +#include "src/QR/HouseholderQR.h" +#include "src/QR/FullPivHouseholderQR.h" +#include "src/QR/ColPivHouseholderQR.h" +#include "src/QR/CompleteOrthogonalDecomposition.h" +#ifdef EIGEN_USE_LAPACKE +#ifdef EIGEN_USE_MKL +#include "mkl_lapacke.h" +#else +#include "src/misc/lapacke.h" +#endif +#include "src/QR/HouseholderQR_LAPACKE.h" +#include "src/QR/ColPivHouseholderQR_LAPACKE.h" +#endif + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_QR_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/QtAlignedMalloc b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/QtAlignedMalloc new file mode 100644 index 0000000..4f07df0 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/QtAlignedMalloc @@ -0,0 +1,40 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QTMALLOC_MODULE_H +#define EIGEN_QTMALLOC_MODULE_H + +#include "Core" + +#if (!EIGEN_MALLOC_ALREADY_ALIGNED) + +#include "src/Core/util/DisableStupidWarnings.h" + +void *qMalloc(std::size_t size) +{ + return Eigen::internal::aligned_malloc(size); +} + +void qFree(void *ptr) +{ + Eigen::internal::aligned_free(ptr); +} + +void *qRealloc(void *ptr, std::size_t size) +{ + void* newPtr = Eigen::internal::aligned_malloc(size); + std::memcpy(newPtr, ptr, size); + Eigen::internal::aligned_free(ptr); + return newPtr; +} + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif + +#endif // EIGEN_QTMALLOC_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SPQRSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SPQRSupport new file mode 100644 index 0000000..f70390c --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SPQRSupport @@ -0,0 +1,34 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPQRSUPPORT_MODULE_H +#define EIGEN_SPQRSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +#include "SuiteSparseQR.hpp" + +/** \ingroup Support_modules + * \defgroup SPQRSupport_Module SuiteSparseQR module + * + * This module provides an interface to the SPQR library, which is part of the suitesparse package. + * + * \code + * #include + * \endcode + * + * In order to use this module, the SPQR headers must be accessible from the include paths, and your binary must be linked to the SPQR library and its dependencies (Cholmod, AMD, COLAMD,...). + * For a cmake based project, you can use our FindSPQR.cmake and FindCholmod.Cmake modules + * + */ + +#include "src/CholmodSupport/CholmodSupport.h" +#include "src/SPQRSupport/SuiteSparseQRSupport.h" + +#endif diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SVD b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SVD new file mode 100644 index 0000000..5d0e75f --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SVD @@ -0,0 +1,51 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SVD_MODULE_H +#define EIGEN_SVD_MODULE_H + +#include "QR" +#include "Householder" +#include "Jacobi" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup SVD_Module SVD module + * + * + * + * This module provides SVD decomposition for matrices (both real and complex). + * Two decomposition algorithms are provided: + * - JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones. + * - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems. + * These decompositions are accessible via the respective classes and following MatrixBase methods: + * - MatrixBase::jacobiSvd() + * - MatrixBase::bdcSvd() + * + * \code + * #include + * \endcode + */ + +#include "src/misc/RealSvd2x2.h" +#include "src/SVD/UpperBidiagonalization.h" +#include "src/SVD/SVDBase.h" +#include "src/SVD/JacobiSVD.h" +#include "src/SVD/BDCSVD.h" +#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT) +#ifdef EIGEN_USE_MKL +#include "mkl_lapacke.h" +#else +#include "src/misc/lapacke.h" +#endif +#include "src/SVD/JacobiSVD_LAPACKE.h" +#endif + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_SVD_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Sparse b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Sparse new file mode 100644 index 0000000..a2ef7a6 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/Sparse @@ -0,0 +1,34 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_MODULE_H +#define EIGEN_SPARSE_MODULE_H + +/** \defgroup Sparse_Module Sparse meta-module + * + * Meta-module including all related modules: + * - \ref SparseCore_Module + * - \ref OrderingMethods_Module + * - \ref SparseCholesky_Module + * - \ref SparseLU_Module + * - \ref SparseQR_Module + * - \ref IterativeLinearSolvers_Module + * + \code + #include + \endcode + */ + +#include "SparseCore" +#include "OrderingMethods" +#include "SparseCholesky" +#include "SparseLU" +#include "SparseQR" +#include "IterativeLinearSolvers" + +#endif // EIGEN_SPARSE_MODULE_H + diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseCholesky b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseCholesky new file mode 100644 index 0000000..d2b1f12 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseCholesky @@ -0,0 +1,37 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2013 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSECHOLESKY_MODULE_H +#define EIGEN_SPARSECHOLESKY_MODULE_H + +#include "SparseCore" +#include "OrderingMethods" + +#include "src/Core/util/DisableStupidWarnings.h" + +/** + * \defgroup SparseCholesky_Module SparseCholesky module + * + * This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices. + * Those decompositions are accessible via the following classes: + * - SimplicialLLt, + * - SimplicialLDLt + * + * Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module. + * + * \code + * #include + * \endcode + */ + +#include "src/SparseCholesky/SimplicialCholesky.h" +#include "src/SparseCholesky/SimplicialCholesky_impl.h" +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_SPARSECHOLESKY_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseCore b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseCore new file mode 100644 index 0000000..76966c4 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseCore @@ -0,0 +1,69 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSECORE_MODULE_H +#define EIGEN_SPARSECORE_MODULE_H + +#include "Core" + +#include "src/Core/util/DisableStupidWarnings.h" + +#include +#include +#include +#include +#include + +/** + * \defgroup SparseCore_Module SparseCore module + * + * This module provides a sparse matrix representation, and basic associated matrix manipulations + * and operations. + * + * See the \ref TutorialSparse "Sparse tutorial" + * + * \code + * #include + * \endcode + * + * This module depends on: Core. + */ + +#include "src/SparseCore/SparseUtil.h" +#include "src/SparseCore/SparseMatrixBase.h" +#include "src/SparseCore/SparseAssign.h" +#include "src/SparseCore/CompressedStorage.h" +#include "src/SparseCore/AmbiVector.h" +#include "src/SparseCore/SparseCompressedBase.h" +#include "src/SparseCore/SparseMatrix.h" +#include "src/SparseCore/SparseMap.h" +#include "src/SparseCore/MappedSparseMatrix.h" +#include "src/SparseCore/SparseVector.h" +#include "src/SparseCore/SparseRef.h" +#include "src/SparseCore/SparseCwiseUnaryOp.h" +#include "src/SparseCore/SparseCwiseBinaryOp.h" +#include "src/SparseCore/SparseTranspose.h" +#include "src/SparseCore/SparseBlock.h" +#include "src/SparseCore/SparseDot.h" +#include "src/SparseCore/SparseRedux.h" +#include "src/SparseCore/SparseView.h" +#include "src/SparseCore/SparseDiagonalProduct.h" +#include "src/SparseCore/ConservativeSparseSparseProduct.h" +#include "src/SparseCore/SparseSparseProductWithPruning.h" +#include "src/SparseCore/SparseProduct.h" +#include "src/SparseCore/SparseDenseProduct.h" +#include "src/SparseCore/SparseSelfAdjointView.h" +#include "src/SparseCore/SparseTriangularView.h" +#include "src/SparseCore/TriangularSolver.h" +#include "src/SparseCore/SparsePermutation.h" +#include "src/SparseCore/SparseFuzzy.h" +#include "src/SparseCore/SparseSolverBase.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_SPARSECORE_MODULE_H + diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseLU b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseLU new file mode 100644 index 0000000..37c4a5c --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseLU @@ -0,0 +1,50 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSELU_MODULE_H +#define EIGEN_SPARSELU_MODULE_H + +#include "SparseCore" + +/** + * \defgroup SparseLU_Module SparseLU module + * This module defines a supernodal factorization of general sparse matrices. + * The code is fully optimized for supernode-panel updates with specialized kernels. + * Please, see the documentation of the SparseLU class for more details. + */ + +// Ordering interface +#include "OrderingMethods" + +#include "src/Core/util/DisableStupidWarnings.h" + +#include "src/SparseLU/SparseLU_gemm_kernel.h" + +#include "src/SparseLU/SparseLU_Structs.h" +#include "src/SparseLU/SparseLU_SupernodalMatrix.h" +#include "src/SparseLU/SparseLUImpl.h" +#include "src/SparseCore/SparseColEtree.h" +#include "src/SparseLU/SparseLU_Memory.h" +#include "src/SparseLU/SparseLU_heap_relax_snode.h" +#include "src/SparseLU/SparseLU_relax_snode.h" +#include "src/SparseLU/SparseLU_pivotL.h" +#include "src/SparseLU/SparseLU_panel_dfs.h" +#include "src/SparseLU/SparseLU_kernel_bmod.h" +#include "src/SparseLU/SparseLU_panel_bmod.h" +#include "src/SparseLU/SparseLU_column_dfs.h" +#include "src/SparseLU/SparseLU_column_bmod.h" +#include "src/SparseLU/SparseLU_copy_to_ucol.h" +#include "src/SparseLU/SparseLU_pruneL.h" +#include "src/SparseLU/SparseLU_Utils.h" +#include "src/SparseLU/SparseLU.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_SPARSELU_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseQR b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseQR new file mode 100644 index 0000000..f5fc5fa --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SparseQR @@ -0,0 +1,36 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEQR_MODULE_H +#define EIGEN_SPARSEQR_MODULE_H + +#include "SparseCore" +#include "OrderingMethods" +#include "src/Core/util/DisableStupidWarnings.h" + +/** \defgroup SparseQR_Module SparseQR module + * \brief Provides QR decomposition for sparse matrices + * + * This module provides a simplicial version of the left-looking Sparse QR decomposition. + * The columns of the input matrix should be reordered to limit the fill-in during the + * decomposition. Built-in methods (COLAMD, AMD) or external methods (METIS) can be used to this end. + * See the \link OrderingMethods_Module OrderingMethods\endlink module for the list + * of built-in and external ordering methods. + * + * \code + * #include + * \endcode + * + * + */ + +#include "src/SparseCore/SparseColEtree.h" +#include "src/SparseQR/SparseQR.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdDeque b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdDeque new file mode 100644 index 0000000..bc68397 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdDeque @@ -0,0 +1,27 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STDDEQUE_MODULE_H +#define EIGEN_STDDEQUE_MODULE_H + +#include "Core" +#include + +#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */ + +#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) + +#else + +#include "src/StlSupport/StdDeque.h" + +#endif + +#endif // EIGEN_STDDEQUE_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdList b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdList new file mode 100644 index 0000000..4c6262c --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdList @@ -0,0 +1,26 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STDLIST_MODULE_H +#define EIGEN_STDLIST_MODULE_H + +#include "Core" +#include + +#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */ + +#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) + +#else + +#include "src/StlSupport/StdList.h" + +#endif + +#endif // EIGEN_STDLIST_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdVector b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdVector new file mode 100644 index 0000000..0c4697a --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/StdVector @@ -0,0 +1,27 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STDVECTOR_MODULE_H +#define EIGEN_STDVECTOR_MODULE_H + +#include "Core" +#include + +#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */ + +#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...) + +#else + +#include "src/StlSupport/StdVector.h" + +#endif + +#endif // EIGEN_STDVECTOR_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SuperLUSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SuperLUSupport new file mode 100644 index 0000000..59312a8 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/SuperLUSupport @@ -0,0 +1,64 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H +#define EIGEN_SUPERLUSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +#ifdef EMPTY +#define EIGEN_EMPTY_WAS_ALREADY_DEFINED +#endif + +typedef int int_t; +#include +#include +#include + +// slu_util.h defines a preprocessor token named EMPTY which is really polluting, +// so we remove it in favor of a SUPERLU_EMPTY token. +// If EMPTY was already defined then we don't undef it. + +#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED) +# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED +#elif defined(EMPTY) +# undef EMPTY +#endif + +#define SUPERLU_EMPTY (-1) + +namespace Eigen { struct SluMatrix; } + +/** \ingroup Support_modules + * \defgroup SuperLUSupport_Module SuperLUSupport module + * + * This module provides an interface to the SuperLU library. + * It provides the following factorization class: + * - class SuperLU: a supernodal sequential LU factorization. + * - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods). + * + * \warning This wrapper requires at least versions 4.0 of SuperLU. The 3.x versions are not supported. + * + * \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting. + * + * \code + * #include + * \endcode + * + * In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies. + * The dependencies depend on how superlu has been compiled. + * For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task. + * + */ + +#include "src/SuperLUSupport/SuperLUSupport.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_SUPERLUSUPPORT_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/UmfPackSupport b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/UmfPackSupport new file mode 100644 index 0000000..00eec80 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/UmfPackSupport @@ -0,0 +1,40 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H +#define EIGEN_UMFPACKSUPPORT_MODULE_H + +#include "SparseCore" + +#include "src/Core/util/DisableStupidWarnings.h" + +extern "C" { +#include +} + +/** \ingroup Support_modules + * \defgroup UmfPackSupport_Module UmfPackSupport module + * + * This module provides an interface to the UmfPack library which is part of the suitesparse package. + * It provides the following factorization class: + * - class UmfPackLU: a multifrontal sequential LU factorization. + * + * \code + * #include + * \endcode + * + * In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies. + * The dependencies depend on how umfpack has been compiled. + * For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task. + * + */ + +#include "src/UmfPackSupport/UmfPackSupport.h" + +#include "src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_UMFPACKSUPPORT_MODULE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LDLT.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LDLT.h new file mode 100644 index 0000000..67e97ff --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LDLT.h @@ -0,0 +1,688 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud +// Copyright (C) 2009 Keir Mierle +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2011 Timothy E. Holy +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LDLT_H +#define EIGEN_LDLT_H + +namespace Eigen { + +namespace internal { + template struct traits > + : traits<_MatrixType> + { + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; + }; + + template struct LDLT_Traits; + + // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef + enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; +} + +/** \ingroup Cholesky_Module + * + * \class LDLT + * + * \brief Robust Cholesky decomposition of a matrix with pivoting + * + * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite + * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L + * is lower triangular with a unit diagonal and D is a diagonal matrix. + * + * The decomposition uses pivoting to ensure stability, so that L will have + * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root + * on D also stabilizes the computation. + * + * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky + * decomposition to determine whether a system of equations has a solution. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT + */ +template class LDLT + : public SolverBase > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + UpLo = _UpLo + }; + typedef Matrix TmpMatrixType; + + typedef Transpositions TranspositionType; + typedef PermutationMatrix PermutationType; + + typedef internal::LDLT_Traits Traits; + + /** \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LDLT::compute(const MatrixType&). + */ + LDLT() + : m_matrix(), + m_transpositions(), + m_sign(internal::ZeroSign), + m_isInitialized(false) + {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LDLT() + */ + explicit LDLT(Index size) + : m_matrix(size, size), + m_transpositions(size), + m_temporary(size), + m_sign(internal::ZeroSign), + m_isInitialized(false) + {} + + /** \brief Constructor with decomposition + * + * This calculates the decomposition for the input \a matrix. + * + * \sa LDLT(Index size) + */ + template + explicit LDLT(const EigenBase& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a LDLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa LDLT(const EigenBase&) + */ + template + explicit LDLT(EigenBase& matrix) + : m_matrix(matrix.derived()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** Clear any existing decomposition + * \sa rankUpdate(w,sigma) + */ + void setZero() + { + m_isInitialized = false; + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return Traits::getL(m_matrix); + } + + /** \returns the permutation matrix P as a transposition sequence. + */ + inline const TranspositionType& transpositionsP() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_transpositions; + } + + /** \returns the coefficients of the diagonal matrix D */ + inline Diagonal vectorD() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_matrix.diagonal(); + } + + /** \returns true if the matrix is positive (semidefinite) */ + inline bool isPositive() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; + } + + /** \returns true if the matrix is negative (semidefinite) */ + inline bool isNegative(void) const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * This function also supports in-place solves using the syntax x = decompositionObject.solve(x) . + * + * \note_about_checking_solutions + * + * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ + * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, + * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then + * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the + * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function + * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + template + bool solveInPlace(MatrixBase &bAndX) const; + + template + LDLT& compute(const EigenBase& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the LDLT decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + template + LDLT& rankUpdate(const MatrixBase& w, const RealScalar& alpha=1); + + /** \returns the internal LDLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLDLT() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LDLT& adjoint() const { return *this; }; + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the factorization failed because of a zero pivot. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_info; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + /** \internal + * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. + * The strict upper part is used during the decomposition, the strict lower + * part correspond to the coefficients of L (its diagonal is equal to 1 and + * is not stored), and the diagonal entries correspond to D. + */ + MatrixType m_matrix; + RealScalar m_l1_norm; + TranspositionType m_transpositions; + TmpMatrixType m_temporary; + internal::SignMatrix m_sign; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template struct ldlt_inplace; + +template<> struct ldlt_inplace +{ + template + static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) + { + using std::abs; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename TranspositionType::StorageIndex IndexType; + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + bool found_zero_pivot = false; + bool ret = true; + + if (size <= 1) + { + transpositions.setIdentity(); + if(size==0) sign = ZeroSign; + else if (numext::real(mat.coeff(0,0)) > static_cast(0) ) sign = PositiveSemiDef; + else if (numext::real(mat.coeff(0,0)) < static_cast(0)) sign = NegativeSemiDef; + else sign = ZeroSign; + return true; + } + + for (Index k = 0; k < size; ++k) + { + // Find largest diagonal element + Index index_of_biggest_in_corner; + mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); + index_of_biggest_in_corner += k; + + transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); + if(k != index_of_biggest_in_corner) + { + // apply the transposition while taking care to consider only + // the lower triangular part + Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element + mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); + mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); + std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); + for(Index i=k+1;i::IsComplex) + mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); + } + + // partition the matrix: + // A00 | - | - + // lu = A10 | A11 | - + // A20 | A21 | A22 + Index rs = size - k - 1; + Block A21(mat,k+1,k,rs,1); + Block A10(mat,k,0,1,k); + Block A20(mat,k+1,0,rs,k); + + if(k>0) + { + temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); + mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); + if(rs>0) + A21.noalias() -= A20 * temp.head(k); + } + + // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot + // was smaller than the cutoff value. However, since LDLT is not rank-revealing + // we should only make sure that we do not introduce INF or NaN values. + // Remark that LAPACK also uses 0 as the cutoff value. + RealScalar realAkk = numext::real(mat.coeffRef(k,k)); + bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); + + if(k==0 && !pivot_is_valid) + { + // The entire diagonal is zero, there is nothing more to do + // except filling the transpositions, and checking whether the matrix is zero. + sign = ZeroSign; + for(Index j = 0; j0) && pivot_is_valid) + A21 /= realAkk; + else if(rs>0) + ret = ret && (A21.array()==Scalar(0)).all(); + + if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed + else if(!pivot_is_valid) found_zero_pivot = true; + + if (sign == PositiveSemiDef) { + if (realAkk < static_cast(0)) sign = Indefinite; + } else if (sign == NegativeSemiDef) { + if (realAkk > static_cast(0)) sign = Indefinite; + } else if (sign == ZeroSign) { + if (realAkk > static_cast(0)) sign = PositiveSemiDef; + else if (realAkk < static_cast(0)) sign = NegativeSemiDef; + } + } + + return ret; + } + + // Reference for the algorithm: Davis and Hager, "Multiple Rank + // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) + // Trivial rearrangements of their computations (Timothy E. Holy) + // allow their algorithm to work for rank-1 updates even if the + // original matrix is not of full rank. + // Here only rank-1 updates are implemented, to reduce the + // requirement for intermediate storage and improve accuracy + template + static bool updateInPlace(MatrixType& mat, MatrixBase& w, const typename MatrixType::RealScalar& sigma=1) + { + using numext::isfinite; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + const Index size = mat.rows(); + eigen_assert(mat.cols() == size && w.size()==size); + + RealScalar alpha = 1; + + // Apply the update + for (Index j = 0; j < size; j++) + { + // Check for termination due to an original decomposition of low-rank + if (!(isfinite)(alpha)) + break; + + // Update the diagonal terms + RealScalar dj = numext::real(mat.coeff(j,j)); + Scalar wj = w.coeff(j); + RealScalar swj2 = sigma*numext::abs2(wj); + RealScalar gamma = dj*alpha + swj2; + + mat.coeffRef(j,j) += swj2/alpha; + alpha += swj2/dj; + + + // Update the terms of L + Index rs = size-j-1; + w.tail(rs) -= wj * mat.col(j).tail(rs); + if(gamma != 0) + mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); + } + return true; + } + + template + static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) + { + // Apply the permutation to the input w + tmp = transpositions * w; + + return ldlt_inplace::updateInPlace(mat,tmp,sigma); + } +}; + +template<> struct ldlt_inplace +{ + template + static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) + { + Transpose matt(mat); + return ldlt_inplace::unblocked(matt, transpositions, temp, sign); + } + + template + static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) + { + Transpose matt(mat); + return ldlt_inplace::update(matt, transpositions, tmp, w.conjugate(), sigma); + } +}; + +template struct LDLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } +}; + +template struct LDLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } +}; + +} // end namespace internal + +/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix + */ +template +template +LDLT& LDLT::compute(const EigenBase& a) +{ + check_template_parameters(); + + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } + + m_transpositions.resize(size); + m_isInitialized = false; + m_temporary.resize(size); + m_sign = internal::ZeroSign; + + m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; + + m_isInitialized = true; + return *this; +} + +/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. + * \param w a vector to be incorporated into the decomposition. + * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. + * \sa setZero() + */ +template +template +LDLT& LDLT::rankUpdate(const MatrixBase& w, const typename LDLT::RealScalar& sigma) +{ + typedef typename TranspositionType::StorageIndex IndexType; + const Index size = w.rows(); + if (m_isInitialized) + { + eigen_assert(m_matrix.rows()==size); + } + else + { + m_matrix.resize(size,size); + m_matrix.setZero(); + m_transpositions.resize(size); + for (Index i = 0; i < size; i++) + m_transpositions.coeffRef(i) = IndexType(i); + m_temporary.resize(size); + m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; + m_isInitialized = true; + } + + internal::ldlt_inplace::update(m_matrix, m_transpositions, m_temporary, w, sigma); + + return *this; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + _solve_impl_transposed(rhs, dst); +} + +template +template +void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + // dst = P b + dst = m_transpositions * rhs; + + // dst = L^-1 (P b) + // dst = L^-*T (P b) + matrixL().template conjugateIf().solveInPlace(dst); + + // dst = D^-* (L^-1 P b) + // dst = D^-1 (L^-*T P b) + // more precisely, use pseudo-inverse of D (see bug 241) + using std::abs; + const typename Diagonal::RealReturnType vecD(vectorD()); + // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) + // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: + // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits::epsilon(),RealScalar(1) / NumTraits::highest()); + // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest + // diagonal element is not well justified and leads to numerical issues in some cases. + // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. + // Using numeric_limits::min() gives us more robustness to denormals. + RealScalar tolerance = (std::numeric_limits::min)(); + for (Index i = 0; i < vecD.size(); ++i) + { + if(abs(vecD(i)) > tolerance) + dst.row(i) /= vecD(i); + else + dst.row(i).setZero(); + } + + // dst = L^-* (D^-* L^-1 P b) + // dst = L^-T (D^-1 L^-*T P b) + matrixL().transpose().template conjugateIf().solveInPlace(dst); + + // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b + // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b + dst = m_transpositions.transpose() * dst; +} +#endif + +/** \internal use x = ldlt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. + * + * This version avoids a copy when the right hand side matrix b is not + * needed anymore. + * + * \sa LDLT::solve(), MatrixBase::ldlt() + */ +template +template +bool LDLT::solveInPlace(MatrixBase &bAndX) const +{ + eigen_assert(m_isInitialized && "LDLT is not initialized."); + eigen_assert(m_matrix.rows() == bAndX.rows()); + + bAndX = this->solve(bAndX); + + return true; +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: P^T L D L^* P. + * This function is provided for debug purpose. */ +template +MatrixType LDLT::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LDLT is not initialized."); + const Index size = m_matrix.rows(); + MatrixType res(size,size); + + // P + res.setIdentity(); + res = transpositionsP() * res; + // L^* P + res = matrixU() * res; + // D(L^*P) + res = vectorD().real().asDiagonal() * res; + // L(DL^*P) + res = matrixL() * res; + // P^T (LDL^*P) + res = transpositionsP().transpose() * res; + + return res; +} + +/** \cholesky_module + * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa MatrixBase::ldlt() + */ +template +inline const LDLT::PlainObject, UpLo> +SelfAdjointView::ldlt() const +{ + return LDLT(m_matrix); +} + +/** \cholesky_module + * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa SelfAdjointView::ldlt() + */ +template +inline const LDLT::PlainObject> +MatrixBase::ldlt() const +{ + return LDLT(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_LDLT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LLT.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LLT.h new file mode 100644 index 0000000..5876966 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LLT.h @@ -0,0 +1,558 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LLT_H +#define EIGEN_LLT_H + +namespace Eigen { + +namespace internal{ + +template struct traits > + : traits<_MatrixType> +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; +}; + +template struct LLT_Traits; +} + +/** \ingroup Cholesky_Module + * + * \class LLT + * + * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features + * + * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite + * matrix A such that A = LL^* = U^*U, where L is lower triangular. + * + * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, + * for that purpose, we recommend the Cholesky decomposition without square root which is more stable + * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other + * situations like generalised eigen problems with hermitian matrices. + * + * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, + * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations + * has a solution. + * + * Example: \include LLT_example.cpp + * Output: \verbinclude LLT_example.out + * + * \b Performance: for best performance, it is recommended to use a column-major storage format + * with the Lower triangular part (the default), or, equivalently, a row-major storage format + * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization + * step, and rank-updates can be up to 3 times slower. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. + * Therefore, the strict lower part does not have to store correct values. + * + * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT + */ +template class LLT + : public SolverBase > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) + enum { + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + enum { + PacketSize = internal::packet_traits::size, + AlignmentMask = int(PacketSize)-1, + UpLo = _UpLo + }; + + typedef internal::LLT_Traits Traits; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LLT::compute(const MatrixType&). + */ + LLT() : m_matrix(), m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LLT() + */ + explicit LLT(Index size) : m_matrix(size, size), + m_isInitialized(false) {} + + template + explicit LLT(const EigenBase& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a LLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when + * \c MatrixType is a Eigen::Ref. + * + * \sa LLT(const EigenBase&) + */ + template + explicit LLT(EigenBase& matrix) + : m_matrix(matrix.derived()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getL(m_matrix); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * Since this LLT class assumes anyway that the matrix A is invertible, the solution + * theoretically exists and is unique regardless of b. + * + * Example: \include LLT_solve.cpp + * Output: \verbinclude LLT_solve.out + * + * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + template + void solveInPlace(const MatrixBase &bAndX) const; + + template + LLT& compute(const EigenBase& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the Cholesky decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the LLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLLT() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears not to be positive definite. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_info; + } + + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LLT& adjoint() const { return *this; }; + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + template + LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + /** \internal + * Used to compute and store L + * The strict upper part is not used and even not initialized. + */ + MatrixType m_matrix; + RealScalar m_l1_norm; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template struct llt_inplace; + +template +static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) +{ + using std::sqrt; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::ColXpr ColXpr; + typedef typename internal::remove_all::type ColXprCleaned; + typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; + typedef Matrix TempVectorType; + typedef typename TempVectorType::SegmentReturnType TempVecSegment; + + Index n = mat.cols(); + eigen_assert(mat.rows()==n && vec.size()==n); + + TempVectorType temp; + + if(sigma>0) + { + // This version is based on Givens rotations. + // It is faster than the other one below, but only works for updates, + // i.e., for sigma > 0 + temp = sqrt(sigma) * vec; + + for(Index i=0; i g; + g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); + + Index rs = n-i-1; + if(rs>0) + { + ColXprSegment x(mat.col(i).tail(rs)); + TempVecSegment y(temp.tail(rs)); + apply_rotation_in_the_plane(x, y, g); + } + } + } + else + { + temp = vec; + RealScalar beta = 1; + for(Index j=0; j struct llt_inplace +{ + typedef typename NumTraits::Real RealScalar; + template + static Index unblocked(MatrixType& mat) + { + using std::sqrt; + + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + for(Index k = 0; k < size; ++k) + { + Index rs = size-k-1; // remaining size + + Block A21(mat,k+1,k,rs,1); + Block A10(mat,k,0,1,k); + Block A20(mat,k+1,0,rs,k); + + RealScalar x = numext::real(mat.coeff(k,k)); + if (k>0) x -= A10.squaredNorm(); + if (x<=RealScalar(0)) + return k; + mat.coeffRef(k,k) = x = sqrt(x); + if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); + if (rs>0) A21 /= x; + } + return -1; + } + + template + static Index blocked(MatrixType& m) + { + eigen_assert(m.rows()==m.cols()); + Index size = m.rows(); + if(size<32) + return unblocked(m); + + Index blockSize = size/8; + blockSize = (blockSize/16)*16; + blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); + + for (Index k=0; k A11(m,k, k, bs,bs); + Block A21(m,k+bs,k, rs,bs); + Block A22(m,k+bs,k+bs,rs,rs); + + Index ret; + if((ret=unblocked(A11))>=0) return k+ret; + if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); + if(rs>0) A22.template selfadjointView().rankUpdate(A21,typename NumTraits::Literal(-1)); // bottleneck + } + return -1; + } + + template + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); + } +}; + +template struct llt_inplace +{ + typedef typename NumTraits::Real RealScalar; + + template + static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) + { + Transpose matt(mat); + return llt_inplace::unblocked(matt); + } + template + static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) + { + Transpose matt(mat); + return llt_inplace::blocked(matt); + } + template + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + Transpose matt(mat); + return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); + } +}; + +template struct LLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace::blocked(m)==-1; } +}; + +template struct LLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace::blocked(m)==-1; } +}; + +} // end namespace internal + +/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix + * + * \returns a reference to *this + * + * Example: \include TutorialLinAlgComputeTwice.cpp + * Output: \verbinclude TutorialLinAlgComputeTwice.out + */ +template +template +LLT& LLT::compute(const EigenBase& a) +{ + check_template_parameters(); + + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + m_matrix.resize(size, size); + if (!internal::is_same_dense(m_matrix, a.derived())) + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } + + m_isInitialized = true; + bool ok = Traits::inplace_decomposition(m_matrix); + m_info = ok ? Success : NumericalIssue; + + return *this; +} + +/** Performs a rank one update (or dowdate) of the current decomposition. + * If A = LL^* before the rank one update, + * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector + * of same dimension. + */ +template +template +LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); + eigen_assert(v.size()==m_matrix.cols()); + eigen_assert(m_isInitialized); + if(internal::llt_inplace::rankUpdate(m_matrix,v,sigma)>=0) + m_info = NumericalIssue; + else + m_info = Success; + + return *this; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + _solve_impl_transposed(rhs, dst); +} + +template +template +void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + dst = rhs; + + matrixL().template conjugateIf().solveInPlace(dst); + matrixU().template conjugateIf().solveInPlace(dst); +} +#endif + +/** \internal use x = llt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * This version avoids a copy when the right hand side matrix b is not needed anymore. + * + * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. + * This function will const_cast it, so constness isn't honored here. + * + * \sa LLT::solve(), MatrixBase::llt() + */ +template +template +void LLT::solveInPlace(const MatrixBase &bAndX) const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_matrix.rows()==bAndX.rows()); + matrixL().solveInPlace(bAndX); + matrixU().solveInPlace(bAndX); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: L L^*. + * This function is provided for debug purpose. */ +template +MatrixType LLT::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + return matrixL() * matrixL().adjoint().toDenseMatrix(); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() + */ +template +inline const LLT::PlainObject> +MatrixBase::llt() const +{ + return LLT(derived()); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() + */ +template +inline const LLT::PlainObject, UpLo> +SelfAdjointView::llt() const +{ + return LLT(m_matrix); +} + +} // end namespace Eigen + +#endif // EIGEN_LLT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LLT_LAPACKE.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LLT_LAPACKE.h new file mode 100644 index 0000000..bc6489e --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Cholesky/LLT_LAPACKE.h @@ -0,0 +1,99 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * LLt decomposition based on LAPACKE_?potrf function. + ******************************************************************************** +*/ + +#ifndef EIGEN_LLT_LAPACKE_H +#define EIGEN_LLT_LAPACKE_H + +namespace Eigen { + +namespace internal { + +template struct lapacke_llt; + +#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \ +template<> struct lapacke_llt \ +{ \ + template \ + static inline Index potrf(MatrixType& m, char uplo) \ + { \ + lapack_int matrix_order; \ + lapack_int size, lda, info, StorageOrder; \ + EIGTYPE* a; \ + eigen_assert(m.rows()==m.cols()); \ + /* Set up parameters for ?potrf */ \ + size = convert_index(m.rows()); \ + StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \ + matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ + a = &(m.coeffRef(0,0)); \ + lda = convert_index(m.outerStride()); \ +\ + info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \ + info = (info==0) ? -1 : info>0 ? info-1 : size; \ + return info; \ + } \ +}; \ +template<> struct llt_inplace \ +{ \ + template \ + static Index blocked(MatrixType& m) \ + { \ + return lapacke_llt::potrf(m, 'L'); \ + } \ + template \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \ +}; \ +template<> struct llt_inplace \ +{ \ + template \ + static Index blocked(MatrixType& m) \ + { \ + return lapacke_llt::potrf(m, 'U'); \ + } \ + template \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + { \ + Transpose matt(mat); \ + return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); \ + } \ +}; + +EIGEN_LAPACKE_LLT(double, double, d) +EIGEN_LAPACKE_LLT(float, float, s) +EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z) +EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c) + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_LLT_LAPACKE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/CholmodSupport/CholmodSupport.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/CholmodSupport/CholmodSupport.h new file mode 100644 index 0000000..adaf528 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/CholmodSupport/CholmodSupport.h @@ -0,0 +1,682 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CHOLMODSUPPORT_H +#define EIGEN_CHOLMODSUPPORT_H + +namespace Eigen { + +namespace internal { + +template struct cholmod_configure_matrix; + +template<> struct cholmod_configure_matrix { + template + static void run(CholmodType& mat) { + mat.xtype = CHOLMOD_REAL; + mat.dtype = CHOLMOD_DOUBLE; + } +}; + +template<> struct cholmod_configure_matrix > { + template + static void run(CholmodType& mat) { + mat.xtype = CHOLMOD_COMPLEX; + mat.dtype = CHOLMOD_DOUBLE; + } +}; + +// Other scalar types are not yet supported by Cholmod +// template<> struct cholmod_configure_matrix { +// template +// static void run(CholmodType& mat) { +// mat.xtype = CHOLMOD_REAL; +// mat.dtype = CHOLMOD_SINGLE; +// } +// }; +// +// template<> struct cholmod_configure_matrix > { +// template +// static void run(CholmodType& mat) { +// mat.xtype = CHOLMOD_COMPLEX; +// mat.dtype = CHOLMOD_SINGLE; +// } +// }; + +} // namespace internal + +/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. + * Note that the data are shared. + */ +template +cholmod_sparse viewAsCholmod(Ref > mat) +{ + cholmod_sparse res; + res.nzmax = mat.nonZeros(); + res.nrow = mat.rows(); + res.ncol = mat.cols(); + res.p = mat.outerIndexPtr(); + res.i = mat.innerIndexPtr(); + res.x = mat.valuePtr(); + res.z = 0; + res.sorted = 1; + if(mat.isCompressed()) + { + res.packed = 1; + res.nz = 0; + } + else + { + res.packed = 0; + res.nz = mat.innerNonZeroPtr(); + } + + res.dtype = 0; + res.stype = -1; + + if (internal::is_same<_StorageIndex,int>::value) + { + res.itype = CHOLMOD_INT; + } + else if (internal::is_same<_StorageIndex,SuiteSparse_long>::value) + { + res.itype = CHOLMOD_LONG; + } + else + { + eigen_assert(false && "Index type not supported yet"); + } + + // setup res.xtype + internal::cholmod_configure_matrix<_Scalar>::run(res); + + res.stype = 0; + + return res; +} + +template +const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat) +{ + cholmod_sparse res = viewAsCholmod(Ref >(mat.const_cast_derived())); + return res; +} + +template +const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat) +{ + cholmod_sparse res = viewAsCholmod(Ref >(mat.const_cast_derived())); + return res; +} + +/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. + * The data are not copied but shared. */ +template +cholmod_sparse viewAsCholmod(const SparseSelfAdjointView, UpLo>& mat) +{ + cholmod_sparse res = viewAsCholmod(Ref >(mat.matrix().const_cast_derived())); + + if(UpLo==Upper) res.stype = 1; + if(UpLo==Lower) res.stype = -1; + // swap stype for rowmajor matrices (only works for real matrices) + EIGEN_STATIC_ASSERT((_Options & RowMajorBit) == 0 || NumTraits<_Scalar>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + if(_Options & RowMajorBit) res.stype *=-1; + + return res; +} + +/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. + * The data are not copied but shared. */ +template +cholmod_dense viewAsCholmod(MatrixBase& mat) +{ + EIGEN_STATIC_ASSERT((internal::traits::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + typedef typename Derived::Scalar Scalar; + + cholmod_dense res; + res.nrow = mat.rows(); + res.ncol = mat.cols(); + res.nzmax = res.nrow * res.ncol; + res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); + res.x = (void*)(mat.derived().data()); + res.z = 0; + + internal::cholmod_configure_matrix::run(res); + + return res; +} + +/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. + * The data are not copied but shared. */ +template +MappedSparseMatrix viewAsEigen(cholmod_sparse& cm) +{ + return MappedSparseMatrix + (cm.nrow, cm.ncol, static_cast(cm.p)[cm.ncol], + static_cast(cm.p), static_cast(cm.i),static_cast(cm.x) ); +} + +namespace internal { + +// template specializations for int and long that call the correct cholmod method + +#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \ + template inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \ + template<> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_l_ ## name (&Common); } + +#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \ + template inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \ + template<> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); } + +EIGEN_CHOLMOD_SPECIALIZE0(int, start) +EIGEN_CHOLMOD_SPECIALIZE0(int, finish) + +EIGEN_CHOLMOD_SPECIALIZE1(int, free_factor, cholmod_factor*, L) +EIGEN_CHOLMOD_SPECIALIZE1(int, free_dense, cholmod_dense*, X) +EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A) + +EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A) + +template inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); } +template<> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); } + +template inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); } +template<> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); } + +template +inline int cm_factorize_p (cholmod_sparse* A, double beta[2], _StorageIndex* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); } +template<> +inline int cm_factorize_p (cholmod_sparse* A, double beta[2], SuiteSparse_long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); } + +#undef EIGEN_CHOLMOD_SPECIALIZE0 +#undef EIGEN_CHOLMOD_SPECIALIZE1 + +} // namespace internal + + +enum CholmodMode { + CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt +}; + + +/** \ingroup CholmodSupport_Module + * \class CholmodBase + * \brief The base class for the direct Cholesky factorization of Cholmod + * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT + */ +template +class CholmodBase : public SparseSolverBase +{ + protected: + typedef SparseSolverBase Base; + using Base::derived; + using Base::m_isInitialized; + public: + typedef _MatrixType MatrixType; + enum { UpLo = _UpLo }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef MatrixType CholMatrixType; + typedef typename MatrixType::StorageIndex StorageIndex; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + CholmodBase() + : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); + m_shiftOffset[0] = m_shiftOffset[1] = 0.0; + internal::cm_start(m_cholmod); + } + + explicit CholmodBase(const MatrixType& matrix) + : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); + m_shiftOffset[0] = m_shiftOffset[1] = 0.0; + internal::cm_start(m_cholmod); + compute(matrix); + } + + ~CholmodBase() + { + if(m_cholmodFactor) + internal::cm_free_factor(m_cholmodFactor, m_cholmod); + internal::cm_finish(m_cholmod); + } + + inline StorageIndex cols() const { return internal::convert_index(m_cholmodFactor->n); } + inline StorageIndex rows() const { return internal::convert_index(m_cholmodFactor->n); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + Derived& compute(const MatrixType& matrix) + { + analyzePattern(matrix); + factorize(matrix); + return derived(); + } + + /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + if(m_cholmodFactor) + { + internal::cm_free_factor(m_cholmodFactor, m_cholmod); + m_cholmodFactor = 0; + } + cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView()); + m_cholmodFactor = internal::cm_analyze(A, m_cholmod); + + this->m_isInitialized = true; + this->m_info = Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView()); + internal::cm_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, m_cholmod); + + // If the factorization failed, minor is the column at which it did. On success minor == n. + this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); + m_factorizationIsOk = true; + } + + /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. + * See the Cholmod user guide for details. */ + cholmod_common& cholmod() { return m_cholmod; } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal */ + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const + { + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + const Index size = m_cholmodFactor->n; + EIGEN_UNUSED_VARIABLE(size); + eigen_assert(size==b.rows()); + + // Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref. + Ref > b_ref(b.derived()); + + cholmod_dense b_cd = viewAsCholmod(b_ref); + cholmod_dense* x_cd = internal::cm_solve(CHOLMOD_A, *m_cholmodFactor, b_cd, m_cholmod); + if(!x_cd) + { + this->m_info = NumericalIssue; + return; + } + // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) + // NOTE Actually, the copy can be avoided by calling cholmod_solve2 instead of cholmod_solve + dest = Matrix::Map(reinterpret_cast(x_cd->x),b.rows(),b.cols()); + internal::cm_free_dense(x_cd, m_cholmod); + } + + /** \internal */ + template + void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const + { + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + const Index size = m_cholmodFactor->n; + EIGEN_UNUSED_VARIABLE(size); + eigen_assert(size==b.rows()); + + // note: cs stands for Cholmod Sparse + Ref > b_ref(b.const_cast_derived()); + cholmod_sparse b_cs = viewAsCholmod(b_ref); + cholmod_sparse* x_cs = internal::cm_spsolve(CHOLMOD_A, *m_cholmodFactor, b_cs, m_cholmod); + if(!x_cs) + { + this->m_info = NumericalIssue; + return; + } + // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) + // NOTE cholmod_spsolve in fact just calls the dense solver for blocks of 4 columns at a time (similar to Eigen's sparse solver) + dest.derived() = viewAsEigen(*x_cs); + internal::cm_free_sparse(x_cs, m_cholmod); + } + #endif // EIGEN_PARSED_BY_DOXYGEN + + + /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. + * + * During the numerical factorization, an offset term is added to the diagonal coefficients:\n + * \c d_ii = \a offset + \c d_ii + * + * The default is \a offset=0. + * + * \returns a reference to \c *this. + */ + Derived& setShift(const RealScalar& offset) + { + m_shiftOffset[0] = double(offset); + return derived(); + } + + /** \returns the determinant of the underlying matrix from the current factorization */ + Scalar determinant() const + { + using std::exp; + return exp(logDeterminant()); + } + + /** \returns the log determinant of the underlying matrix from the current factorization */ + Scalar logDeterminant() const + { + using std::log; + using numext::real; + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + + RealScalar logDet = 0; + Scalar *x = static_cast(m_cholmodFactor->x); + if (m_cholmodFactor->is_super) + { + // Supernodal factorization stored as a packed list of dense column-major blocs, + // as described by the following structure: + + // super[k] == index of the first column of the j-th super node + StorageIndex *super = static_cast(m_cholmodFactor->super); + // pi[k] == offset to the description of row indices + StorageIndex *pi = static_cast(m_cholmodFactor->pi); + // px[k] == offset to the respective dense block + StorageIndex *px = static_cast(m_cholmodFactor->px); + + Index nb_super_nodes = m_cholmodFactor->nsuper; + for (Index k=0; k < nb_super_nodes; ++k) + { + StorageIndex ncols = super[k + 1] - super[k]; + StorageIndex nrows = pi[k + 1] - pi[k]; + + Map, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1)); + logDet += sk.real().log().sum(); + } + } + else + { + // Simplicial factorization stored as standard CSC matrix. + StorageIndex *p = static_cast(m_cholmodFactor->p); + Index size = m_cholmodFactor->n; + for (Index k=0; kis_ll) + logDet *= 2.0; + return logDet; + }; + + template + void dumpMemory(Stream& /*s*/) + {} + + protected: + mutable cholmod_common m_cholmod; + cholmod_factor* m_cholmodFactor; + double m_shiftOffset[2]; + mutable ComputationInfo m_info; + int m_factorizationIsOk; + int m_analysisIsOk; +}; + +/** \ingroup CholmodSupport_Module + * \class CholmodSimplicialLLT + * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization + * using the Cholmod library. + * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. + * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * \implsparsesolverconcept + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT + */ +template +class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodSimplicialLLT() : Base() { init(); } + + CholmodSimplicialLLT(const MatrixType& matrix) : Base() + { + init(); + this->compute(matrix); + } + + ~CholmodSimplicialLLT() {} + protected: + void init() + { + m_cholmod.final_asis = 0; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + m_cholmod.final_ll = 1; + } +}; + + +/** \ingroup CholmodSupport_Module + * \class CholmodSimplicialLDLT + * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization + * using the Cholmod library. + * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest. + * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * \implsparsesolverconcept + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT + */ +template +class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodSimplicialLDLT() : Base() { init(); } + + CholmodSimplicialLDLT(const MatrixType& matrix) : Base() + { + init(); + this->compute(matrix); + } + + ~CholmodSimplicialLDLT() {} + protected: + void init() + { + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + } +}; + +/** \ingroup CholmodSupport_Module + * \class CholmodSupernodalLLT + * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization + * using the Cholmod library. + * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. + * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * \implsparsesolverconcept + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept + */ +template +class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodSupernodalLLT() : Base() { init(); } + + CholmodSupernodalLLT(const MatrixType& matrix) : Base() + { + init(); + this->compute(matrix); + } + + ~CholmodSupernodalLLT() {} + protected: + void init() + { + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SUPERNODAL; + } +}; + +/** \ingroup CholmodSupport_Module + * \class CholmodDecomposition + * \brief A general Cholesky factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization + * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * This variant permits to change the underlying Cholesky method at runtime. + * On the other hand, it does not provide access to the result of the factorization. + * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * \implsparsesolverconcept + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \warning Only double precision real and complex scalar types are supported by Cholmod. + * + * \sa \ref TutorialSparseSolverConcept + */ +template +class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodDecomposition() : Base() { init(); } + + CholmodDecomposition(const MatrixType& matrix) : Base() + { + init(); + this->compute(matrix); + } + + ~CholmodDecomposition() {} + + void setMode(CholmodMode mode) + { + switch(mode) + { + case CholmodAuto: + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_AUTO; + break; + case CholmodSimplicialLLt: + m_cholmod.final_asis = 0; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + m_cholmod.final_ll = 1; + break; + case CholmodSupernodalLLt: + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SUPERNODAL; + break; + case CholmodLDLt: + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + break; + default: + break; + } + } + protected: + void init() + { + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_AUTO; + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CHOLMODSUPPORT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArithmeticSequence.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArithmeticSequence.h new file mode 100644 index 0000000..b6200fa --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArithmeticSequence.h @@ -0,0 +1,413 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ARITHMETIC_SEQUENCE_H +#define EIGEN_ARITHMETIC_SEQUENCE_H + +namespace Eigen { + +namespace internal { + +#if (!EIGEN_HAS_CXX11) || !((!EIGEN_COMP_GNUC) || EIGEN_COMP_GNUC>=48) +template struct aseq_negate {}; + +template<> struct aseq_negate { + typedef Index type; +}; + +template struct aseq_negate > { + typedef FixedInt<-N> type; +}; + +// Compilation error in the following case: +template<> struct aseq_negate > {}; + +template::value, + bool SizeIsSymbolic =symbolic::is_symbolic::value> +struct aseq_reverse_first_type { + typedef Index type; +}; + +template +struct aseq_reverse_first_type { + typedef symbolic::AddExpr > >, + symbolic::ValueExpr > + > type; +}; + +template +struct aseq_reverse_first_type_aux { + typedef Index type; +}; + +template +struct aseq_reverse_first_type_aux::type> { + typedef FixedInt<(SizeType::value-1)*IncrType::value> type; +}; + +template +struct aseq_reverse_first_type { + typedef typename aseq_reverse_first_type_aux::type Aux; + typedef symbolic::AddExpr > type; +}; + +template +struct aseq_reverse_first_type { + typedef symbolic::AddExpr > >, + symbolic::ValueExpr >, + symbolic::ValueExpr<> > type; +}; +#endif + +// Helper to cleanup the type of the increment: +template struct cleanup_seq_incr { + typedef typename cleanup_index_type::type type; +}; + +} + +//-------------------------------------------------------------------------------- +// seq(first,last,incr) and seqN(first,size,incr) +//-------------------------------------------------------------------------------- + +template > +class ArithmeticSequence; + +template +ArithmeticSequence::type, + typename internal::cleanup_index_type::type, + typename internal::cleanup_seq_incr::type > +seqN(FirstType first, SizeType size, IncrType incr); + +/** \class ArithmeticSequence + * \ingroup Core_Module + * + * This class represents an arithmetic progression \f$ a_0, a_1, a_2, ..., a_{n-1}\f$ defined by + * its \em first value \f$ a_0 \f$, its \em size (aka length) \em n, and the \em increment (aka stride) + * that is equal to \f$ a_{i+1}-a_{i}\f$ for any \em i. + * + * It is internally used as the return type of the Eigen::seq and Eigen::seqN functions, and as the input arguments + * of DenseBase::operator()(const RowIndices&, const ColIndices&), and most of the time this is the + * only way it is used. + * + * \tparam FirstType type of the first element, usually an Index, + * but internally it can be a symbolic expression + * \tparam SizeType type representing the size of the sequence, usually an Index + * or a compile time integral constant. Internally, it can also be a symbolic expression + * \tparam IncrType type of the increment, can be a runtime Index, or a compile time integral constant (default is compile-time 1) + * + * \sa Eigen::seq, Eigen::seqN, DenseBase::operator()(const RowIndices&, const ColIndices&), class IndexedView + */ +template +class ArithmeticSequence +{ +public: + ArithmeticSequence(FirstType first, SizeType size) : m_first(first), m_size(size) {} + ArithmeticSequence(FirstType first, SizeType size, IncrType incr) : m_first(first), m_size(size), m_incr(incr) {} + + enum { + SizeAtCompileTime = internal::get_fixed_value::value, + IncrAtCompileTime = internal::get_fixed_value::value + }; + + /** \returns the size, i.e., number of elements, of the sequence */ + Index size() const { return m_size; } + + /** \returns the first element \f$ a_0 \f$ in the sequence */ + Index first() const { return m_first; } + + /** \returns the value \f$ a_i \f$ at index \a i in the sequence. */ + Index operator[](Index i) const { return m_first + i * m_incr; } + + const FirstType& firstObject() const { return m_first; } + const SizeType& sizeObject() const { return m_size; } + const IncrType& incrObject() const { return m_incr; } + +protected: + FirstType m_first; + SizeType m_size; + IncrType m_incr; + +public: + +#if EIGEN_HAS_CXX11 && ((!EIGEN_COMP_GNUC) || EIGEN_COMP_GNUC>=48) + auto reverse() const -> decltype(Eigen::seqN(m_first+(m_size+fix<-1>())*m_incr,m_size,-m_incr)) { + return seqN(m_first+(m_size+fix<-1>())*m_incr,m_size,-m_incr); + } +#else +protected: + typedef typename internal::aseq_negate::type ReverseIncrType; + typedef typename internal::aseq_reverse_first_type::type ReverseFirstType; +public: + ArithmeticSequence + reverse() const { + return seqN(m_first+(m_size+fix<-1>())*m_incr,m_size,-m_incr); + } +#endif +}; + +/** \returns an ArithmeticSequence starting at \a first, of length \a size, and increment \a incr + * + * \sa seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType) */ +template +ArithmeticSequence::type,typename internal::cleanup_index_type::type,typename internal::cleanup_seq_incr::type > +seqN(FirstType first, SizeType size, IncrType incr) { + return ArithmeticSequence::type,typename internal::cleanup_index_type::type,typename internal::cleanup_seq_incr::type>(first,size,incr); +} + +/** \returns an ArithmeticSequence starting at \a first, of length \a size, and unit increment + * + * \sa seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType) */ +template +ArithmeticSequence::type,typename internal::cleanup_index_type::type > +seqN(FirstType first, SizeType size) { + return ArithmeticSequence::type,typename internal::cleanup_index_type::type>(first,size); +} + +#ifdef EIGEN_PARSED_BY_DOXYGEN + +/** \returns an ArithmeticSequence starting at \a f, up (or down) to \a l, and with positive (or negative) increment \a incr + * + * It is essentially an alias to: + * \code + * seqN(f, (l-f+incr)/incr, incr); + * \endcode + * + * \sa seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType) + */ +template +auto seq(FirstType f, LastType l, IncrType incr); + +/** \returns an ArithmeticSequence starting at \a f, up (or down) to \a l, and unit increment + * + * It is essentially an alias to: + * \code + * seqN(f,l-f+1); + * \endcode + * + * \sa seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType) + */ +template +auto seq(FirstType f, LastType l); + +#else // EIGEN_PARSED_BY_DOXYGEN + +#if EIGEN_HAS_CXX11 +template +auto seq(FirstType f, LastType l) -> decltype(seqN(typename internal::cleanup_index_type::type(f), + ( typename internal::cleanup_index_type::type(l) + - typename internal::cleanup_index_type::type(f)+fix<1>()))) +{ + return seqN(typename internal::cleanup_index_type::type(f), + (typename internal::cleanup_index_type::type(l) + -typename internal::cleanup_index_type::type(f)+fix<1>())); +} + +template +auto seq(FirstType f, LastType l, IncrType incr) + -> decltype(seqN(typename internal::cleanup_index_type::type(f), + ( typename internal::cleanup_index_type::type(l) + - typename internal::cleanup_index_type::type(f)+typename internal::cleanup_seq_incr::type(incr) + ) / typename internal::cleanup_seq_incr::type(incr), + typename internal::cleanup_seq_incr::type(incr))) +{ + typedef typename internal::cleanup_seq_incr::type CleanedIncrType; + return seqN(typename internal::cleanup_index_type::type(f), + ( typename internal::cleanup_index_type::type(l) + -typename internal::cleanup_index_type::type(f)+CleanedIncrType(incr)) / CleanedIncrType(incr), + CleanedIncrType(incr)); +} + +#else // EIGEN_HAS_CXX11 + +template +typename internal::enable_if::value || symbolic::is_symbolic::value), + ArithmeticSequence::type,Index> >::type +seq(FirstType f, LastType l) +{ + return seqN(typename internal::cleanup_index_type::type(f), + Index((typename internal::cleanup_index_type::type(l)-typename internal::cleanup_index_type::type(f)+fix<1>()))); +} + +template +typename internal::enable_if::value, + ArithmeticSequence,symbolic::ValueExpr<> >, + symbolic::ValueExpr > > > >::type +seq(const symbolic::BaseExpr &f, LastType l) +{ + return seqN(f.derived(),(typename internal::cleanup_index_type::type(l)-f.derived()+fix<1>())); +} + +template +typename internal::enable_if::value, + ArithmeticSequence::type, + symbolic::AddExpr >, + symbolic::ValueExpr > > > >::type +seq(FirstType f, const symbolic::BaseExpr &l) +{ + return seqN(typename internal::cleanup_index_type::type(f),(l.derived()-typename internal::cleanup_index_type::type(f)+fix<1>())); +} + +template +ArithmeticSequence >,symbolic::ValueExpr > > > +seq(const symbolic::BaseExpr &f, const symbolic::BaseExpr &l) +{ + return seqN(f.derived(),(l.derived()-f.derived()+fix<1>())); +} + + +template +typename internal::enable_if::value || symbolic::is_symbolic::value), + ArithmeticSequence::type,Index,typename internal::cleanup_seq_incr::type> >::type +seq(FirstType f, LastType l, IncrType incr) +{ + typedef typename internal::cleanup_seq_incr::type CleanedIncrType; + return seqN(typename internal::cleanup_index_type::type(f), + Index((typename internal::cleanup_index_type::type(l)-typename internal::cleanup_index_type::type(f)+CleanedIncrType(incr))/CleanedIncrType(incr)), incr); +} + +template +typename internal::enable_if::value, + ArithmeticSequence, + symbolic::ValueExpr<> >, + symbolic::ValueExpr::type> >, + symbolic::ValueExpr::type> >, + typename internal::cleanup_seq_incr::type> >::type +seq(const symbolic::BaseExpr &f, LastType l, IncrType incr) +{ + typedef typename internal::cleanup_seq_incr::type CleanedIncrType; + return seqN(f.derived(),(typename internal::cleanup_index_type::type(l)-f.derived()+CleanedIncrType(incr))/CleanedIncrType(incr), incr); +} + +template +typename internal::enable_if::value, + ArithmeticSequence::type, + symbolic::QuotientExpr >, + symbolic::ValueExpr::type> >, + symbolic::ValueExpr::type> >, + typename internal::cleanup_seq_incr::type> >::type +seq(FirstType f, const symbolic::BaseExpr &l, IncrType incr) +{ + typedef typename internal::cleanup_seq_incr::type CleanedIncrType; + return seqN(typename internal::cleanup_index_type::type(f), + (l.derived()-typename internal::cleanup_index_type::type(f)+CleanedIncrType(incr))/CleanedIncrType(incr), incr); +} + +template +ArithmeticSequence >, + symbolic::ValueExpr::type> >, + symbolic::ValueExpr::type> >, + typename internal::cleanup_seq_incr::type> +seq(const symbolic::BaseExpr &f, const symbolic::BaseExpr &l, IncrType incr) +{ + typedef typename internal::cleanup_seq_incr::type CleanedIncrType; + return seqN(f.derived(),(l.derived()-f.derived()+CleanedIncrType(incr))/CleanedIncrType(incr), incr); +} +#endif // EIGEN_HAS_CXX11 + +#endif // EIGEN_PARSED_BY_DOXYGEN + + +#if EIGEN_HAS_CXX11 || defined(EIGEN_PARSED_BY_DOXYGEN) +/** \cpp11 + * \returns a symbolic ArithmeticSequence representing the last \a size elements with increment \a incr. + * + * It is a shortcut for: \code seqN(last-(size-fix<1>)*incr, size, incr) \endcode + * + * \sa lastN(SizeType), seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType) */ +template +auto lastN(SizeType size, IncrType incr) +-> decltype(seqN(Eigen::last-(size-fix<1>())*incr, size, incr)) +{ + return seqN(Eigen::last-(size-fix<1>())*incr, size, incr); +} + +/** \cpp11 + * \returns a symbolic ArithmeticSequence representing the last \a size elements with a unit increment. + * + * It is a shortcut for: \code seq(last+fix<1>-size, last) \endcode + * + * \sa lastN(SizeType,IncrType, seqN(FirstType,SizeType), seq(FirstType,LastType) */ +template +auto lastN(SizeType size) +-> decltype(seqN(Eigen::last+fix<1>()-size, size)) +{ + return seqN(Eigen::last+fix<1>()-size, size); +} +#endif + +namespace internal { + +// Convert a symbolic span into a usable one (i.e., remove last/end "keywords") +template +struct make_size_type { + typedef typename internal::conditional::value, Index, T>::type type; +}; + +template +struct IndexedViewCompatibleType, XprSize> { + typedef ArithmeticSequence::type,IncrType> type; +}; + +template +ArithmeticSequence::type,IncrType> +makeIndexedViewCompatible(const ArithmeticSequence& ids, Index size,SpecializedType) { + return ArithmeticSequence::type,IncrType>( + eval_expr_given_size(ids.firstObject(),size),eval_expr_given_size(ids.sizeObject(),size),ids.incrObject()); +} + +template +struct get_compile_time_incr > { + enum { value = get_fixed_value::value }; +}; + +} // end namespace internal + +/** \namespace Eigen::indexing + * \ingroup Core_Module + * + * The sole purpose of this namespace is to be able to import all functions + * and symbols that are expected to be used within operator() for indexing + * and slicing. If you already imported the whole Eigen namespace: + * \code using namespace Eigen; \endcode + * then you are already all set. Otherwise, if you don't want/cannot import + * the whole Eigen namespace, the following line: + * \code using namespace Eigen::indexing; \endcode + * is equivalent to: + * \code + using Eigen::all; + using Eigen::seq; + using Eigen::seqN; + using Eigen::lastN; // c++11 only + using Eigen::last; + using Eigen::lastp1; + using Eigen::fix; + \endcode + */ +namespace indexing { + using Eigen::all; + using Eigen::seq; + using Eigen::seqN; + #if EIGEN_HAS_CXX11 + using Eigen::lastN; + #endif + using Eigen::last; + using Eigen::lastp1; + using Eigen::fix; +} + +} // end namespace Eigen + +#endif // EIGEN_ARITHMETIC_SEQUENCE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Array.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Array.h new file mode 100644 index 0000000..64fd02d --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Array.h @@ -0,0 +1,415 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ARRAY_H +#define EIGEN_ARRAY_H + +namespace Eigen { + +namespace internal { +template +struct traits > : traits > +{ + typedef ArrayXpr XprKind; + typedef ArrayBase > XprBase; +}; +} + +/** \class Array + * \ingroup Core_Module + * + * \brief General-purpose arrays with easy API for coefficient-wise operations + * + * The %Array class is very similar to the Matrix class. It provides + * general-purpose one- and two-dimensional arrays. The difference between the + * %Array and the %Matrix class is primarily in the API: the API for the + * %Array class provides easy access to coefficient-wise operations, while the + * API for the %Matrix class provides easy access to linear-algebra + * operations. + * + * See documentation of class Matrix for detailed information on the template parameters + * storage layout. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. + * + * \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy + */ +template +class Array + : public PlainObjectBase > +{ + public: + + typedef PlainObjectBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Array) + + enum { Options = _Options }; + typedef typename Base::PlainObject PlainObject; + + protected: + template + friend struct internal::conservative_resize_like_impl; + + using Base::m_storage; + + public: + + using Base::base; + using Base::coeff; + using Base::coeffRef; + + /** + * The usage of + * using Base::operator=; + * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped + * the usage of 'using'. This should be done only for operator=. + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array& operator=(const EigenBase &other) + { + return Base::operator=(other); + } + + /** Set all the entries to \a value. + * \sa DenseBase::setConstant(), DenseBase::fill() + */ + /* This overload is needed because the usage of + * using Base::operator=; + * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped + * the usage of 'using'. This should be done only for operator=. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array& operator=(const Scalar &value) + { + Base::setConstant(value); + return *this; + } + + /** Copies the value of the expression \a other into \c *this with automatic resizing. + * + * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), + * it will be initialized. + * + * Note that copying a row-vector into a vector (and conversely) is allowed. + * The resizing, if any, is then done in the appropriate way so that row-vectors + * remain row-vectors and vectors remain vectors. + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array& operator=(const DenseBase& other) + { + return Base::_set(other); + } + + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array& operator=(const Array& other) + { + return Base::_set(other); + } + + /** Default constructor. + * + * For fixed-size matrices, does nothing. + * + * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix + * is called a null matrix. This constructor is the unique way to create null matrices: resizing + * a matrix to 0 is not supported. + * + * \sa resize(Index,Index) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array() : Base() + { + Base::_check_template_params(); + EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + // FIXME is it still needed ?? + /** \internal */ + EIGEN_DEVICE_FUNC + Array(internal::constructor_without_unaligned_array_assert) + : Base(internal::constructor_without_unaligned_array_assert()) + { + Base::_check_template_params(); + EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } +#endif + +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible::value) + : Base(std::move(other)) + { + Base::_check_template_params(); + } + EIGEN_DEVICE_FUNC + Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable::value) + { + other.swap(*this); + return *this; + } +#endif + + #if EIGEN_HAS_CXX11 + /** \copydoc PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + * + * Example: \include Array_variadic_ctor_cxx11.cpp + * Output: \verbinclude Array_variadic_ctor_cxx11.out + * + * \sa Array(const std::initializer_list>&) + * \sa Array(const Scalar&), Array(const Scalar&,const Scalar&) + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Array(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + : Base(a0, a1, a2, a3, args...) {} + + /** \brief Constructs an array and initializes it from the coefficients given as initializer-lists grouped by row. \cpp11 + * + * In the general case, the constructor takes a list of rows, each row being represented as a list of coefficients: + * + * Example: \include Array_initializer_list_23_cxx11.cpp + * Output: \verbinclude Array_initializer_list_23_cxx11.out + * + * Each of the inner initializer lists must contain the exact same number of elements, otherwise an assertion is triggered. + * + * In the case of a compile-time column 1D array, implicit transposition from a single row is allowed. + * Therefore Array{{1,2,3,4,5}} is legal and the more verbose syntax + * Array{{1},{2},{3},{4},{5}} can be avoided: + * + * Example: \include Array_initializer_list_vector_cxx11.cpp + * Output: \verbinclude Array_initializer_list_vector_cxx11.out + * + * In the case of fixed-sized arrays, the initializer list sizes must exactly match the array sizes, + * and implicit transposition is allowed for compile-time 1D arrays only. + * + * \sa Array(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array(const std::initializer_list>& list) : Base(list) {} + #endif // end EIGEN_HAS_CXX11 + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE explicit Array(const T& x) + { + Base::_check_template_params(); + Base::template _init1(x); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1) + { + Base::_check_template_params(); + this->template _init2(val0, val1); + } + + #else + /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */ + EIGEN_DEVICE_FUNC explicit Array(const Scalar *data); + /** Constructs a vector or row-vector with given dimension. \only_for_vectors + * + * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, + * it is redundant to pass the dimension here, so it makes more sense to use the default + * constructor Array() instead. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE explicit Array(Index dim); + /** constructs an initialized 1x1 Array with the given coefficient + * \sa const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args */ + Array(const Scalar& value); + /** constructs an uninitialized array with \a rows rows and \a cols columns. + * + * This is useful for dynamic-size arrays. For fixed-size arrays, + * it is redundant to pass these parameters, so one should use the default constructor + * Array() instead. */ + Array(Index rows, Index cols); + /** constructs an initialized 2D vector with given coefficients + * \sa Array(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) */ + Array(const Scalar& val0, const Scalar& val1); + #endif // end EIGEN_PARSED_BY_DOXYGEN + + /** constructs an initialized 3D vector with given coefficients + * \sa Array(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) + { + Base::_check_template_params(); + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3) + m_storage.data()[0] = val0; + m_storage.data()[1] = val1; + m_storage.data()[2] = val2; + } + /** constructs an initialized 4D vector with given coefficients + * \sa Array(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3) + { + Base::_check_template_params(); + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4) + m_storage.data()[0] = val0; + m_storage.data()[1] = val1; + m_storage.data()[2] = val2; + m_storage.data()[3] = val3; + } + + /** Copy constructor */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array(const Array& other) + : Base(other) + { } + + private: + struct PrivateType {}; + public: + + /** \sa MatrixBase::operator=(const EigenBase&) */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Array(const EigenBase &other, + typename internal::enable_if::value, + PrivateType>::type = PrivateType()) + : Base(other.derived()) + { } + + EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } + + #ifdef EIGEN_ARRAY_PLUGIN + #include EIGEN_ARRAY_PLUGIN + #endif + + private: + + template + friend struct internal::matrix_swap_impl; +}; + +/** \defgroup arraytypedefs Global array typedefs + * \ingroup Core_Module + * + * %Eigen defines several typedef shortcuts for most common 1D and 2D array types. + * + * The general patterns are the following: + * + * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, + * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd + * for complex double. + * + * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats. + * + * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is + * a fixed-size 1D array of 4 complex floats. + * + * With \cpp11, template alias are also defined for common sizes. + * They follow the same pattern as above except that the scalar type suffix is replaced by a + * template parameter, i.e.: + * - `ArrayRowsCols` where `Rows` and `Cols` can be \c 2,\c 3,\c 4, or \c X for fixed or dynamic size. + * - `ArraySize` where `Size` can be \c 2,\c 3,\c 4 or \c X for fixed or dynamic size 1D arrays. + * + * \sa class Array + */ + +#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ +/** \ingroup arraytypedefs */ \ +typedef Array Array##SizeSuffix##SizeSuffix##TypeSuffix; \ +/** \ingroup arraytypedefs */ \ +typedef Array Array##SizeSuffix##TypeSuffix; + +#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ +/** \ingroup arraytypedefs */ \ +typedef Array Array##Size##X##TypeSuffix; \ +/** \ingroup arraytypedefs */ \ +typedef Array Array##X##Size##TypeSuffix; + +#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ +EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \ +EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \ +EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \ +EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ +EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ +EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ +EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4) + +EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i) +EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f) +EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d) +EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex, cf) +EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex, cd) + +#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES +#undef EIGEN_MAKE_ARRAY_TYPEDEFS +#undef EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS + +#if EIGEN_HAS_CXX11 + +#define EIGEN_MAKE_ARRAY_TYPEDEFS(Size, SizeSuffix) \ +/** \ingroup arraytypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Array##SizeSuffix##SizeSuffix = Array; \ +/** \ingroup arraytypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Array##SizeSuffix = Array; + +#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Size) \ +/** \ingroup arraytypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Array##Size##X = Array; \ +/** \ingroup arraytypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Array##X##Size = Array; + +EIGEN_MAKE_ARRAY_TYPEDEFS(2, 2) +EIGEN_MAKE_ARRAY_TYPEDEFS(3, 3) +EIGEN_MAKE_ARRAY_TYPEDEFS(4, 4) +EIGEN_MAKE_ARRAY_TYPEDEFS(Dynamic, X) +EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(2) +EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(3) +EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(4) + +#undef EIGEN_MAKE_ARRAY_TYPEDEFS +#undef EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS + +#endif // EIGEN_HAS_CXX11 + +#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ +using Eigen::Matrix##SizeSuffix##TypeSuffix; \ +using Eigen::Vector##SizeSuffix##TypeSuffix; \ +using Eigen::RowVector##SizeSuffix##TypeSuffix; + +#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ + +#define EIGEN_USING_ARRAY_TYPEDEFS \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \ +EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd) + +} // end namespace Eigen + +#endif // EIGEN_ARRAY_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArrayBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArrayBase.h new file mode 100644 index 0000000..9da960f --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArrayBase.h @@ -0,0 +1,226 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ARRAYBASE_H +#define EIGEN_ARRAYBASE_H + +namespace Eigen { + +template class MatrixWrapper; + +/** \class ArrayBase + * \ingroup Core_Module + * + * \brief Base class for all 1D and 2D array, and related expressions + * + * An array is similar to a dense vector or matrix. While matrices are mathematical + * objects with well defined linear algebra operators, an array is just a collection + * of scalar values arranged in a one or two dimensionnal fashion. As the main consequence, + * all operations applied to an array are performed coefficient wise. Furthermore, + * arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient + * constructors allowing to easily write generic code working for both scalar values + * and arrays. + * + * This class is the base that is inherited by all array expression types. + * + * \tparam Derived is the derived type, e.g., an array or an expression type. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN. + * + * \sa class MatrixBase, \ref TopicClassHierarchy + */ +template class ArrayBase + : public DenseBase +{ + public: +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** The base class for a given storage type. */ + typedef ArrayBase StorageBaseType; + + typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + typedef typename NumTraits::Real RealScalar; + + typedef DenseBase Base; + using Base::RowsAtCompileTime; + using Base::ColsAtCompileTime; + using Base::SizeAtCompileTime; + using Base::MaxRowsAtCompileTime; + using Base::MaxColsAtCompileTime; + using Base::MaxSizeAtCompileTime; + using Base::IsVectorAtCompileTime; + using Base::Flags; + + using Base::derived; + using Base::const_cast_derived; + using Base::rows; + using Base::cols; + using Base::size; + using Base::coeff; + using Base::coeffRef; + using Base::lazyAssign; + using Base::operator-; + using Base::operator=; + using Base::operator+=; + using Base::operator-=; + using Base::operator*=; + using Base::operator/=; + + typedef typename Base::CoeffReturnType CoeffReturnType; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + +#ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Base::PlainObject PlainObject; + + /** \internal Represents a matrix with all coefficients equal to one another*/ + typedef CwiseNullaryOp,PlainObject> ConstantReturnType; +#endif // not EIGEN_PARSED_BY_DOXYGEN + +#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase +#define EIGEN_DOC_UNARY_ADDONS(X,Y) +# include "../plugins/MatrixCwiseUnaryOps.h" +# include "../plugins/ArrayCwiseUnaryOps.h" +# include "../plugins/CommonCwiseBinaryOps.h" +# include "../plugins/MatrixCwiseBinaryOps.h" +# include "../plugins/ArrayCwiseBinaryOps.h" +# ifdef EIGEN_ARRAYBASE_PLUGIN +# include EIGEN_ARRAYBASE_PLUGIN +# endif +#undef EIGEN_CURRENT_STORAGE_BASE_CLASS +#undef EIGEN_DOC_UNARY_ADDONS + + /** Special case of the template operator=, in order to prevent the compiler + * from generating a default operator= (issue hit with g++ 4.1) + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const ArrayBase& other) + { + internal::call_assignment(derived(), other.derived()); + return derived(); + } + + /** Set all the entries to \a value. + * \sa DenseBase::setConstant(), DenseBase::fill() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const Scalar &value) + { Base::setConstant(value); return derived(); } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator+=(const Scalar& scalar); + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator-=(const Scalar& scalar); + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator+=(const ArrayBase& other); + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator-=(const ArrayBase& other); + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator*=(const ArrayBase& other); + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator/=(const ArrayBase& other); + + public: + EIGEN_DEVICE_FUNC + ArrayBase& array() { return *this; } + EIGEN_DEVICE_FUNC + const ArrayBase& array() const { return *this; } + + /** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array + * \sa MatrixBase::array() */ + EIGEN_DEVICE_FUNC + MatrixWrapper matrix() { return MatrixWrapper(derived()); } + EIGEN_DEVICE_FUNC + const MatrixWrapper matrix() const { return MatrixWrapper(derived()); } + +// template +// inline void evalTo(Dest& dst) const { dst = matrix(); } + + protected: + EIGEN_DEVICE_FUNC + ArrayBase() : Base() {} + + private: + explicit ArrayBase(Index); + ArrayBase(Index,Index); + template explicit ArrayBase(const ArrayBase&); + protected: + // mixing arrays and matrices is not legal + template Derived& operator+=(const MatrixBase& ) + {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} + // mixing arrays and matrices is not legal + template Derived& operator-=(const MatrixBase& ) + {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} +}; + +/** replaces \c *this by \c *this - \a other. + * + * \returns a reference to \c *this + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & +ArrayBase::operator-=(const ArrayBase &other) +{ + call_assignment(derived(), other.derived(), internal::sub_assign_op()); + return derived(); +} + +/** replaces \c *this by \c *this + \a other. + * + * \returns a reference to \c *this + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & +ArrayBase::operator+=(const ArrayBase& other) +{ + call_assignment(derived(), other.derived(), internal::add_assign_op()); + return derived(); +} + +/** replaces \c *this by \c *this * \a other coefficient wise. + * + * \returns a reference to \c *this + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & +ArrayBase::operator*=(const ArrayBase& other) +{ + call_assignment(derived(), other.derived(), internal::mul_assign_op()); + return derived(); +} + +/** replaces \c *this by \c *this / \a other coefficient wise. + * + * \returns a reference to \c *this + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & +ArrayBase::operator/=(const ArrayBase& other) +{ + call_assignment(derived(), other.derived(), internal::div_assign_op()); + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_ARRAYBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArrayWrapper.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArrayWrapper.h new file mode 100644 index 0000000..757b318 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ArrayWrapper.h @@ -0,0 +1,209 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ARRAYWRAPPER_H +#define EIGEN_ARRAYWRAPPER_H + +namespace Eigen { + +/** \class ArrayWrapper + * \ingroup Core_Module + * + * \brief Expression of a mathematical vector or matrix as an array object + * + * This class is the return type of MatrixBase::array(), and most of the time + * this is the only way it is use. + * + * \sa MatrixBase::array(), class MatrixWrapper + */ + +namespace internal { +template +struct traits > + : public traits::type > +{ + typedef ArrayXpr XprKind; + // Let's remove NestByRefBit + enum { + Flags0 = traits::type >::Flags, + LvalueBitFlag = is_lvalue::value ? LvalueBit : 0, + Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag + }; +}; +} + +template +class ArrayWrapper : public ArrayBase > +{ + public: + typedef ArrayBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper) + typedef typename internal::remove_all::type NestedExpression; + + typedef typename internal::conditional< + internal::is_lvalue::value, + Scalar, + const Scalar + >::type ScalarWithConstIfNotLvalue; + + typedef typename internal::ref_selector::non_const_type NestedExpressionType; + + using Base::coeffRef; + + EIGEN_DEVICE_FUNC + explicit EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {} + + EIGEN_DEVICE_FUNC + inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC + inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC + inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC + inline Index innerStride() const { return m_expression.innerStride(); } + + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); } + EIGEN_DEVICE_FUNC + inline const Scalar* data() const { return m_expression.data(); } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index rowId, Index colId) const + { + return m_expression.coeffRef(rowId, colId); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index index) const + { + return m_expression.coeffRef(index); + } + + template + EIGEN_DEVICE_FUNC + inline void evalTo(Dest& dst) const { dst = m_expression; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& + nestedExpression() const + { + return m_expression; + } + + /** Forwards the resizing request to the nested expression + * \sa DenseBase::resize(Index) */ + EIGEN_DEVICE_FUNC + void resize(Index newSize) { m_expression.resize(newSize); } + /** Forwards the resizing request to the nested expression + * \sa DenseBase::resize(Index,Index)*/ + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) { m_expression.resize(rows,cols); } + + protected: + NestedExpressionType m_expression; +}; + +/** \class MatrixWrapper + * \ingroup Core_Module + * + * \brief Expression of an array as a mathematical vector or matrix + * + * This class is the return type of ArrayBase::matrix(), and most of the time + * this is the only way it is use. + * + * \sa MatrixBase::matrix(), class ArrayWrapper + */ + +namespace internal { +template +struct traits > + : public traits::type > +{ + typedef MatrixXpr XprKind; + // Let's remove NestByRefBit + enum { + Flags0 = traits::type >::Flags, + LvalueBitFlag = is_lvalue::value ? LvalueBit : 0, + Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag + }; +}; +} + +template +class MatrixWrapper : public MatrixBase > +{ + public: + typedef MatrixBase > Base; + EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper) + typedef typename internal::remove_all::type NestedExpression; + + typedef typename internal::conditional< + internal::is_lvalue::value, + Scalar, + const Scalar + >::type ScalarWithConstIfNotLvalue; + + typedef typename internal::ref_selector::non_const_type NestedExpressionType; + + using Base::coeffRef; + + EIGEN_DEVICE_FUNC + explicit inline MatrixWrapper(ExpressionType& matrix) : m_expression(matrix) {} + + EIGEN_DEVICE_FUNC + inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC + inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC + inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC + inline Index innerStride() const { return m_expression.innerStride(); } + + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); } + EIGEN_DEVICE_FUNC + inline const Scalar* data() const { return m_expression.data(); } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index rowId, Index colId) const + { + return m_expression.derived().coeffRef(rowId, colId); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index index) const + { + return m_expression.coeffRef(index); + } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& + nestedExpression() const + { + return m_expression; + } + + /** Forwards the resizing request to the nested expression + * \sa DenseBase::resize(Index) */ + EIGEN_DEVICE_FUNC + void resize(Index newSize) { m_expression.resize(newSize); } + /** Forwards the resizing request to the nested expression + * \sa DenseBase::resize(Index,Index)*/ + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) { m_expression.resize(rows,cols); } + + protected: + NestedExpressionType m_expression; +}; + +} // end namespace Eigen + +#endif // EIGEN_ARRAYWRAPPER_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Assign.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Assign.h new file mode 100644 index 0000000..655412e --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Assign.h @@ -0,0 +1,90 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007 Michael Olbrich +// Copyright (C) 2006-2010 Benoit Jacob +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ASSIGN_H +#define EIGEN_ASSIGN_H + +namespace Eigen { + +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase + ::lazyAssign(const DenseBase& other) +{ + enum{ + SameType = internal::is_same::value + }; + + EIGEN_STATIC_ASSERT_LVALUE(Derived) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived) + EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + eigen_assert(rows() == other.rows() && cols() == other.cols()); + internal::call_assignment_no_alias(derived(),other.derived()); + + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE Derived& DenseBase::operator=(const DenseBase& other) +{ + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE Derived& DenseBase::operator=(const DenseBase& other) +{ + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const MatrixBase& other) +{ + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const DenseBase& other) +{ + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const EigenBase& other) +{ + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const ReturnByValue& other) +{ + other.derived().evalTo(derived()); + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_ASSIGN_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/AssignEvaluator.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/AssignEvaluator.h new file mode 100644 index 0000000..229e258 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/AssignEvaluator.h @@ -0,0 +1,982 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Benoit Jacob +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2011-2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ASSIGN_EVALUATOR_H +#define EIGEN_ASSIGN_EVALUATOR_H + +namespace Eigen { + +// This implementation is based on Assign.h + +namespace internal { + +/*************************************************************************** +* Part 1 : the logic deciding a strategy for traversal and unrolling * +***************************************************************************/ + +// copy_using_evaluator_traits is based on assign_traits + +template +struct copy_using_evaluator_traits +{ + typedef typename DstEvaluator::XprType Dst; + typedef typename Dst::Scalar DstScalar; + + enum { + DstFlags = DstEvaluator::Flags, + SrcFlags = SrcEvaluator::Flags + }; + +public: + enum { + DstAlignment = DstEvaluator::Alignment, + SrcAlignment = SrcEvaluator::Alignment, + DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit, + JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment) + }; + +private: + enum { + InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime) + : int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime) + : int(Dst::RowsAtCompileTime), + InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime) + : int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime) + : int(Dst::MaxRowsAtCompileTime), + RestrictedInnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(InnerSize,MaxPacketSize), + RestrictedLinearSize = EIGEN_SIZE_MIN_PREFER_FIXED(Dst::SizeAtCompileTime,MaxPacketSize), + OuterStride = int(outer_stride_at_compile_time::ret), + MaxSizeAtCompileTime = Dst::SizeAtCompileTime + }; + + // TODO distinguish between linear traversal and inner-traversals + typedef typename find_best_packet::type LinearPacketType; + typedef typename find_best_packet::type InnerPacketType; + + enum { + LinearPacketSize = unpacket_traits::size, + InnerPacketSize = unpacket_traits::size + }; + +public: + enum { + LinearRequiredAlignment = unpacket_traits::alignment, + InnerRequiredAlignment = unpacket_traits::alignment + }; + +private: + enum { + DstIsRowMajor = DstFlags&RowMajorBit, + SrcIsRowMajor = SrcFlags&RowMajorBit, + StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)), + MightVectorize = bool(StorageOrdersAgree) + && (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit) + && bool(functor_traits::PacketAccess), + MayInnerVectorize = MightVectorize + && int(InnerSize)!=Dynamic && int(InnerSize)%int(InnerPacketSize)==0 + && int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0 + && (EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment)>=int(InnerRequiredAlignment)), + MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit), + MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize) && bool(DstHasDirectAccess) + && (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic), + /* If the destination isn't aligned, we have to do runtime checks and we don't unroll, + so it's only good for large enough sizes. */ + MaySliceVectorize = bool(MightVectorize) && bool(DstHasDirectAccess) + && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=(EIGEN_UNALIGNED_VECTORIZE?InnerPacketSize:(3*InnerPacketSize))) + /* slice vectorization can be slow, so we only want it if the slices are big, which is + indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block + in a fixed-size matrix + However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */ + }; + +public: + enum { + Traversal = (int(MayLinearVectorize) && (LinearPacketSize>InnerPacketSize)) ? int(LinearVectorizedTraversal) + : int(MayInnerVectorize) ? int(InnerVectorizedTraversal) + : int(MayLinearVectorize) ? int(LinearVectorizedTraversal) + : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) + : int(MayLinearize) ? int(LinearTraversal) + : int(DefaultTraversal), + Vectorized = int(Traversal) == InnerVectorizedTraversal + || int(Traversal) == LinearVectorizedTraversal + || int(Traversal) == SliceVectorizedTraversal + }; + + typedef typename conditional::type PacketType; + +private: + enum { + ActualPacketSize = int(Traversal)==LinearVectorizedTraversal ? LinearPacketSize + : Vectorized ? InnerPacketSize + : 1, + UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize, + MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic + && int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit), + MayUnrollInner = int(InnerSize) != Dynamic + && int(InnerSize) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit) + }; + +public: + enum { + Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal)) + ? ( + int(MayUnrollCompletely) ? int(CompleteUnrolling) + : int(MayUnrollInner) ? int(InnerUnrolling) + : int(NoUnrolling) + ) + : int(Traversal) == int(LinearVectorizedTraversal) + ? ( bool(MayUnrollCompletely) && ( EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment))) + ? int(CompleteUnrolling) + : int(NoUnrolling) ) + : int(Traversal) == int(LinearTraversal) + ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) + : int(NoUnrolling) ) +#if EIGEN_UNALIGNED_VECTORIZE + : int(Traversal) == int(SliceVectorizedTraversal) + ? ( bool(MayUnrollInner) ? int(InnerUnrolling) + : int(NoUnrolling) ) +#endif + : int(NoUnrolling) + }; + +#ifdef EIGEN_DEBUG_ASSIGN + static void debug() + { + std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl; + std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl; + std::cerr.setf(std::ios::hex, std::ios::basefield); + std::cerr << "DstFlags" << " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl; + std::cerr << "SrcFlags" << " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl; + std::cerr.unsetf(std::ios::hex); + EIGEN_DEBUG_VAR(DstAlignment) + EIGEN_DEBUG_VAR(SrcAlignment) + EIGEN_DEBUG_VAR(LinearRequiredAlignment) + EIGEN_DEBUG_VAR(InnerRequiredAlignment) + EIGEN_DEBUG_VAR(JointAlignment) + EIGEN_DEBUG_VAR(InnerSize) + EIGEN_DEBUG_VAR(InnerMaxSize) + EIGEN_DEBUG_VAR(LinearPacketSize) + EIGEN_DEBUG_VAR(InnerPacketSize) + EIGEN_DEBUG_VAR(ActualPacketSize) + EIGEN_DEBUG_VAR(StorageOrdersAgree) + EIGEN_DEBUG_VAR(MightVectorize) + EIGEN_DEBUG_VAR(MayLinearize) + EIGEN_DEBUG_VAR(MayInnerVectorize) + EIGEN_DEBUG_VAR(MayLinearVectorize) + EIGEN_DEBUG_VAR(MaySliceVectorize) + std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl; + EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost) + EIGEN_DEBUG_VAR(DstEvaluator::CoeffReadCost) + EIGEN_DEBUG_VAR(Dst::SizeAtCompileTime) + EIGEN_DEBUG_VAR(UnrollingLimit) + EIGEN_DEBUG_VAR(MayUnrollCompletely) + EIGEN_DEBUG_VAR(MayUnrollInner) + std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl; + std::cerr << std::endl; + } +#endif +}; + +/*************************************************************************** +* Part 2 : meta-unrollers +***************************************************************************/ + +/************************ +*** Default traversal *** +************************/ + +template +struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling +{ + // FIXME: this is not very clean, perhaps this information should be provided by the kernel? + typedef typename Kernel::DstEvaluatorType DstEvaluatorType; + typedef typename DstEvaluatorType::XprType DstXprType; + + enum { + outer = Index / DstXprType::InnerSizeAtCompileTime, + inner = Index % DstXprType::InnerSizeAtCompileTime + }; + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + kernel.assignCoeffByOuterInner(outer, inner); + copy_using_evaluator_DefaultTraversal_CompleteUnrolling::run(kernel); + } +}; + +template +struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { } +}; + +template +struct copy_using_evaluator_DefaultTraversal_InnerUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer) + { + kernel.assignCoeffByOuterInner(outer, Index_); + copy_using_evaluator_DefaultTraversal_InnerUnrolling::run(kernel, outer); + } +}; + +template +struct copy_using_evaluator_DefaultTraversal_InnerUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { } +}; + +/*********************** +*** Linear traversal *** +***********************/ + +template +struct copy_using_evaluator_LinearTraversal_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) + { + kernel.assignCoeff(Index); + copy_using_evaluator_LinearTraversal_CompleteUnrolling::run(kernel); + } +}; + +template +struct copy_using_evaluator_LinearTraversal_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { } +}; + +/************************** +*** Inner vectorization *** +**************************/ + +template +struct copy_using_evaluator_innervec_CompleteUnrolling +{ + // FIXME: this is not very clean, perhaps this information should be provided by the kernel? + typedef typename Kernel::DstEvaluatorType DstEvaluatorType; + typedef typename DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::PacketType PacketType; + + enum { + outer = Index / DstXprType::InnerSizeAtCompileTime, + inner = Index % DstXprType::InnerSizeAtCompileTime, + SrcAlignment = Kernel::AssignmentTraits::SrcAlignment, + DstAlignment = Kernel::AssignmentTraits::DstAlignment + }; + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + kernel.template assignPacketByOuterInner(outer, inner); + enum { NextIndex = Index + unpacket_traits::size }; + copy_using_evaluator_innervec_CompleteUnrolling::run(kernel); + } +}; + +template +struct copy_using_evaluator_innervec_CompleteUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { } +}; + +template +struct copy_using_evaluator_innervec_InnerUnrolling +{ + typedef typename Kernel::PacketType PacketType; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer) + { + kernel.template assignPacketByOuterInner(outer, Index_); + enum { NextIndex = Index_ + unpacket_traits::size }; + copy_using_evaluator_innervec_InnerUnrolling::run(kernel, outer); + } +}; + +template +struct copy_using_evaluator_innervec_InnerUnrolling +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { } +}; + +/*************************************************************************** +* Part 3 : implementation of all cases +***************************************************************************/ + +// dense_assignment_loop is based on assign_impl + +template +struct dense_assignment_loop; + +/************************ +*** Default traversal *** +************************/ + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel &kernel) + { + for(Index outer = 0; outer < kernel.outerSize(); ++outer) { + for(Index inner = 0; inner < kernel.innerSize(); ++inner) { + kernel.assignCoeffByOuterInner(outer, inner); + } + } + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + copy_using_evaluator_DefaultTraversal_CompleteUnrolling::run(kernel); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + + const Index outerSize = kernel.outerSize(); + for(Index outer = 0; outer < outerSize; ++outer) + copy_using_evaluator_DefaultTraversal_InnerUnrolling::run(kernel, outer); + } +}; + +/*************************** +*** Linear vectorization *** +***************************/ + + +// The goal of unaligned_dense_assignment_loop is simply to factorize the handling +// of the non vectorizable beginning and ending parts + +template +struct unaligned_dense_assignment_loop +{ + // if IsAligned = true, then do nothing + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {} +}; + +template <> +struct unaligned_dense_assignment_loop +{ + // MSVC must not inline this functions. If it does, it fails to optimize the + // packet access path. + // FIXME check which version exhibits this issue +#if EIGEN_COMP_MSVC + template + static EIGEN_DONT_INLINE void run(Kernel &kernel, + Index start, + Index end) +#else + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, + Index start, + Index end) +#endif + { + for (Index index = start; index < end; ++index) + kernel.assignCoeff(index); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + const Index size = kernel.size(); + typedef typename Kernel::Scalar Scalar; + typedef typename Kernel::PacketType PacketType; + enum { + requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment, + packetSize = unpacket_traits::size, + dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment), + dstAlignment = packet_traits::AlignedOnScalar ? int(requestedAlignment) + : int(Kernel::AssignmentTraits::DstAlignment), + srcAlignment = Kernel::AssignmentTraits::JointAlignment + }; + const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned(kernel.dstDataPtr(), size); + const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize; + + unaligned_dense_assignment_loop::run(kernel, 0, alignedStart); + + for(Index index = alignedStart; index < alignedEnd; index += packetSize) + kernel.template assignPacket(index); + + unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::PacketType PacketType; + + enum { size = DstXprType::SizeAtCompileTime, + packetSize =unpacket_traits::size, + alignedSize = (size/packetSize)*packetSize }; + + copy_using_evaluator_innervec_CompleteUnrolling::run(kernel); + copy_using_evaluator_DefaultTraversal_CompleteUnrolling::run(kernel); + } +}; + +/************************** +*** Inner vectorization *** +**************************/ + +template +struct dense_assignment_loop +{ + typedef typename Kernel::PacketType PacketType; + enum { + SrcAlignment = Kernel::AssignmentTraits::SrcAlignment, + DstAlignment = Kernel::AssignmentTraits::DstAlignment + }; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + const Index innerSize = kernel.innerSize(); + const Index outerSize = kernel.outerSize(); + const Index packetSize = unpacket_traits::size; + for(Index outer = 0; outer < outerSize; ++outer) + for(Index inner = 0; inner < innerSize; inner+=packetSize) + kernel.template assignPacketByOuterInner(outer, inner); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + copy_using_evaluator_innervec_CompleteUnrolling::run(kernel); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::AssignmentTraits Traits; + const Index outerSize = kernel.outerSize(); + for(Index outer = 0; outer < outerSize; ++outer) + copy_using_evaluator_innervec_InnerUnrolling::run(kernel, outer); + } +}; + +/*********************** +*** Linear traversal *** +***********************/ + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + const Index size = kernel.size(); + for(Index i = 0; i < size; ++i) + kernel.assignCoeff(i); + } +}; + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + copy_using_evaluator_LinearTraversal_CompleteUnrolling::run(kernel); + } +}; + +/************************** +*** Slice vectorization *** +***************************/ + +template +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::Scalar Scalar; + typedef typename Kernel::PacketType PacketType; + enum { + packetSize = unpacket_traits::size, + requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment), + alignable = packet_traits::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar), + dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment), + dstAlignment = alignable ? int(requestedAlignment) + : int(Kernel::AssignmentTraits::DstAlignment) + }; + const Scalar *dst_ptr = kernel.dstDataPtr(); + if((!bool(dstIsAligned)) && (UIntPtr(dst_ptr) % sizeof(Scalar))>0) + { + // the pointer is not aligned-on scalar, so alignment is not possible + return dense_assignment_loop::run(kernel); + } + const Index packetAlignedMask = packetSize - 1; + const Index innerSize = kernel.innerSize(); + const Index outerSize = kernel.outerSize(); + const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0; + Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize); + + for(Index outer = 0; outer < outerSize; ++outer) + { + const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask); + // do the non-vectorizable part of the assignment + for(Index inner = 0; inner(outer, inner); + + // do the non-vectorizable part of the assignment + for(Index inner = alignedEnd; inner +struct dense_assignment_loop +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel) + { + typedef typename Kernel::DstEvaluatorType::XprType DstXprType; + typedef typename Kernel::PacketType PacketType; + + enum { size = DstXprType::InnerSizeAtCompileTime, + packetSize =unpacket_traits::size, + vectorizableSize = (size/packetSize)*packetSize }; + + for(Index outer = 0; outer < kernel.outerSize(); ++outer) + { + copy_using_evaluator_innervec_InnerUnrolling::run(kernel, outer); + copy_using_evaluator_DefaultTraversal_InnerUnrolling::run(kernel, outer); + } + } +}; +#endif + + +/*************************************************************************** +* Part 4 : Generic dense assignment kernel +***************************************************************************/ + +// This class generalize the assignment of a coefficient (or packet) from one dense evaluator +// to another dense writable evaluator. +// It is parametrized by the two evaluators, and the actual assignment functor. +// This abstraction level permits to keep the evaluation loops as simple and as generic as possible. +// One can customize the assignment using this generic dense_assignment_kernel with different +// functors, or by completely overloading it, by-passing a functor. +template +class generic_dense_assignment_kernel +{ +protected: + typedef typename DstEvaluatorTypeT::XprType DstXprType; + typedef typename SrcEvaluatorTypeT::XprType SrcXprType; +public: + + typedef DstEvaluatorTypeT DstEvaluatorType; + typedef SrcEvaluatorTypeT SrcEvaluatorType; + typedef typename DstEvaluatorType::Scalar Scalar; + typedef copy_using_evaluator_traits AssignmentTraits; + typedef typename AssignmentTraits::PacketType PacketType; + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) + : m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr) + { + #ifdef EIGEN_DEBUG_ASSIGN + AssignmentTraits::debug(); + #endif + } + + EIGEN_DEVICE_FUNC Index size() const { return m_dstExpr.size(); } + EIGEN_DEVICE_FUNC Index innerSize() const { return m_dstExpr.innerSize(); } + EIGEN_DEVICE_FUNC Index outerSize() const { return m_dstExpr.outerSize(); } + EIGEN_DEVICE_FUNC Index rows() const { return m_dstExpr.rows(); } + EIGEN_DEVICE_FUNC Index cols() const { return m_dstExpr.cols(); } + EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); } + + EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; } + EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; } + + /// Assign src(row,col) to dst(row,col) through the assignment functor. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col) + { + m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); + } + + /// \sa assignCoeff(Index,Index) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index) + { + m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index)); + } + + /// \sa assignCoeff(Index,Index) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner) + { + Index row = rowIndexByOuterInner(outer, inner); + Index col = colIndexByOuterInner(outer, inner); + assignCoeff(row, col); + } + + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col) + { + m_functor.template assignPacket(&m_dst.coeffRef(row,col), m_src.template packet(row,col)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index) + { + m_functor.template assignPacket(&m_dst.coeffRef(index), m_src.template packet(index)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner) + { + Index row = rowIndexByOuterInner(outer, inner); + Index col = colIndexByOuterInner(outer, inner); + assignPacket(row, col); + } + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) + { + typedef typename DstEvaluatorType::ExpressionTraits Traits; + return int(Traits::RowsAtCompileTime) == 1 ? 0 + : int(Traits::ColsAtCompileTime) == 1 ? inner + : int(DstEvaluatorType::Flags)&RowMajorBit ? outer + : inner; + } + + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) + { + typedef typename DstEvaluatorType::ExpressionTraits Traits; + return int(Traits::ColsAtCompileTime) == 1 ? 0 + : int(Traits::RowsAtCompileTime) == 1 ? inner + : int(DstEvaluatorType::Flags)&RowMajorBit ? inner + : outer; + } + + EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const + { + return m_dstExpr.data(); + } + +protected: + DstEvaluatorType& m_dst; + const SrcEvaluatorType& m_src; + const Functor &m_functor; + // TODO find a way to avoid the needs of the original expression + DstXprType& m_dstExpr; +}; + +// Special kernel used when computing small products whose operands have dynamic dimensions. It ensures that the +// PacketSize used is no larger than 4, thereby increasing the chance that vectorized instructions will be used +// when computing the product. + +template +class restricted_packet_dense_assignment_kernel : public generic_dense_assignment_kernel +{ +protected: + typedef generic_dense_assignment_kernel Base; + public: + typedef typename Base::Scalar Scalar; + typedef typename Base::DstXprType DstXprType; + typedef copy_using_evaluator_traits AssignmentTraits; + typedef typename AssignmentTraits::PacketType PacketType; + + EIGEN_DEVICE_FUNC restricted_packet_dense_assignment_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, const Functor &func, DstXprType& dstExpr) + : Base(dst, src, func, dstExpr) + { + } + }; + +/*************************************************************************** +* Part 5 : Entry point for dense rectangular assignment +***************************************************************************/ + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const Functor &/*func*/) +{ + EIGEN_ONLY_USED_FOR_DEBUG(dst); + EIGEN_ONLY_USED_FOR_DEBUG(src); + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const internal::assign_op &/*func*/) +{ + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if(((dst.rows()!=dstRows) || (dst.cols()!=dstCols))) + dst.resize(dstRows, dstCols); + eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func) +{ + typedef evaluator DstEvaluatorType; + typedef evaluator SrcEvaluatorType; + + SrcEvaluatorType srcEvaluator(src); + + // NOTE To properly handle A = (A*A.transpose())/s with A rectangular, + // we need to resize the destination after the source evaluator has been created. + resize_if_allowed(dst, src, func); + + DstEvaluatorType dstEvaluator(dst); + + typedef generic_dense_assignment_kernel Kernel; + Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); + + dense_assignment_loop::run(kernel); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src) +{ + call_dense_assignment_loop(dst, src, internal::assign_op()); +} + +/*************************************************************************** +* Part 6 : Generic assignment +***************************************************************************/ + +// Based on the respective shapes of the destination and source, +// the class AssignmentKind determine the kind of assignment mechanism. +// AssignmentKind must define a Kind typedef. +template struct AssignmentKind; + +// Assignment kind defined in this file: +struct Dense2Dense {}; +struct EigenBase2EigenBase {}; + +template struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; +template<> struct AssignmentKind { typedef Dense2Dense Kind; }; + +// This is the main assignment class +template< typename DstXprType, typename SrcXprType, typename Functor, + typename Kind = typename AssignmentKind< typename evaluator_traits::Shape , typename evaluator_traits::Shape >::Kind, + typename EnableIf = void> +struct Assignment; + + +// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition. +// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated. +// So this intermediate function removes everything related to "assume-aliasing" such that Assignment +// does not has to bother about these annoying details. + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(Dst& dst, const Src& src) +{ + call_assignment(dst, src, internal::assign_op()); +} +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(const Dst& dst, const Src& src) +{ + call_assignment(dst, src, internal::assign_op()); +} + +// Deal with "assume-aliasing" +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing::value, void*>::type = 0) +{ + typename plain_matrix_type::type tmp(src); + call_assignment_no_alias(dst, tmp, func); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if::value, void*>::type = 0) +{ + call_assignment_no_alias(dst, src, func); +} + +// by-pass "assume-aliasing" +// When there is no aliasing, we require that 'dst' has been properly resized +template class StorageBase, typename Src, typename Func> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment(NoAlias& dst, const Src& src, const Func& func) +{ + call_assignment_no_alias(dst.expression(), src, func); +} + + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func) +{ + enum { + NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1) + || (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1) + ) && int(Dst::SizeAtCompileTime) != 1 + }; + + typedef typename internal::conditional, Dst>::type ActualDstTypeCleaned; + typedef typename internal::conditional, Dst&>::type ActualDstType; + ActualDstType actualDst(dst); + + // TODO check whether this is the right place to perform these checks: + EIGEN_STATIC_ASSERT_LVALUE(Dst) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src) + EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar); + + Assignment::run(actualDst, src, func); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_restricted_packet_assignment_no_alias(Dst& dst, const Src& src, const Func& func) +{ + typedef evaluator DstEvaluatorType; + typedef evaluator SrcEvaluatorType; + typedef restricted_packet_dense_assignment_kernel Kernel; + + EIGEN_STATIC_ASSERT_LVALUE(Dst) + EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar); + + SrcEvaluatorType srcEvaluator(src); + resize_if_allowed(dst, src, func); + + DstEvaluatorType dstEvaluator(dst); + Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); + + dense_assignment_loop::run(kernel); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias(Dst& dst, const Src& src) +{ + call_assignment_no_alias(dst, src, internal::assign_op()); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func) +{ + // TODO check whether this is the right place to perform these checks: + EIGEN_STATIC_ASSERT_LVALUE(Dst) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src) + EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar); + + Assignment::run(dst, src, func); +} +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src) +{ + call_assignment_no_alias_no_transpose(dst, src, internal::assign_op()); +} + +// forward declaration +template void check_for_aliasing(const Dst &dst, const Src &src); + +// Generic Dense to Dense assignment +// Note that the last template argument "Weak" is needed to make it possible to perform +// both partial specialization+SFINAE without ambiguous specialization +template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> +struct Assignment +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { +#ifndef EIGEN_NO_DEBUG + internal::check_for_aliasing(dst, src); +#endif + + call_dense_assignment_loop(dst, src, func); + } +}; + +// Generic assignment through evalTo. +// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism. +// Note that the last template argument "Weak" is needed to make it possible to perform +// both partial specialization+SFINAE without ambiguous specialization +template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> +struct Assignment +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + src.evalTo(dst); + } + + // NOTE The following two functions are templated to avoid their instantiation if not needed + // This is needed because some expressions supports evalTo only and/or have 'void' as scalar type. + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + src.addTo(dst); + } + + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + src.subTo(dst); + } +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ASSIGN_EVALUATOR_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Assign_MKL.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Assign_MKL.h new file mode 100644 index 0000000..c6140d1 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Assign_MKL.h @@ -0,0 +1,178 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + Copyright (C) 2015 Gael Guennebaud + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to Intel(R) MKL + * MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin() + ******************************************************************************** +*/ + +#ifndef EIGEN_ASSIGN_VML_H +#define EIGEN_ASSIGN_VML_H + +namespace Eigen { + +namespace internal { + +template +class vml_assign_traits +{ + private: + enum { + DstHasDirectAccess = Dst::Flags & DirectAccessBit, + SrcHasDirectAccess = Src::Flags & DirectAccessBit, + StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)), + InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime) + : int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime) + : int(Dst::RowsAtCompileTime), + InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime) + : int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime) + : int(Dst::MaxRowsAtCompileTime), + MaxSizeAtCompileTime = Dst::SizeAtCompileTime, + + MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1, + MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit), + VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize, + LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD + }; + public: + enum { + EnableVml = MightEnableVml && LargeEnough, + Traversal = MightLinearize ? LinearTraversal : DefaultTraversal + }; +}; + +#define EIGEN_PP_EXPAND(ARG) ARG +#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1) +#define EIGEN_VMLMODE_EXPAND_xLA , VML_HA +#else +#define EIGEN_VMLMODE_EXPAND_xLA , VML_LA +#endif + +#define EIGEN_VMLMODE_EXPAND_x_ + +#define EIGEN_VMLMODE_PREFIX_xLA vm +#define EIGEN_VMLMODE_PREFIX_x_ v +#define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_x,VMLMODE) + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \ + template< typename DstXprType, typename SrcXprNested> \ + struct Assignment, SrcXprNested>, assign_op, \ + Dense2Dense, typename enable_if::EnableVml>::type> { \ + typedef CwiseUnaryOp, SrcXprNested> SrcXprType; \ + static void run(DstXprType &dst, const SrcXprType &src, const assign_op &func) { \ + resize_if_allowed(dst, src, func); \ + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \ + if(vml_assign_traits::Traversal==LinearTraversal) { \ + VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \ + (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE) ); \ + } else { \ + const Index outerSize = dst.outerSize(); \ + for(Index outer = 0; outer < outerSize; ++outer) { \ + const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \ + &(src.nestedExpression().coeffRef(0, outer)); \ + EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \ + VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \ + (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE)); \ + } \ + } \ + } \ + }; \ + + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE) + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE) + +#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \ + EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) + + +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA) +// EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _) + +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _) +EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _) + +#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \ + template< typename DstXprType, typename SrcXprNested, typename Plain> \ + struct Assignment, SrcXprNested, \ + const CwiseNullaryOp,Plain> >, assign_op, \ + Dense2Dense, typename enable_if::EnableVml>::type> { \ + typedef CwiseBinaryOp, SrcXprNested, \ + const CwiseNullaryOp,Plain> > SrcXprType; \ + static void run(DstXprType &dst, const SrcXprType &src, const assign_op &func) { \ + resize_if_allowed(dst, src, func); \ + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \ + VMLTYPE exponent = reinterpret_cast(src.rhs().functor().m_other); \ + if(vml_assign_traits::Traversal==LinearTraversal) \ + { \ + VMLOP( dst.size(), (const VMLTYPE*)src.lhs().data(), exponent, \ + (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE) ); \ + } else { \ + const Index outerSize = dst.outerSize(); \ + for(Index outer = 0; outer < outerSize; ++outer) { \ + const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.lhs().coeffRef(outer,0)) : \ + &(src.lhs().coeffRef(0, outer)); \ + EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \ + VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \ + (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE)); \ + } \ + } \ + } \ + }; + +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA) +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA) +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA) +EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA) + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ASSIGN_VML_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/BandMatrix.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/BandMatrix.h new file mode 100644 index 0000000..4978c91 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/BandMatrix.h @@ -0,0 +1,353 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BANDMATRIX_H +#define EIGEN_BANDMATRIX_H + +namespace Eigen { + +namespace internal { + +template +class BandMatrixBase : public EigenBase +{ + public: + + enum { + Flags = internal::traits::Flags, + CoeffReadCost = internal::traits::CoeffReadCost, + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, + Supers = internal::traits::Supers, + Subs = internal::traits::Subs, + Options = internal::traits::Options + }; + typedef typename internal::traits::Scalar Scalar; + typedef Matrix DenseMatrixType; + typedef typename DenseMatrixType::StorageIndex StorageIndex; + typedef typename internal::traits::CoefficientsType CoefficientsType; + typedef EigenBase Base; + + protected: + enum { + DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) + ? 1 + Supers + Subs + : Dynamic, + SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime) + }; + + public: + + using Base::derived; + using Base::rows; + using Base::cols; + + /** \returns the number of super diagonals */ + inline Index supers() const { return derived().supers(); } + + /** \returns the number of sub diagonals */ + inline Index subs() const { return derived().subs(); } + + /** \returns an expression of the underlying coefficient matrix */ + inline const CoefficientsType& coeffs() const { return derived().coeffs(); } + + /** \returns an expression of the underlying coefficient matrix */ + inline CoefficientsType& coeffs() { return derived().coeffs(); } + + /** \returns a vector expression of the \a i -th column, + * only the meaningful part is returned. + * \warning the internal storage must be column major. */ + inline Block col(Index i) + { + EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + Index start = 0; + Index len = coeffs().rows(); + if (i<=supers()) + { + start = supers()-i; + len = (std::min)(rows(),std::max(0,coeffs().rows() - (supers()-i))); + } + else if (i>=rows()-subs()) + len = std::max(0,coeffs().rows() - (i + 1 - rows() + subs())); + return Block(coeffs(), start, i, len, 1); + } + + /** \returns a vector expression of the main diagonal */ + inline Block diagonal() + { return Block(coeffs(),supers(),0,1,(std::min)(rows(),cols())); } + + /** \returns a vector expression of the main diagonal (const version) */ + inline const Block diagonal() const + { return Block(coeffs(),supers(),0,1,(std::min)(rows(),cols())); } + + template struct DiagonalIntReturnType { + enum { + ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)), + Conjugate = ReturnOpposite && NumTraits::IsComplex, + ActualIndex = ReturnOpposite ? -Index : Index, + DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic) + ? Dynamic + : (ActualIndex<0 + ? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex) + : EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex)) + }; + typedef Block BuildType; + typedef typename internal::conditional,BuildType >, + BuildType>::type Type; + }; + + /** \returns a vector expression of the \a N -th sub or super diagonal */ + template inline typename DiagonalIntReturnType::Type diagonal() + { + return typename DiagonalIntReturnType::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N)); + } + + /** \returns a vector expression of the \a N -th sub or super diagonal */ + template inline const typename DiagonalIntReturnType::Type diagonal() const + { + return typename DiagonalIntReturnType::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N)); + } + + /** \returns a vector expression of the \a i -th sub or super diagonal */ + inline Block diagonal(Index i) + { + eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers())); + return Block(coeffs(), supers()-i, std::max(0,i), 1, diagonalLength(i)); + } + + /** \returns a vector expression of the \a i -th sub or super diagonal */ + inline const Block diagonal(Index i) const + { + eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers())); + return Block(coeffs(), supers()-i, std::max(0,i), 1, diagonalLength(i)); + } + + template inline void evalTo(Dest& dst) const + { + dst.resize(rows(),cols()); + dst.setZero(); + dst.diagonal() = diagonal(); + for (Index i=1; i<=supers();++i) + dst.diagonal(i) = diagonal(i); + for (Index i=1; i<=subs();++i) + dst.diagonal(-i) = diagonal(-i); + } + + DenseMatrixType toDenseMatrix() const + { + DenseMatrixType res(rows(),cols()); + evalTo(res); + return res; + } + + protected: + + inline Index diagonalLength(Index i) const + { return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); } +}; + +/** + * \class BandMatrix + * \ingroup Core_Module + * + * \brief Represents a rectangular matrix with a banded storage + * + * \tparam _Scalar Numeric type, i.e. float, double, int + * \tparam _Rows Number of rows, or \b Dynamic + * \tparam _Cols Number of columns, or \b Dynamic + * \tparam _Supers Number of super diagonal + * \tparam _Subs Number of sub diagonal + * \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint + * The former controls \ref TopicStorageOrders "storage order", and defaults to + * column-major. The latter controls whether the matrix represents a selfadjoint + * matrix in which case either Supers of Subs have to be null. + * + * \sa class TridiagonalMatrix + */ + +template +struct traits > +{ + typedef _Scalar Scalar; + typedef Dense StorageKind; + typedef Eigen::Index StorageIndex; + enum { + CoeffReadCost = NumTraits::ReadCost, + RowsAtCompileTime = _Rows, + ColsAtCompileTime = _Cols, + MaxRowsAtCompileTime = _Rows, + MaxColsAtCompileTime = _Cols, + Flags = LvalueBit, + Supers = _Supers, + Subs = _Subs, + Options = _Options, + DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic + }; + typedef Matrix CoefficientsType; +}; + +template +class BandMatrix : public BandMatrixBase > +{ + public: + + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::traits::StorageIndex StorageIndex; + typedef typename internal::traits::CoefficientsType CoefficientsType; + + explicit inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs) + : m_coeffs(1+supers+subs,cols), + m_rows(rows), m_supers(supers), m_subs(subs) + { + } + + /** \returns the number of columns */ + inline Index rows() const { return m_rows.value(); } + + /** \returns the number of rows */ + inline Index cols() const { return m_coeffs.cols(); } + + /** \returns the number of super diagonals */ + inline Index supers() const { return m_supers.value(); } + + /** \returns the number of sub diagonals */ + inline Index subs() const { return m_subs.value(); } + + inline const CoefficientsType& coeffs() const { return m_coeffs; } + inline CoefficientsType& coeffs() { return m_coeffs; } + + protected: + + CoefficientsType m_coeffs; + internal::variable_if_dynamic m_rows; + internal::variable_if_dynamic m_supers; + internal::variable_if_dynamic m_subs; +}; + +template +class BandMatrixWrapper; + +template +struct traits > +{ + typedef typename _CoefficientsType::Scalar Scalar; + typedef typename _CoefficientsType::StorageKind StorageKind; + typedef typename _CoefficientsType::StorageIndex StorageIndex; + enum { + CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost, + RowsAtCompileTime = _Rows, + ColsAtCompileTime = _Cols, + MaxRowsAtCompileTime = _Rows, + MaxColsAtCompileTime = _Cols, + Flags = LvalueBit, + Supers = _Supers, + Subs = _Subs, + Options = _Options, + DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic + }; + typedef _CoefficientsType CoefficientsType; +}; + +template +class BandMatrixWrapper : public BandMatrixBase > +{ + public: + + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::traits::CoefficientsType CoefficientsType; + typedef typename internal::traits::StorageIndex StorageIndex; + + explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs) + : m_coeffs(coeffs), + m_rows(rows), m_supers(supers), m_subs(subs) + { + EIGEN_UNUSED_VARIABLE(cols); + //internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows()); + } + + /** \returns the number of columns */ + inline Index rows() const { return m_rows.value(); } + + /** \returns the number of rows */ + inline Index cols() const { return m_coeffs.cols(); } + + /** \returns the number of super diagonals */ + inline Index supers() const { return m_supers.value(); } + + /** \returns the number of sub diagonals */ + inline Index subs() const { return m_subs.value(); } + + inline const CoefficientsType& coeffs() const { return m_coeffs; } + + protected: + + const CoefficientsType& m_coeffs; + internal::variable_if_dynamic m_rows; + internal::variable_if_dynamic m_supers; + internal::variable_if_dynamic m_subs; +}; + +/** + * \class TridiagonalMatrix + * \ingroup Core_Module + * + * \brief Represents a tridiagonal matrix with a compact banded storage + * + * \tparam Scalar Numeric type, i.e. float, double, int + * \tparam Size Number of rows and cols, or \b Dynamic + * \tparam Options Can be 0 or \b SelfAdjoint + * + * \sa class BandMatrix + */ +template +class TridiagonalMatrix : public BandMatrix +{ + typedef BandMatrix Base; + typedef typename Base::StorageIndex StorageIndex; + public: + explicit TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {} + + inline typename Base::template DiagonalIntReturnType<1>::Type super() + { return Base::template diagonal<1>(); } + inline const typename Base::template DiagonalIntReturnType<1>::Type super() const + { return Base::template diagonal<1>(); } + inline typename Base::template DiagonalIntReturnType<-1>::Type sub() + { return Base::template diagonal<-1>(); } + inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const + { return Base::template diagonal<-1>(); } + protected: +}; + + +struct BandShape {}; + +template +struct evaluator_traits > + : public evaluator_traits_base > +{ + typedef BandShape Shape; +}; + +template +struct evaluator_traits > + : public evaluator_traits_base > +{ + typedef BandShape Shape; +}; + +template<> struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BANDMATRIX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Block.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Block.h new file mode 100644 index 0000000..6e938ea --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Block.h @@ -0,0 +1,452 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BLOCK_H +#define EIGEN_BLOCK_H + +namespace Eigen { + +namespace internal { +template +struct traits > : traits +{ + typedef typename traits::Scalar Scalar; + typedef typename traits::StorageKind StorageKind; + typedef typename traits::XprKind XprKind; + typedef typename ref_selector::type XprTypeNested; + typedef typename remove_reference::type _XprTypeNested; + enum{ + MatrixRows = traits::RowsAtCompileTime, + MatrixCols = traits::ColsAtCompileTime, + RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows, + ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols, + MaxRowsAtCompileTime = BlockRows==0 ? 0 + : RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime) + : int(traits::MaxRowsAtCompileTime), + MaxColsAtCompileTime = BlockCols==0 ? 0 + : ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime) + : int(traits::MaxColsAtCompileTime), + + XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0, + IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 + : XprTypeIsRowMajor, + HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor), + InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + InnerStrideAtCompileTime = HasSameStorageOrderAsXprType + ? int(inner_stride_at_compile_time::ret) + : int(outer_stride_at_compile_time::ret), + OuterStrideAtCompileTime = HasSameStorageOrderAsXprType + ? int(outer_stride_at_compile_time::ret) + : int(inner_stride_at_compile_time::ret), + + // FIXME, this traits is rather specialized for dense object and it needs to be cleaned further + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0, + Flags = (traits::Flags & (DirectAccessBit | (InnerPanel?CompressedAccessBit:0))) | FlagsLvalueBit | FlagsRowMajorBit, + // FIXME DirectAccessBit should not be handled by expressions + // + // Alignment is needed by MapBase's assertions + // We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator + Alignment = 0 + }; +}; + +template::ret> class BlockImpl_dense; + +} // end namespace internal + +template class BlockImpl; + +/** \class Block + * \ingroup Core_Module + * + * \brief Expression of a fixed-size or dynamic-size block + * + * \tparam XprType the type of the expression in which we are taking a block + * \tparam BlockRows the number of rows of the block we are taking at compile time (optional) + * \tparam BlockCols the number of columns of the block we are taking at compile time (optional) + * \tparam InnerPanel is true, if the block maps to a set of rows of a row major matrix or + * to set of columns of a column major matrix (optional). The parameter allows to determine + * at compile time whether aligned access is possible on the block expression. + * + * This class represents an expression of either a fixed-size or dynamic-size block. It is the return + * type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block(Index,Index) and + * most of the time this is the only way it is used. + * + * However, if you want to directly maniputate block expressions, + * for instance if you want to write a function returning such an expression, you + * will need to use this class. + * + * Here is an example illustrating the dynamic case: + * \include class_Block.cpp + * Output: \verbinclude class_Block.out + * + * \note Even though this expression has dynamic size, in the case where \a XprType + * has fixed size, this expression inherits a fixed maximal size which means that evaluating + * it does not cause a dynamic memory allocation. + * + * Here is an example illustrating the fixed-size case: + * \include class_FixedBlock.cpp + * Output: \verbinclude class_FixedBlock.out + * + * \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock + */ +template class Block + : public BlockImpl::StorageKind> +{ + typedef BlockImpl::StorageKind> Impl; + public: + //typedef typename Impl::Base Base; + typedef Impl Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(Block) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block) + + typedef typename internal::remove_all::type NestedExpression; + + /** Column or Row constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Block(XprType& xpr, Index i) : Impl(xpr,i) + { + eigen_assert( (i>=0) && ( + ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i= 0 && BlockRows >= 0 && startRow + BlockRows <= xpr.rows() + && startCol >= 0 && BlockCols >= 0 && startCol + BlockCols <= xpr.cols()); + } + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Block(XprType& xpr, + Index startRow, Index startCol, + Index blockRows, Index blockCols) + : Impl(xpr, startRow, startCol, blockRows, blockCols) + { + eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows) + && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols)); + eigen_assert(startRow >= 0 && blockRows >= 0 && startRow <= xpr.rows() - blockRows + && startCol >= 0 && blockCols >= 0 && startCol <= xpr.cols() - blockCols); + } +}; + +// The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense +// that must be specialized for direct and non-direct access... +template +class BlockImpl + : public internal::BlockImpl_dense +{ + typedef internal::BlockImpl_dense Impl; + typedef typename XprType::StorageIndex StorageIndex; + public: + typedef Impl Base; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE BlockImpl(XprType& xpr, Index startRow, Index startCol) : Impl(xpr, startRow, startCol) {} + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : Impl(xpr, startRow, startCol, blockRows, blockCols) {} +}; + +namespace internal { + +/** \internal Internal implementation of dense Blocks in the general case. */ +template class BlockImpl_dense + : public internal::dense_xpr_base >::type +{ + typedef Block BlockType; + typedef typename internal::ref_selector::non_const_type XprTypeNested; + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) + + // class InnerIterator; // FIXME apparently never used + + /** Column or Row constructor + */ + EIGEN_DEVICE_FUNC + inline BlockImpl_dense(XprType& xpr, Index i) + : m_xpr(xpr), + // It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime, + // and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1, + // all other cases are invalid. + // The case a 1x1 matrix seems ambiguous, but the result is the same anyway. + m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), + m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0), + m_blockRows(BlockRows==1 ? 1 : xpr.rows()), + m_blockCols(BlockCols==1 ? 1 : xpr.cols()) + {} + + /** Fixed-size constructor + */ + EIGEN_DEVICE_FUNC + inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol) + : m_xpr(xpr), m_startRow(startRow), m_startCol(startCol), + m_blockRows(BlockRows), m_blockCols(BlockCols) + {} + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC + inline BlockImpl_dense(XprType& xpr, + Index startRow, Index startCol, + Index blockRows, Index blockCols) + : m_xpr(xpr), m_startRow(startRow), m_startCol(startCol), + m_blockRows(blockRows), m_blockCols(blockCols) + {} + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_blockRows.value(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_blockCols.value(); } + + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index rowId, Index colId) + { + EIGEN_STATIC_ASSERT_LVALUE(XprType) + return m_xpr.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value()); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index rowId, Index colId) const + { + return m_xpr.derived().coeffRef(rowId + m_startRow.value(), colId + m_startCol.value()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const + { + return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value()); + } + + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index index) + { + EIGEN_STATIC_ASSERT_LVALUE(XprType) + return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index index) const + { + return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); + } + + EIGEN_DEVICE_FUNC + inline const CoeffReturnType coeff(Index index) const + { + return m_xpr.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); + } + + template + inline PacketScalar packet(Index rowId, Index colId) const + { + return m_xpr.template packet(rowId + m_startRow.value(), colId + m_startCol.value()); + } + + template + inline void writePacket(Index rowId, Index colId, const PacketScalar& val) + { + m_xpr.template writePacket(rowId + m_startRow.value(), colId + m_startCol.value(), val); + } + + template + inline PacketScalar packet(Index index) const + { + return m_xpr.template packet + (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); + } + + template + inline void writePacket(Index index, const PacketScalar& val) + { + m_xpr.template writePacket + (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \sa MapBase::data() */ + EIGEN_DEVICE_FUNC inline const Scalar* data() const; + EIGEN_DEVICE_FUNC inline Index innerStride() const; + EIGEN_DEVICE_FUNC inline Index outerStride() const; + #endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all::type& nestedExpression() const + { + return m_xpr; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + XprType& nestedExpression() { return m_xpr; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + StorageIndex startRow() const + { + return m_startRow.value(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + StorageIndex startCol() const + { + return m_startCol.value(); + } + + protected: + + XprTypeNested m_xpr; + const internal::variable_if_dynamic m_startRow; + const internal::variable_if_dynamic m_startCol; + const internal::variable_if_dynamic m_blockRows; + const internal::variable_if_dynamic m_blockCols; +}; + +/** \internal Internal implementation of dense Blocks in the direct access case.*/ +template +class BlockImpl_dense + : public MapBase > +{ + typedef Block BlockType; + typedef typename internal::ref_selector::non_const_type XprTypeNested; + enum { + XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0 + }; + public: + + typedef MapBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) + + /** Column or Row constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + BlockImpl_dense(XprType& xpr, Index i) + : Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor)) + || ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()), + BlockRows==1 ? 1 : xpr.rows(), + BlockCols==1 ? 1 : xpr.cols()), + m_xpr(xpr), + m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), + m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0) + { + init(); + } + + /** Fixed-size constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + BlockImpl_dense(XprType& xpr, Index startRow, Index startCol) + : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)), + m_xpr(xpr), m_startRow(startRow), m_startCol(startCol) + { + init(); + } + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + BlockImpl_dense(XprType& xpr, + Index startRow, Index startCol, + Index blockRows, Index blockCols) + : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols), + m_xpr(xpr), m_startRow(startRow), m_startCol(startCol) + { + init(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all::type& nestedExpression() const + { + return m_xpr; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + XprType& nestedExpression() { return m_xpr; } + + /** \sa MapBase::innerStride() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index innerStride() const + { + return internal::traits::HasSameStorageOrderAsXprType + ? m_xpr.innerStride() + : m_xpr.outerStride(); + } + + /** \sa MapBase::outerStride() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index outerStride() const + { + return m_outerStride; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + StorageIndex startRow() const + { + return m_startRow.value(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + StorageIndex startCol() const + { + return m_startCol.value(); + } + + #ifndef __SUNPRO_CC + // FIXME sunstudio is not friendly with the above friend... + // META-FIXME there is no 'friend' keyword around here. Is this obsolete? + protected: + #endif + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal used by allowAligned() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols) + : Base(data, blockRows, blockCols), m_xpr(xpr) + { + init(); + } + #endif + + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void init() + { + m_outerStride = internal::traits::HasSameStorageOrderAsXprType + ? m_xpr.outerStride() + : m_xpr.innerStride(); + } + + XprTypeNested m_xpr; + const internal::variable_if_dynamic m_startRow; + const internal::variable_if_dynamic m_startCol; + Index m_outerStride; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BLOCK_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/BooleanRedux.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/BooleanRedux.h new file mode 100644 index 0000000..ccf5190 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/BooleanRedux.h @@ -0,0 +1,162 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ALLANDANY_H +#define EIGEN_ALLANDANY_H + +namespace Eigen { + +namespace internal { + +template +struct all_unroller +{ + enum { + col = (UnrollCount-1) / Rows, + row = (UnrollCount-1) % Rows + }; + + static inline bool run(const Derived &mat) + { + return all_unroller::run(mat) && mat.coeff(row, col); + } +}; + +template +struct all_unroller +{ + static inline bool run(const Derived &/*mat*/) { return true; } +}; + +template +struct all_unroller +{ + static inline bool run(const Derived &) { return false; } +}; + +template +struct any_unroller +{ + enum { + col = (UnrollCount-1) / Rows, + row = (UnrollCount-1) % Rows + }; + + static inline bool run(const Derived &mat) + { + return any_unroller::run(mat) || mat.coeff(row, col); + } +}; + +template +struct any_unroller +{ + static inline bool run(const Derived & /*mat*/) { return false; } +}; + +template +struct any_unroller +{ + static inline bool run(const Derived &) { return false; } +}; + +} // end namespace internal + +/** \returns true if all coefficients are true + * + * Example: \include MatrixBase_all.cpp + * Output: \verbinclude MatrixBase_all.out + * + * \sa any(), Cwise::operator<() + */ +template +EIGEN_DEVICE_FUNC inline bool DenseBase::all() const +{ + typedef internal::evaluator Evaluator; + enum { + unroll = SizeAtCompileTime != Dynamic + && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT + }; + Evaluator evaluator(derived()); + if(unroll) + return internal::all_unroller::RowsAtCompileTime>::run(evaluator); + else + { + for(Index j = 0; j < cols(); ++j) + for(Index i = 0; i < rows(); ++i) + if (!evaluator.coeff(i, j)) return false; + return true; + } +} + +/** \returns true if at least one coefficient is true + * + * \sa all() + */ +template +EIGEN_DEVICE_FUNC inline bool DenseBase::any() const +{ + typedef internal::evaluator Evaluator; + enum { + unroll = SizeAtCompileTime != Dynamic + && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT + }; + Evaluator evaluator(derived()); + if(unroll) + return internal::any_unroller::RowsAtCompileTime>::run(evaluator); + else + { + for(Index j = 0; j < cols(); ++j) + for(Index i = 0; i < rows(); ++i) + if (evaluator.coeff(i, j)) return true; + return false; + } +} + +/** \returns the number of coefficients which evaluate to true + * + * \sa all(), any() + */ +template +EIGEN_DEVICE_FUNC inline Eigen::Index DenseBase::count() const +{ + return derived().template cast().template cast().sum(); +} + +/** \returns true is \c *this contains at least one Not A Number (NaN). + * + * \sa allFinite() + */ +template +inline bool DenseBase::hasNaN() const +{ +#if EIGEN_COMP_MSVC || (defined __FAST_MATH__) + return derived().array().isNaN().any(); +#else + return !((derived().array()==derived().array()).all()); +#endif +} + +/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values. + * + * \sa hasNaN() + */ +template +inline bool DenseBase::allFinite() const +{ +#if EIGEN_COMP_MSVC || (defined __FAST_MATH__) + return derived().array().isFinite().all(); +#else + return !((derived()-derived()).hasNaN()); +#endif +} + +} // end namespace Eigen + +#endif // EIGEN_ALLANDANY_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CommaInitializer.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CommaInitializer.h new file mode 100644 index 0000000..35fdbb8 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CommaInitializer.h @@ -0,0 +1,160 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMMAINITIALIZER_H +#define EIGEN_COMMAINITIALIZER_H + +namespace Eigen { + +/** \class CommaInitializer + * \ingroup Core_Module + * + * \brief Helper class used by the comma initializer operator + * + * This class is internally used to implement the comma initializer feature. It is + * the return type of MatrixBase::operator<<, and most of the time this is the only + * way it is used. + * + * \sa \blank \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished() + */ +template +struct CommaInitializer +{ + typedef typename XprType::Scalar Scalar; + + EIGEN_DEVICE_FUNC + inline CommaInitializer(XprType& xpr, const Scalar& s) + : m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1) + { + m_xpr.coeffRef(0,0) = s; + } + + template + EIGEN_DEVICE_FUNC + inline CommaInitializer(XprType& xpr, const DenseBase& other) + : m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows()) + { + m_xpr.block(0, 0, other.rows(), other.cols()) = other; + } + + /* Copy/Move constructor which transfers ownership. This is crucial in + * absence of return value optimization to avoid assertions during destruction. */ + // FIXME in C++11 mode this could be replaced by a proper RValue constructor + EIGEN_DEVICE_FUNC + inline CommaInitializer(const CommaInitializer& o) + : m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) { + // Mark original object as finished. In absence of R-value references we need to const_cast: + const_cast(o).m_row = m_xpr.rows(); + const_cast(o).m_col = m_xpr.cols(); + const_cast(o).m_currentBlockRows = 0; + } + + /* inserts a scalar value in the target matrix */ + EIGEN_DEVICE_FUNC + CommaInitializer& operator,(const Scalar& s) + { + if (m_col==m_xpr.cols()) + { + m_row+=m_currentBlockRows; + m_col = 0; + m_currentBlockRows = 1; + eigen_assert(m_row + EIGEN_DEVICE_FUNC + CommaInitializer& operator,(const DenseBase& other) + { + if (m_col==m_xpr.cols() && (other.cols()!=0 || other.rows()!=m_currentBlockRows)) + { + m_row+=m_currentBlockRows; + m_col = 0; + m_currentBlockRows = other.rows(); + eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows() + && "Too many rows passed to comma initializer (operator<<)"); + } + eigen_assert((m_col + other.cols() <= m_xpr.cols()) + && "Too many coefficients passed to comma initializer (operator<<)"); + eigen_assert(m_currentBlockRows==other.rows()); + m_xpr.template block + (m_row, m_col, other.rows(), other.cols()) = other; + m_col += other.cols(); + return *this; + } + + EIGEN_DEVICE_FUNC + inline ~CommaInitializer() +#if defined VERIFY_RAISES_ASSERT && (!defined EIGEN_NO_ASSERTION_CHECKING) && defined EIGEN_EXCEPTIONS + EIGEN_EXCEPTION_SPEC(Eigen::eigen_assert_exception) +#endif + { + finished(); + } + + /** \returns the built matrix once all its coefficients have been set. + * Calling finished is 100% optional. Its purpose is to write expressions + * like this: + * \code + * quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished()); + * \endcode + */ + EIGEN_DEVICE_FUNC + inline XprType& finished() { + eigen_assert(((m_row+m_currentBlockRows) == m_xpr.rows() || m_xpr.cols() == 0) + && m_col == m_xpr.cols() + && "Too few coefficients passed to comma initializer (operator<<)"); + return m_xpr; + } + + XprType& m_xpr; // target expression + Index m_row; // current row id + Index m_col; // current col id + Index m_currentBlockRows; // current block height +}; + +/** \anchor MatrixBaseCommaInitRef + * Convenient operator to set the coefficients of a matrix. + * + * The coefficients must be provided in a row major order and exactly match + * the size of the matrix. Otherwise an assertion is raised. + * + * Example: \include MatrixBase_set.cpp + * Output: \verbinclude MatrixBase_set.out + * + * \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order. + * + * \sa CommaInitializer::finished(), class CommaInitializer + */ +template +EIGEN_DEVICE_FUNC inline CommaInitializer DenseBase::operator<< (const Scalar& s) +{ + return CommaInitializer(*static_cast(this), s); +} + +/** \sa operator<<(const Scalar&) */ +template +template +EIGEN_DEVICE_FUNC inline CommaInitializer +DenseBase::operator<<(const DenseBase& other) +{ + return CommaInitializer(*static_cast(this), other); +} + +} // end namespace Eigen + +#endif // EIGEN_COMMAINITIALIZER_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ConditionEstimator.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ConditionEstimator.h new file mode 100644 index 0000000..51a2e5f --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ConditionEstimator.h @@ -0,0 +1,175 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CONDITIONESTIMATOR_H +#define EIGEN_CONDITIONESTIMATOR_H + +namespace Eigen { + +namespace internal { + +template +struct rcond_compute_sign { + static inline Vector run(const Vector& v) { + const RealVector v_abs = v.cwiseAbs(); + return (v_abs.array() == static_cast(0)) + .select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs)); + } +}; + +// Partial specialization to avoid elementwise division for real vectors. +template +struct rcond_compute_sign { + static inline Vector run(const Vector& v) { + return (v.array() < static_cast(0)) + .select(-Vector::Ones(v.size()), Vector::Ones(v.size())); + } +}; + +/** + * \returns an estimate of ||inv(matrix)||_1 given a decomposition of + * \a matrix that implements .solve() and .adjoint().solve() methods. + * + * This function implements Algorithms 4.1 and 5.1 from + * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf + * which also forms the basis for the condition number estimators in + * LAPACK. Since at most 10 calls to the solve method of dec are + * performed, the total cost is O(dims^2), as opposed to O(dims^3) + * needed to compute the inverse matrix explicitly. + * + * The most common usage is in estimating the condition number + * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be + * computed directly in O(n^2) operations. + * + * Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and + * LLT. + * + * \sa FullPivLU, PartialPivLU, LDLT, LLT. + */ +template +typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec) +{ + typedef typename Decomposition::MatrixType MatrixType; + typedef typename Decomposition::Scalar Scalar; + typedef typename Decomposition::RealScalar RealScalar; + typedef typename internal::plain_col_type::type Vector; + typedef typename internal::plain_col_type::type RealVector; + const bool is_complex = (NumTraits::IsComplex != 0); + + eigen_assert(dec.rows() == dec.cols()); + const Index n = dec.rows(); + if (n == 0) + return 0; + + // Disable Index to float conversion warning +#ifdef __INTEL_COMPILER + #pragma warning push + #pragma warning ( disable : 2259 ) +#endif + Vector v = dec.solve(Vector::Ones(n) / Scalar(n)); +#ifdef __INTEL_COMPILER + #pragma warning pop +#endif + + // lower_bound is a lower bound on + // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1 + // and is the objective maximized by the ("super-") gradient ascent + // algorithm below. + RealScalar lower_bound = v.template lpNorm<1>(); + if (n == 1) + return lower_bound; + + // Gradient ascent algorithm follows: We know that the optimum is achieved at + // one of the simplices v = e_i, so in each iteration we follow a + // super-gradient to move towards the optimal one. + RealScalar old_lower_bound = lower_bound; + Vector sign_vector(n); + Vector old_sign_vector; + Index v_max_abs_index = -1; + Index old_v_max_abs_index = v_max_abs_index; + for (int k = 0; k < 4; ++k) + { + sign_vector = internal::rcond_compute_sign::run(v); + if (k > 0 && !is_complex && sign_vector == old_sign_vector) { + // Break if the solution stagnated. + break; + } + // v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )| + v = dec.adjoint().solve(sign_vector); + v.real().cwiseAbs().maxCoeff(&v_max_abs_index); + if (v_max_abs_index == old_v_max_abs_index) { + // Break if the solution stagnated. + break; + } + // Move to the new simplex e_j, where j = v_max_abs_index. + v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j. + lower_bound = v.template lpNorm<1>(); + if (lower_bound <= old_lower_bound) { + // Break if the gradient step did not increase the lower_bound. + break; + } + if (!is_complex) { + old_sign_vector = sign_vector; + } + old_v_max_abs_index = v_max_abs_index; + old_lower_bound = lower_bound; + } + // The following calculates an independent estimate of ||matrix||_1 by + // multiplying matrix by a vector with entries of slowly increasing + // magnitude and alternating sign: + // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. + // This improvement to Hager's algorithm above is due to Higham. It was + // added to make the algorithm more robust in certain corner cases where + // large elements in the matrix might otherwise escape detection due to + // exact cancellation (especially when op and op_adjoint correspond to a + // sequence of backsubstitutions and permutations), which could cause + // Hager's algorithm to vastly underestimate ||matrix||_1. + Scalar alternating_sign(RealScalar(1)); + for (Index i = 0; i < n; ++i) { + // The static_cast is needed when Scalar is a complex and RealScalar implements expression templates + v[i] = alternating_sign * static_cast(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1)))); + alternating_sign = -alternating_sign; + } + v = dec.solve(v); + const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n)); + return numext::maxi(lower_bound, alternate_lower_bound); +} + +/** \brief Reciprocal condition number estimator. + * + * Computing a decomposition of a dense matrix takes O(n^3) operations, while + * this method estimates the condition number quickly and reliably in O(n^2) + * operations. + * + * \returns an estimate of the reciprocal condition number + * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and + * its decomposition. Supports the following decompositions: FullPivLU, + * PartialPivLU, LDLT, and LLT. + * + * \sa FullPivLU, PartialPivLU, LDLT, LLT. + */ +template +typename Decomposition::RealScalar +rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) +{ + typedef typename Decomposition::RealScalar RealScalar; + eigen_assert(dec.rows() == dec.cols()); + if (dec.rows() == 0) return NumTraits::infinity(); + if (matrix_norm == RealScalar(0)) return RealScalar(0); + if (dec.rows() == 1) return RealScalar(1); + const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec); + return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0) + : (RealScalar(1) / inverse_matrix_norm) / matrix_norm); +} + +} // namespace internal + +} // namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CoreEvaluators.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CoreEvaluators.h new file mode 100644 index 0000000..a77c0fa --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CoreEvaluators.h @@ -0,0 +1,1732 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Benoit Jacob +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2011-2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_COREEVALUATORS_H +#define EIGEN_COREEVALUATORS_H + +namespace Eigen { + +namespace internal { + +// This class returns the evaluator kind from the expression storage kind. +// Default assumes index based accessors +template +struct storage_kind_to_evaluator_kind { + typedef IndexBased Kind; +}; + +// This class returns the evaluator shape from the expression storage kind. +// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc. +template struct storage_kind_to_shape; + +template<> struct storage_kind_to_shape { typedef DenseShape Shape; }; +template<> struct storage_kind_to_shape { typedef SolverShape Shape; }; +template<> struct storage_kind_to_shape { typedef PermutationShape Shape; }; +template<> struct storage_kind_to_shape { typedef TranspositionsShape Shape; }; + +// Evaluators have to be specialized with respect to various criteria such as: +// - storage/structure/shape +// - scalar type +// - etc. +// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators. +// We currently distinguish the following kind of evaluators: +// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate) +// - binary_evaluator for expression taking two arguments (CwiseBinaryOp) +// - ternary_evaluator for expression taking three arguments (CwiseTernaryOp) +// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching. +// - mapbase_evaluator for Map, Block, Ref +// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator) + +template< typename T, + typename Arg1Kind = typename evaluator_traits::Kind, + typename Arg2Kind = typename evaluator_traits::Kind, + typename Arg3Kind = typename evaluator_traits::Kind, + typename Arg1Scalar = typename traits::Scalar, + typename Arg2Scalar = typename traits::Scalar, + typename Arg3Scalar = typename traits::Scalar> struct ternary_evaluator; + +template< typename T, + typename LhsKind = typename evaluator_traits::Kind, + typename RhsKind = typename evaluator_traits::Kind, + typename LhsScalar = typename traits::Scalar, + typename RhsScalar = typename traits::Scalar> struct binary_evaluator; + +template< typename T, + typename Kind = typename evaluator_traits::Kind, + typename Scalar = typename T::Scalar> struct unary_evaluator; + +// evaluator_traits contains traits for evaluator + +template +struct evaluator_traits_base +{ + // by default, get evaluator kind and shape from storage + typedef typename storage_kind_to_evaluator_kind::StorageKind>::Kind Kind; + typedef typename storage_kind_to_shape::StorageKind>::Shape Shape; +}; + +// Default evaluator traits +template +struct evaluator_traits : public evaluator_traits_base +{ +}; + +template::Shape > +struct evaluator_assume_aliasing { + static const bool value = false; +}; + +// By default, we assume a unary expression: +template +struct evaluator : public unary_evaluator +{ + typedef unary_evaluator Base; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const T& xpr) : Base(xpr) {} +}; + + +// TODO: Think about const-correctness +template +struct evaluator + : evaluator +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const T& xpr) : evaluator(xpr) {} +}; + +// ---------- base class for all evaluators ---------- + +template +struct evaluator_base +{ + // TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices. + typedef traits ExpressionTraits; + + enum { + Alignment = 0 + }; + // noncopyable: + // Don't make this class inherit noncopyable as this kills EBO (Empty Base Optimization) + // and make complex evaluator much larger than then should do. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE evaluator_base() {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~evaluator_base() {} +private: + EIGEN_DEVICE_FUNC evaluator_base(const evaluator_base&); + EIGEN_DEVICE_FUNC const evaluator_base& operator=(const evaluator_base&); +}; + +// -------------------- Matrix and Array -------------------- +// +// evaluator is a common base class for the +// Matrix and Array evaluators. +// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense, +// so no need for more sophisticated dispatching. + +// this helper permits to completely eliminate m_outerStride if it is known at compiletime. +template class plainobjectbase_evaluator_data { +public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr) + { +#ifndef EIGEN_INTERNAL_DEBUGGING + EIGEN_UNUSED_VARIABLE(outerStride); +#endif + eigen_internal_assert(outerStride==OuterStride); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index outerStride() const { return OuterStride; } + const Scalar *data; +}; + +template class plainobjectbase_evaluator_data { +public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr), m_outerStride(outerStride) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index outerStride() const { return m_outerStride; } + const Scalar *data; +protected: + Index m_outerStride; +}; + +template +struct evaluator > + : evaluator_base +{ + typedef PlainObjectBase PlainObjectType; + typedef typename PlainObjectType::Scalar Scalar; + typedef typename PlainObjectType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = PlainObjectType::IsRowMajor, + IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime, + RowsAtCompileTime = PlainObjectType::RowsAtCompileTime, + ColsAtCompileTime = PlainObjectType::ColsAtCompileTime, + + CoeffReadCost = NumTraits::ReadCost, + Flags = traits::EvaluatorFlags, + Alignment = traits::Alignment + }; + enum { + // We do not need to know the outer stride for vectors + OuterStrideAtCompileTime = IsVectorAtCompileTime ? 0 + : int(IsRowMajor) ? ColsAtCompileTime + : RowsAtCompileTime + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + evaluator() + : m_d(0,OuterStrideAtCompileTime) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const PlainObjectType& m) + : m_d(m.data(),IsVectorAtCompileTime ? 0 : m.outerStride()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + if (IsRowMajor) + return m_d.data[row * m_d.outerStride() + col]; + else + return m_d.data[row + col * m_d.outerStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.data[index]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + if (IsRowMajor) + return const_cast(m_d.data)[row * m_d.outerStride() + col]; + else + return const_cast(m_d.data)[row + col * m_d.outerStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return const_cast(m_d.data)[index]; + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + if (IsRowMajor) + return ploadt(m_d.data + row * m_d.outerStride() + col); + else + return ploadt(m_d.data + row + col * m_d.outerStride()); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return ploadt(m_d.data + index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + if (IsRowMajor) + return pstoret + (const_cast(m_d.data) + row * m_d.outerStride() + col, x); + else + return pstoret + (const_cast(m_d.data) + row + col * m_d.outerStride(), x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + return pstoret(const_cast(m_d.data) + index, x); + } + +protected: + + plainobjectbase_evaluator_data m_d; +}; + +template +struct evaluator > + : evaluator > > +{ + typedef Matrix XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + evaluator() {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& m) + : evaluator >(m) + { } +}; + +template +struct evaluator > + : evaluator > > +{ + typedef Array XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + evaluator() {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& m) + : evaluator >(m) + { } +}; + +// -------------------- Transpose -------------------- + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef Transpose XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = evaluator::Flags ^ RowMajorBit, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(col, row); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(col, row); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename XprType::Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(col, row); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_argImpl.template packet(index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + m_argImpl.template writePacket(col, row, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + m_argImpl.template writePacket(index, x); + } + +protected: + evaluator m_argImpl; +}; + +// -------------------- CwiseNullaryOp -------------------- +// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator. +// Likewise, there is not need to more sophisticated dispatching here. + +template::value, + bool has_unary = has_unary_operator::value, + bool has_binary = has_binary_operator::value> +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } + + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp(i,j); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp(i); } +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp(); } +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp(i,j); } +}; + +// We need the following specialization for vector-only functors assigned to a runtime vector, +// for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd. +// In this case, i==0 and j is used for the actual iteration. +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { + eigen_assert(i==0 || j==0); + return op(i+j); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { + eigen_assert(i==0 || j==0); + return op.template packetOp(i+j); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp(i); } +}; + +template +struct nullary_wrapper {}; + +#if 0 && EIGEN_COMP_MSVC>0 +// Disable this ugly workaround. This is now handled in traits::match, +// but this piece of code might still become handly if some other weird compilation +// erros pop up again. + +// MSVC exhibits a weird compilation error when +// compiling: +// Eigen::MatrixXf A = MatrixXf::Random(3,3); +// Ref R = 2.f*A; +// and that has_*ary_operator> have not been instantiated yet. +// The "problem" is that evaluator<2.f*A> is instantiated by traits::match<2.f*A> +// and at that time has_*ary_operator returns true regardless of T. +// Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>. +// The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(), +// and packet() are really instantiated as implemented below: + +// This is a simple wrapper around Index to enforce the re-instantiation of +// has_*ary_operator when needed. +template struct nullary_wrapper_workaround_msvc { + nullary_wrapper_workaround_msvc(const T&); + operator T()const; +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().operator()(op,i,j); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().operator()(op,i); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().template packetOp(op,i,j); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().template packetOp(op,i); + } +}; +#endif // MSVC workaround + +template +struct evaluator > + : evaluator_base > +{ + typedef CwiseNullaryOp XprType; + typedef typename internal::remove_all::type PlainObjectTypeCleaned; + + enum { + CoeffReadCost = internal::functor_traits::Cost, + + Flags = (evaluator::Flags + & ( HereditaryBits + | (functor_has_linear_access::ret ? LinearAccessBit : 0) + | (functor_traits::PacketAccess ? PacketAccessBit : 0))) + | (functor_traits::IsRepeatable ? 0 : EvalBeforeNestingBit), + Alignment = AlignedMax + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n) + : m_functor(n.functor()), m_wrapper() + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(IndexType row, IndexType col) const + { + return m_wrapper(m_functor, row, col); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(IndexType index) const + { + return m_wrapper(m_functor,index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(IndexType row, IndexType col) const + { + return m_wrapper.template packetOp(m_functor, row, col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(IndexType index) const + { + return m_wrapper.template packetOp(m_functor, index); + } + +protected: + const NullaryOp m_functor; + const internal::nullary_wrapper m_wrapper; +}; + +// -------------------- CwiseUnaryOp -------------------- + +template +struct unary_evaluator, IndexBased > + : evaluator_base > +{ + typedef CwiseUnaryOp XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + functor_traits::Cost, + + Flags = evaluator::Flags + & (HereditaryBits | LinearAccessBit | (functor_traits::PacketAccess ? PacketAccessBit : 0)), + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& op) : m_d(op) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.argImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.argImpl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_d.func().packetOp(m_d.argImpl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_d.func().packetOp(m_d.argImpl.template packet(index)); + } + +protected: + + // this helper permits to completely eliminate the functor if it is empty + class Data : private UnaryOp + { + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : UnaryOp(xpr.functor()), argImpl(xpr.nestedExpression()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const UnaryOp& func() const { return static_cast(*this); } + evaluator argImpl; + }; + + Data m_d; +}; + +// -------------------- CwiseTernaryOp -------------------- + +// this is a ternary expression +template +struct evaluator > + : public ternary_evaluator > +{ + typedef CwiseTernaryOp XprType; + typedef ternary_evaluator > Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +template +struct ternary_evaluator, IndexBased, IndexBased> + : evaluator_base > +{ + typedef CwiseTernaryOp XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, + + Arg1Flags = evaluator::Flags, + Arg2Flags = evaluator::Flags, + Arg3Flags = evaluator::Flags, + SameType = is_same::value && is_same::value, + StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit), + Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & ( + HereditaryBits + | (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) & + ( (StorageOrdersAgree ? LinearAccessBit : 0) + | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) + ) + ) + ), + Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit), + Alignment = EIGEN_PLAIN_ENUM_MIN( + EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), + evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) : m_d(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.arg1Impl.coeff(row, col), m_d.arg2Impl.coeff(row, col), m_d.arg3Impl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.arg1Impl.coeff(index), m_d.arg2Impl.coeff(index), m_d.arg3Impl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_d.func().packetOp(m_d.arg1Impl.template packet(row, col), + m_d.arg2Impl.template packet(row, col), + m_d.arg3Impl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_d.func().packetOp(m_d.arg1Impl.template packet(index), + m_d.arg2Impl.template packet(index), + m_d.arg3Impl.template packet(index)); + } + +protected: + // this helper permits to completely eliminate the functor if it is empty + struct Data : private TernaryOp + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : TernaryOp(xpr.functor()), arg1Impl(xpr.arg1()), arg2Impl(xpr.arg2()), arg3Impl(xpr.arg3()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TernaryOp& func() const { return static_cast(*this); } + evaluator arg1Impl; + evaluator arg2Impl; + evaluator arg3Impl; + }; + + Data m_d; +}; + +// -------------------- CwiseBinaryOp -------------------- + +// this is a binary expression +template +struct evaluator > + : public binary_evaluator > +{ + typedef CwiseBinaryOp XprType; + typedef binary_evaluator > Base; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +template +struct binary_evaluator, IndexBased, IndexBased> + : evaluator_base > +{ + typedef CwiseBinaryOp XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, + + LhsFlags = evaluator::Flags, + RhsFlags = evaluator::Flags, + SameType = is_same::value, + StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit), + Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( + HereditaryBits + | (int(LhsFlags) & int(RhsFlags) & + ( (StorageOrdersAgree ? LinearAccessBit : 0) + | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) + ) + ) + ), + Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment,evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit binary_evaluator(const XprType& xpr) : m_d(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.lhsImpl.coeff(row, col), m_d.rhsImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.lhsImpl.coeff(index), m_d.rhsImpl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_d.func().packetOp(m_d.lhsImpl.template packet(row, col), + m_d.rhsImpl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_d.func().packetOp(m_d.lhsImpl.template packet(index), + m_d.rhsImpl.template packet(index)); + } + +protected: + + // this helper permits to completely eliminate the functor if it is empty + struct Data : private BinaryOp + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : BinaryOp(xpr.functor()), lhsImpl(xpr.lhs()), rhsImpl(xpr.rhs()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const BinaryOp& func() const { return static_cast(*this); } + evaluator lhsImpl; + evaluator rhsImpl; + }; + + Data m_d; +}; + +// -------------------- CwiseUnaryView -------------------- + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef CwiseUnaryView XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost + functor_traits::Cost, + + Flags = (evaluator::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)), + + Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost... + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : m_d(op) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.argImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.argImpl.coeff(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_d.func()(m_d.argImpl.coeffRef(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_d.func()(m_d.argImpl.coeffRef(index)); + } + +protected: + + // this helper permits to completely eliminate the functor if it is empty + struct Data : private UnaryOp + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : UnaryOp(xpr.functor()), argImpl(xpr.nestedExpression()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const UnaryOp& func() const { return static_cast(*this); } + evaluator argImpl; + }; + + Data m_d; +}; + +// -------------------- Map -------------------- + +// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ? +// but that might complicate template specialization +template +struct mapbase_evaluator; + +template +struct mapbase_evaluator : evaluator_base +{ + typedef Derived XprType; + typedef typename XprType::PointerType PointerType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = XprType::RowsAtCompileTime, + ColsAtCompileTime = XprType::ColsAtCompileTime, + CoeffReadCost = NumTraits::ReadCost + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit mapbase_evaluator(const XprType& map) + : m_data(const_cast(map.data())), + m_innerStride(map.innerStride()), + m_outerStride(map.outerStride()) + { + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator::Flags&PacketAccessBit, internal::inner_stride_at_compile_time::ret==1), + PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_data[index * m_innerStride.value()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_data[index * m_innerStride.value()]; + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + PointerType ptr = m_data + row * rowStride() + col * colStride(); + return internal::ploadt(ptr); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return internal::ploadt(m_data + index * m_innerStride.value()); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + PointerType ptr = m_data + row * rowStride() + col * colStride(); + return internal::pstoret(ptr, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + internal::pstoret(m_data + index * m_innerStride.value(), x); + } +protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index rowStride() const { return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index colStride() const { return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); } + + PointerType m_data; + const internal::variable_if_dynamic m_innerStride; + const internal::variable_if_dynamic m_outerStride; +}; + +template +struct evaluator > + : public mapbase_evaluator, PlainObjectType> +{ + typedef Map XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types once we can handle multi-sized packet types + typedef typename packet_traits::type PacketScalar; + + enum { + InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 + ? int(PlainObjectType::InnerStrideAtCompileTime) + : int(StrideType::InnerStrideAtCompileTime), + OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 + ? int(PlainObjectType::OuterStrideAtCompileTime) + : int(StrideType::OuterStrideAtCompileTime), + HasNoInnerStride = InnerStrideAtCompileTime == 1, + HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, + HasNoStride = HasNoInnerStride && HasNoOuterStride, + IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, + + PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit), + LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit), + Flags = int( evaluator::Flags) & (LinearAccessMask&PacketAccessMask), + + Alignment = int(MapOptions)&int(AlignedMask) + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map) + : mapbase_evaluator(map) + { } +}; + +// -------------------- Ref -------------------- + +template +struct evaluator > + : public mapbase_evaluator, PlainObjectType> +{ + typedef Ref XprType; + + enum { + Flags = evaluator >::Flags, + Alignment = evaluator >::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& ref) + : mapbase_evaluator(ref) + { } +}; + +// -------------------- Block -------------------- + +template::ret> struct block_evaluator; + +template +struct evaluator > + : block_evaluator +{ + typedef Block XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types once we can handle multi-sized packet types + typedef typename packet_traits::type PacketScalar; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + + RowsAtCompileTime = traits::RowsAtCompileTime, + ColsAtCompileTime = traits::ColsAtCompileTime, + MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = traits::MaxColsAtCompileTime, + + ArgTypeIsRowMajor = (int(evaluator::Flags)&RowMajorBit) != 0, + IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 + : ArgTypeIsRowMajor, + HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor), + InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + InnerStrideAtCompileTime = HasSameStorageOrderAsArgType + ? int(inner_stride_at_compile_time::ret) + : int(outer_stride_at_compile_time::ret), + OuterStrideAtCompileTime = HasSameStorageOrderAsArgType + ? int(outer_stride_at_compile_time::ret) + : int(inner_stride_at_compile_time::ret), + MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0, + + FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator::Flags&LinearAccessBit))) ? LinearAccessBit : 0, + FlagsRowMajorBit = XprType::Flags&RowMajorBit, + Flags0 = evaluator::Flags & ( (HereditaryBits & ~RowMajorBit) | + DirectAccessBit | + MaskPacketAccessBit), + Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit, + + PacketAlignment = unpacket_traits::alignment, + Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) + && (OuterStrideAtCompileTime!=0) + && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0, + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, Alignment0) + }; + typedef block_evaluator block_evaluator_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& block) : block_evaluator_type(block) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } +}; + +// no direct-access => dispatch to a unary evaluator +template +struct block_evaluator + : unary_evaluator > +{ + typedef Block XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit block_evaluator(const XprType& block) + : unary_evaluator(block) + {} +}; + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef Block XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& block) + : m_argImpl(block.nestedExpression()), + m_startRow(block.startRow()), + m_startCol(block.startCol()), + m_linear_offset(ForwardLinearAccess?(ArgType::IsRowMajor ? block.startRow()*block.nestedExpression().cols() + block.startCol() : block.startCol()*block.nestedExpression().rows() + block.startRow()):0) + { } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + RowsAtCompileTime = XprType::RowsAtCompileTime, + ForwardLinearAccess = (InnerPanel || int(XprType::IsRowMajor)==int(ArgType::IsRowMajor)) && bool(evaluator::Flags&LinearAccessBit) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return linear_coeff_impl(index, bool_constant()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return linear_coeffRef_impl(index, bool_constant()); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(m_startRow.value() + row, m_startCol.value() + col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + if (ForwardLinearAccess) + return m_argImpl.template packet(m_linear_offset.value() + index); + else + return packet(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + return m_argImpl.template writePacket(m_startRow.value() + row, m_startCol.value() + col, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + if (ForwardLinearAccess) + return m_argImpl.template writePacket(m_linear_offset.value() + index, x); + else + return writePacket(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0, + x); + } + +protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType linear_coeff_impl(Index index, internal::true_type /* ForwardLinearAccess */) const + { + return m_argImpl.coeff(m_linear_offset.value() + index); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType linear_coeff_impl(Index index, internal::false_type /* not ForwardLinearAccess */) const + { + return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& linear_coeffRef_impl(Index index, internal::true_type /* ForwardLinearAccess */) + { + return m_argImpl.coeffRef(m_linear_offset.value() + index); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& linear_coeffRef_impl(Index index, internal::false_type /* not ForwardLinearAccess */) + { + return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); + } + + evaluator m_argImpl; + const variable_if_dynamic m_startRow; + const variable_if_dynamic m_startCol; + const variable_if_dynamic m_linear_offset; +}; + +// TODO: This evaluator does not actually use the child evaluator; +// all action is via the data() as returned by the Block expression. + +template +struct block_evaluator + : mapbase_evaluator, + typename Block::PlainObject> +{ + typedef Block XprType; + typedef typename XprType::Scalar Scalar; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit block_evaluator(const XprType& block) + : mapbase_evaluator(block) + { + // TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime + eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator::Alignment)) == 0) && "data is not aligned"); + } +}; + + +// -------------------- Select -------------------- +// NOTE shall we introduce a ternary_evaluator? + +// TODO enable vectorization for Select +template +struct evaluator > + : evaluator_base > +{ + typedef Select XprType; + enum { + CoeffReadCost = evaluator::CoeffReadCost + + EIGEN_PLAIN_ENUM_MAX(evaluator::CoeffReadCost, + evaluator::CoeffReadCost), + + Flags = (unsigned int)evaluator::Flags & evaluator::Flags & HereditaryBits, + + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& select) + : m_conditionImpl(select.conditionMatrix()), + m_thenImpl(select.thenMatrix()), + m_elseImpl(select.elseMatrix()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + if (m_conditionImpl.coeff(row, col)) + return m_thenImpl.coeff(row, col); + else + return m_elseImpl.coeff(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + if (m_conditionImpl.coeff(index)) + return m_thenImpl.coeff(index); + else + return m_elseImpl.coeff(index); + } + +protected: + evaluator m_conditionImpl; + evaluator m_thenImpl; + evaluator m_elseImpl; +}; + + +// -------------------- Replicate -------------------- + +template +struct unary_evaluator > + : evaluator_base > +{ + typedef Replicate XprType; + typedef typename XprType::CoeffReturnType CoeffReturnType; + enum { + Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor + }; + typedef typename internal::nested_eval::type ArgTypeNested; + typedef typename internal::remove_all::type ArgTypeNestedCleaned; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0, + Flags = (evaluator::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits::Flags & RowMajorBit), + + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& replicate) + : m_arg(replicate.nestedExpression()), + m_argImpl(m_arg), + m_rows(replicate.nestedExpression().rows()), + m_cols(replicate.nestedExpression().cols()) + {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + // try to avoid using modulo; this is a pure optimization strategy + const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 + : RowFactor==1 ? row + : row % m_rows.value(); + const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 + : ColFactor==1 ? col + : col % m_cols.value(); + + return m_argImpl.coeff(actual_row, actual_col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + // try to avoid using modulo; this is a pure optimization strategy + const Index actual_index = internal::traits::RowsAtCompileTime==1 + ? (ColFactor==1 ? index : index%m_cols.value()) + : (RowFactor==1 ? index : index%m_rows.value()); + + return m_argImpl.coeff(actual_index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 + : RowFactor==1 ? row + : row % m_rows.value(); + const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 + : ColFactor==1 ? col + : col % m_cols.value(); + + return m_argImpl.template packet(actual_row, actual_col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + const Index actual_index = internal::traits::RowsAtCompileTime==1 + ? (ColFactor==1 ? index : index%m_cols.value()) + : (RowFactor==1 ? index : index%m_rows.value()); + + return m_argImpl.template packet(actual_index); + } + +protected: + const ArgTypeNested m_arg; + evaluator m_argImpl; + const variable_if_dynamic m_rows; + const variable_if_dynamic m_cols; +}; + +// -------------------- MatrixWrapper and ArrayWrapper -------------------- +// +// evaluator_wrapper_base is a common base class for the +// MatrixWrapper and ArrayWrapper evaluators. + +template +struct evaluator_wrapper_base + : evaluator_base +{ + typedef typename remove_all::type ArgType; + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = evaluator::Flags, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {} + + typedef typename ArgType::Scalar Scalar; + typedef typename ArgType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(row, col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_argImpl.template packet(index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + m_argImpl.template writePacket(row, col, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + m_argImpl.template writePacket(index, x); + } + +protected: + evaluator m_argImpl; +}; + +template +struct unary_evaluator > + : evaluator_wrapper_base > +{ + typedef MatrixWrapper XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& wrapper) + : evaluator_wrapper_base >(wrapper.nestedExpression()) + { } +}; + +template +struct unary_evaluator > + : evaluator_wrapper_base > +{ + typedef ArrayWrapper XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& wrapper) + : evaluator_wrapper_base >(wrapper.nestedExpression()) + { } +}; + + +// -------------------- Reverse -------------------- + +// defined in Reverse.h: +template struct reverse_packet_cond; + +template +struct unary_evaluator > + : evaluator_base > +{ + typedef Reverse XprType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = XprType::IsRowMajor, + IsColMajor = !IsRowMajor, + ReverseRow = (Direction == Vertical) || (Direction == BothDirections), + ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), + ReversePacket = (Direction == BothDirections) + || ((Direction == Vertical) && IsColMajor) + || ((Direction == Horizontal) && IsRowMajor), + + CoeffReadCost = evaluator::CoeffReadCost, + + // let's enable LinearAccess only with vectorization because of the product overhead + // FIXME enable DirectAccess with negative strides? + Flags0 = evaluator::Flags, + LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) ) + || ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1)) + ? LinearAccessBit : 0, + + Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess), + + Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f. + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& reverse) + : m_argImpl(reverse.nestedExpression()), + m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1), + m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row, + ReverseCol ? m_cols.value() - col - 1 : col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row, + ReverseCol ? m_cols.value() - col - 1 : col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + enum { + PacketSize = unpacket_traits::size, + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 + }; + typedef internal::reverse_packet_cond reverse_packet; + return reverse_packet::run(m_argImpl.template packet( + ReverseRow ? m_rows.value() - row - OffsetRow : row, + ReverseCol ? m_cols.value() - col - OffsetCol : col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + enum { PacketSize = unpacket_traits::size }; + return preverse(m_argImpl.template packet(m_rows.value() * m_cols.value() - index - PacketSize)); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + // FIXME we could factorize some code with packet(i,j) + enum { + PacketSize = unpacket_traits::size, + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 + }; + typedef internal::reverse_packet_cond reverse_packet; + m_argImpl.template writePacket( + ReverseRow ? m_rows.value() - row - OffsetRow : row, + ReverseCol ? m_cols.value() - col - OffsetCol : col, + reverse_packet::run(x)); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + enum { PacketSize = unpacket_traits::size }; + m_argImpl.template writePacket + (m_rows.value() * m_cols.value() - index - PacketSize, preverse(x)); + } + +protected: + evaluator m_argImpl; + + // If we do not reverse rows, then we do not need to know the number of rows; same for columns + // Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors. + const variable_if_dynamic m_rows; + const variable_if_dynamic m_cols; +}; + + +// -------------------- Diagonal -------------------- + +template +struct evaluator > + : evaluator_base > +{ + typedef Diagonal XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + + Flags = (unsigned int)(evaluator::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit, + + Alignment = 0 + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& diagonal) + : m_argImpl(diagonal.nestedExpression()), + m_index(diagonal.index()) + { } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index) const + { + return m_argImpl.coeff(row + rowOffset(), row + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index + rowOffset(), index + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index) + { + return m_argImpl.coeffRef(row + rowOffset(), row + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index + rowOffset(), index + colOffset()); + } + +protected: + evaluator m_argImpl; + const internal::variable_if_dynamicindex m_index; + +private: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; } +}; + + +//---------------------------------------------------------------------- +// deprecated code +//---------------------------------------------------------------------- + +// -------------------- EvalToTemp -------------------- + +// expression class for evaluating nested expression to a temporary + +template class EvalToTemp; + +template +struct traits > + : public traits +{ }; + +template +class EvalToTemp + : public dense_xpr_base >::type +{ + public: + + typedef typename dense_xpr_base::type Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp) + + explicit EvalToTemp(const ArgType& arg) + : m_arg(arg) + { } + + const ArgType& arg() const + { + return m_arg; + } + + Index rows() const + { + return m_arg.rows(); + } + + Index cols() const + { + return m_arg.cols(); + } + + private: + const ArgType& m_arg; +}; + +template +struct evaluator > + : public evaluator +{ + typedef EvalToTemp XprType; + typedef typename ArgType::PlainObject PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : m_result(xpr.arg()) + { + ::new (static_cast(this)) Base(m_result); + } + + // This constructor is used when nesting an EvalTo evaluator in another evaluator + EIGEN_DEVICE_FUNC evaluator(const ArgType& arg) + : m_result(arg) + { + ::new (static_cast(this)) Base(m_result); + } + +protected: + PlainObject m_result; +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COREEVALUATORS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CoreIterators.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CoreIterators.h new file mode 100644 index 0000000..b967196 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CoreIterators.h @@ -0,0 +1,132 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COREITERATORS_H +#define EIGEN_COREITERATORS_H + +namespace Eigen { + +/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core + */ + +namespace internal { + +template +class inner_iterator_selector; + +} + +/** \class InnerIterator + * \brief An InnerIterator allows to loop over the element of any matrix expression. + * + * \warning To be used with care because an evaluator is constructed every time an InnerIterator iterator is constructed. + * + * TODO: add a usage example + */ +template +class InnerIterator +{ +protected: + typedef internal::inner_iterator_selector::Kind> IteratorType; + typedef internal::evaluator EvaluatorType; + typedef typename internal::traits::Scalar Scalar; +public: + /** Construct an iterator over the \a outerId -th row or column of \a xpr */ + InnerIterator(const XprType &xpr, const Index &outerId) + : m_eval(xpr), m_iter(m_eval, outerId, xpr.innerSize()) + {} + + /// \returns the value of the current coefficient. + EIGEN_STRONG_INLINE Scalar value() const { return m_iter.value(); } + /** Increment the iterator \c *this to the next non-zero coefficient. + * Explicit zeros are not skipped over. To skip explicit zeros, see class SparseView + */ + EIGEN_STRONG_INLINE InnerIterator& operator++() { m_iter.operator++(); return *this; } + EIGEN_STRONG_INLINE InnerIterator& operator+=(Index i) { m_iter.operator+=(i); return *this; } + EIGEN_STRONG_INLINE InnerIterator operator+(Index i) + { InnerIterator result(*this); result+=i; return result; } + + + /// \returns the column or row index of the current coefficient. + EIGEN_STRONG_INLINE Index index() const { return m_iter.index(); } + /// \returns the row index of the current coefficient. + EIGEN_STRONG_INLINE Index row() const { return m_iter.row(); } + /// \returns the column index of the current coefficient. + EIGEN_STRONG_INLINE Index col() const { return m_iter.col(); } + /// \returns \c true if the iterator \c *this still references a valid coefficient. + EIGEN_STRONG_INLINE operator bool() const { return m_iter; } + +protected: + EvaluatorType m_eval; + IteratorType m_iter; +private: + // If you get here, then you're not using the right InnerIterator type, e.g.: + // SparseMatrix A; + // SparseMatrix::InnerIterator it(A,0); + template InnerIterator(const EigenBase&,Index outer); +}; + +namespace internal { + +// Generic inner iterator implementation for dense objects +template +class inner_iterator_selector +{ +protected: + typedef evaluator EvaluatorType; + typedef typename traits::Scalar Scalar; + enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit }; + +public: + EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &innerSize) + : m_eval(eval), m_inner(0), m_outer(outerId), m_end(innerSize) + {} + + EIGEN_STRONG_INLINE Scalar value() const + { + return (IsRowMajor) ? m_eval.coeff(m_outer, m_inner) + : m_eval.coeff(m_inner, m_outer); + } + + EIGEN_STRONG_INLINE inner_iterator_selector& operator++() { m_inner++; return *this; } + + EIGEN_STRONG_INLINE Index index() const { return m_inner; } + inline Index row() const { return IsRowMajor ? m_outer : index(); } + inline Index col() const { return IsRowMajor ? index() : m_outer; } + + EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } + +protected: + const EvaluatorType& m_eval; + Index m_inner; + const Index m_outer; + const Index m_end; +}; + +// For iterator-based evaluator, inner-iterator is already implemented as +// evaluator<>::InnerIterator +template +class inner_iterator_selector + : public evaluator::InnerIterator +{ +protected: + typedef typename evaluator::InnerIterator Base; + typedef evaluator EvaluatorType; + +public: + EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &/*innerSize*/) + : Base(eval, outerId) + {} +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COREITERATORS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseBinaryOp.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseBinaryOp.h new file mode 100644 index 0000000..8b8de83 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseBinaryOp.h @@ -0,0 +1,189 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CWISE_BINARY_OP_H +#define EIGEN_CWISE_BINARY_OP_H + +namespace Eigen { + +namespace internal { +template +struct traits > +{ + // we must not inherit from traits since it has + // the potential to cause problems with MSVC + typedef typename remove_all::type Ancestor; + typedef typename traits::XprKind XprKind; + enum { + RowsAtCompileTime = traits::RowsAtCompileTime, + ColsAtCompileTime = traits::ColsAtCompileTime, + MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = traits::MaxColsAtCompileTime + }; + + // even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor), + // we still want to handle the case when the result type is different. + typedef typename result_of< + BinaryOp( + const typename Lhs::Scalar&, + const typename Rhs::Scalar& + ) + >::type Scalar; + typedef typename cwise_promote_storage_type::StorageKind, + typename traits::StorageKind, + BinaryOp>::ret StorageKind; + typedef typename promote_index_type::StorageIndex, + typename traits::StorageIndex>::type StorageIndex; + typedef typename Lhs::Nested LhsNested; + typedef typename Rhs::Nested RhsNested; + typedef typename remove_reference::type _LhsNested; + typedef typename remove_reference::type _RhsNested; + enum { + Flags = cwise_promote_storage_order::StorageKind,typename traits::StorageKind,_LhsNested::Flags & RowMajorBit,_RhsNested::Flags & RowMajorBit>::value + }; +}; +} // end namespace internal + +template +class CwiseBinaryOpImpl; + +/** \class CwiseBinaryOp + * \ingroup Core_Module + * + * \brief Generic expression where a coefficient-wise binary operator is applied to two expressions + * + * \tparam BinaryOp template functor implementing the operator + * \tparam LhsType the type of the left-hand side + * \tparam RhsType the type of the right-hand side + * + * This class represents an expression where a coefficient-wise binary operator is applied to two expressions. + * It is the return type of binary operators, by which we mean only those binary operators where + * both the left-hand side and the right-hand side are Eigen expressions. + * For example, the return type of matrix1+matrix2 is a CwiseBinaryOp. + * + * Most of the time, this is the only way that it is used, so you typically don't have to name + * CwiseBinaryOp types explicitly. + * + * \sa MatrixBase::binaryExpr(const MatrixBase &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp + */ +template +class CwiseBinaryOp : + public CwiseBinaryOpImpl< + BinaryOp, LhsType, RhsType, + typename internal::cwise_promote_storage_type::StorageKind, + typename internal::traits::StorageKind, + BinaryOp>::ret>, + internal::no_assignment_operator +{ + public: + + typedef typename internal::remove_all::type Functor; + typedef typename internal::remove_all::type Lhs; + typedef typename internal::remove_all::type Rhs; + + typedef typename CwiseBinaryOpImpl< + BinaryOp, LhsType, RhsType, + typename internal::cwise_promote_storage_type::StorageKind, + typename internal::traits::StorageKind, + BinaryOp>::ret>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp) + + typedef typename internal::ref_selector::type LhsNested; + typedef typename internal::ref_selector::type RhsNested; + typedef typename internal::remove_reference::type _LhsNested; + typedef typename internal::remove_reference::type _RhsNested; + +#if EIGEN_COMP_MSVC && EIGEN_HAS_CXX11 + //Required for Visual Studio or the Copy constructor will probably not get inlined! + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CwiseBinaryOp(const CwiseBinaryOp&) = default; +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp()) + : m_lhs(aLhs), m_rhs(aRhs), m_functor(func) + { + EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar); + // require the sizes to match + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs) + eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index rows() const { + // return the fixed size type if available to enable compile time optimizations + if (internal::traits::type>::RowsAtCompileTime==Dynamic) + return m_rhs.rows(); + else + return m_lhs.rows(); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index cols() const { + // return the fixed size type if available to enable compile time optimizations + if (internal::traits::type>::ColsAtCompileTime==Dynamic) + return m_rhs.cols(); + else + return m_lhs.cols(); + } + + /** \returns the left hand side nested expression */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const _LhsNested& lhs() const { return m_lhs; } + /** \returns the right hand side nested expression */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const _RhsNested& rhs() const { return m_rhs; } + /** \returns the functor representing the binary operation */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const BinaryOp& functor() const { return m_functor; } + + protected: + LhsNested m_lhs; + RhsNested m_rhs; + const BinaryOp m_functor; +}; + +// Generic API dispatcher +template +class CwiseBinaryOpImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; +}; + +/** replaces \c *this by \c *this - \a other. + * + * \returns a reference to \c *this + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & +MatrixBase::operator-=(const MatrixBase &other) +{ + call_assignment(derived(), other.derived(), internal::sub_assign_op()); + return derived(); +} + +/** replaces \c *this by \c *this + \a other. + * + * \returns a reference to \c *this + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & +MatrixBase::operator+=(const MatrixBase& other) +{ + call_assignment(derived(), other.derived(), internal::add_assign_op()); + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_CWISE_BINARY_OP_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseNullaryOp.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseNullaryOp.h new file mode 100644 index 0000000..ddac9df --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseNullaryOp.h @@ -0,0 +1,922 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CWISE_NULLARY_OP_H +#define EIGEN_CWISE_NULLARY_OP_H + +namespace Eigen { + +namespace internal { +template +struct traits > : traits +{ + enum { + Flags = traits::Flags & RowMajorBit + }; +}; + +} // namespace internal + +/** \class CwiseNullaryOp + * \ingroup Core_Module + * + * \brief Generic expression of a matrix where all coefficients are defined by a functor + * + * \tparam NullaryOp template functor implementing the operator + * \tparam PlainObjectType the underlying plain matrix/array type + * + * This class represents an expression of a generic nullary operator. + * It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods, + * and most of the time this is the only way it is used. + * + * However, if you want to write a function returning such an expression, you + * will need to use this class. + * + * The functor NullaryOp must expose one of the following method: + + + + +
\c operator()() if the procedural generation does not depend on the coefficient entries (e.g., random numbers)
\c operator()(Index i)if the procedural generation makes sense for vectors only and that it depends on the coefficient index \c i (e.g., linspace)
\c operator()(Index i,Index j)if the procedural generation depends on the matrix coordinates \c i, \c j (e.g., to generate a checkerboard with 0 and 1)
+ * It is also possible to expose the last two operators if the generation makes sense for matrices but can be optimized for vectors. + * + * See DenseBase::NullaryExpr(Index,const CustomNullaryOp&) for an example binding + * C++11 random number generators. + * + * A nullary expression can also be used to implement custom sophisticated matrix manipulations + * that cannot be covered by the existing set of natively supported matrix manipulations. + * See this \ref TopicCustomizing_NullaryExpr "page" for some examples and additional explanations + * on the behavior of CwiseNullaryOp. + * + * \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr + */ +template +class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp) + + EIGEN_DEVICE_FUNC + CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp()) + : m_rows(rows), m_cols(cols), m_functor(func) + { + eigen_assert(rows >= 0 + && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) + && cols >= 0 + && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); } + + /** \returns the functor representing the nullary operation */ + EIGEN_DEVICE_FUNC + const NullaryOp& functor() const { return m_functor; } + + protected: + const internal::variable_if_dynamic m_rows; + const internal::variable_if_dynamic m_cols; + const NullaryOp m_functor; +}; + + +/** \returns an expression of a matrix defined by a custom functor \a func + * + * The parameters \a rows and \a cols are the number of rows and of columns of + * the returned matrix. Must be compatible with this MatrixBase type. + * + * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, + * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used + * instead. + * + * The template parameter \a CustomNullaryOp is the type of the functor. + * + * \sa class CwiseNullaryOp + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const CwiseNullaryOp::PlainObject> +#else +const CwiseNullaryOp +#endif +DenseBase::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func) +{ + return CwiseNullaryOp(rows, cols, func); +} + +/** \returns an expression of a matrix defined by a custom functor \a func + * + * The parameter \a size is the size of the returned vector. + * Must be compatible with this MatrixBase type. + * + * \only_for_vectors + * + * This variant is meant to be used for dynamic-size vector types. For fixed-size types, + * it is redundant to pass \a size as argument, so Zero() should be used + * instead. + * + * The template parameter \a CustomNullaryOp is the type of the functor. + * + * Here is an example with C++11 random generators: \include random_cpp11.cpp + * Output: \verbinclude random_cpp11.out + * + * \sa class CwiseNullaryOp + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const CwiseNullaryOp::PlainObject> +#else +const CwiseNullaryOp +#endif +DenseBase::NullaryExpr(Index size, const CustomNullaryOp& func) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + if(RowsAtCompileTime == 1) return CwiseNullaryOp(1, size, func); + else return CwiseNullaryOp(size, 1, func); +} + +/** \returns an expression of a matrix defined by a custom functor \a func + * + * This variant is only for fixed-size DenseBase types. For dynamic-size types, you + * need to use the variants taking size arguments. + * + * The template parameter \a CustomNullaryOp is the type of the functor. + * + * \sa class CwiseNullaryOp + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const CwiseNullaryOp::PlainObject> +#else +const CwiseNullaryOp +#endif +DenseBase::NullaryExpr(const CustomNullaryOp& func) +{ + return CwiseNullaryOp(RowsAtCompileTime, ColsAtCompileTime, func); +} + +/** \returns an expression of a constant matrix of value \a value + * + * The parameters \a rows and \a cols are the number of rows and of columns of + * the returned matrix. Must be compatible with this DenseBase type. + * + * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, + * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used + * instead. + * + * The template parameter \a CustomNullaryOp is the type of the functor. + * + * \sa class CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Constant(Index rows, Index cols, const Scalar& value) +{ + return DenseBase::NullaryExpr(rows, cols, internal::scalar_constant_op(value)); +} + +/** \returns an expression of a constant matrix of value \a value + * + * The parameter \a size is the size of the returned vector. + * Must be compatible with this DenseBase type. + * + * \only_for_vectors + * + * This variant is meant to be used for dynamic-size vector types. For fixed-size types, + * it is redundant to pass \a size as argument, so Zero() should be used + * instead. + * + * The template parameter \a CustomNullaryOp is the type of the functor. + * + * \sa class CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Constant(Index size, const Scalar& value) +{ + return DenseBase::NullaryExpr(size, internal::scalar_constant_op(value)); +} + +/** \returns an expression of a constant matrix of value \a value + * + * This variant is only for fixed-size DenseBase types. For dynamic-size types, you + * need to use the variants taking size arguments. + * + * The template parameter \a CustomNullaryOp is the type of the functor. + * + * \sa class CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Constant(const Scalar& value) +{ + EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) + return DenseBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op(value)); +} + +/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(Index,const Scalar&,const Scalar&) + * + * \only_for_vectors + * + * Example: \include DenseBase_LinSpaced_seq_deprecated.cpp + * Output: \verbinclude DenseBase_LinSpaced_seq_deprecated.out + * + * \sa LinSpaced(Index,const Scalar&, const Scalar&), setLinSpaced(Index,const Scalar&,const Scalar&) + */ +template +EIGEN_DEPRECATED EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType +DenseBase::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); +} + +/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(const Scalar&,const Scalar&) + * + * \sa LinSpaced(const Scalar&, const Scalar&) + */ +template +EIGEN_DEPRECATED EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType +DenseBase::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) + return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); +} + +/** + * \brief Sets a linearly spaced vector. + * + * The function generates 'size' equally spaced values in the closed interval [low,high]. + * When size is set to 1, a vector of length 1 containing 'high' is returned. + * + * \only_for_vectors + * + * Example: \include DenseBase_LinSpaced.cpp + * Output: \verbinclude DenseBase_LinSpaced.out + * + * For integer scalar types, an even spacing is possible if and only if the length of the range, + * i.e., \c high-low is a scalar multiple of \c size-1, or if \c size is a scalar multiple of the + * number of values \c high-low+1 (meaning each value can be repeated the same number of time). + * If one of these two considions is not satisfied, then \c high is lowered to the largest value + * satisfying one of this constraint. + * Here are some examples: + * + * Example: \include DenseBase_LinSpacedInt.cpp + * Output: \verbinclude DenseBase_LinSpacedInt.out + * + * \sa setLinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType +DenseBase::LinSpaced(Index size, const Scalar& low, const Scalar& high) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); +} + +/** + * \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&) + * Special version for fixed size types which does not require the size parameter. + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType +DenseBase::LinSpaced(const Scalar& low, const Scalar& high) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) + return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); +} + +/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */ +template +EIGEN_DEVICE_FUNC bool DenseBase::isApproxToConstant +(const Scalar& val, const RealScalar& prec) const +{ + typename internal::nested_eval::type self(derived()); + for(Index j = 0; j < cols(); ++j) + for(Index i = 0; i < rows(); ++i) + if(!internal::isApprox(self.coeff(i, j), val, prec)) + return false; + return true; +} + +/** This is just an alias for isApproxToConstant(). + * + * \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */ +template +EIGEN_DEVICE_FUNC bool DenseBase::isConstant +(const Scalar& val, const RealScalar& prec) const +{ + return isApproxToConstant(val, prec); +} + +/** Alias for setConstant(): sets all coefficients in this expression to \a val. + * + * \sa setConstant(), Constant(), class CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void DenseBase::fill(const Scalar& val) +{ + setConstant(val); +} + +/** Sets all coefficients in this expression to value \a val. + * + * \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::setConstant(const Scalar& val) +{ + return derived() = Constant(rows(), cols(), val); +} + +/** Resizes to the given \a size, and sets all coefficients in this expression to the given value \a val. + * + * \only_for_vectors + * + * Example: \include Matrix_setConstant_int.cpp + * Output: \verbinclude Matrix_setConstant_int.out + * + * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setConstant(Index size, const Scalar& val) +{ + resize(size); + return setConstant(val); +} + +/** Resizes to the given size, and sets all coefficients in this expression to the given value \a val. + * + * \param rows the new number of rows + * \param cols the new number of columns + * \param val the value to which all coefficients are set + * + * Example: \include Matrix_setConstant_int_int.cpp + * Output: \verbinclude Matrix_setConstant_int_int.out + * + * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setConstant(Index rows, Index cols, const Scalar& val) +{ + resize(rows, cols); + return setConstant(val); +} + +/** + * \brief Sets a linearly spaced vector. + * + * The function generates 'size' equally spaced values in the closed interval [low,high]. + * When size is set to 1, a vector of length 1 containing 'high' is returned. + * + * \only_for_vectors + * + * Example: \include DenseBase_setLinSpaced.cpp + * Output: \verbinclude DenseBase_setLinSpaced.out + * + * For integer scalar types, do not miss the explanations on the definition + * of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink. + * + * \sa LinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op(low,high,newSize)); +} + +/** + * \brief Sets a linearly spaced vector. + * + * The function fills \c *this with equally spaced values in the closed interval [low,high]. + * When size is set to 1, a vector of length 1 containing 'high' is returned. + * + * \only_for_vectors + * + * For integer scalar types, do not miss the explanations on the definition + * of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink. + * + * \sa LinSpaced(Index,const Scalar&,const Scalar&), setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(const Scalar& low, const Scalar& high) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return setLinSpaced(size(), low, high); +} + +// zero: + +/** \returns an expression of a zero matrix. + * + * The parameters \a rows and \a cols are the number of rows and of columns of + * the returned matrix. Must be compatible with this MatrixBase type. + * + * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, + * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used + * instead. + * + * Example: \include MatrixBase_zero_int_int.cpp + * Output: \verbinclude MatrixBase_zero_int_int.out + * + * \sa Zero(), Zero(Index) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Zero(Index rows, Index cols) +{ + return Constant(rows, cols, Scalar(0)); +} + +/** \returns an expression of a zero vector. + * + * The parameter \a size is the size of the returned vector. + * Must be compatible with this MatrixBase type. + * + * \only_for_vectors + * + * This variant is meant to be used for dynamic-size vector types. For fixed-size types, + * it is redundant to pass \a size as argument, so Zero() should be used + * instead. + * + * Example: \include MatrixBase_zero_int.cpp + * Output: \verbinclude MatrixBase_zero_int.out + * + * \sa Zero(), Zero(Index,Index) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Zero(Index size) +{ + return Constant(size, Scalar(0)); +} + +/** \returns an expression of a fixed-size zero matrix or vector. + * + * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you + * need to use the variants taking size arguments. + * + * Example: \include MatrixBase_zero.cpp + * Output: \verbinclude MatrixBase_zero.out + * + * \sa Zero(Index), Zero(Index,Index) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Zero() +{ + return Constant(Scalar(0)); +} + +/** \returns true if *this is approximately equal to the zero matrix, + * within the precision given by \a prec. + * + * Example: \include MatrixBase_isZero.cpp + * Output: \verbinclude MatrixBase_isZero.out + * + * \sa class CwiseNullaryOp, Zero() + */ +template +EIGEN_DEVICE_FUNC bool DenseBase::isZero(const RealScalar& prec) const +{ + typename internal::nested_eval::type self(derived()); + for(Index j = 0; j < cols(); ++j) + for(Index i = 0; i < rows(); ++i) + if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast(1), prec)) + return false; + return true; +} + +/** Sets all coefficients in this expression to zero. + * + * Example: \include MatrixBase_setZero.cpp + * Output: \verbinclude MatrixBase_setZero.out + * + * \sa class CwiseNullaryOp, Zero() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::setZero() +{ + return setConstant(Scalar(0)); +} + +/** Resizes to the given \a size, and sets all coefficients in this expression to zero. + * + * \only_for_vectors + * + * Example: \include Matrix_setZero_int.cpp + * Output: \verbinclude Matrix_setZero_int.out + * + * \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setZero(Index newSize) +{ + resize(newSize); + return setConstant(Scalar(0)); +} + +/** Resizes to the given size, and sets all coefficients in this expression to zero. + * + * \param rows the new number of rows + * \param cols the new number of columns + * + * Example: \include Matrix_setZero_int_int.cpp + * Output: \verbinclude Matrix_setZero_int_int.out + * + * \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setZero(Index rows, Index cols) +{ + resize(rows, cols); + return setConstant(Scalar(0)); +} + +// ones: + +/** \returns an expression of a matrix where all coefficients equal one. + * + * The parameters \a rows and \a cols are the number of rows and of columns of + * the returned matrix. Must be compatible with this MatrixBase type. + * + * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, + * it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used + * instead. + * + * Example: \include MatrixBase_ones_int_int.cpp + * Output: \verbinclude MatrixBase_ones_int_int.out + * + * \sa Ones(), Ones(Index), isOnes(), class Ones + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Ones(Index rows, Index cols) +{ + return Constant(rows, cols, Scalar(1)); +} + +/** \returns an expression of a vector where all coefficients equal one. + * + * The parameter \a newSize is the size of the returned vector. + * Must be compatible with this MatrixBase type. + * + * \only_for_vectors + * + * This variant is meant to be used for dynamic-size vector types. For fixed-size types, + * it is redundant to pass \a size as argument, so Ones() should be used + * instead. + * + * Example: \include MatrixBase_ones_int.cpp + * Output: \verbinclude MatrixBase_ones_int.out + * + * \sa Ones(), Ones(Index,Index), isOnes(), class Ones + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Ones(Index newSize) +{ + return Constant(newSize, Scalar(1)); +} + +/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one. + * + * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you + * need to use the variants taking size arguments. + * + * Example: \include MatrixBase_ones.cpp + * Output: \verbinclude MatrixBase_ones.out + * + * \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType +DenseBase::Ones() +{ + return Constant(Scalar(1)); +} + +/** \returns true if *this is approximately equal to the matrix where all coefficients + * are equal to 1, within the precision given by \a prec. + * + * Example: \include MatrixBase_isOnes.cpp + * Output: \verbinclude MatrixBase_isOnes.out + * + * \sa class CwiseNullaryOp, Ones() + */ +template +EIGEN_DEVICE_FUNC bool DenseBase::isOnes +(const RealScalar& prec) const +{ + return isApproxToConstant(Scalar(1), prec); +} + +/** Sets all coefficients in this expression to one. + * + * Example: \include MatrixBase_setOnes.cpp + * Output: \verbinclude MatrixBase_setOnes.out + * + * \sa class CwiseNullaryOp, Ones() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::setOnes() +{ + return setConstant(Scalar(1)); +} + +/** Resizes to the given \a newSize, and sets all coefficients in this expression to one. + * + * \only_for_vectors + * + * Example: \include Matrix_setOnes_int.cpp + * Output: \verbinclude Matrix_setOnes_int.out + * + * \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setOnes(Index newSize) +{ + resize(newSize); + return setConstant(Scalar(1)); +} + +/** Resizes to the given size, and sets all coefficients in this expression to one. + * + * \param rows the new number of rows + * \param cols the new number of columns + * + * Example: \include Matrix_setOnes_int_int.cpp + * Output: \verbinclude Matrix_setOnes_int_int.out + * + * \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setOnes(Index rows, Index cols) +{ + resize(rows, cols); + return setConstant(Scalar(1)); +} + +// Identity: + +/** \returns an expression of the identity matrix (not necessarily square). + * + * The parameters \a rows and \a cols are the number of rows and of columns of + * the returned matrix. Must be compatible with this MatrixBase type. + * + * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, + * it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used + * instead. + * + * Example: \include MatrixBase_identity_int_int.cpp + * Output: \verbinclude MatrixBase_identity_int_int.out + * + * \sa Identity(), setIdentity(), isIdentity() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType +MatrixBase::Identity(Index rows, Index cols) +{ + return DenseBase::NullaryExpr(rows, cols, internal::scalar_identity_op()); +} + +/** \returns an expression of the identity matrix (not necessarily square). + * + * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you + * need to use the variant taking size arguments. + * + * Example: \include MatrixBase_identity.cpp + * Output: \verbinclude MatrixBase_identity.out + * + * \sa Identity(Index,Index), setIdentity(), isIdentity() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType +MatrixBase::Identity() +{ + EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) + return MatrixBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op()); +} + +/** \returns true if *this is approximately equal to the identity matrix + * (not necessarily square), + * within the precision given by \a prec. + * + * Example: \include MatrixBase_isIdentity.cpp + * Output: \verbinclude MatrixBase_isIdentity.out + * + * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity() + */ +template +bool MatrixBase::isIdentity +(const RealScalar& prec) const +{ + typename internal::nested_eval::type self(derived()); + for(Index j = 0; j < cols(); ++j) + { + for(Index i = 0; i < rows(); ++i) + { + if(i == j) + { + if(!internal::isApprox(self.coeff(i, j), static_cast(1), prec)) + return false; + } + else + { + if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast(1), prec)) + return false; + } + } + } + return true; +} + +namespace internal { + +template=16)> +struct setIdentity_impl +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Derived& run(Derived& m) + { + return m = Derived::Identity(m.rows(), m.cols()); + } +}; + +template +struct setIdentity_impl +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Derived& run(Derived& m) + { + m.setZero(); + const Index size = numext::mini(m.rows(), m.cols()); + for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1); + return m; + } +}; + +} // end namespace internal + +/** Writes the identity expression (not necessarily square) into *this. + * + * Example: \include MatrixBase_setIdentity.cpp + * Output: \verbinclude MatrixBase_setIdentity.out + * + * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity() +{ + return internal::setIdentity_impl::run(derived()); +} + +/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this. + * + * \param rows the new number of rows + * \param cols the new number of columns + * + * Example: \include Matrix_setIdentity_int_int.cpp + * Output: \verbinclude Matrix_setIdentity_int_int.out + * + * \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity(Index rows, Index cols) +{ + derived().resize(rows, cols); + return setIdentity(); +} + +/** \returns an expression of the i-th unit (basis) vector. + * + * \only_for_vectors + * + * \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::Unit(Index newSize, Index i) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i); +} + +/** \returns an expression of the i-th unit (basis) vector. + * + * \only_for_vectors + * + * This variant is for fixed-size vector only. + * + * \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::Unit(Index i) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return BasisReturnType(SquareMatrixType::Identity(),i); +} + +/** \returns an expression of the X axis unit vector (1{,0}^*) + * + * \only_for_vectors + * + * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitX() +{ return Derived::Unit(0); } + +/** \returns an expression of the Y axis unit vector (0,1{,0}^*) + * + * \only_for_vectors + * + * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitY() +{ return Derived::Unit(1); } + +/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*) + * + * \only_for_vectors + * + * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitZ() +{ return Derived::Unit(2); } + +/** \returns an expression of the W axis unit vector (0,0,0,1) + * + * \only_for_vectors + * + * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitW() +{ return Derived::Unit(3); } + +/** \brief Set the coefficients of \c *this to the i-th unit (basis) vector + * + * \param i index of the unique coefficient to be set to 1 + * + * \only_for_vectors + * + * \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::setUnit(Index i) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + eigen_assert(i +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase::setUnit(Index newSize, Index i) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + eigen_assert(i +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2016 Eugene Brevdo +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CWISE_TERNARY_OP_H +#define EIGEN_CWISE_TERNARY_OP_H + +namespace Eigen { + +namespace internal { +template +struct traits > { + // we must not inherit from traits since it has + // the potential to cause problems with MSVC + typedef typename remove_all::type Ancestor; + typedef typename traits::XprKind XprKind; + enum { + RowsAtCompileTime = traits::RowsAtCompileTime, + ColsAtCompileTime = traits::ColsAtCompileTime, + MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = traits::MaxColsAtCompileTime + }; + + // even though we require Arg1, Arg2, and Arg3 to have the same scalar type + // (see CwiseTernaryOp constructor), + // we still want to handle the case when the result type is different. + typedef typename result_of::type Scalar; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + + typedef typename Arg1::Nested Arg1Nested; + typedef typename Arg2::Nested Arg2Nested; + typedef typename Arg3::Nested Arg3Nested; + typedef typename remove_reference::type _Arg1Nested; + typedef typename remove_reference::type _Arg2Nested; + typedef typename remove_reference::type _Arg3Nested; + enum { Flags = _Arg1Nested::Flags & RowMajorBit }; +}; +} // end namespace internal + +template +class CwiseTernaryOpImpl; + +/** \class CwiseTernaryOp + * \ingroup Core_Module + * + * \brief Generic expression where a coefficient-wise ternary operator is + * applied to two expressions + * + * \tparam TernaryOp template functor implementing the operator + * \tparam Arg1Type the type of the first argument + * \tparam Arg2Type the type of the second argument + * \tparam Arg3Type the type of the third argument + * + * This class represents an expression where a coefficient-wise ternary + * operator is applied to three expressions. + * It is the return type of ternary operators, by which we mean only those + * ternary operators where + * all three arguments are Eigen expressions. + * For example, the return type of betainc(matrix1, matrix2, matrix3) is a + * CwiseTernaryOp. + * + * Most of the time, this is the only way that it is used, so you typically + * don't have to name + * CwiseTernaryOp types explicitly. + * + * \sa MatrixBase::ternaryExpr(const MatrixBase &, const + * MatrixBase &, const CustomTernaryOp &) const, class CwiseBinaryOp, + * class CwiseUnaryOp, class CwiseNullaryOp + */ +template +class CwiseTernaryOp : public CwiseTernaryOpImpl< + TernaryOp, Arg1Type, Arg2Type, Arg3Type, + typename internal::traits::StorageKind>, + internal::no_assignment_operator +{ + public: + typedef typename internal::remove_all::type Arg1; + typedef typename internal::remove_all::type Arg2; + typedef typename internal::remove_all::type Arg3; + + typedef typename CwiseTernaryOpImpl< + TernaryOp, Arg1Type, Arg2Type, Arg3Type, + typename internal::traits::StorageKind>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseTernaryOp) + + typedef typename internal::ref_selector::type Arg1Nested; + typedef typename internal::ref_selector::type Arg2Nested; + typedef typename internal::ref_selector::type Arg3Nested; + typedef typename internal::remove_reference::type _Arg1Nested; + typedef typename internal::remove_reference::type _Arg2Nested; + typedef typename internal::remove_reference::type _Arg3Nested; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CwiseTernaryOp(const Arg1& a1, const Arg2& a2, + const Arg3& a3, + const TernaryOp& func = TernaryOp()) + : m_arg1(a1), m_arg2(a2), m_arg3(a3), m_functor(func) { + // require the sizes to match + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg2) + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg3) + + // The index types should match + EIGEN_STATIC_ASSERT((internal::is_same< + typename internal::traits::StorageKind, + typename internal::traits::StorageKind>::value), + STORAGE_KIND_MUST_MATCH) + EIGEN_STATIC_ASSERT((internal::is_same< + typename internal::traits::StorageKind, + typename internal::traits::StorageKind>::value), + STORAGE_KIND_MUST_MATCH) + + eigen_assert(a1.rows() == a2.rows() && a1.cols() == a2.cols() && + a1.rows() == a3.rows() && a1.cols() == a3.cols()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rows() const { + // return the fixed size type if available to enable compile time + // optimizations + if (internal::traits::type>:: + RowsAtCompileTime == Dynamic && + internal::traits::type>:: + RowsAtCompileTime == Dynamic) + return m_arg3.rows(); + else if (internal::traits::type>:: + RowsAtCompileTime == Dynamic && + internal::traits::type>:: + RowsAtCompileTime == Dynamic) + return m_arg2.rows(); + else + return m_arg1.rows(); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index cols() const { + // return the fixed size type if available to enable compile time + // optimizations + if (internal::traits::type>:: + ColsAtCompileTime == Dynamic && + internal::traits::type>:: + ColsAtCompileTime == Dynamic) + return m_arg3.cols(); + else if (internal::traits::type>:: + ColsAtCompileTime == Dynamic && + internal::traits::type>:: + ColsAtCompileTime == Dynamic) + return m_arg2.cols(); + else + return m_arg1.cols(); + } + + /** \returns the first argument nested expression */ + EIGEN_DEVICE_FUNC + const _Arg1Nested& arg1() const { return m_arg1; } + /** \returns the first argument nested expression */ + EIGEN_DEVICE_FUNC + const _Arg2Nested& arg2() const { return m_arg2; } + /** \returns the third argument nested expression */ + EIGEN_DEVICE_FUNC + const _Arg3Nested& arg3() const { return m_arg3; } + /** \returns the functor representing the ternary operation */ + EIGEN_DEVICE_FUNC + const TernaryOp& functor() const { return m_functor; } + + protected: + Arg1Nested m_arg1; + Arg2Nested m_arg2; + Arg3Nested m_arg3; + const TernaryOp m_functor; +}; + +// Generic API dispatcher +template +class CwiseTernaryOpImpl + : public internal::generic_xpr_base< + CwiseTernaryOp >::type { + public: + typedef typename internal::generic_xpr_base< + CwiseTernaryOp >::type Base; +}; + +} // end namespace Eigen + +#endif // EIGEN_CWISE_TERNARY_OP_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseUnaryOp.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseUnaryOp.h new file mode 100644 index 0000000..1d2dd19 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseUnaryOp.h @@ -0,0 +1,103 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CWISE_UNARY_OP_H +#define EIGEN_CWISE_UNARY_OP_H + +namespace Eigen { + +namespace internal { +template +struct traits > + : traits +{ + typedef typename result_of< + UnaryOp(const typename XprType::Scalar&) + >::type Scalar; + typedef typename XprType::Nested XprTypeNested; + typedef typename remove_reference::type _XprTypeNested; + enum { + Flags = _XprTypeNested::Flags & RowMajorBit + }; +}; +} + +template +class CwiseUnaryOpImpl; + +/** \class CwiseUnaryOp + * \ingroup Core_Module + * + * \brief Generic expression where a coefficient-wise unary operator is applied to an expression + * + * \tparam UnaryOp template functor implementing the operator + * \tparam XprType the type of the expression to which we are applying the unary operator + * + * This class represents an expression where a unary operator is applied to an expression. + * It is the return type of all operations taking exactly 1 input expression, regardless of the + * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix + * is considered unary, because only the right-hand side is an expression, and its + * return type is a specialization of CwiseUnaryOp. + * + * Most of the time, this is the only way that it is used, so you typically don't have to name + * CwiseUnaryOp types explicitly. + * + * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp + */ +template +class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator +{ + public: + + typedef typename CwiseUnaryOpImpl::StorageKind>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp) + typedef typename internal::ref_selector::type XprTypeNested; + typedef typename internal::remove_all::type NestedExpression; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) + : m_xpr(xpr), m_functor(func) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index rows() const { return m_xpr.rows(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index cols() const { return m_xpr.cols(); } + + /** \returns the functor representing the unary operation */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const UnaryOp& functor() const { return m_functor; } + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all::type& + nestedExpression() const { return m_xpr; } + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::remove_all::type& + nestedExpression() { return m_xpr; } + + protected: + XprTypeNested m_xpr; + const UnaryOp m_functor; +}; + +// Generic API dispatcher +template +class CwiseUnaryOpImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; +}; + +} // end namespace Eigen + +#endif // EIGEN_CWISE_UNARY_OP_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseUnaryView.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseUnaryView.h new file mode 100644 index 0000000..21cf5ea --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/CwiseUnaryView.h @@ -0,0 +1,128 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CWISE_UNARY_VIEW_H +#define EIGEN_CWISE_UNARY_VIEW_H + +namespace Eigen { + +namespace internal { +template +struct traits > + : traits +{ + typedef typename result_of< + ViewOp(const typename traits::Scalar&) + >::type Scalar; + typedef typename MatrixType::Nested MatrixTypeNested; + typedef typename remove_all::type _MatrixTypeNested; + enum { + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions + MatrixTypeInnerStride = inner_stride_at_compile_time::ret, + // need to cast the sizeof's from size_t to int explicitly, otherwise: + // "error: no integral type can represent all of the enumerator values + InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic + ? int(Dynamic) + : int(MatrixTypeInnerStride) * int(sizeof(typename traits::Scalar) / sizeof(Scalar)), + OuterStrideAtCompileTime = outer_stride_at_compile_time::ret == Dynamic + ? int(Dynamic) + : outer_stride_at_compile_time::ret * int(sizeof(typename traits::Scalar) / sizeof(Scalar)) + }; +}; +} + +template +class CwiseUnaryViewImpl; + +/** \class CwiseUnaryView + * \ingroup Core_Module + * + * \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector + * + * \tparam ViewOp template functor implementing the view + * \tparam MatrixType the type of the matrix we are applying the unary operator + * + * This class represents a lvalue expression of a generic unary view operator of a matrix or a vector. + * It is the return type of real() and imag(), and most of the time this is the only way it is used. + * + * \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp + */ +template +class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> +{ + public: + + typedef typename CwiseUnaryViewImpl::StorageKind>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView) + typedef typename internal::ref_selector::non_const_type MatrixTypeNested; + typedef typename internal::remove_all::type NestedExpression; + + explicit inline CwiseUnaryView(MatrixType& mat, const ViewOp& func = ViewOp()) + : m_matrix(mat), m_functor(func) {} + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView) + + EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); } + EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); } + + /** \returns the functor representing unary operation */ + const ViewOp& functor() const { return m_functor; } + + /** \returns the nested expression */ + const typename internal::remove_all::type& + nestedExpression() const { return m_matrix; } + + /** \returns the nested expression */ + typename internal::remove_reference::type& + nestedExpression() { return m_matrix; } + + protected: + MatrixTypeNested m_matrix; + ViewOp m_functor; +}; + +// Generic API dispatcher +template +class CwiseUnaryViewImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; +}; + +template +class CwiseUnaryViewImpl + : public internal::dense_xpr_base< CwiseUnaryView >::type +{ + public: + + typedef CwiseUnaryView Derived; + typedef typename internal::dense_xpr_base< CwiseUnaryView >::type Base; + + EIGEN_DENSE_PUBLIC_INTERFACE(Derived) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl) + + EIGEN_DEVICE_FUNC inline Scalar* data() { return &(this->coeffRef(0)); } + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return &(this->coeff(0)); } + + EIGEN_DEVICE_FUNC inline Index innerStride() const + { + return derived().nestedExpression().innerStride() * sizeof(typename internal::traits::Scalar) / sizeof(Scalar); + } + + EIGEN_DEVICE_FUNC inline Index outerStride() const + { + return derived().nestedExpression().outerStride() * sizeof(typename internal::traits::Scalar) / sizeof(Scalar); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CWISE_UNARY_VIEW_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseBase.h new file mode 100644 index 0000000..bd4dd69 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseBase.h @@ -0,0 +1,660 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007-2010 Benoit Jacob +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DENSEBASE_H +#define EIGEN_DENSEBASE_H + +namespace Eigen { + +namespace internal { + +// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type. +// This dummy function simply aims at checking that at compile time. +static inline void check_DenseIndex_is_signed() { + EIGEN_STATIC_ASSERT(NumTraits::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); +} + +} // end namespace internal + +/** \class DenseBase + * \ingroup Core_Module + * + * \brief Base class for all dense matrices, vectors, and arrays + * + * This class is the base that is inherited by all dense objects (matrix, vector, arrays, + * and related expression types). The common Eigen API for dense objects is contained in this class. + * + * \tparam Derived is the derived type, e.g., a matrix type or an expression. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN. + * + * \sa \blank \ref TopicClassHierarchy + */ +template class DenseBase +#ifndef EIGEN_PARSED_BY_DOXYGEN + : public DenseCoeffsBase::value> +#else + : public DenseCoeffsBase +#endif // not EIGEN_PARSED_BY_DOXYGEN +{ + public: + + /** Inner iterator type to iterate over the coefficients of a row or column. + * \sa class InnerIterator + */ + typedef Eigen::InnerIterator InnerIterator; + + typedef typename internal::traits::StorageKind StorageKind; + + /** + * \brief The type used to store indices + * \details This typedef is relevant for types that store multiple indices such as + * PermutationMatrix or Transpositions, otherwise it defaults to Eigen::Index + * \sa \blank \ref TopicPreprocessorDirectives, Eigen::Index, SparseMatrixBase. + */ + typedef typename internal::traits::StorageIndex StorageIndex; + + /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex, etc. */ + typedef typename internal::traits::Scalar Scalar; + + /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex, etc. + * + * It is an alias for the Scalar type */ + typedef Scalar value_type; + + typedef typename NumTraits::Real RealScalar; + typedef DenseCoeffsBase::value> Base; + + using Base::derived; + using Base::const_cast_derived; + using Base::rows; + using Base::cols; + using Base::size; + using Base::rowIndexByOuterInner; + using Base::colIndexByOuterInner; + using Base::coeff; + using Base::coeffByOuterInner; + using Base::operator(); + using Base::operator[]; + using Base::x; + using Base::y; + using Base::z; + using Base::w; + using Base::stride; + using Base::innerStride; + using Base::outerStride; + using Base::rowStride; + using Base::colStride; + typedef typename Base::CoeffReturnType CoeffReturnType; + + enum { + + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + /**< The number of rows at compile-time. This is just a copy of the value provided + * by the \a Derived type. If a value is not known at compile-time, + * it is set to the \a Dynamic constant. + * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ + + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + /**< The number of columns at compile-time. This is just a copy of the value provided + * by the \a Derived type. If a value is not known at compile-time, + * it is set to the \a Dynamic constant. + * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ + + + SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, + internal::traits::ColsAtCompileTime>::ret), + /**< This is equal to the number of coefficients, i.e. the number of + * rows times the number of columns, or to \a Dynamic if this is not + * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ + + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + /**< This value is equal to the maximum possible number of rows that this expression + * might have. If this expression might have an arbitrarily high number of rows, + * this value is set to \a Dynamic. + * + * This value is useful to know when evaluating an expression, in order to determine + * whether it is possible to avoid doing a dynamic memory allocation. + * + * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime + */ + + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, + /**< This value is equal to the maximum possible number of columns that this expression + * might have. If this expression might have an arbitrarily high number of columns, + * this value is set to \a Dynamic. + * + * This value is useful to know when evaluating an expression, in order to determine + * whether it is possible to avoid doing a dynamic memory allocation. + * + * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime + */ + + MaxSizeAtCompileTime = (internal::size_at_compile_time::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime>::ret), + /**< This value is equal to the maximum possible number of coefficients that this expression + * might have. If this expression might have an arbitrarily high number of coefficients, + * this value is set to \a Dynamic. + * + * This value is useful to know when evaluating an expression, in order to determine + * whether it is possible to avoid doing a dynamic memory allocation. + * + * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime + */ + + IsVectorAtCompileTime = internal::traits::RowsAtCompileTime == 1 + || internal::traits::ColsAtCompileTime == 1, + /**< This is set to true if either the number of rows or the number of + * columns is known at compile-time to be equal to 1. Indeed, in that case, + * we are dealing with a column-vector (if there is only one column) or with + * a row-vector (if there is only one row). */ + + NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2, + /**< This value is equal to Tensor::NumDimensions, i.e. 0 for scalars, 1 for vectors, + * and 2 for matrices. + */ + + Flags = internal::traits::Flags, + /**< This stores expression \ref flags flags which may or may not be inherited by new expressions + * constructed from this one. See the \ref flags "list of flags". + */ + + IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */ + + InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) + : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + + InnerStrideAtCompileTime = internal::inner_stride_at_compile_time::ret, + OuterStrideAtCompileTime = internal::outer_stride_at_compile_time::ret + }; + + typedef typename internal::find_best_packet::type PacketScalar; + + enum { IsPlainObjectBase = 0 }; + + /** The plain matrix type corresponding to this expression. + * \sa PlainObject */ + typedef Matrix::Scalar, + internal::traits::RowsAtCompileTime, + internal::traits::ColsAtCompileTime, + AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), + internal::traits::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime + > PlainMatrix; + + /** The plain array type corresponding to this expression. + * \sa PlainObject */ + typedef Array::Scalar, + internal::traits::RowsAtCompileTime, + internal::traits::ColsAtCompileTime, + AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), + internal::traits::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime + > PlainArray; + + /** \brief The plain matrix or array type corresponding to this expression. + * + * This is not necessarily exactly the return type of eval(). In the case of plain matrices, + * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed + * that the return type of eval() is either PlainObject or const PlainObject&. + */ + typedef typename internal::conditional::XprKind,MatrixXpr >::value, + PlainMatrix, PlainArray>::type PlainObject; + + /** \returns the number of nonzero coefficients which is in practice the number + * of stored coefficients. */ + EIGEN_DEVICE_FUNC + inline Index nonZeros() const { return size(); } + + /** \returns the outer size. + * + * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension + * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a + * column-major matrix, and the number of rows for a row-major matrix. */ + EIGEN_DEVICE_FUNC + Index outerSize() const + { + return IsVectorAtCompileTime ? 1 + : int(IsRowMajor) ? this->rows() : this->cols(); + } + + /** \returns the inner size. + * + * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension + * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a + * column-major matrix, and the number of columns for a row-major matrix. */ + EIGEN_DEVICE_FUNC + Index innerSize() const + { + return IsVectorAtCompileTime ? this->size() + : int(IsRowMajor) ? this->cols() : this->rows(); + } + + /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are + * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does + * nothing else. + */ + EIGEN_DEVICE_FUNC + void resize(Index newSize) + { + EIGEN_ONLY_USED_FOR_DEBUG(newSize); + eigen_assert(newSize == this->size() + && "DenseBase::resize() does not actually allow to resize."); + } + /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are + * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does + * nothing else. + */ + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) + { + EIGEN_ONLY_USED_FOR_DEBUG(rows); + EIGEN_ONLY_USED_FOR_DEBUG(cols); + eigen_assert(rows == this->rows() && cols == this->cols() + && "DenseBase::resize() does not actually allow to resize."); + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal Represents a matrix with all coefficients equal to one another*/ + typedef CwiseNullaryOp,PlainObject> ConstantReturnType; + /** \internal \deprecated Represents a vector with linearly spaced coefficients that allows sequential access only. */ + EIGEN_DEPRECATED typedef CwiseNullaryOp,PlainObject> SequentialLinSpacedReturnType; + /** \internal Represents a vector with linearly spaced coefficients that allows random access. */ + typedef CwiseNullaryOp,PlainObject> RandomAccessLinSpacedReturnType; + /** \internal the return type of MatrixBase::eigenvalues() */ + typedef Matrix::Scalar>::Real, internal::traits::ColsAtCompileTime, 1> EigenvaluesReturnType; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + + /** Copies \a other into *this. \returns a reference to *this. */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const DenseBase& other); + + /** Special case of the template operator=, in order to prevent the compiler + * from generating a default operator= (issue hit with g++ 4.1) + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const DenseBase& other); + + template + EIGEN_DEVICE_FUNC + Derived& operator=(const EigenBase &other); + + template + EIGEN_DEVICE_FUNC + Derived& operator+=(const EigenBase &other); + + template + EIGEN_DEVICE_FUNC + Derived& operator-=(const EigenBase &other); + + template + EIGEN_DEVICE_FUNC + Derived& operator=(const ReturnByValue& func); + + /** \internal + * Copies \a other into *this without evaluating other. \returns a reference to *this. */ + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + Derived& lazyAssign(const DenseBase& other); + + EIGEN_DEVICE_FUNC + CommaInitializer operator<< (const Scalar& s); + + template + /** \deprecated it now returns \c *this */ + EIGEN_DEPRECATED + const Derived& flagged() const + { return derived(); } + + template + EIGEN_DEVICE_FUNC + CommaInitializer operator<< (const DenseBase& other); + + typedef Transpose TransposeReturnType; + EIGEN_DEVICE_FUNC + TransposeReturnType transpose(); + typedef typename internal::add_const >::type ConstTransposeReturnType; + EIGEN_DEVICE_FUNC + ConstTransposeReturnType transpose() const; + EIGEN_DEVICE_FUNC + void transposeInPlace(); + + EIGEN_DEVICE_FUNC static const ConstantReturnType + Constant(Index rows, Index cols, const Scalar& value); + EIGEN_DEVICE_FUNC static const ConstantReturnType + Constant(Index size, const Scalar& value); + EIGEN_DEVICE_FUNC static const ConstantReturnType + Constant(const Scalar& value); + + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType + LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high); + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType + LinSpaced(Sequential_t, const Scalar& low, const Scalar& high); + + EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType + LinSpaced(Index size, const Scalar& low, const Scalar& high); + EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType + LinSpaced(const Scalar& low, const Scalar& high); + + template EIGEN_DEVICE_FUNC + static const CwiseNullaryOp + NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func); + template EIGEN_DEVICE_FUNC + static const CwiseNullaryOp + NullaryExpr(Index size, const CustomNullaryOp& func); + template EIGEN_DEVICE_FUNC + static const CwiseNullaryOp + NullaryExpr(const CustomNullaryOp& func); + + EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index rows, Index cols); + EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index size); + EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(); + EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index rows, Index cols); + EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index size); + EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(); + + EIGEN_DEVICE_FUNC void fill(const Scalar& value); + EIGEN_DEVICE_FUNC Derived& setConstant(const Scalar& value); + EIGEN_DEVICE_FUNC Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high); + EIGEN_DEVICE_FUNC Derived& setLinSpaced(const Scalar& low, const Scalar& high); + EIGEN_DEVICE_FUNC Derived& setZero(); + EIGEN_DEVICE_FUNC Derived& setOnes(); + EIGEN_DEVICE_FUNC Derived& setRandom(); + + template EIGEN_DEVICE_FUNC + bool isApprox(const DenseBase& other, + const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC + bool isMuchSmallerThan(const RealScalar& other, + const RealScalar& prec = NumTraits::dummy_precision()) const; + template EIGEN_DEVICE_FUNC + bool isMuchSmallerThan(const DenseBase& other, + const RealScalar& prec = NumTraits::dummy_precision()) const; + + EIGEN_DEVICE_FUNC bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isZero(const RealScalar& prec = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC bool isOnes(const RealScalar& prec = NumTraits::dummy_precision()) const; + + inline bool hasNaN() const; + inline bool allFinite() const; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator*=(const Scalar& other); + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator/=(const Scalar& other); + + typedef typename internal::add_const_on_value_type::type>::type EvalReturnType; + /** \returns the matrix or vector obtained by evaluating this expression. + * + * Notice that in the case of a plain matrix or vector (not an expression) this function just returns + * a const reference, in order to avoid a useless copy. + * + * \warning Be careful with eval() and the auto C++ keyword, as detailed in this \link TopicPitfalls_auto_keyword page \endlink. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE EvalReturnType eval() const + { + // Even though MSVC does not honor strong inlining when the return type + // is a dynamic matrix, we desperately need strong inlining for fixed + // size types on MSVC. + return typename internal::eval::type(derived()); + } + + /** swaps *this with the expression \a other. + * + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void swap(const DenseBase& other) + { + EIGEN_STATIC_ASSERT(!OtherDerived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + eigen_assert(rows()==other.rows() && cols()==other.cols()); + call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); + } + + /** swaps *this with the matrix or array \a other. + * + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void swap(PlainObjectBase& other) + { + eigen_assert(rows()==other.rows() && cols()==other.cols()); + call_assignment(derived(), other.derived(), internal::swap_assign_op()); + } + + EIGEN_DEVICE_FUNC inline const NestByValue nestByValue() const; + EIGEN_DEVICE_FUNC inline const ForceAlignedAccess forceAlignedAccess() const; + EIGEN_DEVICE_FUNC inline ForceAlignedAccess forceAlignedAccess(); + template EIGEN_DEVICE_FUNC + inline const typename internal::conditional,Derived&>::type forceAlignedAccessIf() const; + template EIGEN_DEVICE_FUNC + inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); + + EIGEN_DEVICE_FUNC Scalar sum() const; + EIGEN_DEVICE_FUNC Scalar mean() const; + EIGEN_DEVICE_FUNC Scalar trace() const; + + EIGEN_DEVICE_FUNC Scalar prod() const; + + EIGEN_DEVICE_FUNC typename internal::traits::Scalar minCoeff() const; + EIGEN_DEVICE_FUNC typename internal::traits::Scalar maxCoeff() const; + + template EIGEN_DEVICE_FUNC + typename internal::traits::Scalar minCoeff(IndexType* row, IndexType* col) const; + template EIGEN_DEVICE_FUNC + typename internal::traits::Scalar maxCoeff(IndexType* row, IndexType* col) const; + template EIGEN_DEVICE_FUNC + typename internal::traits::Scalar minCoeff(IndexType* index) const; + template EIGEN_DEVICE_FUNC + typename internal::traits::Scalar maxCoeff(IndexType* index) const; + + template + EIGEN_DEVICE_FUNC + Scalar redux(const BinaryOp& func) const; + + template + EIGEN_DEVICE_FUNC + void visit(Visitor& func) const; + + /** \returns a WithFormat proxy object allowing to print a matrix the with given + * format \a fmt. + * + * See class IOFormat for some examples. + * + * \sa class IOFormat, class WithFormat + */ + inline const WithFormat format(const IOFormat& fmt) const + { + return WithFormat(derived(), fmt); + } + + /** \returns the unique coefficient of a 1x1 expression */ + EIGEN_DEVICE_FUNC + CoeffReturnType value() const + { + EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) + eigen_assert(this->rows() == 1 && this->cols() == 1); + return derived().coeff(0,0); + } + + EIGEN_DEVICE_FUNC bool all() const; + EIGEN_DEVICE_FUNC bool any() const; + EIGEN_DEVICE_FUNC Index count() const; + + typedef VectorwiseOp RowwiseReturnType; + typedef const VectorwiseOp ConstRowwiseReturnType; + typedef VectorwiseOp ColwiseReturnType; + typedef const VectorwiseOp ConstColwiseReturnType; + + /** \returns a VectorwiseOp wrapper of *this for broadcasting and partial reductions + * + * Example: \include MatrixBase_rowwise.cpp + * Output: \verbinclude MatrixBase_rowwise.out + * + * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting + */ + //Code moved here due to a CUDA compiler bug + EIGEN_DEVICE_FUNC inline ConstRowwiseReturnType rowwise() const { + return ConstRowwiseReturnType(derived()); + } + EIGEN_DEVICE_FUNC RowwiseReturnType rowwise(); + + /** \returns a VectorwiseOp wrapper of *this broadcasting and partial reductions + * + * Example: \include MatrixBase_colwise.cpp + * Output: \verbinclude MatrixBase_colwise.out + * + * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting + */ + EIGEN_DEVICE_FUNC inline ConstColwiseReturnType colwise() const { + return ConstColwiseReturnType(derived()); + } + EIGEN_DEVICE_FUNC ColwiseReturnType colwise(); + + typedef CwiseNullaryOp,PlainObject> RandomReturnType; + static const RandomReturnType Random(Index rows, Index cols); + static const RandomReturnType Random(Index size); + static const RandomReturnType Random(); + + template + const Select + select(const DenseBase& thenMatrix, + const DenseBase& elseMatrix) const; + + template + inline const Select + select(const DenseBase& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const; + + template + inline const Select + select(const typename ElseDerived::Scalar& thenScalar, const DenseBase& elseMatrix) const; + + template RealScalar lpNorm() const; + + template + EIGEN_DEVICE_FUNC + const Replicate replicate() const; + /** + * \return an expression of the replication of \c *this + * + * Example: \include MatrixBase_replicate_int_int.cpp + * Output: \verbinclude MatrixBase_replicate_int_int.out + * + * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate + */ + //Code moved here due to a CUDA compiler bug + EIGEN_DEVICE_FUNC + const Replicate replicate(Index rowFactor, Index colFactor) const + { + return Replicate(derived(), rowFactor, colFactor); + } + + typedef Reverse ReverseReturnType; + typedef const Reverse ConstReverseReturnType; + EIGEN_DEVICE_FUNC ReverseReturnType reverse(); + /** This is the const version of reverse(). */ + //Code moved here due to a CUDA compiler bug + EIGEN_DEVICE_FUNC ConstReverseReturnType reverse() const + { + return ConstReverseReturnType(derived()); + } + EIGEN_DEVICE_FUNC void reverseInPlace(); + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** STL-like RandomAccessIterator + * iterator type as returned by the begin() and end() methods. + */ + typedef random_access_iterator_type iterator; + /** This is the const version of iterator (aka read-only) */ + typedef random_access_iterator_type const_iterator; + #else + typedef typename internal::conditional< (Flags&DirectAccessBit)==DirectAccessBit, + internal::pointer_based_stl_iterator, + internal::generic_randaccess_stl_iterator + >::type iterator_type; + + typedef typename internal::conditional< (Flags&DirectAccessBit)==DirectAccessBit, + internal::pointer_based_stl_iterator, + internal::generic_randaccess_stl_iterator + >::type const_iterator_type; + + // Stl-style iterators are supported only for vectors. + + typedef typename internal::conditional< IsVectorAtCompileTime, + iterator_type, + void + >::type iterator; + + typedef typename internal::conditional< IsVectorAtCompileTime, + const_iterator_type, + void + >::type const_iterator; + #endif + + inline iterator begin(); + inline const_iterator begin() const; + inline const_iterator cbegin() const; + inline iterator end(); + inline const_iterator end() const; + inline const_iterator cend() const; + +#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase +#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) +#define EIGEN_DOC_UNARY_ADDONS(X,Y) +# include "../plugins/CommonCwiseUnaryOps.h" +# include "../plugins/BlockMethods.h" +# include "../plugins/IndexedViewMethods.h" +# include "../plugins/ReshapedMethods.h" +# ifdef EIGEN_DENSEBASE_PLUGIN +# include EIGEN_DENSEBASE_PLUGIN +# endif +#undef EIGEN_CURRENT_STORAGE_BASE_CLASS +#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF +#undef EIGEN_DOC_UNARY_ADDONS + + // disable the use of evalTo for dense objects with a nice compilation error + template + EIGEN_DEVICE_FUNC + inline void evalTo(Dest& ) const + { + EIGEN_STATIC_ASSERT((internal::is_same::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS); + } + + protected: + /** Default constructor. Do nothing. */ + EIGEN_DEVICE_FUNC DenseBase() + { + /* Just checks for self-consistency of the flags. + * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down + */ +#ifdef EIGEN_INTERNAL_DEBUGGING + EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor)) + && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))), + INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION) +#endif + } + + private: + EIGEN_DEVICE_FUNC explicit DenseBase(int); + EIGEN_DEVICE_FUNC DenseBase(int,int); + template EIGEN_DEVICE_FUNC explicit DenseBase(const DenseBase&); +}; + +} // end namespace Eigen + +#endif // EIGEN_DENSEBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseCoeffsBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseCoeffsBase.h new file mode 100644 index 0000000..463b471 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseCoeffsBase.h @@ -0,0 +1,685 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DENSECOEFFSBASE_H +#define EIGEN_DENSECOEFFSBASE_H + +namespace Eigen { + +namespace internal { +template struct add_const_on_value_type_if_arithmetic +{ + typedef typename conditional::value, T, typename add_const_on_value_type::type>::type type; +}; +} + +/** \brief Base class providing read-only coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #ReadOnlyAccessors Constant indicating read-only access + * + * This class defines the \c operator() \c const function and friends, which can be used to read specific + * entries of a matrix or array. + * + * \sa DenseCoeffsBase, DenseCoeffsBase, + * \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase : public EigenBase +{ + public: + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + + // Explanation for this CoeffReturnType typedef. + // - This is the return type of the coeff() method. + // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references + // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value). + // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems + // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is + // not possible, since the underlying expressions might not offer a valid address the reference could be referring to. + typedef typename internal::conditional::Flags&LvalueBit), + const Scalar&, + typename internal::conditional::value, Scalar, const Scalar>::type + >::type CoeffReturnType; + + typedef typename internal::add_const_on_value_type_if_arithmetic< + typename internal::packet_traits::type + >::type PacketReturnType; + + typedef EigenBase Base; + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const + { + return int(Derived::RowsAtCompileTime) == 1 ? 0 + : int(Derived::ColsAtCompileTime) == 1 ? inner + : int(Derived::Flags)&RowMajorBit ? outer + : inner; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const + { + return int(Derived::ColsAtCompileTime) == 1 ? 0 + : int(Derived::RowsAtCompileTime) == 1 ? inner + : int(Derived::Flags)&RowMajorBit ? inner + : outer; + } + + /** Short version: don't use this function, use + * \link operator()(Index,Index) const \endlink instead. + * + * Long version: this function is similar to + * \link operator()(Index,Index) const \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameters \a row and \a col are in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator()(Index,Index) const \endlink. + * + * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const + { + eigen_internal_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return internal::evaluator(derived()).coeff(row,col); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const + { + return coeff(rowIndexByOuterInner(outer, inner), + colIndexByOuterInner(outer, inner)); + } + + /** \returns the coefficient at given the given row and column. + * + * \sa operator()(Index,Index), operator[](Index) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const + { + eigen_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return coeff(row, col); + } + + /** Short version: don't use this function, use + * \link operator[](Index) const \endlink instead. + * + * Long version: this function is similar to + * \link operator[](Index) const \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameter \a index is in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator[](Index) const \endlink. + * + * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + coeff(Index index) const + { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + eigen_internal_assert(index >= 0 && index < size()); + return internal::evaluator(derived()).coeff(index); + } + + + /** \returns the coefficient at given index. + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, + * z() const, w() const + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + operator[](Index index) const + { + EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, + THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) + eigen_assert(index >= 0 && index < size()); + return coeff(index); + } + + /** \returns the coefficient at given index. + * + * This is synonymous to operator[](Index) const. + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, + * z() const, w() const + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + operator()(Index index) const + { + eigen_assert(index >= 0 && index < size()); + return coeff(index); + } + + /** equivalent to operator[](0). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + x() const { return (*this)[0]; } + + /** equivalent to operator[](1). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + y() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); + return (*this)[1]; + } + + /** equivalent to operator[](2). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + z() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); + return (*this)[2]; + } + + /** equivalent to operator[](3). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + w() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); + return (*this)[3]; + } + + /** \internal + * \returns the packet of coefficients starting at the given row and column. It is your responsibility + * to ensure that a packet really starts there. This method is only available on expressions having the + * PacketAccessBit. + * + * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select + * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets + * starting at an address which is a multiple of the packet size. + */ + + template + EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const + { + typedef typename internal::packet_traits::type DefaultPacketType; + eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); + return internal::evaluator(derived()).template packet(row,col); + } + + + /** \internal */ + template + EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const + { + return packet(rowIndexByOuterInner(outer, inner), + colIndexByOuterInner(outer, inner)); + } + + /** \internal + * \returns the packet of coefficients starting at the given index. It is your responsibility + * to ensure that a packet really starts there. This method is only available on expressions having the + * PacketAccessBit and the LinearAccessBit. + * + * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select + * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets + * starting at an address which is a multiple of the packet size. + */ + + template + EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + typedef typename internal::packet_traits::type DefaultPacketType; + eigen_internal_assert(index >= 0 && index < size()); + return internal::evaluator(derived()).template packet(index); + } + + protected: + // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase. + // But some methods are only available in the DirectAccess case. + // So we add dummy methods here with these names, so that "using... " doesn't fail. + // It's not private so that the child class DenseBase can access them, and it's not public + // either since it's an implementation detail, so has to be protected. + void coeffRef(); + void coeffRefByOuterInner(); + void writePacket(); + void writePacketByOuterInner(); + void copyCoeff(); + void copyCoeffByOuterInner(); + void copyPacket(); + void copyPacketByOuterInner(); + void stride(); + void innerStride(); + void outerStride(); + void rowStride(); + void colStride(); +}; + +/** \brief Base class providing read/write coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #WriteAccessors Constant indicating read/write access + * + * This class defines the non-const \c operator() function and friends, which can be used to write specific + * entries of a matrix or array. This class inherits DenseCoeffsBase which + * defines the const variant for reading specific entries. + * + * \sa DenseCoeffsBase, \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase : public DenseCoeffsBase +{ + public: + + typedef DenseCoeffsBase Base; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + typedef typename NumTraits::Real RealScalar; + + using Base::coeff; + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + using Base::rowIndexByOuterInner; + using Base::colIndexByOuterInner; + using Base::operator[]; + using Base::operator(); + using Base::x; + using Base::y; + using Base::z; + using Base::w; + + /** Short version: don't use this function, use + * \link operator()(Index,Index) \endlink instead. + * + * Long version: this function is similar to + * \link operator()(Index,Index) \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameters \a row and \a col are in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator()(Index,Index) \endlink. + * + * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) + { + eigen_internal_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return internal::evaluator(derived()).coeffRef(row,col); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + coeffRefByOuterInner(Index outer, Index inner) + { + return coeffRef(rowIndexByOuterInner(outer, inner), + colIndexByOuterInner(outer, inner)); + } + + /** \returns a reference to the coefficient at given the given row and column. + * + * \sa operator[](Index) + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + operator()(Index row, Index col) + { + eigen_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return coeffRef(row, col); + } + + + /** Short version: don't use this function, use + * \link operator[](Index) \endlink instead. + * + * Long version: this function is similar to + * \link operator[](Index) \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameters \a row and \a col are in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator[](Index) \endlink. + * + * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index) + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + coeffRef(Index index) + { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + eigen_internal_assert(index >= 0 && index < size()); + return internal::evaluator(derived()).coeffRef(index); + } + + /** \returns a reference to the coefficient at given index. + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + operator[](Index index) + { + EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, + THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) + eigen_assert(index >= 0 && index < size()); + return coeffRef(index); + } + + /** \returns a reference to the coefficient at given index. + * + * This is synonymous to operator[](Index). + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + operator()(Index index) + { + eigen_assert(index >= 0 && index < size()); + return coeffRef(index); + } + + /** equivalent to operator[](0). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + x() { return (*this)[0]; } + + /** equivalent to operator[](1). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + y() + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); + return (*this)[1]; + } + + /** equivalent to operator[](2). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + z() + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); + return (*this)[2]; + } + + /** equivalent to operator[](3). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + w() + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); + return (*this)[3]; + } +}; + +/** \brief Base class providing direct read-only coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #DirectAccessors Constant indicating direct access + * + * This class defines functions to work with strides which can be used to access entries directly. This class + * inherits DenseCoeffsBase which defines functions to access entries read-only using + * \c operator() . + * + * \sa \blank \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase : public DenseCoeffsBase +{ + public: + + typedef DenseCoeffsBase Base; + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + + /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. + * + * \sa outerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC + inline Index innerStride() const + { + return derived().innerStride(); + } + + /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns + * in a column-major matrix). + * + * \sa innerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC + inline Index outerStride() const + { + return derived().outerStride(); + } + + // FIXME shall we remove it ? + inline Index stride() const + { + return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); + } + + /** \returns the pointer increment between two consecutive rows. + * + * \sa innerStride(), outerStride(), colStride() + */ + EIGEN_DEVICE_FUNC + inline Index rowStride() const + { + return Derived::IsRowMajor ? outerStride() : innerStride(); + } + + /** \returns the pointer increment between two consecutive columns. + * + * \sa innerStride(), outerStride(), rowStride() + */ + EIGEN_DEVICE_FUNC + inline Index colStride() const + { + return Derived::IsRowMajor ? innerStride() : outerStride(); + } +}; + +/** \brief Base class providing direct read/write coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #DirectWriteAccessors Constant indicating direct access + * + * This class defines functions to work with strides which can be used to access entries directly. This class + * inherits DenseCoeffsBase which defines functions to access entries read/write using + * \c operator(). + * + * \sa \blank \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase + : public DenseCoeffsBase +{ + public: + + typedef DenseCoeffsBase Base; + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + + /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. + * + * \sa outerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC + inline Index innerStride() const + { + return derived().innerStride(); + } + + /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns + * in a column-major matrix). + * + * \sa innerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC + inline Index outerStride() const + { + return derived().outerStride(); + } + + // FIXME shall we remove it ? + inline Index stride() const + { + return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); + } + + /** \returns the pointer increment between two consecutive rows. + * + * \sa innerStride(), outerStride(), colStride() + */ + EIGEN_DEVICE_FUNC + inline Index rowStride() const + { + return Derived::IsRowMajor ? outerStride() : innerStride(); + } + + /** \returns the pointer increment between two consecutive columns. + * + * \sa innerStride(), outerStride(), rowStride() + */ + EIGEN_DEVICE_FUNC + inline Index colStride() const + { + return Derived::IsRowMajor ? innerStride() : outerStride(); + } +}; + +namespace internal { + +template +struct first_aligned_impl +{ + static inline Index run(const Derived&) + { return 0; } +}; + +template +struct first_aligned_impl +{ + static inline Index run(const Derived& m) + { + return internal::first_aligned(m.data(), m.size()); + } +}; + +/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization. + * + * \tparam Alignment requested alignment in Bytes. + * + * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more + * documentation. + */ +template +static inline Index first_aligned(const DenseBase& m) +{ + enum { ReturnZero = (int(evaluator::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) }; + return first_aligned_impl::run(m.derived()); +} + +template +static inline Index first_default_aligned(const DenseBase& m) +{ + typedef typename Derived::Scalar Scalar; + typedef typename packet_traits::type DefaultPacketType; + return internal::first_aligned::alignment),Derived>(m); +} + +template::ret> +struct inner_stride_at_compile_time +{ + enum { ret = traits::InnerStrideAtCompileTime }; +}; + +template +struct inner_stride_at_compile_time +{ + enum { ret = 0 }; +}; + +template::ret> +struct outer_stride_at_compile_time +{ + enum { ret = traits::OuterStrideAtCompileTime }; +}; + +template +struct outer_stride_at_compile_time +{ + enum { ret = 0 }; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_DENSECOEFFSBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseStorage.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseStorage.h new file mode 100644 index 0000000..a8bb8a6 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DenseStorage.h @@ -0,0 +1,590 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2009 Benoit Jacob +// Copyright (C) 2010-2013 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIXSTORAGE_H +#define EIGEN_MATRIXSTORAGE_H + +#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X) X; EIGEN_DENSE_STORAGE_CTOR_PLUGIN; +#else + #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X) +#endif + +namespace Eigen { + +namespace internal { + +struct constructor_without_unaligned_array_assert {}; + +template +EIGEN_DEVICE_FUNC +void check_static_allocation_size() +{ + // if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit + #if EIGEN_STACK_ALLOCATION_LIMIT + EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG); + #endif +} + +/** \internal + * Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned: + * to 16 bytes boundary if the total size is a multiple of 16 bytes. + */ +template ::value > +struct plain_array +{ + T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + +#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT) + #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) +#elif EIGEN_GNUC_AT_LEAST(4,7) + // GCC 4.7 is too aggressive in its optimizations and remove the alignment test based on the fact the array is declared to be aligned. + // See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900 + // Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined: + template + EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; } + #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ + eigen_assert((internal::UIntPtr(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0 \ + && "this assertion is explained here: " \ + "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ + " **** READ THIS WEB PAGE !!! ****"); +#else + #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ + eigen_assert((internal::UIntPtr(array) & (sizemask)) == 0 \ + && "this assertion is explained here: " \ + "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ + " **** READ THIS WEB PAGE !!! ****"); +#endif + +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + +template +struct plain_array +{ + EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size]; + + EIGEN_DEVICE_FUNC + plain_array() + { + EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63); + check_static_allocation_size(); + } + + EIGEN_DEVICE_FUNC + plain_array(constructor_without_unaligned_array_assert) + { + check_static_allocation_size(); + } +}; + +template +struct plain_array +{ + T array[1]; + EIGEN_DEVICE_FUNC plain_array() {} + EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {} +}; + +} // end namespace internal + +/** \internal + * + * \class DenseStorage + * \ingroup Core_Module + * + * \brief Stores the data of a matrix + * + * This class stores the data of fixed-size, dynamic-size or mixed matrices + * in a way as compact as possible. + * + * \sa Matrix + */ +template class DenseStorage; + +// purely fixed-size matrix +template class DenseStorage +{ + internal::plain_array m_data; + public: + EIGEN_DEVICE_FUNC DenseStorage() { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size) + } + EIGEN_DEVICE_FUNC + explicit DenseStorage(internal::constructor_without_unaligned_array_assert) + : m_data(internal::constructor_without_unaligned_array_assert()) {} + EIGEN_DEVICE_FUNC + DenseStorage(const DenseStorage& other) : m_data(other.m_data) { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size) + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) m_data = other.m_data; + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols); + EIGEN_UNUSED_VARIABLE(size); + EIGEN_UNUSED_VARIABLE(rows); + EIGEN_UNUSED_VARIABLE(cols); + } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { + numext::swap(m_data, other.m_data); + } + EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} + EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } +}; + +// null matrix +template class DenseStorage +{ + public: + EIGEN_DEVICE_FUNC DenseStorage() {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {} + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; } + EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {} + EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} + EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {} + EIGEN_DEVICE_FUNC const T *data() const { return 0; } + EIGEN_DEVICE_FUNC T *data() { return 0; } +}; + +// more specializations for null matrices; these are necessary to resolve ambiguities +template class DenseStorage +: public DenseStorage { }; + +template class DenseStorage +: public DenseStorage { }; + +template class DenseStorage +: public DenseStorage { }; + +// dynamic-size matrix with fixed-size storage +template class DenseStorage +{ + internal::plain_array m_data; + Index m_rows; + Index m_cols; + public: + EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) + : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {} + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + m_data = other.m_data; + m_rows = other.m_rows; + m_cols = other.m_cols; + } + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) + { + numext::swap(m_data,other.m_data); + numext::swap(m_rows,other.m_rows); + numext::swap(m_cols,other.m_cols); + } + EIGEN_DEVICE_FUNC Index rows() const {return m_rows;} + EIGEN_DEVICE_FUNC Index cols() const {return m_cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; } + EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; } + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } +}; + +// dynamic-size matrix with fixed-size storage and fixed width +template class DenseStorage +{ + internal::plain_array m_data; + Index m_rows; + public: + EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) + : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {} + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + m_data = other.m_data; + m_rows = other.m_rows; + } + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) + { + numext::swap(m_data,other.m_data); + numext::swap(m_rows,other.m_rows); + } + EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return _Cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; } + EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; } + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } +}; + +// dynamic-size matrix with fixed-size storage and fixed height +template class DenseStorage +{ + internal::plain_array m_data; + Index m_cols; + public: + EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) + : m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {} + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {} + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + m_data = other.m_data; + m_cols = other.m_cols; + } + return *this; + } + EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {} + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { + numext::swap(m_data,other.m_data); + numext::swap(m_cols,other.m_cols); + } + EIGEN_DEVICE_FUNC Index rows(void) const {return _Rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index, Index, Index cols) { m_cols = cols; } + EIGEN_DEVICE_FUNC void resize(Index, Index, Index cols) { m_cols = cols; } + EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } + EIGEN_DEVICE_FUNC T *data() { return m_data.array; } +}; + +// purely dynamic matrix. +template class DenseStorage +{ + T *m_data; + Index m_rows; + Index m_cols; + public: + EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {} + EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) + : m_data(0), m_rows(0), m_cols(0) {} + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) + : m_data(internal::conditional_aligned_new_auto(size)), m_rows(rows), m_cols(cols) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0); + } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) + : m_data(internal::conditional_aligned_new_auto(other.m_rows*other.m_cols)) + , m_rows(other.m_rows) + , m_cols(other.m_cols) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*m_cols) + internal::smart_copy(other.m_data, other.m_data+other.m_rows*other.m_cols, m_data); + } + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + DenseStorage tmp(other); + this->swap(tmp); + } + return *this; + } +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT + : m_data(std::move(other.m_data)) + , m_rows(std::move(other.m_rows)) + , m_cols(std::move(other.m_cols)) + { + other.m_data = nullptr; + other.m_rows = 0; + other.m_cols = 0; + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT + { + numext::swap(m_data, other.m_data); + numext::swap(m_rows, other.m_rows); + numext::swap(m_cols, other.m_cols); + return *this; + } +#endif + EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, m_rows*m_cols); } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) + { + numext::swap(m_data,other.m_data); + numext::swap(m_rows,other.m_rows); + numext::swap(m_cols,other.m_cols); + } + EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} + void conservativeResize(Index size, Index rows, Index cols) + { + m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, m_rows*m_cols); + m_rows = rows; + m_cols = cols; + } + EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols) + { + if(size != m_rows*m_cols) + { + internal::conditional_aligned_delete_auto(m_data, m_rows*m_cols); + if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative + m_data = internal::conditional_aligned_new_auto(size); + else + m_data = 0; + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + } + m_rows = rows; + m_cols = cols; + } + EIGEN_DEVICE_FUNC const T *data() const { return m_data; } + EIGEN_DEVICE_FUNC T *data() { return m_data; } +}; + +// matrix with dynamic width and fixed height (so that matrix has dynamic size). +template class DenseStorage +{ + T *m_data; + Index m_cols; + public: + EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {} + explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {} + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto(size)), m_cols(cols) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0); + EIGEN_UNUSED_VARIABLE(rows); + } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) + : m_data(internal::conditional_aligned_new_auto(_Rows*other.m_cols)) + , m_cols(other.m_cols) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*_Rows) + internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data); + } + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + DenseStorage tmp(other); + this->swap(tmp); + } + return *this; + } +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT + : m_data(std::move(other.m_data)) + , m_cols(std::move(other.m_cols)) + { + other.m_data = nullptr; + other.m_cols = 0; + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT + { + numext::swap(m_data, other.m_data); + numext::swap(m_cols, other.m_cols); + return *this; + } +#endif + EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Rows*m_cols); } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { + numext::swap(m_data,other.m_data); + numext::swap(m_cols,other.m_cols); + } + EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} + EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} + EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols) + { + m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, _Rows*m_cols); + m_cols = cols; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols) + { + if(size != _Rows*m_cols) + { + internal::conditional_aligned_delete_auto(m_data, _Rows*m_cols); + if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative + m_data = internal::conditional_aligned_new_auto(size); + else + m_data = 0; + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + } + m_cols = cols; + } + EIGEN_DEVICE_FUNC const T *data() const { return m_data; } + EIGEN_DEVICE_FUNC T *data() { return m_data; } +}; + +// matrix with dynamic height and fixed width (so that matrix has dynamic size). +template class DenseStorage +{ + T *m_data; + Index m_rows; + public: + EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {} + explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {} + EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto(size)), m_rows(rows) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols); + EIGEN_UNUSED_VARIABLE(cols); + } + EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) + : m_data(internal::conditional_aligned_new_auto(other.m_rows*_Cols)) + , m_rows(other.m_rows) + { + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*_Cols) + internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data); + } + EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) + { + if (this != &other) + { + DenseStorage tmp(other); + this->swap(tmp); + } + return *this; + } +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT + : m_data(std::move(other.m_data)) + , m_rows(std::move(other.m_rows)) + { + other.m_data = nullptr; + other.m_rows = 0; + } + EIGEN_DEVICE_FUNC + DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT + { + numext::swap(m_data, other.m_data); + numext::swap(m_rows, other.m_rows); + return *this; + } +#endif + EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Cols*m_rows); } + EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { + numext::swap(m_data,other.m_data); + numext::swap(m_rows,other.m_rows); + } + EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} + EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} + void conservativeResize(Index size, Index rows, Index) + { + m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, m_rows*_Cols); + m_rows = rows; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index) + { + if(size != m_rows*_Cols) + { + internal::conditional_aligned_delete_auto(m_data, _Cols*m_rows); + if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative + m_data = internal::conditional_aligned_new_auto(size); + else + m_data = 0; + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + } + m_rows = rows; + } + EIGEN_DEVICE_FUNC const T *data() const { return m_data; } + EIGEN_DEVICE_FUNC T *data() { return m_data; } +}; + +} // end namespace Eigen + +#endif // EIGEN_MATRIX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Diagonal.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Diagonal.h new file mode 100644 index 0000000..563135f --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Diagonal.h @@ -0,0 +1,262 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007-2009 Benoit Jacob +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DIAGONAL_H +#define EIGEN_DIAGONAL_H + +namespace Eigen { + +/** \class Diagonal + * \ingroup Core_Module + * + * \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix + * + * \param MatrixType the type of the object in which we are taking a sub/main/super diagonal + * \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal. + * A positive value means a superdiagonal, a negative value means a subdiagonal. + * You can also use DynamicIndex so the index can be set at runtime. + * + * The matrix is not required to be square. + * + * This class represents an expression of the main diagonal, or any sub/super diagonal + * of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the + * time this is the only way it is used. + * + * \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index) + */ + +namespace internal { +template +struct traits > + : traits +{ + typedef typename ref_selector::type MatrixTypeNested; + typedef typename remove_reference::type _MatrixTypeNested; + typedef typename MatrixType::StorageKind StorageKind; + enum { + RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic + : (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0), + MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))), + ColsAtCompileTime = 1, + MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic + : DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime, + MatrixType::MaxColsAtCompileTime) + : (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0), + MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))), + MaxColsAtCompileTime = 1, + MaskLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions + MatrixTypeOuterStride = outer_stride_at_compile_time::ret, + InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1, + OuterStrideAtCompileTime = 0 + }; +}; +} + +template class Diagonal + : public internal::dense_xpr_base< Diagonal >::type +{ + public: + + enum { DiagIndex = _DiagIndex }; + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal) + + EIGEN_DEVICE_FUNC + explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) + { + eigen_assert( a_index <= m_matrix.cols() && -a_index <= m_matrix.rows() ); + } + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal) + + EIGEN_DEVICE_FUNC + inline Index rows() const + { + return m_index.value()<0 ? numext::mini(m_matrix.cols(),m_matrix.rows()+m_index.value()) + : numext::mini(m_matrix.rows(),m_matrix.cols()-m_index.value()); + } + + EIGEN_DEVICE_FUNC + inline Index cols() const { return 1; } + + EIGEN_DEVICE_FUNC + inline Index innerStride() const + { + return m_matrix.outerStride() + 1; + } + + EIGEN_DEVICE_FUNC + inline Index outerStride() const + { + return 0; + } + + typedef typename internal::conditional< + internal::is_lvalue::value, + Scalar, + const Scalar + >::type ScalarWithConstIfNotLvalue; + + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.coeffRef(rowOffset(), colOffset())); } + EIGEN_DEVICE_FUNC + inline const Scalar* data() const { return &(m_matrix.coeffRef(rowOffset(), colOffset())); } + + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index row, Index) + { + EIGEN_STATIC_ASSERT_LVALUE(MatrixType) + return m_matrix.coeffRef(row+rowOffset(), row+colOffset()); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index row, Index) const + { + return m_matrix.coeffRef(row+rowOffset(), row+colOffset()); + } + + EIGEN_DEVICE_FUNC + inline CoeffReturnType coeff(Index row, Index) const + { + return m_matrix.coeff(row+rowOffset(), row+colOffset()); + } + + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index idx) + { + EIGEN_STATIC_ASSERT_LVALUE(MatrixType) + return m_matrix.coeffRef(idx+rowOffset(), idx+colOffset()); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index idx) const + { + return m_matrix.coeffRef(idx+rowOffset(), idx+colOffset()); + } + + EIGEN_DEVICE_FUNC + inline CoeffReturnType coeff(Index idx) const + { + return m_matrix.coeff(idx+rowOffset(), idx+colOffset()); + } + + EIGEN_DEVICE_FUNC + inline const typename internal::remove_all::type& + nestedExpression() const + { + return m_matrix; + } + + EIGEN_DEVICE_FUNC + inline Index index() const + { + return m_index.value(); + } + + protected: + typename internal::ref_selector::non_const_type m_matrix; + const internal::variable_if_dynamicindex m_index; + + private: + // some compilers may fail to optimize std::max etc in case of compile-time constants... + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; } + // trigger a compile-time error if someone try to call packet + template typename MatrixType::PacketReturnType packet(Index) const; + template typename MatrixType::PacketReturnType packet(Index,Index) const; +}; + +/** \returns an expression of the main diagonal of the matrix \c *this + * + * \c *this is not required to be square. + * + * Example: \include MatrixBase_diagonal.cpp + * Output: \verbinclude MatrixBase_diagonal.out + * + * \sa class Diagonal */ +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::DiagonalReturnType +MatrixBase::diagonal() +{ + return DiagonalReturnType(derived()); +} + +/** This is the const version of diagonal(). */ +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::ConstDiagonalReturnType +MatrixBase::diagonal() const +{ + return ConstDiagonalReturnType(derived()); +} + +/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this + * + * \c *this is not required to be square. + * + * The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0 + * and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal. + * + * Example: \include MatrixBase_diagonal_int.cpp + * Output: \verbinclude MatrixBase_diagonal_int.out + * + * \sa MatrixBase::diagonal(), class Diagonal */ +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::DiagonalDynamicIndexReturnType +MatrixBase::diagonal(Index index) +{ + return DiagonalDynamicIndexReturnType(derived(), index); +} + +/** This is the const version of diagonal(Index). */ +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::ConstDiagonalDynamicIndexReturnType +MatrixBase::diagonal(Index index) const +{ + return ConstDiagonalDynamicIndexReturnType(derived(), index); +} + +/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this + * + * \c *this is not required to be square. + * + * The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0 + * and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal. + * + * Example: \include MatrixBase_diagonal_template_int.cpp + * Output: \verbinclude MatrixBase_diagonal_template_int.out + * + * \sa MatrixBase::diagonal(), class Diagonal */ +template +template +EIGEN_DEVICE_FUNC +inline typename MatrixBase::template DiagonalIndexReturnType::Type +MatrixBase::diagonal() +{ + return typename DiagonalIndexReturnType::Type(derived()); +} + +/** This is the const version of diagonal(). */ +template +template +EIGEN_DEVICE_FUNC +inline typename MatrixBase::template ConstDiagonalIndexReturnType::Type +MatrixBase::diagonal() const +{ + return typename ConstDiagonalIndexReturnType::Type(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_DIAGONAL_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DiagonalMatrix.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DiagonalMatrix.h new file mode 100644 index 0000000..542685c --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DiagonalMatrix.h @@ -0,0 +1,391 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2007-2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DIAGONALMATRIX_H +#define EIGEN_DIAGONALMATRIX_H + +namespace Eigen { + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +class DiagonalBase : public EigenBase +{ + public: + typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; + typedef typename DiagonalVectorType::Scalar Scalar; + typedef typename DiagonalVectorType::RealScalar RealScalar; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + + enum { + RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, + ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, + MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, + IsVectorAtCompileTime = 0, + Flags = NoPreferredStorageOrderBit + }; + + typedef Matrix DenseMatrixType; + typedef DenseMatrixType DenseType; + typedef DiagonalMatrix PlainObject; + + EIGEN_DEVICE_FUNC + inline const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC + inline Derived& derived() { return *static_cast(this); } + + EIGEN_DEVICE_FUNC + DenseMatrixType toDenseMatrix() const { return derived(); } + + EIGEN_DEVICE_FUNC + inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } + EIGEN_DEVICE_FUNC + inline DiagonalVectorType& diagonal() { return derived().diagonal(); } + + EIGEN_DEVICE_FUNC + inline Index rows() const { return diagonal().size(); } + EIGEN_DEVICE_FUNC + inline Index cols() const { return diagonal().size(); } + + template + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase &matrix) const + { + return Product(derived(),matrix.derived()); + } + + typedef DiagonalWrapper, const DiagonalVectorType> > InverseReturnType; + EIGEN_DEVICE_FUNC + inline const InverseReturnType + inverse() const + { + return InverseReturnType(diagonal().cwiseInverse()); + } + + EIGEN_DEVICE_FUNC + inline const DiagonalWrapper + operator*(const Scalar& scalar) const + { + return DiagonalWrapper(diagonal() * scalar); + } + EIGEN_DEVICE_FUNC + friend inline const DiagonalWrapper + operator*(const Scalar& scalar, const DiagonalBase& other) + { + return DiagonalWrapper(scalar * other.diagonal()); + } + + template + EIGEN_DEVICE_FUNC + #ifdef EIGEN_PARSED_BY_DOXYGEN + inline unspecified_expression_type + #else + inline const DiagonalWrapper + #endif + operator+(const DiagonalBase& other) const + { + return (diagonal() + other.diagonal()).asDiagonal(); + } + + template + EIGEN_DEVICE_FUNC + #ifdef EIGEN_PARSED_BY_DOXYGEN + inline unspecified_expression_type + #else + inline const DiagonalWrapper + #endif + operator-(const DiagonalBase& other) const + { + return (diagonal() - other.diagonal()).asDiagonal(); + } +}; + +#endif + +/** \class DiagonalMatrix + * \ingroup Core_Module + * + * \brief Represents a diagonal matrix with its storage + * + * \param _Scalar the type of coefficients + * \param SizeAtCompileTime the dimension of the matrix, or Dynamic + * \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults + * to SizeAtCompileTime. Most of the time, you do not need to specify it. + * + * \sa class DiagonalWrapper + */ + +namespace internal { +template +struct traits > + : traits > +{ + typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType; + typedef DiagonalShape StorageKind; + enum { + Flags = LvalueBit | NoPreferredStorageOrderBit + }; +}; +} +template +class DiagonalMatrix + : public DiagonalBase > +{ + public: + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; + typedef const DiagonalMatrix& Nested; + typedef _Scalar Scalar; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + #endif + + protected: + + DiagonalVectorType m_diagonal; + + public: + + /** const version of diagonal(). */ + EIGEN_DEVICE_FUNC + inline const DiagonalVectorType& diagonal() const { return m_diagonal; } + /** \returns a reference to the stored vector of diagonal coefficients. */ + EIGEN_DEVICE_FUNC + inline DiagonalVectorType& diagonal() { return m_diagonal; } + + /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC + inline DiagonalMatrix() {} + + /** Constructs a diagonal matrix with given dimension */ + EIGEN_DEVICE_FUNC + explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {} + + /** 2D constructor. */ + EIGEN_DEVICE_FUNC + inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {} + + /** 3D constructor. */ + EIGEN_DEVICE_FUNC + inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {} + + #if EIGEN_HAS_CXX11 + /** \brief Construct a diagonal matrix with fixed size from an arbitrary number of coefficients. \cpp11 + * + * There exists C++98 anologue constructors for fixed-size diagonal matrices having 2 or 3 coefficients. + * + * \warning To construct a diagonal matrix of fixed size, the number of values passed to this + * constructor must match the fixed dimension of \c *this. + * + * \sa DiagonalMatrix(const Scalar&, const Scalar&) + * \sa DiagonalMatrix(const Scalar&, const Scalar&, const Scalar&) + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + DiagonalMatrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const ArgTypes&... args) + : m_diagonal(a0, a1, a2, args...) {} + + /** \brief Constructs a DiagonalMatrix and initializes it by elements given by an initializer list of initializer + * lists \cpp11 + */ + EIGEN_DEVICE_FUNC + explicit EIGEN_STRONG_INLINE DiagonalMatrix(const std::initializer_list>& list) + : m_diagonal(list) {} + #endif // EIGEN_HAS_CXX11 + + /** Copy constructor. */ + template + EIGEN_DEVICE_FUNC + inline DiagonalMatrix(const DiagonalBase& other) : m_diagonal(other.diagonal()) {} + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ + inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {} + #endif + + /** generic constructor from expression of the diagonal coefficients */ + template + EIGEN_DEVICE_FUNC + explicit inline DiagonalMatrix(const MatrixBase& other) : m_diagonal(other) + {} + + /** Copy operator. */ + template + EIGEN_DEVICE_FUNC + DiagonalMatrix& operator=(const DiagonalBase& other) + { + m_diagonal = other.diagonal(); + return *this; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + EIGEN_DEVICE_FUNC + DiagonalMatrix& operator=(const DiagonalMatrix& other) + { + m_diagonal = other.diagonal(); + return *this; + } + #endif + + /** Resizes to given size. */ + EIGEN_DEVICE_FUNC + inline void resize(Index size) { m_diagonal.resize(size); } + /** Sets all coefficients to zero. */ + EIGEN_DEVICE_FUNC + inline void setZero() { m_diagonal.setZero(); } + /** Resizes and sets all coefficients to zero. */ + EIGEN_DEVICE_FUNC + inline void setZero(Index size) { m_diagonal.setZero(size); } + /** Sets this matrix to be the identity matrix of the current size. */ + EIGEN_DEVICE_FUNC + inline void setIdentity() { m_diagonal.setOnes(); } + /** Sets this matrix to be the identity matrix of the given size. */ + EIGEN_DEVICE_FUNC + inline void setIdentity(Index size) { m_diagonal.setOnes(size); } +}; + +/** \class DiagonalWrapper + * \ingroup Core_Module + * + * \brief Expression of a diagonal matrix + * + * \param _DiagonalVectorType the type of the vector of diagonal coefficients + * + * This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients, + * instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal() + * and most of the time this is the only way that it is used. + * + * \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal() + */ + +namespace internal { +template +struct traits > +{ + typedef _DiagonalVectorType DiagonalVectorType; + typedef typename DiagonalVectorType::Scalar Scalar; + typedef typename DiagonalVectorType::StorageIndex StorageIndex; + typedef DiagonalShape StorageKind; + typedef typename traits::XprKind XprKind; + enum { + RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, + ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, + MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, + Flags = (traits::Flags & LvalueBit) | NoPreferredStorageOrderBit + }; +}; +} + +template +class DiagonalWrapper + : public DiagonalBase >, internal::no_assignment_operator +{ + public: + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef _DiagonalVectorType DiagonalVectorType; + typedef DiagonalWrapper Nested; + #endif + + /** Constructor from expression of diagonal coefficients to wrap. */ + EIGEN_DEVICE_FUNC + explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {} + + /** \returns a const reference to the wrapped expression of diagonal coefficients. */ + EIGEN_DEVICE_FUNC + const DiagonalVectorType& diagonal() const { return m_diagonal; } + + protected: + typename DiagonalVectorType::Nested m_diagonal; +}; + +/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients + * + * \only_for_vectors + * + * Example: \include MatrixBase_asDiagonal.cpp + * Output: \verbinclude MatrixBase_asDiagonal.out + * + * \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal() + **/ +template +EIGEN_DEVICE_FUNC inline const DiagonalWrapper +MatrixBase::asDiagonal() const +{ + return DiagonalWrapper(derived()); +} + +/** \returns true if *this is approximately equal to a diagonal matrix, + * within the precision given by \a prec. + * + * Example: \include MatrixBase_isDiagonal.cpp + * Output: \verbinclude MatrixBase_isDiagonal.out + * + * \sa asDiagonal() + */ +template +bool MatrixBase::isDiagonal(const RealScalar& prec) const +{ + if(cols() != rows()) return false; + RealScalar maxAbsOnDiagonal = static_cast(-1); + for(Index j = 0; j < cols(); ++j) + { + RealScalar absOnDiagonal = numext::abs(coeff(j,j)); + if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal; + } + for(Index j = 0; j < cols(); ++j) + for(Index i = 0; i < j; ++i) + { + if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false; + if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false; + } + return true; +} + +namespace internal { + +template<> struct storage_kind_to_shape { typedef DiagonalShape Shape; }; + +struct Diagonal2Dense {}; + +template<> struct AssignmentKind { typedef Diagonal2Dense Kind; }; + +// Diagonal matrix to Dense assignment +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst.setZero(); + dst.diagonal() = src.diagonal(); + } + + static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) + { dst.diagonal() += src.diagonal(); } + + static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) + { dst.diagonal() -= src.diagonal(); } +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_DIAGONALMATRIX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DiagonalProduct.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DiagonalProduct.h new file mode 100644 index 0000000..7911d1c --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/DiagonalProduct.h @@ -0,0 +1,28 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2007-2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DIAGONALPRODUCT_H +#define EIGEN_DIAGONALPRODUCT_H + +namespace Eigen { + +/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal. + */ +template +template +EIGEN_DEVICE_FUNC inline const Product +MatrixBase::operator*(const DiagonalBase &a_diagonal) const +{ + return Product(derived(),a_diagonal.derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_DIAGONALPRODUCT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Dot.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Dot.h new file mode 100644 index 0000000..11da432 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Dot.h @@ -0,0 +1,318 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008, 2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DOT_H +#define EIGEN_DOT_H + +namespace Eigen { + +namespace internal { + +// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot +// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE +// looking at the static assertions. Thus this is a trick to get better compile errors. +template +struct dot_nocheck +{ + typedef scalar_conj_product_op::Scalar,typename traits::Scalar> conj_prod; + typedef typename conj_prod::result_type ResScalar; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE + static ResScalar run(const MatrixBase& a, const MatrixBase& b) + { + return a.template binaryExpr(b).sum(); + } +}; + +template +struct dot_nocheck +{ + typedef scalar_conj_product_op::Scalar,typename traits::Scalar> conj_prod; + typedef typename conj_prod::result_type ResScalar; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE + static ResScalar run(const MatrixBase& a, const MatrixBase& b) + { + return a.transpose().template binaryExpr(b).sum(); + } +}; + +} // end namespace internal + +/** \fn MatrixBase::dot + * \returns the dot product of *this with other. + * + * \only_for_vectors + * + * \note If the scalar type is complex numbers, then this function returns the hermitian + * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the + * second variable. + * + * \sa squaredNorm(), norm() + */ +template +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE +typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType +MatrixBase::dot(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) +#if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) + typedef internal::scalar_conj_product_op func; + EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); +#endif + + eigen_assert(size() == other.size()); + + return internal::dot_nocheck::run(*this, other); +} + +//---------- implementation of L2 norm and related functions ---------- + +/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. + * In both cases, it consists in the sum of the square of all the matrix entries. + * For vectors, this is also equals to the dot product of \c *this with itself. + * + * \sa dot(), norm(), lpNorm() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits::Scalar>::Real MatrixBase::squaredNorm() const +{ + return numext::real((*this).cwiseAbs2().sum()); +} + +/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. + * In both cases, it consists in the square root of the sum of the square of all the matrix entries. + * For vectors, this is also equals to the square root of the dot product of \c *this with itself. + * + * \sa lpNorm(), dot(), squaredNorm() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits::Scalar>::Real MatrixBase::norm() const +{ + return numext::sqrt(squaredNorm()); +} + +/** \returns an expression of the quotient of \c *this by its own norm. + * + * \warning If the input vector is too small (i.e., this->norm()==0), + * then this function returns a copy of the input. + * + * \only_for_vectors + * + * \sa norm(), normalize() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::PlainObject +MatrixBase::normalized() const +{ + typedef typename internal::nested_eval::type _Nested; + _Nested n(derived()); + RealScalar z = n.squaredNorm(); + // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU + if(z>RealScalar(0)) + return n / numext::sqrt(z); + else + return n; +} + +/** Normalizes the vector, i.e. divides it by its own norm. + * + * \only_for_vectors + * + * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. + * + * \sa norm(), normalized() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase::normalize() +{ + RealScalar z = squaredNorm(); + // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU + if(z>RealScalar(0)) + derived() /= numext::sqrt(z); +} + +/** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. + * + * \only_for_vectors + * + * This method is analogue to the normalized() method, but it reduces the risk of + * underflow and overflow when computing the norm. + * + * \warning If the input vector is too small (i.e., this->norm()==0), + * then this function returns a copy of the input. + * + * \sa stableNorm(), stableNormalize(), normalized() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase::PlainObject +MatrixBase::stableNormalized() const +{ + typedef typename internal::nested_eval::type _Nested; + _Nested n(derived()); + RealScalar w = n.cwiseAbs().maxCoeff(); + RealScalar z = (n/w).squaredNorm(); + if(z>RealScalar(0)) + return n / (numext::sqrt(z)*w); + else + return n; +} + +/** Normalizes the vector while avoid underflow and overflow + * + * \only_for_vectors + * + * This method is analogue to the normalize() method, but it reduces the risk of + * underflow and overflow when computing the norm. + * + * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. + * + * \sa stableNorm(), stableNormalized(), normalize() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase::stableNormalize() +{ + RealScalar w = cwiseAbs().maxCoeff(); + RealScalar z = (derived()/w).squaredNorm(); + if(z>RealScalar(0)) + derived() /= numext::sqrt(z)*w; +} + +//---------- implementation of other norms ---------- + +namespace internal { + +template +struct lpNorm_selector +{ + typedef typename NumTraits::Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const MatrixBase& m) + { + EIGEN_USING_STD_MATH(pow) + return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); + } +}; + +template +struct lpNorm_selector +{ + EIGEN_DEVICE_FUNC + static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) + { + return m.cwiseAbs().sum(); + } +}; + +template +struct lpNorm_selector +{ + EIGEN_DEVICE_FUNC + static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) + { + return m.norm(); + } +}; + +template +struct lpNorm_selector +{ + typedef typename NumTraits::Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const MatrixBase& m) + { + if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0)) + return RealScalar(0); + return m.cwiseAbs().maxCoeff(); + } +}; + +} // end namespace internal + +/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values + * of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ + * norm, that is the maximum of the absolute values of the coefficients of \c *this. + * + * In all cases, if \c *this is empty, then the value 0 is returned. + * + * \note For matrices, this function does not compute the operator-norm. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. + * + * \sa norm() + */ +template +template +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_DEVICE_FUNC inline typename NumTraits::Scalar>::Real +#else +EIGEN_DEVICE_FUNC MatrixBase::RealScalar +#endif +MatrixBase::lpNorm() const +{ + return internal::lpNorm_selector::run(*this); +} + +//---------- implementation of isOrthogonal / isUnitary ---------- + +/** \returns true if *this is approximately orthogonal to \a other, + * within the precision given by \a prec. + * + * Example: \include MatrixBase_isOrthogonal.cpp + * Output: \verbinclude MatrixBase_isOrthogonal.out + */ +template +template +bool MatrixBase::isOrthogonal +(const MatrixBase& other, const RealScalar& prec) const +{ + typename internal::nested_eval::type nested(derived()); + typename internal::nested_eval::type otherNested(other.derived()); + return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); +} + +/** \returns true if *this is approximately an unitary matrix, + * within the precision given by \a prec. In the case where the \a Scalar + * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. + * + * \note This can be used to check whether a family of vectors forms an orthonormal basis. + * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an + * orthonormal basis. + * + * Example: \include MatrixBase_isUnitary.cpp + * Output: \verbinclude MatrixBase_isUnitary.out + */ +template +bool MatrixBase::isUnitary(const RealScalar& prec) const +{ + typename internal::nested_eval::type self(derived()); + for(Index i = 0; i < cols(); ++i) + { + if(!internal::isApprox(self.col(i).squaredNorm(), static_cast(1), prec)) + return false; + for(Index j = 0; j < i; ++j) + if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast(1), prec)) + return false; + } + return true; +} + +} // end namespace Eigen + +#endif // EIGEN_DOT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/EigenBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/EigenBase.h new file mode 100644 index 0000000..0c34fb6 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/EigenBase.h @@ -0,0 +1,160 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EIGENBASE_H +#define EIGEN_EIGENBASE_H + +namespace Eigen { + +/** \class EigenBase + * \ingroup Core_Module + * + * Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T). + * + * In other words, an EigenBase object is an object that can be copied into a MatrixBase. + * + * Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc. + * + * Notice that this class is trivial, it is only used to disambiguate overloaded functions. + * + * \sa \blank \ref TopicClassHierarchy + */ +template struct EigenBase +{ +// typedef typename internal::plain_matrix_type::type PlainObject; + + /** \brief The interface type of indices + * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. + * \sa StorageIndex, \ref TopicPreprocessorDirectives. + * DEPRECATED: Since Eigen 3.3, its usage is deprecated. Use Eigen::Index instead. + * Deprecation is not marked with a doxygen comment because there are too many existing usages to add the deprecation attribute. + */ + typedef Eigen::Index Index; + + // FIXME is it needed? + typedef typename internal::traits::StorageKind StorageKind; + + /** \returns a reference to the derived object */ + EIGEN_DEVICE_FUNC + Derived& derived() { return *static_cast(this); } + /** \returns a const reference to the derived object */ + EIGEN_DEVICE_FUNC + const Derived& derived() const { return *static_cast(this); } + + EIGEN_DEVICE_FUNC + inline Derived& const_cast_derived() const + { return *static_cast(const_cast(this)); } + EIGEN_DEVICE_FUNC + inline const Derived& const_derived() const + { return *static_cast(this); } + + /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ + EIGEN_DEVICE_FUNC + inline Index rows() const { return derived().rows(); } + /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/ + EIGEN_DEVICE_FUNC + inline Index cols() const { return derived().cols(); } + /** \returns the number of coefficients, which is rows()*cols(). + * \sa rows(), cols(), SizeAtCompileTime. */ + EIGEN_DEVICE_FUNC + inline Index size() const { return rows() * cols(); } + + /** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */ + template + EIGEN_DEVICE_FUNC + inline void evalTo(Dest& dst) const + { derived().evalTo(dst); } + + /** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */ + template + EIGEN_DEVICE_FUNC + inline void addTo(Dest& dst) const + { + // This is the default implementation, + // derived class can reimplement it in a more optimized way. + typename Dest::PlainObject res(rows(),cols()); + evalTo(res); + dst += res; + } + + /** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */ + template + EIGEN_DEVICE_FUNC + inline void subTo(Dest& dst) const + { + // This is the default implementation, + // derived class can reimplement it in a more optimized way. + typename Dest::PlainObject res(rows(),cols()); + evalTo(res); + dst -= res; + } + + /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */ + template + EIGEN_DEVICE_FUNC inline void applyThisOnTheRight(Dest& dst) const + { + // This is the default implementation, + // derived class can reimplement it in a more optimized way. + dst = dst * this->derived(); + } + + /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */ + template + EIGEN_DEVICE_FUNC inline void applyThisOnTheLeft(Dest& dst) const + { + // This is the default implementation, + // derived class can reimplement it in a more optimized way. + dst = this->derived() * dst; + } + +}; + +/*************************************************************************** +* Implementation of matrix base methods +***************************************************************************/ + +/** \brief Copies the generic expression \a other into *this. + * + * \details The expression must provide a (templated) evalTo(Derived& dst) const + * function which does the actual job. In practice, this allows any user to write + * its own special matrix without having to modify MatrixBase + * + * \returns a reference to *this. + */ +template +template +EIGEN_DEVICE_FUNC +Derived& DenseBase::operator=(const EigenBase &other) +{ + call_assignment(derived(), other.derived()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC +Derived& DenseBase::operator+=(const EigenBase &other) +{ + call_assignment(derived(), other.derived(), internal::add_assign_op()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC +Derived& DenseBase::operator-=(const EigenBase &other) +{ + call_assignment(derived(), other.derived(), internal::sub_assign_op()); + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_EIGENBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ForceAlignedAccess.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ForceAlignedAccess.h new file mode 100644 index 0000000..7b08b45 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ForceAlignedAccess.h @@ -0,0 +1,146 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_FORCEALIGNEDACCESS_H +#define EIGEN_FORCEALIGNEDACCESS_H + +namespace Eigen { + +/** \class ForceAlignedAccess + * \ingroup Core_Module + * + * \brief Enforce aligned packet loads and stores regardless of what is requested + * + * \param ExpressionType the type of the object of which we are forcing aligned packet access + * + * This class is the return type of MatrixBase::forceAlignedAccess() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::forceAlignedAccess() + */ + +namespace internal { +template +struct traits > : public traits +{}; +} + +template class ForceAlignedAccess + : public internal::dense_xpr_base< ForceAlignedAccess >::type +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess) + + EIGEN_DEVICE_FUNC explicit inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {} + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); } + EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); } + + EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const + { + return m_expression.coeff(row, col); + } + + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) + { + return m_expression.const_cast_derived().coeffRef(row, col); + } + + EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const + { + return m_expression.coeff(index); + } + + EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index) + { + return m_expression.const_cast_derived().coeffRef(index); + } + + template + inline const PacketScalar packet(Index row, Index col) const + { + return m_expression.template packet(row, col); + } + + template + inline void writePacket(Index row, Index col, const PacketScalar& x) + { + m_expression.const_cast_derived().template writePacket(row, col, x); + } + + template + inline const PacketScalar packet(Index index) const + { + return m_expression.template packet(index); + } + + template + inline void writePacket(Index index, const PacketScalar& x) + { + m_expression.const_cast_derived().template writePacket(index, x); + } + + EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; } + + protected: + const ExpressionType& m_expression; + + private: + ForceAlignedAccess& operator=(const ForceAlignedAccess&); +}; + +/** \returns an expression of *this with forced aligned access + * \sa forceAlignedAccessIf(),class ForceAlignedAccess + */ +template +inline const ForceAlignedAccess +MatrixBase::forceAlignedAccess() const +{ + return ForceAlignedAccess(derived()); +} + +/** \returns an expression of *this with forced aligned access + * \sa forceAlignedAccessIf(), class ForceAlignedAccess + */ +template +inline ForceAlignedAccess +MatrixBase::forceAlignedAccess() +{ + return ForceAlignedAccess(derived()); +} + +/** \returns an expression of *this with forced aligned access if \a Enable is true. + * \sa forceAlignedAccess(), class ForceAlignedAccess + */ +template +template +inline typename internal::add_const_on_value_type,Derived&>::type>::type +MatrixBase::forceAlignedAccessIf() const +{ + return derived(); // FIXME This should not work but apparently is never used +} + +/** \returns an expression of *this with forced aligned access if \a Enable is true. + * \sa forceAlignedAccess(), class ForceAlignedAccess + */ +template +template +inline typename internal::conditional,Derived&>::type +MatrixBase::forceAlignedAccessIf() +{ + return derived(); // FIXME This should not work but apparently is never used +} + +} // end namespace Eigen + +#endif // EIGEN_FORCEALIGNEDACCESS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Fuzzy.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Fuzzy.h new file mode 100644 index 0000000..43aa49b --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Fuzzy.h @@ -0,0 +1,155 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_FUZZY_H +#define EIGEN_FUZZY_H + +namespace Eigen { + +namespace internal +{ + +template::IsInteger> +struct isApprox_selector +{ + EIGEN_DEVICE_FUNC + static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) + { + typename internal::nested_eval::type nested(x); + typename internal::nested_eval::type otherNested(y); + return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum()); + } +}; + +template +struct isApprox_selector +{ + EIGEN_DEVICE_FUNC + static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&) + { + return x.matrix() == y.matrix(); + } +}; + +template::IsInteger> +struct isMuchSmallerThan_object_selector +{ + EIGEN_DEVICE_FUNC + static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) + { + return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum(); + } +}; + +template +struct isMuchSmallerThan_object_selector +{ + EIGEN_DEVICE_FUNC + static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&) + { + return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); + } +}; + +template::IsInteger> +struct isMuchSmallerThan_scalar_selector +{ + EIGEN_DEVICE_FUNC + static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec) + { + return x.cwiseAbs2().sum() <= numext::abs2(prec * y); + } +}; + +template +struct isMuchSmallerThan_scalar_selector +{ + EIGEN_DEVICE_FUNC + static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&) + { + return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); + } +}; + +} // end namespace internal + + +/** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ + * are considered to be approximately equal within precision \f$ p \f$ if + * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] + * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm + * L2 norm). + * + * \note Because of the multiplicativeness of this comparison, one can't use this function + * to check whether \c *this is approximately equal to the zero matrix or vector. + * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix + * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const + * RealScalar&, RealScalar) instead. + * + * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const + */ +template +template +EIGEN_DEVICE_FUNC bool DenseBase::isApprox( + const DenseBase& other, + const RealScalar& prec +) const +{ + return internal::isApprox_selector::run(derived(), other.derived(), prec); +} + +/** \returns \c true if the norm of \c *this is much smaller than \a other, + * within the precision determined by \a prec. + * + * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is + * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if + * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] + * + * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, + * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm + * of a reference matrix of same dimensions. + * + * \sa isApprox(), isMuchSmallerThan(const DenseBase&, RealScalar) const + */ +template +EIGEN_DEVICE_FUNC bool DenseBase::isMuchSmallerThan( + const typename NumTraits::Real& other, + const RealScalar& prec +) const +{ + return internal::isMuchSmallerThan_scalar_selector::run(derived(), other, prec); +} + +/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, + * within the precision determined by \a prec. + * + * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is + * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if + * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] + * For matrices, the comparison is done using the Hilbert-Schmidt norm. + * + * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const + */ +template +template +EIGEN_DEVICE_FUNC bool DenseBase::isMuchSmallerThan( + const DenseBase& other, + const RealScalar& prec +) const +{ + return internal::isMuchSmallerThan_object_selector::run(derived(), other.derived(), prec); +} + +} // end namespace Eigen + +#endif // EIGEN_FUZZY_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GeneralProduct.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GeneralProduct.h new file mode 100644 index 0000000..bf7ef54 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GeneralProduct.h @@ -0,0 +1,467 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2008-2011 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERAL_PRODUCT_H +#define EIGEN_GENERAL_PRODUCT_H + +namespace Eigen { + +enum { + Large = 2, + Small = 3 +}; + +// Define the threshold value to fallback from the generic matrix-matrix product +// implementation (heavy) to the lightweight coeff-based product one. +// See generic_product_impl +// in products/GeneralMatrixMatrix.h for more details. +// TODO This threshold should also be used in the compile-time selector below. +#ifndef EIGEN_GEMM_TO_COEFFBASED_THRESHOLD +// This default value has been obtained on a Haswell architecture. +#define EIGEN_GEMM_TO_COEFFBASED_THRESHOLD 20 +#endif + +namespace internal { + +template struct product_type_selector; + +template struct product_size_category +{ + enum { + #ifndef EIGEN_GPU_COMPILE_PHASE + is_large = MaxSize == Dynamic || + Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD || + (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD), + #else + is_large = 0, + #endif + value = is_large ? Large + : Size == 1 ? 1 + : Small + }; +}; + +template struct product_type +{ + typedef typename remove_all::type _Lhs; + typedef typename remove_all::type _Rhs; + enum { + MaxRows = traits<_Lhs>::MaxRowsAtCompileTime, + Rows = traits<_Lhs>::RowsAtCompileTime, + MaxCols = traits<_Rhs>::MaxColsAtCompileTime, + Cols = traits<_Rhs>::ColsAtCompileTime, + MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime, + traits<_Rhs>::MaxRowsAtCompileTime), + Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime, + traits<_Rhs>::RowsAtCompileTime) + }; + + // the splitting into different lines of code here, introducing the _select enums and the typedef below, + // is to work around an internal compiler error with gcc 4.1 and 4.2. +private: + enum { + rows_select = product_size_category::value, + cols_select = product_size_category::value, + depth_select = product_size_category::value + }; + typedef product_type_selector selector; + +public: + enum { + value = selector::ret, + ret = selector::ret + }; +#ifdef EIGEN_DEBUG_PRODUCT + static void debug() + { + EIGEN_DEBUG_VAR(Rows); + EIGEN_DEBUG_VAR(Cols); + EIGEN_DEBUG_VAR(Depth); + EIGEN_DEBUG_VAR(rows_select); + EIGEN_DEBUG_VAR(cols_select); + EIGEN_DEBUG_VAR(depth_select); + EIGEN_DEBUG_VAR(value); + } +#endif +}; + +/* The following allows to select the kind of product at compile time + * based on the three dimensions of the product. + * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ +// FIXME I'm not sure the current mapping is the ideal one. +template struct product_type_selector { enum { ret = OuterProduct }; }; +template struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; }; +template struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; +template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; +template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = GemvProduct }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; + +} // end namespace internal + +/*********************************************************************** +* Implementation of Inner Vector Vector Product +***********************************************************************/ + +// FIXME : maybe the "inner product" could return a Scalar +// instead of a 1x1 matrix ?? +// Pro: more natural for the user +// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix +// product ends up to a row-vector times col-vector product... To tackle this use +// case, we could have a specialization for Block with: operator=(Scalar x); + +/*********************************************************************** +* Implementation of Outer Vector Vector Product +***********************************************************************/ + +/*********************************************************************** +* Implementation of General Matrix Vector Product +***********************************************************************/ + +/* According to the shape/flags of the matrix we have to distinghish 3 different cases: + * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine + * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine + * 3 - all other cases are handled using a simple loop along the outer-storage direction. + * Therefore we need a lower level meta selector. + * Furthermore, if the matrix is the rhs, then the product has to be transposed. + */ +namespace internal { + +template +struct gemv_dense_selector; + +} // end namespace internal + +namespace internal { + +template struct gemv_static_vector_if; + +template +struct gemv_static_vector_if +{ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; } +}; + +template +struct gemv_static_vector_if +{ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar* data() { return 0; } +}; + +template +struct gemv_static_vector_if +{ + enum { + ForceAlignment = internal::packet_traits::Vectorizable, + PacketSize = internal::packet_traits::size + }; + #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0 + internal::plain_array m_data; + EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } + #else + // Some architectures cannot align on the stack, + // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. + internal::plain_array m_data; + EIGEN_STRONG_INLINE Scalar* data() { + return ForceAlignment + ? reinterpret_cast((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES) + : m_data.array; + } + #endif +}; + +// The vector is on the left => transposition +template +struct gemv_dense_selector +{ + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + Transpose destT(dest); + enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; + gemv_dense_selector + ::run(rhs.transpose(), lhs.transpose(), destT, alpha); + } +}; + +template<> struct gemv_dense_selector +{ + template + static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar ResScalar; + typedef typename Dest::RealScalar RealScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + + typedef Map, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits::size)> MappedDest; + + ActualLhsType actualLhs = LhsBlasTraits::extract(lhs); + ActualRhsType actualRhs = RhsBlasTraits::extract(rhs); + + ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) + * RhsBlasTraits::extractScalarFactor(rhs); + + // make sure Dest is a compile-time vector type (bug 1166) + typedef typename conditional::type ActualDest; + + enum { + // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 + // on, the other hand it is good for the cache to pack the vector anyways... + EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), + ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex), + MightCannotUseDest = ((!EvalToDestAtCompileTime) || ComplexByReal) && (ActualDest::MaxSizeAtCompileTime!=0) + }; + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + RhsScalar compatibleAlpha = get_factor::run(actualAlpha); + + if(!MightCannotUseDest) + { + // shortcut if we are sure to be able to use dest directly, + // this ease the compiler to generate cleaner and more optimzized code for most common cases + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + LhsMapper(actualLhs.data(), actualLhs.outerStride()), + RhsMapper(actualRhs.data(), actualRhs.innerStride()), + dest.data(), 1, + compatibleAlpha); + } + else + { + gemv_static_vector_if static_dest; + + const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); + const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; + + ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), + evalToDest ? dest.data() : static_dest.data()); + + if(!evalToDest) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = dest.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + if(!alphaIsCompatible) + { + MappedDest(actualDestPtr, dest.size()).setZero(); + compatibleAlpha = RhsScalar(1); + } + else + MappedDest(actualDestPtr, dest.size()) = dest; + } + + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + LhsMapper(actualLhs.data(), actualLhs.outerStride()), + RhsMapper(actualRhs.data(), actualRhs.innerStride()), + actualDestPtr, 1, + compatibleAlpha); + + if (!evalToDest) + { + if(!alphaIsCompatible) + dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); + else + dest = MappedDest(actualDestPtr, dest.size()); + } + } + } +}; + +template<> struct gemv_dense_selector +{ + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar ResScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + typedef typename internal::remove_all::type ActualRhsTypeCleaned; + + typename add_const::type actualLhs = LhsBlasTraits::extract(lhs); + typename add_const::type actualRhs = RhsBlasTraits::extract(rhs); + + ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) + * RhsBlasTraits::extractScalarFactor(rhs); + + enum { + // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 + // on, the other hand it is good for the cache to pack the vector anyways... + DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 || ActualRhsTypeCleaned::MaxSizeAtCompileTime==0 + }; + + gemv_static_vector_if static_rhs; + + ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), + DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); + + if(!DirectlyUseRhs) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = actualRhs.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + Map(actualRhsPtr, actualRhs.size()) = actualRhs; + } + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + LhsMapper(actualLhs.data(), actualLhs.outerStride()), + RhsMapper(actualRhsPtr, 1), + dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) + actualAlpha); + } +}; + +template<> struct gemv_dense_selector +{ + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + EIGEN_STATIC_ASSERT((!nested_eval::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); + // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp + typename nested_eval::type actual_rhs(rhs); + const Index size = rhs.rows(); + for(Index k=0; k struct gemv_dense_selector +{ + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + EIGEN_STATIC_ASSERT((!nested_eval::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); + typename nested_eval::type actual_rhs(rhs); + const Index rows = dest.rows(); + for(Index i=0; i +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const Product +MatrixBase::operator*(const MatrixBase &other) const +{ + // A note regarding the function declaration: In MSVC, this function will sometimes + // not be inlined since DenseStorage is an unwindable object for dynamic + // matrices and product types are holding a member to store the result. + // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. + enum { + ProductIsValid = Derived::ColsAtCompileTime==Dynamic + || OtherDerived::RowsAtCompileTime==Dynamic + || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), + AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, + SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) + }; + // note to the lost user: + // * for a dot product use: v1.dot(v2) + // * for a coeff-wise product use: v1.cwiseProduct(v2) + EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), + INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) + EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), + INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) + EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) +#ifdef EIGEN_DEBUG_PRODUCT + internal::product_type::debug(); +#endif + + return Product(derived(), other.derived()); +} + +/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. + * + * The returned product will behave like any other expressions: the coefficients of the product will be + * computed once at a time as requested. This might be useful in some extremely rare cases when only + * a small and no coherent fraction of the result's coefficients have to be computed. + * + * \warning This version of the matrix product can be much much slower. So use it only if you know + * what you are doing and that you measured a true speed improvement. + * + * \sa operator*(const MatrixBase&) + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const Product +MatrixBase::lazyProduct(const MatrixBase &other) const +{ + enum { + ProductIsValid = Derived::ColsAtCompileTime==Dynamic + || OtherDerived::RowsAtCompileTime==Dynamic + || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), + AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, + SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) + }; + // note to the lost user: + // * for a dot product use: v1.dot(v2) + // * for a coeff-wise product use: v1.cwiseProduct(v2) + EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), + INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) + EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), + INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) + EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) + + return Product(derived(), other.derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_PRODUCT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GenericPacketMath.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GenericPacketMath.h new file mode 100644 index 0000000..d2c2027 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GenericPacketMath.h @@ -0,0 +1,744 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERIC_PACKET_MATH_H +#define EIGEN_GENERIC_PACKET_MATH_H + +namespace Eigen { + +namespace internal { + +/** \internal + * \file GenericPacketMath.h + * + * Default implementation for types not supported by the vectorization. + * In practice these functions are provided to make easier the writing + * of generic vectorized code. + */ + +#ifndef EIGEN_DEBUG_ALIGNED_LOAD +#define EIGEN_DEBUG_ALIGNED_LOAD +#endif + +#ifndef EIGEN_DEBUG_UNALIGNED_LOAD +#define EIGEN_DEBUG_UNALIGNED_LOAD +#endif + +#ifndef EIGEN_DEBUG_ALIGNED_STORE +#define EIGEN_DEBUG_ALIGNED_STORE +#endif + +#ifndef EIGEN_DEBUG_UNALIGNED_STORE +#define EIGEN_DEBUG_UNALIGNED_STORE +#endif + +struct default_packet_traits +{ + enum { + HasHalfPacket = 0, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + HasReduxp = 1, + + HasDiv = 0, + HasSqrt = 0, + HasRsqrt = 0, + HasExp = 0, + HasExpm1 = 0, + HasLog = 0, + HasLog1p = 0, + HasLog10 = 0, + HasPow = 0, + + HasSin = 0, + HasCos = 0, + HasTan = 0, + HasASin = 0, + HasACos = 0, + HasATan = 0, + HasSinh = 0, + HasCosh = 0, + HasTanh = 0, + HasLGamma = 0, + HasDiGamma = 0, + HasZeta = 0, + HasPolygamma = 0, + HasErf = 0, + HasErfc = 0, + HasNdtri = 0, + HasBessel = 0, + HasIGamma = 0, + HasIGammaDerA = 0, + HasGammaSampleDerAlpha = 0, + HasIGammac = 0, + HasBetaInc = 0, + + HasRound = 0, + HasFloor = 0, + HasCeil = 0, + + HasSign = 0 + }; +}; + +template struct packet_traits : default_packet_traits +{ + typedef T type; + typedef T half; + enum { + Vectorizable = 0, + size = 1, + AlignedOnScalar = 0, + HasHalfPacket = 0 + }; + enum { + HasAdd = 0, + HasSub = 0, + HasMul = 0, + HasNegate = 0, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasConj = 0, + HasSetLinear = 0 + }; +}; + +template struct packet_traits : packet_traits { }; + +template struct type_casting_traits { + enum { + VectorizedCast = 0, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + + +/** \internal \returns static_cast(a) (coeff-wise) */ +template +EIGEN_DEVICE_FUNC inline TgtPacket +pcast(const SrcPacket& a) { + return static_cast(a); +} +template +EIGEN_DEVICE_FUNC inline TgtPacket +pcast(const SrcPacket& a, const SrcPacket& /*b*/) { + return static_cast(a); +} + +template +EIGEN_DEVICE_FUNC inline TgtPacket +pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) { + return static_cast(a); +} + +/** \internal \returns reinterpret_cast(a) */ +template +EIGEN_DEVICE_FUNC inline Target +preinterpret(const Packet& a); /* { return reinterpret_cast(a); } */ + +/** \internal \returns a + b (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +padd(const Packet& a, const Packet& b) { return a+b; } + +/** \internal \returns a - b (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +psub(const Packet& a, const Packet& b) { return a-b; } + +/** \internal \returns -a (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +pnegate(const Packet& a) { return -a; } + +/** \internal \returns conj(a) (coeff-wise) */ + +template EIGEN_DEVICE_FUNC inline Packet +pconj(const Packet& a) { return numext::conj(a); } + +/** \internal \returns a * b (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +pmul(const Packet& a, const Packet& b) { return a*b; } + +/** \internal \returns a / b (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +pdiv(const Packet& a, const Packet& b) { return a/b; } + +/** \internal \returns the min of \a a and \a b (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +pmin(const Packet& a, const Packet& b) { return numext::mini(a, b); } + +/** \internal \returns the max of \a a and \a b (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +pmax(const Packet& a, const Packet& b) { return numext::maxi(a, b); } + +/** \internal \returns the absolute value of \a a */ +template EIGEN_DEVICE_FUNC inline Packet +pabs(const Packet& a) { using std::abs; return abs(a); } + +/** \internal \returns the phase angle of \a a */ +template EIGEN_DEVICE_FUNC inline Packet +parg(const Packet& a) { using numext::arg; return arg(a); } + +/** \internal \returns the bitwise and of \a a and \a b */ +template EIGEN_DEVICE_FUNC inline Packet +pand(const Packet& a, const Packet& b) { return a & b; } + +/** \internal \returns the bitwise or of \a a and \a b */ +template EIGEN_DEVICE_FUNC inline Packet +por(const Packet& a, const Packet& b) { return a | b; } + +/** \internal \returns the bitwise xor of \a a and \a b */ +template EIGEN_DEVICE_FUNC inline Packet +pxor(const Packet& a, const Packet& b) { return a ^ b; } + +/** \internal \returns the bitwise andnot of \a a and \a b */ +template EIGEN_DEVICE_FUNC inline Packet +pandnot(const Packet& a, const Packet& b) { return a & (~b); } + +/** \internal \returns ones */ +template EIGEN_DEVICE_FUNC inline Packet +ptrue(const Packet& /*a*/) { Packet b; memset((void*)&b, 0xff, sizeof(b)); return b;} + +template +EIGEN_DEVICE_FUNC inline std::complex ptrue(const std::complex& /*a*/) { + RealScalar b; + b = ptrue(b); + return std::complex(b, b); +} + +/** \internal \returns the bitwise not of \a a */ +template EIGEN_DEVICE_FUNC inline Packet +pnot(const Packet& a) { return pxor(ptrue(a), a);} + +/** \internal \returns \a a shifted by N bits to the right */ +template EIGEN_DEVICE_FUNC inline int +pshiftright(const int& a) { return a >> N; } +template EIGEN_DEVICE_FUNC inline long int +pshiftright(const long int& a) { return a >> N; } + +/** \internal \returns \a a shifted by N bits to the left */ +template EIGEN_DEVICE_FUNC inline int +pshiftleft(const int& a) { return a << N; } +template EIGEN_DEVICE_FUNC inline long int +pshiftleft(const long int& a) { return a << N; } + +/** \internal \returns the significant and exponent of the underlying floating point numbers + * See https://en.cppreference.com/w/cpp/numeric/math/frexp + */ +template EIGEN_DEVICE_FUNC inline Packet +pfrexp(const Packet &a, Packet &exponent) { return std::frexp(a,&exponent); } + +/** \internal \returns a * 2^exponent + * See https://en.cppreference.com/w/cpp/numeric/math/ldexp + */ +template EIGEN_DEVICE_FUNC inline Packet +pldexp(const Packet &a, const Packet &exponent) { return std::ldexp(a,exponent); } + +/** \internal \returns zeros */ +template EIGEN_DEVICE_FUNC inline Packet +pzero(const Packet& a) { return pxor(a,a); } + +template<> EIGEN_DEVICE_FUNC inline float pzero(const float& a) { + EIGEN_UNUSED_VARIABLE(a); + return 0.; +} + +template<> EIGEN_DEVICE_FUNC inline double pzero(const double& a) { + EIGEN_UNUSED_VARIABLE(a); + return 0.; +} + +/** \internal \returns bits of \a or \b according to the input bit mask \a mask */ +template EIGEN_DEVICE_FUNC inline Packet +pselect(const Packet& mask, const Packet& a, const Packet& b) { + return por(pand(a,mask),pandnot(b,mask)); +} + +template<> EIGEN_DEVICE_FUNC inline float pselect( + const float& mask, const float& a, const float&b) { + return numext::equal_strict(mask,0.f) ? b : a; +} + +template<> EIGEN_DEVICE_FUNC inline double pselect( + const double& mask, const double& a, const double& b) { + return numext::equal_strict(mask,0.) ? b : a; +} + +/** \internal \returns a <= b as a bit mask */ +template EIGEN_DEVICE_FUNC inline Packet +pcmp_le(const Packet& a, const Packet& b) { return a<=b ? ptrue(a) : pzero(a); } + +/** \internal \returns a < b as a bit mask */ +template EIGEN_DEVICE_FUNC inline Packet +pcmp_lt(const Packet& a, const Packet& b) { return a EIGEN_DEVICE_FUNC inline Packet +pcmp_eq(const Packet& a, const Packet& b) { return a==b ? ptrue(a) : pzero(a); } + +/** \internal \returns a < b or a==NaN or b==NaN as a bit mask */ +template EIGEN_DEVICE_FUNC inline Packet +pcmp_lt_or_nan(const Packet& a, const Packet& b) { return pnot(pcmp_le(b,a)); } + +/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */ +template EIGEN_DEVICE_FUNC inline Packet +pload(const typename unpacket_traits::type* from) { return *from; } + +/** \internal \returns a packet version of \a *from, (un-aligned load) */ +template EIGEN_DEVICE_FUNC inline Packet +ploadu(const typename unpacket_traits::type* from) { return *from; } + +/** \internal \returns a packet version of \a *from, (un-aligned masked load) + * There is no generic implementation. We only have implementations for specialized + * cases. Generic case should not be called. + */ +template EIGEN_DEVICE_FUNC inline +typename enable_if::masked_load_available, Packet>::type +ploadu(const typename unpacket_traits::type* from, typename unpacket_traits::mask_t umask); + +/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ +template EIGEN_DEVICE_FUNC inline Packet +pset1(const typename unpacket_traits::type& a) { return a; } + +/** \internal \returns a packet with constant coefficients set from bits */ +template EIGEN_DEVICE_FUNC inline Packet +pset1frombits(BitsType a); + +/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */ +template EIGEN_DEVICE_FUNC inline Packet +pload1(const typename unpacket_traits::type *a) { return pset1(*a); } + +/** \internal \returns a packet with elements of \a *from duplicated. + * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and + * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]} + * Currently, this function is only used for scalar * complex products. + */ +template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet +ploaddup(const typename unpacket_traits::type* from) { return *from; } + +/** \internal \returns a packet with elements of \a *from quadrupled. + * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and + * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]} + * Currently, this function is only used in matrix products. + * For packet-size smaller or equal to 4, this function is equivalent to pload1 + */ +template EIGEN_DEVICE_FUNC inline Packet +ploadquad(const typename unpacket_traits::type* from) +{ return pload1(from); } + +/** \internal equivalent to + * \code + * a0 = pload1(a+0); + * a1 = pload1(a+1); + * a2 = pload1(a+2); + * a3 = pload1(a+3); + * \endcode + * \sa pset1, pload1, ploaddup, pbroadcast2 + */ +template EIGEN_DEVICE_FUNC +inline void pbroadcast4(const typename unpacket_traits::type *a, + Packet& a0, Packet& a1, Packet& a2, Packet& a3) +{ + a0 = pload1(a+0); + a1 = pload1(a+1); + a2 = pload1(a+2); + a3 = pload1(a+3); +} + +/** \internal equivalent to + * \code + * a0 = pload1(a+0); + * a1 = pload1(a+1); + * \endcode + * \sa pset1, pload1, ploaddup, pbroadcast4 + */ +template EIGEN_DEVICE_FUNC +inline void pbroadcast2(const typename unpacket_traits::type *a, + Packet& a0, Packet& a1) +{ + a0 = pload1(a+0); + a1 = pload1(a+1); +} + +/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ +template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet +plset(const typename unpacket_traits::type& a) { return a; } + +/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */ +template EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from) +{ (*to) = from; } + +/** \internal copy the packet \a from to \a *to, (un-aligned store) */ +template EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from) +{ (*to) = from; } + +/** \internal copy the packet \a from to \a *to, (un-aligned store with a mask) + * There is no generic implementation. We only have implementations for specialized + * cases. Generic case should not be called. + */ +template +EIGEN_DEVICE_FUNC inline +typename enable_if::masked_store_available, void>::type +pstoreu(Scalar* to, const Packet& from, typename unpacket_traits::mask_t umask); + + template EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/) + { return ploadu(from); } + + template EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/) + { pstore(to, from); } + +/** \internal tries to do cache prefetching of \a addr */ +template EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr) +{ +#if defined(EIGEN_HIP_DEVICE_COMPILE) + // do nothing +#elif defined(EIGEN_CUDA_ARCH) +#if defined(__LP64__) + // 64-bit pointer operand constraint for inlined asm + asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr)); +#else + // 32-bit pointer operand constraint for inlined asm + asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr)); +#endif +#elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) + __builtin_prefetch(addr); +#endif +} + +/** \internal \returns the first element of a packet */ +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type pfirst(const Packet& a) +{ return a; } + +/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */ +template EIGEN_DEVICE_FUNC inline Packet +preduxp(const Packet* vecs) { return vecs[0]; } + +/** \internal \returns the sum of the elements of \a a*/ +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux(const Packet& a) +{ return a; } + +/** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4. + * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7} + * For packet-size smaller or equal to 4, this boils down to a noop. + */ +template EIGEN_DEVICE_FUNC inline +typename conditional<(unpacket_traits::size%8)==0,typename unpacket_traits::half,Packet>::type +predux_half_dowto4(const Packet& a) +{ return a; } + +/** \internal \returns the product of the elements of \a a */ +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_mul(const Packet& a) +{ return a; } + +/** \internal \returns the min of the elements of \a a */ +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_min(const Packet& a) +{ return a; } + +/** \internal \returns the max of the elements of \a a */ +template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_max(const Packet& a) +{ return a; } + +/** \internal \returns true if all coeffs of \a a means "true" + * It is supposed to be called on values returned by pcmp_*. + */ +// not needed yet +// template EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a) +// { return bool(a); } + +/** \internal \returns true if any coeffs of \a a means "true" + * It is supposed to be called on values returned by pcmp_*. + */ +template EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a) +{ + // Dirty but generic implementation where "true" is assumed to be non 0 and all the sames. + // It is expected that "true" is either: + // - Scalar(1) + // - bits full of ones (NaN for floats), + // - or first bit equals to 1 (1 for ints, smallest denormal for floats). + // For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars. + return bool(predux(a)); +} + +/** \internal \returns the reversed elements of \a a*/ +template EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a) +{ return a; } + +/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ +template EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a) +{ + return Packet(numext::imag(a),numext::real(a)); +} + +/************************** +* Special math functions +***************************/ + +/** \internal \returns the sine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psin(const Packet& a) { EIGEN_USING_STD_MATH(sin); return sin(a); } + +/** \internal \returns the cosine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pcos(const Packet& a) { EIGEN_USING_STD_MATH(cos); return cos(a); } + +/** \internal \returns the tan of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet ptan(const Packet& a) { EIGEN_USING_STD_MATH(tan); return tan(a); } + +/** \internal \returns the arc sine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pasin(const Packet& a) { EIGEN_USING_STD_MATH(asin); return asin(a); } + +/** \internal \returns the arc cosine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pacos(const Packet& a) { EIGEN_USING_STD_MATH(acos); return acos(a); } + +/** \internal \returns the arc tangent of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan(const Packet& a) { EIGEN_USING_STD_MATH(atan); return atan(a); } + +/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psinh(const Packet& a) { EIGEN_USING_STD_MATH(sinh); return sinh(a); } + +/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pcosh(const Packet& a) { EIGEN_USING_STD_MATH(cosh); return cosh(a); } + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet ptanh(const Packet& a) { EIGEN_USING_STD_MATH(tanh); return tanh(a); } + +/** \internal \returns the exp of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pexp(const Packet& a) { EIGEN_USING_STD_MATH(exp); return exp(a); } + +/** \internal \returns the expm1 of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pexpm1(const Packet& a) { return numext::expm1(a); } + +/** \internal \returns the log of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog(const Packet& a) { EIGEN_USING_STD_MATH(log); return log(a); } + +/** \internal \returns the log1p of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog1p(const Packet& a) { return numext::log1p(a); } + +/** \internal \returns the log10 of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog10(const Packet& a) { EIGEN_USING_STD_MATH(log10); return log10(a); } + +/** \internal \returns the square-root of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psqrt(const Packet& a) { EIGEN_USING_STD_MATH(sqrt); return sqrt(a); } + +/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet prsqrt(const Packet& a) { + return pdiv(pset1(1), psqrt(a)); +} + +/** \internal \returns the rounded value of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pround(const Packet& a) { using numext::round; return round(a); } + +/** \internal \returns the floor of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pfloor(const Packet& a) { using numext::floor; return floor(a); } + +/** \internal \returns the ceil of \a a (coeff-wise) */ +template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); } + +/*************************************************************************** +* The following functions might not have to be overwritten for vectorized types +***************************************************************************/ + +/** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */ +// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type) +template +inline void pstore1(typename unpacket_traits::type* to, const typename unpacket_traits::type& a) +{ + pstore(to, pset1(a)); +} + +/** \internal \returns a * b + c (coeff-wise) */ +template EIGEN_DEVICE_FUNC inline Packet +pmadd(const Packet& a, + const Packet& b, + const Packet& c) +{ return padd(pmul(a, b),c); } + +/** \internal \returns a packet version of \a *from. + * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits::type* from) +{ + if(Alignment >= unpacket_traits::alignment) + return pload(from); + else + return ploadu(from); +} + +/** \internal copy the packet \a from to \a *to. + * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from) +{ + if(Alignment >= unpacket_traits::alignment) + pstore(to, from); + else + pstoreu(to, from); +} + +/** \internal \returns a packet version of \a *from. + * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the + * hardware if available to speedup the loading of data that won't be modified + * by the current computation. + */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits::type* from) +{ + return ploadt(from); +} + +/** \internal default implementation of palign() allowing partial specialization */ +template +struct palign_impl +{ + // by default data are aligned, so there is nothing to be done :) + static inline void run(PacketType&, const PacketType&) {} +}; + +/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements + * of \a first and \a Offset first elements of \a second. + * + * This function is currently only used to optimize matrix-vector products on unligned matrices. + * It takes 2 packets that represent a contiguous memory array, and returns a packet starting + * at the position \a Offset. For instance, for packets of 4 elements, we have: + * Input: + * - first = {f0,f1,f2,f3} + * - second = {s0,s1,s2,s3} + * Output: + * - if Offset==0 then {f0,f1,f2,f3} + * - if Offset==1 then {f1,f2,f3,s0} + * - if Offset==2 then {f2,f3,s0,s1} + * - if Offset==3 then {f3,s0,s1,s3} + */ +template +inline void palign(PacketType& first, const PacketType& second) +{ + palign_impl::run(first,second); +} + +/*************************************************************************** +* Fast complex products (GCC generates a function call which is very slow) +***************************************************************************/ + +// Eigen+CUDA does not support complexes. +#if !defined(EIGEN_GPUCC) + +template<> inline std::complex pmul(const std::complex& a, const std::complex& b) +{ return std::complex(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); } + +template<> inline std::complex pmul(const std::complex& a, const std::complex& b) +{ return std::complex(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); } + +#endif + + +/*************************************************************************** + * PacketBlock, that is a collection of N packets where the number of words + * in the packet is a multiple of N. +***************************************************************************/ +template ::size> struct PacketBlock { + Packet packet[N]; +}; + +template EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& /*kernel*/) { + // Nothing to do in the scalar case, i.e. a 1x1 matrix. +} + +/*************************************************************************** + * Selector, i.e. vector of N boolean values used to select (i.e. blend) + * words from 2 packets. +***************************************************************************/ +template struct Selector { + bool select[N]; +}; + +template EIGEN_DEVICE_FUNC inline Packet +pblend(const Selector::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) { + return ifPacket.select[0] ? thenPacket : elsePacket; +} + +/** \internal \returns \a a with the first coefficient replaced by the scalar b */ +template EIGEN_DEVICE_FUNC inline Packet +pinsertfirst(const Packet& a, typename unpacket_traits::type b) +{ + // Default implementation based on pblend. + // It must be specialized for higher performance. + Selector::size> mask; + mask.select[0] = true; + // This for loop should be optimized away by the compiler. + for(Index i=1; i::size; ++i) + mask.select[i] = false; + return pblend(mask, pset1(b), a); +} + +/** \internal \returns \a a with the last coefficient replaced by the scalar b */ +template EIGEN_DEVICE_FUNC inline Packet +pinsertlast(const Packet& a, typename unpacket_traits::type b) +{ + // Default implementation based on pblend. + // It must be specialized for higher performance. + Selector::size> mask; + // This for loop should be optimized away by the compiler. + for(Index i=0; i::size-1; ++i) + mask.select[i] = false; + mask.select[unpacket_traits::size-1] = true; + return pblend(mask, pset1(b), a); +} + +/*************************************************************************** + * Some generic implementations to be used by implementors +***************************************************************************/ + +/** Default implementation of pfrexp for float. + * It is expected to be called by implementers of template<> pfrexp. + */ +template EIGEN_STRONG_INLINE Packet +pfrexp_float(const Packet& a, Packet& exponent); + +/** Default implementation of pldexp for float. + * It is expected to be called by implementers of template<> pldexp. + */ +template EIGEN_STRONG_INLINE Packet +pldexp_float(Packet a, Packet exponent); + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GENERIC_PACKET_MATH_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GlobalFunctions.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GlobalFunctions.h new file mode 100644 index 0000000..7f132bd --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/GlobalFunctions.h @@ -0,0 +1,192 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010-2016 Gael Guennebaud +// Copyright (C) 2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GLOBAL_FUNCTIONS_H +#define EIGEN_GLOBAL_FUNCTIONS_H + +#ifdef EIGEN_PARSED_BY_DOXYGEN + +#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \ + /** \returns an expression of the coefficient-wise DOC_OP of \a x + + DOC_DETAILS + + \sa Math functions, class CwiseUnaryOp + */ \ + template \ + inline const Eigen::CwiseUnaryOp, const Derived> \ + NAME(const Eigen::ArrayBase& x); + +#else + +#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \ + template \ + inline const Eigen::CwiseUnaryOp, const Derived> \ + (NAME)(const Eigen::ArrayBase& x) { \ + return Eigen::CwiseUnaryOp, const Derived>(x.derived()); \ + } + +#endif // EIGEN_PARSED_BY_DOXYGEN + +#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \ + \ + template \ + struct NAME##_retval > \ + { \ + typedef const Eigen::CwiseUnaryOp, const Derived> type; \ + }; \ + template \ + struct NAME##_impl > \ + { \ + static inline typename NAME##_retval >::type run(const Eigen::ArrayBase& x) \ + { \ + return typename NAME##_retval >::type(x.derived()); \ + } \ + }; + +namespace Eigen +{ + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op,real part,\sa ArrayBase::real) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op,imaginary part,\sa ArrayBase::imag) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op,complex conjugate,\sa ArrayBase::conjugate) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(inverse,scalar_inverse_op,inverse,\sa ArrayBase::inverse) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op,sine,\sa ArrayBase::sin) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op,cosine,\sa ArrayBase::cos) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op,tangent,\sa ArrayBase::tan) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op,arc-tangent,\sa ArrayBase::atan) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op,arc-sine,\sa ArrayBase::asin) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op,arc-consine,\sa ArrayBase::acos) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh) +#if EIGEN_HAS_CXX11_MATH + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asinh,scalar_asinh_op,inverse hyperbolic sine,\sa ArrayBase::asinh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acosh,scalar_acosh_op,inverse hyperbolic cosine,\sa ArrayBase::acosh) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atanh,scalar_atanh_op,inverse hyperbolic tangent,\sa ArrayBase::atanh) +#endif + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(logistic,scalar_logistic_op,logistic function,\sa ArrayBase::logistic) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op,error function,\sa ArrayBase::erf) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op,complement error function,\sa ArrayBase::erfc) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ndtri,scalar_ndtri_op,inverse normal distribution function,\sa ArrayBase::ndtri) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op,exponential,\sa ArrayBase::exp) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(expm1,scalar_expm1_op,exponential of a value minus 1,\sa ArrayBase::expm1) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op,natural logarithm,\sa Eigen::log10 DOXCOMMA ArrayBase::log) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log1p,scalar_log1p_op,natural logarithm of 1 plus the value,\sa ArrayBase::log1p) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op,base 10 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op,absolute value,\sa ArrayBase::abs DOXCOMMA MatrixBase::cwiseAbs) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs2,scalar_abs2_op,squared absolute value,\sa ArrayBase::abs2 DOXCOMMA MatrixBase::cwiseAbs2) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op,complex argument,\sa ArrayBase::arg) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op,square root,\sa ArrayBase::sqrt DOXCOMMA MatrixBase::cwiseSqrt) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(rsqrt,scalar_rsqrt_op,reciprocal square root,\sa ArrayBase::rsqrt) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op,square (power 2),\sa Eigen::abs2 DOXCOMMA Eigen::pow DOXCOMMA ArrayBase::square) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op,cube (power 3),\sa Eigen::pow DOXCOMMA ArrayBase::cube) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op,nearest integer not greater than the giben value,\sa Eigen::ceil DOXCOMMA ArrayBase::floor) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op,nearest integer not less than the giben value,\sa Eigen::floor DOXCOMMA ArrayBase::ceil) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op,not-a-number test,\sa Eigen::isinf DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isnan) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite) + EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign) + + /** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent. + * + * \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar). + * + * \sa ArrayBase::pow() + * + * \relates ArrayBase + */ +#ifdef EIGEN_PARSED_BY_DOXYGEN + template + inline const CwiseBinaryOp,Derived,Constant > + pow(const Eigen::ArrayBase& x, const ScalarExponent& exponent); +#else + template + EIGEN_DEVICE_FUNC inline + EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE( + const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename internal::promote_scalar_arg::type,pow)) + pow(const Eigen::ArrayBase& x, const ScalarExponent& exponent) + { + typedef typename internal::promote_scalar_arg::type PromotedExponent; + return EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,PromotedExponent,pow)(x.derived(), + typename internal::plain_constant_type::type(x.derived().rows(), x.derived().cols(), internal::scalar_constant_op(exponent))); + } +#endif + + /** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents. + * + * This function computes the coefficient-wise power. + * + * Example: \include Cwise_array_power_array.cpp + * Output: \verbinclude Cwise_array_power_array.out + * + * \sa ArrayBase::pow() + * + * \relates ArrayBase + */ + template + inline const Eigen::CwiseBinaryOp, const Derived, const ExponentDerived> + pow(const Eigen::ArrayBase& x, const Eigen::ArrayBase& exponents) + { + return Eigen::CwiseBinaryOp, const Derived, const ExponentDerived>( + x.derived(), + exponents.derived() + ); + } + + /** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents. + * + * This function computes the coefficient-wise power between a scalar and an array of exponents. + * + * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar). + * + * Example: \include Cwise_scalar_power_array.cpp + * Output: \verbinclude Cwise_scalar_power_array.out + * + * \sa ArrayBase::pow() + * + * \relates ArrayBase + */ +#ifdef EIGEN_PARSED_BY_DOXYGEN + template + inline const CwiseBinaryOp,Constant,Derived> + pow(const Scalar& x,const Eigen::ArrayBase& x); +#else + template + EIGEN_DEVICE_FUNC inline + EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE( + const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename internal::promote_scalar_arg::type,Derived,pow)) + pow(const Scalar& x, const Eigen::ArrayBase& exponents) { + typedef typename internal::promote_scalar_arg::type PromotedScalar; + return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(PromotedScalar,Derived,pow)( + typename internal::plain_constant_type::type(exponents.derived().rows(), exponents.derived().cols(), internal::scalar_constant_op(x)), exponents.derived()); + } +#endif + + + namespace internal + { + EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op) + EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op) + EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op) + } +} + +// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...) + +#endif // EIGEN_GLOBAL_FUNCTIONS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/IO.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/IO.h new file mode 100644 index 0000000..063511f --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/IO.h @@ -0,0 +1,239 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_IO_H +#define EIGEN_IO_H + +namespace Eigen { + +enum { DontAlignCols = 1 }; +enum { StreamPrecision = -1, + FullPrecision = -2 }; + +namespace internal { +template +std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt); +} + +/** \class IOFormat + * \ingroup Core_Module + * + * \brief Stores a set of parameters controlling the way matrices are printed + * + * List of available parameters: + * - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision. + * The default is the special value \c StreamPrecision which means to use the + * stream's own precision setting, as set for instance using \c cout.precision(3). The other special value + * \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point + * type. + * - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which + * allows to disable the alignment of columns, resulting in faster code. + * - \b coeffSeparator string printed between two coefficients of the same row + * - \b rowSeparator string printed between two rows + * - \b rowPrefix string printed at the beginning of each row + * - \b rowSuffix string printed at the end of each row + * - \b matPrefix string printed at the beginning of the matrix + * - \b matSuffix string printed at the end of the matrix + * - \b fill character printed to fill the empty space in aligned columns + * + * Example: \include IOFormat.cpp + * Output: \verbinclude IOFormat.out + * + * \sa DenseBase::format(), class WithFormat + */ +struct IOFormat +{ + /** Default constructor, see class IOFormat for the meaning of the parameters */ + IOFormat(int _precision = StreamPrecision, int _flags = 0, + const std::string& _coeffSeparator = " ", + const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="", + const std::string& _matPrefix="", const std::string& _matSuffix="", const char _fill=' ') + : matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator), + rowSpacer(""), coeffSeparator(_coeffSeparator), fill(_fill), precision(_precision), flags(_flags) + { + // TODO check if rowPrefix, rowSuffix or rowSeparator contains a newline + // don't add rowSpacer if columns are not to be aligned + if((flags & DontAlignCols)) + return; + int i = int(matSuffix.length())-1; + while (i>=0 && matSuffix[i]!='\n') + { + rowSpacer += ' '; + i--; + } + } + std::string matPrefix, matSuffix; + std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer; + std::string coeffSeparator; + char fill; + int precision; + int flags; +}; + +/** \class WithFormat + * \ingroup Core_Module + * + * \brief Pseudo expression providing matrix output with given format + * + * \tparam ExpressionType the type of the object on which IO stream operations are performed + * + * This class represents an expression with stream operators controlled by a given IOFormat. + * It is the return type of DenseBase::format() + * and most of the time this is the only way it is used. + * + * See class IOFormat for some examples. + * + * \sa DenseBase::format(), class IOFormat + */ +template +class WithFormat +{ + public: + + WithFormat(const ExpressionType& matrix, const IOFormat& format) + : m_matrix(matrix), m_format(format) + {} + + friend std::ostream & operator << (std::ostream & s, const WithFormat& wf) + { + return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format); + } + + protected: + typename ExpressionType::Nested m_matrix; + IOFormat m_format; +}; + +namespace internal { + +// NOTE: This helper is kept for backward compatibility with previous code specializing +// this internal::significant_decimals_impl structure. In the future we should directly +// call digits10() which has been introduced in July 2016 in 3.3. +template +struct significant_decimals_impl +{ + static inline int run() + { + return NumTraits::digits10(); + } +}; + +/** \internal + * print the matrix \a _m to the output stream \a s using the output format \a fmt */ +template +std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt) +{ + if(_m.size() == 0) + { + s << fmt.matPrefix << fmt.matSuffix; + return s; + } + + typename Derived::Nested m = _m; + typedef typename Derived::Scalar Scalar; + + Index width = 0; + + std::streamsize explicit_precision; + if(fmt.precision == StreamPrecision) + { + explicit_precision = 0; + } + else if(fmt.precision == FullPrecision) + { + if (NumTraits::IsInteger) + { + explicit_precision = 0; + } + else + { + explicit_precision = significant_decimals_impl::run(); + } + } + else + { + explicit_precision = fmt.precision; + } + + std::streamsize old_precision = 0; + if(explicit_precision) old_precision = s.precision(explicit_precision); + + bool align_cols = !(fmt.flags & DontAlignCols); + if(align_cols) + { + // compute the largest width + for(Index j = 0; j < m.cols(); ++j) + for(Index i = 0; i < m.rows(); ++i) + { + std::stringstream sstr; + sstr.copyfmt(s); + sstr << m.coeff(i,j); + width = std::max(width, Index(sstr.str().length())); + } + } + std::streamsize old_width = s.width(); + char old_fill_character = s.fill(); + s << fmt.matPrefix; + for(Index i = 0; i < m.rows(); ++i) + { + if (i) + s << fmt.rowSpacer; + s << fmt.rowPrefix; + if(width) { + s.fill(fmt.fill); + s.width(width); + } + s << m.coeff(i, 0); + for(Index j = 1; j < m.cols(); ++j) + { + s << fmt.coeffSeparator; + if(width) { + s.fill(fmt.fill); + s.width(width); + } + s << m.coeff(i, j); + } + s << fmt.rowSuffix; + if( i < m.rows() - 1) + s << fmt.rowSeparator; + } + s << fmt.matSuffix; + if(explicit_precision) s.precision(old_precision); + if(width) { + s.fill(old_fill_character); + s.width(old_width); + } + return s; +} + +} // end namespace internal + +/** \relates DenseBase + * + * Outputs the matrix, to the given stream. + * + * If you wish to print the matrix with a format different than the default, use DenseBase::format(). + * + * It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers. + * If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters. + * + * \sa DenseBase::format() + */ +template +std::ostream & operator << +(std::ostream & s, + const DenseBase & m) +{ + return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT); +} + +} // end namespace Eigen + +#endif // EIGEN_IO_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/IndexedView.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/IndexedView.h new file mode 100644 index 0000000..377f8a5 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/IndexedView.h @@ -0,0 +1,207 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INDEXED_VIEW_H +#define EIGEN_INDEXED_VIEW_H + +namespace Eigen { + +namespace internal { + +template +struct traits > + : traits +{ + enum { + RowsAtCompileTime = int(array_size::value), + ColsAtCompileTime = int(array_size::value), + MaxRowsAtCompileTime = RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime) : Dynamic, + MaxColsAtCompileTime = ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime) : Dynamic, + + XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0, + IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 + : XprTypeIsRowMajor, + + RowIncr = int(get_compile_time_incr::value), + ColIncr = int(get_compile_time_incr::value), + InnerIncr = IsRowMajor ? ColIncr : RowIncr, + OuterIncr = IsRowMajor ? RowIncr : ColIncr, + + HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor), + XprInnerStride = HasSameStorageOrderAsXprType ? int(inner_stride_at_compile_time::ret) : int(outer_stride_at_compile_time::ret), + XprOuterstride = HasSameStorageOrderAsXprType ? int(outer_stride_at_compile_time::ret) : int(inner_stride_at_compile_time::ret), + + InnerSize = XprTypeIsRowMajor ? ColsAtCompileTime : RowsAtCompileTime, + IsBlockAlike = InnerIncr==1 && OuterIncr==1, + IsInnerPannel = HasSameStorageOrderAsXprType && is_same,typename conditional::type>::value, + + InnerStrideAtCompileTime = InnerIncr<0 || InnerIncr==DynamicIndex || XprInnerStride==Dynamic ? Dynamic : XprInnerStride * InnerIncr, + OuterStrideAtCompileTime = OuterIncr<0 || OuterIncr==DynamicIndex || XprOuterstride==Dynamic ? Dynamic : XprOuterstride * OuterIncr, + + ReturnAsScalar = is_same::value && is_same::value, + ReturnAsBlock = (!ReturnAsScalar) && IsBlockAlike, + ReturnAsIndexedView = (!ReturnAsScalar) && (!ReturnAsBlock), + + // FIXME we deal with compile-time strides if and only if we have DirectAccessBit flag, + // but this is too strict regarding negative strides... + DirectAccessMask = (int(InnerIncr)!=UndefinedIncr && int(OuterIncr)!=UndefinedIncr && InnerIncr>=0 && OuterIncr>=0) ? DirectAccessBit : 0, + FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = (traits::Flags & (HereditaryBits | DirectAccessMask)) | FlagsLvalueBit | FlagsRowMajorBit + }; + + typedef Block BlockType; +}; + +} + +template +class IndexedViewImpl; + + +/** \class IndexedView + * \ingroup Core_Module + * + * \brief Expression of a non-sequential sub-matrix defined by arbitrary sequences of row and column indices + * + * \tparam XprType the type of the expression in which we are taking the intersections of sub-rows and sub-columns + * \tparam RowIndices the type of the object defining the sequence of row indices + * \tparam ColIndices the type of the object defining the sequence of column indices + * + * This class represents an expression of a sub-matrix (or sub-vector) defined as the intersection + * of sub-sets of rows and columns, that are themself defined by generic sequences of row indices \f$ \{r_0,r_1,..r_{m-1}\} \f$ + * and column indices \f$ \{c_0,c_1,..c_{n-1} \}\f$. Let \f$ A \f$ be the nested matrix, then the resulting matrix \f$ B \f$ has \c m + * rows and \c n columns, and its entries are given by: \f$ B(i,j) = A(r_i,c_j) \f$. + * + * The \c RowIndices and \c ColIndices types must be compatible with the following API: + * \code + * operator[](Index) const; + * Index size() const; + * \endcode + * + * Typical supported types thus include: + * - std::vector + * - std::valarray + * - std::array + * - Plain C arrays: int[N] + * - Eigen::ArrayXi + * - decltype(ArrayXi::LinSpaced(...)) + * - Any view/expressions of the previous types + * - Eigen::ArithmeticSequence + * - Eigen::internal::AllRange (helper for Eigen::all) + * - Eigen::internal::SingleRange (helper for single index) + * - etc. + * + * In typical usages of %Eigen, this class should never be used directly. It is the return type of + * DenseBase::operator()(const RowIndices&, const ColIndices&). + * + * \sa class Block + */ +template +class IndexedView : public IndexedViewImpl::StorageKind> +{ +public: + typedef typename IndexedViewImpl::StorageKind>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(IndexedView) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(IndexedView) + + typedef typename internal::ref_selector::non_const_type MatrixTypeNested; + typedef typename internal::remove_all::type NestedExpression; + + template + IndexedView(XprType& xpr, const T0& rowIndices, const T1& colIndices) + : m_xpr(xpr), m_rowIndices(rowIndices), m_colIndices(colIndices) + {} + + /** \returns number of rows */ + Index rows() const { return internal::size(m_rowIndices); } + + /** \returns number of columns */ + Index cols() const { return internal::size(m_colIndices); } + + /** \returns the nested expression */ + const typename internal::remove_all::type& + nestedExpression() const { return m_xpr; } + + /** \returns the nested expression */ + typename internal::remove_reference::type& + nestedExpression() { return m_xpr; } + + /** \returns a const reference to the object storing/generating the row indices */ + const RowIndices& rowIndices() const { return m_rowIndices; } + + /** \returns a const reference to the object storing/generating the column indices */ + const ColIndices& colIndices() const { return m_colIndices; } + +protected: + MatrixTypeNested m_xpr; + RowIndices m_rowIndices; + ColIndices m_colIndices; +}; + + +// Generic API dispatcher +template +class IndexedViewImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; +}; + +namespace internal { + + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef IndexedView XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost /* TODO + cost of row/col index */, + + Flags = (evaluator::Flags & (HereditaryBits /*| LinearAccessBit | DirectAccessBit*/)), + + Alignment = 0 + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_xpr(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(m_xpr.rowIndices()[row], m_xpr.colIndices()[col]); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(m_xpr.rowIndices()[row], m_xpr.colIndices()[col]); + } + +protected: + + evaluator m_argImpl; + const XprType& m_xpr; + +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_INDEXED_VIEW_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Inverse.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Inverse.h new file mode 100644 index 0000000..b76f043 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Inverse.h @@ -0,0 +1,118 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INVERSE_H +#define EIGEN_INVERSE_H + +namespace Eigen { + +template class InverseImpl; + +namespace internal { + +template +struct traits > + : traits +{ + typedef typename XprType::PlainObject PlainObject; + typedef traits BaseTraits; + enum { + Flags = BaseTraits::Flags & RowMajorBit + }; +}; + +} // end namespace internal + +/** \class Inverse + * + * \brief Expression of the inverse of another expression + * + * \tparam XprType the type of the expression we are taking the inverse + * + * This class represents an abstract expression of A.inverse() + * and most of the time this is the only way it is used. + * + */ +template +class Inverse : public InverseImpl::StorageKind> +{ +public: + typedef typename XprType::StorageIndex StorageIndex; + typedef typename XprType::PlainObject PlainObject; + typedef typename XprType::Scalar Scalar; + typedef typename internal::ref_selector::type XprTypeNested; + typedef typename internal::remove_all::type XprTypeNestedCleaned; + typedef typename internal::ref_selector::type Nested; + typedef typename internal::remove_all::type NestedExpression; + + explicit EIGEN_DEVICE_FUNC Inverse(const XprType &xpr) + : m_xpr(xpr) + {} + + EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); } + EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); } + + EIGEN_DEVICE_FUNC const XprTypeNestedCleaned& nestedExpression() const { return m_xpr; } + +protected: + XprTypeNested m_xpr; +}; + +// Generic API dispatcher +template +class InverseImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; + typedef typename XprType::Scalar Scalar; +private: + + Scalar coeff(Index row, Index col) const; + Scalar coeff(Index i) const; +}; + +namespace internal { + +/** \internal + * \brief Default evaluator for Inverse expression. + * + * This default evaluator for Inverse expression simply evaluate the inverse into a temporary + * by a call to internal::call_assignment_no_alias. + * Therefore, inverse implementers only have to specialize Assignment, ...> for + * there own nested expression. + * + * \sa class Inverse + */ +template +struct unary_evaluator > + : public evaluator::PlainObject> +{ + typedef Inverse InverseType; + typedef typename InverseType::PlainObject PlainObject; + typedef evaluator Base; + + enum { Flags = Base::Flags | EvalBeforeNestingBit }; + + unary_evaluator(const InverseType& inv_xpr) + : m_result(inv_xpr.rows(), inv_xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + internal::call_assignment_no_alias(m_result, inv_xpr); + } + +protected: + PlainObject m_result; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_INVERSE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Map.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Map.h new file mode 100644 index 0000000..c437f1a --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Map.h @@ -0,0 +1,171 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007-2010 Benoit Jacob +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MAP_H +#define EIGEN_MAP_H + +namespace Eigen { + +namespace internal { +template +struct traits > + : public traits +{ + typedef traits TraitsBase; + enum { + PlainObjectTypeInnerSize = ((traits::Flags&RowMajorBit)==RowMajorBit) + ? PlainObjectType::ColsAtCompileTime + : PlainObjectType::RowsAtCompileTime, + + InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 + ? int(PlainObjectType::InnerStrideAtCompileTime) + : int(StrideType::InnerStrideAtCompileTime), + OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 + ? (InnerStrideAtCompileTime==Dynamic || PlainObjectTypeInnerSize==Dynamic + ? Dynamic + : int(InnerStrideAtCompileTime) * int(PlainObjectTypeInnerSize)) + : int(StrideType::OuterStrideAtCompileTime), + Alignment = int(MapOptions)&int(AlignedMask), + Flags0 = TraitsBase::Flags & (~NestByRefBit), + Flags = is_lvalue::value ? int(Flags0) : (int(Flags0) & ~LvalueBit) + }; +private: + enum { Options }; // Expressions don't have Options +}; +} + +/** \class Map + * \ingroup Core_Module + * + * \brief A matrix or vector expression mapping an existing array of data. + * + * \tparam PlainObjectType the equivalent matrix type of the mapped data + * \tparam MapOptions specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned. + * The default is \c #Unaligned. + * \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout + * of an ordinary, contiguous array. This can be overridden by specifying strides. + * The type passed here must be a specialization of the Stride template, see examples below. + * + * This class represents a matrix or vector expression mapping an existing array of data. + * It can be used to let Eigen interface without any overhead with non-Eigen data structures, + * such as plain C arrays or structures from other libraries. By default, it assumes that the + * data is laid out contiguously in memory. You can however override this by explicitly specifying + * inner and outer strides. + * + * Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix: + * \include Map_simple.cpp + * Output: \verbinclude Map_simple.out + * + * If you need to map non-contiguous arrays, you can do so by specifying strides: + * + * Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer + * increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time + * fixed value. + * \include Map_inner_stride.cpp + * Output: \verbinclude Map_inner_stride.out + * + * Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping + * as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns. + * Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is + * a short version of \c OuterStride because the default template parameter of OuterStride + * is \c Dynamic + * \include Map_outer_stride.cpp + * Output: \verbinclude Map_outer_stride.out + * + * For more details and for an example of specifying both an inner and an outer stride, see class Stride. + * + * \b Tip: to change the array of data mapped by a Map object, you can use the C++ + * placement new syntax: + * + * Example: \include Map_placement_new.cpp + * Output: \verbinclude Map_placement_new.out + * + * This class is the return type of PlainObjectBase::Map() but can also be used directly. + * + * \sa PlainObjectBase::Map(), \ref TopicStorageOrders + */ +template class Map + : public MapBase > +{ + public: + + typedef MapBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Map) + + typedef typename Base::PointerType PointerType; + typedef PointerType PointerArgType; + EIGEN_DEVICE_FUNC + inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; } + + EIGEN_DEVICE_FUNC + inline Index innerStride() const + { + return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; + } + + EIGEN_DEVICE_FUNC + inline Index outerStride() const + { + return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() + : internal::traits::OuterStrideAtCompileTime != Dynamic ? Index(internal::traits::OuterStrideAtCompileTime) + : IsVectorAtCompileTime ? (this->size() * innerStride()) + : int(Flags)&RowMajorBit ? (this->cols() * innerStride()) + : (this->rows() * innerStride()); + } + + /** Constructor in the fixed-size case. + * + * \param dataPtr pointer to the array to map + * \param stride optional Stride object, passing the strides. + */ + EIGEN_DEVICE_FUNC + explicit inline Map(PointerArgType dataPtr, const StrideType& stride = StrideType()) + : Base(cast_to_pointer_type(dataPtr)), m_stride(stride) + { + PlainObjectType::Base::_check_template_params(); + } + + /** Constructor in the dynamic-size vector case. + * + * \param dataPtr pointer to the array to map + * \param size the size of the vector expression + * \param stride optional Stride object, passing the strides. + */ + EIGEN_DEVICE_FUNC + inline Map(PointerArgType dataPtr, Index size, const StrideType& stride = StrideType()) + : Base(cast_to_pointer_type(dataPtr), size), m_stride(stride) + { + PlainObjectType::Base::_check_template_params(); + } + + /** Constructor in the dynamic-size matrix case. + * + * \param dataPtr pointer to the array to map + * \param rows the number of rows of the matrix expression + * \param cols the number of columns of the matrix expression + * \param stride optional Stride object, passing the strides. + */ + EIGEN_DEVICE_FUNC + inline Map(PointerArgType dataPtr, Index rows, Index cols, const StrideType& stride = StrideType()) + : Base(cast_to_pointer_type(dataPtr), rows, cols), m_stride(stride) + { + PlainObjectType::Base::_check_template_params(); + } + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + + protected: + StrideType m_stride; +}; + + +} // end namespace Eigen + +#endif // EIGEN_MAP_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MapBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MapBase.h new file mode 100644 index 0000000..668922f --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MapBase.h @@ -0,0 +1,303 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007-2010 Benoit Jacob +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MAPBASE_H +#define EIGEN_MAPBASE_H + +#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \ + EIGEN_STATIC_ASSERT((int(internal::evaluator::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \ + YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT) + +namespace Eigen { + +/** \ingroup Core_Module + * + * \brief Base class for dense Map and Block expression with direct access + * + * This base class provides the const low-level accessors (e.g. coeff, coeffRef) of dense + * Map and Block objects with direct access. + * Typical users do not have to directly deal with this class. + * + * This class can be extended by through the macro plugin \c EIGEN_MAPBASE_PLUGIN. + * See \link TopicCustomizing_Plugins customizing Eigen \endlink for details. + * + * The \c Derived class has to provide the following two methods describing the memory layout: + * \code Index innerStride() const; \endcode + * \code Index outerStride() const; \endcode + * + * \sa class Map, class Block + */ +template class MapBase + : public internal::dense_xpr_base::type +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + enum { + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + InnerStrideAtCompileTime = internal::traits::InnerStrideAtCompileTime, + SizeAtCompileTime = Base::SizeAtCompileTime + }; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + typedef typename NumTraits::Real RealScalar; + typedef typename internal::conditional< + bool(internal::is_lvalue::value), + Scalar *, + const Scalar *>::type + PointerType; + + using Base::derived; +// using Base::RowsAtCompileTime; +// using Base::ColsAtCompileTime; +// using Base::SizeAtCompileTime; + using Base::MaxRowsAtCompileTime; + using Base::MaxColsAtCompileTime; + using Base::MaxSizeAtCompileTime; + using Base::IsVectorAtCompileTime; + using Base::Flags; + using Base::IsRowMajor; + + using Base::rows; + using Base::cols; + using Base::size; + using Base::coeff; + using Base::coeffRef; + using Base::lazyAssign; + using Base::eval; + + using Base::innerStride; + using Base::outerStride; + using Base::rowStride; + using Base::colStride; + + // bug 217 - compile error on ICC 11.1 + using Base::operator=; + + typedef typename Base::CoeffReturnType CoeffReturnType; + + /** \copydoc DenseBase::rows() */ + EIGEN_DEVICE_FUNC inline Index rows() const { return m_rows.value(); } + /** \copydoc DenseBase::cols() */ + EIGEN_DEVICE_FUNC inline Index cols() const { return m_cols.value(); } + + /** Returns a pointer to the first coefficient of the matrix or vector. + * + * \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride(). + * + * \sa innerStride(), outerStride() + */ + EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_data; } + + /** \copydoc PlainObjectBase::coeff(Index,Index) const */ + EIGEN_DEVICE_FUNC + inline const Scalar& coeff(Index rowId, Index colId) const + { + return m_data[colId * colStride() + rowId * rowStride()]; + } + + /** \copydoc PlainObjectBase::coeff(Index) const */ + EIGEN_DEVICE_FUNC + inline const Scalar& coeff(Index index) const + { + EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) + return m_data[index * innerStride()]; + } + + /** \copydoc PlainObjectBase::coeffRef(Index,Index) const */ + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index rowId, Index colId) const + { + return this->m_data[colId * colStride() + rowId * rowStride()]; + } + + /** \copydoc PlainObjectBase::coeffRef(Index) const */ + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index index) const + { + EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) + return this->m_data[index * innerStride()]; + } + + /** \internal */ + template + inline PacketScalar packet(Index rowId, Index colId) const + { + return internal::ploadt + (m_data + (colId * colStride() + rowId * rowStride())); + } + + /** \internal */ + template + inline PacketScalar packet(Index index) const + { + EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) + return internal::ploadt(m_data + index * innerStride()); + } + + /** \internal Constructor for fixed size matrices or vectors */ + EIGEN_DEVICE_FUNC + explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime) + { + EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) + checkSanity(); + } + + /** \internal Constructor for dynamically sized vectors */ + EIGEN_DEVICE_FUNC + inline MapBase(PointerType dataPtr, Index vecSize) + : m_data(dataPtr), + m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)), + m_cols(ColsAtCompileTime == Dynamic ? vecSize : Index(ColsAtCompileTime)) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + eigen_assert(vecSize >= 0); + eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize); + checkSanity(); + } + + /** \internal Constructor for dynamically sized matrices */ + EIGEN_DEVICE_FUNC + inline MapBase(PointerType dataPtr, Index rows, Index cols) + : m_data(dataPtr), m_rows(rows), m_cols(cols) + { + eigen_assert( (dataPtr == 0) + || ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) + && cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols))); + checkSanity(); + } + + #ifdef EIGEN_MAPBASE_PLUGIN + #include EIGEN_MAPBASE_PLUGIN + #endif + + protected: + + template + EIGEN_DEVICE_FUNC + void checkSanity(typename internal::enable_if<(internal::traits::Alignment>0),void*>::type = 0) const + { +#if EIGEN_MAX_ALIGN_BYTES>0 + // innerStride() is not set yet when this function is called, so we optimistically assume the lowest plausible value: + const Index minInnerStride = InnerStrideAtCompileTime == Dynamic ? 1 : Index(InnerStrideAtCompileTime); + EIGEN_ONLY_USED_FOR_DEBUG(minInnerStride); + eigen_assert(( ((internal::UIntPtr(m_data) % internal::traits::Alignment) == 0) + || (cols() * rows() * minInnerStride * sizeof(Scalar)) < internal::traits::Alignment ) && "data is not aligned"); +#endif + } + + template + EIGEN_DEVICE_FUNC + void checkSanity(typename internal::enable_if::Alignment==0,void*>::type = 0) const + {} + + PointerType m_data; + const internal::variable_if_dynamic m_rows; + const internal::variable_if_dynamic m_cols; +}; + +/** \ingroup Core_Module + * + * \brief Base class for non-const dense Map and Block expression with direct access + * + * This base class provides the non-const low-level accessors (e.g. coeff and coeffRef) of + * dense Map and Block objects with direct access. + * It inherits MapBase which defines the const variant for reading specific entries. + * + * \sa class Map, class Block + */ +template class MapBase + : public MapBase +{ + typedef MapBase ReadOnlyMapBase; + public: + + typedef MapBase Base; + + typedef typename Base::Scalar Scalar; + typedef typename Base::PacketScalar PacketScalar; + typedef typename Base::StorageIndex StorageIndex; + typedef typename Base::PointerType PointerType; + + using Base::derived; + using Base::rows; + using Base::cols; + using Base::size; + using Base::coeff; + using Base::coeffRef; + + using Base::innerStride; + using Base::outerStride; + using Base::rowStride; + using Base::colStride; + + typedef typename internal::conditional< + internal::is_lvalue::value, + Scalar, + const Scalar + >::type ScalarWithConstIfNotLvalue; + + EIGEN_DEVICE_FUNC + inline const Scalar* data() const { return this->m_data; } + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error + + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col) + { + return this->m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC + inline ScalarWithConstIfNotLvalue& coeffRef(Index index) + { + EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) + return this->m_data[index * innerStride()]; + } + + template + inline void writePacket(Index row, Index col, const PacketScalar& val) + { + internal::pstoret + (this->m_data + (col * colStride() + row * rowStride()), val); + } + + template + inline void writePacket(Index index, const PacketScalar& val) + { + EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) + internal::pstoret + (this->m_data + index * innerStride(), val); + } + + EIGEN_DEVICE_FUNC explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {} + EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {} + EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index rows, Index cols) : Base(dataPtr, rows, cols) {} + + EIGEN_DEVICE_FUNC + Derived& operator=(const MapBase& other) + { + ReadOnlyMapBase::Base::operator=(other); + return derived(); + } + + // In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base, + // see bugs 821 and 920. + using ReadOnlyMapBase::Base::operator=; +}; + +#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS + +} // end namespace Eigen + +#endif // EIGEN_MAPBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MathFunctions.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MathFunctions.h new file mode 100644 index 0000000..4e6053b --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MathFunctions.h @@ -0,0 +1,1780 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATHFUNCTIONS_H +#define EIGEN_MATHFUNCTIONS_H + +// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html +// TODO this should better be moved to NumTraits +#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L + +namespace Eigen { + +// On WINCE, std::abs is defined for int only, so let's defined our own overloads: +// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. +#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 +long abs(long x) { return (labs(x)); } +double abs(double x) { return (fabs(x)); } +float abs(float x) { return (fabsf(x)); } +long double abs(long double x) { return (fabsl(x)); } +#endif + +namespace internal { + +/** \internal \class global_math_functions_filtering_base + * + * What it does: + * Defines a typedef 'type' as follows: + * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then + * global_math_functions_filtering_base::type is a typedef for it. + * - otherwise, global_math_functions_filtering_base::type is a typedef for T. + * + * How it's used: + * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. + * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know + * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase. + * So we must make sure to use sin_impl > and not sin_impl, otherwise our partial specialization + * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. + * + * How it's implemented: + * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace + * the typename dummy by an integer template parameter, it doesn't work anymore! + */ + +template +struct global_math_functions_filtering_base +{ + typedef T type; +}; + +template struct always_void { typedef void type; }; + +template +struct global_math_functions_filtering_base + ::type + > +{ + typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; +}; + +#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl::type> +#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval::type>::type + +/**************************************************************************** +* Implementation of real * +****************************************************************************/ + +template::IsComplex> +struct real_default_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return x; + } +}; + +template +struct real_default_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + using std::real; + return real(x); + } +}; + +template struct real_impl : real_default_impl {}; + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template +struct real_impl > +{ + typedef T RealScalar; + EIGEN_DEVICE_FUNC + static inline T run(const std::complex& x) + { + return x.real(); + } +}; +#endif + +template +struct real_retval +{ + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of imag * +****************************************************************************/ + +template::IsComplex> +struct imag_default_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar&) + { + return RealScalar(0); + } +}; + +template +struct imag_default_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + using std::imag; + return imag(x); + } +}; + +template struct imag_impl : imag_default_impl {}; + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template +struct imag_impl > +{ + typedef T RealScalar; + EIGEN_DEVICE_FUNC + static inline T run(const std::complex& x) + { + return x.imag(); + } +}; +#endif + +template +struct imag_retval +{ + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of real_ref * +****************************************************************************/ + +template +struct real_ref_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar& run(Scalar& x) + { + return reinterpret_cast(&x)[0]; + } + EIGEN_DEVICE_FUNC + static inline const RealScalar& run(const Scalar& x) + { + return reinterpret_cast(&x)[0]; + } +}; + +template +struct real_ref_retval +{ + typedef typename NumTraits::Real & type; +}; + +/**************************************************************************** +* Implementation of imag_ref * +****************************************************************************/ + +template +struct imag_ref_default_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar& run(Scalar& x) + { + return reinterpret_cast(&x)[1]; + } + EIGEN_DEVICE_FUNC + static inline const RealScalar& run(const Scalar& x) + { + return reinterpret_cast(&x)[1]; + } +}; + +template +struct imag_ref_default_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(Scalar&) + { + return Scalar(0); + } + EIGEN_DEVICE_FUNC + static inline const Scalar run(const Scalar&) + { + return Scalar(0); + } +}; + +template +struct imag_ref_impl : imag_ref_default_impl::IsComplex> {}; + +template +struct imag_ref_retval +{ + typedef typename NumTraits::Real & type; +}; + +/**************************************************************************** +* Implementation of conj * +****************************************************************************/ + +template::IsComplex> +struct conj_default_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + return x; + } +}; + +template +struct conj_default_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + using std::conj; + return conj(x); + } +}; + +template struct conj_impl : conj_default_impl {}; + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template +struct conj_impl > +{ + EIGEN_DEVICE_FUNC + static inline std::complex run(const std::complex& x) + { + return std::complex(x.real(), -x.imag()); + } +}; +#endif + +template +struct conj_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of abs2 * +****************************************************************************/ + +template +struct abs2_impl_default +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return x*x; + } +}; + +template +struct abs2_impl_default // IsComplex +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return x.real()*x.real() + x.imag()*x.imag(); + } +}; + +template +struct abs2_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return abs2_impl_default::IsComplex>::run(x); + } +}; + +template +struct abs2_retval +{ + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of norm1 * +****************************************************************************/ + +template +struct norm1_default_impl; + +template +struct norm1_default_impl +{ + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + EIGEN_USING_STD_MATH(abs); + return abs(x.real()) + abs(x.imag()); + } +}; + +template +struct norm1_default_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + EIGEN_USING_STD_MATH(abs); + return abs(x); + } +}; + +template +struct norm1_impl : norm1_default_impl::IsComplex> {}; + +template +struct norm1_retval +{ + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of hypot * +****************************************************************************/ + +template struct hypot_impl; + +template +struct hypot_retval +{ + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of cast * +****************************************************************************/ + +template +struct cast_impl +{ + EIGEN_DEVICE_FUNC + static inline NewType run(const OldType& x) + { + return static_cast(x); + } +}; + +// here, for once, we're plainly returning NewType: we don't want cast to do weird things. + +template +EIGEN_DEVICE_FUNC +inline NewType cast(const OldType& x) +{ + return cast_impl::run(x); +} + +/**************************************************************************** +* Implementation of round * +****************************************************************************/ + +#if EIGEN_HAS_CXX11_MATH + template + struct round_impl { + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) + EIGEN_USING_STD_MATH(round); + return round(x); + } + }; +#else + template + struct round_impl + { + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) + EIGEN_USING_STD_MATH(floor); + EIGEN_USING_STD_MATH(ceil); + return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); + } + }; +#endif + +template +struct round_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of arg * +****************************************************************************/ + +#if EIGEN_HAS_CXX11_MATH + template + struct arg_impl { + static inline Scalar run(const Scalar& x) + { + #if defined(EIGEN_HIP_DEVICE_COMPILE) + // HIP does not seem to have a native device side implementation for the math routine "arg" + using std::arg; + #else + EIGEN_USING_STD_MATH(arg); + #endif + return arg(x); + } + }; +#else + template::IsComplex> + struct arg_default_impl + { + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } + }; + + template + struct arg_default_impl + { + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + EIGEN_USING_STD_MATH(arg); + return arg(x); + } + }; + + template struct arg_impl : arg_default_impl {}; +#endif + +template +struct arg_retval +{ + typedef typename NumTraits::Real type; +}; + +/**************************************************************************** +* Implementation of expm1 * +****************************************************************************/ + +// This implementation is based on GSL Math's expm1. +namespace std_fallback { + // fallback expm1 implementation in case there is no expm1(Scalar) function in namespace of Scalar, + // or that there is no suitable std::expm1 function available. Implementation + // attributed to Kahan. See: http://www.plunk.org/~hatch/rightway.php. + template + EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + typedef typename NumTraits::Real RealScalar; + + EIGEN_USING_STD_MATH(exp); + Scalar u = exp(x); + if (numext::equal_strict(u, Scalar(1))) { + return x; + } + Scalar um1 = u - RealScalar(1); + if (numext::equal_strict(um1, Scalar(-1))) { + return RealScalar(-1); + } + + EIGEN_USING_STD_MATH(log); + Scalar logu = log(u); + return numext::equal_strict(u, logu) ? u : (u - RealScalar(1)) * x / logu; + } +} + +template +struct expm1_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + #if EIGEN_HAS_CXX11_MATH + using std::expm1; + #else + using std_fallback::expm1; + #endif + return expm1(x); + } +}; + +// Specialization for complex types that are not supported by std::expm1. +template +struct expm1_impl > { + EIGEN_DEVICE_FUNC static inline std::complex run( + const std::complex& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar) + return std_fallback::expm1(x); + } +}; + +template +struct expm1_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of log1p * +****************************************************************************/ + +namespace std_fallback { + // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, + // or that there is no suitable std::log1p function available + template + EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + typedef typename NumTraits::Real RealScalar; + EIGEN_USING_STD_MATH(log); + Scalar x1p = RealScalar(1) + x; + Scalar log_1p = log(x1p); + const bool is_small = numext::equal_strict(x1p, Scalar(1)); + const bool is_inf = numext::equal_strict(x1p, log_1p); + return (is_small || is_inf) ? x : x * (log_1p / (x1p - RealScalar(1))); + } +} + +template +struct log1p_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + #if EIGEN_HAS_CXX11_MATH + using std::log1p; + #else + using std_fallback::log1p; + #endif + return log1p(x); + } +}; + +// Specialization for complex types that are not supported by std::log1p. +template +struct log1p_impl > { + EIGEN_DEVICE_FUNC static inline std::complex run( + const std::complex& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar) + return std_fallback::log1p(x); + } +}; + +template +struct log1p_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of pow * +****************************************************************************/ + +template::IsInteger&&NumTraits::IsInteger> +struct pow_impl +{ + //typedef Scalar retval; + typedef typename ScalarBinaryOpTraits >::ReturnType result_type; + static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) + { + EIGEN_USING_STD_MATH(pow); + return pow(x, y); + } +}; + +template +struct pow_impl +{ + typedef ScalarX result_type; + static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) + { + ScalarX res(1); + eigen_assert(!NumTraits::IsSigned || y >= 0); + if(y & 1) res *= x; + y >>= 1; + while(y) + { + x *= x; + if(y&1) res *= x; + y >>= 1; + } + return res; + } +}; + +/**************************************************************************** +* Implementation of random * +****************************************************************************/ + +template +struct random_default_impl {}; + +template +struct random_impl : random_default_impl::IsComplex, NumTraits::IsInteger> {}; + +template +struct random_retval +{ + typedef Scalar type; +}; + +template inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); +template inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); + +template +struct random_default_impl +{ + static inline Scalar run(const Scalar& x, const Scalar& y) + { + return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); + } + static inline Scalar run() + { + return run(Scalar(NumTraits::IsSigned ? -1 : 0), Scalar(1)); + } +}; + +enum { + meta_floor_log2_terminate, + meta_floor_log2_move_up, + meta_floor_log2_move_down, + meta_floor_log2_bogus +}; + +template struct meta_floor_log2_selector +{ + enum { middle = (lower + upper) / 2, + value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) + : (n < (1 << middle)) ? int(meta_floor_log2_move_down) + : (n==0) ? int(meta_floor_log2_bogus) + : int(meta_floor_log2_move_up) + }; +}; + +template::value> +struct meta_floor_log2 {}; + +template +struct meta_floor_log2 +{ + enum { value = meta_floor_log2::middle>::value }; +}; + +template +struct meta_floor_log2 +{ + enum { value = meta_floor_log2::middle, upper>::value }; +}; + +template +struct meta_floor_log2 +{ + enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; +}; + +template +struct meta_floor_log2 +{ + // no value, error at compile time +}; + +template +struct random_default_impl +{ + static inline Scalar run(const Scalar& x, const Scalar& y) + { + if (y <= x) + return x; + // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself. + typedef typename make_unsigned::type ScalarU; + // ScalarX is the widest of ScalarU and unsigned int. + // We'll deal only with ScalarX and unsigned int below thus avoiding signed + // types and arithmetic and signed overflows (which are undefined behavior). + typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX; + // The following difference doesn't overflow, provided our integer types are two's + // complement and have the same number of padding bits in signed and unsigned variants. + // This is the case in most modern implementations of C++. + ScalarX range = ScalarX(y) - ScalarX(x); + ScalarX offset = 0; + ScalarX divisor = 1; + ScalarX multiplier = 1; + const unsigned rand_max = RAND_MAX; + if (range <= rand_max) divisor = (rand_max + 1) / (range + 1); + else multiplier = 1 + range / (rand_max + 1); + // Rejection sampling. + do { + offset = (unsigned(std::rand()) * multiplier) / divisor; + } while (offset > range); + return Scalar(ScalarX(x) + offset); + } + + static inline Scalar run() + { +#ifdef EIGEN_MAKING_DOCS + return run(Scalar(NumTraits::IsSigned ? -10 : 0), Scalar(10)); +#else + enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, + scalar_bits = sizeof(Scalar) * CHAR_BIT, + shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), + offset = NumTraits::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 + }; + return Scalar((std::rand() >> shift) - offset); +#endif + } +}; + +template +struct random_default_impl +{ + static inline Scalar run(const Scalar& x, const Scalar& y) + { + return Scalar(random(x.real(), y.real()), + random(x.imag(), y.imag())); + } + static inline Scalar run() + { + typedef typename NumTraits::Real RealScalar; + return Scalar(random(), random()); + } +}; + +template +inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) +{ + return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); +} + +template +inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() +{ + return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); +} + +// Implementation of is* functions + +// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. +#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) +#define EIGEN_USE_STD_FPCLASSIFY 1 +#else +#define EIGEN_USE_STD_FPCLASSIFY 0 +#endif + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if::value,bool>::type +isnan_impl(const T&) { return false; } + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if::value,bool>::type +isinf_impl(const T&) { return false; } + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if::value,bool>::type +isfinite_impl(const T&) { return true; } + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral::value)&&(!NumTraits::IsComplex),bool>::type +isfinite_impl(const T& x) +{ + #if defined(EIGEN_GPU_COMPILE_PHASE) + return (::isfinite)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isfinite; + return isfinite EIGEN_NOT_A_MACRO (x); + #else + return x<=NumTraits::highest() && x>=NumTraits::lowest(); + #endif +} + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral::value)&&(!NumTraits::IsComplex),bool>::type +isinf_impl(const T& x) +{ + #if defined(EIGEN_GPU_COMPILE_PHASE) + return (::isinf)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isinf; + return isinf EIGEN_NOT_A_MACRO (x); + #else + return x>NumTraits::highest() || x::lowest(); + #endif +} + +template +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral::value)&&(!NumTraits::IsComplex),bool>::type +isnan_impl(const T& x) +{ + #if defined(EIGEN_GPU_COMPILE_PHASE) + return (::isnan)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isnan; + return isnan EIGEN_NOT_A_MACRO (x); + #else + return x != x; + #endif +} + +#if (!EIGEN_USE_STD_FPCLASSIFY) + +#if EIGEN_COMP_MSVC + +template EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) +{ + return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; +} + +//MSVC defines a _isnan builtin function, but for double only +EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } +EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; } +EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; } + +EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } +EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); } +EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); } + +#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) + +#if EIGEN_GNUC_AT_LEAST(5,0) + #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) +#else + // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), + // while the second prevent too aggressive optimizations in fast-math mode: + #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) +#endif + +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } + +#undef EIGEN_TMP_NOOPT_ATTRIB + +#endif + +#endif + +// The following overload are defined at the end of this file +template EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex& x); +template EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex& x); +template EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex& x); + +template T generic_fast_tanh_float(const T& a_x); +} // end namespace internal + +/**************************************************************************** +* Generic math functions * +****************************************************************************/ + +namespace numext { + +#if (!defined(EIGEN_GPUCC) || defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) +{ + EIGEN_USING_STD_MATH(min); + return min EIGEN_NOT_A_MACRO (x,y); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) +{ + EIGEN_USING_STD_MATH(max); + return max EIGEN_NOT_A_MACRO (x,y); +} +#else +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) +{ + return y < x ? y : x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) +{ + return fminf(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y) +{ + return fmin(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE long double mini(const long double& x, const long double& y) +{ +#if defined(EIGEN_HIPCC) + // no "fminl" on HIP yet + return (x < y) ? x : y; +#else + return fminl(x, y); +#endif +} + +template +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) +{ + return x < y ? y : x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) +{ + return fmaxf(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y) +{ + return fmax(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE long double maxi(const long double& x, const long double& y) +{ +#if defined(EIGEN_HIPCC) + // no "fmaxl" on HIP yet + return (x > y) ? x : y; +#else + return fmaxl(x, y); +#endif +} +#endif + +#if defined(SYCL_DEVICE_ONLY) + + +#define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_long) +#define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_long) +#define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong) +#define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong) +#define SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) +#define SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) +#define SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC,cl::sycl::cl_double) +#define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC,cl::sycl::cl_double) +#define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(NAME, FUNC, RET_TYPE) \ + SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_float) \ + SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_double) + +#define SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \ +template<> \ + EIGEN_DEVICE_FUNC \ + EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE& x) { \ + return cl::sycl::FUNC(x); \ + } + +#define SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, TYPE) \ + SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, TYPE, TYPE) + +#define SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE1, ARG_TYPE2) \ + template<> \ + EIGEN_DEVICE_FUNC \ + EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE1& x, const ARG_TYPE2& y) { \ + return cl::sycl::FUNC(x, y); \ + } + +#define SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \ + SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE, ARG_TYPE) + +#define SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, TYPE) \ + SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, TYPE, TYPE) + +SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(mini, min) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(mini, fmin) +SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(maxi, max) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(maxi, fmax) + +#endif + + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) +{ + return internal::real_ref_impl::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) +{ + return internal::imag_ref_impl::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); +} + +EIGEN_DEVICE_FUNC +inline bool abs2(bool x) { return x; } + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); +} + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) +{ + return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); +} + +#if defined(SYCL_DEVICE_ONLY) + SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(hypot, hypot) +#endif + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log1p, log1p) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float log1p(const float &x) { return ::log1pf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double log1p(const double &x) { return ::log1p(x); } +#endif + +template +EIGEN_DEVICE_FUNC +inline typename internal::pow_impl::result_type pow(const ScalarX& x, const ScalarY& y) +{ + return internal::pow_impl::run(x, y); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(pow, pow) +#endif + +template EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); } +template EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); } +template EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isnan, isnan, bool) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isinf, isinf, bool) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isfinite, isfinite, bool) +#endif + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(round, round) +#endif + +template +EIGEN_DEVICE_FUNC +T (floor)(const T& x) +{ + EIGEN_USING_STD_MATH(floor); + return floor(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(floor, floor) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float floor(const float &x) { return ::floorf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double floor(const double &x) { return ::floor(x); } +#endif + +template +EIGEN_DEVICE_FUNC +T (ceil)(const T& x) +{ + EIGEN_USING_STD_MATH(ceil); + return ceil(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(ceil, ceil) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float ceil(const float &x) { return ::ceilf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double ceil(const double &x) { return ::ceil(x); } +#endif + + +/** Log base 2 for 32 bits positive integers. + * Conveniently returns 0 for x==0. */ +inline int log2(int x) +{ + eigen_assert(x>=0); + unsigned int v(x); + static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return table[(v * 0x07C4ACDDU) >> 27]; +} + +/** \returns the square root of \a x. + * + * It is essentially equivalent to + * \code using std::sqrt; return sqrt(x); \endcode + * but slightly faster for float/double and some compilers (e.g., gcc), thanks to + * specializations when SSE is enabled. + * + * It's usage is justified in performance critical functions, like norm/normalize. + */ +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sqrt(const T &x) +{ + EIGEN_USING_STD_MATH(sqrt); + return sqrt(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sqrt, sqrt) +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T log(const T &x) { + EIGEN_USING_STD_MATH(log); + return log(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log, log) +#endif + + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float log(const float &x) { return ::logf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double log(const double &x) { return ::log(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +typename internal::enable_if::IsSigned || NumTraits::IsComplex,typename NumTraits::Real>::type +abs(const T &x) { + EIGEN_USING_STD_MATH(abs); + return abs(x); +} + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +typename internal::enable_if::IsSigned || NumTraits::IsComplex),typename NumTraits::Real>::type +abs(const T &x) { + return x; +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(abs, abs) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(abs, fabs) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float abs(const float &x) { return ::fabsf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double abs(const double &x) { return ::fabs(x); } + +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float abs(const std::complex& x) { + return ::hypotf(x.real(), x.imag()); +} + +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double abs(const std::complex& x) { + return ::hypot(x.real(), x.imag()); +} +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T exp(const T &x) { + EIGEN_USING_STD_MATH(exp); + return exp(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float exp(const float &x) { return ::expf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double exp(const double &x) { return ::exp(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +std::complex exp(const std::complex& x) { + float com = ::expf(x.real()); + float res_real = com * ::cosf(x.imag()); + float res_imag = com * ::sinf(x.imag()); + return std::complex(res_real, res_imag); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +std::complex exp(const std::complex& x) { + double com = ::exp(x.real()); + double res_real = com * ::cos(x.imag()); + double res_imag = com * ::sin(x.imag()); + return std::complex(res_real, res_imag); +} +#endif + +template +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar) expm1(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(expm1, expm1) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float expm1(const float &x) { return ::expm1f(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double expm1(const double &x) { return ::expm1(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T cos(const T &x) { + EIGEN_USING_STD_MATH(cos); + return cos(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cos,cos) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float cos(const float &x) { return ::cosf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double cos(const double &x) { return ::cos(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sin(const T &x) { + EIGEN_USING_STD_MATH(sin); + return sin(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sin, sin) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sin(const float &x) { return ::sinf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sin(const double &x) { return ::sin(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T tan(const T &x) { + EIGEN_USING_STD_MATH(tan); + return tan(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tan, tan) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tan(const float &x) { return ::tanf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double tan(const double &x) { return ::tan(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T acos(const T &x) { + EIGEN_USING_STD_MATH(acos); + return acos(x); +} + +#if EIGEN_HAS_CXX11_MATH +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T acosh(const T &x) { + EIGEN_USING_STD_MATH(acosh); + return acosh(x); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acosh, acosh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float acos(const float &x) { return ::acosf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double acos(const double &x) { return ::acos(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T asin(const T &x) { + EIGEN_USING_STD_MATH(asin); + return asin(x); +} + +#if EIGEN_HAS_CXX11_MATH +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T asinh(const T &x) { + EIGEN_USING_STD_MATH(asinh); + return asinh(x); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asinh, asinh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float asin(const float &x) { return ::asinf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double asin(const double &x) { return ::asin(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T atan(const T &x) { + EIGEN_USING_STD_MATH(atan); + return atan(x); +} + +#if EIGEN_HAS_CXX11_MATH +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T atanh(const T &x) { + EIGEN_USING_STD_MATH(atanh); + return atanh(x); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atanh, atanh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float atan(const float &x) { return ::atanf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double atan(const double &x) { return ::atan(x); } +#endif + + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T cosh(const T &x) { + EIGEN_USING_STD_MATH(cosh); + return cosh(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cosh, cosh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float cosh(const float &x) { return ::coshf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double cosh(const double &x) { return ::cosh(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sinh(const T &x) { + EIGEN_USING_STD_MATH(sinh); + return sinh(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sinh, sinh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sinh(const float &x) { return ::sinhf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sinh(const double &x) { return ::sinh(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T tanh(const T &x) { + EIGEN_USING_STD_MATH(tanh); + return tanh(x); +} + +#if (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH && !defined(SYCL_DEVICE_ONLY) +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tanh(float x) { return internal::generic_fast_tanh_float(x); } +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tanh, tanh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tanh(const float &x) { return ::tanhf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double tanh(const double &x) { return ::tanh(x); } +#endif + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T fmod(const T& a, const T& b) { + EIGEN_USING_STD_MATH(fmod); + return fmod(a, b); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(fmod, fmod) +#endif + +#if defined(EIGEN_GPUCC) +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float fmod(const float& a, const float& b) { + return ::fmodf(a, b); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double fmod(const double& a, const double& b) { + return ::fmod(a, b); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +#undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY +#undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY +#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY +#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY +#undef SYCL_SPECIALIZE_INTEGER_TYPES_BINARY +#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY +#undef SYCL_SPECIALIZE_FLOATING_TYPES_BINARY +#undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY +#undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE +#undef SYCL_SPECIALIZE_GEN_UNARY_FUNC +#undef SYCL_SPECIALIZE_UNARY_FUNC +#undef SYCL_SPECIALIZE_GEN1_BINARY_FUNC +#undef SYCL_SPECIALIZE_GEN2_BINARY_FUNC +#undef SYCL_SPECIALIZE_BINARY_FUNC +#endif + +} // end namespace numext + +namespace internal { + +template +EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex& x) +{ + return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); +} + +template +EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex& x) +{ + return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); +} + +template +EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex& x) +{ + return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); +} + +/**************************************************************************** +* Implementation of fuzzy comparisons * +****************************************************************************/ + +template +struct scalar_fuzzy_default_impl {}; + +template +struct scalar_fuzzy_default_impl +{ + typedef typename NumTraits::Real RealScalar; + template EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) + { + return numext::abs(x) <= numext::abs(y) * prec; + } + EIGEN_DEVICE_FUNC + static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) + { + return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; + } + EIGEN_DEVICE_FUNC + static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) + { + return x <= y || isApprox(x, y, prec); + } +}; + +template +struct scalar_fuzzy_default_impl +{ + typedef typename NumTraits::Real RealScalar; + template EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) + { + return x == Scalar(0); + } + EIGEN_DEVICE_FUNC + static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) + { + return x == y; + } + EIGEN_DEVICE_FUNC + static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) + { + return x <= y; + } +}; + +template +struct scalar_fuzzy_default_impl +{ + typedef typename NumTraits::Real RealScalar; + template EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) + { + return numext::abs2(x) <= numext::abs2(y) * prec * prec; + } + EIGEN_DEVICE_FUNC + static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) + { + return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; + } +}; + +template +struct scalar_fuzzy_impl : scalar_fuzzy_default_impl::IsComplex, NumTraits::IsInteger> {}; + +template EIGEN_DEVICE_FUNC +inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, + const typename NumTraits::Real &precision = NumTraits::dummy_precision()) +{ + return scalar_fuzzy_impl::template isMuchSmallerThan(x, y, precision); +} + +template EIGEN_DEVICE_FUNC +inline bool isApprox(const Scalar& x, const Scalar& y, + const typename NumTraits::Real &precision = NumTraits::dummy_precision()) +{ + return scalar_fuzzy_impl::isApprox(x, y, precision); +} + +template EIGEN_DEVICE_FUNC +inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, + const typename NumTraits::Real &precision = NumTraits::dummy_precision()) +{ + return scalar_fuzzy_impl::isApproxOrLessThan(x, y, precision); +} + +/****************************************** +*** The special case of the bool type *** +******************************************/ + +template<> struct random_impl +{ + static inline bool run() + { + return random(0,1)==0 ? false : true; + } +}; + +template<> struct scalar_fuzzy_impl +{ + typedef bool RealScalar; + + template EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) + { + return !x; + } + + EIGEN_DEVICE_FUNC + static inline bool isApprox(bool x, bool y, bool) + { + return x == y; + } + + EIGEN_DEVICE_FUNC + static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) + { + return (!x) || y; + } + +}; + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATHFUNCTIONS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MathFunctionsImpl.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MathFunctionsImpl.h new file mode 100644 index 0000000..aff3967 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MathFunctionsImpl.h @@ -0,0 +1,97 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) +// Copyright (C) 2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATHFUNCTIONSIMPL_H +#define EIGEN_MATHFUNCTIONSIMPL_H + +namespace Eigen { + +namespace internal { + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) + Doesn't do anything fancy, just a 13/6-degree rational interpolant which + is accurate up to a couple of ulp in the range [-9, 9], outside of which + the tanh(x) = +/-1. + + This implementation works on both scalars and packets. +*/ +template +T generic_fast_tanh_float(const T& a_x) +{ + // Clamp the inputs to the range [-9, 9] since anything outside + // this range is +/-1.0f in single-precision. + const T plus_9 = pset1(9.f); + const T minus_9 = pset1(-9.f); + const T x = pmax(pmin(a_x, plus_9), minus_9); + // The monomial coefficients of the numerator polynomial (odd). + const T alpha_1 = pset1(4.89352455891786e-03f); + const T alpha_3 = pset1(6.37261928875436e-04f); + const T alpha_5 = pset1(1.48572235717979e-05f); + const T alpha_7 = pset1(5.12229709037114e-08f); + const T alpha_9 = pset1(-8.60467152213735e-11f); + const T alpha_11 = pset1(2.00018790482477e-13f); + const T alpha_13 = pset1(-2.76076847742355e-16f); + + // The monomial coefficients of the denominator polynomial (even). + const T beta_0 = pset1(4.89352518554385e-03f); + const T beta_2 = pset1(2.26843463243900e-03f); + const T beta_4 = pset1(1.18534705686654e-04f); + const T beta_6 = pset1(1.19825839466702e-06f); + + // Since the polynomials are odd/even, we need x^2. + const T x2 = pmul(x, x); + + // Evaluate the numerator polynomial p. + T p = pmadd(x2, alpha_13, alpha_11); + p = pmadd(x2, p, alpha_9); + p = pmadd(x2, p, alpha_7); + p = pmadd(x2, p, alpha_5); + p = pmadd(x2, p, alpha_3); + p = pmadd(x2, p, alpha_1); + p = pmul(x, p); + + // Evaluate the denominator polynomial p. + T q = pmadd(x2, beta_6, beta_4); + q = pmadd(x2, q, beta_2); + q = pmadd(x2, q, beta_0); + + // Divide the numerator by the denominator. + return pdiv(p, q); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y) +{ + EIGEN_USING_STD_MATH(sqrt); + RealScalar p, qp; + p = numext::maxi(x,y); + if(p==RealScalar(0)) return RealScalar(0); + qp = numext::mini(y,x) / p; + return p * sqrt(RealScalar(1) + qp*qp); +} + +template +struct hypot_impl +{ + typedef typename NumTraits::Real RealScalar; + static EIGEN_DEVICE_FUNC + inline RealScalar run(const Scalar& x, const Scalar& y) + { + EIGEN_USING_STD_MATH(abs); + return positive_real_hypot(abs(x), abs(y)); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATHFUNCTIONSIMPL_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Matrix.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Matrix.h new file mode 100644 index 0000000..fb72382 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Matrix.h @@ -0,0 +1,563 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2010 Benoit Jacob +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_H +#define EIGEN_MATRIX_H + +namespace Eigen { + +namespace internal { +template +struct traits > +{ +private: + enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret }; + typedef typename find_best_packet<_Scalar,size>::type PacketScalar; + enum { + row_major_bit = _Options&RowMajor ? RowMajorBit : 0, + is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic, + max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols, + default_alignment = compute_default_alignment<_Scalar,max_size>::value, + actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0, + required_alignment = unpacket_traits::alignment, + packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0 + }; + +public: + typedef _Scalar Scalar; + typedef Dense StorageKind; + typedef Eigen::Index StorageIndex; + typedef MatrixXpr XprKind; + enum { + RowsAtCompileTime = _Rows, + ColsAtCompileTime = _Cols, + MaxRowsAtCompileTime = _MaxRows, + MaxColsAtCompileTime = _MaxCols, + Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret, + Options = _Options, + InnerStrideAtCompileTime = 1, + OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime, + + // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase + EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit, + Alignment = actual_alignment + }; +}; +} + +/** \class Matrix + * \ingroup Core_Module + * + * \brief The matrix class, also used for vectors and row-vectors + * + * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen. + * Vectors are matrices with one column, and row-vectors are matrices with one row. + * + * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note"). + * + * The first three template parameters are required: + * \tparam _Scalar Numeric type, e.g. float, double, int or std::complex. + * User defined scalar types are supported as well (see \ref user_defined_scalars "here"). + * \tparam _Rows Number of rows, or \b Dynamic + * \tparam _Cols Number of columns, or \b Dynamic + * + * The remaining template parameters are optional -- in most cases you don't have to worry about them. + * \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either + * \b #AutoAlign or \b #DontAlign. + * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required + * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size. + * \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note"). + * \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note"). + * + * Eigen provides a number of typedefs covering the usual cases. Here are some examples: + * + * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix) + * \li \c Vector4f is a vector of 4 floats (\c Matrix) + * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix) + * + * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix) + * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix) + * + * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix) + * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix) + * + * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs. + * + * You can access elements of vectors and matrices using normal subscripting: + * + * \code + * Eigen::VectorXd v(10); + * v[0] = 0.1; + * v[1] = 0.2; + * v(0) = 0.3; + * v(1) = 0.4; + * + * Eigen::MatrixXi m(10, 10); + * m(0, 1) = 1; + * m(0, 2) = 2; + * m(0, 3) = 3; + * \endcode + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN. + * + * Some notes: + * + *
+ *
\anchor dense Dense versus sparse:
+ *
This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module. + * + * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array. + * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.
+ * + *
\anchor fixedsize Fixed-size versus dynamic-size:
+ *
Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array + * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up + * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time. + * + * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime + * variables, and the array of coefficients is allocated dynamically on the heap. + * + * Note that \em dense matrices, be they Fixed-size or Dynamic-size, do not expand dynamically in the sense of a std::map. + * If you want this behavior, see the Sparse module.
+ * + *
\anchor maxrows _MaxRows and _MaxCols:
+ *
In most cases, one just leaves these parameters to the default values. + * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases + * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot + * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols + * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.
+ *
+ * + * ABI and storage layout + * + * The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3. + * + * + * + * + * + * + *
Matrix typeEquivalent C structure
\code Matrix \endcode\code + * struct { + * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 + * Eigen::Index rows, cols; + * }; + * \endcode
\code + * Matrix + * Matrix \endcode\code + * struct { + * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 + * Eigen::Index size; + * }; + * \endcode
\code Matrix \endcode\code + * struct { + * T data[Rows*Cols]; // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0 + * }; + * \endcode
\code Matrix \endcode\code + * struct { + * T data[MaxRows*MaxCols]; // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0 + * Eigen::Index rows, cols; + * }; + * \endcode
+ * Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two + * smaller to EIGEN_MAX_STATIC_ALIGN_BYTES. + * + * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, + * \ref TopicStorageOrders + */ + +template +class Matrix + : public PlainObjectBase > +{ + public: + + /** \brief Base class typedef. + * \sa PlainObjectBase + */ + typedef PlainObjectBase Base; + + enum { Options = _Options }; + + EIGEN_DENSE_PUBLIC_INTERFACE(Matrix) + + typedef typename Base::PlainObject PlainObject; + + using Base::base; + using Base::coeffRef; + + /** + * \brief Assigns matrices to each other. + * + * \note This is a special case of the templated operator=. Its purpose is + * to prevent a default operator= from hiding the templated operator=. + * + * \callgraph + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other) + { + return Base::_set(other); + } + + /** \internal + * \brief Copies the value of the expression \a other into \c *this with automatic resizing. + * + * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), + * it will be initialized. + * + * Note that copying a row-vector into a vector (and conversely) is allowed. + * The resizing, if any, is then done in the appropriate way so that row-vectors + * remain row-vectors and vectors remain vectors. + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix& operator=(const DenseBase& other) + { + return Base::_set(other); + } + + /* Here, doxygen failed to copy the brief information when using \copydoc */ + + /** + * \brief Copies the generic expression \a other into *this. + * \copydetails DenseBase::operator=(const EigenBase &other) + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase &other) + { + return Base::operator=(other); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue& func) + { + return Base::operator=(func); + } + + /** \brief Default constructor. + * + * For fixed-size matrices, does nothing. + * + * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix + * is called a null matrix. This constructor is the unique way to create null matrices: resizing + * a matrix to 0 is not supported. + * + * \sa resize(Index,Index) + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Matrix() : Base() + { + Base::_check_template_params(); + EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } + + // FIXME is it still needed + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit Matrix(internal::constructor_without_unaligned_array_assert) + : Base(internal::constructor_without_unaligned_array_assert()) + { Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } + +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible::value) + : Base(std::move(other)) + { + Base::_check_template_params(); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable::value) + { + other.swap(*this); + return *this; + } +#endif + +#if EIGEN_HAS_CXX11 + /** \copydoc PlainObjectBase(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&... args) + * + * Example: \include Matrix_variadic_ctor_cxx11.cpp + * Output: \verbinclude Matrix_variadic_ctor_cxx11.out + * + * \sa Matrix(const std::initializer_list>&) + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + : Base(a0, a1, a2, a3, args...) {} + + /** \brief Constructs a Matrix and initializes it from the coefficients given as initializer-lists grouped by row. \cpp11 + * + * In the general case, the constructor takes a list of rows, each row being represented as a list of coefficients: + * + * Example: \include Matrix_initializer_list_23_cxx11.cpp + * Output: \verbinclude Matrix_initializer_list_23_cxx11.out + * + * Each of the inner initializer lists must contain the exact same number of elements, otherwise an assertion is triggered. + * + * In the case of a compile-time column vector, implicit transposition from a single row is allowed. + * Therefore VectorXd{{1,2,3,4,5}} is legal and the more verbose syntax + * RowVectorXd{{1},{2},{3},{4},{5}} can be avoided: + * + * Example: \include Matrix_initializer_list_vector_cxx11.cpp + * Output: \verbinclude Matrix_initializer_list_vector_cxx11.out + * + * In the case of fixed-sized matrices, the initializer list sizes must exactly match the matrix sizes, + * and implicit transposition is allowed for compile-time vectors only. + * + * \sa Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + */ + EIGEN_DEVICE_FUNC + explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list>& list) : Base(list) {} +#endif // end EIGEN_HAS_CXX11 + +#ifndef EIGEN_PARSED_BY_DOXYGEN + + // This constructor is for both 1x1 matrices and dynamic vectors + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit Matrix(const T& x) + { + Base::_check_template_params(); + Base::template _init1(x); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Matrix(const T0& x, const T1& y) + { + Base::_check_template_params(); + Base::template _init2(x, y); + } + + +#else + /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */ + EIGEN_DEVICE_FUNC + explicit Matrix(const Scalar *data); + + /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors + * + * This is useful for dynamic-size vectors. For fixed-size vectors, + * it is redundant to pass these parameters, so one should use the default constructor + * Matrix() instead. + * + * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance, + * calling Matrix(1) will call the initialization constructor: Matrix(const Scalar&). + * For fixed-size \c 1x1 matrices it is therefore recommended to use the default + * constructor Matrix() instead, especially when using one of the non standard + * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). + */ + EIGEN_STRONG_INLINE explicit Matrix(Index dim); + /** \brief Constructs an initialized 1x1 matrix with the given coefficient + * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) */ + Matrix(const Scalar& x); + /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns. + * + * This is useful for dynamic-size matrices. For fixed-size matrices, + * it is redundant to pass these parameters, so one should use the default constructor + * Matrix() instead. + * + * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance, + * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y). + * For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default + * constructor Matrix() instead, especially when using one of the non standard + * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). + */ + EIGEN_DEVICE_FUNC + Matrix(Index rows, Index cols); + + /** \brief Constructs an initialized 2D vector with given coefficients + * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) */ + Matrix(const Scalar& x, const Scalar& y); + #endif // end EIGEN_PARSED_BY_DOXYGEN + + /** \brief Constructs an initialized 3D vector with given coefficients + * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z) + { + Base::_check_template_params(); + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3) + m_storage.data()[0] = x; + m_storage.data()[1] = y; + m_storage.data()[2] = z; + } + /** \brief Constructs an initialized 4D vector with given coefficients + * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) + { + Base::_check_template_params(); + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4) + m_storage.data()[0] = x; + m_storage.data()[1] = y; + m_storage.data()[2] = z; + m_storage.data()[3] = w; + } + + + /** \brief Copy constructor */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other) + { } + + /** \brief Copy constructor for generic expressions. + * \sa MatrixBase::operator=(const EigenBase&) + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Matrix(const EigenBase &other) + : Base(other.derived()) + { } + + EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } + EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } + + /////////// Geometry module /////////// + + template + EIGEN_DEVICE_FUNC + explicit Matrix(const RotationBase& r); + template + EIGEN_DEVICE_FUNC + Matrix& operator=(const RotationBase& r); + + // allow to extend Matrix outside Eigen + #ifdef EIGEN_MATRIX_PLUGIN + #include EIGEN_MATRIX_PLUGIN + #endif + + protected: + template + friend struct internal::conservative_resize_like_impl; + + using Base::m_storage; +}; + +/** \defgroup matrixtypedefs Global matrix typedefs + * + * \ingroup Core_Module + * + * %Eigen defines several typedef shortcuts for most common matrix and vector types. + * + * The general patterns are the following: + * + * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, + * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd + * for complex double. + * + * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats. + * + * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is + * a fixed-size vector of 4 complex floats. + * + * With \cpp11, template alias are also defined for common sizes. + * They follow the same pattern as above except that the scalar type suffix is replaced by a + * template parameter, i.e.: + * - `MatrixSize` where `Size` can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size. + * - `MatrixXSize` and `MatrixSizeX` where `Size` can be \c 2,\c 3,\c 4 for hybrid dynamic/fixed matrices. + * - `VectorSize` and `RowVectorSize` for column and row vectors. + * + * With \cpp11, you can also use fully generic column and row vector types: `Vector` and `RowVector`. + * + * \sa class Matrix + */ + +#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ +/** \ingroup matrixtypedefs */ \ +typedef Matrix Matrix##SizeSuffix##TypeSuffix; \ +/** \ingroup matrixtypedefs */ \ +typedef Matrix Vector##SizeSuffix##TypeSuffix; \ +/** \ingroup matrixtypedefs */ \ +typedef Matrix RowVector##SizeSuffix##TypeSuffix; + +#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ +/** \ingroup matrixtypedefs */ \ +typedef Matrix Matrix##Size##X##TypeSuffix; \ +/** \ingroup matrixtypedefs */ \ +typedef Matrix Matrix##X##Size##TypeSuffix; + +#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ +EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ +EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ +EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4) + +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex, cf) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex, cd) + +#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES +#undef EIGEN_MAKE_TYPEDEFS +#undef EIGEN_MAKE_FIXED_TYPEDEFS + +#if EIGEN_HAS_CXX11 + +#define EIGEN_MAKE_TYPEDEFS(Size, SizeSuffix) \ +/** \ingroup matrixtypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Matrix##SizeSuffix = Matrix; \ +/** \ingroup matrixtypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Vector##SizeSuffix = Matrix; \ +/** \ingroup matrixtypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using RowVector##SizeSuffix = Matrix; + +#define EIGEN_MAKE_FIXED_TYPEDEFS(Size) \ +/** \ingroup matrixtypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Matrix##Size##X = Matrix; \ +/** \ingroup matrixtypedefs */ \ +/** \brief \cpp11 */ \ +template \ +using Matrix##X##Size = Matrix; + +EIGEN_MAKE_TYPEDEFS(2, 2) +EIGEN_MAKE_TYPEDEFS(3, 3) +EIGEN_MAKE_TYPEDEFS(4, 4) +EIGEN_MAKE_TYPEDEFS(Dynamic, X) +EIGEN_MAKE_FIXED_TYPEDEFS(2) +EIGEN_MAKE_FIXED_TYPEDEFS(3) +EIGEN_MAKE_FIXED_TYPEDEFS(4) + +/** \ingroup matrixtypedefs + * \brief \cpp11 */ +template +using Vector = Matrix; + +/** \ingroup matrixtypedefs + * \brief \cpp11 */ +template +using RowVector = Matrix; + +#undef EIGEN_MAKE_TYPEDEFS +#undef EIGEN_MAKE_FIXED_TYPEDEFS + +#endif // EIGEN_HAS_CXX11 + +} // end namespace Eigen + +#endif // EIGEN_MATRIX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MatrixBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MatrixBase.h new file mode 100644 index 0000000..4744e5c --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/MatrixBase.h @@ -0,0 +1,546 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2009 Benoit Jacob +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIXBASE_H +#define EIGEN_MATRIXBASE_H + +namespace Eigen { + +/** \class MatrixBase + * \ingroup Core_Module + * + * \brief Base class for all dense matrices, vectors, and expressions + * + * This class is the base that is inherited by all matrix, vector, and related expression + * types. Most of the Eigen API is contained in this class, and its base classes. Other important + * classes for the Eigen API are Matrix, and VectorwiseOp. + * + * Note that some methods are defined in other modules such as the \ref LU_Module LU module + * for all functions related to matrix inversions. + * + * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc. + * + * When writing a function taking Eigen objects as argument, if you want your function + * to take as argument any matrix, vector, or expression, just let it take a + * MatrixBase argument. As an example, here is a function printFirstRow which, given + * a matrix, vector, or expression \a x, prints the first row of \a x. + * + * \code + template + void printFirstRow(const Eigen::MatrixBase& x) + { + cout << x.row(0) << endl; + } + * \endcode + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. + * + * \sa \blank \ref TopicClassHierarchy + */ +template class MatrixBase + : public DenseBase +{ + public: +#ifndef EIGEN_PARSED_BY_DOXYGEN + typedef MatrixBase StorageBaseType; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + typedef typename NumTraits::Real RealScalar; + + typedef DenseBase Base; + using Base::RowsAtCompileTime; + using Base::ColsAtCompileTime; + using Base::SizeAtCompileTime; + using Base::MaxRowsAtCompileTime; + using Base::MaxColsAtCompileTime; + using Base::MaxSizeAtCompileTime; + using Base::IsVectorAtCompileTime; + using Base::Flags; + + using Base::derived; + using Base::const_cast_derived; + using Base::rows; + using Base::cols; + using Base::size; + using Base::coeff; + using Base::coeffRef; + using Base::lazyAssign; + using Base::eval; + using Base::operator-; + using Base::operator+=; + using Base::operator-=; + using Base::operator*=; + using Base::operator/=; + + typedef typename Base::CoeffReturnType CoeffReturnType; + typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType; + typedef typename Base::RowXpr RowXpr; + typedef typename Base::ColXpr ColXpr; +#endif // not EIGEN_PARSED_BY_DOXYGEN + + + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** type of the equivalent square matrix */ + typedef Matrix SquareMatrixType; +#endif // not EIGEN_PARSED_BY_DOXYGEN + + /** \returns the size of the main diagonal, which is min(rows(),cols()). + * \sa rows(), cols(), SizeAtCompileTime. */ + EIGEN_DEVICE_FUNC + inline Index diagonalSize() const { return (numext::mini)(rows(),cols()); } + + typedef typename Base::PlainObject PlainObject; + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal Represents a matrix with all coefficients equal to one another*/ + typedef CwiseNullaryOp,PlainObject> ConstantReturnType; + /** \internal the return type of MatrixBase::adjoint() */ + typedef typename internal::conditional::IsComplex, + CwiseUnaryOp, ConstTransposeReturnType>, + ConstTransposeReturnType + >::type AdjointReturnType; + /** \internal Return type of eigenvalues() */ + typedef Matrix, internal::traits::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType; + /** \internal the return type of identity */ + typedef CwiseNullaryOp,PlainObject> IdentityReturnType; + /** \internal the return type of unit vectors */ + typedef Block, SquareMatrixType>, + internal::traits::RowsAtCompileTime, + internal::traits::ColsAtCompileTime> BasisReturnType; +#endif // not EIGEN_PARSED_BY_DOXYGEN + +#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase +#define EIGEN_DOC_UNARY_ADDONS(X,Y) +# include "../plugins/CommonCwiseBinaryOps.h" +# include "../plugins/MatrixCwiseUnaryOps.h" +# include "../plugins/MatrixCwiseBinaryOps.h" +# ifdef EIGEN_MATRIXBASE_PLUGIN +# include EIGEN_MATRIXBASE_PLUGIN +# endif +#undef EIGEN_CURRENT_STORAGE_BASE_CLASS +#undef EIGEN_DOC_UNARY_ADDONS + + /** Special case of the template operator=, in order to prevent the compiler + * from generating a default operator= (issue hit with g++ 4.1) + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const MatrixBase& other); + + // We cannot inherit here via Base::operator= since it is causing + // trouble with MSVC. + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator=(const DenseBase& other); + + template + EIGEN_DEVICE_FUNC + Derived& operator=(const EigenBase& other); + + template + EIGEN_DEVICE_FUNC + Derived& operator=(const ReturnByValue& other); + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator+=(const MatrixBase& other); + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator-=(const MatrixBase& other); + + template + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase &other) const; + + template + EIGEN_DEVICE_FUNC + const Product + lazyProduct(const MatrixBase &other) const; + + template + Derived& operator*=(const EigenBase& other); + + template + void applyOnTheLeft(const EigenBase& other); + + template + void applyOnTheRight(const EigenBase& other); + + template + EIGEN_DEVICE_FUNC + const Product + operator*(const DiagonalBase &diagonal) const; + + template + EIGEN_DEVICE_FUNC + typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType + dot(const MatrixBase& other) const; + + EIGEN_DEVICE_FUNC RealScalar squaredNorm() const; + EIGEN_DEVICE_FUNC RealScalar norm() const; + RealScalar stableNorm() const; + RealScalar blueNorm() const; + RealScalar hypotNorm() const; + EIGEN_DEVICE_FUNC const PlainObject normalized() const; + EIGEN_DEVICE_FUNC const PlainObject stableNormalized() const; + EIGEN_DEVICE_FUNC void normalize(); + EIGEN_DEVICE_FUNC void stableNormalize(); + + EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const; + EIGEN_DEVICE_FUNC void adjointInPlace(); + + typedef Diagonal DiagonalReturnType; + EIGEN_DEVICE_FUNC + DiagonalReturnType diagonal(); + + typedef typename internal::add_const >::type ConstDiagonalReturnType; + EIGEN_DEVICE_FUNC + ConstDiagonalReturnType diagonal() const; + + template struct DiagonalIndexReturnType { typedef Diagonal Type; }; + template struct ConstDiagonalIndexReturnType { typedef const Diagonal Type; }; + + template + EIGEN_DEVICE_FUNC + typename DiagonalIndexReturnType::Type diagonal(); + + template + EIGEN_DEVICE_FUNC + typename ConstDiagonalIndexReturnType::Type diagonal() const; + + typedef Diagonal DiagonalDynamicIndexReturnType; + typedef typename internal::add_const >::type ConstDiagonalDynamicIndexReturnType; + + EIGEN_DEVICE_FUNC + DiagonalDynamicIndexReturnType diagonal(Index index); + EIGEN_DEVICE_FUNC + ConstDiagonalDynamicIndexReturnType diagonal(Index index) const; + + template struct TriangularViewReturnType { typedef TriangularView Type; }; + template struct ConstTriangularViewReturnType { typedef const TriangularView Type; }; + + template + EIGEN_DEVICE_FUNC + typename TriangularViewReturnType::Type triangularView(); + template + EIGEN_DEVICE_FUNC + typename ConstTriangularViewReturnType::Type triangularView() const; + + template struct SelfAdjointViewReturnType { typedef SelfAdjointView Type; }; + template struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView Type; }; + + template + EIGEN_DEVICE_FUNC + typename SelfAdjointViewReturnType::Type selfadjointView(); + template + EIGEN_DEVICE_FUNC + typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; + + const SparseView sparseView(const Scalar& m_reference = Scalar(0), + const typename NumTraits::Real& m_epsilon = NumTraits::dummy_precision()) const; + EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(); + EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(Index rows, Index cols); + EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index size, Index i); + EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index i); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitX(); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitY(); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitZ(); + EIGEN_DEVICE_FUNC static const BasisReturnType UnitW(); + + EIGEN_DEVICE_FUNC + const DiagonalWrapper asDiagonal() const; + const PermutationWrapper asPermutation() const; + + EIGEN_DEVICE_FUNC + Derived& setIdentity(); + EIGEN_DEVICE_FUNC + Derived& setIdentity(Index rows, Index cols); + EIGEN_DEVICE_FUNC Derived& setUnit(Index i); + EIGEN_DEVICE_FUNC Derived& setUnit(Index newSize, Index i); + + bool isIdentity(const RealScalar& prec = NumTraits::dummy_precision()) const; + bool isDiagonal(const RealScalar& prec = NumTraits::dummy_precision()) const; + + bool isUpperTriangular(const RealScalar& prec = NumTraits::dummy_precision()) const; + bool isLowerTriangular(const RealScalar& prec = NumTraits::dummy_precision()) const; + + template + bool isOrthogonal(const MatrixBase& other, + const RealScalar& prec = NumTraits::dummy_precision()) const; + bool isUnitary(const RealScalar& prec = NumTraits::dummy_precision()) const; + + /** \returns true if each coefficients of \c *this and \a other are all exactly equal. + * \warning When using floating point scalar values you probably should rather use a + * fuzzy comparison such as isApprox() + * \sa isApprox(), operator!= */ + template + EIGEN_DEVICE_FUNC inline bool operator==(const MatrixBase& other) const + { return cwiseEqual(other).all(); } + + /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. + * \warning When using floating point scalar values you probably should rather use a + * fuzzy comparison such as isApprox() + * \sa isApprox(), operator== */ + template + EIGEN_DEVICE_FUNC inline bool operator!=(const MatrixBase& other) const + { return cwiseNotEqual(other).any(); } + + NoAlias EIGEN_DEVICE_FUNC noalias(); + + // TODO forceAlignedAccess is temporarily disabled + // Need to find a nicer workaround. + inline const Derived& forceAlignedAccess() const { return derived(); } + inline Derived& forceAlignedAccess() { return derived(); } + template inline const Derived& forceAlignedAccessIf() const { return derived(); } + template inline Derived& forceAlignedAccessIf() { return derived(); } + + EIGEN_DEVICE_FUNC Scalar trace() const; + + template EIGEN_DEVICE_FUNC RealScalar lpNorm() const; + + EIGEN_DEVICE_FUNC MatrixBase& matrix() { return *this; } + EIGEN_DEVICE_FUNC const MatrixBase& matrix() const { return *this; } + + /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix + * \sa ArrayBase::matrix() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper array() { return ArrayWrapper(derived()); } + /** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix + * \sa ArrayBase::matrix() */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper array() const { return ArrayWrapper(derived()); } + +/////////// LU module /////////// + + inline const FullPivLU fullPivLu() const; + inline const PartialPivLU partialPivLu() const; + + inline const PartialPivLU lu() const; + + EIGEN_DEVICE_FUNC + inline const Inverse inverse() const; + + template + inline void computeInverseAndDetWithCheck( + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible, + const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() + ) const; + + template + inline void computeInverseWithCheck( + ResultType& inverse, + bool& invertible, + const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() + ) const; + + EIGEN_DEVICE_FUNC + Scalar determinant() const; + +/////////// Cholesky module /////////// + + inline const LLT llt() const; + inline const LDLT ldlt() const; + +/////////// QR module /////////// + + inline const HouseholderQR householderQr() const; + inline const ColPivHouseholderQR colPivHouseholderQr() const; + inline const FullPivHouseholderQR fullPivHouseholderQr() const; + inline const CompleteOrthogonalDecomposition completeOrthogonalDecomposition() const; + +/////////// Eigenvalues module /////////// + + inline EigenvaluesReturnType eigenvalues() const; + inline RealScalar operatorNorm() const; + +/////////// SVD module /////////// + + inline JacobiSVD jacobiSvd(unsigned int computationOptions = 0) const; + inline BDCSVD bdcSvd(unsigned int computationOptions = 0) const; + +/////////// Geometry module /////////// + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /// \internal helper struct to form the return type of the cross product + template struct cross_product_return_type { + typedef typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; + typedef Matrix type; + }; + #endif // EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC +#ifndef EIGEN_PARSED_BY_DOXYGEN + inline typename cross_product_return_type::type +#else + inline PlainObject +#endif + cross(const MatrixBase& other) const; + + template + EIGEN_DEVICE_FUNC + inline PlainObject cross3(const MatrixBase& other) const; + + EIGEN_DEVICE_FUNC + inline PlainObject unitOrthogonal(void) const; + + EIGEN_DEVICE_FUNC + inline Matrix eulerAngles(Index a0, Index a1, Index a2) const; + + // put this as separate enum value to work around possible GCC 4.3 bug (?) + enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical) + : ColsAtCompileTime==1 ? Vertical : Horizontal }; + typedef Homogeneous HomogeneousReturnType; + EIGEN_DEVICE_FUNC + inline HomogeneousReturnType homogeneous() const; + + enum { + SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 + }; + typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, + internal::traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne; + typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(ConstStartMinusOne,Scalar,quotient) HNormalizedReturnType; + EIGEN_DEVICE_FUNC + inline const HNormalizedReturnType hnormalized() const; + +////////// Householder module /////////// + + EIGEN_DEVICE_FUNC + void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); + template + EIGEN_DEVICE_FUNC + void makeHouseholder(EssentialPart& essential, + Scalar& tau, RealScalar& beta) const; + template + EIGEN_DEVICE_FUNC + void applyHouseholderOnTheLeft(const EssentialPart& essential, + const Scalar& tau, + Scalar* workspace); + template + EIGEN_DEVICE_FUNC + void applyHouseholderOnTheRight(const EssentialPart& essential, + const Scalar& tau, + Scalar* workspace); + +///////// Jacobi module ///////// + + template + EIGEN_DEVICE_FUNC + void applyOnTheLeft(Index p, Index q, const JacobiRotation& j); + template + EIGEN_DEVICE_FUNC + void applyOnTheRight(Index p, Index q, const JacobiRotation& j); + +///////// SparseCore module ///////// + + template + EIGEN_STRONG_INLINE const typename SparseMatrixBase::template CwiseProductDenseReturnType::Type + cwiseProduct(const SparseMatrixBase &other) const + { + return other.cwiseProduct(derived()); + } + +///////// MatrixFunctions module ///////// + + typedef typename internal::stem_function::type StemFunction; +#define EIGEN_MATRIX_FUNCTION(ReturnType, Name, Description) \ + /** \returns an expression of the matrix Description of \c *this. \brief This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise Description use ArrayBase::##Name . */ \ + const ReturnType Name() const; +#define EIGEN_MATRIX_FUNCTION_1(ReturnType, Name, Description, Argument) \ + /** \returns an expression of the matrix Description of \c *this. \brief This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise Description use ArrayBase::##Name . */ \ + const ReturnType Name(Argument) const; + + EIGEN_MATRIX_FUNCTION(MatrixExponentialReturnValue, exp, exponential) + /** \brief Helper function for the unsupported MatrixFunctions module.*/ + const MatrixFunctionReturnValue matrixFunction(StemFunction f) const; + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cosh, hyperbolic cosine) + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sinh, hyperbolic sine) +#if EIGEN_HAS_CXX11_MATH + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, atanh, inverse hyperbolic cosine) + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, acosh, inverse hyperbolic cosine) + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, asinh, inverse hyperbolic sine) +#endif + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cos, cosine) + EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sin, sine) + EIGEN_MATRIX_FUNCTION(MatrixSquareRootReturnValue, sqrt, square root) + EIGEN_MATRIX_FUNCTION(MatrixLogarithmReturnValue, log, logarithm) + EIGEN_MATRIX_FUNCTION_1(MatrixPowerReturnValue, pow, power to \c p, const RealScalar& p) + EIGEN_MATRIX_FUNCTION_1(MatrixComplexPowerReturnValue, pow, power to \c p, const std::complex& p) + + protected: + EIGEN_DEVICE_FUNC MatrixBase() : Base() {} + + private: + EIGEN_DEVICE_FUNC explicit MatrixBase(int); + EIGEN_DEVICE_FUNC MatrixBase(int,int); + template EIGEN_DEVICE_FUNC explicit MatrixBase(const MatrixBase&); + protected: + // mixing arrays and matrices is not legal + template Derived& operator+=(const ArrayBase& ) + {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} + // mixing arrays and matrices is not legal + template Derived& operator-=(const ArrayBase& ) + {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} +}; + + +/*************************************************************************** +* Implementation of matrix base methods +***************************************************************************/ + +/** replaces \c *this by \c *this * \a other. + * + * \returns a reference to \c *this + * + * Example: \include MatrixBase_applyOnTheRight.cpp + * Output: \verbinclude MatrixBase_applyOnTheRight.out + */ +template +template +inline Derived& +MatrixBase::operator*=(const EigenBase &other) +{ + other.derived().applyThisOnTheRight(derived()); + return derived(); +} + +/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=(). + * + * Example: \include MatrixBase_applyOnTheRight.cpp + * Output: \verbinclude MatrixBase_applyOnTheRight.out + */ +template +template +inline void MatrixBase::applyOnTheRight(const EigenBase &other) +{ + other.derived().applyThisOnTheRight(derived()); +} + +/** replaces \c *this by \a other * \c *this. + * + * Example: \include MatrixBase_applyOnTheLeft.cpp + * Output: \verbinclude MatrixBase_applyOnTheLeft.out + */ +template +template +inline void MatrixBase::applyOnTheLeft(const EigenBase &other) +{ + other.derived().applyThisOnTheLeft(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_MATRIXBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NestByValue.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NestByValue.h new file mode 100644 index 0000000..239bbba --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NestByValue.h @@ -0,0 +1,85 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_NESTBYVALUE_H +#define EIGEN_NESTBYVALUE_H + +namespace Eigen { + +namespace internal { +template +struct traits > : public traits +{ + enum { + Flags = traits::Flags & ~NestByRefBit + }; +}; +} + +/** \class NestByValue + * \ingroup Core_Module + * + * \brief Expression which must be nested by value + * + * \tparam ExpressionType the type of the object of which we are requiring nesting-by-value + * + * This class is the return type of MatrixBase::nestByValue() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::nestByValue() + */ +template class NestByValue + : public internal::dense_xpr_base< NestByValue >::type +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue) + + EIGEN_DEVICE_FUNC explicit inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {} + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); } + + EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; } + + EIGEN_DEVICE_FUNC const ExpressionType& nestedExpression() const { return m_expression; } + + protected: + const ExpressionType m_expression; +}; + +/** \returns an expression of the temporary version of *this. + */ +template +EIGEN_DEVICE_FUNC inline const NestByValue +DenseBase::nestByValue() const +{ + return NestByValue(derived()); +} + +namespace internal { + +// Evaluator of Solve -> eval into a temporary +template +struct evaluator > + : public evaluator +{ + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const NestByValue& xpr) + : Base(xpr.nestedExpression()) + {} +}; +} + +} // end namespace Eigen + +#endif // EIGEN_NESTBYVALUE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NoAlias.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NoAlias.h new file mode 100644 index 0000000..570283d --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NoAlias.h @@ -0,0 +1,109 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_NOALIAS_H +#define EIGEN_NOALIAS_H + +namespace Eigen { + +/** \class NoAlias + * \ingroup Core_Module + * + * \brief Pseudo expression providing an operator = assuming no aliasing + * + * \tparam ExpressionType the type of the object on which to do the lazy assignment + * + * This class represents an expression with special assignment operators + * assuming no aliasing between the target expression and the source expression. + * More precisely it alloas to bypass the EvalBeforeAssignBit flag of the source expression. + * It is the return type of MatrixBase::noalias() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::noalias() + */ +template class StorageBase> +class NoAlias +{ + public: + typedef typename ExpressionType::Scalar Scalar; + + EIGEN_DEVICE_FUNC + explicit NoAlias(ExpressionType& expression) : m_expression(expression) {} + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase& other) + { + call_assignment_no_alias(m_expression, other.derived(), internal::assign_op()); + return m_expression; + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase& other) + { + call_assignment_no_alias(m_expression, other.derived(), internal::add_assign_op()); + return m_expression; + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase& other) + { + call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op()); + return m_expression; + } + + EIGEN_DEVICE_FUNC + ExpressionType& expression() const + { + return m_expression; + } + + protected: + ExpressionType& m_expression; +}; + +/** \returns a pseudo expression of \c *this with an operator= assuming + * no aliasing between \c *this and the source expression. + * + * More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. + * Currently, even though several expressions may alias, only product + * expressions have this flag. Therefore, noalias() is only useful when + * the source expression contains a matrix product. + * + * Here are some examples where noalias is useful: + * \code + * D.noalias() = A * B; + * D.noalias() += A.transpose() * B; + * D.noalias() -= 2 * A * B.adjoint(); + * \endcode + * + * On the other hand the following example will lead to a \b wrong result: + * \code + * A.noalias() = A * B; + * \endcode + * because the result matrix A is also an operand of the matrix product. Therefore, + * there is no alternative than evaluating A * B in a temporary, that is the default + * behavior when you write: + * \code + * A = A * B; + * \endcode + * + * \sa class NoAlias + */ +template +NoAlias EIGEN_DEVICE_FUNC MatrixBase::noalias() +{ + return NoAlias(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_NOALIAS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NumTraits.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NumTraits.h new file mode 100644 index 0000000..12a7cde --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/NumTraits.h @@ -0,0 +1,289 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_NUMTRAITS_H +#define EIGEN_NUMTRAITS_H + +namespace Eigen { + +namespace internal { + +// default implementation of digits10(), based on numeric_limits if specialized, +// 0 for integer types, and log10(epsilon()) otherwise. +template< typename T, + bool use_numeric_limits = std::numeric_limits::is_specialized, + bool is_integer = NumTraits::IsInteger> +struct default_digits10_impl +{ + EIGEN_DEVICE_FUNC + static int run() { return std::numeric_limits::digits10; } +}; + +template +struct default_digits10_impl // Floating point +{ + EIGEN_DEVICE_FUNC + static int run() { + using std::log10; + using std::ceil; + typedef typename NumTraits::Real Real; + return int(ceil(-log10(NumTraits::epsilon()))); + } +}; + +template +struct default_digits10_impl // Integer +{ + EIGEN_DEVICE_FUNC + static int run() { return 0; } +}; + + +// default implementation of digits(), based on numeric_limits if specialized, +// 0 for integer types, and log2(epsilon()) otherwise. +template< typename T, + bool use_numeric_limits = std::numeric_limits::is_specialized, + bool is_integer = NumTraits::IsInteger> +struct default_digits_impl +{ + EIGEN_DEVICE_FUNC + static int run() { return std::numeric_limits::digits; } +}; + +template +struct default_digits_impl // Floating point +{ + EIGEN_DEVICE_FUNC + static int run() { + using std::log; + using std::ceil; + typedef typename NumTraits::Real Real; + return int(ceil(-log(NumTraits::epsilon())/log(static_cast(2)))); + } +}; + +template +struct default_digits_impl // Integer +{ + EIGEN_DEVICE_FUNC + static int run() { return 0; } +}; + +} // end namespace internal + +/** \class NumTraits + * \ingroup Core_Module + * + * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. + * + * \tparam T the numeric type at hand + * + * This class stores enums, typedefs and static methods giving information about a numeric type. + * + * The provided data consists of: + * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, + * then \c Real is just a typedef to \a T. If \a T is \c std::complex then \c Real + * is a typedef to \a U. + * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, + * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives + * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to + * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is + * only intended as a helper for code that needs to explicitly promote types. + * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex, Literal is defined as \c U. + * Of course, this type must be fully compatible with \a T. In doubt, just use \a T here. + * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what + * this means, just use \a T here. + * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex + * type, and to 0 otherwise. + * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, + * and to \c 0 otherwise. + * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed + * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers. + * Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost. + * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. + * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must + * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. + * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), + * it returns a \a Real instead of a \a T. + * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default + * value by the fuzzy comparison operators. + * \li highest() and lowest() functions returning the highest and lowest possible values respectively. + * \li digits10() function returning the number of decimal digits that can be represented without change. This is + * the analogue of std::numeric_limits::digits10 + * which is used as the default implementation if specialized. + */ + +template struct GenericNumTraits +{ + enum { + IsInteger = std::numeric_limits::is_integer, + IsSigned = std::numeric_limits::is_signed, + IsComplex = 0, + RequireInitialization = internal::is_arithmetic::value ? 0 : 1, + ReadCost = 1, + AddCost = 1, + MulCost = 1 + }; + + typedef T Real; + typedef typename internal::conditional< + IsInteger, + typename internal::conditional::type, + T + >::type NonInteger; + typedef T Nested; + typedef T Literal; + + EIGEN_DEVICE_FUNC + static inline Real epsilon() + { + return numext::numeric_limits::epsilon(); + } + + EIGEN_DEVICE_FUNC + static inline int digits10() + { + return internal::default_digits10_impl::run(); + } + + EIGEN_DEVICE_FUNC + static inline int digits() + { + return internal::default_digits_impl::run(); + } + + EIGEN_DEVICE_FUNC + static inline Real dummy_precision() + { + // make sure to override this for floating-point types + return Real(0); + } + + + EIGEN_DEVICE_FUNC + static inline T highest() { + return (numext::numeric_limits::max)(); + } + + EIGEN_DEVICE_FUNC + static inline T lowest() { + return IsInteger ? (numext::numeric_limits::min)() + : static_cast(-(numext::numeric_limits::max)()); + } + + EIGEN_DEVICE_FUNC + static inline T infinity() { + return numext::numeric_limits::infinity(); + } + + EIGEN_DEVICE_FUNC + static inline T quiet_NaN() { + return numext::numeric_limits::quiet_NaN(); + } +}; + +template struct NumTraits : GenericNumTraits +{}; + +template<> struct NumTraits + : GenericNumTraits +{ + EIGEN_DEVICE_FUNC + static inline float dummy_precision() { return 1e-5f; } +}; + +template<> struct NumTraits : GenericNumTraits +{ + EIGEN_DEVICE_FUNC + static inline double dummy_precision() { return 1e-12; } +}; + +template<> struct NumTraits + : GenericNumTraits +{ + static inline long double dummy_precision() { return 1e-15l; } +}; + +template struct NumTraits > + : GenericNumTraits > +{ + typedef _Real Real; + typedef typename NumTraits<_Real>::Literal Literal; + enum { + IsComplex = 1, + RequireInitialization = NumTraits<_Real>::RequireInitialization, + ReadCost = 2 * NumTraits<_Real>::ReadCost, + AddCost = 2 * NumTraits::AddCost, + MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost + }; + + EIGEN_DEVICE_FUNC + static inline Real epsilon() { return NumTraits::epsilon(); } + EIGEN_DEVICE_FUNC + static inline Real dummy_precision() { return NumTraits::dummy_precision(); } + EIGEN_DEVICE_FUNC + static inline int digits10() { return NumTraits::digits10(); } +}; + +template +struct NumTraits > +{ + typedef Array ArrayType; + typedef typename NumTraits::Real RealScalar; + typedef Array Real; + typedef typename NumTraits::NonInteger NonIntegerScalar; + typedef Array NonInteger; + typedef ArrayType & Nested; + typedef typename NumTraits::Literal Literal; + + enum { + IsComplex = NumTraits::IsComplex, + IsInteger = NumTraits::IsInteger, + IsSigned = NumTraits::IsSigned, + RequireInitialization = 1, + ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits::ReadCost, + AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits::AddCost, + MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits::MulCost + }; + + EIGEN_DEVICE_FUNC + static inline RealScalar epsilon() { return NumTraits::epsilon(); } + EIGEN_DEVICE_FUNC + static inline RealScalar dummy_precision() { return NumTraits::dummy_precision(); } + + static inline int digits10() { return NumTraits::digits10(); } +}; + +template<> struct NumTraits + : GenericNumTraits +{ + enum { + RequireInitialization = 1, + ReadCost = HugeCost, + AddCost = HugeCost, + MulCost = HugeCost + }; + + static inline int digits10() { return 0; } + +private: + static inline std::string epsilon(); + static inline std::string dummy_precision(); + static inline std::string lowest(); + static inline std::string highest(); + static inline std::string infinity(); + static inline std::string quiet_NaN(); +}; + +// Empty specialization for void to allow template specialization based on NumTraits::Real with T==void and SFINAE. +template<> struct NumTraits {}; + +} // end namespace Eigen + +#endif // EIGEN_NUMTRAITS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PartialReduxEvaluator.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PartialReduxEvaluator.h new file mode 100644 index 0000000..0be6942 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PartialReduxEvaluator.h @@ -0,0 +1,232 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011-2018 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARTIALREDUX_H +#define EIGEN_PARTIALREDUX_H + +namespace Eigen { + +namespace internal { + + +/*************************************************************************** +* +* This file provides evaluators for partial reductions. +* There are two modes: +* +* - scalar path: simply calls the respective function on the column or row. +* -> nothing special here, all the tricky part is handled by the return +* types of VectorwiseOp's members. They embed the functor calling the +* respective DenseBase's member function. +* +* - vectorized path: implements a packet-wise reductions followed by +* some (optional) processing of the outcome, e.g., division by n for mean. +* +* For the vectorized path let's observe that the packet-size and outer-unrolling +* are both decided by the assignement logic. So all we have to do is to decide +* on the inner unrolling. +* +* For the unrolling, we can reuse "internal::redux_vec_unroller" from Redux.h, +* but be need to be careful to specify correct increment. +* +***************************************************************************/ + + +/* logic deciding a strategy for unrolling of vectorized paths */ +template +struct packetwise_redux_traits +{ + enum { + OuterSize = int(Evaluator::IsRowMajor) ? Evaluator::RowsAtCompileTime : Evaluator::ColsAtCompileTime, + Cost = OuterSize == Dynamic ? HugeCost + : OuterSize * Evaluator::CoeffReadCost + (OuterSize-1) * functor_traits::Cost, + Unrolling = Cost <= EIGEN_UNROLLING_LIMIT ? CompleteUnrolling : NoUnrolling + }; + +}; + +/* Value to be returned when size==0 , by default let's return 0 */ +template +EIGEN_DEVICE_FUNC +PacketType packetwise_redux_empty_value(const Func& ) { return pset1(0); } + +/* For products the default is 1 */ +template +EIGEN_DEVICE_FUNC +PacketType packetwise_redux_empty_value(const scalar_product_op& ) { return pset1(1); } + +/* Perform the actual reduction */ +template::Unrolling +> +struct packetwise_redux_impl; + +/* Perform the actual reduction with unrolling */ +template +struct packetwise_redux_impl +{ + typedef redux_novec_unroller Base; + typedef typename Evaluator::Scalar Scalar; + + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + PacketType run(const Evaluator &eval, const Func& func, Index /*size*/) + { + return redux_vec_unroller::OuterSize>::template run(eval,func); + } +}; + +/* Add a specialization of redux_vec_unroller for size==0 at compiletime. + * This specialization is not required for general reductions, which is + * why it is defined here. + */ +template +struct redux_vec_unroller +{ + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE PacketType run(const Evaluator &, const Func& f) + { + return packetwise_redux_empty_value(f); + } +}; + +/* Perform the actual reduction for dynamic sizes */ +template +struct packetwise_redux_impl +{ + typedef typename Evaluator::Scalar Scalar; + typedef typename redux_traits::PacketType PacketScalar; + + template + EIGEN_DEVICE_FUNC + static PacketType run(const Evaluator &eval, const Func& func, Index size) + { + if(size==0) + return packetwise_redux_empty_value(func); + + const Index size4 = (size-1)&(~3); + PacketType p = eval.template packetByOuterInner(0,0); + Index i = 1; + // This loop is optimized for instruction pipelining: + // - each iteration generates two independent instructions + // - thanks to branch prediction and out-of-order execution we have independent instructions across loops + for(; i(i+0,0),eval.template packetByOuterInner(i+1,0)), + func.packetOp(eval.template packetByOuterInner(i+2,0),eval.template packetByOuterInner(i+3,0)))); + for(; i(i,0)); + return p; + } +}; + +template< typename ArgType, typename MemberOp, int Direction> +struct evaluator > + : evaluator_base > +{ + typedef PartialReduxExpr XprType; + typedef typename internal::nested_eval::type ArgTypeNested; + typedef typename internal::add_const_on_value_type::type ConstArgTypeNested; + typedef typename internal::remove_all::type ArgTypeNestedCleaned; + typedef typename ArgType::Scalar InputScalar; + typedef typename XprType::Scalar Scalar; + enum { + TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime) + }; + typedef typename MemberOp::template Cost CostOpType; + enum { + CoeffReadCost = TraversalSize==Dynamic ? HugeCost + : TraversalSize==0 ? 1 + : TraversalSize * evaluator::CoeffReadCost + int(CostOpType::value), + + _ArgFlags = evaluator::Flags, + + _Vectorizable = bool(int(_ArgFlags)&PacketAccessBit) + && bool(MemberOp::Vectorizable) + && (Direction==int(Vertical) ? bool(_ArgFlags&RowMajorBit) : (_ArgFlags&RowMajorBit)==0) + && (TraversalSize!=0), + + Flags = (traits::Flags&RowMajorBit) + | (evaluator::Flags&(HereditaryBits&(~RowMajorBit))) + | (_Vectorizable ? PacketAccessBit : 0) + | LinearAccessBit, + + Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr) + : m_arg(xpr.nestedExpression()), m_functor(xpr.functor()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : (TraversalSize==0 ? 1 : int(CostOpType::value))); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar coeff(Index i, Index j) const + { + return coeff(Direction==Vertical ? j : i); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar coeff(Index index) const + { + return m_functor(m_arg.template subVector(index)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketType packet(Index i, Index j) const + { + return packet(Direction==Vertical ? j : i); + } + + template + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC + PacketType packet(Index idx) const + { + enum { PacketSize = internal::unpacket_traits::size }; + typedef Block PanelType; + + PanelType panel(m_arg, + Direction==Vertical ? 0 : idx, + Direction==Vertical ? idx : 0, + Direction==Vertical ? m_arg.rows() : Index(PacketSize), + Direction==Vertical ? Index(PacketSize) : m_arg.cols()); + + // FIXME + // See bug 1612, currently if PacketSize==1 (i.e. complex with 128bits registers) then the storage-order of panel get reversed + // and methods like packetByOuterInner do not make sense anymore in this context. + // So let's just by pass "vectorization" in this case: + if(PacketSize==1) + return internal::pset1(coeff(idx)); + + typedef typename internal::redux_evaluator PanelEvaluator; + PanelEvaluator panel_eval(panel); + typedef typename MemberOp::BinaryOp BinaryOp; + PacketType p = internal::packetwise_redux_impl::template run(panel_eval,m_functor.binaryFunc(),m_arg.outerSize()); + return p; + } + +protected: + ConstArgTypeNested m_arg; + const MemberOp m_functor; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PARTIALREDUX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PermutationMatrix.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PermutationMatrix.h new file mode 100644 index 0000000..69401bf --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PermutationMatrix.h @@ -0,0 +1,605 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2009-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PERMUTATIONMATRIX_H +#define EIGEN_PERMUTATIONMATRIX_H + +namespace Eigen { + +namespace internal { + +enum PermPermProduct_t {PermPermProduct}; + +} // end namespace internal + +/** \class PermutationBase + * \ingroup Core_Module + * + * \brief Base class for permutations + * + * \tparam Derived the derived class + * + * This class is the base class for all expressions representing a permutation matrix, + * internally stored as a vector of integers. + * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix + * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: + * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] + * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: + * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] + * + * Permutation matrices are square and invertible. + * + * Notice that in addition to the member functions and operators listed here, there also are non-member + * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) + * on either side. + * + * \sa class PermutationMatrix, class PermutationWrapper + */ +template +class PermutationBase : public EigenBase +{ + typedef internal::traits Traits; + typedef EigenBase Base; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + enum { + Flags = Traits::Flags, + RowsAtCompileTime = Traits::RowsAtCompileTime, + ColsAtCompileTime = Traits::ColsAtCompileTime, + MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Traits::MaxColsAtCompileTime + }; + typedef typename Traits::StorageIndex StorageIndex; + typedef Matrix + DenseMatrixType; + typedef PermutationMatrix + PlainPermutationType; + typedef PlainPermutationType PlainObject; + using Base::derived; + typedef Inverse InverseReturnType; + typedef void Scalar; + #endif + + /** Copies the other permutation into *this */ + template + Derived& operator=(const PermutationBase& other) + { + indices() = other.indices(); + return derived(); + } + + /** Assignment from the Transpositions \a tr */ + template + Derived& operator=(const TranspositionsBase& tr) + { + setIdentity(tr.size()); + for(Index k=size()-1; k>=0; --k) + applyTranspositionOnTheRight(k,tr.coeff(k)); + return derived(); + } + + /** \returns the number of rows */ + inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); } + + /** \returns the number of columns */ + inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); } + + /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ + inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void evalTo(MatrixBase& other) const + { + other.setZero(); + for (Index i=0; i=0 && j>=0 && i=0 && j>=0 && i + void assignTranspose(const PermutationBase& other) + { + for (Index i=0; i + void assignProduct(const Lhs& lhs, const Rhs& rhs) + { + eigen_assert(lhs.cols() == rhs.rows()); + for (Index i=0; i + inline PlainPermutationType operator*(const PermutationBase& other) const + { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); } + + /** \returns the product of a permutation with another inverse permutation. + * + * \note \blank \note_try_to_help_rvo + */ + template + inline PlainPermutationType operator*(const InverseImpl& other) const + { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } + + /** \returns the product of an inverse permutation with another permutation. + * + * \note \blank \note_try_to_help_rvo + */ + template friend + inline PlainPermutationType operator*(const InverseImpl& other, const PermutationBase& perm) + { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } + + /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation. + * + * This function is O(\c n) procedure allocating a buffer of \c n booleans. + */ + Index determinant() const + { + Index res = 1; + Index n = size(); + Matrix mask(n); + mask.fill(false); + Index r = 0; + while(r < n) + { + // search for the next seed + while(r=n) + break; + // we got one, let's follow it until we are back to the seed + Index k0 = r++; + mask.coeffRef(k0) = true; + for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k)) + { + mask.coeffRef(k) = true; + res = -res; + } + } + return res; + } + + protected: + +}; + +namespace internal { +template +struct traits > + : traits > +{ + typedef PermutationStorage StorageKind; + typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; + typedef _StorageIndex StorageIndex; + typedef void Scalar; +}; +} + +/** \class PermutationMatrix + * \ingroup Core_Module + * + * \brief Permutation matrix + * + * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic + * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. + * \tparam _StorageIndex the integer type of the indices + * + * This class represents a permutation matrix, internally stored as a vector of integers. + * + * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix + */ +template +class PermutationMatrix : public PermutationBase > +{ + typedef PermutationBase Base; + typedef internal::traits Traits; + public: + + typedef const PermutationMatrix& Nested; + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + typedef typename Traits::StorageIndex StorageIndex; + #endif + + inline PermutationMatrix() + {} + + /** Constructs an uninitialized permutation matrix of given size. + */ + explicit inline PermutationMatrix(Index size) : m_indices(size) + { + eigen_internal_assert(size <= NumTraits::highest()); + } + + /** Copy constructor. */ + template + inline PermutationMatrix(const PermutationBase& other) + : m_indices(other.indices()) {} + + /** Generic constructor from expression of the indices. The indices + * array has the meaning that the permutations sends each integer i to indices[i]. + * + * \warning It is your responsibility to check that the indices array that you passes actually + * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the + * array's size. + */ + template + explicit inline PermutationMatrix(const MatrixBase& indices) : m_indices(indices) + {} + + /** Convert the Transpositions \a tr to a permutation matrix */ + template + explicit PermutationMatrix(const TranspositionsBase& tr) + : m_indices(tr.size()) + { + *this = tr; + } + + /** Copies the other permutation into *this */ + template + PermutationMatrix& operator=(const PermutationBase& other) + { + m_indices = other.indices(); + return *this; + } + + /** Assignment from the Transpositions \a tr */ + template + PermutationMatrix& operator=(const TranspositionsBase& tr) + { + return Base::operator=(tr.derived()); + } + + /** const version of indices(). */ + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return m_indices; } + + + /**** multiplication helpers to hopefully get RVO ****/ + +#ifndef EIGEN_PARSED_BY_DOXYGEN + template + PermutationMatrix(const InverseImpl& other) + : m_indices(other.derived().nestedExpression().size()) + { + eigen_internal_assert(m_indices.size() <= NumTraits::highest()); + StorageIndex end = StorageIndex(m_indices.size()); + for (StorageIndex i=0; i + PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) + : m_indices(lhs.indices().size()) + { + Base::assignProduct(lhs,rhs); + } +#endif + + protected: + + IndicesType m_indices; +}; + + +namespace internal { +template +struct traits,_PacketAccess> > + : traits > +{ + typedef PermutationStorage StorageKind; + typedef Map, _PacketAccess> IndicesType; + typedef _StorageIndex StorageIndex; + typedef void Scalar; +}; +} + +template +class Map,_PacketAccess> + : public PermutationBase,_PacketAccess> > +{ + typedef PermutationBase Base; + typedef internal::traits Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar StorageIndex; + #endif + + inline Map(const StorageIndex* indicesPtr) + : m_indices(indicesPtr) + {} + + inline Map(const StorageIndex* indicesPtr, Index size) + : m_indices(indicesPtr,size) + {} + + /** Copies the other permutation into *this */ + template + Map& operator=(const PermutationBase& other) + { return Base::operator=(other.derived()); } + + /** Assignment from the Transpositions \a tr */ + template + Map& operator=(const TranspositionsBase& tr) + { return Base::operator=(tr.derived()); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + Map& operator=(const Map& other) + { + m_indices = other.m_indices; + return *this; + } + #endif + + /** const version of indices(). */ + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return m_indices; } + + protected: + + IndicesType m_indices; +}; + +template class TranspositionsWrapper; +namespace internal { +template +struct traits > +{ + typedef PermutationStorage StorageKind; + typedef void Scalar; + typedef typename _IndicesType::Scalar StorageIndex; + typedef _IndicesType IndicesType; + enum { + RowsAtCompileTime = _IndicesType::SizeAtCompileTime, + ColsAtCompileTime = _IndicesType::SizeAtCompileTime, + MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime, + Flags = 0 + }; +}; +} + +/** \class PermutationWrapper + * \ingroup Core_Module + * + * \brief Class to view a vector of integers as a permutation matrix + * + * \tparam _IndicesType the type of the vector of integer (can be any compatible expression) + * + * This class allows to view any vector expression of integers as a permutation matrix. + * + * \sa class PermutationBase, class PermutationMatrix + */ +template +class PermutationWrapper : public PermutationBase > +{ + typedef PermutationBase Base; + typedef internal::traits Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + #endif + + inline PermutationWrapper(const IndicesType& indices) + : m_indices(indices) + {} + + /** const version of indices(). */ + const typename internal::remove_all::type& + indices() const { return m_indices; } + + protected: + + typename IndicesType::Nested m_indices; +}; + + +/** \returns the matrix with the permutation applied to the columns. + */ +template +EIGEN_DEVICE_FUNC +const Product +operator*(const MatrixBase &matrix, + const PermutationBase& permutation) +{ + return Product + (matrix.derived(), permutation.derived()); +} + +/** \returns the matrix with the permutation applied to the rows. + */ +template +EIGEN_DEVICE_FUNC +const Product +operator*(const PermutationBase &permutation, + const MatrixBase& matrix) +{ + return Product + (permutation.derived(), matrix.derived()); +} + + +template +class InverseImpl + : public EigenBase > +{ + typedef typename PermutationType::PlainPermutationType PlainPermutationType; + typedef internal::traits PermTraits; + protected: + InverseImpl() {} + public: + typedef Inverse InverseType; + using EigenBase >::derived; + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename PermutationType::DenseMatrixType DenseMatrixType; + enum { + RowsAtCompileTime = PermTraits::RowsAtCompileTime, + ColsAtCompileTime = PermTraits::ColsAtCompileTime, + MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime + }; + #endif + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void evalTo(MatrixBase& other) const + { + other.setZero(); + for (Index i=0; i friend + const Product + operator*(const MatrixBase& matrix, const InverseType& trPerm) + { + return Product(matrix.derived(), trPerm.derived()); + } + + /** \returns the matrix with the inverse permutation applied to the rows. + */ + template + const Product + operator*(const MatrixBase& matrix) const + { + return Product(derived(), matrix.derived()); + } +}; + +template +const PermutationWrapper MatrixBase::asPermutation() const +{ + return derived(); +} + +namespace internal { + +template<> struct AssignmentKind { typedef EigenBase2EigenBase Kind; }; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PERMUTATIONMATRIX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PlainObjectBase.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PlainObjectBase.h new file mode 100644 index 0000000..f6497e9 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/PlainObjectBase.h @@ -0,0 +1,1117 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DENSESTORAGEBASE_H +#define EIGEN_DENSESTORAGEBASE_H + +#if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO) +# define EIGEN_INITIALIZE_COEFFS +# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i::quiet_NaN(); +#else +# undef EIGEN_INITIALIZE_COEFFS +# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED +#endif + +namespace Eigen { + +namespace internal { + +template struct check_rows_cols_for_overflow { + template + EIGEN_DEVICE_FUNC + static EIGEN_ALWAYS_INLINE void run(Index, Index) + { + } +}; + +template<> struct check_rows_cols_for_overflow { + template + EIGEN_DEVICE_FUNC + static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) + { + // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 + // we assume Index is signed + Index max_index = (std::size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed + bool error = (rows == 0 || cols == 0) ? false + : (rows > max_index / cols); + if (error) + throw_std_bad_alloc(); + } +}; + +template +struct conservative_resize_like_impl; + +template struct matrix_swap_impl; + +} // end namespace internal + +#ifdef EIGEN_PARSED_BY_DOXYGEN +namespace doxygen { + +// This is a workaround to doxygen not being able to understand the inheritance logic +// when it is hidden by the dense_xpr_base helper struct. +// Moreover, doxygen fails to include members that are not documented in the declaration body of +// MatrixBase if we inherits MatrixBase >, +// this is why we simply inherits MatrixBase, though this does not make sense. + +/** This class is just a workaround for Doxygen and it does not not actually exist. */ +template struct dense_xpr_base_dispatcher; +/** This class is just a workaround for Doxygen and it does not not actually exist. */ +template +struct dense_xpr_base_dispatcher > + : public MatrixBase {}; +/** This class is just a workaround for Doxygen and it does not not actually exist. */ +template +struct dense_xpr_base_dispatcher > + : public ArrayBase {}; + +} // namespace doxygen + +/** \class PlainObjectBase + * \ingroup Core_Module + * \brief %Dense storage base class for matrices and arrays. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. + * + * \tparam Derived is the derived type, e.g., a Matrix or Array + * + * \sa \ref TopicClassHierarchy + */ +template +class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher +#else +template +class PlainObjectBase : public internal::dense_xpr_base::type +#endif +{ + public: + enum { Options = internal::traits::Options }; + typedef typename internal::dense_xpr_base::type Base; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + + typedef typename internal::packet_traits::type PacketScalar; + typedef typename NumTraits::Real RealScalar; + typedef Derived DenseType; + + using Base::RowsAtCompileTime; + using Base::ColsAtCompileTime; + using Base::SizeAtCompileTime; + using Base::MaxRowsAtCompileTime; + using Base::MaxColsAtCompileTime; + using Base::MaxSizeAtCompileTime; + using Base::IsVectorAtCompileTime; + using Base::Flags; + + template friend class Eigen::Map; + friend class Eigen::Map; + typedef Eigen::Map MapType; + friend class Eigen::Map; + typedef const Eigen::Map ConstMapType; +#if EIGEN_MAX_ALIGN_BYTES>0 + // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice. + friend class Eigen::Map; + friend class Eigen::Map; +#endif + typedef Eigen::Map AlignedMapType; + typedef const Eigen::Map ConstAlignedMapType; + template struct StridedMapType { typedef Eigen::Map type; }; + template struct StridedConstMapType { typedef Eigen::Map type; }; + template struct StridedAlignedMapType { typedef Eigen::Map type; }; + template struct StridedConstAlignedMapType { typedef Eigen::Map type; }; + + protected: + DenseStorage m_storage; + + public: + enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits::Alignment>0) }; + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) + + EIGEN_DEVICE_FUNC + Base& base() { return *static_cast(this); } + EIGEN_DEVICE_FUNC + const Base& base() const { return *static_cast(this); } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } + + /** This is an overloaded version of DenseCoeffsBase::coeff(Index,Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeff(Index) const for details. */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const + { + if(Flags & RowMajorBit) + return m_storage.data()[colId + rowId * m_storage.cols()]; + else // column-major + return m_storage.data()[rowId + colId * m_storage.rows()]; + } + + /** This is an overloaded version of DenseCoeffsBase::coeff(Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeff(Index) const for details. */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const + { + return m_storage.data()[index]; + } + + /** This is an overloaded version of DenseCoeffsBase::coeffRef(Index,Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeffRef(Index,Index) const for details. */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId) + { + if(Flags & RowMajorBit) + return m_storage.data()[colId + rowId * m_storage.cols()]; + else // column-major + return m_storage.data()[rowId + colId * m_storage.rows()]; + } + + /** This is an overloaded version of DenseCoeffsBase::coeffRef(Index) const + * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. + * + * See DenseCoeffsBase::coeffRef(Index) const for details. */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) + { + return m_storage.data()[index]; + } + + /** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index). + * It is provided for convenience. */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const + { + if(Flags & RowMajorBit) + return m_storage.data()[colId + rowId * m_storage.cols()]; + else // column-major + return m_storage.data()[rowId + colId * m_storage.rows()]; + } + + /** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index). + * It is provided for convenience. */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const + { + return m_storage.data()[index]; + } + + /** \internal */ + template + EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const + { + return internal::ploadt + (m_storage.data() + (Flags & RowMajorBit + ? colId + rowId * m_storage.cols() + : rowId + colId * m_storage.rows())); + } + + /** \internal */ + template + EIGEN_STRONG_INLINE PacketScalar packet(Index index) const + { + return internal::ploadt(m_storage.data() + index); + } + + /** \internal */ + template + EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) + { + internal::pstoret + (m_storage.data() + (Flags & RowMajorBit + ? colId + rowId * m_storage.cols() + : rowId + colId * m_storage.rows()), val); + } + + /** \internal */ + template + EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) + { + internal::pstoret(m_storage.data() + index, val); + } + + /** \returns a const pointer to the data array of this matrix */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const + { return m_storage.data(); } + + /** \returns a pointer to the data array of this matrix */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() + { return m_storage.data(); } + + /** Resizes \c *this to a \a rows x \a cols matrix. + * + * This method is intended for dynamic-size matrices, although it is legal to call it on any + * matrix as long as fixed dimensions are left unchanged. If you only want to change the number + * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). + * + * If the current number of coefficients of \c *this exactly matches the + * product \a rows * \a cols, then no memory allocation is performed and + * the current values are left unchanged. In all other cases, including + * shrinking, the data is reallocated and all previous values are lost. + * + * Example: \include Matrix_resize_int_int.cpp + * Output: \verbinclude Matrix_resize_int_int.out + * + * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void resize(Index rows, Index cols) + { + eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime) + && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime) + && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime) + && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime) + && rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array."); + internal::check_rows_cols_for_overflow::run(rows, cols); + #ifdef EIGEN_INITIALIZE_COEFFS + Index size = rows*cols; + bool size_changed = size != this->size(); + m_storage.resize(size, rows, cols); + if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + #else + m_storage.resize(rows*cols, rows, cols); + #endif + } + + /** Resizes \c *this to a vector of length \a size + * + * \only_for_vectors. This method does not work for + * partially dynamic matrices when the static dimension is anything other + * than 1. For example it will not work with Matrix. + * + * Example: \include Matrix_resize_int.cpp + * Output: \verbinclude Matrix_resize_int.out + * + * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) + */ + EIGEN_DEVICE_FUNC + inline void resize(Index size) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) + eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0); + #ifdef EIGEN_INITIALIZE_COEFFS + bool size_changed = size != this->size(); + #endif + if(RowsAtCompileTime == 1) + m_storage.resize(size, 1, size); + else + m_storage.resize(size, size, 1); + #ifdef EIGEN_INITIALIZE_COEFFS + if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + #endif + } + + /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange + * as in the example below. + * + * Example: \include Matrix_resize_NoChange_int.cpp + * Output: \verbinclude Matrix_resize_NoChange_int.out + * + * \sa resize(Index,Index) + */ + EIGEN_DEVICE_FUNC + inline void resize(NoChange_t, Index cols) + { + resize(rows(), cols); + } + + /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange + * as in the example below. + * + * Example: \include Matrix_resize_int_NoChange.cpp + * Output: \verbinclude Matrix_resize_int_NoChange.out + * + * \sa resize(Index,Index) + */ + EIGEN_DEVICE_FUNC + inline void resize(Index rows, NoChange_t) + { + resize(rows, cols()); + } + + /** Resizes \c *this to have the same dimensions as \a other. + * Takes care of doing all the checking that's needed. + * + * Note that copying a row-vector into a vector (and conversely) is allowed. + * The resizing, if any, is then done in the appropriate way so that row-vectors + * remain row-vectors and vectors remain vectors. + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void resizeLike(const EigenBase& _other) + { + const OtherDerived& other = _other.derived(); + internal::check_rows_cols_for_overflow::run(other.rows(), other.cols()); + const Index othersize = other.rows()*other.cols(); + if(RowsAtCompileTime == 1) + { + eigen_assert(other.rows() == 1 || other.cols() == 1); + resize(1, othersize); + } + else if(ColsAtCompileTime == 1) + { + eigen_assert(other.rows() == 1 || other.cols() == 1); + resize(othersize, 1); + } + else resize(other.rows(), other.cols()); + } + + /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. + * + * The method is intended for matrices of dynamic size. If you only want to change the number + * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or + * conservativeResize(Index, NoChange_t). + * + * Matrices are resized relative to the top-left element. In case values need to be + * appended to the matrix they will be uninitialized. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) + { + internal::conservative_resize_like_impl::run(*this, rows, cols); + } + + /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. + * + * As opposed to conservativeResize(Index rows, Index cols), this version leaves + * the number of columns unchanged. + * + * In case the matrix is growing, new rows will be uninitialized. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) + { + // Note: see the comment in conservativeResize(Index,Index) + conservativeResize(rows, cols()); + } + + /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. + * + * As opposed to conservativeResize(Index rows, Index cols), this version leaves + * the number of rows unchanged. + * + * In case the matrix is growing, new columns will be uninitialized. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) + { + // Note: see the comment in conservativeResize(Index,Index) + conservativeResize(rows(), cols); + } + + /** Resizes the vector to \a size while retaining old values. + * + * \only_for_vectors. This method does not work for + * partially dynamic matrices when the static dimension is anything other + * than 1. For example it will not work with Matrix. + * + * When values are appended, they will be uninitialized. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResize(Index size) + { + internal::conservative_resize_like_impl::run(*this, size); + } + + /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. + * + * The method is intended for matrices of dynamic size. If you only want to change the number + * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or + * conservativeResize(Index, NoChange_t). + * + * Matrices are resized relative to the top-left element. In case values need to be + * appended to the matrix they will copied from \c other. + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase& other) + { + internal::conservative_resize_like_impl::run(*this, other); + } + + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) + { + return _set(other); + } + + /** \sa MatrixBase::lazyAssign() */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase& other) + { + _resize_to_match(other); + return Base::lazyAssign(other.derived()); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue& func) + { + resize(func.rows(), func.cols()); + return Base::operator=(func); + } + + // Prevent user from trying to instantiate PlainObjectBase objects + // by making all its constructor protected. See bug 1074. + protected: + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase() : m_storage() + { +// _check_template_params(); +// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + // FIXME is it still needed ? + /** \internal */ + EIGEN_DEVICE_FUNC + explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert) + : m_storage(internal::constructor_without_unaligned_array_assert()) + { +// _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } +#endif + +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT + : m_storage( std::move(other.m_storage) ) + { + } + + EIGEN_DEVICE_FUNC + PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT + { + using std::swap; + swap(m_storage, other.m_storage); + return *this; + } +#endif + + /** Copy constructor */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other) + : Base(), m_storage(other.m_storage) { } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) + : m_storage(size, rows, cols) + { +// _check_template_params(); +// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } + + #if EIGEN_HAS_CXX11 + /** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients. \cpp11 + * + * \only_for_vectors + * + * This constructor is for 1D array or vectors with more than 4 coefficients. + * There exists C++98 analogue constructors for fixed-size array/vector having 1, 2, 3, or 4 coefficients. + * + * \warning To construct a column (resp. row) vector of fixed length, the number of values passed to this + * constructor must match the the fixed number of rows (resp. columns) of \c *this. + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) + : m_storage() + { + _check_template_params(); + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, sizeof...(args) + 4); + m_storage.data()[0] = a0; + m_storage.data()[1] = a1; + m_storage.data()[2] = a2; + m_storage.data()[3] = a3; + int i = 4; + auto x = {(m_storage.data()[i++] = args, 0)...}; + static_cast(x); + } + + /** \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer + * lists \cpp11 + */ + EIGEN_DEVICE_FUNC + explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list>& list) + : m_storage() + { + _check_template_params(); + + size_t list_size = 0; + if (list.begin() != list.end()) { + list_size = list.begin()->size(); + } + + // This is to allow syntax like VectorXi {{1, 2, 3, 4}} + if (ColsAtCompileTime == 1 && list.size() == 1) { + eigen_assert(list_size == static_cast(RowsAtCompileTime) || RowsAtCompileTime == Dynamic); + resize(list_size, ColsAtCompileTime); + std::copy(list.begin()->begin(), list.begin()->end(), m_storage.data()); + } else { + eigen_assert(list.size() == static_cast(RowsAtCompileTime) || RowsAtCompileTime == Dynamic); + eigen_assert(list_size == static_cast(ColsAtCompileTime) || ColsAtCompileTime == Dynamic); + resize(list.size(), list_size); + + Index row_index = 0; + for (const std::initializer_list& row : list) { + eigen_assert(list_size == row.size()); + Index col_index = 0; + for (const Scalar& e : row) { + coeffRef(row_index, col_index) = e; + ++col_index; + } + ++row_index; + } + } + } + #endif // end EIGEN_HAS_CXX11 + + /** \sa PlainObjectBase::operator=(const EigenBase&) */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase &other) + : m_storage() + { + _check_template_params(); + resizeLike(other); + _set_noalias(other); + } + + /** \sa PlainObjectBase::operator=(const EigenBase&) */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase &other) + : m_storage() + { + _check_template_params(); + resizeLike(other); + *this = other.derived(); + } + /** \brief Copy constructor with in-place evaluation */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue& other) + { + _check_template_params(); + // FIXME this does not automatically transpose vectors if necessary + resize(other.rows(), other.cols()); + other.evalTo(this->derived()); + } + + public: + + /** \brief Copies the generic expression \a other into *this. + * \copydetails DenseBase::operator=(const EigenBase &other) + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& operator=(const EigenBase &other) + { + _resize_to_match(other); + Base::operator=(other.derived()); + return this->derived(); + } + + /** \name Map + * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, + * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned + * \a data pointers. + * + * Here is an example using strides: + * \include Matrix_Map_stride.cpp + * Output: \verbinclude Matrix_Map_stride.out + * + * \see class Map + */ + //@{ + static inline ConstMapType Map(const Scalar* data) + { return ConstMapType(data); } + static inline MapType Map(Scalar* data) + { return MapType(data); } + static inline ConstMapType Map(const Scalar* data, Index size) + { return ConstMapType(data, size); } + static inline MapType Map(Scalar* data, Index size) + { return MapType(data, size); } + static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) + { return ConstMapType(data, rows, cols); } + static inline MapType Map(Scalar* data, Index rows, Index cols) + { return MapType(data, rows, cols); } + + static inline ConstAlignedMapType MapAligned(const Scalar* data) + { return ConstAlignedMapType(data); } + static inline AlignedMapType MapAligned(Scalar* data) + { return AlignedMapType(data); } + static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) + { return ConstAlignedMapType(data, size); } + static inline AlignedMapType MapAligned(Scalar* data, Index size) + { return AlignedMapType(data, size); } + static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) + { return ConstAlignedMapType(data, rows, cols); } + static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) + { return AlignedMapType(data, rows, cols); } + + template + static inline typename StridedConstMapType >::type Map(const Scalar* data, const Stride& stride) + { return typename StridedConstMapType >::type(data, stride); } + template + static inline typename StridedMapType >::type Map(Scalar* data, const Stride& stride) + { return typename StridedMapType >::type(data, stride); } + template + static inline typename StridedConstMapType >::type Map(const Scalar* data, Index size, const Stride& stride) + { return typename StridedConstMapType >::type(data, size, stride); } + template + static inline typename StridedMapType >::type Map(Scalar* data, Index size, const Stride& stride) + { return typename StridedMapType >::type(data, size, stride); } + template + static inline typename StridedConstMapType >::type Map(const Scalar* data, Index rows, Index cols, const Stride& stride) + { return typename StridedConstMapType >::type(data, rows, cols, stride); } + template + static inline typename StridedMapType >::type Map(Scalar* data, Index rows, Index cols, const Stride& stride) + { return typename StridedMapType >::type(data, rows, cols, stride); } + + template + static inline typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, const Stride& stride) + { return typename StridedConstAlignedMapType >::type(data, stride); } + template + static inline typename StridedAlignedMapType >::type MapAligned(Scalar* data, const Stride& stride) + { return typename StridedAlignedMapType >::type(data, stride); } + template + static inline typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, Index size, const Stride& stride) + { return typename StridedConstAlignedMapType >::type(data, size, stride); } + template + static inline typename StridedAlignedMapType >::type MapAligned(Scalar* data, Index size, const Stride& stride) + { return typename StridedAlignedMapType >::type(data, size, stride); } + template + static inline typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride& stride) + { return typename StridedConstAlignedMapType >::type(data, rows, cols, stride); } + template + static inline typename StridedAlignedMapType >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride& stride) + { return typename StridedAlignedMapType >::type(data, rows, cols, stride); } + //@} + + using Base::setConstant; + EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val); + EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val); + + using Base::setZero; + EIGEN_DEVICE_FUNC Derived& setZero(Index size); + EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols); + + using Base::setOnes; + EIGEN_DEVICE_FUNC Derived& setOnes(Index size); + EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols); + + using Base::setRandom; + Derived& setRandom(Index size); + Derived& setRandom(Index rows, Index cols); + + #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN + #include EIGEN_PLAINOBJECTBASE_PLUGIN + #endif + + protected: + /** \internal Resizes *this in preparation for assigning \a other to it. + * Takes care of doing all the checking that's needed. + * + * Note that copying a row-vector into a vector (and conversely) is allowed. + * The resizing, if any, is then done in the appropriate way so that row-vectors + * remain row-vectors and vectors remain vectors. + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase& other) + { + #ifdef EIGEN_NO_AUTOMATIC_RESIZING + eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size()) + : (rows() == other.rows() && cols() == other.cols()))) + && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); + EIGEN_ONLY_USED_FOR_DEBUG(other); + #else + resizeLike(other); + #endif + } + + /** + * \brief Copies the value of the expression \a other into \c *this with automatic resizing. + * + * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), + * it will be initialized. + * + * Note that copying a row-vector into a vector (and conversely) is allowed. + * The resizing, if any, is then done in the appropriate way so that row-vectors + * remain row-vectors and vectors remain vectors. + * + * \sa operator=(const MatrixBase&), _set_noalias() + * + * \internal + */ + // aliasing is dealt once in internal::call_assignment + // so at this stage we have to assume aliasing... and resising has to be done later. + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& _set(const DenseBase& other) + { + internal::call_assignment(this->derived(), other.derived()); + return this->derived(); + } + + /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which + * is the case when creating a new matrix) so one can enforce lazy evaluation. + * + * \sa operator=(const MatrixBase&), _set() + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase& other) + { + // I don't think we need this resize call since the lazyAssign will anyways resize + // and lazyAssign will be called by the assign selector. + //_resize_to_match(other); + // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because + // it wouldn't allow to copy a row-vector into a column-vector. + internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); + return this->derived(); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if::type* = 0) + { + const bool t0_is_integer_alike = internal::is_valid_index_type::value; + const bool t1_is_integer_alike = internal::is_valid_index_type::value; + EIGEN_STATIC_ASSERT(t0_is_integer_alike && + t1_is_integer_alike, + FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) + resize(rows,cols); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, typename internal::enable_if::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) + m_storage.data()[0] = Scalar(val0); + m_storage.data()[1] = Scalar(val1); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1, + typename internal::enable_if< (!internal::is_same::value) + && (internal::is_same::value) + && (internal::is_same::value) + && Base::SizeAtCompileTime==2,T1>::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) + m_storage.data()[0] = Scalar(val0); + m_storage.data()[1] = Scalar(val1); + } + + // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array, + // then the argument is meant to be the size of the object. + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible::value) + && ((!internal::is_same::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0) + { + // NOTE MSVC 2008 complains if we directly put bool(NumTraits::IsInteger) as the EIGEN_STATIC_ASSERT argument. + const bool is_integer_alike = internal::is_valid_index_type::value; + EIGEN_UNUSED_VARIABLE(is_integer_alike); + EIGEN_STATIC_ASSERT(is_integer_alike, + FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) + resize(size); + } + + // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitly converted) + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if::value,T>::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) + m_storage.data()[0] = val0; + } + + // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type) + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Index& val0, + typename internal::enable_if< (!internal::is_same::value) + && (internal::is_same::value) + && Base::SizeAtCompileTime==1 + && internal::is_convertible::value,T*>::type* = 0) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) + m_storage.data()[0] = Scalar(val0); + } + + // Initialize a fixed size matrix from a pointer to raw data + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Scalar* data){ + this->_set_noalias(ConstMapType(data)); + } + + // Initialize an arbitrary matrix from a dense expression + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const DenseBase& other){ + this->_set_noalias(other); + } + + // Initialize an arbitrary matrix from an object convertible to the Derived type. + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Derived& other){ + this->_set_noalias(other); + } + + // Initialize an arbitrary matrix from a generic Eigen expression + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const EigenBase& other){ + this->derived() = other; + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const ReturnByValue& other) + { + resize(other.rows(), other.cols()); + other.evalTo(this->derived()); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const RotationBase& r) + { + this->derived() = r; + } + + // For fixed-size Array + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Scalar& val0, + typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic + && Base::SizeAtCompileTime!=1 + && internal::is_convertible::value + && internal::is_same::XprKind,ArrayXpr>::value,T>::type* = 0) + { + Base::setConstant(val0); + } + + // For fixed-size Array + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _init1(const Index& val0, + typename internal::enable_if< (!internal::is_same::value) + && (internal::is_same::value) + && Base::SizeAtCompileTime!=Dynamic + && Base::SizeAtCompileTime!=1 + && internal::is_convertible::value + && internal::is_same::XprKind,ArrayXpr>::value,T*>::type* = 0) + { + Base::setConstant(val0); + } + + template + friend struct internal::matrix_swap_impl; + + public: + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal + * \brief Override DenseBase::swap() since for dynamic-sized matrices + * of same type it is enough to swap the data pointers. + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void swap(DenseBase & other) + { + enum { SwapPointers = internal::is_same::value && Base::SizeAtCompileTime==Dynamic }; + internal::matrix_swap_impl::run(this->derived(), other.derived()); + } + + /** \internal + * \brief const version forwarded to DenseBase::swap + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void swap(DenseBase const & other) + { Base::swap(other.derived()); } + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void _check_template_params() + { + EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) + && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0) + && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0)) + && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0)) + && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0)) + && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0)) + && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic) + && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic) + && (Options & (DontAlign|RowMajor)) == Options), + INVALID_MATRIX_TEMPLATE_PARAMETERS) + } + + enum { IsPlainObjectBase = 1 }; +#endif +}; + +namespace internal { + +template +struct conservative_resize_like_impl +{ + #if EIGEN_HAS_TYPE_TRAITS + static const bool IsRelocatable = std::is_trivially_copyable::value; + #else + static const bool IsRelocatable = !NumTraits::RequireInitialization; + #endif + static void run(DenseBase& _this, Index rows, Index cols) + { + if (_this.rows() == rows && _this.cols() == cols) return; + EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) + + if ( IsRelocatable + && (( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows + (!Derived::IsRowMajor && _this.rows() == rows) )) // column-major and we change only the number of columns + { + internal::check_rows_cols_for_overflow::run(rows, cols); + _this.derived().m_storage.conservativeResize(rows*cols,rows,cols); + } + else + { + // The storage order does not allow us to use reallocation. + typename Derived::PlainObject tmp(rows,cols); + const Index common_rows = numext::mini(rows, _this.rows()); + const Index common_cols = numext::mini(cols, _this.cols()); + tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); + _this.derived().swap(tmp); + } + } + + static void run(DenseBase& _this, const DenseBase& other) + { + if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; + + // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), + // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the + // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or + // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like + // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. + EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) + EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) + + if ( IsRelocatable && + (( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows + (!Derived::IsRowMajor && _this.rows() == other.rows()) )) // column-major and we change only the number of columns + { + const Index new_rows = other.rows() - _this.rows(); + const Index new_cols = other.cols() - _this.cols(); + _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols()); + if (new_rows>0) + _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); + else if (new_cols>0) + _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); + } + else + { + // The storage order does not allow us to use reallocation. + typename Derived::PlainObject tmp(other); + const Index common_rows = numext::mini(tmp.rows(), _this.rows()); + const Index common_cols = numext::mini(tmp.cols(), _this.cols()); + tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); + _this.derived().swap(tmp); + } + } +}; + +// Here, the specialization for vectors inherits from the general matrix case +// to allow calling .conservativeResize(rows,cols) on vectors. +template +struct conservative_resize_like_impl + : conservative_resize_like_impl +{ + typedef conservative_resize_like_impl Base; + using Base::run; + using Base::IsRelocatable; + + static void run(DenseBase& _this, Index size) + { + const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; + const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1; + if(IsRelocatable) + _this.derived().m_storage.conservativeResize(size,new_rows,new_cols); + else + Base::run(_this.derived(), new_rows, new_cols); + } + + static void run(DenseBase& _this, const DenseBase& other) + { + if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; + + const Index num_new_elements = other.size() - _this.size(); + + const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows(); + const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1; + if(IsRelocatable) + _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols); + else + Base::run(_this.derived(), new_rows, new_cols); + + if (num_new_elements > 0) + _this.tail(num_new_elements) = other.tail(num_new_elements); + } +}; + +template +struct matrix_swap_impl +{ + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(MatrixTypeA& a, MatrixTypeB& b) + { + a.base().swap(b); + } +}; + +template +struct matrix_swap_impl +{ + EIGEN_DEVICE_FUNC + static inline void run(MatrixTypeA& a, MatrixTypeB& b) + { + static_cast(a).m_storage.swap(static_cast(b).m_storage); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_DENSESTORAGEBASE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Product.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Product.h new file mode 100644 index 0000000..13d5662 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Product.h @@ -0,0 +1,191 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PRODUCT_H +#define EIGEN_PRODUCT_H + +namespace Eigen { + +template class ProductImpl; + +namespace internal { + +template +struct traits > +{ + typedef typename remove_all::type LhsCleaned; + typedef typename remove_all::type RhsCleaned; + typedef traits LhsTraits; + typedef traits RhsTraits; + + typedef MatrixXpr XprKind; + + typedef typename ScalarBinaryOpTraits::Scalar, typename traits::Scalar>::ReturnType Scalar; + typedef typename product_promote_storage_type::ret>::ret StorageKind; + typedef typename promote_index_type::type StorageIndex; + + enum { + RowsAtCompileTime = LhsTraits::RowsAtCompileTime, + ColsAtCompileTime = RhsTraits::ColsAtCompileTime, + MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime, + + // FIXME: only needed by GeneralMatrixMatrixTriangular + InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime), + + // The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator. + Flags = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? RowMajorBit + : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 + : ( ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit)) + || ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) ) ? RowMajorBit + : NoPreferredStorageOrderBit + }; +}; + +} // end namespace internal + +/** \class Product + * \ingroup Core_Module + * + * \brief Expression of the product of two arbitrary matrices or vectors + * + * \tparam _Lhs the type of the left-hand side expression + * \tparam _Rhs the type of the right-hand side expression + * + * This class represents an expression of the product of two arbitrary matrices. + * + * The other template parameters are: + * \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct + * + */ +template +class Product : public ProductImpl<_Lhs,_Rhs,Option, + typename internal::product_promote_storage_type::StorageKind, + typename internal::traits<_Rhs>::StorageKind, + internal::product_type<_Lhs,_Rhs>::ret>::ret> +{ + public: + + typedef _Lhs Lhs; + typedef _Rhs Rhs; + + typedef typename ProductImpl< + Lhs, Rhs, Option, + typename internal::product_promote_storage_type::StorageKind, + typename internal::traits::StorageKind, + internal::product_type::ret>::ret>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(Product) + + typedef typename internal::ref_selector::type LhsNested; + typedef typename internal::ref_selector::type RhsNested; + typedef typename internal::remove_all::type LhsNestedCleaned; + typedef typename internal::remove_all::type RhsNestedCleaned; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) + { + eigen_assert(lhs.cols() == rhs.rows() + && "invalid matrix product" + && "if you wanted a coeff-wise or a dot product use the respective explicit functions"); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index rows() const { return m_lhs.rows(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index cols() const { return m_rhs.cols(); } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const LhsNestedCleaned& lhs() const { return m_lhs; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const RhsNestedCleaned& rhs() const { return m_rhs; } + + protected: + + LhsNested m_lhs; + RhsNested m_rhs; +}; + +namespace internal { + +template::ret> +class dense_product_base + : public internal::dense_xpr_base >::type +{}; + +/** Conversion to scalar for inner-products */ +template +class dense_product_base + : public internal::dense_xpr_base >::type +{ + typedef Product ProductXpr; + typedef typename internal::dense_xpr_base::type Base; +public: + using Base::derived; + typedef typename Base::Scalar Scalar; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE operator const Scalar() const + { + return internal::evaluator(derived()).coeff(0,0); + } +}; + +} // namespace internal + +// Generic API dispatcher +template +class ProductImpl : public internal::generic_xpr_base, MatrixXpr, StorageKind>::type +{ + public: + typedef typename internal::generic_xpr_base, MatrixXpr, StorageKind>::type Base; +}; + +template +class ProductImpl + : public internal::dense_product_base +{ + typedef Product Derived; + + public: + + typedef typename internal::dense_product_base Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Derived) + protected: + enum { + IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) && + (ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic), + EnableCoeff = IsOneByOne || Option==LazyProduct + }; + + public: + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index row, Index col) const + { + EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS); + eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) ); + + return internal::evaluator(derived()).coeff(row,col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index i) const + { + EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS); + eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) ); + + return internal::evaluator(derived()).coeff(i); + } + + +}; + +} // end namespace Eigen + +#endif // EIGEN_PRODUCT_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ProductEvaluators.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ProductEvaluators.h new file mode 100644 index 0000000..d53dc30 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ProductEvaluators.h @@ -0,0 +1,1174 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2011 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_PRODUCTEVALUATORS_H +#define EIGEN_PRODUCTEVALUATORS_H + +namespace Eigen { + +namespace internal { + +/** \internal + * Evaluator of a product expression. + * Since products require special treatments to handle all possible cases, + * we simply defer the evaluation logic to a product_evaluator class + * which offers more partial specialization possibilities. + * + * \sa class product_evaluator + */ +template +struct evaluator > + : public product_evaluator > +{ + typedef Product XprType; + typedef product_evaluator Base; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B" +// TODO we should apply that rule only if that's really helpful +template +struct evaluator_assume_aliasing, + const CwiseNullaryOp, Plain1>, + const Product > > +{ + static const bool value = true; +}; +template +struct evaluator, + const CwiseNullaryOp, Plain1>, + const Product > > + : public evaluator > +{ + typedef CwiseBinaryOp, + const CwiseNullaryOp, Plain1>, + const Product > XprType; + typedef evaluator > Base; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) + : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs()) + {} +}; + + +template +struct evaluator, DiagIndex> > + : public evaluator, DiagIndex> > +{ + typedef Diagonal, DiagIndex> XprType; + typedef evaluator, DiagIndex> > Base; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) + : Base(Diagonal, DiagIndex>( + Product(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()), + xpr.index() )) + {} +}; + + +// Helper class to perform a matrix product with the destination at hand. +// Depending on the sizes of the factors, there are different evaluation strategies +// as controlled by internal::product_type. +template< typename Lhs, typename Rhs, + typename LhsShape = typename evaluator_traits::Shape, + typename RhsShape = typename evaluator_traits::Shape, + int ProductType = internal::product_type::value> +struct generic_product_impl; + +template +struct evaluator_assume_aliasing > { + static const bool value = true; +}; + +// This is the default evaluator implementation for products: +// It creates a temporary and call generic_product_impl +template +struct product_evaluator, ProductTag, LhsShape, RhsShape> + : public evaluator::PlainObject> +{ + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + enum { + Flags = Base::Flags | EvalBeforeNestingBit + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit product_evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + +// FIXME shall we handle nested_eval here?, +// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.) +// typedef typename internal::nested_eval::type LhsNested; +// typedef typename internal::nested_eval::type RhsNested; +// typedef typename internal::remove_all::type LhsNestedCleaned; +// typedef typename internal::remove_all::type RhsNestedCleaned; +// +// const LhsNested lhs(xpr.lhs()); +// const RhsNested rhs(xpr.rhs()); +// +// generic_product_impl::evalTo(m_result, lhs, rhs); + + generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); + } + +protected: + PlainObject m_result; +}; + +// The following three shortcuts are enabled only if the scalar types match exactly. +// TODO: we could enable them for different scalar types when the product is not vectorized. + +// Dense = Product +template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> +struct Assignment, internal::assign_op, Dense2Dense, + typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> +{ + typedef Product SrcXprType; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + // FIXME shall we handle nested_eval here? + generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); + } +}; + +// Dense += Product +template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> +struct Assignment, internal::add_assign_op, Dense2Dense, + typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> +{ + typedef Product SrcXprType; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) + { + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + // FIXME shall we handle nested_eval here? + generic_product_impl::addTo(dst, src.lhs(), src.rhs()); + } +}; + +// Dense -= Product +template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar> +struct Assignment, internal::sub_assign_op, Dense2Dense, + typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type> +{ + typedef Product SrcXprType; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) + { + eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); + // FIXME shall we handle nested_eval here? + generic_product_impl::subTo(dst, src.lhs(), src.rhs()); + } +}; + + +// Dense ?= scalar * Product +// TODO we should apply that rule if that's really helpful +// for instance, this is not good for inner products +template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain> +struct Assignment, const CwiseNullaryOp,Plain>, + const Product >, AssignFunc, Dense2Dense> +{ + typedef CwiseBinaryOp, + const CwiseNullaryOp,Plain>, + const Product > SrcXprType; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func) + { + call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func); + } +}; + +//---------------------------------------- +// Catch "Dense ?= xpr + Product<>" expression to save one temporary +// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct + +template +struct evaluator_assume_aliasing::Scalar>, const OtherXpr, + const Product >, DenseShape > { + static const bool value = true; +}; + +template +struct evaluator_assume_aliasing::Scalar>, const OtherXpr, + const Product >, DenseShape > { + static const bool value = true; +}; + +template +struct assignment_from_xpr_op_product +{ + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) + { + call_assignment_no_alias(dst, src.lhs(), Func1()); + call_assignment_no_alias(dst, src.rhs(), Func2()); + } +}; + +#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \ + template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \ + struct Assignment, const OtherXpr, \ + const Product >, internal::ASSIGN_OP, Dense2Dense> \ + : assignment_from_xpr_op_product, internal::ASSIGN_OP, internal::ASSIGN_OP2 > \ + {} + +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op); + +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op); + +//---------------------------------------- + +template +struct generic_product_impl +{ + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum(); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); } +}; + + +/*********************************************************************** +* Implementation of outer dense * dense vector product +***********************************************************************/ + +// Column major result +template +void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&) +{ + evaluator rhsEval(rhs); + ei_declare_local_nested_eval(Lhs,lhs,Rhs::SizeAtCompileTime,actual_lhs); + // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored + // FIXME not very good if rhs is real and lhs complex while alpha is real too + const Index cols = dst.cols(); + for (Index j=0; j +void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) +{ + evaluator lhsEval(lhs); + ei_declare_local_nested_eval(Rhs,rhs,Lhs::SizeAtCompileTime,actual_rhs); + // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored + // FIXME not very good if lhs is real and rhs complex while alpha is real too + const Index rows = dst.rows(); + for (Index i=0; i +struct generic_product_impl +{ + template struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {}; + typedef typename Product::Scalar Scalar; + + // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose + struct set { template EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } }; + struct add { template EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } }; + struct sub { template EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } }; + struct adds { + Scalar m_scale; + explicit adds(const Scalar& s) : m_scale(s) {} + template void EIGEN_DEVICE_FUNC operator()(const Dst& dst, const Src& src) const { + dst.const_cast_derived() += m_scale * src; + } + }; + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major()); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major()); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major()); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major()); + } + +}; + + +// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo +template +struct generic_product_impl_base +{ + typedef typename Product::Scalar Scalar; + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } + +}; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + typedef typename Product::Scalar Scalar; + enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; + typedef typename internal::remove_all::type>::type MatrixType; + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + LhsNested actual_lhs(lhs); + RhsNested actual_rhs(rhs); + internal::gemv_dense_selector::HasUsableDirectAccess) + >::run(actual_lhs, actual_rhs, dst, alpha); + } +}; + +template +struct generic_product_impl +{ + typedef typename Product::Scalar Scalar; + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // Same as: dst.noalias() = lhs.lazyProduct(rhs); + // but easier on the compiler side + call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op()); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // dst.noalias() += lhs.lazyProduct(rhs); + call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op()); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // dst.noalias() -= lhs.lazyProduct(rhs); + call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op()); + } + + // This is a special evaluation path called from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h + // This variant tries to extract scalar multiples from both the LHS and RHS and factor them out. For instance: + // dst {,+,-}= (s1*A)*(B*s2) + // will be rewritten as: + // dst {,+,-}= (s1*s2) * (A.lazyProduct(B)) + // There are at least four benefits of doing so: + // 1 - huge performance gain for heap-allocated matrix types as it save costly allocations. + // 2 - it is faster than simply by-passing the heap allocation through stack allocation. + // 3 - it makes this fallback consistent with the heavy GEMM routine. + // 4 - it fully by-passes huge stack allocation attempts when multiplying huge fixed-size matrices. + // (see https://stackoverflow.com/questions/54738495) + // For small fixed sizes matrices, howver, the gains are less obvious, it is sometimes x2 faster, but sometimes x3 slower, + // and the behavior depends also a lot on the compiler... This is why this re-writting strategy is currently + // enabled only when falling back from the main GEMM. + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void eval_dynamic(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Func &func) + { + enum { + HasScalarFactor = blas_traits::HasScalarFactor || blas_traits::HasScalarFactor, + ConjLhs = blas_traits::NeedToConjugate, + ConjRhs = blas_traits::NeedToConjugate + }; + // FIXME: in c++11 this should be auto, and extractScalarFactor should also return auto + // this is important for real*complex_mat + Scalar actualAlpha = blas_traits::extractScalarFactor(lhs) + * blas_traits::extractScalarFactor(rhs); + eval_dynamic_impl(dst, + blas_traits::extract(lhs).template conjugateIf(), + blas_traits::extract(rhs).template conjugateIf(), + func, + actualAlpha, + typename conditional::type()); + } + +protected: + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s /* == 1 */, false_type) + { + EIGEN_UNUSED_VARIABLE(s); + eigen_internal_assert(s==Scalar(1)); + call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s, true_type) + { + call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func); + } +}; + +// This specialization enforces the use of a coefficient-based evaluation strategy +template +struct generic_product_impl + : generic_product_impl {}; + +// Case 2: Evaluate coeff by coeff +// +// This is mostly taken from CoeffBasedProduct.h +// The main difference is that we add an extra argument to the etor_product_*_impl::run() function +// for the inner dimension of the product, because evaluator object do not know their size. + +template +struct etor_product_coeff_impl; + +template +struct etor_product_packet_impl; + +template +struct product_evaluator, ProductTag, DenseShape, DenseShape> + : evaluator_base > +{ + typedef Product XprType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit product_evaluator(const XprType& xpr) + : m_lhs(xpr.lhs()), + m_rhs(xpr.rhs()), + m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that! + m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed, + // or perhaps declare them on the fly on the packet method... We have experiment to check what's best. + m_innerDim(xpr.lhs().cols()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits::MulCost); + EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits::AddCost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); +#if 0 + std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n"; + std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n"; + std::cerr << "LhsAlignment= " << LhsAlignment << "\n"; + std::cerr << "RhsAlignment= " << RhsAlignment << "\n"; + std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n"; + std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n"; + std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n"; + std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n"; + std::cerr << "Alignment= " << Alignment << "\n"; + std::cerr << "Flags= " << Flags << "\n"; +#endif + } + + // Everything below here is taken from CoeffBasedProduct.h + + typedef typename internal::nested_eval::type LhsNested; + typedef typename internal::nested_eval::type RhsNested; + + typedef typename internal::remove_all::type LhsNestedCleaned; + typedef typename internal::remove_all::type RhsNestedCleaned; + + typedef evaluator LhsEtorType; + typedef evaluator RhsEtorType; + + enum { + RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime, + ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime, + InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime), + MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime, + MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime + }; + + typedef typename find_best_packet::type LhsVecPacketType; + typedef typename find_best_packet::type RhsVecPacketType; + + enum { + + LhsCoeffReadCost = LhsEtorType::CoeffReadCost, + RhsCoeffReadCost = RhsEtorType::CoeffReadCost, + CoeffReadCost = InnerSize==0 ? NumTraits::ReadCost + : InnerSize == Dynamic ? HugeCost + : InnerSize * (NumTraits::MulCost + LhsCoeffReadCost + RhsCoeffReadCost) + + (InnerSize - 1) * NumTraits::AddCost, + + Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT, + + LhsFlags = LhsEtorType::Flags, + RhsFlags = RhsEtorType::Flags, + + LhsRowMajor = LhsFlags & RowMajorBit, + RhsRowMajor = RhsFlags & RowMajorBit, + + LhsVecPacketSize = unpacket_traits::size, + RhsVecPacketSize = unpacket_traits::size, + + // Here, we don't care about alignment larger than the usable packet size. + LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))), + RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))), + + SameType = is_same::value, + + CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1), + CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1), + + EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 + : (bool(RhsRowMajor) && !CanVectorizeLhs), + + Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit) + | (EvalToRowMajor ? RowMajorBit : 0) + // TODO enable vectorization for mixed types + | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0) + | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0), + + LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)), + RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)), + + Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment) + : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment) + : 0, + + /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside + * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner + * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect + * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI. + */ + CanVectorizeInner = SameType + && LhsRowMajor + && (!RhsRowMajor) + && (LhsFlags & RhsFlags & ActualPacketAccessBit) + && (InnerSize % packet_traits::size == 0) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const + { + return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); + } + + /* Allow index-based non-packet access. It is impossible though to allow index-based packed access, + * which is why we don't set the LinearAccessBit. + * TODO: this seems possible when the result is a vector + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const CoeffReturnType coeff(Index index) const + { + const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; + const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; + return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const PacketType packet(Index row, Index col) const + { + PacketType res; + typedef etor_product_packet_impl PacketImpl; + PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res); + return res; + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const PacketType packet(Index index) const + { + const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index; + const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0; + return packet(row,col); + } + +protected: + typename internal::add_const_on_value_type::type m_lhs; + typename internal::add_const_on_value_type::type m_rhs; + + LhsEtorType m_lhsImpl; + RhsEtorType m_rhsImpl; + + // TODO: Get rid of m_innerDim if known at compile time + Index m_innerDim; +}; + +template +struct product_evaluator, LazyCoeffBasedProductMode, DenseShape, DenseShape> + : product_evaluator, CoeffBasedProductMode, DenseShape, DenseShape> +{ + typedef Product XprType; + typedef Product BaseProduct; + typedef product_evaluator Base; + enum { + Flags = Base::Flags | EvalBeforeNestingBit + }; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit product_evaluator(const XprType& xpr) + : Base(BaseProduct(xpr.lhs(),xpr.rhs())) + {} +}; + +/**************************************** +*** Coeff based product, Packet path *** +****************************************/ + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) + { + etor_product_packet_impl::run(row, col, lhs, rhs, innerDim, res); + res = pmadd(pset1(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet(Index(UnrollingIndex-1), col), res); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res) + { + etor_product_packet_impl::run(row, col, lhs, rhs, innerDim, res); + res = pmadd(lhs.template packet(row, Index(UnrollingIndex-1)), pset1(rhs.coeff(Index(UnrollingIndex-1), col)), res); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) + { + res = pmul(pset1(lhs.coeff(row, Index(0))),rhs.template packet(Index(0), col)); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res) + { + res = pmul(lhs.template packet(row, Index(0)), pset1(rhs.coeff(Index(0), col))); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) + { + res = pset1(typename unpacket_traits::type(0)); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res) + { + res = pset1(typename unpacket_traits::type(0)); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) + { + res = pset1(typename unpacket_traits::type(0)); + for(Index i = 0; i < innerDim; ++i) + res = pmadd(pset1(lhs.coeff(row, i)), rhs.template packet(i, col), res); + } +}; + +template +struct etor_product_packet_impl +{ + static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res) + { + res = pset1(typename unpacket_traits::type(0)); + for(Index i = 0; i < innerDim; ++i) + res = pmadd(lhs.template packet(row, i), pset1(rhs.coeff(i, col)), res); + } +}; + + +/*************************************************************************** +* Triangular products +***************************************************************************/ +template +struct triangular_product_impl; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + triangular_product_impl + ::run(dst, lhs.nestedExpression(), rhs, alpha); + } +}; + +template +struct generic_product_impl +: generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + triangular_product_impl::run(dst, lhs, rhs.nestedExpression(), alpha); + } +}; + + +/*************************************************************************** +* SelfAdjoint products +***************************************************************************/ +template +struct selfadjoint_product_impl; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static EIGEN_DEVICE_FUNC + void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + selfadjoint_product_impl::run(dst, lhs.nestedExpression(), rhs, alpha); + } +}; + +template +struct generic_product_impl +: generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + selfadjoint_product_impl::run(dst, lhs, rhs.nestedExpression(), alpha); + } +}; + + +/*************************************************************************** +* Diagonal products +***************************************************************************/ + +template +struct diagonal_product_evaluator_base + : evaluator_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType Scalar; +public: + enum { + CoeffReadCost = NumTraits::MulCost + evaluator::CoeffReadCost + evaluator::CoeffReadCost, + + MatrixFlags = evaluator::Flags, + DiagFlags = evaluator::Flags, + + _StorageOrder = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor + : (Derived::MaxColsAtCompileTime==1 && Derived::MaxRowsAtCompileTime!=1) ? ColMajor + : MatrixFlags & RowMajorBit ? RowMajor : ColMajor, + _SameStorageOrder = _StorageOrder == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor), + + _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft) + ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)), + _SameTypes = is_same::value, + // FIXME currently we need same types, but in the future the next rule should be the one + //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))), + _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) + && _SameTypes + && (_SameStorageOrder || (MatrixFlags&LinearAccessBit)==LinearAccessBit) + && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))), + _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0, + Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0), + Alignment = evaluator::Alignment, + + AsScalarProduct = (DiagonalType::SizeAtCompileTime==1) + || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft) + || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight) + }; + + diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag) + : m_diagImpl(diag), m_matImpl(mat) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits::MulCost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const + { + if(AsScalarProduct) + return m_diagImpl.coeff(0) * m_matImpl.coeff(idx); + else + return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx); + } + +protected: + template + EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const + { + return internal::pmul(m_matImpl.template packet(row, col), + internal::pset1(m_diagImpl.coeff(id))); + } + + template + EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const + { + enum { + InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, + DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator::Alignment)) // FIXME hardcoded 16!! + }; + return internal::pmul(m_matImpl.template packet(row, col), + m_diagImpl.template packet(id)); + } + + evaluator m_diagImpl; + evaluator m_matImpl; +}; + +// diagonal * dense +template +struct product_evaluator, ProductTag, DiagonalShape, DenseShape> + : diagonal_product_evaluator_base, OnTheLeft> +{ + typedef diagonal_product_evaluator_base, OnTheLeft> Base; + using Base::m_diagImpl; + using Base::m_matImpl; + using Base::coeff; + typedef typename Base::Scalar Scalar; + + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + typedef typename Lhs::DiagonalVectorType DiagonalType; + + + enum { StorageOrder = Base::_StorageOrder }; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base(xpr.rhs(), xpr.lhs().diagonal()) + { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const + { + return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col); + } + +#ifndef EIGEN_GPUCC + template + EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const + { + // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case. + // See also similar calls below. + return this->template packet_impl(row,col, row, + typename internal::conditional::type()); + } + + template + EIGEN_STRONG_INLINE PacketType packet(Index idx) const + { + return packet(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); + } +#endif +}; + +// dense * diagonal +template +struct product_evaluator, ProductTag, DenseShape, DiagonalShape> + : diagonal_product_evaluator_base, OnTheRight> +{ + typedef diagonal_product_evaluator_base, OnTheRight> Base; + using Base::m_diagImpl; + using Base::m_matImpl; + using Base::coeff; + typedef typename Base::Scalar Scalar; + + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + + enum { StorageOrder = Base::_StorageOrder }; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base(xpr.lhs(), xpr.rhs().diagonal()) + { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const + { + return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col); + } + +#ifndef EIGEN_GPUCC + template + EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const + { + return this->template packet_impl(row,col, col, + typename internal::conditional::type()); + } + + template + EIGEN_STRONG_INLINE PacketType packet(Index idx) const + { + return packet(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); + } +#endif +}; + +/*************************************************************************** +* Products with permutation matrices +***************************************************************************/ + +/** \internal + * \class permutation_matrix_product + * Internal helper class implementing the product between a permutation matrix and a matrix. + * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h + */ +template +struct permutation_matrix_product; + +template +struct permutation_matrix_product +{ + typedef typename nested_eval::type MatrixType; + typedef typename remove_all::type MatrixTypeCleaned; + + template + static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) + { + MatrixType mat(xpr); + const Index n = Side==OnTheLeft ? mat.rows() : mat.cols(); + // FIXME we need an is_same for expression that is not sensitive to constness. For instance + // is_same_xpr, Block >::value should be true. + //if(is_same::value && extract_data(dst) == extract_data(mat)) + if(is_same_dense(dst, mat)) + { + // apply the permutation inplace + Matrix mask(perm.size()); + mask.fill(false); + Index r = 0; + while(r < perm.size()) + { + // search for the next seed + while(r=perm.size()) + break; + // we got one, let's follow it until we are back to the seed + Index k0 = r++; + Index kPrev = k0; + mask.coeffRef(k0) = true; + for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k)) + { + Block(dst, k) + .swap(Block + (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); + + mask.coeffRef(k) = true; + kPrev = k; + } + } + } + else + { + for(Index i = 0; i < n; ++i) + { + Block + (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i) + + = + + Block + (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i); + } + } + } +}; + +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + permutation_matrix_product::run(dst, lhs, rhs); + } +}; + +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + permutation_matrix_product::run(dst, rhs, lhs); + } +}; + +template +struct generic_product_impl, Rhs, PermutationShape, MatrixShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Inverse& lhs, const Rhs& rhs) + { + permutation_matrix_product::run(dst, lhs.nestedExpression(), rhs); + } +}; + +template +struct generic_product_impl, MatrixShape, PermutationShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Inverse& rhs) + { + permutation_matrix_product::run(dst, rhs.nestedExpression(), lhs); + } +}; + + +/*************************************************************************** +* Products with transpositions matrices +***************************************************************************/ + +// FIXME could we unify Transpositions and Permutation into a single "shape"?? + +/** \internal + * \class transposition_matrix_product + * Internal helper class implementing the product between a permutation matrix and a matrix. + */ +template +struct transposition_matrix_product +{ + typedef typename nested_eval::type MatrixType; + typedef typename remove_all::type MatrixTypeCleaned; + + template + static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr) + { + MatrixType mat(xpr); + typedef typename TranspositionType::StorageIndex StorageIndex; + const Index size = tr.size(); + StorageIndex j = 0; + + if(!is_same_dense(dst,mat)) + dst = mat; + + for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + transposition_matrix_product::run(dst, lhs, rhs); + } +}; + +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + transposition_matrix_product::run(dst, rhs, lhs); + } +}; + + +template +struct generic_product_impl, Rhs, TranspositionsShape, MatrixShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Transpose& lhs, const Rhs& rhs) + { + transposition_matrix_product::run(dst, lhs.nestedExpression(), rhs); + } +}; + +template +struct generic_product_impl, MatrixShape, TranspositionsShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Transpose& rhs) + { + transposition_matrix_product::run(dst, rhs.nestedExpression(), lhs); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PRODUCT_EVALUATORS_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Random.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Random.h new file mode 100644 index 0000000..486e9ed --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Random.h @@ -0,0 +1,182 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_RANDOM_H +#define EIGEN_RANDOM_H + +namespace Eigen { + +namespace internal { + +template struct scalar_random_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op) + inline const Scalar operator() () const { return random(); } +}; + +template +struct functor_traits > +{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false, IsRepeatable = false }; }; + +} // end namespace internal + +/** \returns a random matrix expression + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * The parameters \a rows and \a cols are the number of rows and of columns of + * the returned matrix. Must be compatible with this MatrixBase type. + * + * \not_reentrant + * + * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, + * it is redundant to pass \a rows and \a cols as arguments, so Random() should be used + * instead. + * + * + * Example: \include MatrixBase_random_int_int.cpp + * Output: \verbinclude MatrixBase_random_int_int.out + * + * This expression has the "evaluate before nesting" flag so that it will be evaluated into + * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected + * behavior with expressions involving random matrices. + * + * See DenseBase::NullaryExpr(Index, const CustomNullaryOp&) for an example using C++11 random generators. + * + * \sa DenseBase::setRandom(), DenseBase::Random(Index), DenseBase::Random() + */ +template +inline const typename DenseBase::RandomReturnType +DenseBase::Random(Index rows, Index cols) +{ + return NullaryExpr(rows, cols, internal::scalar_random_op()); +} + +/** \returns a random vector expression + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * The parameter \a size is the size of the returned vector. + * Must be compatible with this MatrixBase type. + * + * \only_for_vectors + * \not_reentrant + * + * This variant is meant to be used for dynamic-size vector types. For fixed-size types, + * it is redundant to pass \a size as argument, so Random() should be used + * instead. + * + * Example: \include MatrixBase_random_int.cpp + * Output: \verbinclude MatrixBase_random_int.out + * + * This expression has the "evaluate before nesting" flag so that it will be evaluated into + * a temporary vector whenever it is nested in a larger expression. This prevents unexpected + * behavior with expressions involving random matrices. + * + * \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random() + */ +template +inline const typename DenseBase::RandomReturnType +DenseBase::Random(Index size) +{ + return NullaryExpr(size, internal::scalar_random_op()); +} + +/** \returns a fixed-size random matrix or vector expression + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you + * need to use the variants taking size arguments. + * + * Example: \include MatrixBase_random.cpp + * Output: \verbinclude MatrixBase_random.out + * + * This expression has the "evaluate before nesting" flag so that it will be evaluated into + * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected + * behavior with expressions involving random matrices. + * + * \not_reentrant + * + * \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random(Index) + */ +template +inline const typename DenseBase::RandomReturnType +DenseBase::Random() +{ + return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op()); +} + +/** Sets all coefficients in this expression to random values. + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * \not_reentrant + * + * Example: \include MatrixBase_setRandom.cpp + * Output: \verbinclude MatrixBase_setRandom.out + * + * \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index) + */ +template +EIGEN_DEVICE_FUNC inline Derived& DenseBase::setRandom() +{ + return *this = Random(rows(), cols()); +} + +/** Resizes to the given \a newSize, and sets all coefficients in this expression to random values. + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * \only_for_vectors + * \not_reentrant + * + * Example: \include Matrix_setRandom_int.cpp + * Output: \verbinclude Matrix_setRandom_int.out + * + * \sa DenseBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, DenseBase::Random() + */ +template +EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setRandom(Index newSize) +{ + resize(newSize); + return setRandom(); +} + +/** Resizes to the given size, and sets all coefficients in this expression to random values. + * + * Numbers are uniformly spread through their whole definition range for integer types, + * and in the [-1:1] range for floating point scalar types. + * + * \not_reentrant + * + * \param rows the new number of rows + * \param cols the new number of columns + * + * Example: \include Matrix_setRandom_int_int.cpp + * Output: \verbinclude Matrix_setRandom_int_int.out + * + * \sa DenseBase::setRandom(), setRandom(Index), class CwiseNullaryOp, DenseBase::Random() + */ +template +EIGEN_STRONG_INLINE Derived& +PlainObjectBase::setRandom(Index rows, Index cols) +{ + resize(rows, cols); + return setRandom(); +} + +} // end namespace Eigen + +#endif // EIGEN_RANDOM_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Redux.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Redux.h new file mode 100644 index 0000000..2eef5ab --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Redux.h @@ -0,0 +1,507 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REDUX_H +#define EIGEN_REDUX_H + +namespace Eigen { + +namespace internal { + +// TODO +// * implement other kind of vectorization +// * factorize code + +/*************************************************************************** +* Part 1 : the logic deciding a strategy for vectorization and unrolling +***************************************************************************/ + +template +struct redux_traits +{ +public: + typedef typename find_best_packet::type PacketType; + enum { + PacketSize = unpacket_traits::size, + InnerMaxSize = int(Evaluator::IsRowMajor) + ? Evaluator::MaxColsAtCompileTime + : Evaluator::MaxRowsAtCompileTime, + OuterMaxSize = int(Evaluator::IsRowMajor) + ? Evaluator::MaxRowsAtCompileTime + : Evaluator::MaxColsAtCompileTime, + SliceVectorizedWork = int(InnerMaxSize)==Dynamic ? Dynamic + : int(OuterMaxSize)==Dynamic ? (int(InnerMaxSize)>=int(PacketSize) ? Dynamic : 0) + : (int(InnerMaxSize)/int(PacketSize)) * int(OuterMaxSize) + }; + + enum { + MightVectorize = (int(Evaluator::Flags)&ActualPacketAccessBit) + && (functor_traits::PacketAccess), + MayLinearVectorize = bool(MightVectorize) && (int(Evaluator::Flags)&LinearAccessBit), + MaySliceVectorize = bool(MightVectorize) && (int(SliceVectorizedWork)==Dynamic || int(SliceVectorizedWork)>=3) + }; + +public: + enum { + Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) + : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) + : int(DefaultTraversal) + }; + +public: + enum { + Cost = Evaluator::SizeAtCompileTime == Dynamic ? HugeCost + : Evaluator::SizeAtCompileTime * Evaluator::CoeffReadCost + (Evaluator::SizeAtCompileTime-1) * functor_traits::Cost, + UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) + }; + +public: + enum { + Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling + }; + +#ifdef EIGEN_DEBUG_ASSIGN + static void debug() + { + std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl; + std::cerr.setf(std::ios::hex, std::ios::basefield); + EIGEN_DEBUG_VAR(Evaluator::Flags) + std::cerr.unsetf(std::ios::hex); + EIGEN_DEBUG_VAR(InnerMaxSize) + EIGEN_DEBUG_VAR(OuterMaxSize) + EIGEN_DEBUG_VAR(SliceVectorizedWork) + EIGEN_DEBUG_VAR(PacketSize) + EIGEN_DEBUG_VAR(MightVectorize) + EIGEN_DEBUG_VAR(MayLinearVectorize) + EIGEN_DEBUG_VAR(MaySliceVectorize) + std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl; + EIGEN_DEBUG_VAR(UnrollingLimit) + std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl; + std::cerr << std::endl; + } +#endif +}; + +/*************************************************************************** +* Part 2 : unrollers +***************************************************************************/ + +/*** no vectorization ***/ + +template +struct redux_novec_unroller +{ + enum { + HalfLength = Length/2 + }; + + typedef typename Evaluator::Scalar Scalar; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func) + { + return func(redux_novec_unroller::run(eval,func), + redux_novec_unroller::run(eval,func)); + } +}; + +template +struct redux_novec_unroller +{ + enum { + outer = Start / Evaluator::InnerSizeAtCompileTime, + inner = Start % Evaluator::InnerSizeAtCompileTime + }; + + typedef typename Evaluator::Scalar Scalar; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func&) + { + return eval.coeffByOuterInner(outer, inner); + } +}; + +// This is actually dead code and will never be called. It is required +// to prevent false warnings regarding failed inlining though +// for 0 length run() will never be called at all. +template +struct redux_novec_unroller +{ + typedef typename Evaluator::Scalar Scalar; + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); } +}; + +/*** vectorization ***/ + +template +struct redux_vec_unroller +{ + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func& func) + { + enum { + PacketSize = unpacket_traits::size, + HalfLength = Length/2 + }; + + return func.packetOp( + redux_vec_unroller::template run(eval,func), + redux_vec_unroller::template run(eval,func) ); + } +}; + +template +struct redux_vec_unroller +{ + template + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func&) + { + enum { + PacketSize = unpacket_traits::size, + index = Start * PacketSize, + outer = index / int(Evaluator::InnerSizeAtCompileTime), + inner = index % int(Evaluator::InnerSizeAtCompileTime), + alignment = Evaluator::Alignment + }; + return eval.template packetByOuterInner(outer, inner); + } +}; + +/*************************************************************************** +* Part 3 : implementation of all cases +***************************************************************************/ + +template::Traversal, + int Unrolling = redux_traits::Unrolling +> +struct redux_impl; + +template +struct redux_impl +{ + typedef typename Evaluator::Scalar Scalar; + + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) + { + eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); + Scalar res; + res = eval.coeffByOuterInner(0, 0); + for(Index i = 1; i < xpr.innerSize(); ++i) + res = func(res, eval.coeffByOuterInner(0, i)); + for(Index i = 1; i < xpr.outerSize(); ++i) + for(Index j = 0; j < xpr.innerSize(); ++j) + res = func(res, eval.coeffByOuterInner(i, j)); + return res; + } +}; + +template +struct redux_impl + : redux_novec_unroller +{ + typedef redux_novec_unroller Base; + typedef typename Evaluator::Scalar Scalar; + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + Scalar run(const Evaluator &eval, const Func& func, const XprType& /*xpr*/) + { + return Base::run(eval,func); + } +}; + +template +struct redux_impl +{ + typedef typename Evaluator::Scalar Scalar; + typedef typename redux_traits::PacketType PacketScalar; + + template + static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) + { + const Index size = xpr.size(); + + const Index packetSize = redux_traits::PacketSize; + const int packetAlignment = unpacket_traits::alignment; + enum { + alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), + alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment) + }; + const Index alignedStart = internal::first_default_aligned(xpr); + const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); + const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); + const Index alignedEnd2 = alignedStart + alignedSize2; + const Index alignedEnd = alignedStart + alignedSize; + Scalar res; + if(alignedSize) + { + PacketScalar packet_res0 = eval.template packet(alignedStart); + if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop + { + PacketScalar packet_res1 = eval.template packet(alignedStart+packetSize); + for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) + { + packet_res0 = func.packetOp(packet_res0, eval.template packet(index)); + packet_res1 = func.packetOp(packet_res1, eval.template packet(index+packetSize)); + } + + packet_res0 = func.packetOp(packet_res0,packet_res1); + if(alignedEnd>alignedEnd2) + packet_res0 = func.packetOp(packet_res0, eval.template packet(alignedEnd2)); + } + res = func.predux(packet_res0); + + for(Index index = 0; index < alignedStart; ++index) + res = func(res,eval.coeff(index)); + + for(Index index = alignedEnd; index < size; ++index) + res = func(res,eval.coeff(index)); + } + else // too small to vectorize anything. + // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. + { + res = eval.coeff(0); + for(Index index = 1; index < size; ++index) + res = func(res,eval.coeff(index)); + } + + return res; + } +}; + +// NOTE: for SliceVectorizedTraversal we simply bypass unrolling +template +struct redux_impl +{ + typedef typename Evaluator::Scalar Scalar; + typedef typename redux_traits::PacketType PacketType; + + template + EIGEN_DEVICE_FUNC static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) + { + eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); + const Index innerSize = xpr.innerSize(); + const Index outerSize = xpr.outerSize(); + enum { + packetSize = redux_traits::PacketSize + }; + const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; + Scalar res; + if(packetedInnerSize) + { + PacketType packet_res = eval.template packet(0,0); + for(Index j=0; j(j,i)); + + res = func.predux(packet_res); + for(Index j=0; j::run(eval, func, xpr); + } + + return res; + } +}; + +template +struct redux_impl +{ + typedef typename Evaluator::Scalar Scalar; + + typedef typename redux_traits::PacketType PacketType; + enum { + PacketSize = redux_traits::PacketSize, + Size = Evaluator::SizeAtCompileTime, + VectorizedSize = (Size / PacketSize) * PacketSize + }; + + template + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE + Scalar run(const Evaluator &eval, const Func& func, const XprType &xpr) + { + EIGEN_ONLY_USED_FOR_DEBUG(xpr) + eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); + if (VectorizedSize > 0) { + Scalar res = func.predux(redux_vec_unroller::template run(eval,func)); + if (VectorizedSize != Size) + res = func(res,redux_novec_unroller::run(eval,func)); + return res; + } + else { + return redux_novec_unroller::run(eval,func); + } + } +}; + +// evaluator adaptor +template +class redux_evaluator : public internal::evaluator<_XprType> +{ + typedef internal::evaluator<_XprType> Base; +public: + typedef _XprType XprType; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit redux_evaluator(const XprType &xpr) : Base(xpr) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename XprType::PacketScalar PacketScalar; + + enum { + MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, + // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator + Flags = Base::Flags & ~DirectAccessBit, + IsRowMajor = XprType::IsRowMajor, + SizeAtCompileTime = XprType::SizeAtCompileTime, + InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeffByOuterInner(Index outer, Index inner) const + { return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketType packetByOuterInner(Index outer, Index inner) const + { return Base::template packet(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } + +}; + +} // end namespace internal + +/*************************************************************************** +* Part 4 : public API +***************************************************************************/ + + +/** \returns the result of a full redux operation on the whole matrix or vector using \a func + * + * The template parameter \a BinaryOp is the type of the functor \a func which must be + * an associative operator. Both current C++98 and C++11 functor styles are handled. + * + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * + * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +DenseBase::redux(const Func& func) const +{ + eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); + + typedef typename internal::redux_evaluator ThisEvaluator; + ThisEvaluator thisEval(derived()); + + // The initial expression is passed to the reducer as an additional argument instead of + // passing it as a member of redux_evaluator to help + return internal::redux_impl::run(thisEval, func, derived()); +} + +/** \returns the minimum of all coefficients of \c *this. + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * \warning the result is undefined if \c *this contains NaN. + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +DenseBase::minCoeff() const +{ + return derived().redux(Eigen::internal::scalar_min_op()); +} + +/** \returns the maximum of all coefficients of \c *this. + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * \warning the result is undefined if \c *this contains NaN. + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +DenseBase::maxCoeff() const +{ + return derived().redux(Eigen::internal::scalar_max_op()); +} + +/** \returns the sum of all coefficients of \c *this + * + * If \c *this is empty, then the value 0 is returned. + * + * \sa trace(), prod(), mean() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +DenseBase::sum() const +{ + if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) + return Scalar(0); + return derived().redux(Eigen::internal::scalar_sum_op()); +} + +/** \returns the mean of all coefficients of *this +* +* \sa trace(), prod(), sum() +*/ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +DenseBase::mean() const +{ +#ifdef __INTEL_COMPILER + #pragma warning push + #pragma warning ( disable : 2259 ) +#endif + return Scalar(derived().redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); +#ifdef __INTEL_COMPILER + #pragma warning pop +#endif +} + +/** \returns the product of all coefficients of *this + * + * Example: \include MatrixBase_prod.cpp + * Output: \verbinclude MatrixBase_prod.out + * + * \sa sum(), mean(), trace() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +DenseBase::prod() const +{ + if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) + return Scalar(1); + return derived().redux(Eigen::internal::scalar_product_op()); +} + +/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. + * + * \c *this can be any matrix, not necessarily square. + * + * \sa diagonal(), sum() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits::Scalar +MatrixBase::trace() const +{ + return derived().diagonal().sum(); +} + +} // end namespace Eigen + +#endif // EIGEN_REDUX_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Ref.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Ref.h new file mode 100644 index 0000000..172c8ff --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Ref.h @@ -0,0 +1,286 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REF_H +#define EIGEN_REF_H + +namespace Eigen { + +namespace internal { + +template +struct traits > + : public traits > +{ + typedef _PlainObjectType PlainObjectType; + typedef _StrideType StrideType; + enum { + Options = _Options, + Flags = traits >::Flags | NestByRefBit, + Alignment = traits >::Alignment + }; + + template struct match { + enum { + IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime, + HasDirectAccess = internal::has_direct_access::ret, + StorageOrderMatch = IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)), + InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic) + || int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime) + || (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1), + OuterStrideMatch = IsVectorAtCompileTime + || int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime), + // NOTE, this indirection of evaluator::Alignment is needed + // to workaround a very strange bug in MSVC related to the instantiation + // of has_*ary_operator in evaluator. + // This line is surprisingly very sensitive. For instance, simply adding parenthesis + // as "DerivedAlignment = (int(evaluator::Alignment))," will make MSVC fail... + DerivedAlignment = int(evaluator::Alignment), + AlignmentMatch = (int(traits::Alignment)==int(Unaligned)) || (DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should be replaced by the required alignment + ScalarTypeMatch = internal::is_same::value, + MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch + }; + typedef typename internal::conditional::type type; + }; + +}; + +template +struct traits > : public traits {}; + +} + +template class RefBase + : public MapBase +{ + typedef typename internal::traits::PlainObjectType PlainObjectType; + typedef typename internal::traits::StrideType StrideType; + +public: + + typedef MapBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) + + EIGEN_DEVICE_FUNC inline Index innerStride() const + { + return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; + } + + EIGEN_DEVICE_FUNC inline Index outerStride() const + { + return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() + : IsVectorAtCompileTime ? this->size() + : int(Flags)&RowMajorBit ? this->cols() + : this->rows(); + } + + EIGEN_DEVICE_FUNC RefBase() + : Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime), + // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: + m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime, + StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime) + {} + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase) + +protected: + + typedef Stride StrideBase; + + template + EIGEN_DEVICE_FUNC void construct(Expression& expr) + { + EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(PlainObjectType,Expression); + + if(PlainObjectType::RowsAtCompileTime==1) + { + eigen_assert(expr.rows()==1 || expr.cols()==1); + ::new (static_cast(this)) Base(expr.data(), 1, expr.size()); + } + else if(PlainObjectType::ColsAtCompileTime==1) + { + eigen_assert(expr.rows()==1 || expr.cols()==1); + ::new (static_cast(this)) Base(expr.data(), expr.size(), 1); + } + else + ::new (static_cast(this)) Base(expr.data(), expr.rows(), expr.cols()); + + if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit))) + ::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1); + else + ::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(), + StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride()); + } + + StrideBase m_stride; +}; + +/** \class Ref + * \ingroup Core_Module + * + * \brief A matrix or vector expression mapping an existing expression + * + * \tparam PlainObjectType the equivalent matrix type of the mapped data + * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned. + * The default is \c #Unaligned. + * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), + * but accepts a variable outer stride (leading dimension). + * This can be overridden by specifying strides. + * The type passed here must be a specialization of the Stride template, see examples below. + * + * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies. + * A Ref<> object can represent either a const expression or a l-value: + * \code + * // in-out argument: + * void foo1(Ref x); + * + * // read-only const argument: + * void foo2(const Ref& x); + * \endcode + * + * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered. + * By default, a Ref can reference any dense vector expression of float having a contiguous memory layout. + * Likewise, a Ref can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with + * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) + * can be greater than the number of rows. + * + * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function. + * Here are some examples: + * \code + * MatrixXf A; + * VectorXf a; + * foo1(a.head()); // OK + * foo1(A.col()); // OK + * foo1(A.row()); // Compilation error because here innerstride!=1 + * foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object + * foo2(A.row().transpose()); // The row is copied into a contiguous temporary + * foo2(2*a); // The expression is evaluated into a temporary + * foo2(A.col().segment(2,4)); // No temporary + * \endcode + * + * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters. + * Here is an example accepting an innerstride!=1: + * \code + * // in-out argument: + * void foo3(Ref > x); + * foo3(A.row()); // OK + * \endcode + * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more + * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a + * template function, e.g.: + * \code + * // in the .h: + * void foo(const Ref& A); + * void foo(const Ref >& A); + * + * // in the .cpp: + * template void foo_impl(const TypeOfA& A) { + * ... // crazy code goes here + * } + * void foo(const Ref& A) { foo_impl(A); } + * void foo(const Ref >& A) { foo_impl(A); } + * \endcode + * + * See also the following stackoverflow questions for further references: + * - Correct usage of the Eigen::Ref<> class + * + * \sa PlainObjectBase::Map(), \ref TopicStorageOrders + */ +template class Ref + : public RefBase > +{ + private: + typedef internal::traits Traits; + template + EIGEN_DEVICE_FUNC inline Ref(const PlainObjectBase& expr, + typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0); + public: + + typedef RefBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Ref) + + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC inline Ref(PlainObjectBase& expr, + typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) + { + EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + Base::construct(expr.derived()); + } + template + EIGEN_DEVICE_FUNC inline Ref(const DenseBase& expr, + typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) + #else + /** Implicit constructor from any dense expression */ + template + inline Ref(DenseBase& expr) + #endif + { + EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + Base::construct(expr.const_cast_derived()); + } + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref) + +}; + +// this is the const ref version +template class Ref + : public RefBase > +{ + typedef internal::traits Traits; + public: + + typedef RefBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Ref) + + template + EIGEN_DEVICE_FUNC inline Ref(const DenseBase& expr, + typename internal::enable_if::ScalarTypeMatch),Derived>::type* = 0) + { +// std::cout << match_helper::HasDirectAccess << "," << match_helper::OuterStrideMatch << "," << match_helper::InnerStrideMatch << "\n"; +// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; +// std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n"; + construct(expr.derived(), typename Traits::template match::type()); + } + + EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) { + // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy + } + + template + EIGEN_DEVICE_FUNC inline Ref(const RefBase& other) { + construct(other.derived(), typename Traits::template match::type()); + } + + protected: + + template + EIGEN_DEVICE_FUNC void construct(const Expression& expr,internal::true_type) + { + Base::construct(expr); + } + + template + EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) + { + internal::call_assignment_no_alias(m_object,expr,internal::assign_op()); + Base::construct(m_object); + } + + protected: + TPlainObjectType m_object; +}; + +} // end namespace Eigen + +#endif // EIGEN_REF_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Replicate.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Replicate.h new file mode 100644 index 0000000..0b2d6d7 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Replicate.h @@ -0,0 +1,142 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REPLICATE_H +#define EIGEN_REPLICATE_H + +namespace Eigen { + +namespace internal { +template +struct traits > + : traits +{ + typedef typename MatrixType::Scalar Scalar; + typedef typename traits::StorageKind StorageKind; + typedef typename traits::XprKind XprKind; + typedef typename ref_selector::type MatrixTypeNested; + typedef typename remove_reference::type _MatrixTypeNested; + enum { + RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic + ? Dynamic + : RowFactor * MatrixType::RowsAtCompileTime, + ColsAtCompileTime = ColFactor==Dynamic || int(MatrixType::ColsAtCompileTime)==Dynamic + ? Dynamic + : ColFactor * MatrixType::ColsAtCompileTime, + //FIXME we don't propagate the max sizes !!! + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1 + : MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0 + : (MatrixType::Flags & RowMajorBit) ? 1 : 0, + + // FIXME enable DirectAccess with negative strides? + Flags = IsRowMajor ? RowMajorBit : 0 + }; +}; +} + +/** + * \class Replicate + * \ingroup Core_Module + * + * \brief Expression of the multiple replication of a matrix or vector + * + * \tparam MatrixType the type of the object we are replicating + * \tparam RowFactor number of repetitions at compile time along the vertical direction, can be Dynamic. + * \tparam ColFactor number of repetitions at compile time along the horizontal direction, can be Dynamic. + * + * This class represents an expression of the multiple replication of a matrix or vector. + * It is the return type of DenseBase::replicate() and most of the time + * this is the only way it is used. + * + * \sa DenseBase::replicate() + */ +template class Replicate + : public internal::dense_xpr_base< Replicate >::type +{ + typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; + typedef typename internal::traits::_MatrixTypeNested _MatrixTypeNested; + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Replicate) + typedef typename internal::remove_all::type NestedExpression; + + template + EIGEN_DEVICE_FUNC + inline explicit Replicate(const OriginalMatrixType& matrix) + : m_matrix(matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor) + { + EIGEN_STATIC_ASSERT((internal::is_same::type,OriginalMatrixType>::value), + THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE) + eigen_assert(RowFactor!=Dynamic && ColFactor!=Dynamic); + } + + template + EIGEN_DEVICE_FUNC + inline Replicate(const OriginalMatrixType& matrix, Index rowFactor, Index colFactor) + : m_matrix(matrix), m_rowFactor(rowFactor), m_colFactor(colFactor) + { + EIGEN_STATIC_ASSERT((internal::is_same::type,OriginalMatrixType>::value), + THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE) + } + + EIGEN_DEVICE_FUNC + inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); } + EIGEN_DEVICE_FUNC + inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); } + + EIGEN_DEVICE_FUNC + const _MatrixTypeNested& nestedExpression() const + { + return m_matrix; + } + + protected: + MatrixTypeNested m_matrix; + const internal::variable_if_dynamic m_rowFactor; + const internal::variable_if_dynamic m_colFactor; +}; + +/** + * \return an expression of the replication of \c *this + * + * Example: \include MatrixBase_replicate.cpp + * Output: \verbinclude MatrixBase_replicate.out + * + * \sa VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate + */ +template +template +EIGEN_DEVICE_FUNC const Replicate +DenseBase::replicate() const +{ + return Replicate(derived()); +} + +/** + * \return an expression of the replication of each column (or row) of \c *this + * + * Example: \include DirectionWise_replicate_int.cpp + * Output: \verbinclude DirectionWise_replicate_int.out + * + * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate + */ +template +EIGEN_DEVICE_FUNC const typename VectorwiseOp::ReplicateReturnType +VectorwiseOp::replicate(Index factor) const +{ + return typename VectorwiseOp::ReplicateReturnType + (_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1); +} + +} // end namespace Eigen + +#endif // EIGEN_REPLICATE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Reshaped.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Reshaped.h new file mode 100644 index 0000000..a78fd88 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Reshaped.h @@ -0,0 +1,453 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2017 Gael Guennebaud +// Copyright (C) 2014 yoco +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_RESHAPED_H +#define EIGEN_RESHAPED_H + +namespace Eigen { +namespace internal { + +/** \class Reshaped + * \ingroup Core_Module + * + * \brief Expression of a fixed-size or dynamic-size reshape + * + * \tparam XprType the type of the expression in which we are taking a reshape + * \tparam Rows the number of rows of the reshape we are taking at compile time (optional) + * \tparam Cols the number of columns of the reshape we are taking at compile time (optional) + * \tparam Order can be ColMajor or RowMajor, default is ColMajor. + * + * This class represents an expression of either a fixed-size or dynamic-size reshape. + * It is the return type of DenseBase::reshaped(NRowsType,NColsType) and + * most of the time this is the only way it is used. + * + * However, in C++98, if you want to directly maniputate reshaped expressions, + * for instance if you want to write a function returning such an expression, you + * will need to use this class. In C++11, it is advised to use the \em auto + * keyword for such use cases. + * + * Here is an example illustrating the dynamic case: + * \include class_Reshaped.cpp + * Output: \verbinclude class_Reshaped.out + * + * Here is an example illustrating the fixed-size case: + * \include class_FixedReshaped.cpp + * Output: \verbinclude class_FixedReshaped.out + * + * \sa DenseBase::reshaped(NRowsType,NColsType) + */ + +template +struct traits > : traits +{ + typedef typename traits::Scalar Scalar; + typedef typename traits::StorageKind StorageKind; + typedef typename traits::XprKind XprKind; + enum{ + MatrixRows = traits::RowsAtCompileTime, + MatrixCols = traits::ColsAtCompileTime, + RowsAtCompileTime = Rows, + ColsAtCompileTime = Cols, + MaxRowsAtCompileTime = Rows, + MaxColsAtCompileTime = Cols, + XpxStorageOrder = ((int(traits::Flags) & RowMajorBit) == RowMajorBit) ? RowMajor : ColMajor, + ReshapedStorageOrder = (RowsAtCompileTime == 1 && ColsAtCompileTime != 1) ? RowMajor + : (ColsAtCompileTime == 1 && RowsAtCompileTime != 1) ? ColMajor + : XpxStorageOrder, + HasSameStorageOrderAsXprType = (ReshapedStorageOrder == XpxStorageOrder), + InnerSize = (ReshapedStorageOrder==int(RowMajor)) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + InnerStrideAtCompileTime = HasSameStorageOrderAsXprType + ? int(inner_stride_at_compile_time::ret) + : Dynamic, + OuterStrideAtCompileTime = Dynamic, + + HasDirectAccess = internal::has_direct_access::ret + && (Order==int(XpxStorageOrder)) + && ((evaluator::Flags&LinearAccessBit)==LinearAccessBit), + + MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits::size) == 0) + && (InnerStrideAtCompileTime == 1) + ? PacketAccessBit : 0, + //MaskAlignedBit = ((OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0, + FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + FlagsRowMajorBit = (ReshapedStorageOrder==int(RowMajor)) ? RowMajorBit : 0, + FlagsDirectAccessBit = HasDirectAccess ? DirectAccessBit : 0, + Flags0 = traits::Flags & ( (HereditaryBits & ~RowMajorBit) | MaskPacketAccessBit), + + Flags = (Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit | FlagsDirectAccessBit) + }; +}; + +template class ReshapedImpl_dense; + +} // end namespace internal + +template class ReshapedImpl; + +template class Reshaped + : public ReshapedImpl::StorageKind> +{ + typedef ReshapedImpl::StorageKind> Impl; + public: + //typedef typename Impl::Base Base; + typedef Impl Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(Reshaped) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reshaped) + + /** Fixed-size constructor + */ + EIGEN_DEVICE_FUNC + inline Reshaped(XprType& xpr) + : Impl(xpr) + { + EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE) + eigen_assert(Rows * Cols == xpr.rows() * xpr.cols()); + } + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC + inline Reshaped(XprType& xpr, + Index reshapeRows, Index reshapeCols) + : Impl(xpr, reshapeRows, reshapeCols) + { + eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==reshapeRows) + && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==reshapeCols)); + eigen_assert(reshapeRows * reshapeCols == xpr.rows() * xpr.cols()); + } +}; + +// The generic default implementation for dense reshape simply forward to the internal::ReshapedImpl_dense +// that must be specialized for direct and non-direct access... +template +class ReshapedImpl + : public internal::ReshapedImpl_dense >::HasDirectAccess> +{ + typedef internal::ReshapedImpl_dense >::HasDirectAccess> Impl; + public: + typedef Impl Base; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl) + EIGEN_DEVICE_FUNC inline ReshapedImpl(XprType& xpr) : Impl(xpr) {} + EIGEN_DEVICE_FUNC inline ReshapedImpl(XprType& xpr, Index reshapeRows, Index reshapeCols) + : Impl(xpr, reshapeRows, reshapeCols) {} +}; + +namespace internal { + +/** \internal Internal implementation of dense Reshaped in the general case. */ +template +class ReshapedImpl_dense + : public internal::dense_xpr_base >::type +{ + typedef Reshaped ReshapedType; + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(ReshapedType) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl_dense) + + typedef typename internal::ref_selector::non_const_type MatrixTypeNested; + typedef typename internal::remove_all::type NestedExpression; + + class InnerIterator; + + /** Fixed-size constructor + */ + EIGEN_DEVICE_FUNC + inline ReshapedImpl_dense(XprType& xpr) + : m_xpr(xpr), m_rows(Rows), m_cols(Cols) + {} + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC + inline ReshapedImpl_dense(XprType& xpr, Index nRows, Index nCols) + : m_xpr(xpr), m_rows(nRows), m_cols(nCols) + {} + + EIGEN_DEVICE_FUNC Index rows() const { return m_rows; } + EIGEN_DEVICE_FUNC Index cols() const { return m_cols; } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \sa MapBase::data() */ + EIGEN_DEVICE_FUNC inline const Scalar* data() const; + EIGEN_DEVICE_FUNC inline Index innerStride() const; + EIGEN_DEVICE_FUNC inline Index outerStride() const; + #endif + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& + nestedExpression() const { return m_xpr; } + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC + typename internal::remove_reference::type& + nestedExpression() { return m_xpr; } + + protected: + + MatrixTypeNested m_xpr; + const internal::variable_if_dynamic m_rows; + const internal::variable_if_dynamic m_cols; +}; + + +/** \internal Internal implementation of dense Reshaped in the direct access case. */ +template +class ReshapedImpl_dense + : public MapBase > +{ + typedef Reshaped ReshapedType; + typedef typename internal::ref_selector::non_const_type XprTypeNested; + public: + + typedef MapBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(ReshapedType) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl_dense) + + /** Fixed-size constructor + */ + EIGEN_DEVICE_FUNC + inline ReshapedImpl_dense(XprType& xpr) + : Base(xpr.data()), m_xpr(xpr) + {} + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC + inline ReshapedImpl_dense(XprType& xpr, Index nRows, Index nCols) + : Base(xpr.data(), nRows, nCols), + m_xpr(xpr) + {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& nestedExpression() const + { + return m_xpr; + } + + EIGEN_DEVICE_FUNC + XprType& nestedExpression() { return m_xpr; } + + /** \sa MapBase::innerStride() */ + EIGEN_DEVICE_FUNC + inline Index innerStride() const + { + return m_xpr.innerStride(); + } + + /** \sa MapBase::outerStride() */ + EIGEN_DEVICE_FUNC + inline Index outerStride() const + { + return ((Flags&RowMajorBit)==RowMajorBit) ? this->cols() : this->rows(); + } + + protected: + + XprTypeNested m_xpr; +}; + +// Evaluators +template struct reshaped_evaluator; + +template +struct evaluator > + : reshaped_evaluator >::HasDirectAccess> +{ + typedef Reshaped XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types + typedef typename packet_traits::type PacketScalar; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + HasDirectAccess = traits::HasDirectAccess, + +// RowsAtCompileTime = traits::RowsAtCompileTime, +// ColsAtCompileTime = traits::ColsAtCompileTime, +// MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, +// MaxColsAtCompileTime = traits::MaxColsAtCompileTime, +// +// InnerStrideAtCompileTime = traits::HasSameStorageOrderAsXprType +// ? int(inner_stride_at_compile_time::ret) +// : Dynamic, +// OuterStrideAtCompileTime = Dynamic, + + FlagsLinearAccessBit = (traits::RowsAtCompileTime == 1 || traits::ColsAtCompileTime == 1 || HasDirectAccess) ? LinearAccessBit : 0, + FlagsRowMajorBit = (traits::ReshapedStorageOrder==int(RowMajor)) ? RowMajorBit : 0, + FlagsDirectAccessBit = HasDirectAccess ? DirectAccessBit : 0, + Flags0 = evaluator::Flags & (HereditaryBits & ~RowMajorBit), + Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit | FlagsDirectAccessBit, + + PacketAlignment = unpacket_traits::alignment, + Alignment = evaluator::Alignment + }; + typedef reshaped_evaluator reshaped_evaluator_type; + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : reshaped_evaluator_type(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } +}; + +template +struct reshaped_evaluator + : evaluator_base > +{ + typedef Reshaped XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost /* TODO + cost of index computations */, + + Flags = (evaluator::Flags & (HereditaryBits /*| LinearAccessBit | DirectAccessBit*/)), + + Alignment = 0 + }; + + EIGEN_DEVICE_FUNC explicit reshaped_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_xpr(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + typedef std::pair RowCol; + + inline RowCol index_remap(Index rowId, Index colId) const + { + if(Order==ColMajor) + { + const Index nth_elem_idx = colId * m_xpr.rows() + rowId; + return RowCol(nth_elem_idx % m_xpr.nestedExpression().rows(), + nth_elem_idx / m_xpr.nestedExpression().rows()); + } + else + { + const Index nth_elem_idx = colId + rowId * m_xpr.cols(); + return RowCol(nth_elem_idx / m_xpr.nestedExpression().cols(), + nth_elem_idx % m_xpr.nestedExpression().cols()); + } + } + + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index rowId, Index colId) + { + EIGEN_STATIC_ASSERT_LVALUE(XprType) + const RowCol row_col = index_remap(rowId, colId); + return m_argImpl.coeffRef(row_col.first, row_col.second); + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index rowId, Index colId) const + { + const RowCol row_col = index_remap(rowId, colId); + return m_argImpl.coeffRef(row_col.first, row_col.second); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const + { + const RowCol row_col = index_remap(rowId, colId); + return m_argImpl.coeff(row_col.first, row_col.second); + } + + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index index) + { + EIGEN_STATIC_ASSERT_LVALUE(XprType) + const RowCol row_col = index_remap(Rows == 1 ? 0 : index, + Rows == 1 ? index : 0); + return m_argImpl.coeffRef(row_col.first, row_col.second); + + } + + EIGEN_DEVICE_FUNC + inline const Scalar& coeffRef(Index index) const + { + const RowCol row_col = index_remap(Rows == 1 ? 0 : index, + Rows == 1 ? index : 0); + return m_argImpl.coeffRef(row_col.first, row_col.second); + } + + EIGEN_DEVICE_FUNC + inline const CoeffReturnType coeff(Index index) const + { + const RowCol row_col = index_remap(Rows == 1 ? 0 : index, + Rows == 1 ? index : 0); + return m_argImpl.coeff(row_col.first, row_col.second); + } +#if 0 + EIGEN_DEVICE_FUNC + template + inline PacketScalar packet(Index rowId, Index colId) const + { + const RowCol row_col = index_remap(rowId, colId); + return m_argImpl.template packet(row_col.first, row_col.second); + + } + + template + EIGEN_DEVICE_FUNC + inline void writePacket(Index rowId, Index colId, const PacketScalar& val) + { + const RowCol row_col = index_remap(rowId, colId); + m_argImpl.const_cast_derived().template writePacket + (row_col.first, row_col.second, val); + } + + template + EIGEN_DEVICE_FUNC + inline PacketScalar packet(Index index) const + { + const RowCol row_col = index_remap(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0); + return m_argImpl.template packet(row_col.first, row_col.second); + } + + template + EIGEN_DEVICE_FUNC + inline void writePacket(Index index, const PacketScalar& val) + { + const RowCol row_col = index_remap(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0); + return m_argImpl.template packet(row_col.first, row_col.second, val); + } +#endif +protected: + + evaluator m_argImpl; + const XprType& m_xpr; + +}; + +template +struct reshaped_evaluator +: mapbase_evaluator, + typename Reshaped::PlainObject> +{ + typedef Reshaped XprType; + typedef typename XprType::Scalar Scalar; + + EIGEN_DEVICE_FUNC explicit reshaped_evaluator(const XprType& xpr) + : mapbase_evaluator(xpr) + { + // TODO: for the 3.4 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime + eigen_assert(((internal::UIntPtr(xpr.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator::Alignment)) == 0) && "data is not aligned"); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_RESHAPED_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ReturnByValue.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ReturnByValue.h new file mode 100644 index 0000000..11dc86d --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/ReturnByValue.h @@ -0,0 +1,117 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// Copyright (C) 2009-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_RETURNBYVALUE_H +#define EIGEN_RETURNBYVALUE_H + +namespace Eigen { + +namespace internal { + +template +struct traits > + : public traits::ReturnType> +{ + enum { + // We're disabling the DirectAccess because e.g. the constructor of + // the Block-with-DirectAccess expression requires to have a coeffRef method. + // Also, we don't want to have to implement the stride stuff. + Flags = (traits::ReturnType>::Flags + | EvalBeforeNestingBit) & ~DirectAccessBit + }; +}; + +/* The ReturnByValue object doesn't even have a coeff() method. + * So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix. + * So internal::nested always gives the plain return matrix type. + * + * FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ?? + * Answer: EvalBeforeNestingBit should be deprecated since we have the evaluators + */ +template +struct nested_eval, n, PlainObject> +{ + typedef typename traits::ReturnType type; +}; + +} // end namespace internal + +/** \class ReturnByValue + * \ingroup Core_Module + * + */ +template class ReturnByValue + : public internal::dense_xpr_base< ReturnByValue >::type, internal::no_assignment_operator +{ + public: + typedef typename internal::traits::ReturnType ReturnType; + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue) + + template + EIGEN_DEVICE_FUNC + inline void evalTo(Dest& dst) const + { static_cast(this)->evalTo(dst); } + EIGEN_DEVICE_FUNC inline Index rows() const { return static_cast(this)->rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return static_cast(this)->cols(); } + +#ifndef EIGEN_PARSED_BY_DOXYGEN +#define Unusable YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT + class Unusable{ + Unusable(const Unusable&) {} + Unusable& operator=(const Unusable&) {return *this;} + }; + const Unusable& coeff(Index) const { return *reinterpret_cast(this); } + const Unusable& coeff(Index,Index) const { return *reinterpret_cast(this); } + Unusable& coeffRef(Index) { return *reinterpret_cast(this); } + Unusable& coeffRef(Index,Index) { return *reinterpret_cast(this); } +#undef Unusable +#endif +}; + +template +template +EIGEN_DEVICE_FUNC Derived& DenseBase::operator=(const ReturnByValue& other) +{ + other.evalTo(derived()); + return derived(); +} + +namespace internal { + +// Expression is evaluated in a temporary; default implementation of Assignment is bypassed so that +// when a ReturnByValue expression is assigned, the evaluator is not constructed. +// TODO: Finalize port to new regime; ReturnByValue should not exist in the expression world + +template +struct evaluator > + : public evaluator::ReturnType> +{ + typedef ReturnByValue XprType; + typedef typename internal::traits::ReturnType PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + xpr.evalTo(m_result); + } + +protected: + PlainObject m_result; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_RETURNBYVALUE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Reverse.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Reverse.h new file mode 100644 index 0000000..8530939 --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Reverse.h @@ -0,0 +1,215 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2009 Ricard Marxer +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REVERSE_H +#define EIGEN_REVERSE_H + +namespace Eigen { + +namespace internal { + +template +struct traits > + : traits +{ + typedef typename MatrixType::Scalar Scalar; + typedef typename traits::StorageKind StorageKind; + typedef typename traits::XprKind XprKind; + typedef typename ref_selector::type MatrixTypeNested; + typedef typename remove_reference::type _MatrixTypeNested; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + Flags = _MatrixTypeNested::Flags & (RowMajorBit | LvalueBit) + }; +}; + +template struct reverse_packet_cond +{ + static inline PacketType run(const PacketType& x) { return preverse(x); } +}; + +template struct reverse_packet_cond +{ + static inline PacketType run(const PacketType& x) { return x; } +}; + +} // end namespace internal + +/** \class Reverse + * \ingroup Core_Module + * + * \brief Expression of the reverse of a vector or matrix + * + * \tparam MatrixType the type of the object of which we are taking the reverse + * \tparam Direction defines the direction of the reverse operation, can be Vertical, Horizontal, or BothDirections + * + * This class represents an expression of the reverse of a vector. + * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::reverse(), VectorwiseOp::reverse() + */ +template class Reverse + : public internal::dense_xpr_base< Reverse >::type +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Reverse) + typedef typename internal::remove_all::type NestedExpression; + using Base::IsRowMajor; + + protected: + enum { + PacketSize = internal::packet_traits::size, + IsColMajor = !IsRowMajor, + ReverseRow = (Direction == Vertical) || (Direction == BothDirections), + ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1, + ReversePacket = (Direction == BothDirections) + || ((Direction == Vertical) && IsColMajor) + || ((Direction == Horizontal) && IsRowMajor) + }; + typedef internal::reverse_packet_cond reverse_packet; + public: + + EIGEN_DEVICE_FUNC explicit inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse) + + EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); } + EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); } + + EIGEN_DEVICE_FUNC inline Index innerStride() const + { + return -m_matrix.innerStride(); + } + + EIGEN_DEVICE_FUNC const typename internal::remove_all::type& + nestedExpression() const + { + return m_matrix; + } + + protected: + typename MatrixType::Nested m_matrix; +}; + +/** \returns an expression of the reverse of *this. + * + * Example: \include MatrixBase_reverse.cpp + * Output: \verbinclude MatrixBase_reverse.out + * + */ +template +EIGEN_DEVICE_FUNC inline typename DenseBase::ReverseReturnType +DenseBase::reverse() +{ + return ReverseReturnType(derived()); +} + + +//reverse const overload moved DenseBase.h due to a CUDA compiler bug + +/** This is the "in place" version of reverse: it reverses \c *this. + * + * In most cases it is probably better to simply use the reversed expression + * of a matrix. However, when reversing the matrix data itself is really needed, + * then this "in-place" version is probably the right choice because it provides + * the following additional benefits: + * - less error prone: doing the same operation with .reverse() requires special care: + * \code m = m.reverse().eval(); \endcode + * - this API enables reverse operations without the need for a temporary + * - it allows future optimizations (cache friendliness, etc.) + * + * \sa VectorwiseOp::reverseInPlace(), reverse() */ +template +EIGEN_DEVICE_FUNC inline void DenseBase::reverseInPlace() +{ + if(cols()>rows()) + { + Index half = cols()/2; + leftCols(half).swap(rightCols(half).reverse()); + if((cols()%2)==1) + { + Index half2 = rows()/2; + col(half).head(half2).swap(col(half).tail(half2).reverse()); + } + } + else + { + Index half = rows()/2; + topRows(half).swap(bottomRows(half).reverse()); + if((rows()%2)==1) + { + Index half2 = cols()/2; + row(half).head(half2).swap(row(half).tail(half2).reverse()); + } + } +} + +namespace internal { + +template +struct vectorwise_reverse_inplace_impl; + +template<> +struct vectorwise_reverse_inplace_impl +{ + template + static void run(ExpressionType &xpr) + { + const int HalfAtCompileTime = ExpressionType::RowsAtCompileTime==Dynamic?Dynamic:ExpressionType::RowsAtCompileTime/2; + Index half = xpr.rows()/2; + xpr.topRows(fix(half)) + .swap(xpr.bottomRows(fix(half)).colwise().reverse()); + } +}; + +template<> +struct vectorwise_reverse_inplace_impl +{ + template + static void run(ExpressionType &xpr) + { + const int HalfAtCompileTime = ExpressionType::ColsAtCompileTime==Dynamic?Dynamic:ExpressionType::ColsAtCompileTime/2; + Index half = xpr.cols()/2; + xpr.leftCols(fix(half)) + .swap(xpr.rightCols(fix(half)).rowwise().reverse()); + } +}; + +} // end namespace internal + +/** This is the "in place" version of VectorwiseOp::reverse: it reverses each column or row of \c *this. + * + * In most cases it is probably better to simply use the reversed expression + * of a matrix. However, when reversing the matrix data itself is really needed, + * then this "in-place" version is probably the right choice because it provides + * the following additional benefits: + * - less error prone: doing the same operation with .reverse() requires special care: + * \code m = m.reverse().eval(); \endcode + * - this API enables reverse operations without the need for a temporary + * + * \sa DenseBase::reverseInPlace(), reverse() */ +template +EIGEN_DEVICE_FUNC void VectorwiseOp::reverseInPlace() +{ + internal::vectorwise_reverse_inplace_impl::run(m_matrix); +} + +} // end namespace Eigen + +#endif // EIGEN_REVERSE_H diff --git a/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Select.h b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Select.h new file mode 100644 index 0000000..79eec1b --- /dev/null +++ b/apps/controller_tinympc_eigen/TinyMPC-ADMM/ext/Eigen/Eigen/src/Core/Select.h @@ -0,0 +1,162 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELECT_H +#define EIGEN_SELECT_H + +namespace Eigen { + +/** \class Select + * \ingroup Core_Module + * + * \brief Expression of a coefficient wise version of the C++ ternary operator ?: + * + * \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix + * \param ThenMatrixType the type of the \em then expression + * \param ElseMatrixType the type of the \em else expression + * + * This class represents an expression of a coefficient wise version of the C++ ternary operator ?:. + * It is the return type of DenseBase::select() and most of the time this is the only way it is used. + * + * \sa DenseBase::select(const DenseBase&, const DenseBase&) const + */ + +namespace internal { +template +struct traits > + : traits +{ + typedef typename traits::Scalar Scalar; + typedef Dense StorageKind; + typedef typename traits::XprKind XprKind; + typedef typename ConditionMatrixType::Nested ConditionMatrixNested; + typedef typename ThenMatrixType::Nested ThenMatrixNested; + typedef typename ElseMatrixType::Nested ElseMatrixNested; + enum { + RowsAtCompileTime = ConditionMatrixType::RowsAtCompileTime, + ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime, + Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & RowMajorBit + }; +}; +} + +template +class Select : public internal::dense_xpr_base< Select >::type, + internal::no_assignment_operator +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Select) + + inline EIGEN_DEVICE_FUNC + Select(const ConditionMatrixType& a_conditionMatrix, + const ThenMatrixType& a_thenMatrix, + const ElseMatrixType& a_elseMatrix) + : m_condition(a_conditionMatrix), m_then(a_thenMatrix), m_else(a_elseMatrix) + { + eigen_assert(m_condition.rows() == m_then.rows() && m_condition.rows() == m_else.rows()); + eigen_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols()); + } + + inline EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return m_condition.rows(); } + inline EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return m_condition.cols(); } + + inline EIGEN_DEVICE_FUNC + const Scalar coeff(Index i, Index j) const + { + if (m_condition.coeff(i,j)) + return m_then.coeff(i,j); + else + return m_else.coeff(i,j); + } + + inline EIGEN_DEVICE_FUNC + const Scalar coeff(Index i) const + { + if (m_condition.coeff(i)) + return m_then.coeff(i); + else + return m_else.coeff(i); + } + + inline EIGEN_DEVICE_FUNC const ConditionMatrixType& conditionMatrix() const + { + return m_condition; + } + + inline EIGEN_DEVICE_FUNC const ThenMatrixType& thenMatrix() const + { + return m_then; + } + + inline EIGEN_DEVICE_FUNC const ElseMatrixType& elseMatrix() const + { + return m_else; + } + + protected: + typename ConditionMatrixType::Nested m_condition; + typename ThenMatrixType::Nested m_then; + typename ElseMatrixType::Nested m_else; +}; + +/** \returns a matrix where each coefficient (i,j) is equal to \a thenMatrix(i,j) + * if \c *this(i,j) != Scalar(0), and \a elseMatrix(i,j) otherwise. + * + * Example: \include MatrixBase_select.cpp + * Output: \verbinclude MatrixBase_select.out + * + * \sa DenseBase::bitwiseSelect(const DenseBase&, const DenseBase&) + */ +template +template +inline EIGEN_DEVICE_FUNC CwiseTernaryOp< + internal::scalar_boolean_select_op::Scalar, + typename DenseBase::Scalar, + typename DenseBase::Scalar>, + ThenDerived, ElseDerived, Derived> +DenseBase::select(const DenseBase& thenMatrix, + const DenseBase& elseMatrix) const { + using Op = internal::scalar_boolean_select_op< + typename DenseBase::Scalar, + typename DenseBase::Scalar, Scalar>; + return CwiseTernaryOp( + thenMatrix.derived(), elseMatrix.derived(), derived(), Op()); +} +/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with + * the \em else expression being a scalar value. + * + * \sa DenseBase::booleanSelect(const DenseBase&, const DenseBase&) const, class Select + */ +template +template +inline EIGEN_DEVICE_FUNC CwiseTernaryOp< + internal::scalar_boolean_select_op::Scalar, + typename DenseBase::Scalar, + typename DenseBase::Scalar>, + ThenDerived, typename DenseBase::ConstantReturnType, Derived> +DenseBase::select( + const DenseBase& thenMatrix, + const typename DenseBase::Scalar& elseScalar) const { + using ElseConstantType = + typename DenseBase::ConstantReturnType; + using Op = internal::scalar_boolean_select_op< + typename DenseBase::Scalar, + typename DenseBase::Scalar, Scalar>; + return CwiseTernaryOp( + thenMatrix.derived(), ElseConstantType(rows(), cols(), elseScalar), + derived(), Op()); +} +/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with + * the \em then expression being a scalar value. + * + * \sa DenseBase::booleanSelect(const DenseBase&, const DenseBase&) const, class Select + */ +template +template +inline EIGEN_DEVICE_FUNC CwiseTernaryOp< + internal::scalar_boolean_select_op::Scalar, + typename DenseBase::Scalar, + typename DenseBase::Scalar>, + typename DenseBase::ConstantReturnType, ElseDerived, + Derived> +DenseBase::select( + const typename DenseBase::Scalar& thenScalar, + const DenseBase& elseMatrix) const { + using ThenConstantType = + typename DenseBase::ConstantReturnType; + using Op = internal::scalar_boolean_select_op< + typename DenseBase::Scalar, + typename DenseBase::Scalar, Scalar>; + return CwiseTernaryOp( + ThenConstantType(rows(), cols(), thenScalar), elseMatrix.derived(), + derived(), Op()); +} + +} // end namespace Eigen + +#endif // EIGEN_SELECT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SelfAdjointView.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SelfAdjointView.h new file mode 100644 index 0000000..7a930db --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SelfAdjointView.h @@ -0,0 +1,365 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINTMATRIX_H +#define EIGEN_SELFADJOINTMATRIX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \class SelfAdjointView + * \ingroup Core_Module + * + * + * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix + * + * \tparam MatrixType the type of the dense matrix storing the coefficients + * \tparam TriangularPart can be either \c #Lower or \c #Upper + * + * This class is an expression of a sefladjoint matrix from a triangular part of a matrix + * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() + * and most of the time this is the only way that it is used. + * + * \sa class TriangularBase, MatrixBase::selfadjointView() + */ + +namespace internal { +template +struct traits > : traits +{ + typedef typename ref_selector::non_const_type MatrixTypeNested; + typedef remove_all_t MatrixTypeNestedCleaned; + typedef MatrixType ExpressionType; + typedef typename MatrixType::PlainObject FullMatrixType; + enum { + Mode = UpLo | SelfAdjoint, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit) + & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved + }; +}; +} + + +template class SelfAdjointView + : public TriangularBase > +{ + public: + EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY) + + typedef MatrixType_ MatrixType; + typedef TriangularBase Base; + typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; + typedef typename internal::traits::MatrixTypeNestedCleaned MatrixTypeNestedCleaned; + typedef MatrixTypeNestedCleaned NestedExpression; + + /** \brief The type of coefficients in this matrix */ + typedef typename internal::traits::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef internal::remove_all_t MatrixConjugateReturnType; + typedef SelfAdjointView, UpLo> ConstSelfAdjointView; + + enum { + Mode = internal::traits::Mode, + Flags = internal::traits::Flags, + TransposeMode = ((int(Mode) & int(Upper)) ? Lower : 0) | ((int(Mode) & int(Lower)) ? Upper : 0) + }; + typedef typename MatrixType::PlainObject PlainObject; + + EIGEN_DEVICE_FUNC + explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { } + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index outerStride() const EIGEN_NOEXCEPT { return m_matrix.outerStride(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index innerStride() const EIGEN_NOEXCEPT { return m_matrix.innerStride(); } + + /** \sa MatrixBase::coeff() + * \warning the coordinates must fit into the referenced triangular part + */ + EIGEN_DEVICE_FUNC + inline Scalar coeff(Index row, Index col) const + { + Base::check_coordinates_internal(row, col); + return m_matrix.coeff(row, col); + } + + /** \sa MatrixBase::coeffRef() + * \warning the coordinates must fit into the referenced triangular part + */ + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index row, Index col) + { + EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView); + Base::check_coordinates_internal(row, col); + return m_matrix.coeffRef(row, col); + } + + /** \internal */ + EIGEN_DEVICE_FUNC + const MatrixTypeNestedCleaned& _expression() const { return m_matrix; } + + EIGEN_DEVICE_FUNC + const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; } + EIGEN_DEVICE_FUNC + MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; } + + /** Efficient triangular matrix times vector/matrix product */ + template + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase& rhs) const + { + return Product(*this, rhs.derived()); + } + + /** Efficient vector/matrix times triangular matrix product */ + template friend + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase& lhs, const SelfAdjointView& rhs) + { + return Product(lhs.derived(),rhs); + } + + friend EIGEN_DEVICE_FUNC + const SelfAdjointView + operator*(const Scalar& s, const SelfAdjointView& mat) + { + return (s*mat.nestedExpression()).template selfadjointView(); + } + + /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this: + * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$ + * \returns a reference to \c *this + * + * The vectors \a u and \c v \b must be column vectors, however they can be + * a adjoint expression without any overhead. Only the meaningful triangular + * part of the matrix is updated, the rest is left unchanged. + * + * \sa rankUpdate(const MatrixBase&, Scalar) + */ + template + EIGEN_DEVICE_FUNC + SelfAdjointView& rankUpdate(const MatrixBase& u, const MatrixBase& v, const Scalar& alpha = Scalar(1)); + + /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: + * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. + * + * \returns a reference to \c *this + * + * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply + * call this function with u.adjoint(). + * + * \sa rankUpdate(const MatrixBase&, const MatrixBase&, Scalar) + */ + template + EIGEN_DEVICE_FUNC + SelfAdjointView& rankUpdate(const MatrixBase& u, const Scalar& alpha = Scalar(1)); + + /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part + * + * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, + * \c #Lower, \c #StrictlyLower, \c #UnitLower. + * + * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression, + * otherwise, the nested expression is first transposed, thus returning a \c TriangularView> object. + * + * \sa MatrixBase::triangularView(), class TriangularView + */ + template + EIGEN_DEVICE_FUNC + std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), + TriangularView, + TriangularView > + triangularView() const + { + std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType> tmp1(m_matrix); + std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType> tmp2(tmp1); + return std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), + TriangularView, + TriangularView >(tmp2); + } + + typedef SelfAdjointView ConjugateReturnType; + /** \sa MatrixBase::conjugate() const */ + EIGEN_DEVICE_FUNC + inline const ConjugateReturnType conjugate() const + { return ConjugateReturnType(m_matrix.conjugate()); } + + /** \returns an expression of the complex conjugate of \c *this if Cond==true, + * returns \c *this otherwise. + */ + template + EIGEN_DEVICE_FUNC + inline std::conditional_t + conjugateIf() const + { + typedef std::conditional_t ReturnType; + return ReturnType(m_matrix.template conjugateIf()); + } + + typedef SelfAdjointView AdjointReturnType; + /** \sa MatrixBase::adjoint() const */ + EIGEN_DEVICE_FUNC + inline const AdjointReturnType adjoint() const + { return AdjointReturnType(m_matrix.adjoint()); } + + typedef SelfAdjointView TransposeReturnType; + /** \sa MatrixBase::transpose() */ + template + EIGEN_DEVICE_FUNC + inline TransposeReturnType transpose(std::enable_if_t::value, Dummy*> = nullptr) + { + typename MatrixType::TransposeReturnType tmp(m_matrix); + return TransposeReturnType(tmp); + } + + typedef SelfAdjointView ConstTransposeReturnType; + /** \sa MatrixBase::transpose() const */ + EIGEN_DEVICE_FUNC + inline const ConstTransposeReturnType transpose() const + { + return ConstTransposeReturnType(m_matrix.transpose()); + } + + /** \returns a const expression of the main diagonal of the matrix \c *this + * + * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator. + * + * \sa MatrixBase::diagonal(), class Diagonal */ + EIGEN_DEVICE_FUNC + typename MatrixType::ConstDiagonalReturnType diagonal() const + { + return typename MatrixType::ConstDiagonalReturnType(m_matrix); + } + +/////////// Cholesky module /////////// + + const LLT llt() const; + const LDLT ldlt() const; + +/////////// Eigenvalue module /////////// + + /** Real part of #Scalar */ + typedef typename NumTraits::Real RealScalar; + /** Return type of eigenvalues() */ + typedef Matrix::ColsAtCompileTime, 1> EigenvaluesReturnType; + + EIGEN_DEVICE_FUNC + EigenvaluesReturnType eigenvalues() const; + EIGEN_DEVICE_FUNC + RealScalar operatorNorm() const; + + protected: + MatrixTypeNested m_matrix; +}; + + +// template +// internal::selfadjoint_matrix_product_returntype > +// operator*(const MatrixBase& lhs, const SelfAdjointView& rhs) +// { +// return internal::matrix_selfadjoint_product_returntype >(lhs.derived(),rhs); +// } + +// selfadjoint to dense matrix + +namespace internal { + +// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> +// in the future selfadjoint-ness should be defined by the expression traits +// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) +template +struct evaluator_traits > +{ + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef SelfAdjointShape Shape; +}; + +template +class triangular_dense_assignment_kernel + : public generic_dense_assignment_kernel +{ +protected: + typedef generic_dense_assignment_kernel Base; + typedef typename Base::DstXprType DstXprType; + typedef typename Base::SrcXprType SrcXprType; + using Base::m_dst; + using Base::m_src; + using Base::m_functor; +public: + + typedef typename Base::DstEvaluatorType DstEvaluatorType; + typedef typename Base::SrcEvaluatorType SrcEvaluatorType; + typedef typename Base::Scalar Scalar; + typedef typename Base::AssignmentTraits AssignmentTraits; + + + EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) + : Base(dst, src, func, dstExpr) + {} + + EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) + { + eigen_internal_assert(row!=col); + Scalar tmp = m_src.coeff(row,col); + m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp); + m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp)); + } + + EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) + { + Base::assignCoeff(id,id); + } + + EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index) + { eigen_internal_assert(false && "should never be called"); } +}; + +} // end namespace internal + +/*************************************************************************** +* Implementation of MatrixBase methods +***************************************************************************/ + +/** This is the const version of MatrixBase::selfadjointView() */ +template +template +EIGEN_DEVICE_FUNC typename MatrixBase::template ConstSelfAdjointViewReturnType::Type +MatrixBase::selfadjointView() const +{ + return typename ConstSelfAdjointViewReturnType::Type(derived()); +} + +/** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix + * + * The parameter \a UpLo can be either \c #Upper or \c #Lower + * + * Example: \include MatrixBase_selfadjointView.cpp + * Output: \verbinclude MatrixBase_selfadjointView.out + * + * \sa class SelfAdjointView + */ +template +template +EIGEN_DEVICE_FUNC typename MatrixBase::template SelfAdjointViewReturnType::Type +MatrixBase::selfadjointView() +{ + return typename SelfAdjointViewReturnType::Type(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINTMATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SelfCwiseBinaryOp.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SelfCwiseBinaryOp.h new file mode 100644 index 0000000..14dbec0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SelfCwiseBinaryOp.h @@ -0,0 +1,49 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFCWISEBINARYOP_H +#define EIGEN_SELFCWISEBINARYOP_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// TODO generalize the scalar type of 'other' + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::operator*=(const Scalar& other) +{ + internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::mul_assign_op()); + return derived(); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& ArrayBase::operator+=(const Scalar& other) +{ + internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op()); + return derived(); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& ArrayBase::operator-=(const Scalar& other) +{ + internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::sub_assign_op()); + return derived(); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::operator/=(const Scalar& other) +{ + internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_SELFCWISEBINARYOP_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SkewSymmetricMatrix3.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SkewSymmetricMatrix3.h new file mode 100644 index 0000000..5efbc44 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SkewSymmetricMatrix3.h @@ -0,0 +1,414 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2007-2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SKEWSYMMETRICMATRIX3_H +#define EIGEN_SKEWSYMMETRICMATRIX3_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \class SkewSymmetricBase + * \ingroup Core_Module + * + * \brief Base class for skew symmetric matrices and expressions + * + * This is the base class that is inherited by SkewSymmetricMatrix3 and related expression + * types, which internally use a three vector for storing the entries. SkewSymmetric + * types always represent square three times three matrices. + * + * This implementations follows class DiagonalMatrix + * + * \tparam Derived is the derived type, a SkewSymmetricMatrix3 or SkewSymmetricWrapper. + * + * \sa class SkewSymmetricMatrix3, class SkewSymmetricWrapper + */ +template +class SkewSymmetricBase : public EigenBase +{ + public: + typedef typename internal::traits::SkewSymmetricVectorType SkewSymmetricVectorType; + typedef typename SkewSymmetricVectorType::Scalar Scalar; + typedef typename SkewSymmetricVectorType::RealScalar RealScalar; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + + enum { + RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, + ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, + MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, + IsVectorAtCompileTime = 0, + Flags = NoPreferredStorageOrderBit + }; + + typedef Matrix DenseMatrixType; + typedef DenseMatrixType DenseType; + typedef SkewSymmetricMatrix3 PlainObject; + + /** \returns a reference to the derived object. */ + EIGEN_DEVICE_FUNC + inline const Derived& derived() const { return *static_cast(this); } + /** \returns a const reference to the derived object. */ + EIGEN_DEVICE_FUNC + inline Derived& derived() { return *static_cast(this); } + + /** + * Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type, + * not an expression. + * \returns A dense matrix, with its entries set from the the derived object. */ + EIGEN_DEVICE_FUNC + DenseMatrixType toDenseMatrix() const { return derived(); } + + /** Determinant vanishes */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Scalar determinant() const { return 0; } + + /** A.transpose() = -A */ + EIGEN_DEVICE_FUNC + PlainObject transpose() const { return (-vector()).asSkewSymmetric(); } + + /** \returns the exponential of this matrix using Rodrigues’ formula */ + EIGEN_DEVICE_FUNC + DenseMatrixType exponential() const { + DenseMatrixType retVal = DenseMatrixType::Identity(); + const SkewSymmetricVectorType& v = vector(); + if (v.isZero()) { + return retVal; + } + const Scalar norm2 = v.squaredNorm(); + const Scalar norm = numext::sqrt(norm2); + retVal += ((((1 - numext::cos(norm))/norm2)*derived())*derived()) + (numext::sin(norm)/norm)*derived().toDenseMatrix(); + return retVal; + } + + /** \returns a reference to the derived object's vector of coefficients. */ + EIGEN_DEVICE_FUNC + inline const SkewSymmetricVectorType& vector() const { return derived().vector(); } + /** \returns a const reference to the derived object's vector of coefficients. */ + EIGEN_DEVICE_FUNC + inline SkewSymmetricVectorType& vector() { return derived().vector(); } + + /** \returns the number of rows. */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const { return 3; } + /** \returns the number of columns. */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const { return 3; } + + /** \returns the matrix product of \c *this by the dense matrix, \a matrix */ + template + EIGEN_DEVICE_FUNC + Product + operator*(const MatrixBase &matrix) const + { + return Product(derived(), matrix.derived()); + } + + /** \returns the matrix product of \c *this by the skew symmetric matrix, \a matrix */ + template + EIGEN_DEVICE_FUNC + Product + operator*(const SkewSymmetricBase &matrix) const + { + return Product(derived(), matrix.derived()); + } + + template + using SkewSymmetricProductReturnType = SkewSymmetricWrapper; + + /** \returns the wedge product of \c *this by the skew symmetric matrix \a other + * A wedge B = AB - BA */ + template + EIGEN_DEVICE_FUNC SkewSymmetricProductReturnType wedge( + const SkewSymmetricBase& other) const { + return vector().cross(other.vector()).asSkewSymmetric(); + } + + using SkewSymmetricScaleReturnType = + SkewSymmetricWrapper; + + /** \returns the product of \c *this by the scalar \a scalar */ + EIGEN_DEVICE_FUNC + inline SkewSymmetricScaleReturnType operator*(const Scalar& scalar) const { + return (vector() * scalar).asSkewSymmetric(); + } + + using ScaleSkewSymmetricReturnType = + SkewSymmetricWrapper; + + /** \returns the product of a scalar and the skew symmetric matrix \a other */ + EIGEN_DEVICE_FUNC + friend inline ScaleSkewSymmetricReturnType operator*(const Scalar& scalar, const SkewSymmetricBase& other) { + return (scalar * other.vector()).asSkewSymmetric(); + } + + template + using SkewSymmetricSumReturnType = SkewSymmetricWrapper; + + /** \returns the sum of \c *this and the skew symmetric matrix \a other */ + template + EIGEN_DEVICE_FUNC inline SkewSymmetricSumReturnType operator+( + const SkewSymmetricBase& other) const { + return (vector() + other.vector()).asSkewSymmetric(); + } + + template + using SkewSymmetricDifferenceReturnType = SkewSymmetricWrapper; + + /** \returns the difference of \c *this and the skew symmetric matrix \a other */ + template + EIGEN_DEVICE_FUNC inline SkewSymmetricDifferenceReturnType operator-( + const SkewSymmetricBase& other) const { + return (vector() - other.vector()).asSkewSymmetric(); + } +}; + +/** \class SkewSymmetricMatrix3 + * \ingroup Core_Module + * + * \brief Represents a 3x3 skew symmetric matrix with its storage + * + * \tparam Scalar_ the type of coefficients + * + * \sa class SkewSymmetricBase, class SkewSymmetricWrapper + */ + +namespace internal { +template +struct traits > + : traits > +{ + typedef Matrix SkewSymmetricVectorType; + typedef SkewSymmetricShape StorageKind; + enum { + Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit + }; +}; +} +template +class SkewSymmetricMatrix3 + : public SkewSymmetricBase > +{ + public: + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename internal::traits::SkewSymmetricVectorType SkewSymmetricVectorType; + typedef const SkewSymmetricMatrix3& Nested; + typedef Scalar_ Scalar; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + #endif + + protected: + + SkewSymmetricVectorType m_vector; + + public: + + /** const version of vector(). */ + EIGEN_DEVICE_FUNC + inline const SkewSymmetricVectorType& vector() const { return m_vector; } + /** \returns a reference to the stored vector of coefficients. */ + EIGEN_DEVICE_FUNC + inline SkewSymmetricVectorType& vector() { return m_vector; } + + /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC + inline SkewSymmetricMatrix3() {} + + /** Constructor from three scalars */ + EIGEN_DEVICE_FUNC + inline SkewSymmetricMatrix3(const Scalar& x, const Scalar& y, const Scalar& z) : m_vector(x,y,z) {} + + /** \brief Constructs a SkewSymmetricMatrix3 from an r-value vector type */ + EIGEN_DEVICE_FUNC + explicit inline SkewSymmetricMatrix3(SkewSymmetricVectorType&& vec) : m_vector(std::move(vec)) {} + + /** generic constructor from expression of the coefficients */ + template + EIGEN_DEVICE_FUNC + explicit inline SkewSymmetricMatrix3(const MatrixBase& other) : m_vector(other) + {} + + /** Copy constructor. */ + template + EIGEN_DEVICE_FUNC + inline SkewSymmetricMatrix3(const SkewSymmetricBase& other) : m_vector(other.vector()) {} + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ + inline SkewSymmetricMatrix3(const SkewSymmetricMatrix3& other) : m_vector(other.vector()) {} + #endif + + /** Copy operator. */ + template + EIGEN_DEVICE_FUNC + SkewSymmetricMatrix3& operator=(const SkewSymmetricBase& other) + { + m_vector = other.vector(); + return *this; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + EIGEN_DEVICE_FUNC + SkewSymmetricMatrix3& operator=(const SkewSymmetricMatrix3& other) + { + m_vector = other.vector(); + return *this; + } + #endif + + typedef SkewSymmetricWrapper, SkewSymmetricVectorType>> + InitializeReturnType; + + /** Initializes a skew symmetric matrix with coefficients set to zero */ + EIGEN_DEVICE_FUNC + static InitializeReturnType Zero() { return SkewSymmetricVectorType::Zero().asSkewSymmetric(); } + + /** Sets all coefficients to zero. */ + EIGEN_DEVICE_FUNC + inline void setZero() { m_vector.setZero(); } +}; + +/** \class SkewSymmetricWrapper + * \ingroup Core_Module + * + * \brief Expression of a skew symmetric matrix + * + * \tparam SkewSymmetricVectorType_ the type of the vector of coefficients + * + * This class is an expression of a skew symmetric matrix, but not storing its own vector of coefficients, + * instead wrapping an existing vector expression. It is the return type of MatrixBase::asSkewSymmetric() + * and most of the time this is the only way that it is used. + * + * \sa class SkewSymmetricMatrix3, class SkewSymmetricBase, MatrixBase::asSkewSymmetric() + */ + +namespace internal { +template +struct traits > +{ + typedef SkewSymmetricVectorType_ SkewSymmetricVectorType; + typedef typename SkewSymmetricVectorType::Scalar Scalar; + typedef typename SkewSymmetricVectorType::StorageIndex StorageIndex; + typedef SkewSymmetricShape StorageKind; + typedef typename traits::XprKind XprKind; + enum { + RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, + ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, + MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, + MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, + Flags = (traits::Flags & LvalueBit) | NoPreferredStorageOrderBit + }; +}; +} + +template +class SkewSymmetricWrapper + : public SkewSymmetricBase >, internal::no_assignment_operator +{ + public: + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef SkewSymmetricVectorType_ SkewSymmetricVectorType; + typedef SkewSymmetricWrapper Nested; + #endif + + /** Constructor from expression of coefficients to wrap. */ + EIGEN_DEVICE_FUNC + explicit inline SkewSymmetricWrapper(SkewSymmetricVectorType& a_vector) : m_vector(a_vector) {} + + /** \returns a const reference to the wrapped expression of coefficients. */ + EIGEN_DEVICE_FUNC + const SkewSymmetricVectorType& vector() const { return m_vector; } + + protected: + typename SkewSymmetricVectorType::Nested m_vector; +}; + +/** \returns a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients + * + * \only_for_vectors + * + * \sa class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric() + **/ +template +EIGEN_DEVICE_FUNC inline const SkewSymmetricWrapper +MatrixBase::asSkewSymmetric() const +{ + return SkewSymmetricWrapper(derived()); +} + +/** \returns true if *this is approximately equal to a skew symmetric matrix, + * within the precision given by \a prec. + */ +template +bool MatrixBase::isSkewSymmetric(const RealScalar& prec) const +{ + if(cols() != rows()) return false; + return (this->transpose() + *this).isZero(prec); +} + +/** \returns the matrix product of \c *this by the skew symmetric matrix \skew. + */ +template +template +EIGEN_DEVICE_FUNC inline const Product +MatrixBase::operator*(const SkewSymmetricBase &skew) const +{ + return Product(derived(), skew.derived()); +} + +namespace internal { + +template<> struct storage_kind_to_shape { typedef SkewSymmetricShape Shape; }; + +struct SkewSymmetric2Dense {}; + +template<> struct AssignmentKind { typedef SkewSymmetric2Dense Kind; }; + +// SkewSymmetric matrix to Dense assignment +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + if((dst.rows()!=3) || (dst.cols()!=3)) { + dst.resize(3, 3); + } + dst.diagonal().setZero(); + const typename SrcXprType::SkewSymmetricVectorType v = src.vector(); + dst(0, 1) = -v(2); + dst(1, 0) = v(2); + dst(0, 2) = v(1); + dst(2, 0) = -v(1); + dst(1, 2) = -v(0); + dst(2, 1) = v(0); + } + EIGEN_DEVICE_FUNC + static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) + { dst.vector() += src.vector(); } + + EIGEN_DEVICE_FUNC + static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) + { dst.vector() -= src.vector(); } +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SKEWSYMMETRICMATRIX3_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Solve.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Solve.h new file mode 100644 index 0000000..f77eac9 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Solve.h @@ -0,0 +1,190 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SOLVE_H +#define EIGEN_SOLVE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template class SolveImpl; + +/** \class Solve + * \ingroup Core_Module + * + * \brief Pseudo expression representing a solving operation + * + * \tparam Decomposition the type of the matrix or decomposition object + * \tparam Rhstype the type of the right-hand side + * + * This class represents an expression of A.solve(B) + * and most of the time this is the only way it is used. + * + */ +namespace internal { + +// this solve_traits class permits to determine the evaluation type with respect to storage kind (Dense vs Sparse) +template struct solve_traits; + +template +struct solve_traits +{ + typedef typename make_proper_matrix_type::type PlainObject; +}; + +template +struct traits > + : traits::StorageKind>::PlainObject> +{ + typedef typename solve_traits::StorageKind>::PlainObject PlainObject; + typedef typename promote_index_type::type StorageIndex; + typedef traits BaseTraits; + enum { + Flags = BaseTraits::Flags & RowMajorBit, + CoeffReadCost = HugeCost + }; +}; + +} + + +template +class Solve : public SolveImpl::StorageKind> +{ +public: + typedef typename internal::traits::PlainObject PlainObject; + typedef typename internal::traits::StorageIndex StorageIndex; + + Solve(const Decomposition &dec, const RhsType &rhs) + : m_dec(dec), m_rhs(rhs) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_dec.cols(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; } + EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; } + +protected: + const Decomposition &m_dec; + const typename internal::ref_selector::type m_rhs; +}; + + +// Specialization of the Solve expression for dense results +template +class SolveImpl + : public MatrixBase > +{ + typedef Solve Derived; + +public: + + typedef MatrixBase > Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Derived) + +private: + + Scalar coeff(Index row, Index col) const; + Scalar coeff(Index i) const; +}; + +// Generic API dispatcher +template +class SolveImpl : public internal::generic_xpr_base, MatrixXpr, StorageKind>::type +{ + public: + typedef typename internal::generic_xpr_base, MatrixXpr, StorageKind>::type Base; +}; + +namespace internal { + +// Evaluator of Solve -> eval into a temporary +template +struct evaluator > + : public evaluator::PlainObject> +{ + typedef Solve SolveType; + typedef typename SolveType::PlainObject PlainObject; + typedef evaluator Base; + + enum { Flags = Base::Flags | EvalBeforeNestingBit }; + + EIGEN_DEVICE_FUNC explicit evaluator(const SolveType& solve) + : m_result(solve.rows(), solve.cols()) + { + internal::construct_at(this, m_result); + solve.dec()._solve_impl(solve.rhs(), m_result); + } + +protected: + PlainObject m_result; +}; + +// Specialization for "dst = dec.solve(rhs)" +// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere +template +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Solve SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + src.dec()._solve_impl(src.rhs(), dst); + } +}; + +// Specialization for "dst = dec.transpose().solve(rhs)" +template +struct Assignment,RhsType>, internal::assign_op, Dense2Dense> +{ + typedef Solve,RhsType> SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + src.dec().nestedExpression().template _solve_impl_transposed(src.rhs(), dst); + } +}; + +// Specialization for "dst = dec.adjoint().solve(rhs)" +template +struct Assignment, const Transpose >,RhsType>, + internal::assign_op, Dense2Dense> +{ + typedef Solve, const Transpose >,RhsType> SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + src.dec().nestedExpression().nestedExpression().template _solve_impl_transposed(src.rhs(), dst); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SOLVE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SolveTriangular.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SolveTriangular.h new file mode 100644 index 0000000..23df508 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SolveTriangular.h @@ -0,0 +1,242 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SOLVETRIANGULAR_H +#define EIGEN_SOLVETRIANGULAR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// Forward declarations: +// The following two routines are implemented in the products/TriangularSolver*.h files +template +struct triangular_solve_vector; + +template +struct triangular_solve_matrix; + +// small helper struct extracting some traits on the underlying solver operation +template +class trsolve_traits +{ + private: + enum { + RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1 + }; + public: + enum { + Unrolling = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8) + ? CompleteUnrolling : NoUnrolling, + RhsVectors = RhsIsVectorAtCompileTime ? 1 : Dynamic + }; +}; + +template::Unrolling, + int RhsVectors = trsolve_traits::RhsVectors + > +struct triangular_solver_selector; + +template +struct triangular_solver_selector +{ + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef blas_traits LhsProductTraits; + typedef typename LhsProductTraits::ExtractType ActualLhsType; + typedef Map, Aligned> MappedRhs; + static EIGEN_DEVICE_FUNC void run(const Lhs& lhs, Rhs& rhs) + { + ActualLhsType actualLhs = LhsProductTraits::extract(lhs); + + // FIXME find a way to allow an inner stride if packet_traits::size==1 + + bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1; + + ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhs,rhs.size(), + (useRhsDirectly ? rhs.data() : 0)); + + if(!useRhsDirectly) + MappedRhs(actualRhs,rhs.size()) = rhs; + + triangular_solve_vector + ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs); + + if(!useRhsDirectly) + rhs = MappedRhs(actualRhs, rhs.size()); + } +}; + +// the rhs is a matrix +template +struct triangular_solver_selector +{ + typedef typename Rhs::Scalar Scalar; + typedef blas_traits LhsProductTraits; + typedef typename LhsProductTraits::DirectLinearAccessType ActualLhsType; + + static EIGEN_DEVICE_FUNC void run(const Lhs& lhs, Rhs& rhs) + { + add_const_on_value_type_t actualLhs = LhsProductTraits::extract(lhs); + + const Index size = lhs.rows(); + const Index othersize = Side==OnTheLeft? rhs.cols() : rhs.rows(); + + typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, + Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType; + + // Nothing to solve. + if (actualLhs.size() == 0 || rhs.size() == 0) { + return; + } + + BlockingType blocking(rhs.rows(), rhs.cols(), size, 1, false); + + triangular_solve_matrix + ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.innerStride(), rhs.outerStride(), blocking); + } +}; + +/*************************************************************************** +* meta-unrolling implementation +***************************************************************************/ + +template +struct triangular_solver_unroller; + +template +struct triangular_solver_unroller { + enum { + IsLower = ((Mode&Lower)==Lower), + DiagIndex = IsLower ? LoopIndex : Size - LoopIndex - 1, + StartIndex = IsLower ? 0 : DiagIndex+1 + }; + static EIGEN_DEVICE_FUNC void run(const Lhs& lhs, Rhs& rhs) + { + if (LoopIndex>0) + rhs.coeffRef(DiagIndex) -= lhs.row(DiagIndex).template segment(StartIndex).transpose() + .cwiseProduct(rhs.template segment(StartIndex)).sum(); + + if(!(Mode & UnitDiag)) + rhs.coeffRef(DiagIndex) /= lhs.coeff(DiagIndex,DiagIndex); + + triangular_solver_unroller::run(lhs,rhs); + } +}; + +template +struct triangular_solver_unroller { + static EIGEN_DEVICE_FUNC void run(const Lhs&, Rhs&) {} +}; + +template +struct triangular_solver_selector { + static EIGEN_DEVICE_FUNC void run(const Lhs& lhs, Rhs& rhs) + { triangular_solver_unroller::run(lhs,rhs); } +}; + +template +struct triangular_solver_selector { + static EIGEN_DEVICE_FUNC void run(const Lhs& lhs, Rhs& rhs) + { + Transpose trLhs(lhs); + Transpose trRhs(rhs); + + triangular_solver_unroller,Transpose, + ((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag), + 0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs); + } +}; + +} // end namespace internal + +/*************************************************************************** +* TriangularView methods +***************************************************************************/ + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +EIGEN_DEVICE_FUNC void TriangularViewImpl::solveInPlace(const MatrixBase& _other) const +{ + OtherDerived& other = _other.const_cast_derived(); + eigen_assert( derived().cols() == derived().rows() && ((Side==OnTheLeft && derived().cols() == other.rows()) || (Side==OnTheRight && derived().cols() == other.cols())) ); + eigen_assert((!(int(Mode) & int(ZeroDiag))) && bool(int(Mode) & (int(Upper) | int(Lower)))); + // If solving for a 0x0 matrix, nothing to do, simply return. + if (derived().cols() == 0) + return; + + enum { copy = (internal::traits::Flags & RowMajorBit) && OtherDerived::IsVectorAtCompileTime && OtherDerived::SizeAtCompileTime!=1}; + typedef std::conditional_t::type, OtherDerived&> OtherCopy; + OtherCopy otherCopy(other); + + internal::triangular_solver_selector, + Side, Mode>::run(derived().nestedExpression(), otherCopy); + + if (copy) + other = otherCopy; +} + +template +template +const internal::triangular_solve_retval,Other> +TriangularViewImpl::solve(const MatrixBase& other) const +{ + return internal::triangular_solve_retval(derived(), other.derived()); +} +#endif + +namespace internal { + + +template +struct traits > +{ + typedef typename internal::plain_matrix_type_column_major::type ReturnType; +}; + +template struct triangular_solve_retval + : public ReturnByValue > +{ + typedef remove_all_t RhsNestedCleaned; + typedef ReturnByValue Base; + + triangular_solve_retval(const TriangularType& tri, const Rhs& rhs) + : m_triangularMatrix(tri), m_rhs(rhs) + {} + + inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_rhs.rows(); } + inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + template inline void evalTo(Dest& dst) const + { + if(!is_same_dense(dst,m_rhs)) + dst = m_rhs; + m_triangularMatrix.template solveInPlace(dst); + } + + protected: + const TriangularType& m_triangularMatrix; + typename Rhs::Nested m_rhs; +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SOLVETRIANGULAR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SolverBase.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SolverBase.h new file mode 100644 index 0000000..7396e04 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/SolverBase.h @@ -0,0 +1,169 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SOLVERBASE_H +#define EIGEN_SOLVERBASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct solve_assertion { + template + static void run(const Derived& solver, const Rhs& b) { solver.template _check_solve_assertion(b); } +}; + +template +struct solve_assertion > +{ + typedef Transpose type; + + template + static void run(const type& transpose, const Rhs& b) + { + internal::solve_assertion>::template run(transpose.nestedExpression(), b); + } +}; + +template +struct solve_assertion, const Transpose > > +{ + typedef CwiseUnaryOp, const Transpose > type; + + template + static void run(const type& adjoint, const Rhs& b) + { + internal::solve_assertion >>::template run(adjoint.nestedExpression(), b); + } +}; +} // end namespace internal + +/** \class SolverBase + * \brief A base class for matrix decomposition and solvers + * + * \tparam Derived the actual type of the decomposition/solver. + * + * Any matrix decomposition inheriting this base class provide the following API: + * + * \code + * MatrixType A, b, x; + * DecompositionType dec(A); + * x = dec.solve(b); // solve A * x = b + * x = dec.transpose().solve(b); // solve A^T * x = b + * x = dec.adjoint().solve(b); // solve A' * x = b + * \endcode + * + * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors. + * + * \sa class PartialPivLU, class FullPivLU, class HouseholderQR, class ColPivHouseholderQR, class FullPivHouseholderQR, class CompleteOrthogonalDecomposition, class LLT, class LDLT, class SVDBase + */ +template +class SolverBase : public EigenBase +{ + public: + + typedef EigenBase Base; + typedef typename internal::traits::Scalar Scalar; + typedef Scalar CoeffReturnType; + + template + friend struct internal::solve_assertion; + + enum { + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + SizeAtCompileTime = (internal::size_of_xpr_at_compile_time::ret), + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, + MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime), + IsVectorAtCompileTime = internal::traits::MaxRowsAtCompileTime == 1 + || internal::traits::MaxColsAtCompileTime == 1, + NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2 + }; + + /** Default constructor */ + SolverBase() + {} + + ~SolverBase() + {} + + using Base::derived; + + /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. + */ + template + inline const Solve + solve(const MatrixBase& b) const + { + internal::solve_assertion>::template run(derived(), b); + return Solve(derived(), b.derived()); + } + + /** \internal the return type of transpose() */ + typedef Transpose ConstTransposeReturnType; + /** \returns an expression of the transposed of the factored matrix. + * + * A typical usage is to solve for the transposed problem A^T x = b: + * \code x = dec.transpose().solve(b); \endcode + * + * \sa adjoint(), solve() + */ + inline const ConstTransposeReturnType transpose() const + { + return ConstTransposeReturnType(derived()); + } + + /** \internal the return type of adjoint() */ + typedef std::conditional_t::IsComplex, + CwiseUnaryOp, const ConstTransposeReturnType>, + const ConstTransposeReturnType + > AdjointReturnType; + /** \returns an expression of the adjoint of the factored matrix + * + * A typical usage is to solve for the adjoint problem A' x = b: + * \code x = dec.adjoint().solve(b); \endcode + * + * For real scalar types, this function is equivalent to transpose(). + * + * \sa transpose(), solve() + */ + inline const AdjointReturnType adjoint() const + { + return AdjointReturnType(derived().transpose()); + } + + protected: + + template + void _check_solve_assertion(const Rhs& b) const { + EIGEN_ONLY_USED_FOR_DEBUG(b); + eigen_assert(derived().m_isInitialized && "Solver is not initialized."); + eigen_assert((Transpose_?derived().cols():derived().rows())==b.rows() && "SolverBase::solve(): invalid number of rows of the right hand side matrix b"); + } +}; + +namespace internal { + +template +struct generic_xpr_base +{ + typedef SolverBase type; + +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SOLVERBASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/StableNorm.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/StableNorm.h new file mode 100644 index 0000000..a3bc918 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/StableNorm.h @@ -0,0 +1,253 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STABLENORM_H +#define EIGEN_STABLENORM_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale) +{ + Scalar maxCoeff = bl.cwiseAbs().maxCoeff(); + + if(maxCoeff>scale) + { + ssq = ssq * numext::abs2(scale/maxCoeff); + Scalar tmp = Scalar(1)/maxCoeff; + if(tmp > NumTraits::highest()) + { + invScale = NumTraits::highest(); + scale = Scalar(1)/invScale; + } + else if(maxCoeff>NumTraits::highest()) // we got a INF + { + invScale = Scalar(1); + scale = maxCoeff; + } + else + { + scale = maxCoeff; + invScale = tmp; + } + } + else if(maxCoeff!=maxCoeff) // we got a NaN + { + scale = maxCoeff; + } + + // TODO if the maxCoeff is much much smaller than the current scale, + // then we can neglect this sub vector + if(scale>Scalar(0)) // if scale==0, then bl is 0 + ssq += (bl*invScale).squaredNorm(); +} + +template +void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealScalar& scale, RealScalar& invScale) +{ + typedef typename VectorType::Scalar Scalar; + const Index blockSize = 4096; + + typedef typename internal::nested_eval::type VectorTypeCopy; + typedef internal::remove_all_t VectorTypeCopyClean; + const VectorTypeCopy copy(vec); + + enum { + CanAlign = ( (int(VectorTypeCopyClean::Flags)&DirectAccessBit) + || (int(internal::evaluator::Alignment)>0) // FIXME Alignment)>0 might not be enough + ) && (blockSize*sizeof(Scalar)*20) // if we cannot allocate on the stack, then let's not bother about this optimization + }; + typedef std::conditional_t, internal::evaluator::Alignment>, + typename VectorTypeCopyClean::ConstSegmentReturnType> SegmentWrapper; + Index n = vec.size(); + + Index bi = internal::first_default_aligned(copy); + if (bi>0) + internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale); + for (; bi +typename VectorType::RealScalar +stable_norm_impl(const VectorType &vec, std::enable_if_t* = 0 ) +{ + using std::sqrt; + using std::abs; + + Index n = vec.size(); + + if(n==1) + return abs(vec.coeff(0)); + + typedef typename VectorType::RealScalar RealScalar; + RealScalar scale(0); + RealScalar invScale(1); + RealScalar ssq(0); // sum of squares + + stable_norm_impl_inner_step(vec, ssq, scale, invScale); + + return scale * sqrt(ssq); +} + +template +typename MatrixType::RealScalar +stable_norm_impl(const MatrixType &mat, std::enable_if_t* = 0 ) +{ + using std::sqrt; + + typedef typename MatrixType::RealScalar RealScalar; + RealScalar scale(0); + RealScalar invScale(1); + RealScalar ssq(0); // sum of squares + + for(Index j=0; j +inline typename NumTraits::Scalar>::Real +blueNorm_impl(const EigenBase& _vec) +{ + typedef typename Derived::RealScalar RealScalar; + using std::pow; + using std::sqrt; + using std::abs; + + // This program calculates the machine-dependent constants + // bl, b2, slm, s2m, relerr overfl + // from the "basic" machine-dependent numbers + // nbig, ibeta, it, iemin, iemax, rbig. + // The following define the basic machine-dependent constants. + // For portability, the PORT subprograms "ilmaeh" and "rlmach" + // are used. For any specific computer, each of the assignment + // statements can be replaced + static const int ibeta = std::numeric_limits::radix; // base for floating-point numbers + static const int it = NumTraits::digits(); // number of base-beta digits in mantissa + static const int iemin = NumTraits::min_exponent(); // minimum exponent + static const int iemax = NumTraits::max_exponent(); // maximum exponent + static const RealScalar rbig = NumTraits::highest(); // largest floating-point number + static const RealScalar b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(-((1-iemin)/2)))); // lower boundary of midrange + static const RealScalar b2 = RealScalar(pow(RealScalar(ibeta),RealScalar((iemax + 1 - it)/2))); // upper boundary of midrange + static const RealScalar s1m = RealScalar(pow(RealScalar(ibeta),RealScalar((2-iemin)/2))); // scaling factor for lower range + static const RealScalar s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(- ((iemax+it)/2)))); // scaling factor for upper range + static const RealScalar eps = RealScalar(pow(double(ibeta), 1-it)); + static const RealScalar relerr = sqrt(eps); // tolerance for neglecting asml + + const Derived& vec(_vec.derived()); + Index n = vec.size(); + RealScalar ab2 = b2 / RealScalar(n); + RealScalar asml = RealScalar(0); + RealScalar amed = RealScalar(0); + RealScalar abig = RealScalar(0); + + for(Index j=0; j ab2) abig += numext::abs2(ax*s2m); + else if(ax < b1) asml += numext::abs2(ax*s1m); + else amed += numext::abs2(ax); + } + } + if(amed!=amed) + return amed; // we got a NaN + if(abig > RealScalar(0)) + { + abig = sqrt(abig); + if(abig > rbig) // overflow, or *this contains INF values + return abig; // return INF + if(amed > RealScalar(0)) + { + abig = abig/s2m; + amed = sqrt(amed); + } + else + return abig/s2m; + } + else if(asml > RealScalar(0)) + { + if (amed > RealScalar(0)) + { + abig = sqrt(amed); + amed = sqrt(asml) / s1m; + } + else + return sqrt(asml)/s1m; + } + else + return sqrt(amed); + asml = numext::mini(abig, amed); + abig = numext::maxi(abig, amed); + if(asml <= abig*relerr) + return abig; + else + return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig)); +} + +} // end namespace internal + +/** \returns the \em l2 norm of \c *this avoiding underflow and overflow. + * This version use a blockwise two passes algorithm: + * 1 - find the absolute largest coefficient \c s + * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way + * + * For architecture/scalar types supporting vectorization, this version + * is faster than blueNorm(). Otherwise the blueNorm() is much faster. + * + * \sa norm(), blueNorm(), hypotNorm() + */ +template +inline typename NumTraits::Scalar>::Real +MatrixBase::stableNorm() const +{ + return internal::stable_norm_impl(derived()); +} + +/** \returns the \em l2 norm of \c *this using the Blue's algorithm. + * A Portable Fortran Program to Find the Euclidean Norm of a Vector, + * ACM TOMS, Vol 4, Issue 1, 1978. + * + * For architecture/scalar types without vectorization, this version + * is much faster than stableNorm(). Otherwise the stableNorm() is faster. + * + * \sa norm(), stableNorm(), hypotNorm() + */ +template +inline typename NumTraits::Scalar>::Real +MatrixBase::blueNorm() const +{ + return internal::blueNorm_impl(*this); +} + +/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow. + * This version use a concatenation of hypot() calls, and it is very slow. + * + * \sa norm(), stableNorm() + */ +template +inline typename NumTraits::Scalar>::Real +MatrixBase::hypotNorm() const +{ + if(size()==1) + return numext::abs(coeff(0,0)); + else + return this->cwiseAbs().redux(internal::scalar_hypot_op()); +} + +} // end namespace Eigen + +#endif // EIGEN_STABLENORM_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/StlIterators.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/StlIterators.h new file mode 100644 index 0000000..d5d3971 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/StlIterators.h @@ -0,0 +1,465 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STLITERATORS_H +#define EIGEN_STLITERATORS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct indexed_based_stl_iterator_traits; + +template +class indexed_based_stl_iterator_base +{ +protected: + typedef indexed_based_stl_iterator_traits traits; + typedef typename traits::XprType XprType; + typedef indexed_based_stl_iterator_base non_const_iterator; + typedef indexed_based_stl_iterator_base const_iterator; + typedef std::conditional_t::value,non_const_iterator,const_iterator> other_iterator; + // NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class: + friend class indexed_based_stl_iterator_base; + friend class indexed_based_stl_iterator_base; +public: + typedef Index difference_type; + typedef std::random_access_iterator_tag iterator_category; + + indexed_based_stl_iterator_base() EIGEN_NO_THROW : mp_xpr(0), m_index(0) {} + indexed_based_stl_iterator_base(XprType& xpr, Index index) EIGEN_NO_THROW : mp_xpr(&xpr), m_index(index) {} + + indexed_based_stl_iterator_base(const non_const_iterator& other) EIGEN_NO_THROW + : mp_xpr(other.mp_xpr), m_index(other.m_index) + {} + + indexed_based_stl_iterator_base& operator=(const non_const_iterator& other) + { + mp_xpr = other.mp_xpr; + m_index = other.m_index; + return *this; + } + + Derived& operator++() { ++m_index; return derived(); } + Derived& operator--() { --m_index; return derived(); } + + Derived operator++(int) { Derived prev(derived()); operator++(); return prev;} + Derived operator--(int) { Derived prev(derived()); operator--(); return prev;} + + friend Derived operator+(const indexed_based_stl_iterator_base& a, Index b) { Derived ret(a.derived()); ret += b; return ret; } + friend Derived operator-(const indexed_based_stl_iterator_base& a, Index b) { Derived ret(a.derived()); ret -= b; return ret; } + friend Derived operator+(Index a, const indexed_based_stl_iterator_base& b) { Derived ret(b.derived()); ret += a; return ret; } + friend Derived operator-(Index a, const indexed_based_stl_iterator_base& b) { Derived ret(b.derived()); ret -= a; return ret; } + + Derived& operator+=(Index b) { m_index += b; return derived(); } + Derived& operator-=(Index b) { m_index -= b; return derived(); } + + difference_type operator-(const indexed_based_stl_iterator_base& other) const + { + eigen_assert(mp_xpr == other.mp_xpr); + return m_index - other.m_index; + } + + difference_type operator-(const other_iterator& other) const + { + eigen_assert(mp_xpr == other.mp_xpr); + return m_index - other.m_index; + } + + bool operator==(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } + bool operator!=(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } + bool operator< (const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } + bool operator<=(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } + bool operator> (const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } + bool operator>=(const indexed_based_stl_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } + + bool operator==(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } + bool operator!=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } + bool operator< (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } + bool operator<=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } + bool operator> (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } + bool operator>=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } + +protected: + + Derived& derived() { return static_cast(*this); } + const Derived& derived() const { return static_cast(*this); } + + XprType *mp_xpr; + Index m_index; +}; + +template +class indexed_based_stl_reverse_iterator_base +{ +protected: + typedef indexed_based_stl_iterator_traits traits; + typedef typename traits::XprType XprType; + typedef indexed_based_stl_reverse_iterator_base non_const_iterator; + typedef indexed_based_stl_reverse_iterator_base const_iterator; + typedef std::conditional_t::value,non_const_iterator,const_iterator> other_iterator; + // NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class: + friend class indexed_based_stl_reverse_iterator_base; + friend class indexed_based_stl_reverse_iterator_base; +public: + typedef Index difference_type; + typedef std::random_access_iterator_tag iterator_category; + + indexed_based_stl_reverse_iterator_base() : mp_xpr(0), m_index(0) {} + indexed_based_stl_reverse_iterator_base(XprType& xpr, Index index) : mp_xpr(&xpr), m_index(index) {} + + indexed_based_stl_reverse_iterator_base(const non_const_iterator& other) + : mp_xpr(other.mp_xpr), m_index(other.m_index) + {} + + indexed_based_stl_reverse_iterator_base& operator=(const non_const_iterator& other) + { + mp_xpr = other.mp_xpr; + m_index = other.m_index; + return *this; + } + + Derived& operator++() { --m_index; return derived(); } + Derived& operator--() { ++m_index; return derived(); } + + Derived operator++(int) { Derived prev(derived()); operator++(); return prev;} + Derived operator--(int) { Derived prev(derived()); operator--(); return prev;} + + friend Derived operator+(const indexed_based_stl_reverse_iterator_base& a, Index b) { Derived ret(a.derived()); ret += b; return ret; } + friend Derived operator-(const indexed_based_stl_reverse_iterator_base& a, Index b) { Derived ret(a.derived()); ret -= b; return ret; } + friend Derived operator+(Index a, const indexed_based_stl_reverse_iterator_base& b) { Derived ret(b.derived()); ret += a; return ret; } + friend Derived operator-(Index a, const indexed_based_stl_reverse_iterator_base& b) { Derived ret(b.derived()); ret -= a; return ret; } + + Derived& operator+=(Index b) { m_index -= b; return derived(); } + Derived& operator-=(Index b) { m_index += b; return derived(); } + + difference_type operator-(const indexed_based_stl_reverse_iterator_base& other) const + { + eigen_assert(mp_xpr == other.mp_xpr); + return other.m_index - m_index; + } + + difference_type operator-(const other_iterator& other) const + { + eigen_assert(mp_xpr == other.mp_xpr); + return other.m_index - m_index; + } + + bool operator==(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } + bool operator!=(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } + bool operator< (const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } + bool operator<=(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } + bool operator> (const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } + bool operator>=(const indexed_based_stl_reverse_iterator_base& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } + + bool operator==(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index == other.m_index; } + bool operator!=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index != other.m_index; } + bool operator< (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index > other.m_index; } + bool operator<=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index >= other.m_index; } + bool operator> (const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index < other.m_index; } + bool operator>=(const other_iterator& other) const { eigen_assert(mp_xpr == other.mp_xpr); return m_index <= other.m_index; } + +protected: + + Derived& derived() { return static_cast(*this); } + const Derived& derived() const { return static_cast(*this); } + + XprType *mp_xpr; + Index m_index; +}; + +template +class pointer_based_stl_iterator +{ + enum { is_lvalue = internal::is_lvalue::value }; + typedef pointer_based_stl_iterator> non_const_iterator; + typedef pointer_based_stl_iterator> const_iterator; + typedef std::conditional_t::value,non_const_iterator,const_iterator> other_iterator; + // NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class: + friend class pointer_based_stl_iterator>; + friend class pointer_based_stl_iterator>; +public: + typedef Index difference_type; + typedef typename XprType::Scalar value_type; + typedef std::random_access_iterator_tag iterator_category; + typedef std::conditional_t pointer; + typedef std::conditional_t reference; + + + pointer_based_stl_iterator() EIGEN_NO_THROW : m_ptr(0) {} + pointer_based_stl_iterator(XprType& xpr, Index index) EIGEN_NO_THROW : m_incr(xpr.innerStride()) + { + m_ptr = xpr.data() + index * m_incr.value(); + } + + pointer_based_stl_iterator(const non_const_iterator& other) EIGEN_NO_THROW + : m_ptr(other.m_ptr), m_incr(other.m_incr) + {} + + pointer_based_stl_iterator& operator=(const non_const_iterator& other) EIGEN_NO_THROW + { + m_ptr = other.m_ptr; + m_incr.setValue(other.m_incr); + return *this; + } + + reference operator*() const { return *m_ptr; } + reference operator[](Index i) const { return *(m_ptr+i*m_incr.value()); } + pointer operator->() const { return m_ptr; } + + pointer_based_stl_iterator& operator++() { m_ptr += m_incr.value(); return *this; } + pointer_based_stl_iterator& operator--() { m_ptr -= m_incr.value(); return *this; } + + pointer_based_stl_iterator operator++(int) { pointer_based_stl_iterator prev(*this); operator++(); return prev;} + pointer_based_stl_iterator operator--(int) { pointer_based_stl_iterator prev(*this); operator--(); return prev;} + + friend pointer_based_stl_iterator operator+(const pointer_based_stl_iterator& a, Index b) { pointer_based_stl_iterator ret(a); ret += b; return ret; } + friend pointer_based_stl_iterator operator-(const pointer_based_stl_iterator& a, Index b) { pointer_based_stl_iterator ret(a); ret -= b; return ret; } + friend pointer_based_stl_iterator operator+(Index a, const pointer_based_stl_iterator& b) { pointer_based_stl_iterator ret(b); ret += a; return ret; } + friend pointer_based_stl_iterator operator-(Index a, const pointer_based_stl_iterator& b) { pointer_based_stl_iterator ret(b); ret -= a; return ret; } + + pointer_based_stl_iterator& operator+=(Index b) { m_ptr += b*m_incr.value(); return *this; } + pointer_based_stl_iterator& operator-=(Index b) { m_ptr -= b*m_incr.value(); return *this; } + + difference_type operator-(const pointer_based_stl_iterator& other) const { + return (m_ptr - other.m_ptr)/m_incr.value(); + } + + difference_type operator-(const other_iterator& other) const { + return (m_ptr - other.m_ptr)/m_incr.value(); + } + + bool operator==(const pointer_based_stl_iterator& other) const { return m_ptr == other.m_ptr; } + bool operator!=(const pointer_based_stl_iterator& other) const { return m_ptr != other.m_ptr; } + bool operator< (const pointer_based_stl_iterator& other) const { return m_ptr < other.m_ptr; } + bool operator<=(const pointer_based_stl_iterator& other) const { return m_ptr <= other.m_ptr; } + bool operator> (const pointer_based_stl_iterator& other) const { return m_ptr > other.m_ptr; } + bool operator>=(const pointer_based_stl_iterator& other) const { return m_ptr >= other.m_ptr; } + + bool operator==(const other_iterator& other) const { return m_ptr == other.m_ptr; } + bool operator!=(const other_iterator& other) const { return m_ptr != other.m_ptr; } + bool operator< (const other_iterator& other) const { return m_ptr < other.m_ptr; } + bool operator<=(const other_iterator& other) const { return m_ptr <= other.m_ptr; } + bool operator> (const other_iterator& other) const { return m_ptr > other.m_ptr; } + bool operator>=(const other_iterator& other) const { return m_ptr >= other.m_ptr; } + +protected: + + pointer m_ptr; + internal::variable_if_dynamic m_incr; +}; + +template +struct indexed_based_stl_iterator_traits > +{ + typedef XprType_ XprType; + typedef generic_randaccess_stl_iterator> non_const_iterator; + typedef generic_randaccess_stl_iterator> const_iterator; +}; + +template +class generic_randaccess_stl_iterator : public indexed_based_stl_iterator_base > +{ +public: + typedef typename XprType::Scalar value_type; + +protected: + + enum { + has_direct_access = (internal::traits::Flags & DirectAccessBit) ? 1 : 0, + is_lvalue = internal::is_lvalue::value + }; + + typedef indexed_based_stl_iterator_base Base; + using Base::m_index; + using Base::mp_xpr; + + // TODO currently const Transpose/Reshape expressions never returns const references, + // so lets return by value too. + //typedef std::conditional_t read_only_ref_t; + typedef const value_type read_only_ref_t; + +public: + + typedef std::conditional_t pointer; + typedef std::conditional_t reference; + + generic_randaccess_stl_iterator() : Base() {} + generic_randaccess_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {} + generic_randaccess_stl_iterator(const typename Base::non_const_iterator& other) : Base(other) {} + using Base::operator=; + + reference operator*() const { return (*mp_xpr)(m_index); } + reference operator[](Index i) const { return (*mp_xpr)(m_index+i); } + pointer operator->() const { return &((*mp_xpr)(m_index)); } +}; + +template +struct indexed_based_stl_iterator_traits > +{ + typedef XprType_ XprType; + typedef subvector_stl_iterator, Direction> non_const_iterator; + typedef subvector_stl_iterator, Direction> const_iterator; +}; + +template +class subvector_stl_iterator : public indexed_based_stl_iterator_base > +{ +protected: + + enum { is_lvalue = internal::is_lvalue::value }; + + typedef indexed_based_stl_iterator_base Base; + using Base::m_index; + using Base::mp_xpr; + + typedef std::conditional_t SubVectorType; + typedef std::conditional_t ConstSubVectorType; + + +public: + typedef std::conditional_t reference; + typedef typename reference::PlainObject value_type; + +private: + class subvector_stl_iterator_ptr + { + public: + subvector_stl_iterator_ptr(const reference &subvector) : m_subvector(subvector) {} + reference* operator->() { return &m_subvector; } + private: + reference m_subvector; + }; +public: + + typedef subvector_stl_iterator_ptr pointer; + + subvector_stl_iterator() : Base() {} + subvector_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {} + + reference operator*() const { return (*mp_xpr).template subVector(m_index); } + reference operator[](Index i) const { return (*mp_xpr).template subVector(m_index+i); } + pointer operator->() const { return (*mp_xpr).template subVector(m_index); } +}; + +template +struct indexed_based_stl_iterator_traits > +{ + typedef XprType_ XprType; + typedef subvector_stl_reverse_iterator, Direction> non_const_iterator; + typedef subvector_stl_reverse_iterator, Direction> const_iterator; +}; + +template +class subvector_stl_reverse_iterator : public indexed_based_stl_reverse_iterator_base > +{ +protected: + + enum { is_lvalue = internal::is_lvalue::value }; + + typedef indexed_based_stl_reverse_iterator_base Base; + using Base::m_index; + using Base::mp_xpr; + + typedef std::conditional_t SubVectorType; + typedef std::conditional_t ConstSubVectorType; + + +public: + typedef std::conditional_t reference; + typedef typename reference::PlainObject value_type; + +private: + class subvector_stl_reverse_iterator_ptr + { + public: + subvector_stl_reverse_iterator_ptr(const reference &subvector) : m_subvector(subvector) {} + reference* operator->() { return &m_subvector; } + private: + reference m_subvector; + }; +public: + + typedef subvector_stl_reverse_iterator_ptr pointer; + + subvector_stl_reverse_iterator() : Base() {} + subvector_stl_reverse_iterator(XprType& xpr, Index index) : Base(xpr,index) {} + + reference operator*() const { return (*mp_xpr).template subVector(m_index); } + reference operator[](Index i) const { return (*mp_xpr).template subVector(m_index+i); } + pointer operator->() const { return (*mp_xpr).template subVector(m_index); } +}; + +} // namespace internal + + +/** returns an iterator to the first element of the 1D vector or array + * \only_for_vectors + * \sa end(), cbegin() + */ +template +inline typename DenseBase::iterator DenseBase::begin() +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return iterator(derived(), 0); +} + +/** const version of begin() */ +template +inline typename DenseBase::const_iterator DenseBase::begin() const +{ + return cbegin(); +} + +/** returns a read-only const_iterator to the first element of the 1D vector or array + * \only_for_vectors + * \sa cend(), begin() + */ +template +inline typename DenseBase::const_iterator DenseBase::cbegin() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return const_iterator(derived(), 0); +} + +/** returns an iterator to the element following the last element of the 1D vector or array + * \only_for_vectors + * \sa begin(), cend() + */ +template +inline typename DenseBase::iterator DenseBase::end() +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return iterator(derived(), size()); +} + +/** const version of end() */ +template +inline typename DenseBase::const_iterator DenseBase::end() const +{ + return cend(); +} + +/** returns a read-only const_iterator to the element following the last element of the 1D vector or array + * \only_for_vectors + * \sa begin(), cend() + */ +template +inline typename DenseBase::const_iterator DenseBase::cend() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return const_iterator(derived(), size()); +} + +} // namespace Eigen + +#endif // EIGEN_STLITERATORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Stride.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Stride.h new file mode 100644 index 0000000..2832e80 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Stride.h @@ -0,0 +1,122 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STRIDE_H +#define EIGEN_STRIDE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \class Stride + * \ingroup Core_Module + * + * \brief Holds strides information for Map + * + * This class holds the strides information for mapping arrays with strides with class Map. + * + * It holds two values: the inner stride and the outer stride. + * + * The inner stride is the pointer increment between two consecutive entries within a given row of a + * row-major matrix or within a given column of a column-major matrix. + * + * The outer stride is the pointer increment between two consecutive rows of a row-major matrix or + * between two consecutive columns of a column-major matrix. + * + * These two values can be passed either at compile-time as template parameters, or at runtime as + * arguments to the constructor. + * + * Indeed, this class takes two template parameters: + * \tparam OuterStrideAtCompileTime_ the outer stride, or Dynamic if you want to specify it at runtime. + * \tparam InnerStrideAtCompileTime_ the inner stride, or Dynamic if you want to specify it at runtime. + * + * Here is an example: + * \include Map_general_stride.cpp + * Output: \verbinclude Map_general_stride.out + * + * Both strides can be negative. However, a negative stride of -1 cannot be specified at compile time + * because of the ambiguity with Dynamic which is defined to -1 (historically, negative strides were + * not allowed). + * + * Note that for compile-time vectors (ColsAtCompileTime==1 or RowsAtCompile==1), + * the inner stride is the pointer increment between two consecutive elements, + * regardless of storage layout. + * + * \sa class InnerStride, class OuterStride, \ref TopicStorageOrders + */ +template +class Stride +{ + public: + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + enum { + InnerStrideAtCompileTime = InnerStrideAtCompileTime_, + OuterStrideAtCompileTime = OuterStrideAtCompileTime_ + }; + + /** Default constructor, for use when strides are fixed at compile time */ + EIGEN_DEVICE_FUNC + Stride() + : m_outer(OuterStrideAtCompileTime), m_inner(InnerStrideAtCompileTime) + { + // FIXME: for Eigen 4 we should use DynamicIndex instead of Dynamic. + // FIXME: for Eigen 4 we should also unify this API with fix<> + eigen_assert(InnerStrideAtCompileTime != Dynamic && OuterStrideAtCompileTime != Dynamic); + } + + /** Constructor allowing to pass the strides at runtime */ + EIGEN_DEVICE_FUNC + Stride(Index outerStride, Index innerStride) + : m_outer(outerStride), m_inner(innerStride) + { + } + + /** Copy constructor */ + EIGEN_DEVICE_FUNC + Stride(const Stride& other) + : m_outer(other.outer()), m_inner(other.inner()) + {} + + /** \returns the outer stride */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index outer() const { return m_outer.value(); } + /** \returns the inner stride */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index inner() const { return m_inner.value(); } + + protected: + internal::variable_if_dynamic m_outer; + internal::variable_if_dynamic m_inner; +}; + +/** \brief Convenience specialization of Stride to specify only an inner stride + * See class Map for some examples */ +template +class InnerStride : public Stride<0, Value> +{ + typedef Stride<0, Value> Base; + public: + EIGEN_DEVICE_FUNC InnerStride() : Base() {} + EIGEN_DEVICE_FUNC InnerStride(Index v) : Base(0, v) {} // FIXME making this explicit could break valid code +}; + +/** \brief Convenience specialization of Stride to specify only an outer stride + * See class Map for some examples */ +template +class OuterStride : public Stride +{ + typedef Stride Base; + public: + EIGEN_DEVICE_FUNC OuterStride() : Base() {} + EIGEN_DEVICE_FUNC OuterStride(Index v) : Base(v,0) {} // FIXME making this explicit could break valid code +}; + +} // end namespace Eigen + +#endif // EIGEN_STRIDE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Swap.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Swap.h new file mode 100644 index 0000000..b2e7511 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Swap.h @@ -0,0 +1,70 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SWAP_H +#define EIGEN_SWAP_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// Overload default assignPacket behavior for swapping them +template +class generic_dense_assignment_kernel, Specialized> + : public generic_dense_assignment_kernel, BuiltIn> +{ +protected: + typedef generic_dense_assignment_kernel, BuiltIn> Base; + using Base::m_dst; + using Base::m_src; + using Base::m_functor; + +public: + typedef typename Base::Scalar Scalar; + typedef typename Base::DstXprType DstXprType; + typedef swap_assign_op Functor; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + generic_dense_assignment_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, const Functor &func, DstXprType& dstExpr) + : Base(dst, src, func, dstExpr) + {} + + template + EIGEN_STRONG_INLINE void assignPacket(Index row, Index col) + { + PacketType tmp = m_src.template packet(row,col); + const_cast(m_src).template writePacket(row,col, m_dst.template packet(row,col)); + m_dst.template writePacket(row,col,tmp); + } + + template + EIGEN_STRONG_INLINE void assignPacket(Index index) + { + PacketType tmp = m_src.template packet(index); + const_cast(m_src).template writePacket(index, m_dst.template packet(index)); + m_dst.template writePacket(index,tmp); + } + + // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael) + template + EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner) + { + Index row = Base::rowIndexByOuterInner(outer, inner); + Index col = Base::colIndexByOuterInner(outer, inner); + assignPacket(row, col); + } +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SWAP_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Transpose.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Transpose.h new file mode 100644 index 0000000..c56318c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Transpose.h @@ -0,0 +1,466 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2009-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSPOSE_H +#define EIGEN_TRANSPOSE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template +struct traits > : public traits +{ + typedef typename ref_selector::type MatrixTypeNested; + typedef std::remove_reference_t MatrixTypeNestedPlain; + enum { + RowsAtCompileTime = MatrixType::ColsAtCompileTime, + ColsAtCompileTime = MatrixType::RowsAtCompileTime, + MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags0 = traits::Flags & ~(LvalueBit | NestByRefBit), + Flags1 = Flags0 | FlagsLvalueBit, + Flags = Flags1 ^ RowMajorBit, + InnerStrideAtCompileTime = inner_stride_at_compile_time::ret, + OuterStrideAtCompileTime = outer_stride_at_compile_time::ret + }; +}; +} + +template class TransposeImpl; + +/** \class Transpose + * \ingroup Core_Module + * + * \brief Expression of the transpose of a matrix + * + * \tparam MatrixType the type of the object of which we are taking the transpose + * + * This class represents an expression of the transpose of a matrix. + * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::transpose(), MatrixBase::adjoint() + */ +template class Transpose + : public TransposeImpl::StorageKind> +{ + public: + + typedef typename internal::ref_selector::non_const_type MatrixTypeNested; + + typedef typename TransposeImpl::StorageKind>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) + typedef internal::remove_all_t NestedExpression; + + EIGEN_DEVICE_FUNC + explicit EIGEN_STRONG_INLINE Transpose(MatrixType& matrix) : m_matrix(matrix) {} + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose) + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const internal::remove_all_t& + nestedExpression() const { return m_matrix; } + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + std::remove_reference_t& + nestedExpression() { return m_matrix; } + + /** \internal */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void resize(Index nrows, Index ncols) { + m_matrix.resize(ncols,nrows); + } + + protected: + typename internal::ref_selector::non_const_type m_matrix; +}; + +namespace internal { + +template::ret> +struct TransposeImpl_base +{ + typedef typename dense_xpr_base >::type type; +}; + +template +struct TransposeImpl_base +{ + typedef typename dense_xpr_base >::type type; +}; + +} // end namespace internal + +// Generic API dispatcher +template +class TransposeImpl + : public internal::generic_xpr_base >::type +{ +public: + typedef typename internal::generic_xpr_base >::type Base; +}; + +template class TransposeImpl + : public internal::TransposeImpl_base::type +{ + public: + + typedef typename internal::TransposeImpl_base::type Base; + using Base::coeffRef; + EIGEN_DENSE_PUBLIC_INTERFACE(Transpose) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl) + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index innerStride() const { return derived().nestedExpression().innerStride(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index outerStride() const { return derived().nestedExpression().outerStride(); } + + typedef std::conditional_t< + internal::is_lvalue::value, + Scalar, + const Scalar + > ScalarWithConstIfNotLvalue; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar* data() const { return derived().nestedExpression().data(); } + + // FIXME: shall we keep the const version of coeffRef? + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar& coeffRef(Index rowId, Index colId) const + { + return derived().nestedExpression().coeffRef(colId, rowId); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar& coeffRef(Index index) const + { + return derived().nestedExpression().coeffRef(index); + } + protected: + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TransposeImpl) +}; + +/** \returns an expression of the transpose of *this. + * + * Example: \include MatrixBase_transpose.cpp + * Output: \verbinclude MatrixBase_transpose.out + * + * \warning If you want to replace a matrix by its own transpose, do \b NOT do this: + * \code + * m = m.transpose(); // bug!!! caused by aliasing effect + * \endcode + * Instead, use the transposeInPlace() method: + * \code + * m.transposeInPlace(); + * \endcode + * which gives Eigen good opportunities for optimization, or alternatively you can also do: + * \code + * m = m.transpose().eval(); + * \endcode + * + * \sa transposeInPlace(), adjoint() */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename DenseBase::TransposeReturnType +DenseBase::transpose() +{ + return TransposeReturnType(derived()); +} + +/** This is the const version of transpose(). + * + * Make sure you read the warning for transpose() ! + * + * \sa transposeInPlace(), adjoint() */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename DenseBase::ConstTransposeReturnType +DenseBase::transpose() const +{ + return ConstTransposeReturnType(derived()); +} + +/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. + * + * Example: \include MatrixBase_adjoint.cpp + * Output: \verbinclude MatrixBase_adjoint.out + * + * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this: + * \code + * m = m.adjoint(); // bug!!! caused by aliasing effect + * \endcode + * Instead, use the adjointInPlace() method: + * \code + * m.adjointInPlace(); + * \endcode + * which gives Eigen good opportunities for optimization, or alternatively you can also do: + * \code + * m = m.adjoint().eval(); + * \endcode + * + * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */ +template +EIGEN_DEVICE_FUNC inline const typename MatrixBase::AdjointReturnType +MatrixBase::adjoint() const +{ + return AdjointReturnType(this->transpose()); +} + +/*************************************************************************** +* "in place" transpose implementation +***************************************************************************/ + +namespace internal { + +template::size)) + && (internal::evaluator::Flags&PacketAccessBit) > +struct inplace_transpose_selector; + +template +struct inplace_transpose_selector { // square matrix + static void run(MatrixType& m) { + m.matrix().template triangularView().swap(m.matrix().transpose().template triangularView()); + } +}; + +template +struct inplace_transpose_selector { // PacketSize x PacketSize + static void run(MatrixType& m) { + typedef typename MatrixType::Scalar Scalar; + typedef typename internal::packet_traits::type Packet; + const Index PacketSize = internal::packet_traits::size; + const Index Alignment = internal::evaluator::Alignment; + PacketBlock A; + for (Index i=0; i(i,0); + internal::ptranspose(A); + for (Index i=0; i(m.rowIndexByOuterInner(i,0), m.colIndexByOuterInner(i,0), A.packet[i]); + } +}; + + +template +void BlockedInPlaceTranspose(MatrixType& m) { + typedef typename MatrixType::Scalar Scalar; + typedef typename internal::packet_traits::type Packet; + const Index PacketSize = internal::packet_traits::size; + eigen_assert(m.rows() == m.cols()); + int row_start = 0; + for (; row_start + PacketSize <= m.rows(); row_start += PacketSize) { + for (int col_start = row_start; col_start + PacketSize <= m.cols(); col_start += PacketSize) { + PacketBlock A; + if (row_start == col_start) { + for (Index i=0; i(row_start + i,col_start); + internal::ptranspose(A); + for (Index i=0; i(m.rowIndexByOuterInner(row_start + i, col_start), m.colIndexByOuterInner(row_start + i,col_start), A.packet[i]); + } else { + PacketBlock B; + for (Index i=0; i(row_start + i,col_start); + B.packet[i] = m.template packetByOuterInner(col_start + i, row_start); + } + internal::ptranspose(A); + internal::ptranspose(B); + for (Index i=0; i(m.rowIndexByOuterInner(row_start + i, col_start), m.colIndexByOuterInner(row_start + i,col_start), B.packet[i]); + m.template writePacket(m.rowIndexByOuterInner(col_start + i, row_start), m.colIndexByOuterInner(col_start + i,row_start), A.packet[i]); + } + } + } + } + for (Index row = row_start; row < m.rows(); ++row) { + m.matrix().row(row).head(row).swap( + m.matrix().col(row).head(row).transpose()); + } +} + +template +struct inplace_transpose_selector { // non square or dynamic matrix + static void run(MatrixType& m) { + typedef typename MatrixType::Scalar Scalar; + if (m.rows() == m.cols()) { + const Index PacketSize = internal::packet_traits::size; + if (!NumTraits::IsComplex && m.rows() >= PacketSize) { + if ((m.rows() % PacketSize) == 0) + BlockedInPlaceTranspose::Alignment>(m); + else + BlockedInPlaceTranspose(m); + } + else { + m.matrix().template triangularView().swap(m.matrix().transpose().template triangularView()); + } + } else { + m = m.transpose().eval(); + } + } +}; + + +} // end namespace internal + +/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose. + * Thus, doing + * \code + * m.transposeInPlace(); + * \endcode + * has the same effect on m as doing + * \code + * m = m.transpose().eval(); + * \endcode + * and is faster and also safer because in the latter line of code, forgetting the eval() results + * in a bug caused by \ref TopicAliasing "aliasing". + * + * Notice however that this method is only useful if you want to replace a matrix by its own transpose. + * If you just need the transpose of a matrix, use transpose(). + * + * \note if the matrix is not square, then \c *this must be a resizable matrix. + * This excludes (non-square) fixed-size matrices, block-expressions and maps. + * + * \sa transpose(), adjoint(), adjointInPlace() */ +template +EIGEN_DEVICE_FUNC inline void DenseBase::transposeInPlace() +{ + eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic)) + && "transposeInPlace() called on a non-square non-resizable matrix"); + internal::inplace_transpose_selector::run(derived()); +} + +/*************************************************************************** +* "in place" adjoint implementation +***************************************************************************/ + +/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose. + * Thus, doing + * \code + * m.adjointInPlace(); + * \endcode + * has the same effect on m as doing + * \code + * m = m.adjoint().eval(); + * \endcode + * and is faster and also safer because in the latter line of code, forgetting the eval() results + * in a bug caused by aliasing. + * + * Notice however that this method is only useful if you want to replace a matrix by its own adjoint. + * If you just need the adjoint of a matrix, use adjoint(). + * + * \note if the matrix is not square, then \c *this must be a resizable matrix. + * This excludes (non-square) fixed-size matrices, block-expressions and maps. + * + * \sa transpose(), adjoint(), transposeInPlace() */ +template +EIGEN_DEVICE_FUNC inline void MatrixBase::adjointInPlace() +{ + derived() = adjoint().eval(); +} + +#ifndef EIGEN_NO_DEBUG + +// The following is to detect aliasing problems in most common cases. + +namespace internal { + +template +struct check_transpose_aliasing_compile_time_selector +{ + enum { ret = bool(blas_traits::IsTransposed) != DestIsTransposed }; +}; + +template +struct check_transpose_aliasing_compile_time_selector > +{ + enum { ret = bool(blas_traits::IsTransposed) != DestIsTransposed + || bool(blas_traits::IsTransposed) != DestIsTransposed + }; +}; + +template +struct check_transpose_aliasing_run_time_selector +{ + EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const OtherDerived& src) + { + return (bool(blas_traits::IsTransposed) != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src)); + } +}; + +template +struct check_transpose_aliasing_run_time_selector > +{ + EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const CwiseBinaryOp& src) + { + return ((blas_traits::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.lhs()))) + || ((blas_traits::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.rhs()))); + } +}; + +// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing, +// is because when the condition controlling the assert is known at compile time, ICC emits a warning. +// This is actually a good warning: in expressions that don't have any transposing, the condition is +// known at compile time to be false, and using that, we can avoid generating the code of the assert again +// and again for all these expressions that don't need it. + +template::IsTransposed,OtherDerived>::ret + > +struct checkTransposeAliasing_impl +{ + EIGEN_DEVICE_FUNC static void run(const Derived& dst, const OtherDerived& other) + { + eigen_assert((!check_transpose_aliasing_run_time_selector + ::IsTransposed,OtherDerived> + ::run(extract_data(dst), other)) + && "aliasing detected during transposition, use transposeInPlace() " + "or evaluate the rhs into a temporary using .eval()"); + + } +}; + +template +struct checkTransposeAliasing_impl +{ + EIGEN_DEVICE_FUNC static void run(const Derived&, const OtherDerived&) + { + } +}; + +template +EIGEN_DEVICE_FUNC inline void check_for_aliasing(const Dst &dst, const Src &src) +{ + if((!Dst::IsVectorAtCompileTime) && dst.rows()>1 && dst.cols()>1) + internal::checkTransposeAliasing_impl::run(dst, src); +} + +} // end namespace internal + +#endif // EIGEN_NO_DEBUG + +} // end namespace Eigen + +#endif // EIGEN_TRANSPOSE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Transpositions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Transpositions.h new file mode 100644 index 0000000..84a9773 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Transpositions.h @@ -0,0 +1,388 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010-2011 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSPOSITIONS_H +#define EIGEN_TRANSPOSITIONS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +class TranspositionsBase +{ + typedef internal::traits Traits; + + public: + + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar StorageIndex; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + EIGEN_DEVICE_FUNC + Derived& derived() { return *static_cast(this); } + EIGEN_DEVICE_FUNC + const Derived& derived() const { return *static_cast(this); } + + /** Copies the \a other transpositions into \c *this */ + template + Derived& operator=(const TranspositionsBase& other) + { + indices() = other.indices(); + return derived(); + } + + /** \returns the number of transpositions */ + EIGEN_DEVICE_FUNC + Index size() const { return indices().size(); } + /** \returns the number of rows of the equivalent permutation matrix */ + EIGEN_DEVICE_FUNC + Index rows() const { return indices().size(); } + /** \returns the number of columns of the equivalent permutation matrix */ + EIGEN_DEVICE_FUNC + Index cols() const { return indices().size(); } + + /** Direct access to the underlying index vector */ + EIGEN_DEVICE_FUNC + inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } + /** Direct access to the underlying index vector */ + inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } + /** Direct access to the underlying index vector */ + inline const StorageIndex& operator()(Index i) const { return indices()(i); } + /** Direct access to the underlying index vector */ + inline StorageIndex& operator()(Index i) { return indices()(i); } + /** Direct access to the underlying index vector */ + inline const StorageIndex& operator[](Index i) const { return indices()(i); } + /** Direct access to the underlying index vector */ + inline StorageIndex& operator[](Index i) { return indices()(i); } + + /** const version of indices(). */ + EIGEN_DEVICE_FUNC + const IndicesType& indices() const { return derived().indices(); } + /** \returns a reference to the stored array representing the transpositions. */ + EIGEN_DEVICE_FUNC + IndicesType& indices() { return derived().indices(); } + + /** Resizes to given size. */ + inline void resize(Index newSize) + { + indices().resize(newSize); + } + + /** Sets \c *this to represents an identity transformation */ + void setIdentity() + { + for(StorageIndex i = 0; i < indices().size(); ++i) + coeffRef(i) = i; + } + + // FIXME: do we want such methods ? + // might be useful when the target matrix expression is complex, e.g.: + // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); + /* + template + void applyForwardToRows(MatrixType& mat) const + { + for(Index k=0 ; k + void applyBackwardToRows(MatrixType& mat) const + { + for(Index k=size()-1 ; k>=0 ; --k) + if(m_indices(k)!=k) + mat.row(k).swap(mat.row(m_indices(k))); + } + */ + + /** \returns the inverse transformation */ + inline Transpose inverse() const + { return Transpose(derived()); } + + /** \returns the tranpose transformation */ + inline Transpose transpose() const + { return Transpose(derived()); } + + protected: +}; + +namespace internal { +template +struct traits > + : traits > +{ + typedef Matrix IndicesType; + typedef TranspositionsStorage StorageKind; +}; +} + +/** \class Transpositions + * \ingroup Core_Module + * + * \brief Represents a sequence of transpositions (row/column interchange) + * + * \tparam SizeAtCompileTime the number of transpositions, or Dynamic + * \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. + * + * This class represents a permutation transformation as a sequence of \em n transpositions + * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. + * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges + * the rows \c i and \c indices[i] of the matrix \c M. + * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. + * + * Compared to the class PermutationMatrix, such a sequence of transpositions is what is + * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. + * + * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: + * \code + * Transpositions tr; + * MatrixXf mat; + * mat = tr * mat; + * \endcode + * In this example, we detect that the matrix appears on both side, and so the transpositions + * are applied in-place without any temporary or extra copy. + * + * \sa class PermutationMatrix + */ + +template +class Transpositions : public TranspositionsBase > +{ + typedef internal::traits Traits; + public: + + typedef TranspositionsBase Base; + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar StorageIndex; + + inline Transpositions() {} + + /** Copy constructor. */ + template + inline Transpositions(const TranspositionsBase& other) + : m_indices(other.indices()) {} + + /** Generic constructor from expression of the transposition indices. */ + template + explicit inline Transpositions(const MatrixBase& indices) : m_indices(indices) + {} + + /** Copies the \a other transpositions into \c *this */ + template + Transpositions& operator=(const TranspositionsBase& other) + { + return Base::operator=(other); + } + + /** Constructs an uninitialized permutation matrix of given size. + */ + inline Transpositions(Index size) : m_indices(size) + {} + + /** const version of indices(). */ + EIGEN_DEVICE_FUNC + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the transpositions. */ + EIGEN_DEVICE_FUNC + IndicesType& indices() { return m_indices; } + + protected: + + IndicesType m_indices; +}; + + +namespace internal { +template +struct traits,PacketAccess_> > + : traits > +{ + typedef Map, PacketAccess_> IndicesType; + typedef StorageIndex_ StorageIndex; + typedef TranspositionsStorage StorageKind; +}; +} + +template +class Map,PacketAccess> + : public TranspositionsBase,PacketAccess> > +{ + typedef internal::traits Traits; + public: + + typedef TranspositionsBase Base; + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar StorageIndex; + + explicit inline Map(const StorageIndex* indicesPtr) + : m_indices(indicesPtr) + {} + + inline Map(const StorageIndex* indicesPtr, Index size) + : m_indices(indicesPtr,size) + {} + + /** Copies the \a other transpositions into \c *this */ + template + Map& operator=(const TranspositionsBase& other) + { + return Base::operator=(other); + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + Map& operator=(const Map& other) + { + m_indices = other.m_indices; + return *this; + } + #endif + + /** const version of indices(). */ + EIGEN_DEVICE_FUNC + const IndicesType& indices() const { return m_indices; } + + /** \returns a reference to the stored array representing the transpositions. */ + EIGEN_DEVICE_FUNC + IndicesType& indices() { return m_indices; } + + protected: + + IndicesType m_indices; +}; + +namespace internal { +template +struct traits > + : traits > +{ + typedef TranspositionsStorage StorageKind; +}; +} + +template +class TranspositionsWrapper + : public TranspositionsBase > +{ + typedef internal::traits Traits; + public: + + typedef TranspositionsBase Base; + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar StorageIndex; + + explicit inline TranspositionsWrapper(IndicesType& indices) + : m_indices(indices) + {} + + /** Copies the \a other transpositions into \c *this */ + template + TranspositionsWrapper& operator=(const TranspositionsBase& other) + { + return Base::operator=(other); + } + + /** const version of indices(). */ + EIGEN_DEVICE_FUNC + const IndicesType& indices() const { return m_indices; } + + /** \returns a reference to the stored array representing the transpositions. */ + EIGEN_DEVICE_FUNC + IndicesType& indices() { return m_indices; } + + protected: + + typename IndicesType::Nested m_indices; +}; + + + +/** \returns the \a matrix with the \a transpositions applied to the columns. + */ +template +EIGEN_DEVICE_FUNC +const Product +operator*(const MatrixBase &matrix, + const TranspositionsBase& transpositions) +{ + return Product + (matrix.derived(), transpositions.derived()); +} + +/** \returns the \a matrix with the \a transpositions applied to the rows. + */ +template +EIGEN_DEVICE_FUNC +const Product +operator*(const TranspositionsBase &transpositions, + const MatrixBase& matrix) +{ + return Product + (transpositions.derived(), matrix.derived()); +} + +// Template partial specialization for transposed/inverse transpositions + +namespace internal { + +template +struct traits > > + : traits +{}; + +} // end namespace internal + +template +class Transpose > +{ + typedef TranspositionsDerived TranspositionType; + typedef typename TranspositionType::IndicesType IndicesType; + public: + + explicit Transpose(const TranspositionType& t) : m_transpositions(t) {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index size() const EIGEN_NOEXCEPT { return m_transpositions.size(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return m_transpositions.size(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return m_transpositions.size(); } + + /** \returns the \a matrix with the inverse transpositions applied to the columns. + */ + template friend + const Product + operator*(const MatrixBase& matrix, const Transpose& trt) + { + return Product(matrix.derived(), trt); + } + + /** \returns the \a matrix with the inverse transpositions applied to the rows. + */ + template + const Product + operator*(const MatrixBase& matrix) const + { + return Product(*this, matrix.derived()); + } + + EIGEN_DEVICE_FUNC + const TranspositionType& nestedExpression() const { return m_transpositions; } + + protected: + const TranspositionType& m_transpositions; +}; + +} // end namespace Eigen + +#endif // EIGEN_TRANSPOSITIONS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/TriangularMatrix.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/TriangularMatrix.h new file mode 100644 index 0000000..c1bd13a --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/TriangularMatrix.h @@ -0,0 +1,1003 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Benoit Jacob +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIANGULARMATRIX_H +#define EIGEN_TRIANGULARMATRIX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template struct triangular_solve_retval; + +} + +/** \class TriangularBase + * \ingroup Core_Module + * + * \brief Base class for triangular part in a matrix + */ +template class TriangularBase : public EigenBase +{ + public: + + enum { + Mode = internal::traits::Mode, + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, + + SizeAtCompileTime = (internal::size_of_xpr_at_compile_time::ret), + /**< This is equal to the number of coefficients, i.e. the number of + * rows times the number of columns, or to \a Dynamic if this is not + * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ + + MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime) + + }; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + typedef typename internal::traits::FullMatrixType DenseMatrixType; + typedef DenseMatrixType DenseType; + typedef Derived const& Nested; + + EIGEN_DEVICE_FUNC + inline TriangularBase() { eigen_assert(!((int(Mode) & int(UnitDiag)) && (int(Mode) & int(ZeroDiag)))); } + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return derived().rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return derived().cols(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index outerStride() const EIGEN_NOEXCEPT { return derived().outerStride(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index innerStride() const EIGEN_NOEXCEPT { return derived().innerStride(); } + + // dummy resize function + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) + { + EIGEN_UNUSED_VARIABLE(rows); + EIGEN_UNUSED_VARIABLE(cols); + eigen_assert(rows==this->rows() && cols==this->cols()); + } + + EIGEN_DEVICE_FUNC + inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); } + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); } + + /** \see MatrixBase::copyCoeff(row,col) + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) + { + derived().coeffRef(row, col) = other.coeff(row, col); + } + + EIGEN_DEVICE_FUNC + inline Scalar operator()(Index row, Index col) const + { + check_coordinates(row, col); + return coeff(row,col); + } + EIGEN_DEVICE_FUNC + inline Scalar& operator()(Index row, Index col) + { + check_coordinates(row, col); + return coeffRef(row,col); + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_DEVICE_FUNC + inline const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC + inline Derived& derived() { return *static_cast(this); } + #endif // not EIGEN_PARSED_BY_DOXYGEN + + template + EIGEN_DEVICE_FUNC + void evalTo(MatrixBase &other) const; + template + EIGEN_DEVICE_FUNC + void evalToLazy(MatrixBase &other) const; + + EIGEN_DEVICE_FUNC + DenseMatrixType toDenseMatrix() const + { + DenseMatrixType res(rows(), cols()); + evalToLazy(res); + return res; + } + + protected: + + void check_coordinates(Index row, Index col) const + { + EIGEN_ONLY_USED_FOR_DEBUG(row); + EIGEN_ONLY_USED_FOR_DEBUG(col); + eigen_assert(col>=0 && col=0 && row=row) + || (mode==Lower && col<=row) + || ((mode==StrictlyUpper || mode==UnitUpper) && col>row) + || ((mode==StrictlyLower || mode==UnitLower) && col +struct traits > : traits +{ + typedef typename ref_selector::non_const_type MatrixTypeNested; + typedef std::remove_reference_t MatrixTypeNestedNonRef; + typedef remove_all_t MatrixTypeNestedCleaned; + typedef typename MatrixType::PlainObject FullMatrixType; + typedef MatrixType ExpressionType; + enum { + Mode = Mode_, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) + }; +}; +} + +template class TriangularViewImpl; + +template class TriangularView + : public TriangularViewImpl::StorageKind > +{ + public: + + typedef TriangularViewImpl::StorageKind > Base; + typedef typename internal::traits::Scalar Scalar; + typedef MatrixType_ MatrixType; + + protected: + typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; + typedef typename internal::traits::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; + + typedef internal::remove_all_t MatrixConjugateReturnType; + typedef TriangularView, Mode_> ConstTriangularView; + + public: + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::MatrixTypeNestedCleaned NestedExpression; + + enum { + Mode = Mode_, + Flags = internal::traits::Flags, + TransposeMode = (Mode & Upper ? Lower : 0) + | (Mode & Lower ? Upper : 0) + | (Mode & (UnitDiag)) + | (Mode & (ZeroDiag)), + IsVectorAtCompileTime = false + }; + + EIGEN_DEVICE_FUNC + explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix) + {} + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TriangularView) + + /** \copydoc EigenBase::rows() */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + /** \copydoc EigenBase::cols() */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + /** \returns a const reference to the nested expression */ + EIGEN_DEVICE_FUNC + const NestedExpression& nestedExpression() const { return m_matrix; } + + /** \returns a reference to the nested expression */ + EIGEN_DEVICE_FUNC + NestedExpression& nestedExpression() { return m_matrix; } + + typedef TriangularView ConjugateReturnType; + /** \sa MatrixBase::conjugate() const */ + EIGEN_DEVICE_FUNC + inline const ConjugateReturnType conjugate() const + { return ConjugateReturnType(m_matrix.conjugate()); } + + /** \returns an expression of the complex conjugate of \c *this if Cond==true, + * returns \c *this otherwise. + */ + template + EIGEN_DEVICE_FUNC + inline std::conditional_t + conjugateIf() const + { + typedef std::conditional_t ReturnType; + return ReturnType(m_matrix.template conjugateIf()); + } + + typedef TriangularView AdjointReturnType; + /** \sa MatrixBase::adjoint() const */ + EIGEN_DEVICE_FUNC + inline const AdjointReturnType adjoint() const + { return AdjointReturnType(m_matrix.adjoint()); } + + typedef TriangularView TransposeReturnType; + /** \sa MatrixBase::transpose() */ + template + EIGEN_DEVICE_FUNC + inline TransposeReturnType transpose(std::enable_if_t::value, Dummy*> = nullptr) + { + typename MatrixType::TransposeReturnType tmp(m_matrix); + return TransposeReturnType(tmp); + } + + typedef TriangularView ConstTransposeReturnType; + /** \sa MatrixBase::transpose() const */ + EIGEN_DEVICE_FUNC + inline const ConstTransposeReturnType transpose() const + { + return ConstTransposeReturnType(m_matrix.transpose()); + } + + template + EIGEN_DEVICE_FUNC + inline const Solve + solve(const MatrixBase& other) const + { return Solve(*this, other.derived()); } + + // workaround MSVC ICE + #if EIGEN_COMP_MSVC + template + EIGEN_DEVICE_FUNC + inline const internal::triangular_solve_retval + solve(const MatrixBase& other) const + { return Base::template solve(other); } + #else + using Base::solve; + #endif + + /** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower. + * + * This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode + * \sa MatrixBase::selfadjointView() */ + EIGEN_DEVICE_FUNC + SelfAdjointView selfadjointView() + { + EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); + return SelfAdjointView(m_matrix); + } + + /** This is the const version of selfadjointView() */ + EIGEN_DEVICE_FUNC + const SelfAdjointView selfadjointView() const + { + EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); + return SelfAdjointView(m_matrix); + } + + + /** \returns the determinant of the triangular matrix + * \sa MatrixBase::determinant() */ + EIGEN_DEVICE_FUNC + Scalar determinant() const + { + if (Mode & UnitDiag) + return 1; + else if (Mode & ZeroDiag) + return 0; + else + return m_matrix.diagonal().prod(); + } + + protected: + + MatrixTypeNested m_matrix; +}; + +/** \ingroup Core_Module + * + * \brief Base class for a triangular part in a \b dense matrix + * + * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated. + * It extends class TriangularView with additional methods which available for dense expressions only. + * + * \sa class TriangularView, MatrixBase::triangularView() + */ +template class TriangularViewImpl + : public TriangularBase > +{ + public: + + typedef TriangularView TriangularViewType; + + typedef TriangularBase Base; + typedef typename internal::traits::Scalar Scalar; + + typedef MatrixType_ MatrixType; + typedef typename MatrixType::PlainObject DenseMatrixType; + typedef DenseMatrixType PlainObject; + + public: + using Base::evalToLazy; + using Base::derived; + + typedef typename internal::traits::StorageKind StorageKind; + + enum { + Mode = Mode_, + Flags = internal::traits::Flags + }; + + /** \returns the outer-stride of the underlying dense matrix + * \sa DenseCoeffsBase::outerStride() */ + EIGEN_DEVICE_FUNC + inline Index outerStride() const { return derived().nestedExpression().outerStride(); } + /** \returns the inner-stride of the underlying dense matrix + * \sa DenseCoeffsBase::innerStride() */ + EIGEN_DEVICE_FUNC + inline Index innerStride() const { return derived().nestedExpression().innerStride(); } + + /** \sa MatrixBase::operator+=() */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator+=(const DenseBase& other) { + internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op()); + return derived(); + } + /** \sa MatrixBase::operator-=() */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator-=(const DenseBase& other) { + internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op()); + return derived(); + } + + /** \sa MatrixBase::operator*=() */ + EIGEN_DEVICE_FUNC + TriangularViewType& operator*=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() * other; } + /** \sa DenseBase::operator/=() */ + EIGEN_DEVICE_FUNC + TriangularViewType& operator/=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() / other; } + + /** \sa MatrixBase::fill() */ + EIGEN_DEVICE_FUNC + void fill(const Scalar& value) { setConstant(value); } + /** \sa MatrixBase::setConstant() */ + EIGEN_DEVICE_FUNC + TriangularViewType& setConstant(const Scalar& value) + { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); } + /** \sa MatrixBase::setZero() */ + EIGEN_DEVICE_FUNC + TriangularViewType& setZero() { return setConstant(Scalar(0)); } + /** \sa MatrixBase::setOnes() */ + EIGEN_DEVICE_FUNC + TriangularViewType& setOnes() { return setConstant(Scalar(1)); } + + /** \sa MatrixBase::coeff() + * \warning the coordinates must fit into the referenced triangular part + */ + EIGEN_DEVICE_FUNC + inline Scalar coeff(Index row, Index col) const + { + Base::check_coordinates_internal(row, col); + return derived().nestedExpression().coeff(row, col); + } + + /** \sa MatrixBase::coeffRef() + * \warning the coordinates must fit into the referenced triangular part + */ + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index row, Index col) + { + EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType); + Base::check_coordinates_internal(row, col); + return derived().nestedExpression().coeffRef(row, col); + } + + /** Assigns a triangular matrix to a triangular part of a dense matrix */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator=(const TriangularBase& other); + + /** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator=(const MatrixBase& other); + +#ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_DEVICE_FUNC + TriangularViewType& operator=(const TriangularViewImpl& other) + { return *this = other.derived().nestedExpression(); } + + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + void lazyAssign(const TriangularBase& other); + + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + void lazyAssign(const MatrixBase& other); +#endif + + /** Efficient triangular matrix times vector/matrix product */ + template + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase& rhs) const + { + return Product(derived(), rhs.derived()); + } + + /** Efficient vector/matrix times triangular matrix product */ + template friend + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase& lhs, const TriangularViewImpl& rhs) + { + return Product(lhs.derived(),rhs.derived()); + } + + /** \returns the product of the inverse of \c *this with \a other, \a *this being triangular. + * + * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if + * \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if + * \a Side==OnTheRight. + * + * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft + * + * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the + * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this + * is an upper (resp. lower) triangular matrix. + * + * Example: \include Triangular_solve.cpp + * Output: \verbinclude Triangular_solve.out + * + * This function returns an expression of the inverse-multiply and can works in-place if it is assigned + * to the same matrix or vector \a other. + * + * For users coming from BLAS, this function (and more specifically solveInPlace()) offer + * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines. + * + * \sa TriangularView::solveInPlace() + */ + template + inline const internal::triangular_solve_retval + solve(const MatrixBase& other) const; + + /** "in-place" version of TriangularView::solve() where the result is written in \a other + * + * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. + * This function will const_cast it, so constness isn't honored here. + * + * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft + * + * See TriangularView:solve() for the details. + */ + template + EIGEN_DEVICE_FUNC + void solveInPlace(const MatrixBase& other) const; + + template + EIGEN_DEVICE_FUNC + void solveInPlace(const MatrixBase& other) const + { return solveInPlace(other); } + + /** Swaps the coefficients of the common triangular parts of two matrices */ + template + EIGEN_DEVICE_FUNC +#ifdef EIGEN_PARSED_BY_DOXYGEN + void swap(TriangularBase &other) +#else + void swap(TriangularBase const & other) +#endif + { + EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); + call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); + } + + /** Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */ + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + void swap(MatrixBase const & other) + { + EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); + call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { + if(!internal::is_same_dense(dst,rhs)) + dst = rhs; + this->solveInPlace(dst); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, bool beta); + protected: + EIGEN_DEFAULT_COPY_CONSTRUCTOR(TriangularViewImpl) + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TriangularViewImpl) + +}; + +/*************************************************************************** +* Implementation of triangular evaluation/assignment +***************************************************************************/ + +#ifndef EIGEN_PARSED_BY_DOXYGEN +// FIXME should we keep that possibility +template +template +EIGEN_DEVICE_FUNC inline TriangularView& +TriangularViewImpl::operator=(const MatrixBase& other) +{ + internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op()); + return derived(); +} + +// FIXME should we keep that possibility +template +template +EIGEN_DEVICE_FUNC void TriangularViewImpl::lazyAssign(const MatrixBase& other) +{ + internal::call_assignment_no_alias(derived(), other.template triangularView()); +} + + + +template +template +EIGEN_DEVICE_FUNC inline TriangularView& +TriangularViewImpl::operator=(const TriangularBase& other) +{ + eigen_assert(Mode == int(OtherDerived::Mode)); + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC void TriangularViewImpl::lazyAssign(const TriangularBase& other) +{ + eigen_assert(Mode == int(OtherDerived::Mode)); + internal::call_assignment_no_alias(derived(), other.derived()); +} +#endif + +/*************************************************************************** +* Implementation of TriangularBase methods +***************************************************************************/ + +/** Assigns a triangular or selfadjoint matrix to a dense matrix. + * If the matrix is triangular, the opposite part is set to zero. */ +template +template +EIGEN_DEVICE_FUNC void TriangularBase::evalTo(MatrixBase &other) const +{ + evalToLazy(other.derived()); +} + +/*************************************************************************** +* Implementation of TriangularView methods +***************************************************************************/ + +/*************************************************************************** +* Implementation of MatrixBase methods +***************************************************************************/ + +/** + * \returns an expression of a triangular view extracted from the current matrix + * + * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, + * \c #Lower, \c #StrictlyLower, \c #UnitLower. + * + * Example: \include MatrixBase_triangularView.cpp + * Output: \verbinclude MatrixBase_triangularView.out + * + * \sa class TriangularView + */ +template +template +EIGEN_DEVICE_FUNC +typename MatrixBase::template TriangularViewReturnType::Type +MatrixBase::triangularView() +{ + return typename TriangularViewReturnType::Type(derived()); +} + +/** This is the const version of MatrixBase::triangularView() */ +template +template +EIGEN_DEVICE_FUNC +typename MatrixBase::template ConstTriangularViewReturnType::Type +MatrixBase::triangularView() const +{ + return typename ConstTriangularViewReturnType::Type(derived()); +} + +/** \returns true if *this is approximately equal to an upper triangular matrix, + * within the precision given by \a prec. + * + * \sa isLowerTriangular() + */ +template +bool MatrixBase::isUpperTriangular(const RealScalar& prec) const +{ + RealScalar maxAbsOnUpperPart = static_cast(-1); + for(Index j = 0; j < cols(); ++j) + { + Index maxi = numext::mini(j, rows()-1); + for(Index i = 0; i <= maxi; ++i) + { + RealScalar absValue = numext::abs(coeff(i,j)); + if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; + } + } + RealScalar threshold = maxAbsOnUpperPart * prec; + for(Index j = 0; j < cols(); ++j) + for(Index i = j+1; i < rows(); ++i) + if(numext::abs(coeff(i, j)) > threshold) return false; + return true; +} + +/** \returns true if *this is approximately equal to a lower triangular matrix, + * within the precision given by \a prec. + * + * \sa isUpperTriangular() + */ +template +bool MatrixBase::isLowerTriangular(const RealScalar& prec) const +{ + RealScalar maxAbsOnLowerPart = static_cast(-1); + for(Index j = 0; j < cols(); ++j) + for(Index i = j; i < rows(); ++i) + { + RealScalar absValue = numext::abs(coeff(i,j)); + if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; + } + RealScalar threshold = maxAbsOnLowerPart * prec; + for(Index j = 1; j < cols(); ++j) + { + Index maxi = numext::mini(j, rows()-1); + for(Index i = 0; i < maxi; ++i) + if(numext::abs(coeff(i, j)) > threshold) return false; + } + return true; +} + + +/*************************************************************************** +**************************************************************************** +* Evaluators and Assignment of triangular expressions +*************************************************************************** +***************************************************************************/ + +namespace internal { + + +// TODO currently a triangular expression has the form TriangularView<.,.> +// in the future triangular-ness should be defined by the expression traits +// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) +template +struct evaluator_traits > +{ + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef typename glue_shapes::Shape, TriangularShape>::type Shape; +}; + +template +struct unary_evaluator, IndexBased> + : evaluator> +{ + typedef TriangularView XprType; + typedef evaluator> Base; + EIGEN_DEVICE_FUNC + unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {} +}; + +// Additional assignment kinds: +struct Triangular2Triangular {}; +struct Triangular2Dense {}; +struct Dense2Triangular {}; + + +template struct triangular_assignment_loop; + + +/** \internal Specialization of the dense assignment kernel for triangular matrices. + * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions. + * \tparam UpLo must be either Lower or Upper + * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint + */ +template +class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel +{ +protected: + typedef generic_dense_assignment_kernel Base; + typedef typename Base::DstXprType DstXprType; + typedef typename Base::SrcXprType SrcXprType; + using Base::m_dst; + using Base::m_src; + using Base::m_functor; +public: + + typedef typename Base::DstEvaluatorType DstEvaluatorType; + typedef typename Base::SrcEvaluatorType SrcEvaluatorType; + typedef typename Base::Scalar Scalar; + typedef typename Base::AssignmentTraits AssignmentTraits; + + + EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) + : Base(dst, src, func, dstExpr) + {} + +#ifdef EIGEN_INTERNAL_DEBUGGING + EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) + { + eigen_internal_assert(row!=col); + Base::assignCoeff(row,col); + } +#else + using Base::assignCoeff; +#endif + + EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) + { + if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1)); + else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0)); + else if(Mode==0) Base::assignCoeff(id,id); + } + + EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col) + { + eigen_internal_assert(row!=col); + if(SetOpposite) + m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0)); + } +}; + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func) +{ + typedef evaluator DstEvaluatorType; + typedef evaluator SrcEvaluatorType; + + SrcEvaluatorType srcEvaluator(src); + + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + DstEvaluatorType dstEvaluator(dst); + + typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite, + DstEvaluatorType,SrcEvaluatorType,Functor> Kernel; + Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); + + enum { + unroll = DstXprType::SizeAtCompileTime != Dynamic + && SrcEvaluatorType::CoeffReadCost < HugeCost + && DstXprType::SizeAtCompileTime * (int(DstEvaluatorType::CoeffReadCost) + int(SrcEvaluatorType::CoeffReadCost)) / 2 <= EIGEN_UNROLLING_LIMIT + }; + + triangular_assignment_loop::run(kernel); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src) +{ + call_triangular_assignment_loop(dst, src, internal::assign_op()); +} + +template<> struct AssignmentKind { typedef Triangular2Triangular Kind; }; +template<> struct AssignmentKind { typedef Triangular2Dense Kind; }; +template<> struct AssignmentKind { typedef Dense2Triangular Kind; }; + + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode)); + + call_triangular_assignment_loop(dst, src, func); + } +}; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + call_triangular_assignment_loop(dst, src, func); + } +}; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + call_triangular_assignment_loop(dst, src, func); + } +}; + + +template +struct triangular_assignment_loop +{ + // FIXME: this is not very clean, perhaps this information should be provided by the kernel? + typedef typename Kernel::DstEvaluatorType DstEvaluatorType; + typedef typename DstEvaluatorType::XprType DstXprType; + + enum { + col = (UnrollCount-1) / DstXprType::RowsAtCompileTime, + row = (UnrollCount-1) % DstXprType::RowsAtCompileTime + }; + + typedef typename Kernel::Scalar Scalar; + + EIGEN_DEVICE_FUNC + static inline void run(Kernel &kernel) + { + triangular_assignment_loop::run(kernel); + + if(row==col) + kernel.assignDiagonalCoeff(row); + else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row +struct triangular_assignment_loop +{ + EIGEN_DEVICE_FUNC + static inline void run(Kernel &) {} +}; + + + +// TODO: experiment with a recursive assignment procedure splitting the current +// triangular part into one rectangular and two triangular parts. + + +template +struct triangular_assignment_loop +{ + typedef typename Kernel::Scalar Scalar; + EIGEN_DEVICE_FUNC + static inline void run(Kernel &kernel) + { + for(Index j = 0; j < kernel.cols(); ++j) + { + Index maxi = numext::mini(j, kernel.rows()); + Index i = 0; + if (((Mode&Lower) && SetOpposite) || (Mode&Upper)) + { + for(; i < maxi; ++i) + if(Mode&Upper) kernel.assignCoeff(i, j); + else kernel.assignOppositeCoeff(i, j); + } + else + i = maxi; + + if(i +template +EIGEN_DEVICE_FUNC void TriangularBase::evalToLazy(MatrixBase &other) const +{ + other.derived().resize(this->rows(), this->cols()); + internal::call_triangular_assignment_loop(other.derived(), derived().nestedExpression()); +} + +namespace internal { + +// Triangular = Product +template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> +struct Assignment, internal::assign_op::Scalar>, Dense2Triangular> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst._assignProduct(src, Scalar(1), false); + } +}; + +// Triangular += Product +template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> +struct Assignment, internal::add_assign_op::Scalar>, Dense2Triangular> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) + { + dst._assignProduct(src, Scalar(1), true); + } +}; + +// Triangular -= Product +template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> +struct Assignment, internal::sub_assign_op::Scalar>, Dense2Triangular> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) + { + dst._assignProduct(src, Scalar(-1), true); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULARMATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/VectorBlock.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/VectorBlock.h new file mode 100644 index 0000000..2715a1e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/VectorBlock.h @@ -0,0 +1,94 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_VECTORBLOCK_H +#define EIGEN_VECTORBLOCK_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template +struct traits > + : public traits::Flags & RowMajorBit ? 1 : Size, + traits::Flags & RowMajorBit ? Size : 1> > +{ +}; +} + +/** \class VectorBlock + * \ingroup Core_Module + * + * \brief Expression of a fixed-size or dynamic-size sub-vector + * + * \tparam VectorType the type of the object in which we are taking a sub-vector + * \tparam Size size of the sub-vector we are taking at compile time (optional) + * + * This class represents an expression of either a fixed-size or dynamic-size sub-vector. + * It is the return type of DenseBase::segment(Index,Index) and DenseBase::segment(Index) and + * most of the time this is the only way it is used. + * + * However, if you want to directly manipulate sub-vector expressions, + * for instance if you want to write a function returning such an expression, you + * will need to use this class. + * + * Here is an example illustrating the dynamic case: + * \include class_VectorBlock.cpp + * Output: \verbinclude class_VectorBlock.out + * + * \note Even though this expression has dynamic size, in the case where \a VectorType + * has fixed size, this expression inherits a fixed maximal size which means that evaluating + * it does not cause a dynamic memory allocation. + * + * Here is an example illustrating the fixed-size case: + * \include class_FixedVectorBlock.cpp + * Output: \verbinclude class_FixedVectorBlock.out + * + * \sa class Block, DenseBase::segment(Index,Index,Index,Index), DenseBase::segment(Index,Index) + */ +template class VectorBlock + : public Block::Flags & RowMajorBit ? 1 : Size, + internal::traits::Flags & RowMajorBit ? Size : 1> +{ + typedef Block::Flags & RowMajorBit ? 1 : Size, + internal::traits::Flags & RowMajorBit ? Size : 1> Base; + enum { + IsColVector = !(internal::traits::Flags & RowMajorBit) + }; + public: + EIGEN_DENSE_PUBLIC_INTERFACE(VectorBlock) + EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock) + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(VectorBlock) + + /** Dynamic-size constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + VectorBlock(VectorType& vector, Index start, Index size) + : Base(vector, + IsColVector ? start : 0, IsColVector ? 0 : start, + IsColVector ? size : 1, IsColVector ? 1 : size) + { } + + /** Fixed-size constructor + */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + VectorBlock(VectorType& vector, Index start) + : Base(vector, IsColVector ? start : 0, IsColVector ? 0 : start) + { } +}; + + +} // end namespace Eigen + +#endif // EIGEN_VECTORBLOCK_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/VectorwiseOp.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/VectorwiseOp.h new file mode 100644 index 0000000..737df13 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/VectorwiseOp.h @@ -0,0 +1,785 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2019 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARTIAL_REDUX_H +#define EIGEN_PARTIAL_REDUX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \class PartialReduxExpr + * \ingroup Core_Module + * + * \brief Generic expression of a partially reduxed matrix + * + * \tparam MatrixType the type of the matrix we are applying the redux operation + * \tparam MemberOp type of the member functor + * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) + * + * This class represents an expression of a partial redux operator of a matrix. + * It is the return type of some VectorwiseOp functions, + * and most of the time this is the only way it is used. + * + * \sa class VectorwiseOp + */ + +template< typename MatrixType, typename MemberOp, int Direction> +class PartialReduxExpr; + +namespace internal { +template +struct traits > + : traits +{ + typedef typename MemberOp::result_type Scalar; + typedef typename traits::StorageKind StorageKind; + typedef typename traits::XprKind XprKind; + typedef typename MatrixType::Scalar InputScalar; + enum { + RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime, + ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime, + Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0, + TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime + }; +}; +} + +template< typename MatrixType, typename MemberOp, int Direction> +class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, + internal::no_assignment_operator +{ + public: + + typedef typename internal::dense_xpr_base::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr) + + EIGEN_DEVICE_FUNC + explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp()) + : m_matrix(mat), m_functor(func) {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return (Direction==Vertical ? 1 : m_matrix.rows()); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return (Direction==Horizontal ? 1 : m_matrix.cols()); } + + EIGEN_DEVICE_FUNC + typename MatrixType::Nested nestedExpression() const { return m_matrix; } + + EIGEN_DEVICE_FUNC + const MemberOp& functor() const { return m_functor; } + + protected: + typename MatrixType::Nested m_matrix; + const MemberOp m_functor; +}; + +template struct partial_redux_dummy_func; + +#define EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,VECTORIZABLE,BINARYOP) \ + template \ + struct member_##MEMBER { \ + typedef ResultType result_type; \ + typedef BINARYOP BinaryOp; \ + template struct Cost { enum { value = COST }; }; \ + enum { Vectorizable = VECTORIZABLE }; \ + template \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ + ResultType operator()(const XprType& mat) const \ + { return mat.MEMBER(); } \ + BinaryOp binaryFunc() const { return BinaryOp(); } \ + } + +#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \ + EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,0,partial_redux_dummy_func) + +namespace internal { + +EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); +EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); +EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); +EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits >::Cost ); +EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits::AddCost); +EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits::AddCost); +EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits::AddCost); + +EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(sum, (Size-1)*NumTraits::AddCost, 1, internal::scalar_sum_op); +EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(minCoeff, (Size-1)*NumTraits::AddCost, 1, internal::scalar_min_op); +EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(maxCoeff, (Size-1)*NumTraits::AddCost, 1, internal::scalar_max_op); +EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(prod, (Size-1)*NumTraits::MulCost, 1, internal::scalar_product_op); + +template +struct member_lpnorm { + typedef ResultType result_type; + enum { Vectorizable = 0 }; + template struct Cost + { enum { value = (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost }; }; + EIGEN_DEVICE_FUNC member_lpnorm() {} + template + EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const + { return mat.template lpNorm

(); } +}; + +template +struct member_redux { + typedef BinaryOpT BinaryOp; + typedef typename result_of< + BinaryOp(const Scalar&,const Scalar&) + >::type result_type; + + enum { Vectorizable = functor_traits::PacketAccess }; + template struct Cost { enum { value = (Size-1) * functor_traits::Cost }; }; + EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {} + template + EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase& mat) const + { return mat.redux(m_functor); } + const BinaryOp& binaryFunc() const { return m_functor; } + const BinaryOp m_functor; +}; +} + +/** \class VectorwiseOp + * \ingroup Core_Module + * + * \brief Pseudo expression providing broadcasting and partial reduction operations + * + * \tparam ExpressionType the type of the object on which to do partial reductions + * \tparam Direction indicates whether to operate on columns (#Vertical) or rows (#Horizontal) + * + * This class represents a pseudo expression with broadcasting and partial reduction features. + * It is the return type of DenseBase::colwise() and DenseBase::rowwise() + * and most of the time this is the only way it is explicitly used. + * + * To understand the logic of rowwise/colwise expression, let's consider a generic case `A.colwise().foo()` + * where `foo` is any method of `VectorwiseOp`. This expression is equivalent to applying `foo()` to each + * column of `A` and then re-assemble the outputs in a matrix expression: + * \code [A.col(0).foo(), A.col(1).foo(), ..., A.col(A.cols()-1).foo()] \endcode + * + * Example: \include MatrixBase_colwise.cpp + * Output: \verbinclude MatrixBase_colwise.out + * + * The begin() and end() methods are obviously exceptions to the previous rule as they + * return STL-compatible begin/end iterators to the rows or columns of the nested expression. + * Typical use cases include for-range-loop and calls to STL algorithms: + * + * Example: \include MatrixBase_colwise_iterator_cxx11.cpp + * Output: \verbinclude MatrixBase_colwise_iterator_cxx11.out + * + * For a partial reduction on an empty input, some rules apply. + * For the sake of clarity, let's consider a vertical reduction: + * - If the number of columns is zero, then a 1x0 row-major vector expression is returned. + * - Otherwise, if the number of rows is zero, then + * - a row vector of zeros is returned for sum-like reductions (sum, squaredNorm, norm, etc.) + * - a row vector of ones is returned for a product reduction (e.g., MatrixXd(n,0).colwise().prod()) + * - an assert is triggered for all other reductions (minCoeff,maxCoeff,redux(bin_op)) + * + * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr + */ +template class VectorwiseOp +{ + public: + + typedef typename ExpressionType::Scalar Scalar; + typedef typename ExpressionType::RealScalar RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef typename internal::ref_selector::non_const_type ExpressionTypeNested; + typedef internal::remove_all_t ExpressionTypeNestedCleaned; + + template class Functor, + typename ReturnScalar=Scalar> struct ReturnType + { + typedef PartialReduxExpr, + Direction + > Type; + }; + + template struct ReduxReturnType + { + typedef PartialReduxExpr, + Direction + > Type; + }; + + enum { + isVertical = (Direction==Vertical) ? 1 : 0, + isHorizontal = (Direction==Horizontal) ? 1 : 0 + }; + + protected: + + template struct ExtendedType { + typedef Replicate Type; + }; + + /** \internal + * Replicates a vector to match the size of \c *this */ + template + EIGEN_DEVICE_FUNC + typename ExtendedType::Type + extendedTo(const DenseBase& other) const + { + EIGEN_STATIC_ASSERT(internal::check_implication(isVertical, OtherDerived::MaxColsAtCompileTime==1), + YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) + EIGEN_STATIC_ASSERT(internal::check_implication(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1), + YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) + return typename ExtendedType::Type + (other.derived(), + isVertical ? 1 : m_matrix.rows(), + isHorizontal ? 1 : m_matrix.cols()); + } + + template struct OppositeExtendedType { + typedef Replicate Type; + }; + + /** \internal + * Replicates a vector in the opposite direction to match the size of \c *this */ + template + EIGEN_DEVICE_FUNC + typename OppositeExtendedType::Type + extendedToOpposite(const DenseBase& other) const + { + EIGEN_STATIC_ASSERT(internal::check_implication(isHorizontal, OtherDerived::MaxColsAtCompileTime==1), + YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) + EIGEN_STATIC_ASSERT(internal::check_implication(isVertical, OtherDerived::MaxRowsAtCompileTime==1), + YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) + return typename OppositeExtendedType::Type + (other.derived(), + isHorizontal ? 1 : m_matrix.rows(), + isVertical ? 1 : m_matrix.cols()); + } + + public: + EIGEN_DEVICE_FUNC + explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {} + + /** \internal */ + EIGEN_DEVICE_FUNC + inline const ExpressionType& _expression() const { return m_matrix; } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** STL-like RandomAccessIterator + * iterator type over the columns or rows as returned by the begin() and end() methods. + */ + random_access_iterator_type iterator; + /** This is the const version of iterator (aka read-only) */ + random_access_iterator_type const_iterator; + #else + typedef internal::subvector_stl_iterator iterator; + typedef internal::subvector_stl_iterator const_iterator; + typedef internal::subvector_stl_reverse_iterator reverse_iterator; + typedef internal::subvector_stl_reverse_iterator const_reverse_iterator; + #endif + + /** returns an iterator to the first row (rowwise) or column (colwise) of the nested expression. + * \sa end(), cbegin() + */ + iterator begin() { return iterator (m_matrix, 0); } + /** const version of begin() */ + const_iterator begin() const { return const_iterator(m_matrix, 0); } + /** const version of begin() */ + const_iterator cbegin() const { return const_iterator(m_matrix, 0); } + + /** returns a reverse iterator to the last row (rowwise) or column (colwise) of the nested expression. + * \sa rend(), crbegin() + */ + reverse_iterator rbegin() { return reverse_iterator (m_matrix, m_matrix.template subVectors()-1); } + /** const version of rbegin() */ + const_reverse_iterator rbegin() const { return const_reverse_iterator (m_matrix, m_matrix.template subVectors()-1); } + /** const version of rbegin() */ + const_reverse_iterator crbegin() const { return const_reverse_iterator (m_matrix, m_matrix.template subVectors()-1); } + + /** returns an iterator to the row (resp. column) following the last row (resp. column) of the nested expression + * \sa begin(), cend() + */ + iterator end() { return iterator (m_matrix, m_matrix.template subVectors()); } + /** const version of end() */ + const_iterator end() const { return const_iterator(m_matrix, m_matrix.template subVectors()); } + /** const version of end() */ + const_iterator cend() const { return const_iterator(m_matrix, m_matrix.template subVectors()); } + + /** returns a reverse iterator to the row (resp. column) before the first row (resp. column) of the nested expression + * \sa begin(), cend() + */ + reverse_iterator rend() { return reverse_iterator (m_matrix, -1); } + /** const version of rend() */ + const_reverse_iterator rend() const { return const_reverse_iterator (m_matrix, -1); } + /** const version of rend() */ + const_reverse_iterator crend() const { return const_reverse_iterator (m_matrix, -1); } + + /** \returns a row or column vector expression of \c *this reduxed by \a func + * + * The template parameter \a BinaryOp is the type of the functor + * of the custom redux operator. Note that func must be an associative operator. + * + * \warning the size along the reduction direction must be strictly positive, + * otherwise an assertion is triggered. + * + * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise() + */ + template + EIGEN_DEVICE_FUNC + const typename ReduxReturnType::Type + redux(const BinaryOp& func = BinaryOp()) const + { + eigen_assert(redux_length()>0 && "you are using an empty matrix"); + return typename ReduxReturnType::Type(_expression(), internal::member_redux(func)); + } + + typedef typename ReturnType::Type MinCoeffReturnType; + typedef typename ReturnType::Type MaxCoeffReturnType; + typedef PartialReduxExpr, const ExpressionTypeNestedCleaned>,internal::member_sum,Direction> SquaredNormReturnType; + typedef CwiseUnaryOp, const SquaredNormReturnType> NormReturnType; + typedef typename ReturnType::Type BlueNormReturnType; + typedef typename ReturnType::Type StableNormReturnType; + typedef typename ReturnType::Type HypotNormReturnType; + typedef typename ReturnType::Type SumReturnType; + typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SumReturnType,Scalar,quotient) MeanReturnType; + typedef typename ReturnType::Type AllReturnType; + typedef typename ReturnType::Type AnyReturnType; + typedef PartialReduxExpr, Direction> CountReturnType; + typedef typename ReturnType::Type ProdReturnType; + typedef Reverse ConstReverseReturnType; + typedef Reverse ReverseReturnType; + + template struct LpNormReturnType { + typedef PartialReduxExpr,Direction> Type; + }; + + /** \returns a row (or column) vector expression of the smallest coefficient + * of each column (or row) of the referenced expression. + * + * \warning the size along the reduction direction must be strictly positive, + * otherwise an assertion is triggered. + * + * \warning the result is undefined if \c *this contains NaN. + * + * Example: \include PartialRedux_minCoeff.cpp + * Output: \verbinclude PartialRedux_minCoeff.out + * + * \sa DenseBase::minCoeff() */ + EIGEN_DEVICE_FUNC + const MinCoeffReturnType minCoeff() const + { + eigen_assert(redux_length()>0 && "you are using an empty matrix"); + return MinCoeffReturnType(_expression()); + } + + /** \returns a row (or column) vector expression of the largest coefficient + * of each column (or row) of the referenced expression. + * + * \warning the size along the reduction direction must be strictly positive, + * otherwise an assertion is triggered. + * + * \warning the result is undefined if \c *this contains NaN. + * + * Example: \include PartialRedux_maxCoeff.cpp + * Output: \verbinclude PartialRedux_maxCoeff.out + * + * \sa DenseBase::maxCoeff() */ + EIGEN_DEVICE_FUNC + const MaxCoeffReturnType maxCoeff() const + { + eigen_assert(redux_length()>0 && "you are using an empty matrix"); + return MaxCoeffReturnType(_expression()); + } + + /** \returns a row (or column) vector expression of the squared norm + * of each column (or row) of the referenced expression. + * This is a vector with real entries, even if the original matrix has complex entries. + * + * Example: \include PartialRedux_squaredNorm.cpp + * Output: \verbinclude PartialRedux_squaredNorm.out + * + * \sa DenseBase::squaredNorm() */ + EIGEN_DEVICE_FUNC + const SquaredNormReturnType squaredNorm() const + { return SquaredNormReturnType(m_matrix.cwiseAbs2()); } + + /** \returns a row (or column) vector expression of the norm + * of each column (or row) of the referenced expression. + * This is a vector with real entries, even if the original matrix has complex entries. + * + * Example: \include PartialRedux_norm.cpp + * Output: \verbinclude PartialRedux_norm.out + * + * \sa DenseBase::norm() */ + EIGEN_DEVICE_FUNC + const NormReturnType norm() const + { return NormReturnType(squaredNorm()); } + + /** \returns a row (or column) vector expression of the norm + * of each column (or row) of the referenced expression. + * This is a vector with real entries, even if the original matrix has complex entries. + * + * Example: \include PartialRedux_norm.cpp + * Output: \verbinclude PartialRedux_norm.out + * + * \sa DenseBase::norm() */ + template + EIGEN_DEVICE_FUNC + const typename LpNormReturnType

::Type lpNorm() const + { return typename LpNormReturnType

::Type(_expression()); } + + + /** \returns a row (or column) vector expression of the norm + * of each column (or row) of the referenced expression, using + * Blue's algorithm. + * This is a vector with real entries, even if the original matrix has complex entries. + * + * \sa DenseBase::blueNorm() */ + EIGEN_DEVICE_FUNC + const BlueNormReturnType blueNorm() const + { return BlueNormReturnType(_expression()); } + + + /** \returns a row (or column) vector expression of the norm + * of each column (or row) of the referenced expression, avoiding + * underflow and overflow. + * This is a vector with real entries, even if the original matrix has complex entries. + * + * \sa DenseBase::stableNorm() */ + EIGEN_DEVICE_FUNC + const StableNormReturnType stableNorm() const + { return StableNormReturnType(_expression()); } + + + /** \returns a row (or column) vector expression of the norm + * of each column (or row) of the referenced expression, avoiding + * underflow and overflow using a concatenation of hypot() calls. + * This is a vector with real entries, even if the original matrix has complex entries. + * + * \sa DenseBase::hypotNorm() */ + EIGEN_DEVICE_FUNC + const HypotNormReturnType hypotNorm() const + { return HypotNormReturnType(_expression()); } + + /** \returns a row (or column) vector expression of the sum + * of each column (or row) of the referenced expression. + * + * Example: \include PartialRedux_sum.cpp + * Output: \verbinclude PartialRedux_sum.out + * + * \sa DenseBase::sum() */ + EIGEN_DEVICE_FUNC + const SumReturnType sum() const + { return SumReturnType(_expression()); } + + /** \returns a row (or column) vector expression of the mean + * of each column (or row) of the referenced expression. + * + * \sa DenseBase::mean() */ + EIGEN_DEVICE_FUNC + const MeanReturnType mean() const + { return sum() / Scalar(Direction==Vertical?m_matrix.rows():m_matrix.cols()); } + + /** \returns a row (or column) vector expression representing + * whether \b all coefficients of each respective column (or row) are \c true. + * This expression can be assigned to a vector with entries of type \c bool. + * + * \sa DenseBase::all() */ + EIGEN_DEVICE_FUNC + const AllReturnType all() const + { return AllReturnType(_expression()); } + + /** \returns a row (or column) vector expression representing + * whether \b at \b least one coefficient of each respective column (or row) is \c true. + * This expression can be assigned to a vector with entries of type \c bool. + * + * \sa DenseBase::any() */ + EIGEN_DEVICE_FUNC + const AnyReturnType any() const + { return AnyReturnType(_expression()); } + + /** \returns a row (or column) vector expression representing + * the number of \c true coefficients of each respective column (or row). + * This expression can be assigned to a vector whose entries have the same type as is used to + * index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t . + * + * Example: \include PartialRedux_count.cpp + * Output: \verbinclude PartialRedux_count.out + * + * \sa DenseBase::count() */ + EIGEN_DEVICE_FUNC + const CountReturnType count() const + { return CountReturnType(_expression()); } + + /** \returns a row (or column) vector expression of the product + * of each column (or row) of the referenced expression. + * + * Example: \include PartialRedux_prod.cpp + * Output: \verbinclude PartialRedux_prod.out + * + * \sa DenseBase::prod() */ + EIGEN_DEVICE_FUNC + const ProdReturnType prod() const + { return ProdReturnType(_expression()); } + + + /** \returns a matrix expression + * where each column (or row) are reversed. + * + * Example: \include Vectorwise_reverse.cpp + * Output: \verbinclude Vectorwise_reverse.out + * + * \sa DenseBase::reverse() */ + EIGEN_DEVICE_FUNC + const ConstReverseReturnType reverse() const + { return ConstReverseReturnType( _expression() ); } + + /** \returns a writable matrix expression + * where each column (or row) are reversed. + * + * \sa reverse() const */ + EIGEN_DEVICE_FUNC + ReverseReturnType reverse() + { return ReverseReturnType( _expression() ); } + + typedef Replicate ReplicateReturnType; + EIGEN_DEVICE_FUNC + const ReplicateReturnType replicate(Index factor) const; + + /** + * \return an expression of the replication of each column (or row) of \c *this + * + * Example: \include DirectionWise_replicate.cpp + * Output: \verbinclude DirectionWise_replicate.out + * + * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate + */ + // NOTE implemented here because of sunstudio's compilation errors + // isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator + template const Replicate + EIGEN_DEVICE_FUNC + replicate(Index factor = Factor) const + { + return Replicate + (_expression(),isVertical?factor:1,isHorizontal?factor:1); + } + +/////////// Artithmetic operators /////////// + + /** Copies the vector \a other to each subvector of \c *this */ + template + EIGEN_DEVICE_FUNC + ExpressionType& operator=(const DenseBase& other) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME + return m_matrix = extendedTo(other.derived()); + } + + /** Adds the vector \a other to each subvector of \c *this */ + template + EIGEN_DEVICE_FUNC + ExpressionType& operator+=(const DenseBase& other) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + return m_matrix += extendedTo(other.derived()); + } + + /** Subtracts the vector \a other to each subvector of \c *this */ + template + EIGEN_DEVICE_FUNC + ExpressionType& operator-=(const DenseBase& other) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + return m_matrix -= extendedTo(other.derived()); + } + + /** Multiplies each subvector of \c *this by the vector \a other */ + template + EIGEN_DEVICE_FUNC + ExpressionType& operator*=(const DenseBase& other) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + m_matrix *= extendedTo(other.derived()); + return m_matrix; + } + + /** Divides each subvector of \c *this by the vector \a other */ + template + EIGEN_DEVICE_FUNC + ExpressionType& operator/=(const DenseBase& other) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + m_matrix /= extendedTo(other.derived()); + return m_matrix; + } + + /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */ + template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC + CwiseBinaryOp, + const ExpressionTypeNestedCleaned, + const typename ExtendedType::Type> + operator+(const DenseBase& other) const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + return m_matrix + extendedTo(other.derived()); + } + + /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */ + template + EIGEN_DEVICE_FUNC + CwiseBinaryOp, + const ExpressionTypeNestedCleaned, + const typename ExtendedType::Type> + operator-(const DenseBase& other) const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + return m_matrix - extendedTo(other.derived()); + } + + /** Returns the expression where each subvector is the product of the vector \a other + * by the corresponding subvector of \c *this */ + template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC + CwiseBinaryOp, + const ExpressionTypeNestedCleaned, + const typename ExtendedType::Type> + EIGEN_DEVICE_FUNC + operator*(const DenseBase& other) const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + return m_matrix * extendedTo(other.derived()); + } + + /** Returns the expression where each subvector is the quotient of the corresponding + * subvector of \c *this by the vector \a other */ + template + EIGEN_DEVICE_FUNC + CwiseBinaryOp, + const ExpressionTypeNestedCleaned, + const typename ExtendedType::Type> + operator/(const DenseBase& other) const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) + EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) + return m_matrix / extendedTo(other.derived()); + } + + /** \returns an expression where each column (or row) of the referenced matrix are normalized. + * The referenced matrix is \b not modified. + * \sa MatrixBase::normalized(), normalize() + */ + EIGEN_DEVICE_FUNC + CwiseBinaryOp, + const ExpressionTypeNestedCleaned, + const typename OppositeExtendedType::Type> + normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); } + + + /** Normalize in-place each row or columns of the referenced matrix. + * \sa MatrixBase::normalize(), normalized() + */ + EIGEN_DEVICE_FUNC void normalize() { + m_matrix = this->normalized(); + } + + EIGEN_DEVICE_FUNC inline void reverseInPlace(); + +/////////// Geometry module /////////// + + typedef Homogeneous HomogeneousReturnType; + EIGEN_DEVICE_FUNC + HomogeneousReturnType homogeneous() const; + + typedef typename ExpressionType::PlainObject CrossReturnType; + template + EIGEN_DEVICE_FUNC + const CrossReturnType cross(const MatrixBase& other) const; + + enum { + HNormalized_Size = Direction==Vertical ? internal::traits::RowsAtCompileTime + : internal::traits::ColsAtCompileTime, + HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1 + }; + typedef Block::RowsAtCompileTime), + Direction==Horizontal ? int(HNormalized_SizeMinusOne) + : int(internal::traits::ColsAtCompileTime)> + HNormalized_Block; + typedef Block::RowsAtCompileTime), + Direction==Horizontal ? 1 : int(internal::traits::ColsAtCompileTime)> + HNormalized_Factors; + typedef CwiseBinaryOp::Scalar>, + const HNormalized_Block, + const Replicate > + HNormalizedReturnType; + + EIGEN_DEVICE_FUNC + const HNormalizedReturnType hnormalized() const; + +# ifdef EIGEN_VECTORWISEOP_PLUGIN +# include EIGEN_VECTORWISEOP_PLUGIN +# endif + + protected: + EIGEN_DEVICE_FUNC Index redux_length() const + { + return Direction==Vertical ? m_matrix.rows() : m_matrix.cols(); + } + ExpressionTypeNested m_matrix; +}; + +//const colwise moved to DenseBase.h due to CUDA compiler bug + + +/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations + * + * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting + */ +template +EIGEN_DEVICE_FUNC inline typename DenseBase::ColwiseReturnType +DenseBase::colwise() +{ + return ColwiseReturnType(derived()); +} + +//const rowwise moved to DenseBase.h due to CUDA compiler bug + + +/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations + * + * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting + */ +template +EIGEN_DEVICE_FUNC inline typename DenseBase::RowwiseReturnType +DenseBase::rowwise() +{ + return RowwiseReturnType(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_PARTIAL_REDUX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Visitor.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Visitor.h new file mode 100644 index 0000000..079a37d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/Visitor.h @@ -0,0 +1,841 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_VISITOR_H +#define EIGEN_VISITOR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template ::PacketAccess), bool LinearAccess = false, + bool ShortCircuitEvaluation = false> +struct visitor_impl; + +template +struct short_circuit_eval_impl { + // if short circuit evaluation is not used, do nothing + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(const Visitor&) { return false; } +}; +template +struct short_circuit_eval_impl { + // if short circuit evaluation is used, check the visitor + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(const Visitor& visitor) { + return visitor.done(); + } +}; + +// unrolled inner-outer traversal +template +struct visitor_impl { + // don't use short circuit evaulation for unrolled version + using Scalar = typename Derived::Scalar; + using Packet = typename packet_traits::type; + static constexpr bool RowMajor = Derived::IsRowMajor; + static constexpr int RowsAtCompileTime = Derived::RowsAtCompileTime; + static constexpr int ColsAtCompileTime = Derived::ColsAtCompileTime; + static constexpr int PacketSize = packet_traits::size; + + static constexpr bool CanVectorize(int K) { + constexpr int InnerSizeAtCompileTime = RowMajor ? ColsAtCompileTime : RowsAtCompileTime; + if(InnerSizeAtCompileTime < PacketSize) return false; + return Vectorize && (InnerSizeAtCompileTime - (K % InnerSizeAtCompileTime) >= PacketSize); + } + + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived&, Visitor&) {} + + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) + { + visitor.init(mat.coeff(0, 0), 0, 0); + run<1>(mat, visitor); + } + + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) + { + static constexpr int R = RowMajor ? (K / ColsAtCompileTime) : (K % RowsAtCompileTime); + static constexpr int C = RowMajor ? (K % ColsAtCompileTime) : (K / RowsAtCompileTime); + visitor(mat.coeff(R, C), R, C); + run(mat, visitor); + } + + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) + { + Packet P = mat.template packet(0, 0); + visitor.initpacket(P, 0, 0); + run(mat, visitor); + } + + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) + { + static constexpr int R = RowMajor ? (K / ColsAtCompileTime) : (K % RowsAtCompileTime); + static constexpr int C = RowMajor ? (K % ColsAtCompileTime) : (K / RowsAtCompileTime); + Packet P = mat.template packet(R, C); + visitor.packet(P, R, C); + run(mat, visitor); + } +}; + +// unrolled linear traversal +template +struct visitor_impl { + // don't use short circuit evaulation for unrolled version + using Scalar = typename Derived::Scalar; + using Packet = typename packet_traits::type; + static constexpr int PacketSize = packet_traits::size; + + static constexpr bool CanVectorize(int K) { + return Vectorize && ((UnrollCount - K) >= PacketSize); + } + + // empty + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived&, Visitor&) {} + + // scalar initialization + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + visitor.init(mat.coeff(0), 0); + run<1>(mat, visitor); + } + + // scalar iteration + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + visitor(mat.coeff(K), K); + run(mat, visitor); + } + + // vector initialization + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + Packet P = mat.template packet(0); + visitor.initpacket(P, 0); + run(mat, visitor); + } + + // vector iteration + template = true> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + Packet P = mat.template packet(K); + visitor.packet(P, K); + run(mat, visitor); + } +}; + +// dynamic scalar outer-inner traversal +template +struct visitor_impl { + using short_circuit = short_circuit_eval_impl; + static constexpr bool RowMajor = Derived::IsRowMajor; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + const Index innerSize = RowMajor ? mat.cols() : mat.rows(); + const Index outerSize = RowMajor ? mat.rows() : mat.cols(); + if (innerSize == 0 || outerSize == 0) return; + { + visitor.init(mat.coeff(0, 0), 0, 0); + if (short_circuit::run(visitor)) return; + for (Index i = 1; i < innerSize; ++i) { + Index r = RowMajor ? 0 : i; + Index c = RowMajor ? i : 0; + visitor(mat.coeff(r, c), r, c); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + } + for (Index j = 1; j < outerSize; j++) { + for (Index i = 0; i < innerSize; ++i) { + Index r = RowMajor ? j : i; + Index c = RowMajor ? i : j; + visitor(mat.coeff(r, c), r, c); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + } + } +}; + +// dynamic vectorized outer-inner traversal +template +struct visitor_impl { + using Scalar = typename Derived::Scalar; + using Packet = typename packet_traits::type; + static constexpr int PacketSize = packet_traits::size; + using short_circuit = short_circuit_eval_impl; + static constexpr bool RowMajor = Derived::IsRowMajor; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + const Index innerSize = RowMajor ? mat.cols() : mat.rows(); + const Index outerSize = RowMajor ? mat.rows() : mat.cols(); + if (innerSize == 0 || outerSize == 0) return; + { + Index i = 0; + if (innerSize < PacketSize) { + visitor.init(mat.coeff(0, 0), 0, 0); + i = 1; + } else { + Packet p = mat.template packet(0, 0); + visitor.initpacket(p, 0, 0); + i = PacketSize; + } + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + for (; i + PacketSize - 1 < innerSize; i += PacketSize) { + Index r = RowMajor ? 0 : i; + Index c = RowMajor ? i : 0; + Packet p = mat.template packet(r, c); + visitor.packet(p, r, c); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + for (; i < innerSize; ++i) { + Index r = RowMajor ? 0 : i; + Index c = RowMajor ? i : 0; + visitor(mat.coeff(r, c), r, c); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + } + for (Index j = 1; j < outerSize; j++) { + Index i = 0; + for (; i + PacketSize - 1 < innerSize; i += PacketSize) { + Index r = RowMajor ? j : i; + Index c = RowMajor ? i : j; + Packet p = mat.template packet(r, c); + visitor.packet(p, r, c); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + for (; i < innerSize; ++i) { + Index r = RowMajor ? j : i; + Index c = RowMajor ? i : j; + visitor(mat.coeff(r, c), r, c); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + } + } +}; + +// dynamic scalar linear traversal +template +struct visitor_impl { + using short_circuit = short_circuit_eval_impl; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + const Index size = mat.size(); + if (size == 0) return; + visitor.init(mat.coeff(0), 0); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + for (Index k = 1; k < size; k++) { + visitor(mat.coeff(k), k); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + } +}; + +// dynamic vectorized linear traversal +template +struct visitor_impl { + using Scalar = typename Derived::Scalar; + using Packet = typename packet_traits::type; + static constexpr int PacketSize = packet_traits::size; + using short_circuit = short_circuit_eval_impl; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) { + const Index size = mat.size(); + if (size == 0) return; + Index k = 0; + if (size < PacketSize) { + visitor.init(mat.coeff(0), 0); + k = 1; + } else { + Packet p = mat.template packet(k); + visitor.initpacket(p, k); + k = PacketSize; + } + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + for (; k + PacketSize - 1 < size; k += PacketSize) { + Packet p = mat.template packet(k); + visitor.packet(p, k); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + for (; k < size; k++) { + visitor(mat.coeff(k), k); + if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return; + } + } +}; + +// evaluator adaptor +template +class visitor_evaluator +{ +public: + typedef evaluator Evaluator; + typedef typename XprType::Scalar Scalar; + using Packet = typename packet_traits::type; + typedef std::remove_const_t CoeffReturnType; + + static constexpr bool PacketAccess = static_cast(Evaluator::Flags & PacketAccessBit); + static constexpr bool LinearAccess = static_cast(Evaluator::Flags & LinearAccessBit); + static constexpr bool IsRowMajor = static_cast(XprType::IsRowMajor); + static constexpr int RowsAtCompileTime = XprType::RowsAtCompileTime; + static constexpr int ColsAtCompileTime = XprType::ColsAtCompileTime; + static constexpr int XprAlignment = Evaluator::Alignment; + static constexpr int CoeffReadCost = Evaluator::CoeffReadCost; + + EIGEN_DEVICE_FUNC + explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) { } + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_xpr.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_xpr.cols(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_xpr.size(); } + // outer-inner access + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const { return m_evaluator.coeff(row, col); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packet(Index row, Index col) const { + return m_evaluator.template packet(row, col); + } + // linear access + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_evaluator.coeff(index); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packet(Index index) const { + return m_evaluator.template packet(index); + } + +protected: + Evaluator m_evaluator; + const XprType &m_xpr; +}; + +template +struct visit_impl { + using Evaluator = visitor_evaluator; + using Scalar = typename DenseBase::Scalar; + + static constexpr bool IsRowMajor = DenseBase::IsRowMajor; + static constexpr int SizeAtCompileTime = DenseBase::SizeAtCompileTime; + static constexpr int RowsAtCompileTime = DenseBase::RowsAtCompileTime; + static constexpr int ColsAtCompileTime = DenseBase::ColsAtCompileTime; + static constexpr int InnerSizeAtCompileTime = IsRowMajor ? ColsAtCompileTime : RowsAtCompileTime; + static constexpr int OuterSizeAtCompileTime = IsRowMajor ? RowsAtCompileTime : ColsAtCompileTime; + + static constexpr bool LinearAccess = Evaluator::LinearAccess && static_cast(functor_traits::LinearAccess); + static constexpr bool Vectorize = Evaluator::PacketAccess && static_cast(functor_traits::PacketAccess); + + static constexpr int PacketSize = packet_traits::size; + static constexpr int VectorOps = Vectorize ? (LinearAccess ? (SizeAtCompileTime / PacketSize) : (OuterSizeAtCompileTime * (InnerSizeAtCompileTime / PacketSize))) : 0; + static constexpr int ScalarOps = SizeAtCompileTime - (VectorOps * PacketSize); + // treat vector op and scalar op as same cost for unroll logic + static constexpr int TotalOps = VectorOps + ScalarOps; + + static constexpr int UnrollCost = int(Evaluator::CoeffReadCost) + int(functor_traits::Cost); + static constexpr bool Unroll = (SizeAtCompileTime != Dynamic) && ((TotalOps * UnrollCost) <= EIGEN_UNROLLING_LIMIT); + static constexpr int UnrollCount = Unroll ? int(SizeAtCompileTime) : Dynamic; + + + using impl = visitor_impl; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const DenseBase& mat, Visitor& visitor) { + Evaluator evaluator(mat.derived()); + impl::run(evaluator, visitor); + } +}; + +} // end namespace internal + +/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector. + * + * The template parameter \a Visitor is the type of the visitor and provides the following interface: + * \code + * struct MyVisitor { + * // called for the first coefficient + * void init(const Scalar& value, Index i, Index j); + * // called for all other coefficients + * void operator() (const Scalar& value, Index i, Index j); + * }; + * \endcode + * + * \note compared to one or two \em for \em loops, visitors offer automatic + * unrolling for small fixed size matrix. + * + * \note if the matrix is empty, then the visitor is left unchanged. + * + * \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux() + */ +template +template +EIGEN_DEVICE_FUNC +void DenseBase::visit(Visitor& visitor) const +{ + using impl = internal::visit_impl; + impl::run(derived(), visitor); +} + +namespace internal { + +/** \internal + * \brief Base class to implement min and max visitors + */ +template +struct coeff_visitor +{ + // default initialization to avoid countless invalid maybe-uninitialized warnings by gcc + EIGEN_DEVICE_FUNC + coeff_visitor() : row(-1), col(-1), res(0) {} + typedef typename Derived::Scalar Scalar; + Index row, col; + Scalar res; + EIGEN_DEVICE_FUNC + inline void init(const Scalar& value, Index i, Index j) + { + res = value; + row = i; + col = j; + } +}; + + +template +struct minmax_compare { + typedef typename packet_traits::type Packet; + static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a < b; } + static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_min(p); } +}; + +template +struct minmax_compare { + typedef typename packet_traits::type Packet; + static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a > b; } + static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_max(p); } +}; + +// Default implementation used by non-floating types, where we do not +// need special logic for NaN handling. +template ::IsInteger> +struct minmax_coeff_visitor : coeff_visitor { + using Scalar = typename Derived::Scalar; + using Packet = typename packet_traits::type; + using Comparator = minmax_compare; + static constexpr Index PacketSize = packet_traits::size; + + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index i, Index j) { + if (Comparator::compare(value, this->res)) { + this->res = value; + this->row = i; + this->col = j; + } + } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) { + Scalar value = Comparator::predux(p); + if (Comparator::compare(value, this->res)) { + const Packet range = preverse(plset(Scalar(1))); + Packet mask = pcmp_eq(pset1(value), p); + Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); + this->res = value; + this->row = Derived::IsRowMajor ? i : i + max_idx; + this->col = Derived::IsRowMajor ? j + max_idx : j; + } + } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index i, Index j) { + Scalar value = Comparator::predux(p); + const Packet range = preverse(plset(Scalar(1))); + Packet mask = pcmp_eq(pset1(value), p); + Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); + this->res = value; + this->row = Derived::IsRowMajor ? i : i + max_idx; + this->col = Derived::IsRowMajor ? j + max_idx : j; + } +}; + +// Suppress NaN. The only case in which we return NaN is if the matrix is all NaN, +// in which case, row=0, col=0 is returned for the location. +template +struct minmax_coeff_visitor : coeff_visitor { + typedef typename Derived::Scalar Scalar; + using Packet = typename packet_traits::type; + using Comparator = minmax_compare; + + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index i, Index j) { + if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { + this->res = value; + this->row = i; + this->col = j; + } + } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) { + const Index PacketSize = packet_traits::size; + Scalar value = Comparator::predux(p); + if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { + const Packet range = preverse(plset(Scalar(1))); + /* mask will be zero for NaNs, so they will be ignored. */ + Packet mask = pcmp_eq(pset1(value), p); + Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); + this->res = value; + this->row = Derived::IsRowMajor ? i : i + max_idx; + this->col = Derived::IsRowMajor ? j + max_idx : j; + } + } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index i, Index j) { + const Index PacketSize = packet_traits::size; + Scalar value = Comparator::predux(p); + if ((numext::isnan)(value)) { + this->res = value; + this->row = 0; + this->col = 0; + return; + } + const Packet range = preverse(plset(Scalar(1))); + /* mask will be zero for NaNs, so they will be ignored. */ + Packet mask = pcmp_eq(pset1(value), p); + Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); + this->res = value; + this->row = Derived::IsRowMajor ? i : i + max_idx; + this->col = Derived::IsRowMajor ? j + max_idx : j; + } +}; + +// Propagate NaNs. If the matrix contains NaN, the location of the first NaN +// will be returned in row and col. +template + struct minmax_coeff_visitor : coeff_visitor { + typedef typename Derived::Scalar Scalar; + using Packet = typename packet_traits::type; + using Comparator = minmax_compare; + + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index i, Index j) { + const bool value_is_nan = (numext::isnan)(value); + if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { + this->res = value; + this->row = i; + this->col = j; + } + } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) { + const Index PacketSize = packet_traits::size; + Scalar value = Comparator::predux(p); + const bool value_is_nan = (numext::isnan)(value); + if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { + const Packet range = preverse(plset(Scalar(1))); + // If the value is NaN, pick the first position of a NaN, otherwise pick the first extremal value. + Packet mask = value_is_nan ? pnot(pcmp_eq(p, p)) : pcmp_eq(pset1(value), p); + Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); + this->res = value; + this->row = Derived::IsRowMajor ? i : i + max_idx; + this->col = Derived::IsRowMajor ? j + max_idx : j; + } + } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index i, Index j) { + const Index PacketSize = packet_traits::size; + Scalar value = Comparator::predux(p); + const bool value_is_nan = (numext::isnan)(value); + const Packet range = preverse(plset(Scalar(1))); + // If the value is NaN, pick the first position of a NaN, otherwise pick the first extremal value. + Packet mask = value_is_nan ? pnot(pcmp_eq(p, p)) : pcmp_eq(pset1(value), p); + Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); + this->res = value; + this->row = Derived::IsRowMajor ? i : i + max_idx; + this->col = Derived::IsRowMajor ? j + max_idx : j; + } +}; + +template +struct functor_traits > { + using Scalar = typename Derived::Scalar; + enum { + Cost = NumTraits::AddCost, + LinearAccess = false, + PacketAccess = packet_traits::HasCmp + }; +}; + +template +struct all_visitor { + using result_type = bool; + using Packet = typename packet_traits::type; + EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index, Index) { res = (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index) { res = (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline bool all_predux(const Packet& p) const { return !predux_any(pcmp_eq(p, pzero(p))); } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index, Index) { res = all_predux(p); } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index) { res = all_predux(p); } + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index, Index) { res = res && (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index) { res = res && (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index, Index) { res = res && all_predux(p); } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index) { res = res && all_predux(p); } + EIGEN_DEVICE_FUNC inline bool done() const { return !res; } + bool res = true; +}; +template +struct functor_traits> { + enum { Cost = NumTraits::ReadCost, LinearAccess = true, PacketAccess = packet_traits::HasCmp }; +}; + +template +struct any_visitor { + using result_type = bool; + using Packet = typename packet_traits::type; + EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index, Index) { res = (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index) { res = (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline bool any_predux(const Packet& p) const { + return predux_any(pandnot(ptrue(p), pcmp_eq(p, pzero(p)))); + } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index, Index) { res = any_predux(p); } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index) { res = any_predux(p); } + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index, Index) { res = res || (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index) { res = res || (value != Scalar(0)); } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index, Index) { res = res || any_predux(p); } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index) { res = res || any_predux(p); } + EIGEN_DEVICE_FUNC inline bool done() const { return res; } + bool res = false; +}; +template +struct functor_traits> { + enum { Cost = NumTraits::ReadCost, LinearAccess = true, PacketAccess = packet_traits::HasCmp }; +}; + +template +struct count_visitor { + using result_type = Index; + using Packet = typename packet_traits::type; + EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index, Index) { res = value != Scalar(0) ? 1 : 0; } + EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index) { res = value != Scalar(0) ? 1 : 0; } + EIGEN_DEVICE_FUNC inline Index count_redux(const Packet& p) const { + const Packet cst_one = pset1(Scalar(1)); + Packet true_vals = pandnot(cst_one, pcmp_eq(p, pzero(p))); + Scalar num_true = predux(true_vals); + return static_cast(num_true); + } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index, Index) { res = count_redux(p); } + EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index) { res = count_redux(p); } + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index, Index) { + if (value != Scalar(0)) res++; + } + EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index) { + if (value != Scalar(0)) res++; + } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index, Index) { res += count_redux(p); } + EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index) { res += count_redux(p); } + Index res = 0; +}; + +template +struct functor_traits> { + enum { + Cost = NumTraits::AddCost, + LinearAccess = true, + // predux is problematic for bool + PacketAccess = packet_traits::HasCmp && packet_traits::HasAdd && !is_same::value + }; +}; + +} // end namespace internal + +/** \fn DenseBase::minCoeff(IndexType* rowId, IndexType* colId) const + * \returns the minimum of all coefficients of *this and puts in *row and *col its location. + * + * In case \c *this contains NaN, NaNPropagation determines the behavior: + * NaNPropagation == PropagateFast : undefined + * NaNPropagation == PropagateNaN : result is NaN + * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * + * \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visit(), DenseBase::minCoeff() + */ +template +template +EIGEN_DEVICE_FUNC +typename internal::traits::Scalar +DenseBase::minCoeff(IndexType* rowId, IndexType* colId) const +{ + eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); + + internal::minmax_coeff_visitor minVisitor; + this->visit(minVisitor); + *rowId = minVisitor.row; + if (colId) *colId = minVisitor.col; + return minVisitor.res; +} + +/** \returns the minimum of all coefficients of *this and puts in *index its location. + * + * In case \c *this contains NaN, NaNPropagation determines the behavior: + * NaNPropagation == PropagateFast : undefined + * NaNPropagation == PropagateNaN : result is NaN + * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * + * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::minCoeff() + */ +template +template +EIGEN_DEVICE_FUNC +typename internal::traits::Scalar +DenseBase::minCoeff(IndexType* index) const +{ + eigen_assert(this->rows() > 0 && this->cols() > 0 && "you are using an empty matrix"); + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + + internal::minmax_coeff_visitor minVisitor; + this->visit(minVisitor); + *index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row); + return minVisitor.res; +} + +/** \fn DenseBase::maxCoeff(IndexType* rowId, IndexType* colId) const + * \returns the maximum of all coefficients of *this and puts in *row and *col its location. + * + * In case \c *this contains NaN, NaNPropagation determines the behavior: + * NaNPropagation == PropagateFast : undefined + * NaNPropagation == PropagateNaN : result is NaN + * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * + * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::maxCoeff() + */ +template +template +EIGEN_DEVICE_FUNC +typename internal::traits::Scalar +DenseBase::maxCoeff(IndexType* rowPtr, IndexType* colPtr) const +{ + eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); + + internal::minmax_coeff_visitor maxVisitor; + this->visit(maxVisitor); + *rowPtr = maxVisitor.row; + if (colPtr) *colPtr = maxVisitor.col; + return maxVisitor.res; +} + +/** \returns the maximum of all coefficients of *this and puts in *index its location. + * + * In case \c *this contains NaN, NaNPropagation determines the behavior: + * NaNPropagation == PropagateFast : undefined + * NaNPropagation == PropagateNaN : result is NaN + * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN + * \warning the matrix must be not empty, otherwise an assertion is triggered. + * + * \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff() + */ +template +template +EIGEN_DEVICE_FUNC +typename internal::traits::Scalar +DenseBase::maxCoeff(IndexType* index) const +{ + eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); + + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + internal::minmax_coeff_visitor maxVisitor; + this->visit(maxVisitor); + *index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row; + return maxVisitor.res; +} + +/** \returns true if all coefficients are true + * + * Example: \include MatrixBase_all.cpp + * Output: \verbinclude MatrixBase_all.out + * + * \sa any(), Cwise::operator<() + */ +template +EIGEN_DEVICE_FUNC inline bool DenseBase::all() const { + using Visitor = internal::all_visitor; + using impl = internal::visit_impl; + Visitor visitor; + impl::run(derived(), visitor); + return visitor.res; +} + +/** \returns true if at least one coefficient is true + * + * \sa all() + */ +template +EIGEN_DEVICE_FUNC inline bool DenseBase::any() const { + using Visitor = internal::any_visitor; + using impl = internal::visit_impl; + Visitor visitor; + impl::run(derived(), visitor); + return visitor.res; +} + +/** \returns the number of coefficients which evaluate to true + * + * \sa all(), any() + */ +template +EIGEN_DEVICE_FUNC +Index DenseBase::count() const +{ + using Visitor = internal::count_visitor; + using impl = internal::visit_impl; + Visitor visitor; + impl::run(derived(), visitor); + return visitor.res; + +} + +template +EIGEN_DEVICE_FUNC inline bool DenseBase::hasNaN() const { + return derived().cwiseTypedNotEqual(derived()).any(); +} + +/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values. + * + * \sa hasNaN() + */ +template +EIGEN_DEVICE_FUNC inline bool DenseBase::allFinite() const { + return derived().array().isFinite().all(); +} + +} // end namespace Eigen + +#endif // EIGEN_VISITOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/Complex.h new file mode 100644 index 0000000..cd90496 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/Complex.h @@ -0,0 +1,368 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_AVX_H +#define EIGEN_COMPLEX_AVX_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +//---------- float ---------- +struct Packet4cf +{ + EIGEN_STRONG_INLINE Packet4cf() {} + EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {} + __m256 v; +}; + +#ifndef EIGEN_VECTORIZE_AVX512 +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet4cf type; + typedef Packet2cf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; +#endif + +template<> struct unpacket_traits { + typedef std::complex type; + typedef Packet2cf half; + typedef Packet8f as_real; + enum { + size=4, + alignment=Aligned32, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet4cf padd(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_add_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf psub(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_sub_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a) +{ + return Packet4cf(pnegate(a.v)); +} +template<> EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a) +{ + const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000)); + return Packet4cf(_mm256_xor_ps(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) +{ + __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v); + __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1))); + __m256 result = _mm256_addsub_ps(tmp1, tmp2); + return Packet4cf(result); +} + +template <> +EIGEN_STRONG_INLINE Packet4cf pcmp_eq(const Packet4cf& a, const Packet4cf& b) { + __m256 eq = _mm256_cmp_ps(a.v, b.v, _CMP_EQ_OQ); + return Packet4cf(_mm256_and_ps(eq, _mm256_permute_ps(eq, 0xb1))); +} + +template<> EIGEN_STRONG_INLINE Packet4cf ptrue(const Packet4cf& a) { return Packet4cf(ptrue(Packet8f(a.v))); } +template<> EIGEN_STRONG_INLINE Packet4cf pand (const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_and_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf por (const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_or_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf pxor (const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_xor_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf pandnot(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_andnot_ps(b.v,a.v)); } + +template<> EIGEN_STRONG_INLINE Packet4cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload(&numext::real_ref(*from))); } +template<> EIGEN_STRONG_INLINE Packet4cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu(&numext::real_ref(*from))); } + + +template<> EIGEN_STRONG_INLINE Packet4cf pset1(const std::complex& from) +{ + const float re = std::real(from); + const float im = std::imag(from); + return Packet4cf(_mm256_set_ps(im, re, im, re, im, re, im, re)); +} + +template<> EIGEN_STRONG_INLINE Packet4cf ploaddup(const std::complex* from) +{ + // FIXME The following might be optimized using _mm256_movedup_pd + Packet2cf a = ploaddup(from); + Packet2cf b = ploaddup(from+1); + return Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1)); +} + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); } + +template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather, Packet4cf>(const std::complex* from, Index stride) +{ + return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]), + std::imag(from[2*stride]), std::real(from[2*stride]), + std::imag(from[1*stride]), std::real(from[1*stride]), + std::imag(from[0*stride]), std::real(from[0*stride]))); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet4cf>(std::complex* to, const Packet4cf& from, Index stride) +{ + __m128 low = _mm256_extractf128_ps(from.v, 0); + to[stride*0] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)), + _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1))); + to[stride*1] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)), + _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3))); + + __m128 high = _mm256_extractf128_ps(from.v, 1); + to[stride*2] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)), + _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1))); + to[stride*3] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)), + _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3))); + +} + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet4cf& a) +{ + return pfirst(Packet2cf(_mm256_castps256_ps128(a.v))); +} + +template<> EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) { + __m128 low = _mm256_extractf128_ps(a.v, 0); + __m128 high = _mm256_extractf128_ps(a.v, 1); + __m128d lowd = _mm_castps_pd(low); + __m128d highd = _mm_castps_pd(high); + low = _mm_castpd_ps(_mm_shuffle_pd(lowd,lowd,0x1)); + high = _mm_castpd_ps(_mm_shuffle_pd(highd,highd,0x1)); + __m256 result = _mm256_setzero_ps(); + result = _mm256_insertf128_ps(result, low, 1); + result = _mm256_insertf128_ps(result, high, 0); + return Packet4cf(result); +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet4cf& a) +{ + return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v,0)), + Packet2cf(_mm256_extractf128_ps(a.v,1)))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet4cf& a) +{ + return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)), + Packet2cf(_mm256_extractf128_ps(a.v, 1)))); +} + + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f) + +template<> EIGEN_STRONG_INLINE Packet4cf pdiv(const Packet4cf& a, const Packet4cf& b) +{ + return pdiv_complex(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip(const Packet4cf& x) +{ + return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1))); +} + +//---------- double ---------- +struct Packet2cd +{ + EIGEN_STRONG_INLINE Packet2cd() {} + EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {} + __m256d v; +}; + +#ifndef EIGEN_VECTORIZE_AVX512 +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet2cd type; + typedef Packet1cd half; + enum { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; +#endif + +template<> struct unpacket_traits { + typedef std::complex type; + typedef Packet1cd half; + typedef Packet4d as_real; + enum { + size=2, + alignment=Aligned32, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet2cd padd(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_add_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd psub(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_sub_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) { return Packet2cd(pnegate(a.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a) +{ + const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0)); + return Packet2cd(_mm256_xor_pd(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) +{ + __m256d tmp1 = _mm256_shuffle_pd(a.v,a.v,0x0); + __m256d even = _mm256_mul_pd(tmp1, b.v); + __m256d tmp2 = _mm256_shuffle_pd(a.v,a.v,0xF); + __m256d tmp3 = _mm256_shuffle_pd(b.v,b.v,0x5); + __m256d odd = _mm256_mul_pd(tmp2, tmp3); + return Packet2cd(_mm256_addsub_pd(even, odd)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cd pcmp_eq(const Packet2cd& a, const Packet2cd& b) { + __m256d eq = _mm256_cmp_pd(a.v, b.v, _CMP_EQ_OQ); + return Packet2cd(pand(eq, _mm256_permute_pd(eq, 0x5))); +} + +template<> EIGEN_STRONG_INLINE Packet2cd ptrue(const Packet2cd& a) { return Packet2cd(ptrue(Packet4d(a.v))); } +template<> EIGEN_STRONG_INLINE Packet2cd pand (const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_and_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd por (const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_or_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pxor (const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_xor_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pandnot(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_andnot_pd(b.v,a.v)); } + +template<> EIGEN_STRONG_INLINE Packet2cd pload (const std::complex* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet2cd ploadu(const std::complex* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu((const double*)from)); } + +template<> EIGEN_STRONG_INLINE Packet2cd pset1(const std::complex& from) +{ + // in case casting to a __m128d* is really not safe, then we can still fallback to this version: (much slower though) +// return Packet2cd(_mm256_loadu2_m128d((const double*)&from,(const double*)&from)); + return Packet2cd(_mm256_broadcast_pd((const __m128d*)(const void*)&from)); +} + +template<> EIGEN_STRONG_INLINE Packet2cd ploaddup(const std::complex* from) { return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } + +template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather, Packet2cd>(const std::complex* from, Index stride) +{ + return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]), + std::imag(from[0*stride]), std::real(from[0*stride]))); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cd>(std::complex* to, const Packet2cd& from, Index stride) +{ + __m128d low = _mm256_extractf128_pd(from.v, 0); + to[stride*0] = std::complex(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1))); + __m128d high = _mm256_extractf128_pd(from.v, 1); + to[stride*1] = std::complex(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1))); +} + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cd& a) +{ + __m128d low = _mm256_extractf128_pd(a.v, 0); + EIGEN_ALIGN16 double res[2]; + _mm_store_pd(res, low); + return std::complex(res[0],res[1]); +} + +template<> EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) { + __m256d result = _mm256_permute2f128_pd(a.v, a.v, 1); + return Packet2cd(result); +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cd& a) +{ + return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v,0)), + Packet1cd(_mm256_extractf128_pd(a.v,1)))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cd& a) +{ + return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v,0)), + Packet1cd(_mm256_extractf128_pd(a.v,1)))); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d) + +template<> EIGEN_STRONG_INLINE Packet2cd pdiv(const Packet2cd& a, const Packet2cd& b) +{ + return pdiv_complex(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip(const Packet2cd& x) +{ + return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5)); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256d P0 = _mm256_castps_pd(kernel.packet[0].v); + __m256d P1 = _mm256_castps_pd(kernel.packet[1].v); + __m256d P2 = _mm256_castps_pd(kernel.packet[2].v); + __m256d P3 = _mm256_castps_pd(kernel.packet[3].v); + + __m256d T0 = _mm256_shuffle_pd(P0, P1, 15); + __m256d T1 = _mm256_shuffle_pd(P0, P1, 0); + __m256d T2 = _mm256_shuffle_pd(P2, P3, 15); + __m256d T3 = _mm256_shuffle_pd(P2, P3, 0); + + kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32)); + kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49)); + kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32)); + kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49)); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0+(2<<4)); + kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1+(3<<4)); + kernel.packet[0].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet2cd psqrt(const Packet2cd& a) { + return psqrt_complex(a); +} + +template<> EIGEN_STRONG_INLINE Packet4cf psqrt(const Packet4cf& a) { + return psqrt_complex(a); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_AVX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/MathFunctions.h new file mode 100644 index 0000000..a3320b8 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/MathFunctions.h @@ -0,0 +1,113 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATH_FUNCTIONS_AVX_H +#define EIGEN_MATH_FUNCTIONS_AVX_H + +/* The sin and cos functions of this file are loosely derived from + * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ + */ + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet8f) +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_DOUBLE(Packet4d) + +// Notice that for newer processors, it is counterproductive to use Newton +// iteration for square root. In particular, Skylake and Zen2 processors +// have approximately doubled throughput of the _mm_sqrt_ps instruction +// compared to their predecessors. +template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet8f psqrt(const Packet8f& _x) { + return _mm256_sqrt_ps(_x); +} +template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4d psqrt(const Packet4d& _x) { + return _mm256_sqrt_pd(_x); +} + + +// Even on Skylake, using Newton iteration is a win for reciprocal square root. +#if EIGEN_FAST_MATH +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet8f prsqrt(const Packet8f& a) { + // _mm256_rsqrt_ps returns -inf for negative denormals. + // _mm512_rsqrt**_ps returns -NaN for negative denormals. We may want + // consistency here. + // const Packet8f rsqrt = pselect(pcmp_lt(a, pzero(a)), + // pset1(-NumTraits::quiet_NaN()), + // _mm256_rsqrt_ps(a)); + return generic_rsqrt_newton_step::run(a, _mm256_rsqrt_ps(a)); +} + +template<> EIGEN_STRONG_INLINE Packet8f preciprocal(const Packet8f& a) { + return generic_reciprocal_newton_step::run(a, _mm256_rcp_ps(a)); +} + +#endif + +template <> +EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) { + Packet8f fexponent; + const Packet8h out = float2half(pfrexp(half2float(a), fexponent)); + exponent = float2half(fexponent); + return out; +} + +template <> +EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h& a, const Packet8h& exponent) { + return float2half(pldexp(half2float(a), half2float(exponent))); +} + +template <> +EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) { + Packet8f fexponent; + const Packet8bf out = F32ToBf16(pfrexp(Bf16ToF32(a), fexponent)); + exponent = F32ToBf16(fexponent); + return out; +} + +template <> +EIGEN_STRONG_INLINE Packet8bf pldexp(const Packet8bf& a, const Packet8bf& exponent) { + return F32ToBf16(pldexp(Bf16ToF32(a), Bf16ToF32(exponent))); +} + +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, preciprocal) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh) +F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos) +F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp) +F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1) +F16_PACKET_FUNCTION(Packet8f, Packet8h, plog) +F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p) +F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2) +F16_PACKET_FUNCTION(Packet8f, Packet8h, preciprocal) +F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt) +F16_PACKET_FUNCTION(Packet8f, Packet8h, psin) +F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt) +F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh) + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_AVX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/PacketMath.h new file mode 100644 index 0000000..9bbbc13 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/PacketMath.h @@ -0,0 +1,2411 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_AVX_H +#define EIGEN_PACKET_MATH_AVX_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#if !defined(EIGEN_VECTORIZE_AVX512) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS) +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16 +#endif + +#ifdef EIGEN_VECTORIZE_FMA +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif +#endif + +typedef __m256 Packet8f; +typedef eigen_packet_wrapper<__m256i, 0> Packet8i; +typedef __m256d Packet4d; +#ifndef EIGEN_VECTORIZE_AVX512FP16 +typedef eigen_packet_wrapper<__m128i, 2> Packet8h; +#endif +typedef eigen_packet_wrapper<__m128i, 3> Packet8bf; +typedef eigen_packet_wrapper<__m256i, 4> Packet8ui; + +#ifdef EIGEN_VECTORIZE_AVX2 +// Start from 3 to be compatible with AVX512 +typedef eigen_packet_wrapper<__m256i, 3> Packet4l; +typedef eigen_packet_wrapper<__m256i, 5> Packet4ul; +#endif + +template<> struct is_arithmetic<__m256> { enum { value = true }; }; +template<> struct is_arithmetic<__m256i> { enum { value = true }; }; +template<> struct is_arithmetic<__m256d> { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +// Note that `Packet8ui` uses the underlying type `__m256i`, which is +// interpreted as a vector of _signed_ `int32`s, which breaks some arithmetic +// operations used in `GenericPacketMath.h`. +template<> struct is_arithmetic { enum { value = false }; }; +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> struct is_arithmetic { enum { value = true }; }; +#endif +template<> struct is_arithmetic { enum { value = true }; }; +#ifdef EIGEN_VECTORIZE_AVX2 +template<> struct is_arithmetic { enum { value = true }; }; +// Note that `Packet4ul` uses the underlying type `__m256i`, which is +// interpreted as a vector of _signed_ `int32`s, which breaks some arithmetic +// operations used in `GenericPacketMath.h`. +template<> struct is_arithmetic { enum { value = false }; }; +#endif + +// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going +// to leverage AVX512 instructions. +#ifndef EIGEN_VECTORIZE_AVX512 +template<> struct packet_traits : default_packet_traits +{ + typedef Packet8f type; + typedef Packet4f half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasCmp = 1, + HasDiv = 1, + HasReciprocal = EIGEN_FAST_MATH, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasACos = 1, + HasASin = 1, + HasATan = 1, + HasATanh = 1, + HasLog = 1, + HasLog1p = 1, + HasExpm1 = 1, + HasExp = 1, + HasNdtri = 1, + HasBessel = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBlend = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1 + }; +}; +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4d type; + typedef Packet2d half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=4, + + HasCmp = 1, + HasDiv = 1, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasATan = 1, + HasBlend = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet8h type; + // There is no half-size packet for Packet8h. + typedef Packet8h half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasNegate = 1, + HasAbs = 1, + HasAbs2 = 0, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 0, + HasLog = 1, + HasLog1p = 1, + HasExpm1 = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBlend = 0, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + HasBessel = 1, + HasNdtri = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet8bf type; + // There is no half-size packet for current Packet8bf. + // TODO: support as SSE path. + typedef Packet8bf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasNegate = 1, + HasAbs = 1, + HasAbs2 = 0, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 0, + HasLog = 1, + HasLog1p = 1, + HasExpm1 = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBlend = 0, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + HasBessel = 1, + HasNdtri = 1 + }; +}; + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet8i type; + typedef Packet4i half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + HasCmp = 1, + HasDiv = 1, + size=8 + }; +}; +template<> struct packet_traits : default_packet_traits +{ + typedef Packet8ui type; + typedef Packet4ui half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasDiv = 0, + HasNegate = 0, + HasSqrt = 0, + + HasCmp = 1, + HasMin = 1, + HasMax = 1, + HasShift = 1 + }; +}; + +#ifdef EIGEN_VECTORIZE_AVX2 +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4l type; + // There is no half-size packet for current Packet4l. + // TODO: support as SSE path. + typedef Packet4l half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + HasCmp = 1, + size=4 + }; +}; +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4ul type; + // There is no half-size packet for current Packet4ul. + // TODO: support as SSE path. + typedef Packet4ul half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + // HasMin = 0, + // HasMax = 0, + HasDiv = 0, + HasBlend = 0, + HasTranspose = 0, + HasNegate = 0, + HasSqrt = 0, + HasCmp = 1, + HasShift = 1 + }; +}; +#endif + +#endif + +template<> struct scalar_div_cost { enum { value = 14 }; }; +template<> struct scalar_div_cost { enum { value = 16 }; }; + +template<> struct unpacket_traits { + typedef float type; + typedef Packet4f half; + typedef Packet8i integer_packet; + typedef uint8_t mask_t; + enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true +#ifdef EIGEN_VECTORIZE_AVX512 + , masked_fpops_available=true +#endif + }; +}; +template<> struct unpacket_traits { + typedef double type; + typedef Packet2d half; + enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits { + typedef int type; + typedef Packet4i half; + enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits { + typedef uint32_t type; + typedef Packet4ui half; + enum {size = 8, alignment = Aligned32, vectorizable = true, masked_load_available = false, masked_store_available = false}; +}; +#ifdef EIGEN_VECTORIZE_AVX2 +template<> struct unpacket_traits { + typedef int64_t type; + typedef Packet4l half; + enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits { + typedef uint64_t type; + typedef Packet4ul half; + enum {size = 4, alignment = Aligned32, vectorizable = true, masked_load_available = false, masked_store_available = false}; +}; +#endif +template<> struct unpacket_traits { + typedef bfloat16 type; + typedef Packet8bf half; + enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; + +// Helper function for bit packing snippet of low precision comparison. +// It packs the flags from 16x16 to 8x16. +EIGEN_STRONG_INLINE __m128i Pack16To8(Packet8f rf) { + return _mm_packs_epi32(_mm256_extractf128_si256(_mm256_castps_si256(rf), 0), + _mm256_extractf128_si256(_mm256_castps_si256(rf), 1)); +} + +#ifdef EIGEN_VECTORIZE_AVX2 +template <> +EIGEN_STRONG_INLINE Packet4l pset1(const int64_t& from) { + return _mm256_set1_epi64x(from); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pset1(const uint64_t& from) { + return _mm256_set1_epi64x(numext::bit_cast(from)); +} +template <> +EIGEN_STRONG_INLINE Packet4l pzero(const Packet4l& /*a*/) { + return _mm256_setzero_si256(); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pzero(const Packet4ul& /*a*/) { + return _mm256_setzero_si256(); +} +template <> +EIGEN_STRONG_INLINE Packet4l peven_mask(const Packet4l& /*a*/) { + return _mm256_set_epi64x(0ll, -1ll, 0ll, -1ll); +} +template <> +EIGEN_STRONG_INLINE Packet4ul peven_mask(const Packet4ul& /*a*/) { + return _mm256_set_epi64x(0ll, -1ll, 0ll, -1ll); +} +template <> +EIGEN_STRONG_INLINE Packet4l pload1(const int64_t* from) { + return _mm256_set1_epi64x(*from); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pload1(const uint64_t* from) { + return _mm256_set1_epi64x(*from); +} +template <> +EIGEN_STRONG_INLINE Packet4l padd(const Packet4l& a, const Packet4l& b) { + return _mm256_add_epi64(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4ul padd(const Packet4ul& a, const Packet4ul& b) { + return _mm256_add_epi64(a, b); +} +template<> +EIGEN_STRONG_INLINE Packet4l plset(const int64_t& a) { + return padd(pset1(a), Packet4l(_mm256_set_epi64x(3ll, 2ll, 1ll, 0ll))); +} +template <> +EIGEN_STRONG_INLINE Packet4ul plset(const uint64_t& a) { + return padd(pset1(a), Packet4ul(_mm256_set_epi64x(3ll, 2ll, 1ll, 0ll))); +} +template <> +EIGEN_STRONG_INLINE Packet4l psub(const Packet4l& a, const Packet4l& b) { + return _mm256_sub_epi64(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4ul psub(const Packet4ul& a, const Packet4ul& b) { + return _mm256_sub_epi64(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4l pnegate(const Packet4l& a) { + return psub(pzero(a), a); +} +template <> +EIGEN_STRONG_INLINE Packet4l pconj(const Packet4l& a) { + return a; +} +template <> +EIGEN_STRONG_INLINE Packet4l pcmp_le(const Packet4l& a, const Packet4l& b) { + return _mm256_xor_si256(_mm256_cmpgt_epi64(a, b), _mm256_set1_epi32(-1)); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pcmp_le(const Packet4ul& a, const Packet4ul& b) { + return (Packet4ul)pcmp_le((Packet4l)psub(a, pset1(0x8000000000000000UL)), + (Packet4l)psub(b, pset1(0x8000000000000000UL))); +} +template <> +EIGEN_STRONG_INLINE Packet4l pcmp_lt(const Packet4l& a, const Packet4l& b) { + return _mm256_cmpgt_epi64(b, a); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pcmp_lt(const Packet4ul& a, const Packet4ul& b) { + return (Packet4ul)pcmp_lt((Packet4l)psub(a, pset1(0x8000000000000000UL)), + (Packet4l)psub(b, pset1(0x8000000000000000UL))); +} +template <> +EIGEN_STRONG_INLINE Packet4l pcmp_eq(const Packet4l& a, const Packet4l& b) { + return _mm256_cmpeq_epi64(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pcmp_eq(const Packet4ul& a, const Packet4ul& b) { + return _mm256_cmpeq_epi64(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4l ptrue(const Packet4l& a) { + return _mm256_cmpeq_epi64(a, a); +} +template <> +EIGEN_STRONG_INLINE Packet4ul ptrue(const Packet4ul& a) { + return _mm256_cmpeq_epi64(a, a); +} +template <> +EIGEN_STRONG_INLINE Packet4l pand(const Packet4l& a, const Packet4l& b) { + return _mm256_and_si256(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4l por(const Packet4l& a, const Packet4l& b) { + return _mm256_or_si256(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4l pxor(const Packet4l& a, const Packet4l& b) { + return _mm256_xor_si256(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pxor(const Packet4ul& a, const Packet4ul& b) { + return _mm256_xor_si256(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet4l pandnot(const Packet4l& a, const Packet4l& b) { + return _mm256_andnot_si256(b, a); +} +template +EIGEN_STRONG_INLINE Packet4l plogical_shift_right(Packet4l a) { + return _mm256_srli_epi64(a, N); +} +template +EIGEN_STRONG_INLINE Packet4l plogical_shift_left(Packet4l a) { + return _mm256_slli_epi64(a, N); +} +#ifdef EIGEN_VECTORIZE_AVX512FP16 +template +EIGEN_STRONG_INLINE Packet4l parithmetic_shift_right(Packet4l a) { return _mm256_srai_epi64(a, N); } +#else +template +EIGEN_STRONG_INLINE std::enable_if_t< (N == 0), Packet4l> parithmetic_shift_right(Packet4l a) { + return a; +} +template +EIGEN_STRONG_INLINE std::enable_if_t< (N > 0) && (N < 32), Packet4l> parithmetic_shift_right(Packet4l a) { + __m256i hi_word = _mm256_srai_epi32(a, N); + __m256i lo_word = _mm256_srli_epi64(a, N); + return _mm256_blend_epi32(hi_word, lo_word, 0b01010101); +} +template +EIGEN_STRONG_INLINE std::enable_if_t< (N >= 32) && (N < 63), Packet4l> parithmetic_shift_right(Packet4l a) { + __m256i hi_word = _mm256_srai_epi32(a, 31); + __m256i lo_word = _mm256_shuffle_epi32(_mm256_srai_epi32(a, N - 32), (shuffle_mask<1, 1, 3, 3>::mask)); + return _mm256_blend_epi32(hi_word, lo_word, 0b01010101); +} +template +EIGEN_STRONG_INLINE std::enable_if_t< (N == 63), Packet4l> parithmetic_shift_right(Packet4l a) { + return _mm256_shuffle_epi32(_mm256_srai_epi32(a, 31), (shuffle_mask<1, 1, 3, 3>::mask)); +} +template +EIGEN_STRONG_INLINE std::enable_if_t< (N < 0) || (N > 63), Packet4l> parithmetic_shift_right(Packet4l a) { + return parithmetic_shift_right(a); +} +#endif +template <> +EIGEN_STRONG_INLINE Packet4l pload(const int64_t* from) { + EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast(from)); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pload(const uint64_t* from) { + EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast(from)); +} +template <> +EIGEN_STRONG_INLINE Packet4l ploadu(const int64_t* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast(from)); +} +template <> +EIGEN_STRONG_INLINE Packet4ul ploadu(const uint64_t* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast(from)); +} +// Loads 2 int64_ts from memory a returns the packet {a0, a0, a1, a1} +template <> +EIGEN_STRONG_INLINE Packet4l ploaddup(const int64_t* from) { + const Packet4l a = _mm256_castsi128_si256(_mm_loadu_si128(reinterpret_cast(from))); + return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 1, 0, 1, 2, 3, 2, 3)); +} +// Loads 2 uint64_ts from memory a returns the packet {a0, a0, a1, a1} +template <> +EIGEN_STRONG_INLINE Packet4ul ploaddup(const uint64_t* from) { + const Packet4ul a = _mm256_castsi128_si256(_mm_loadu_si128(reinterpret_cast(from))); + return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 1, 0, 1, 2, 3, 2, 3)); +} +template<> +EIGEN_STRONG_INLINE void pstore(int64_t* to, const Packet4l& from) { + EIGEN_DEBUG_ALIGNED_STORE _mm256_store_si256(reinterpret_cast<__m256i*>(to), from); +} +template <> +EIGEN_STRONG_INLINE void pstore(uint64_t* to, const Packet4ul& from) { + EIGEN_DEBUG_ALIGNED_STORE _mm256_store_si256(reinterpret_cast<__m256i*>(to), from); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(int64_t* to, const Packet4l& from) { + EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(uint64_t* to, const Packet4ul& from) { + EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); +} +template <> +EIGEN_DEVICE_FUNC inline Packet4l pgather(const int64_t* from, Index stride) { + return _mm256_set_epi64x(from[3 * stride], from[2 * stride], from[1 * stride], from[0 * stride]); +} +template <> +EIGEN_DEVICE_FUNC inline Packet4ul pgather(const uint64_t* from, Index stride) { + return _mm256_set_epi64x(from[3 * stride], from[2 * stride], from[1 * stride], from[0 * stride]); +} +template <> +EIGEN_DEVICE_FUNC inline void pscatter(int64_t* to, const Packet4l& from, Index stride) { + __m128i low = _mm256_extractf128_si256(from, 0); + to[stride * 0] = _mm_extract_epi64(low, 0); + to[stride * 1] = _mm_extract_epi64(low, 1); + + __m128i high = _mm256_extractf128_si256(from, 1); + to[stride * 2] = _mm_extract_epi64(high, 0); + to[stride * 3] = _mm_extract_epi64(high, 1); +} +template <> +EIGEN_DEVICE_FUNC inline void pscatter(uint64_t* to, const Packet4ul& from, Index stride) { + __m128i low = _mm256_extractf128_si256(from, 0); + to[stride * 0] = _mm_extract_epi64(low, 0); + to[stride * 1] = _mm_extract_epi64(low, 1); + + __m128i high = _mm256_extractf128_si256(from, 1); + to[stride * 2] = _mm_extract_epi64(high, 0); + to[stride * 3] = _mm_extract_epi64(high, 1); +} +template <> +EIGEN_STRONG_INLINE void pstore1(int64_t* to, const int64_t& a) { + Packet4l pa = pset1(a); + pstore(to, pa); +} +template <> +EIGEN_STRONG_INLINE void pstore1(uint64_t* to, const uint64_t& a) { + Packet4ul pa = pset1(a); + pstore(to, pa); +} +template<> +EIGEN_STRONG_INLINE int64_t pfirst(const Packet4l& a) { + return _mm_cvtsi128_si64(_mm256_castsi256_si128(a)); +} +template <> +EIGEN_STRONG_INLINE uint64_t pfirst(const Packet4ul& a) { + return _mm_cvtsi128_si64(_mm256_castsi256_si128(a)); +} +template <> +EIGEN_STRONG_INLINE int64_t predux(const Packet4l& a) { + __m128i r = _mm_add_epi64(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); + return _mm_extract_epi64(r, 0) + _mm_extract_epi64(r, 1); +} +template <> +EIGEN_STRONG_INLINE uint64_t predux(const Packet4ul& a) { + __m128i r = _mm_add_epi64(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); + return numext::bit_cast(_mm_extract_epi64(r, 0) + _mm_extract_epi64(r, 1)); +} +#define MM256_SHUFFLE_EPI64(A, B, M) _mm256_shuffle_pd(_mm256_castsi256_pd(A), _mm256_castsi256_pd(B), M) +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m256d T0 = MM256_SHUFFLE_EPI64(kernel.packet[0], kernel.packet[1], 15); + __m256d T1 = MM256_SHUFFLE_EPI64(kernel.packet[0], kernel.packet[1], 0); + __m256d T2 = MM256_SHUFFLE_EPI64(kernel.packet[2], kernel.packet[3], 15); + __m256d T3 = MM256_SHUFFLE_EPI64(kernel.packet[2], kernel.packet[3], 0); + + kernel.packet[1] = _mm256_castpd_si256(_mm256_permute2f128_pd(T0, T2, 32)); + kernel.packet[3] = _mm256_castpd_si256(_mm256_permute2f128_pd(T0, T2, 49)); + kernel.packet[0] = _mm256_castpd_si256(_mm256_permute2f128_pd(T1, T3, 32)); + kernel.packet[2] = _mm256_castpd_si256(_mm256_permute2f128_pd(T1, T3, 49)); +} +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + ptranspose((PacketBlock&)kernel); +} +template <> +EIGEN_STRONG_INLINE Packet4l pmin(const Packet4l& a, const Packet4l& b) { + __m256i cmp = _mm256_cmpgt_epi64(a, b); + __m256i a_min = _mm256_andnot_si256(cmp, a); + __m256i b_min = _mm256_and_si256(cmp, b); + return Packet4l(_mm256_or_si256(a_min, b_min)); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pmin(const Packet4ul& a, const Packet4ul& b) { + return padd((Packet4ul)pmin((Packet4l)psub(a, pset1(0x8000000000000000UL)), + (Packet4l)psub(b, pset1(0x8000000000000000UL))), + pset1(0x8000000000000000UL)); +} +template <> +EIGEN_STRONG_INLINE Packet4l pmax(const Packet4l& a, const Packet4l& b) { + __m256i cmp = _mm256_cmpgt_epi64(a, b); + __m256i a_min = _mm256_and_si256(cmp, a); + __m256i b_min = _mm256_andnot_si256(cmp, b); + return Packet4l(_mm256_or_si256(a_min, b_min)); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pmax(const Packet4ul& a, const Packet4ul& b) { + return padd((Packet4ul)pmax((Packet4l)psub(a, pset1(0x8000000000000000UL)), + (Packet4l)psub(b, pset1(0x8000000000000000UL))), + pset1(0x8000000000000000UL)); +} +template <> +EIGEN_STRONG_INLINE Packet4l pabs(const Packet4l& a) { + Packet4l pz = pzero(a); + Packet4l cmp = _mm256_cmpgt_epi64(a, pz); + return psub(cmp, pxor(a, cmp)); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pabs(const Packet4ul& a) { + return a; +} +template <> +EIGEN_STRONG_INLINE Packet4l pmul(const Packet4l& a, const Packet4l& b) { + // 64-bit mul requires avx512, so do this with 32-bit multiplication + __m256i upper32_a = _mm256_srli_epi64(a, 32); + __m256i upper32_b = _mm256_srli_epi64(b, 32); + + // upper * lower + __m256i mul1 = _mm256_mul_epu32(upper32_a, b); + __m256i mul2 = _mm256_mul_epu32(upper32_b, a); + // Gives us both upper*upper and lower*lower + __m256i mul3 = _mm256_mul_epu32(a, b); + + __m256i high = _mm256_slli_epi64(_mm256_add_epi64(mul1, mul2), 32); + return _mm256_add_epi64(high, mul3); +} +template <> +EIGEN_STRONG_INLINE Packet4ul pmul(const Packet4ul& a, const Packet4ul& b) { + return (Packet4ul)pmul((Packet4l)a, (Packet4l)b); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet8f pset1(const float& from) { return _mm256_set1_ps(from); } +template<> EIGEN_STRONG_INLINE Packet4d pset1(const double& from) { return _mm256_set1_pd(from); } +template<> EIGEN_STRONG_INLINE Packet8i pset1(const int& from) { return _mm256_set1_epi32(from); } +template<> EIGEN_STRONG_INLINE Packet8ui pset1(const uint32_t& from) { return _mm256_set1_epi32(from); } + +template<> EIGEN_STRONG_INLINE Packet8f pset1frombits(unsigned int from) { return _mm256_castsi256_ps(pset1(from)); } +template<> EIGEN_STRONG_INLINE Packet4d pset1frombits(uint64_t from) { return _mm256_castsi256_pd(_mm256_set1_epi64x(from)); } + +template<> EIGEN_STRONG_INLINE Packet8f pzero(const Packet8f& /*a*/) { return _mm256_setzero_ps(); } +template<> EIGEN_STRONG_INLINE Packet4d pzero(const Packet4d& /*a*/) { return _mm256_setzero_pd(); } +template<> EIGEN_STRONG_INLINE Packet8i pzero(const Packet8i& /*a*/) { return _mm256_setzero_si256(); } +template<> EIGEN_STRONG_INLINE Packet8ui pzero(const Packet8ui& /*a*/) { return _mm256_setzero_si256(); } + + +template<> EIGEN_STRONG_INLINE Packet8f peven_mask(const Packet8f& /*a*/) { return _mm256_castsi256_ps(_mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1)); } +template<> EIGEN_STRONG_INLINE Packet8i peven_mask(const Packet8i& /*a*/) { return _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1); } +template<> EIGEN_STRONG_INLINE Packet8ui peven_mask(const Packet8ui& /*a*/) { return _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1); } +template<> EIGEN_STRONG_INLINE Packet4d peven_mask(const Packet4d& /*a*/) { return _mm256_castsi256_pd(_mm256_set_epi32(0, 0, -1, -1, 0, 0, -1, -1)); } + +template<> EIGEN_STRONG_INLINE Packet8f pload1(const float* from) { return _mm256_broadcast_ss(from); } +template<> EIGEN_STRONG_INLINE Packet4d pload1(const double* from) { return _mm256_broadcast_sd(from); } + +template<> EIGEN_STRONG_INLINE Packet8f padd(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); } +#ifdef EIGEN_VECTORIZE_AVX512 +template <> +EIGEN_STRONG_INLINE Packet8f padd(const Packet8f& a, const Packet8f& b, uint8_t umask) { + __mmask16 mask = static_cast<__mmask16>(umask & 0x00FF); + return _mm512_castps512_ps256(_mm512_maskz_add_ps( + mask, + _mm512_castps256_ps512(a), + _mm512_castps256_ps512(b))); +} +#endif +template<> EIGEN_STRONG_INLINE Packet4d padd(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i padd(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_add_epi32(a,b); +#else + __m128i lo = _mm_add_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_add_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui padd(const Packet8ui& a, const Packet8ui& b) +{ +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_add_epi32(a, b); +#else + __m128i lo = _mm_add_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_add_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f plset(const float& a) { return padd(pset1(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); } +template<> EIGEN_STRONG_INLINE Packet4d plset(const double& a) { return padd(pset1(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); } +template<> EIGEN_STRONG_INLINE Packet8i plset(const int& a) { return padd(pset1(a), (Packet8i)_mm256_set_epi32(7,6,5,4,3,2,1,0)); } +template<> EIGEN_STRONG_INLINE Packet8ui plset(const uint32_t& a) { return padd(pset1(a), (Packet8ui)_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0)); } + +template<> EIGEN_STRONG_INLINE Packet8f psub(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d psub(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i psub(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_sub_epi32(a,b); +#else + __m128i lo = _mm_sub_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_sub_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui psub(const Packet8ui& a, const Packet8ui& b) +{ +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_sub_epi32(a, b); +#else + __m128i lo = _mm_sub_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_sub_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a) +{ + const Packet8f mask = _mm256_castsi256_ps(_mm256_set1_epi32(0x80000000)); + return _mm256_xor_ps(a, mask); +} +template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a) +{ + const Packet4d mask = _mm256_castsi256_pd(_mm256_set1_epi64x(0x8000000000000000ULL)); + return _mm256_xor_pd(a, mask); +} +template<> EIGEN_STRONG_INLINE Packet8i pnegate(const Packet8i& a) +{ + return psub(pzero(a), a); +} + +template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet8f pmul(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pmul(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i pmul(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_mullo_epi32(a,b); +#else + const __m128i lo = _mm_mullo_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + const __m128i hi = _mm_mullo_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pmul(const Packet8ui& a, const Packet8ui& b) +{ +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_mullo_epi32(a, b); +#else + const __m128i lo = _mm_mullo_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + const __m128i hi = _mm_mullo_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pdiv(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pdiv(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8i pdiv(const Packet8i& a, const Packet8i& b) +{ +#ifdef EIGEN_VECTORIZE_AVX512 + return _mm512_cvttpd_epi32(_mm512_div_pd(_mm512_cvtepi32_pd(a), _mm512_cvtepi32_pd(b))); +#else + Packet4i lo = pdiv(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + Packet4i hi = pdiv(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1); +#endif +} + +#ifdef EIGEN_VECTORIZE_FMA +template <> +EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) { + return _mm256_fmadd_ps(a, b, c); +} +template <> +EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) { + return _mm256_fmadd_pd(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet8f pmsub(const Packet8f& a, const Packet8f& b, const Packet8f& c) { + return _mm256_fmsub_ps(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet4d pmsub(const Packet4d& a, const Packet4d& b, const Packet4d& c) { + return _mm256_fmsub_pd(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet8f pnmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) { + return _mm256_fnmadd_ps(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet4d pnmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) { + return _mm256_fnmadd_pd(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet8f pnmsub(const Packet8f& a, const Packet8f& b, const Packet8f& c) { + return _mm256_fnmsub_ps(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet4d pnmsub(const Packet4d& a, const Packet4d& b, const Packet4d& c) { + return _mm256_fnmsub_pd(a, b, c); +} + +#endif + +template<> EIGEN_STRONG_INLINE Packet8f pcmp_le(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LE_OQ); } +template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LT_OQ); } +template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt_or_nan(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a, b, _CMP_NGE_UQ); } +template<> EIGEN_STRONG_INLINE Packet8f pcmp_eq(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_EQ_OQ); } +template<> EIGEN_STRONG_INLINE Packet8f pisnan(const Packet8f& a) { return _mm256_cmp_ps(a,a,_CMP_UNORD_Q); } + +template<> EIGEN_STRONG_INLINE Packet4d pcmp_le(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LE_OQ); } +template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LT_OQ); } +template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt_or_nan(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a, b, _CMP_NGE_UQ); } +template<> EIGEN_STRONG_INLINE Packet4d pcmp_eq(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_EQ_OQ); } + +template<> EIGEN_STRONG_INLINE Packet8i pcmp_le(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_xor_si256(_mm256_cmpgt_epi32(a,b), _mm256_set1_epi32(-1)); +#else + __m128i lo = _mm_cmpgt_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + lo = _mm_xor_si128(lo, _mm_set1_epi32(-1)); + __m128i hi = _mm_cmpgt_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + hi = _mm_xor_si128(hi, _mm_set1_epi32(-1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8i pcmp_lt(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_cmpgt_epi32(b,a); +#else + __m128i lo = _mm_cmpgt_epi32(_mm256_extractf128_si256(b, 0), _mm256_extractf128_si256(a, 0)); + __m128i hi = _mm_cmpgt_epi32(_mm256_extractf128_si256(b, 1), _mm256_extractf128_si256(a, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8i pcmp_eq(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_cmpeq_epi32(a,b); +#else + __m128i lo = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pcmp_eq(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_cmpeq_epi32(a, b); +#else + __m128i lo = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pmin(const Packet8f& a, const Packet8f& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) + // There appears to be a bug in GCC, by which the optimizer may flip + // the argument order in calls to _mm_min_ps/_mm_max_ps, so we have to + // resort to inline ASM here. This is supposed to be fixed in gcc6.3, + // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 + Packet8f res; + asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); + return res; +#else + // Arguments are swapped to match NaN propagation behavior of std::min. + return _mm256_min_ps(b,a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4d pmin(const Packet4d& a, const Packet4d& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) + // See pmin above + Packet4d res; + asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); + return res; +#else + // Arguments are swapped to match NaN propagation behavior of std::min. + return _mm256_min_pd(b,a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8i pmin(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_min_epi32(a, b); +#else + __m128i lo = _mm_min_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_min_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pmin(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_min_epu32(a, b); +#else + __m128i lo = _mm_min_epu32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_min_epu32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pmax(const Packet8f& a, const Packet8f& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) + // See pmin above + Packet8f res; + asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); + return res; +#else + // Arguments are swapped to match NaN propagation behavior of std::max. + return _mm256_max_ps(b,a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4d pmax(const Packet4d& a, const Packet4d& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) + // See pmin above + Packet4d res; + asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); + return res; +#else + // Arguments are swapped to match NaN propagation behavior of std::max. + return _mm256_max_pd(b,a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8i pmax(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_max_epi32(a, b); +#else + __m128i lo = _mm_max_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_max_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pmax(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_max_epu32(a, b); +#else + __m128i lo = _mm_max_epu32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); + __m128i hi = _mm_max_epu32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +#ifdef EIGEN_VECTORIZE_AVX2 +template<> EIGEN_STRONG_INLINE Packet8i psign(const Packet8i& a) { + return _mm256_sign_epi32(_mm256_set1_epi32(1), a); +} +#endif + +// Add specializations for min/max with prescribed NaN progation. +template<> +EIGEN_STRONG_INLINE Packet8f pmin(const Packet8f& a, const Packet8f& b) { + return pminmax_propagate_numbers(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet4d pmin(const Packet4d& a, const Packet4d& b) { + return pminmax_propagate_numbers(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet8f pmax(const Packet8f& a, const Packet8f& b) { + return pminmax_propagate_numbers(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet4d pmax(const Packet4d& a, const Packet4d& b) { + return pminmax_propagate_numbers(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet8f pmin(const Packet8f& a, const Packet8f& b) { + return pminmax_propagate_nan(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet4d pmin(const Packet4d& a, const Packet4d& b) { + return pminmax_propagate_nan(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet8f pmax(const Packet8f& a, const Packet8f& b) { + return pminmax_propagate_nan(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet4d pmax(const Packet4d& a, const Packet4d& b) { + return pminmax_propagate_nan(a, b, pmax); +} + +template<> EIGEN_STRONG_INLINE Packet8f print(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); } +template<> EIGEN_STRONG_INLINE Packet4d print(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); } + +template<> EIGEN_STRONG_INLINE Packet8f pceil(const Packet8f& a) { return _mm256_ceil_ps(a); } +template<> EIGEN_STRONG_INLINE Packet4d pceil(const Packet4d& a) { return _mm256_ceil_pd(a); } + +template<> EIGEN_STRONG_INLINE Packet8f pfloor(const Packet8f& a) { return _mm256_floor_ps(a); } +template<> EIGEN_STRONG_INLINE Packet4d pfloor(const Packet4d& a) { return _mm256_floor_pd(a); } + + +template<> EIGEN_STRONG_INLINE Packet8i ptrue(const Packet8i& a) { +#ifdef EIGEN_VECTORIZE_AVX2 + // vpcmpeqd has lower latency than the more general vcmpps + return _mm256_cmpeq_epi32(a,a); +#else + const __m256 b = _mm256_castsi256_ps(a); + return _mm256_castps_si256(_mm256_cmp_ps(b,b,_CMP_TRUE_UQ)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f ptrue(const Packet8f& a) { +#ifdef EIGEN_VECTORIZE_AVX2 + // vpcmpeqd has lower latency than the more general vcmpps + const __m256i b = _mm256_castps_si256(a); + return _mm256_castsi256_ps(_mm256_cmpeq_epi32(b,b)); +#else + return _mm256_cmp_ps(a,a,_CMP_TRUE_UQ); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4d ptrue(const Packet4d& a) { +#ifdef EIGEN_VECTORIZE_AVX2 + // vpcmpeqq has lower latency than the more general vcmppd + const __m256i b = _mm256_castpd_si256(a); + return _mm256_castsi256_pd(_mm256_cmpeq_epi64(b,b)); +#else + return _mm256_cmp_pd(a,a,_CMP_TRUE_UQ); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pand(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pand(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i pand(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_and_si256(a,b); +#else + return _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pand(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_and_si256(a,b); +#else + return _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f por(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d por(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i por(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_or_si256(a,b); +#else + return _mm256_castps_si256(_mm256_or_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui por(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_or_si256(a,b); +#else + return _mm256_castps_si256(_mm256_or_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pxor(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pxor(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i pxor(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_xor_si256(a,b); +#else + return _mm256_castps_si256(_mm256_xor_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pxor(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_xor_si256(a, b); +#else + return _mm256_castps_si256(_mm256_xor_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b))); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8f pandnot(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(b,a); } +template<> EIGEN_STRONG_INLINE Packet4d pandnot(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(b,a); } +template<> EIGEN_STRONG_INLINE Packet8i pandnot(const Packet8i& a, const Packet8i& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_andnot_si256(b,a); +#else + return _mm256_castps_si256(_mm256_andnot_ps(_mm256_castsi256_ps(b),_mm256_castsi256_ps(a))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pandnot(const Packet8ui& a, const Packet8ui& b) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_andnot_si256(b,a); +#else + return _mm256_castps_si256(_mm256_andnot_ps(_mm256_castsi256_ps(b),_mm256_castsi256_ps(a))); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8ui pcmp_lt(const Packet8ui& a, const Packet8ui& b) { + return pxor(pcmp_eq(a, pmax(a, b)), ptrue(a)); +} +template<> EIGEN_STRONG_INLINE Packet8ui pcmp_le(const Packet8ui& a, const Packet8ui& b) { + return pcmp_eq(a, pmin(a, b)); +} + +template<> EIGEN_STRONG_INLINE Packet8f pround(const Packet8f& a) +{ + const Packet8f mask = pset1frombits(static_cast(0x80000000u)); + const Packet8f prev0dot5 = pset1frombits(static_cast(0x3EFFFFFFu)); + return _mm256_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} +template<> EIGEN_STRONG_INLINE Packet4d pround(const Packet4d& a) +{ + const Packet4d mask = pset1frombits(static_cast(0x8000000000000000ull)); + const Packet4d prev0dot5 = pset1frombits(static_cast(0x3FDFFFFFFFFFFFFFull)); + return _mm256_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} + +template<> EIGEN_STRONG_INLINE Packet8f pselect(const Packet8f& mask, const Packet8f& a, const Packet8f& b) +{ return _mm256_blendv_ps(b,a,mask); } +template<> EIGEN_STRONG_INLINE Packet8i pselect(const Packet8i& mask, const Packet8i& a, const Packet8i& b) +{ return _mm256_castps_si256(_mm256_blendv_ps(_mm256_castsi256_ps(b), _mm256_castsi256_ps(a), _mm256_castsi256_ps(mask))); } +template<> EIGEN_STRONG_INLINE Packet8ui pselect(const Packet8ui& mask, const Packet8ui& a, const Packet8ui& b) +{ return _mm256_castps_si256(_mm256_blendv_ps(_mm256_castsi256_ps(b), _mm256_castsi256_ps(a), _mm256_castsi256_ps(mask))); } + +template<> EIGEN_STRONG_INLINE Packet4d pselect(const Packet4d& mask, const Packet4d& a, const Packet4d& b) +{ return _mm256_blendv_pd(b,a,mask); } + +template EIGEN_STRONG_INLINE Packet8i parithmetic_shift_right(Packet8i a) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_srai_epi32(a, N); +#else + __m128i lo = _mm_srai_epi32(_mm256_extractf128_si256(a, 0), N); + __m128i hi = _mm_srai_epi32(_mm256_extractf128_si256(a, 1), N); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template EIGEN_STRONG_INLINE Packet8i plogical_shift_right(Packet8i a) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_srli_epi32(a, N); +#else + __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(a, 0), N); + __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(a, 1), N); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template EIGEN_STRONG_INLINE Packet8i plogical_shift_left(Packet8i a) { +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_slli_epi32(a, N); +#else + __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(a, 0), N); + __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(a, 1), N); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} + +template EIGEN_STRONG_INLINE Packet8ui parithmetic_shift_right(Packet8ui a) { + return (Packet8ui)plogical_shift_right((Packet8i)a); +} +template EIGEN_STRONG_INLINE Packet8ui plogical_shift_right(Packet8ui a) { + return (Packet8ui)plogical_shift_right((Packet8i)a); +} +template EIGEN_STRONG_INLINE Packet8ui plogical_shift_left(Packet8ui a) { + return (Packet8ui)plogical_shift_left((Packet8i)a); +} + +template<> EIGEN_STRONG_INLINE Packet8f pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); } +template<> EIGEN_STRONG_INLINE Packet4d pload(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); } +template<> EIGEN_STRONG_INLINE Packet8i pload(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast(from)); } +template<> EIGEN_STRONG_INLINE Packet8ui pload(const uint32_t* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast(from)); } + +template<> EIGEN_STRONG_INLINE Packet8f ploadu(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); } +template<> EIGEN_STRONG_INLINE Packet4d ploadu(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); } +template<> EIGEN_STRONG_INLINE Packet8i ploadu(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast(from)); } +template<> EIGEN_STRONG_INLINE Packet8ui ploadu(const uint32_t* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast(from)); } + +template<> EIGEN_STRONG_INLINE Packet8f ploadu(const float* from, uint8_t umask) { +#ifdef EIGEN_VECTORIZE_AVX512 + __mmask16 mask = static_cast<__mmask16>(umask & 0x00FF); + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_castps512_ps256(_mm512_maskz_loadu_ps(mask, from)); +#else + Packet8i mask = _mm256_set1_epi8(static_cast(umask)); + const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe); + mask = por(mask, bit_mask); + mask = pcmp_eq(mask, _mm256_set1_epi32(0xffffffff)); + EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_maskload_ps(from, mask); +#endif +} + +// Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3} +template<> EIGEN_STRONG_INLINE Packet8f ploaddup(const float* from) +{ + // TODO try to find a way to avoid the need of a temporary register + // Packet8f tmp = _mm256_castps128_ps256(_mm_loadu_ps(from)); +// tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1); +// return _mm256_unpacklo_ps(tmp,tmp); + + // _mm256_insertf128_ps is very slow on Haswell, thus: + Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from); + // mimic an "inplace" permutation of the lower 128bits using a blend + tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15); + // then we can perform a consistent permutation on the global register to get everything in shape: + return _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2)); +} +// Loads 2 doubles from memory a returns the packet {a0, a0, a1, a1} +template<> EIGEN_STRONG_INLINE Packet4d ploaddup(const double* from) +{ + Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from); + return _mm256_permute_pd(tmp, 3<<2); +} +// Loads 4 integers from memory a returns the packet {a0, a0, a1, a1, a2, a2, a3, a3} +template<> EIGEN_STRONG_INLINE Packet8i ploaddup(const int* from) +{ +#ifdef EIGEN_VECTORIZE_AVX2 + const Packet8i a = _mm256_castsi128_si256(ploadu(from)); + return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 0, 1, 1, 2, 2, 3, 3)); +#else + __m256 tmp = _mm256_broadcast_ps((const __m128*)(const void*)from); + // mimic an "inplace" permutation of the lower 128bits using a blend + tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15); + // then we can perform a consistent permutation on the global register to get everything in shape: + return _mm256_castps_si256(_mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui ploaddup(const uint32_t* from) { +#ifdef EIGEN_VECTORIZE_AVX2 + const Packet8ui a = _mm256_castsi128_si256(ploadu(from)); + return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 0, 1, 1, 2, 2, 3, 3)); +#else + __m256 tmp = _mm256_broadcast_ps((const __m128*)(const void*)from); + // mimic an "inplace" permutation of the lower 128bits using a blend + tmp = _mm256_blend_ps( + tmp, _mm256_castps128_ps256(_mm_permute_ps(_mm256_castps256_ps128(tmp), _MM_SHUFFLE(1, 0, 1, 0))), 15); + // then we can perform a consistent permutation on the global register to get + // everything in shape: + return _mm256_castps_si256(_mm256_permute_ps(tmp, _MM_SHUFFLE(3, 3, 2, 2))); +#endif +} + +// Loads 2 floats from memory a returns the packet {a0, a0 a0, a0, a1, a1, a1, a1} +template<> EIGEN_STRONG_INLINE Packet8f ploadquad(const float* from) +{ + Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from)); + return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1); +} +template<> EIGEN_STRONG_INLINE Packet8i ploadquad(const int* from) +{ + return _mm256_insertf128_si256(_mm256_set1_epi32(*from), _mm_set1_epi32(*(from+1)), 1); +} +template<> EIGEN_STRONG_INLINE Packet8ui ploadquad(const uint32_t* from) { + return _mm256_insertf128_si256(_mm256_set1_epi32(*from), _mm_set1_epi32(*(from + 1)), 1); +} + +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); } +template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); } +template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_si256(reinterpret_cast<__m256i*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstore(uint32_t* to, const Packet8ui& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_si256(reinterpret_cast<__m256i*>(to), from); } + +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint32_t* to, const Packet8ui& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } + +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet8f& from, uint8_t umask) { +#ifdef EIGEN_VECTORIZE_AVX512 + __mmask16 mask = static_cast<__mmask16>(umask & 0x00FF); + EIGEN_DEBUG_UNALIGNED_STORE _mm512_mask_storeu_ps(to, mask, _mm512_castps256_ps512(from)); +#else + Packet8i mask = _mm256_set1_epi8(static_cast(umask)); + const Packet8i bit_mask = _mm256_set_epi32(0x7f7f7f7f, 0xbfbfbfbf, 0xdfdfdfdf, 0xefefefef, 0xf7f7f7f7, 0xfbfbfbfb, 0xfdfdfdfd, 0xfefefefe); + mask = por(mask, bit_mask); + mask = pcmp_eq(mask, _mm256_set1_epi32(0xffffffff)); +#if EIGEN_COMP_MSVC + // MSVC sometimes seems to use a bogus mask with maskstore. + const __m256i ifrom = _mm256_castps_si256(from); + EIGEN_DEBUG_UNALIGNED_STORE _mm_maskmoveu_si128(_mm256_extractf128_si256(ifrom, 0), _mm256_extractf128_si256(mask, 0), reinterpret_cast(to)); + EIGEN_DEBUG_UNALIGNED_STORE _mm_maskmoveu_si128(_mm256_extractf128_si256(ifrom, 1), _mm256_extractf128_si256(mask, 1), reinterpret_cast(to + 4)); +#else + EIGEN_DEBUG_UNALIGNED_STORE _mm256_maskstore_ps(to, mask, from); +#endif +#endif +} + +// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available +// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4); +template<> EIGEN_DEVICE_FUNC inline Packet8f pgather(const float* from, Index stride) +{ + return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride], + from[3*stride], from[2*stride], from[1*stride], from[0*stride]); +} +template<> EIGEN_DEVICE_FUNC inline Packet4d pgather(const double* from, Index stride) +{ + return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); +} +template<> EIGEN_DEVICE_FUNC inline Packet8i pgather(const int* from, Index stride) +{ + return _mm256_set_epi32(from[7*stride], from[6*stride], from[5*stride], from[4*stride], + from[3*stride], from[2*stride], from[1*stride], from[0*stride]); +} +template<> EIGEN_DEVICE_FUNC inline Packet8ui pgather(const uint32_t* from, Index stride) { + return (Packet8ui)pgather((int*)from, stride); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet8f& from, Index stride) +{ + __m128 low = _mm256_extractf128_ps(from, 0); + to[stride*0] = _mm_cvtss_f32(low); + to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)); + to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)); + to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)); + + __m128 high = _mm256_extractf128_ps(from, 1); + to[stride*4] = _mm_cvtss_f32(high); + to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)); + to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)); + to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet4d& from, Index stride) +{ + __m128d low = _mm256_extractf128_pd(from, 0); + to[stride*0] = _mm_cvtsd_f64(low); + to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)); + __m128d high = _mm256_extractf128_pd(from, 1); + to[stride*2] = _mm_cvtsd_f64(high); + to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(int* to, const Packet8i& from, Index stride) +{ + __m128i low = _mm256_extractf128_si256(from, 0); + to[stride*0] = _mm_extract_epi32(low, 0); + to[stride*1] = _mm_extract_epi32(low, 1); + to[stride*2] = _mm_extract_epi32(low, 2); + to[stride*3] = _mm_extract_epi32(low, 3); + + __m128i high = _mm256_extractf128_si256(from, 1); + to[stride*4] = _mm_extract_epi32(high, 0); + to[stride*5] = _mm_extract_epi32(high, 1); + to[stride*6] = _mm_extract_epi32(high, 2); + to[stride*7] = _mm_extract_epi32(high, 3); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(uint32_t* to, const Packet8ui& from, Index stride) { + pscatter((int*)to, (Packet8i)from, stride); +} + +template<> EIGEN_STRONG_INLINE void pstore1(float* to, const float& a) +{ + Packet8f pa = pset1(a); + pstore(to, pa); +} +template<> EIGEN_STRONG_INLINE void pstore1(double* to, const double& a) +{ + Packet4d pa = pset1(a); + pstore(to, pa); +} +template<> EIGEN_STRONG_INLINE void pstore1(int* to, const int& a) +{ + Packet8i pa = pset1(a); + pstore(to, pa); +} + +#ifndef EIGEN_VECTORIZE_AVX512 +template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const uint32_t* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +#endif + +template<> EIGEN_STRONG_INLINE float pfirst(const Packet8f& a) { + return _mm_cvtss_f32(_mm256_castps256_ps128(a)); +} +template<> EIGEN_STRONG_INLINE double pfirst(const Packet4d& a) { + return _mm_cvtsd_f64(_mm256_castpd256_pd128(a)); +} +template<> EIGEN_STRONG_INLINE int pfirst(const Packet8i& a) { + return _mm_cvtsi128_si32(_mm256_castsi256_si128(a)); +} +template<> EIGEN_STRONG_INLINE uint32_t pfirst(const Packet8ui& a) { + return numext::bit_cast(_mm_cvtsi128_si32(_mm256_castsi256_si128(a))); +} + + +template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a) +{ + __m256 tmp = _mm256_shuffle_ps(a,a,0x1b); + return _mm256_permute2f128_ps(tmp, tmp, 1); +} +template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a) +{ + __m256d tmp = _mm256_shuffle_pd(a,a,5); + return _mm256_permute2f128_pd(tmp, tmp, 1); +#if 0 + // This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd + // exhibit the same latency/throughput, but it is here for future reference/benchmarking... + __m256d swap_halves = _mm256_permute2f128_pd(a,a,1); + return _mm256_permute_pd(swap_halves,5); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8i preverse(const Packet8i& a) +{ + return _mm256_castps_si256(preverse(_mm256_castsi256_ps(a))); +} +template<> EIGEN_STRONG_INLINE Packet8ui preverse(const Packet8ui& a) { + return _mm256_castps_si256(preverse(_mm256_castsi256_ps(a))); +} + +#ifdef EIGEN_VECTORIZE_AVX2 +template<> EIGEN_STRONG_INLINE Packet4l preverse(const Packet4l& a) + { + return _mm256_castpd_si256(preverse(_mm256_castsi256_pd(a))); +} +template<> EIGEN_STRONG_INLINE Packet4ul preverse(const Packet4ul& a) { + return _mm256_castpd_si256(preverse(_mm256_castsi256_pd(a))); +} +#endif + +// pabs should be ok +template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a) +{ + const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); + return _mm256_and_ps(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a) +{ + const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); + return _mm256_and_pd(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet8i pabs(const Packet8i& a) +{ +#ifdef EIGEN_VECTORIZE_AVX2 + return _mm256_abs_epi32(a); +#else + __m128i lo = _mm_abs_epi32(_mm256_extractf128_si256(a, 0)); + __m128i hi = _mm_abs_epi32(_mm256_extractf128_si256(a, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8ui pabs(const Packet8ui& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet8h psignbit(const Packet8h& a) { return _mm_srai_epi16(a, 15); } +template<> EIGEN_STRONG_INLINE Packet8bf psignbit(const Packet8bf& a) { return _mm_srai_epi16(a, 15); } +template<> EIGEN_STRONG_INLINE Packet8f psignbit(const Packet8f& a) { return _mm256_castsi256_ps(parithmetic_shift_right<31>((Packet8i)_mm256_castps_si256(a))); } +template<> EIGEN_STRONG_INLINE Packet8ui psignbit(const Packet8ui& a) { return pzero(a); } +#ifdef EIGEN_VECTORIZE_AVX2 +template<> EIGEN_STRONG_INLINE Packet4d psignbit(const Packet4d& a) { return _mm256_castsi256_pd(parithmetic_shift_right<63>((Packet4l)_mm256_castpd_si256(a))); } +template<> EIGEN_STRONG_INLINE Packet4ul psignbit(const Packet4ul& a) { return pzero(a); } +#endif + +template<> EIGEN_STRONG_INLINE Packet8f pfrexp(const Packet8f& a, Packet8f& exponent) { + return pfrexp_generic(a,exponent); +} + +// Extract exponent without existence of Packet4l. +template<> +EIGEN_STRONG_INLINE +Packet4d pfrexp_generic_get_biased_exponent(const Packet4d& a) { + const Packet4d cst_exp_mask = pset1frombits(static_cast(0x7ff0000000000000ull)); + __m256i a_expo = _mm256_castpd_si256(pand(a, cst_exp_mask)); +#ifdef EIGEN_VECTORIZE_AVX2 + a_expo = _mm256_srli_epi64(a_expo, 52); + __m128i lo = _mm256_extractf128_si256(a_expo, 0); + __m128i hi = _mm256_extractf128_si256(a_expo, 1); +#else + __m128i lo = _mm256_extractf128_si256(a_expo, 0); + __m128i hi = _mm256_extractf128_si256(a_expo, 1); + lo = _mm_srli_epi64(lo, 52); + hi = _mm_srli_epi64(hi, 52); +#endif + Packet2d exponent_lo = _mm_cvtepi32_pd(vec4i_swizzle1(lo, 0, 2, 1, 3)); + Packet2d exponent_hi = _mm_cvtepi32_pd(vec4i_swizzle1(hi, 0, 2, 1, 3)); + Packet4d exponent = _mm256_insertf128_pd(_mm256_setzero_pd(), exponent_lo, 0); + exponent = _mm256_insertf128_pd(exponent, exponent_hi, 1); + return exponent; +} + + +template<> EIGEN_STRONG_INLINE Packet4d pfrexp(const Packet4d& a, Packet4d& exponent) { + return pfrexp_generic(a, exponent); +} + +template<> EIGEN_STRONG_INLINE Packet8f pldexp(const Packet8f& a, const Packet8f& exponent) { + return pldexp_generic(a, exponent); +} + +template<> EIGEN_STRONG_INLINE Packet4d pldexp(const Packet4d& a, const Packet4d& exponent) { + // Clamp exponent to [-2099, 2099] + const Packet4d max_exponent = pset1(2099.0); + const Packet4i e = _mm256_cvtpd_epi32(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent)); + + // Split 2^e into four factors and multiply. + const Packet4i bias = pset1(1023); + Packet4i b = parithmetic_shift_right<2>(e); // floor(e/4) + + // 2^b + Packet4i hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3); + Packet4i lo = _mm_slli_epi64(hi, 52); + hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52); + Packet4d c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1)); + Packet4d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) + + // 2^(e - 3b) + b = psub(psub(psub(e, b), b), b); // e - 3b + hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3); + lo = _mm_slli_epi64(hi, 52); + hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52); + c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1)); + out = pmul(out, c); // a * 2^e + return out; +} + +template<> EIGEN_STRONG_INLINE float predux(const Packet8f& a) +{ + return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1)))); +} +template<> EIGEN_STRONG_INLINE double predux(const Packet4d& a) +{ + return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1)))); +} +template<> EIGEN_STRONG_INLINE int predux(const Packet8i& a) +{ + return predux(Packet4i(_mm_add_epi32(_mm256_castsi256_si128(a),_mm256_extractf128_si256(a,1)))); +} +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet8ui& a) { + return predux(Packet4ui(_mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)))); +} + +template<> EIGEN_STRONG_INLINE Packet4f predux_half_dowto4(const Packet8f& a) +{ + return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1)); +} +template<> EIGEN_STRONG_INLINE Packet4i predux_half_dowto4(const Packet8i& a) +{ + return _mm_add_epi32(_mm256_castsi256_si128(a),_mm256_extractf128_si256(a,1)); +} +template<> EIGEN_STRONG_INLINE Packet4ui predux_half_dowto4(const Packet8ui& a) { + return _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); +} + +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet8f& a) +{ + Packet8f tmp; + tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1)); + tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); + return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); +} +template<> EIGEN_STRONG_INLINE double predux_mul(const Packet4d& a) +{ + Packet4d tmp; + tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1)); + return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1))); +} + +template<> EIGEN_STRONG_INLINE float predux_min(const Packet8f& a) +{ + Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1)); + tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); + return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); +} +template<> EIGEN_STRONG_INLINE double predux_min(const Packet4d& a) +{ + Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1)); + return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1))); +} + +template<> EIGEN_STRONG_INLINE float predux_max(const Packet8f& a) +{ + Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1)); + tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); + return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); +} + +template<> EIGEN_STRONG_INLINE double predux_max(const Packet4d& a) +{ + Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1)); + return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1))); +} + +// not needed yet +// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet8f& x) +// { +// return _mm256_movemask_ps(x)==0xFF; +// } + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x) +{ + return _mm256_movemask_ps(x) != 0; +} + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8i& x) +{ + return _mm256_movemask_ps(_mm256_castsi256_ps(x)) != 0; +} +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8ui& x) +{ + return _mm256_movemask_ps(_mm256_castsi256_ps(x)) != 0; +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]); + __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]); + __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]); + __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]); + __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]); + __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]); + __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]); + __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]); + __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0)); + __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2)); + __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0)); + __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2)); + __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0)); + __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2)); + __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0)); + __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2)); + kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20); + kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20); + kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20); + kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20); + kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31); + kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31); + kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31); + kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]); + __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]); + __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]); + __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]); + + __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0)); + __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2)); + __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0)); + __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2)); + + kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20); + kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20); + kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31); + kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31); +} + +#define MM256_SHUFFLE_EPI32(A, B, M) \ + _mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B), M)) + +#ifndef EIGEN_VECTORIZE_AVX2 +#define MM256_UNPACKLO_EPI32(A, B) \ + _mm256_castps_si256(_mm256_unpacklo_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B))) +#define MM256_UNPACKHI_EPI32(A, B) \ + _mm256_castps_si256(_mm256_unpackhi_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B))) +#else +#define MM256_UNPACKLO_EPI32(A, B) _mm256_unpacklo_epi32(A, B) +#define MM256_UNPACKHI_EPI32(A, B) _mm256_unpackhi_epi32(A, B) +#endif + + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256i T0 = MM256_UNPACKLO_EPI32(kernel.packet[0], kernel.packet[1]); + __m256i T1 = MM256_UNPACKHI_EPI32(kernel.packet[0], kernel.packet[1]); + __m256i T2 = MM256_UNPACKLO_EPI32(kernel.packet[2], kernel.packet[3]); + __m256i T3 = MM256_UNPACKHI_EPI32(kernel.packet[2], kernel.packet[3]); + __m256i T4 = MM256_UNPACKLO_EPI32(kernel.packet[4], kernel.packet[5]); + __m256i T5 = MM256_UNPACKHI_EPI32(kernel.packet[4], kernel.packet[5]); + __m256i T6 = MM256_UNPACKLO_EPI32(kernel.packet[6], kernel.packet[7]); + __m256i T7 = MM256_UNPACKHI_EPI32(kernel.packet[6], kernel.packet[7]); + __m256i S0 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(1,0,1,0)); + __m256i S1 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(3,2,3,2)); + __m256i S2 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(1,0,1,0)); + __m256i S3 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(3,2,3,2)); + __m256i S4 = MM256_SHUFFLE_EPI32(T4,T6,_MM_SHUFFLE(1,0,1,0)); + __m256i S5 = MM256_SHUFFLE_EPI32(T4,T6,_MM_SHUFFLE(3,2,3,2)); + __m256i S6 = MM256_SHUFFLE_EPI32(T5,T7,_MM_SHUFFLE(1,0,1,0)); + __m256i S7 = MM256_SHUFFLE_EPI32(T5,T7,_MM_SHUFFLE(3,2,3,2)); + kernel.packet[0] = _mm256_permute2f128_si256(S0, S4, 0x20); + kernel.packet[1] = _mm256_permute2f128_si256(S1, S5, 0x20); + kernel.packet[2] = _mm256_permute2f128_si256(S2, S6, 0x20); + kernel.packet[3] = _mm256_permute2f128_si256(S3, S7, 0x20); + kernel.packet[4] = _mm256_permute2f128_si256(S0, S4, 0x31); + kernel.packet[5] = _mm256_permute2f128_si256(S1, S5, 0x31); + kernel.packet[6] = _mm256_permute2f128_si256(S2, S6, 0x31); + kernel.packet[7] = _mm256_permute2f128_si256(S3, S7, 0x31); +} +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + ptranspose((PacketBlock&)kernel); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256i T0 = MM256_UNPACKLO_EPI32(kernel.packet[0], kernel.packet[1]); + __m256i T1 = MM256_UNPACKHI_EPI32(kernel.packet[0], kernel.packet[1]); + __m256i T2 = MM256_UNPACKLO_EPI32(kernel.packet[2], kernel.packet[3]); + __m256i T3 = MM256_UNPACKHI_EPI32(kernel.packet[2], kernel.packet[3]); + + __m256i S0 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(1,0,1,0)); + __m256i S1 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(3,2,3,2)); + __m256i S2 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(1,0,1,0)); + __m256i S3 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(3,2,3,2)); + + kernel.packet[0] = _mm256_permute2f128_si256(S0, S1, 0x20); + kernel.packet[1] = _mm256_permute2f128_si256(S2, S3, 0x20); + kernel.packet[2] = _mm256_permute2f128_si256(S0, S1, 0x31); + kernel.packet[3] = _mm256_permute2f128_si256(S2, S3, 0x31); +} +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + ptranspose((PacketBlock&)kernel); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15); + __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0); + __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15); + __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0); + + kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32); + kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49); + kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32); + kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49); +} + +template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) { +#ifdef EIGEN_VECTORIZE_AVX2 + const __m256i zero = _mm256_setzero_si256(); + const __m256i select = _mm256_set_epi32(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); + __m256i false_mask = _mm256_cmpeq_epi32(zero, select); + return _mm256_blendv_ps(thenPacket, elsePacket, _mm256_castsi256_ps(false_mask)); +#else + const __m256 zero = _mm256_setzero_ps(); + const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); + __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ); + return _mm256_blendv_ps(thenPacket, elsePacket, false_mask); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) { +#ifdef EIGEN_VECTORIZE_AVX2 + const __m256i zero = _mm256_setzero_si256(); + const __m256i select = _mm256_set_epi64x(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); + __m256i false_mask = _mm256_cmpeq_epi64(select, zero); + return _mm256_blendv_pd(thenPacket, elsePacket, _mm256_castsi256_pd(false_mask)); +#else + const __m256d zero = _mm256_setzero_pd(); + const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); + __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ); + return _mm256_blendv_pd(thenPacket, elsePacket, false_mask); +#endif +} + +// Packet math for Eigen::half +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> struct unpacket_traits { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet8h half; }; +#endif + +template<> EIGEN_STRONG_INLINE Packet8h pset1(const Eigen::half& from) { + return _mm_set1_epi16(numext::bit_cast(from)); +} + +template<> EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet8h& from) { + return numext::bit_cast(static_cast(_mm_extract_epi16(from, 0))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pload(const Eigen::half* from) { + return _mm_load_si128(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE Packet8h ploadu(const Eigen::half* from) { + return _mm_loadu_si128(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet8h& from) { + _mm_store_si128(reinterpret_cast<__m128i*>(to), from); +} + +template<> EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet8h& from) { + _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); +} + +template<> EIGEN_STRONG_INLINE Packet8h +ploaddup(const Eigen::half* from) { + const numext::uint16_t a = numext::bit_cast(from[0]); + const numext::uint16_t b = numext::bit_cast(from[1]); + const numext::uint16_t c = numext::bit_cast(from[2]); + const numext::uint16_t d = numext::bit_cast(from[3]); + return _mm_set_epi16(d, d, c, c, b, b, a, a); +} + +template<> EIGEN_STRONG_INLINE Packet8h +ploadquad(const Eigen::half* from) { + const numext::uint16_t a = numext::bit_cast(from[0]); + const numext::uint16_t b = numext::bit_cast(from[1]); + return _mm_set_epi16(b, b, b, b, a, a, a, a); +} + +template<> EIGEN_STRONG_INLINE Packet8h ptrue(const Packet8h& a) { + return _mm_cmpeq_epi32(a, a); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pabs(const Packet8h& a) { + const __m128i sign_mask = _mm_set1_epi16(static_cast(0x8000)); + return _mm_andnot_si128(sign_mask, a); +} + +EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) { +#ifdef EIGEN_HAS_FP16_C + return _mm256_cvtph_ps(a); +#else + Eigen::internal::Packet8f pp = _mm256_castsi256_ps(_mm256_insertf128_si256( + _mm256_castsi128_si256(half2floatsse(a)), half2floatsse(_mm_srli_si128(a, 8)), 1)); + return pp; +#endif +} + +EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) { +#ifdef EIGEN_HAS_FP16_C + return _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT); +#else + __m128i lo = float2half(_mm256_extractf128_ps(a, 0)); + __m128i hi = float2half(_mm256_extractf128_ps(a, 1)); + return _mm_packus_epi32(lo, hi); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet8h pmin(const Packet8h& a, + const Packet8h& b) { + return float2half(pmin(half2float(a), half2float(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pmax(const Packet8h& a, + const Packet8h& b) { + return float2half(pmax(half2float(a), half2float(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h plset(const half& a) { + return float2half(plset(static_cast(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8h por(const Packet8h& a,const Packet8h& b) { + // in some cases Packet4i is a wrapper around __m128i, so we either need to + // cast to Packet4i to directly call the intrinsics as below: + return _mm_or_si128(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h& a,const Packet8h& b) { + return _mm_xor_si128(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8h pand(const Packet8h& a,const Packet8h& b) { + return _mm_and_si128(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8h pandnot(const Packet8h& a,const Packet8h& b) { + return _mm_andnot_si128(b,a); +} + +template<> EIGEN_STRONG_INLINE Packet8h pselect(const Packet8h& mask, const Packet8h& a, const Packet8h& b) { + return _mm_blendv_epi8(b, a, mask); +} + +template<> EIGEN_STRONG_INLINE Packet8h pround(const Packet8h& a) { + return float2half(pround(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8h print(const Packet8h& a) { + return float2half(print(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pceil(const Packet8h& a) { + return float2half(pceil(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pfloor(const Packet8h& a) { + return float2half(pfloor(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pcmp_eq(const Packet8h& a,const Packet8h& b) { + return Pack16To8(pcmp_eq(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pcmp_le(const Packet8h& a,const Packet8h& b) { + return Pack16To8(pcmp_le(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt(const Packet8h& a,const Packet8h& b) { + return Pack16To8(pcmp_lt(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt_or_nan(const Packet8h& a,const Packet8h& b) { + return Pack16To8(pcmp_lt_or_nan(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet8h pnegate(const Packet8h& a) { + Packet8h sign_mask = _mm_set1_epi16(static_cast(0x8000)); + return _mm_xor_si128(a, sign_mask); +} + +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> EIGEN_STRONG_INLINE Packet8h padd(const Packet8h& a, const Packet8h& b) { + Packet8f af = half2float(a); + Packet8f bf = half2float(b); + Packet8f rf = padd(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE Packet8h psub(const Packet8h& a, const Packet8h& b) { + Packet8f af = half2float(a); + Packet8f bf = half2float(b); + Packet8f rf = psub(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE Packet8h pmul(const Packet8h& a, const Packet8h& b) { + Packet8f af = half2float(a); + Packet8f bf = half2float(b); + Packet8f rf = pmul(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE Packet8h pdiv(const Packet8h& a, const Packet8h& b) { + Packet8f af = half2float(a); + Packet8f bf = half2float(b); + Packet8f rf = pdiv(af, bf); + return float2half(rf); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet8h pgather(const Eigen::half* from, Index stride) +{ + const numext::uint16_t s0 = numext::bit_cast(from[0*stride]); + const numext::uint16_t s1 = numext::bit_cast(from[1*stride]); + const numext::uint16_t s2 = numext::bit_cast(from[2*stride]); + const numext::uint16_t s3 = numext::bit_cast(from[3*stride]); + const numext::uint16_t s4 = numext::bit_cast(from[4*stride]); + const numext::uint16_t s5 = numext::bit_cast(from[5*stride]); + const numext::uint16_t s6 = numext::bit_cast(from[6*stride]); + const numext::uint16_t s7 = numext::bit_cast(from[7*stride]); + return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0); +} + +template<> EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const Packet8h& from, Index stride) +{ + EIGEN_ALIGN32 Eigen::half aux[8]; + pstore(aux, from); + to[stride*0] = aux[0]; + to[stride*1] = aux[1]; + to[stride*2] = aux[2]; + to[stride*3] = aux[3]; + to[stride*4] = aux[4]; + to[stride*5] = aux[5]; + to[stride*6] = aux[6]; + to[stride*7] = aux[7]; +} + + +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> EIGEN_STRONG_INLINE Eigen::half predux(const Packet8h& a) { + Packet8f af = half2float(a); + float reduced = predux(af); + return Eigen::half(reduced); +} +#endif + +template<> EIGEN_STRONG_INLINE Eigen::half predux_max(const Packet8h& a) { + Packet8f af = half2float(a); + float reduced = predux_max(af); + return Eigen::half(reduced); +} + +template<> EIGEN_STRONG_INLINE Eigen::half predux_min(const Packet8h& a) { + Packet8f af = half2float(a); + float reduced = predux_min(af); + return Eigen::half(reduced); +} + +template<> EIGEN_STRONG_INLINE Eigen::half predux_mul(const Packet8h& a) { + Packet8f af = half2float(a); + float reduced = predux_mul(af); + return Eigen::half(reduced); +} + +template<> EIGEN_STRONG_INLINE Packet8h preverse(const Packet8h& a) +{ + __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1); + return _mm_shuffle_epi8(a,m); +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + __m128i a = kernel.packet[0]; + __m128i b = kernel.packet[1]; + __m128i c = kernel.packet[2]; + __m128i d = kernel.packet[3]; + __m128i e = kernel.packet[4]; + __m128i f = kernel.packet[5]; + __m128i g = kernel.packet[6]; + __m128i h = kernel.packet[7]; + + __m128i a03b03 = _mm_unpacklo_epi16(a, b); + __m128i c03d03 = _mm_unpacklo_epi16(c, d); + __m128i e03f03 = _mm_unpacklo_epi16(e, f); + __m128i g03h03 = _mm_unpacklo_epi16(g, h); + __m128i a47b47 = _mm_unpackhi_epi16(a, b); + __m128i c47d47 = _mm_unpackhi_epi16(c, d); + __m128i e47f47 = _mm_unpackhi_epi16(e, f); + __m128i g47h47 = _mm_unpackhi_epi16(g, h); + + __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03); + __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03); + __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03); + __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03); + __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47); + __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47); + __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47); + __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47); + + __m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01); + __m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01); + __m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23); + __m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23); + __m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45); + __m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45); + __m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67); + __m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67); + + kernel.packet[0] = a0b0c0d0e0f0g0h0; + kernel.packet[1] = a1b1c1d1e1f1g1h1; + kernel.packet[2] = a2b2c2d2e2f2g2h2; + kernel.packet[3] = a3b3c3d3e3f3g3h3; + kernel.packet[4] = a4b4c4d4e4f4g4h4; + kernel.packet[5] = a5b5c5d5e5f5g5h5; + kernel.packet[6] = a6b6c6d6e6f6g6h6; + kernel.packet[7] = a7b7c7d7e7f7g7h7; +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + EIGEN_ALIGN32 Eigen::half in[4][8]; + pstore(in[0], kernel.packet[0]); + pstore(in[1], kernel.packet[1]); + pstore(in[2], kernel.packet[2]); + pstore(in[3], kernel.packet[3]); + + EIGEN_ALIGN32 Eigen::half out[4][8]; + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) { + out[i][j] = in[j][2*i]; + } + for (int j = 0; j < 4; ++j) { + out[i][j+4] = in[j][2*i+1]; + } + } + + kernel.packet[0] = pload(out[0]); + kernel.packet[1] = pload(out[1]); + kernel.packet[2] = pload(out[2]); + kernel.packet[3] = pload(out[3]); +} + +// BFloat16 implementation. + +EIGEN_STRONG_INLINE Packet8f Bf16ToF32(const Packet8bf& a) { +#ifdef EIGEN_VECTORIZE_AVX2 + __m256i extend = _mm256_cvtepu16_epi32(a); + return _mm256_castsi256_ps(_mm256_slli_epi32(extend, 16)); +#else + __m128i lo = _mm_cvtepu16_epi32(a); + __m128i hi = _mm_cvtepu16_epi32(_mm_srli_si128(a, 8)); + __m128i lo_shift = _mm_slli_epi32(lo, 16); + __m128i hi_shift = _mm_slli_epi32(hi, 16); + return _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo_shift), hi_shift, 1)); +#endif +} + +// Convert float to bfloat16 according to round-to-nearest-even/denormals algorithm. +EIGEN_STRONG_INLINE Packet8bf F32ToBf16(const Packet8f& a) { + + __m256i input = _mm256_castps_si256(a); + +#ifdef EIGEN_VECTORIZE_AVX2 + // uint32_t lsb = (input >> 16); + __m256i t = _mm256_srli_epi32(input, 16); + // uint32_t lsb = lsb & 1; + t = _mm256_and_si256(t, _mm256_set1_epi32(1)); + // uint32_t rounding_bias = 0x7fff + lsb; + t = _mm256_add_epi32(t, _mm256_set1_epi32(0x7fff)); + // input += rounding_bias; + t = _mm256_add_epi32(t, input); + // input = input >> 16; + t = _mm256_srli_epi32(t, 16); + // Check NaN before converting back to bf16 + __m256 mask = _mm256_cmp_ps(a, a, _CMP_ORD_Q); + __m256i nan = _mm256_set1_epi32(0x7fc0); + t = _mm256_blendv_epi8(nan, t, _mm256_castps_si256(mask)); + // output = numext::bit_cast(input); + return _mm_packus_epi32(_mm256_extractf128_si256(t, 0), + _mm256_extractf128_si256(t, 1)); +#else + // uint32_t lsb = (input >> 16); + __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(input, 0), 16); + __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(input, 1), 16); + // uint32_t lsb = lsb & 1; + lo = _mm_and_si128(lo, _mm_set1_epi32(1)); + hi = _mm_and_si128(hi, _mm_set1_epi32(1)); + // uint32_t rounding_bias = 0x7fff + lsb; + lo = _mm_add_epi32(lo, _mm_set1_epi32(0x7fff)); + hi = _mm_add_epi32(hi, _mm_set1_epi32(0x7fff)); + // input += rounding_bias; + lo = _mm_add_epi32(lo, _mm256_extractf128_si256(input, 0)); + hi = _mm_add_epi32(hi, _mm256_extractf128_si256(input, 1)); + // input = input >> 16; + lo = _mm_srli_epi32(lo, 16); + hi = _mm_srli_epi32(hi, 16); + // Check NaN before converting back to bf16 + __m256 mask = _mm256_cmp_ps(a, a, _CMP_ORD_Q); + __m128i nan = _mm_set1_epi32(0x7fc0); + lo = _mm_blendv_epi8(nan, lo, _mm_castps_si128(_mm256_castps256_ps128(mask))); + hi = _mm_blendv_epi8(nan, hi, _mm_castps_si128(_mm256_extractf128_ps(mask, 1))); + // output = numext::bit_cast(input); + return _mm_packus_epi32(lo, hi); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet8bf pset1(const bfloat16& from) { + return _mm_set1_epi16(numext::bit_cast(from)); +} + +template<> EIGEN_STRONG_INLINE bfloat16 pfirst(const Packet8bf& from) { + return numext::bit_cast(static_cast(_mm_extract_epi16(from, 0))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pload(const bfloat16* from) { + return _mm_load_si128(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE Packet8bf ploadu(const bfloat16* from) { + return _mm_loadu_si128(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE void pstore(bfloat16* to, const Packet8bf& from) { + _mm_store_si128(reinterpret_cast<__m128i*>(to), from); +} + +template<> EIGEN_STRONG_INLINE void pstoreu(bfloat16* to, const Packet8bf& from) { + _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); +} + +template<> EIGEN_STRONG_INLINE Packet8bf +ploaddup(const bfloat16* from) { + const numext::uint16_t a = numext::bit_cast(from[0]); + const numext::uint16_t b = numext::bit_cast(from[1]); + const numext::uint16_t c = numext::bit_cast(from[2]); + const numext::uint16_t d = numext::bit_cast(from[3]); + return _mm_set_epi16(d, d, c, c, b, b, a, a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf +ploadquad(const bfloat16* from) { + const numext::uint16_t a = numext::bit_cast(from[0]); + const numext::uint16_t b = numext::bit_cast(from[1]); + return _mm_set_epi16(b, b, b, b, a, a, a, a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf ptrue(const Packet8bf& a) { + return _mm_cmpeq_epi32(a, a); +} + +template <> +EIGEN_STRONG_INLINE Packet8bf pabs(const Packet8bf& a) { + const __m128i sign_mask = _mm_set1_epi16(static_cast(0x8000)); + return _mm_andnot_si128(sign_mask, a); +} + +template <> +EIGEN_STRONG_INLINE Packet8bf pmin(const Packet8bf& a, + const Packet8bf& b) { + return F32ToBf16(pmin(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8bf pmax(const Packet8bf& a, + const Packet8bf& b) { + return F32ToBf16(pmax(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8bf plset(const bfloat16& a) { + return F32ToBf16(plset(static_cast(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf por(const Packet8bf& a,const Packet8bf& b) { + return _mm_or_si128(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8bf pxor(const Packet8bf& a,const Packet8bf& b) { + return _mm_xor_si128(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8bf pand(const Packet8bf& a,const Packet8bf& b) { + return _mm_and_si128(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8bf pandnot(const Packet8bf& a,const Packet8bf& b) { + return _mm_andnot_si128(b,a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pselect(const Packet8bf& mask, const Packet8bf& a, const Packet8bf& b) { + return _mm_blendv_epi8(b, a, mask); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pround(const Packet8bf& a) +{ + return F32ToBf16(pround(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf print(const Packet8bf& a) { + return F32ToBf16(print(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pceil(const Packet8bf& a) { + return F32ToBf16(pceil(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pfloor(const Packet8bf& a) { + return F32ToBf16(pfloor(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_eq(const Packet8bf& a,const Packet8bf& b) { + return Pack16To8(pcmp_eq(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_le(const Packet8bf& a,const Packet8bf& b) { + return Pack16To8(pcmp_le(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt(const Packet8bf& a,const Packet8bf& b) { + return Pack16To8(pcmp_lt(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt_or_nan(const Packet8bf& a,const Packet8bf& b) { + return Pack16To8(pcmp_lt_or_nan(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pconj(const Packet8bf& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet8bf pnegate(const Packet8bf& a) { + Packet8bf sign_mask = _mm_set1_epi16(static_cast(0x8000)); + return _mm_xor_si128(a, sign_mask); +} + +template<> EIGEN_STRONG_INLINE Packet8bf padd(const Packet8bf& a, const Packet8bf& b) { + return F32ToBf16(padd(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf psub(const Packet8bf& a, const Packet8bf& b) { + return F32ToBf16(psub(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pmul(const Packet8bf& a, const Packet8bf& b) { + return F32ToBf16(pmul(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pdiv(const Packet8bf& a, const Packet8bf& b) { + return F32ToBf16(pdiv(Bf16ToF32(a), Bf16ToF32(b))); +} + + +template<> EIGEN_STRONG_INLINE Packet8bf pgather(const bfloat16* from, Index stride) +{ + const numext::uint16_t s0 = numext::bit_cast(from[0*stride]); + const numext::uint16_t s1 = numext::bit_cast(from[1*stride]); + const numext::uint16_t s2 = numext::bit_cast(from[2*stride]); + const numext::uint16_t s3 = numext::bit_cast(from[3*stride]); + const numext::uint16_t s4 = numext::bit_cast(from[4*stride]); + const numext::uint16_t s5 = numext::bit_cast(from[5*stride]); + const numext::uint16_t s6 = numext::bit_cast(from[6*stride]); + const numext::uint16_t s7 = numext::bit_cast(from[7*stride]); + return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0); +} + +template<> EIGEN_STRONG_INLINE void pscatter(bfloat16* to, const Packet8bf& from, Index stride) +{ + EIGEN_ALIGN32 bfloat16 aux[8]; + pstore(aux, from); + to[stride*0] = aux[0]; + to[stride*1] = aux[1]; + to[stride*2] = aux[2]; + to[stride*3] = aux[3]; + to[stride*4] = aux[4]; + to[stride*5] = aux[5]; + to[stride*6] = aux[6]; + to[stride*7] = aux[7]; +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux(const Packet8bf& a) { + return static_cast(predux(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_max(const Packet8bf& a) { + return static_cast(predux_max(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_min(const Packet8bf& a) { + return static_cast(predux_min(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_mul(const Packet8bf& a) { + return static_cast(predux_mul(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf preverse(const Packet8bf& a) +{ + __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1); + return _mm_shuffle_epi8(a,m); +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + __m128i a = kernel.packet[0]; + __m128i b = kernel.packet[1]; + __m128i c = kernel.packet[2]; + __m128i d = kernel.packet[3]; + __m128i e = kernel.packet[4]; + __m128i f = kernel.packet[5]; + __m128i g = kernel.packet[6]; + __m128i h = kernel.packet[7]; + + __m128i a03b03 = _mm_unpacklo_epi16(a, b); + __m128i c03d03 = _mm_unpacklo_epi16(c, d); + __m128i e03f03 = _mm_unpacklo_epi16(e, f); + __m128i g03h03 = _mm_unpacklo_epi16(g, h); + __m128i a47b47 = _mm_unpackhi_epi16(a, b); + __m128i c47d47 = _mm_unpackhi_epi16(c, d); + __m128i e47f47 = _mm_unpackhi_epi16(e, f); + __m128i g47h47 = _mm_unpackhi_epi16(g, h); + + __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03); + __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03); + __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03); + __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03); + __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47); + __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47); + __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47); + __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47); + + kernel.packet[0] = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01); + kernel.packet[1] = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01); + kernel.packet[2] = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23); + kernel.packet[3] = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23); + kernel.packet[4] = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45); + kernel.packet[5] = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45); + kernel.packet[6] = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67); + kernel.packet[7] = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67); +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + __m128i a = kernel.packet[0]; + __m128i b = kernel.packet[1]; + __m128i c = kernel.packet[2]; + __m128i d = kernel.packet[3]; + + __m128i ab_03 = _mm_unpacklo_epi16(a, b); + __m128i cd_03 = _mm_unpacklo_epi16(c, d); + __m128i ab_47 = _mm_unpackhi_epi16(a, b); + __m128i cd_47 = _mm_unpackhi_epi16(c, d); + + kernel.packet[0] = _mm_unpacklo_epi32(ab_03, cd_03); + kernel.packet[1] = _mm_unpackhi_epi32(ab_03, cd_03); + kernel.packet[2] = _mm_unpacklo_epi32(ab_47, cd_47); + kernel.packet[3] = _mm_unpackhi_epi32(ab_47, cd_47); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_AVX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/TypeCasting.h new file mode 100644 index 0000000..9853347 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX/TypeCasting.h @@ -0,0 +1,192 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_AVX_H +#define EIGEN_TYPE_CASTING_AVX_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_VECTORIZE_AVX512 +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +#endif + +template <> +EIGEN_STRONG_INLINE Packet16b pcast(const Packet8f& a, + const Packet8f& b) { + __m256 nonzero_a = _mm256_cmp_ps(a, pzero(a), _CMP_NEQ_UQ); + __m256 nonzero_b = _mm256_cmp_ps(b, pzero(b), _CMP_NEQ_UQ); + constexpr char kFF = '\255'; +#ifndef EIGEN_VECTORIZE_AVX2 + __m128i shuffle_mask128_a_lo = _mm_set_epi8(kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, 12, 8, 4, 0); + __m128i shuffle_mask128_a_hi = _mm_set_epi8(kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, 12, 8, 4, 0, kFF, kFF, kFF, kFF); + __m128i shuffle_mask128_b_lo = _mm_set_epi8(kFF, kFF, kFF, kFF, 12, 8, 4, 0, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF); + __m128i shuffle_mask128_b_hi = _mm_set_epi8(12, 8, 4, 0, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF); + __m128i a_hi = _mm_shuffle_epi8(_mm256_extractf128_si256(_mm256_castps_si256(nonzero_a), 1), shuffle_mask128_a_hi); + __m128i a_lo = _mm_shuffle_epi8(_mm256_extractf128_si256(_mm256_castps_si256(nonzero_a), 0), shuffle_mask128_a_lo); + __m128i b_hi = _mm_shuffle_epi8(_mm256_extractf128_si256(_mm256_castps_si256(nonzero_b), 1), shuffle_mask128_b_hi); + __m128i b_lo = _mm_shuffle_epi8(_mm256_extractf128_si256(_mm256_castps_si256(nonzero_b), 0), shuffle_mask128_b_lo); + __m128i merged = _mm_or_si128(_mm_or_si128(b_lo, b_hi), _mm_or_si128(a_lo, a_hi)); + return _mm_and_si128(merged, _mm_set1_epi8(1)); + #else + __m256i a_shuffle_mask = _mm256_set_epi8(kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, 12, 8, 4, 0, kFF, kFF, kFF, kFF, + kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, 12, 8, 4, 0); + __m256i b_shuffle_mask = _mm256_set_epi8( 12, 8, 4, 0, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF, + kFF, kFF, kFF, kFF, 12, 8, 4, 0, kFF, kFF, kFF, kFF, kFF, kFF, kFF, kFF); + __m256i a_shuff = _mm256_shuffle_epi8(_mm256_castps_si256(nonzero_a), a_shuffle_mask); + __m256i b_shuff = _mm256_shuffle_epi8(_mm256_castps_si256(nonzero_b), b_shuffle_mask); + __m256i a_or_b = _mm256_or_si256(a_shuff, b_shuff); + __m256i merged = _mm256_or_si256(a_or_b, _mm256_castsi128_si256(_mm256_extractf128_si256(a_or_b, 1))); + return _mm256_castsi256_si128(_mm256_and_si256(merged, _mm256_set1_epi8(1))); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet8f pcast(const Packet16b& a) { + const __m256 cst_one = _mm256_set1_ps(1.0f); + #ifdef EIGEN_VECTORIZE_AVX2 + __m256i a_extended = _mm256_cvtepi8_epi32(a); + __m256i abcd_efgh = _mm256_cmpeq_epi32(a_extended, _mm256_setzero_si256()); + #else + __m128i abcd_efhg_ijkl_mnop = _mm_cmpeq_epi8(a, _mm_setzero_si128()); + __m128i aabb_ccdd_eeff_gghh = _mm_unpacklo_epi8(abcd_efhg_ijkl_mnop, abcd_efhg_ijkl_mnop); + __m128i aaaa_bbbb_cccc_dddd = _mm_unpacklo_epi8(aabb_ccdd_eeff_gghh, aabb_ccdd_eeff_gghh); + __m128i eeee_ffff_gggg_hhhh = _mm_unpackhi_epi8(aabb_ccdd_eeff_gghh, aabb_ccdd_eeff_gghh); + __m256i abcd_efgh = _mm256_setr_m128i(aaaa_bbbb_cccc_dddd, eeee_ffff_gggg_hhhh); + #endif + __m256 result = _mm256_andnot_ps(_mm256_castsi256_ps(abcd_efgh), cst_one); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet8i pcast(const Packet8f& a) { + return _mm256_cvttps_epi32(a); +} + +template<> EIGEN_STRONG_INLINE Packet8i pcast(const Packet4d& a, const Packet4d& b) { + return _mm256_set_m128i(_mm256_cvttpd_epi32(b), _mm256_cvttpd_epi32(a)); +} + +template <> EIGEN_STRONG_INLINE Packet4i pcast(const Packet4d& a) { + return _mm256_cvttpd_epi32(a); +} + +template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet8i& a) { + return _mm256_cvtepi32_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet4d& a, const Packet4d& b) { + return _mm256_set_m128(_mm256_cvtpd_ps(b), _mm256_cvtpd_ps(a)); +} + +template <> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4d& a) { + return _mm256_cvtpd_ps(a); +} + +template <> EIGEN_STRONG_INLINE Packet4d pcast(const Packet8i& a) { + return _mm256_cvtepi32_pd(_mm256_castsi256_si128(a)); +} + +template <> EIGEN_STRONG_INLINE Packet4d pcast(const Packet4i& a) { + return _mm256_cvtepi32_pd(a); +} + +template <> EIGEN_STRONG_INLINE Packet4d pcast(const Packet8f& a) { + return _mm256_cvtps_pd(_mm256_castps256_ps128(a)); +} + +template <> EIGEN_STRONG_INLINE Packet4d pcast(const Packet4f& a) { + return _mm256_cvtps_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet8i preinterpret(const Packet8f& a) { + return _mm256_castps_si256(a); +} + +template<> EIGEN_STRONG_INLINE Packet8f preinterpret(const Packet8i& a) { + return _mm256_castsi256_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet8ui preinterpret(const Packet8i& a) { + return Packet8ui(a); +} + +template<> EIGEN_STRONG_INLINE Packet8i preinterpret(const Packet8ui& a) { + return Packet8i(a); +} + +// truncation operations + +template<> EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet8f& a) { + return _mm256_castps256_ps128(a); +} + +template<> EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet4d& a) { + return _mm256_castpd256_pd128(a); +} + +template<> EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet8i& a) { + return _mm256_castsi256_si128(a); +} + +template<> EIGEN_STRONG_INLINE Packet4ui preinterpret(const Packet8ui& a) { + return _mm256_castsi256_si128(a); +} + + +#ifdef EIGEN_VECTORIZE_AVX2 +template<> EIGEN_STRONG_INLINE Packet4ul preinterpret(const Packet4l& a) { + return Packet4ul(a); +} + +template<> EIGEN_STRONG_INLINE Packet4l preinterpret(const Packet4ul& a) { + return Packet4l(a); +} + +#endif + +template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet8h& a) { + return half2float(a); +} + +template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet8bf& a) { + return Bf16ToF32(a); +} + +template<> EIGEN_STRONG_INLINE Packet8h pcast(const Packet8f& a) { + return float2half(a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcast(const Packet8f& a) { + return F32ToBf16(a); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_AVX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/Complex.h new file mode 100644 index 0000000..0372e95 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/Complex.h @@ -0,0 +1,380 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_AVX512_H +#define EIGEN_COMPLEX_AVX512_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +//---------- float ---------- +struct Packet8cf +{ + EIGEN_STRONG_INLINE Packet8cf() {} + EIGEN_STRONG_INLINE explicit Packet8cf(const __m512& a) : v(a) {} + __m512 v; +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet8cf type; + typedef Packet4cf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits { + typedef std::complex type; + typedef Packet4cf half; + typedef Packet16f as_real; + enum { + size = 8, + alignment=unpacket_traits::alignment, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet8cf ptrue(const Packet8cf& a) { return Packet8cf(ptrue(Packet16f(a.v))); } +template<> EIGEN_STRONG_INLINE Packet8cf padd(const Packet8cf& a, const Packet8cf& b) { return Packet8cf(_mm512_add_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet8cf psub(const Packet8cf& a, const Packet8cf& b) { return Packet8cf(_mm512_sub_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet8cf pnegate(const Packet8cf& a) +{ + return Packet8cf(pnegate(a.v)); +} +template<> EIGEN_STRONG_INLINE Packet8cf pconj(const Packet8cf& a) +{ + const __m512 mask = _mm512_castsi512_ps(_mm512_setr_epi32( + 0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000, + 0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000)); + return Packet8cf(pxor(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet8cf pmul(const Packet8cf& a, const Packet8cf& b) +{ + __m512 tmp2 = _mm512_mul_ps(_mm512_movehdup_ps(a.v), _mm512_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1))); + return Packet8cf(_mm512_fmaddsub_ps(_mm512_moveldup_ps(a.v), b.v, tmp2)); +} + +template<> EIGEN_STRONG_INLINE Packet8cf pand (const Packet8cf& a, const Packet8cf& b) { return Packet8cf(pand(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet8cf por (const Packet8cf& a, const Packet8cf& b) { return Packet8cf(por(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet8cf pxor (const Packet8cf& a, const Packet8cf& b) { return Packet8cf(pxor(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet8cf pandnot(const Packet8cf& a, const Packet8cf& b) { return Packet8cf(pandnot(a.v,b.v)); } + +template <> +EIGEN_STRONG_INLINE Packet8cf pcmp_eq(const Packet8cf& a, const Packet8cf& b) { + __m512 eq = pcmp_eq(a.v, b.v); + return Packet8cf(pand(eq, _mm512_permute_ps(eq, 0xB1))); +} + +template<> EIGEN_STRONG_INLINE Packet8cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet8cf(pload(&numext::real_ref(*from))); } +template<> EIGEN_STRONG_INLINE Packet8cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet8cf(ploadu(&numext::real_ref(*from))); } + + +template<> EIGEN_STRONG_INLINE Packet8cf pset1(const std::complex& from) +{ + const float re = std::real(from); + const float im = std::imag(from); + return Packet8cf(_mm512_set_ps(im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, re)); +} + +template<> EIGEN_STRONG_INLINE Packet8cf ploaddup(const std::complex* from) +{ + return Packet8cf( _mm512_castpd_ps( ploaddup((const double*)(const void*)from )) ); +} +template<> EIGEN_STRONG_INLINE Packet8cf ploadquad(const std::complex* from) +{ + return Packet8cf( _mm512_castpd_ps( ploadquad((const double*)(const void*)from )) ); +} + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex* to, const Packet8cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex* to, const Packet8cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); } + +template<> EIGEN_DEVICE_FUNC inline Packet8cf pgather, Packet8cf>(const std::complex* from, Index stride) +{ + return Packet8cf(_mm512_castpd_ps(pgather((const double*)(const void*)from, stride))); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet8cf>(std::complex* to, const Packet8cf& from, Index stride) +{ + pscatter((double*)(void*)to, _mm512_castps_pd(from.v), stride); +} + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet8cf& a) +{ + return pfirst(Packet2cf(_mm512_castps512_ps128(a.v))); +} + +template<> EIGEN_STRONG_INLINE Packet8cf preverse(const Packet8cf& a) { + return Packet8cf(_mm512_castsi512_ps( + _mm512_permutexvar_epi64( _mm512_set_epi32(0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7), + _mm512_castps_si512(a.v)))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet8cf& a) +{ + return predux(padd(Packet4cf(extract256<0>(a.v)), + Packet4cf(extract256<1>(a.v)))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet8cf& a) +{ + return predux_mul(pmul(Packet4cf(extract256<0>(a.v)), + Packet4cf(extract256<1>(a.v)))); +} + +template <> +EIGEN_STRONG_INLINE Packet4cf predux_half_dowto4(const Packet8cf& a) { + __m256 lane0 = extract256<0>(a.v); + __m256 lane1 = extract256<1>(a.v); + __m256 res = _mm256_add_ps(lane0, lane1); + return Packet4cf(res); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet8cf,Packet16f) + +template<> EIGEN_STRONG_INLINE Packet8cf pdiv(const Packet8cf& a, const Packet8cf& b) +{ + return pdiv_complex(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8cf pcplxflip(const Packet8cf& x) +{ + return Packet8cf(_mm512_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1))); +} + +//---------- double ---------- +struct Packet4cd +{ + EIGEN_STRONG_INLINE Packet4cd() {} + EIGEN_STRONG_INLINE explicit Packet4cd(const __m512d& a) : v(a) {} + __m512d v; +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet4cd type; + typedef Packet2cd half; + enum { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits { + typedef std::complex type; + typedef Packet2cd half; + typedef Packet8d as_real; + enum { + size = 4, + alignment = unpacket_traits::alignment, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet4cd padd(const Packet4cd& a, const Packet4cd& b) { return Packet4cd(_mm512_add_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cd psub(const Packet4cd& a, const Packet4cd& b) { return Packet4cd(_mm512_sub_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cd pnegate(const Packet4cd& a) { return Packet4cd(pnegate(a.v)); } +template<> EIGEN_STRONG_INLINE Packet4cd pconj(const Packet4cd& a) +{ + const __m512d mask = _mm512_castsi512_pd( + _mm512_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0, + 0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0)); + return Packet4cd(pxor(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet4cd pmul(const Packet4cd& a, const Packet4cd& b) +{ + __m512d tmp1 = _mm512_shuffle_pd(a.v,a.v,0x0); + __m512d tmp2 = _mm512_shuffle_pd(a.v,a.v,0xFF); + __m512d tmp3 = _mm512_shuffle_pd(b.v,b.v,0x55); + __m512d odd = _mm512_mul_pd(tmp2, tmp3); + return Packet4cd(_mm512_fmaddsub_pd(tmp1, b.v, odd)); +} + +template<> EIGEN_STRONG_INLINE Packet4cd ptrue(const Packet4cd& a) { return Packet4cd(ptrue(Packet8d(a.v))); } +template<> EIGEN_STRONG_INLINE Packet4cd pand (const Packet4cd& a, const Packet4cd& b) { return Packet4cd(pand(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cd por (const Packet4cd& a, const Packet4cd& b) { return Packet4cd(por(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cd pxor (const Packet4cd& a, const Packet4cd& b) { return Packet4cd(pxor(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cd pandnot(const Packet4cd& a, const Packet4cd& b) { return Packet4cd(pandnot(a.v,b.v)); } + +template <> +EIGEN_STRONG_INLINE Packet4cd pcmp_eq(const Packet4cd& a, const Packet4cd& b) { + __m512d eq = pcmp_eq(a.v, b.v); + return Packet4cd(pand(eq, _mm512_permute_pd(eq, 0x55))); +} + +template<> EIGEN_STRONG_INLINE Packet4cd pload (const std::complex* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet4cd(pload((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet4cd ploadu(const std::complex* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cd(ploadu((const double*)from)); } + +template<> EIGEN_STRONG_INLINE Packet4cd pset1(const std::complex& from) +{ + return Packet4cd(_mm512_castps_pd(_mm512_broadcast_f32x4( _mm_castpd_ps(pset1(from).v)))); +} + +template<> EIGEN_STRONG_INLINE Packet4cd ploaddup(const std::complex* from) { + return Packet4cd(_mm512_insertf64x4( + _mm512_castpd256_pd512(ploaddup(from).v), ploaddup(from+1).v, 1)); +} + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet4cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet4cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } + +template<> EIGEN_DEVICE_FUNC inline Packet4cd pgather, Packet4cd>(const std::complex* from, Index stride) +{ + return Packet4cd(_mm512_insertf64x4(_mm512_castpd256_pd512( + _mm256_insertf128_pd(_mm256_castpd128_pd256(ploadu(from+0*stride).v), ploadu(from+1*stride).v,1)), + _mm256_insertf128_pd(_mm256_castpd128_pd256(ploadu(from+2*stride).v), ploadu(from+3*stride).v,1), 1)); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet4cd>(std::complex* to, const Packet4cd& from, Index stride) +{ + __m512i fromi = _mm512_castpd_si512(from.v); + double* tod = (double*)(void*)to; + _mm_storeu_pd(tod+0*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,0)) ); + _mm_storeu_pd(tod+2*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,1)) ); + _mm_storeu_pd(tod+4*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,2)) ); + _mm_storeu_pd(tod+6*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,3)) ); +} + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet4cd& a) +{ + __m128d low = extract128<0>(a.v); + EIGEN_ALIGN16 double res[2]; + _mm_store_pd(res, low); + return std::complex(res[0],res[1]); +} + +template<> EIGEN_STRONG_INLINE Packet4cd preverse(const Packet4cd& a) { + return Packet4cd(_mm512_shuffle_f64x2(a.v, a.v, (shuffle_mask<3,2,1,0>::mask))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet4cd& a) +{ + return predux(padd(Packet2cd(_mm512_extractf64x4_pd(a.v,0)), + Packet2cd(_mm512_extractf64x4_pd(a.v,1)))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet4cd& a) +{ + return predux_mul(pmul(Packet2cd(_mm512_extractf64x4_pd(a.v,0)), + Packet2cd(_mm512_extractf64x4_pd(a.v,1)))); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cd,Packet8d) + +template<> EIGEN_STRONG_INLINE Packet4cd pdiv(const Packet4cd& a, const Packet4cd& b) +{ + return pdiv_complex(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet4cd pcplxflip(const Packet4cd& x) +{ + return Packet4cd(_mm512_permute_pd(x.v,0x55)); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + PacketBlock pb; + + pb.packet[0] = _mm512_castps_pd(kernel.packet[0].v); + pb.packet[1] = _mm512_castps_pd(kernel.packet[1].v); + pb.packet[2] = _mm512_castps_pd(kernel.packet[2].v); + pb.packet[3] = _mm512_castps_pd(kernel.packet[3].v); + ptranspose(pb); + kernel.packet[0].v = _mm512_castpd_ps(pb.packet[0]); + kernel.packet[1].v = _mm512_castpd_ps(pb.packet[1]); + kernel.packet[2].v = _mm512_castpd_ps(pb.packet[2]); + kernel.packet[3].v = _mm512_castpd_ps(pb.packet[3]); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + PacketBlock pb; + + pb.packet[0] = _mm512_castps_pd(kernel.packet[0].v); + pb.packet[1] = _mm512_castps_pd(kernel.packet[1].v); + pb.packet[2] = _mm512_castps_pd(kernel.packet[2].v); + pb.packet[3] = _mm512_castps_pd(kernel.packet[3].v); + pb.packet[4] = _mm512_castps_pd(kernel.packet[4].v); + pb.packet[5] = _mm512_castps_pd(kernel.packet[5].v); + pb.packet[6] = _mm512_castps_pd(kernel.packet[6].v); + pb.packet[7] = _mm512_castps_pd(kernel.packet[7].v); + ptranspose(pb); + kernel.packet[0].v = _mm512_castpd_ps(pb.packet[0]); + kernel.packet[1].v = _mm512_castpd_ps(pb.packet[1]); + kernel.packet[2].v = _mm512_castpd_ps(pb.packet[2]); + kernel.packet[3].v = _mm512_castpd_ps(pb.packet[3]); + kernel.packet[4].v = _mm512_castpd_ps(pb.packet[4]); + kernel.packet[5].v = _mm512_castpd_ps(pb.packet[5]); + kernel.packet[6].v = _mm512_castpd_ps(pb.packet[6]); + kernel.packet[7].v = _mm512_castpd_ps(pb.packet[7]); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m512d T0 = _mm512_shuffle_f64x2(kernel.packet[0].v, kernel.packet[1].v, (shuffle_mask<0,1,0,1>::mask)); // [a0 a1 b0 b1] + __m512d T1 = _mm512_shuffle_f64x2(kernel.packet[0].v, kernel.packet[1].v, (shuffle_mask<2,3,2,3>::mask)); // [a2 a3 b2 b3] + __m512d T2 = _mm512_shuffle_f64x2(kernel.packet[2].v, kernel.packet[3].v, (shuffle_mask<0,1,0,1>::mask)); // [c0 c1 d0 d1] + __m512d T3 = _mm512_shuffle_f64x2(kernel.packet[2].v, kernel.packet[3].v, (shuffle_mask<2,3,2,3>::mask)); // [c2 c3 d2 d3] + + kernel.packet[3] = Packet4cd(_mm512_shuffle_f64x2(T1, T3, (shuffle_mask<1,3,1,3>::mask))); // [a3 b3 c3 d3] + kernel.packet[2] = Packet4cd(_mm512_shuffle_f64x2(T1, T3, (shuffle_mask<0,2,0,2>::mask))); // [a2 b2 c2 d2] + kernel.packet[1] = Packet4cd(_mm512_shuffle_f64x2(T0, T2, (shuffle_mask<1,3,1,3>::mask))); // [a1 b1 c1 d1] + kernel.packet[0] = Packet4cd(_mm512_shuffle_f64x2(T0, T2, (shuffle_mask<0,2,0,2>::mask))); // [a0 b0 c0 d0] +} + +template<> EIGEN_STRONG_INLINE Packet4cd psqrt(const Packet4cd& a) { + return psqrt_complex(a); +} + +template<> EIGEN_STRONG_INLINE Packet8cf psqrt(const Packet8cf& a) { + return psqrt_complex(a); +} + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_AVX512_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/GemmKernel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/GemmKernel.h new file mode 100644 index 0000000..2d33ca3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/GemmKernel.h @@ -0,0 +1,1244 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2022 Intel Corporation +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CORE_ARCH_AVX512_GEMM_KERNEL_H +#define EIGEN_CORE_ARCH_AVX512_GEMM_KERNEL_H + +#if EIGEN_COMP_MSVC +#include +#else +#include +#endif +#include +#include + +#include "../../InternalHeaderCheck.h" + +#if !defined(EIGEN_USE_AVX512_GEMM_KERNELS) +#define EIGEN_USE_AVX512_GEMM_KERNELS 1 +#endif + +#define SECOND_FETCH (32) +#if (EIGEN_COMP_GNUC_STRICT != 0) && !defined(EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_A_REGS) +// Use less registers to load A elements to workaround compiler spills. Loose a +// bit of performance (less than ~2%). +#define EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_A_REGS +#endif + +namespace Eigen { +namespace internal { + +template +class gemm_class { + using vec = typename packet_traits::type; + using vec_ymm = typename unpacket_traits::half; + using vec_xmm = typename unpacket_traits::half; + using umask_t = typename unpacket_traits::mask_t; + + static constexpr bool is_f32 = sizeof(Scalar) == sizeof(float); + static constexpr bool is_f64 = sizeof(Scalar) == sizeof(double); + +#ifndef EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_A_REGS + static constexpr bool use_less_a_regs = !is_unit_inc; +#else + static constexpr bool use_less_a_regs = true; +#endif +#ifndef EIGEN_ARCH_AVX512_GEMM_KERNEL_USE_LESS_B_REGS + static constexpr bool use_less_b_regs = !is_unit_inc; +#else + static constexpr bool use_less_b_regs = true; +#endif + + static constexpr int a_regs[] = {0, 1, 2, use_less_a_regs ? 0 : 3, use_less_a_regs ? 1 : 4, use_less_a_regs ? 2 : 5}; + static constexpr int b_regs[] = {6, use_less_b_regs ? 6 : 7}; + static constexpr int c_regs[] = { + 8, 16, 24, 9, 17, 25, 10, 18, 26, 11, 19, 27, 12, 20, 28, 13, 21, 29, 14, 22, 30, 15, 23, 31, + }; + + static constexpr int alpha_load_reg = 0; + static constexpr int c_load_regs[] = {1, 2, 6}; + + static constexpr int a_shift = 128; + static constexpr int b_shift = 128; + + static constexpr int nelems_in_cache_line = is_f32 ? 16 : 8; + static constexpr int a_prefetch_size = nelems_in_cache_line * 2; + static constexpr int b_prefetch_size = nelems_in_cache_line * 8; + + vec zmm[32]; + umask_t mask; + + // gemm arguments. + Index m; + const Index n, k, ldc; + const Index inc; + const Scalar *alpha; + + const Scalar *a, *b; + Scalar *c; + + const bool is_alpha1; + const bool is_beta0; + + const Index a_stride, b_stride; + const Index a_off, b_off; + + static EIGEN_ALWAYS_INLINE constexpr int div_up(int a, int b) { return a == 0 ? 0 : (a - 1) / b + 1; } + + EIGEN_ALWAYS_INLINE void prefetch_a(const Scalar *a_addr) { + _mm_prefetch((char *)(a_prefetch_size + a_addr - a_shift), _MM_HINT_T0); + } + + EIGEN_ALWAYS_INLINE void prefetch_b(const Scalar *b_addr) { + _mm_prefetch((char *)(b_prefetch_size + b_addr - b_shift), _MM_HINT_T0); + } + + EIGEN_ALWAYS_INLINE void prefetch_x(const Scalar *x_addr) { _mm_prefetch((char *)(x_addr - a_shift), _MM_HINT_T2); } + + EIGEN_ALWAYS_INLINE void prefetch_c(const Scalar *c_addr) { +#if defined(__PRFCHW__) && __PRFCHW__ == 1 + _m_prefetchw((void *)c_addr); +#else + _mm_prefetch((char *)c_addr, _MM_HINT_T0); +#endif + } + + template + EIGEN_ALWAYS_INLINE void a_load(vec &a_reg, const Scalar *a_addr) { + switch (nelems * sizeof(*a_addr) * 8) { + default: + case 512 * 3: + a_reg = ploadu(a_addr); + break; + case 512 * 2: + a_reg = ploadu(a_addr); + break; + case 512 * 1: + a_reg = ploadu(a_addr); + break; + case 256 * 1: + a_reg = preinterpret(_mm512_broadcast_f64x4(ploadu(reinterpret_cast(a_addr)))); + break; + case 128 * 1: + a_reg = preinterpret(_mm512_broadcast_f32x4(ploadu(reinterpret_cast(a_addr)))); + break; + case 64 * 1: + a_reg = preinterpret(pload1(reinterpret_cast(a_addr))); + break; + case 32 * 1: + a_reg = pload1(a_addr); + break; + } + } + + EIGEN_ALWAYS_INLINE void b_load(vec &b_reg, const Scalar *b_addr) { b_reg = pload1(b_addr); } + + template + EIGEN_ALWAYS_INLINE void c_store(Scalar *mem, vec &src) { + if (is_unit_inc) { + switch (nelems * sizeof(*mem) * 8) { + default: + case 512 * 3: + pstoreu(mem, src); + break; + case 512 * 2: + pstoreu(mem, src); + break; + case 512 * 1: + pstoreu(mem, src); + break; + case 256 * 1: + pstoreu(mem, preinterpret(src)); + break; + case 128 * 1: + pstoreu(mem, preinterpret(src)); + break; + case 64 * 1: + pstorel(mem, preinterpret(src)); + break; + case 32 * 1: + pstores(mem, preinterpret(src)); + break; + } + } else { + switch (nelems * sizeof(*mem) * 8) { + default: + case 512 * 3: + pscatter(mem, src, inc); + break; + case 512 * 2: + pscatter(mem, src, inc); + break; + case 512 * 1: + pscatter(mem, src, inc); + break; + case 256 * 1: + pscatter(mem, src, inc, mask); + break; + case 128 * 1: + pscatter(mem, src, inc, mask); + break; + case 64 * 1: + pscatter(mem, src, inc, mask); + break; + case 32 * 1: + pscatter(mem, src, inc, mask); + break; + } + } + } + + template + EIGEN_ALWAYS_INLINE void vaddm(vec &dst, const Scalar *mem, vec &src, vec ®) { + if (is_unit_inc) { + switch (nelems * sizeof(*mem) * 8) { + default: + case 512 * 3: + dst = padd(src, ploadu(mem)); + break; + case 512 * 2: + dst = padd(src, ploadu(mem)); + break; + case 512 * 1: + dst = padd(src, ploadu(mem)); + break; + case 256 * 1: + dst = preinterpret(padd(preinterpret(src), ploadu(mem))); + break; + case 128 * 1: + dst = preinterpret(padd(preinterpret(src), ploadu(mem))); + break; + case 64 * 1: + dst = preinterpret(padd(preinterpret(src), ploadl(mem))); + break; + case 32 * 1: + dst = preinterpret(padds(preinterpret(src), ploads(mem))); + break; + } + } else { + // Zero out scratch register + reg = pzero(reg); + + switch (nelems * sizeof(*mem) * 8) { + default: + case 512 * 3: + reg = pgather(mem, inc); + dst = padd(src, reg); + break; + case 512 * 2: + reg = pgather(mem, inc); + dst = padd(src, reg); + break; + case 512 * 1: + reg = pgather(mem, inc); + dst = padd(src, reg); + break; + case 256 * 1: + reg = preinterpret(pgather(mem, inc)); + dst = preinterpret(padd(preinterpret(src), preinterpret(reg))); + break; + case 128 * 1: + reg = preinterpret(pgather(mem, inc)); + dst = preinterpret(padd(preinterpret(src), preinterpret(reg))); + break; + case 64 * 1: + if (is_f32) { + reg = pgather(reg, mem, inc, mask); + dst = preinterpret(padd(preinterpret(src), preinterpret(reg))); + } else { + dst = preinterpret(padd(preinterpret(src), ploadl(mem))); + } + break; + case 32 * 1: + dst = preinterpret(padds(preinterpret(src), ploads(mem))); + break; + } + } + } + + EIGEN_STRONG_INLINE void vfmadd(vec &dst, const vec &src1, const vec &src2) { + dst = pmadd(src1, src2, dst); + +#if (EIGEN_COMP_GNUC != 0) || (EIGEN_COMP_CLANG != 0) + // Workaround register spills for gcc and clang + __asm__("#" : [dst] "+v"(dst) : [src1] "%v"(src1), [src2] "v"(src2)); +#endif + } + + template + EIGEN_ALWAYS_INLINE void vfmaddm(vec &dst, const Scalar *mem, vec &src, vec &scale, vec ®) { + if (is_unit_inc) { + switch (nelems * sizeof(*mem) * 8) { + default: + case 512 * 3: + dst = pmadd(scale, src, ploadu(mem)); + break; + case 512 * 2: + dst = pmadd(scale, src, ploadu(mem)); + break; + case 512 * 1: + dst = pmadd(scale, src, ploadu(mem)); + break; + case 256 * 1: + dst = + preinterpret(pmadd(preinterpret(scale), preinterpret(src), ploadu(mem))); + break; + case 128 * 1: + dst = + preinterpret(pmadd(preinterpret(scale), preinterpret(src), ploadu(mem))); + break; + case 64 * 1: + dst = + preinterpret(pmadd(preinterpret(scale), preinterpret(src), ploadl(mem))); + break; + case 32 * 1: + dst = + preinterpret(pmadds(preinterpret(scale), preinterpret(src), ploads(mem))); + break; + } + } else { + // Zero out scratch register + reg = pzero(reg); + + switch (nelems * sizeof(*mem) * 8) { + default: + case 512 * 3: + reg = pgather(mem, inc); + dst = pmadd(scale, src, reg); + break; + case 512 * 2: + reg = pgather(mem, inc); + dst = pmadd(scale, src, reg); + break; + case 512 * 1: + reg = pgather(mem, inc); + dst = pmadd(scale, src, reg); + break; + case 256 * 1: + reg = preinterpret(pgather(mem, inc)); + dst = preinterpret( + pmadd(preinterpret(scale), preinterpret(src), preinterpret(reg))); + break; + case 128 * 1: + reg = preinterpret(pgather(mem, inc)); + dst = preinterpret( + pmadd(preinterpret(scale), preinterpret(src), preinterpret(reg))); + break; + case 64 * 1: + if (is_f32) { + reg = pgather(reg, mem, inc, mask); + dst = preinterpret( + pmadd(preinterpret(scale), preinterpret(src), preinterpret(reg))); + } else { + dst = preinterpret( + pmadd(preinterpret(scale), preinterpret(src), ploadl(mem))); + } + break; + case 32 * 1: + dst = + preinterpret(pmadds(preinterpret(scale), preinterpret(src), ploads(mem))); + break; + } + } + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(j > endX) || (i > endY)> a_loads(const Scalar *ao) { + EIGEN_UNUSED_VARIABLE(ao); + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(j <= endX) && (i <= endY)> a_loads(const Scalar *ao) { + if (j < endX) { + if (i < endY) { + auto &a_reg = zmm[a_regs[i + (j % 2) * 3]]; + const Scalar *a_addr = ao + nelems * j + nelems_in_cache_line * i - a_shift; + a_load(a_reg, a_addr); + + a_loads(ao); + } else { + a_loads(ao); + } + } + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(un > max_b_unroll) || (i > um_vecs)> prefetch_cs(const Scalar *co1, + const Scalar *co2) { + EIGEN_UNUSED_VARIABLE(co1); + EIGEN_UNUSED_VARIABLE(co2); + } + + /* C prefetch loop structure. + * for (int un = 0; un < 8; un++) { + * if (b_unroll >= un + 1) { + * if (un == 4) co2 = co1 + 4 * ldc; + * + * for (int i = 0; i < um_vecs; i++) { + * Scalar *co = (un + 1 <= 4) ? co1 : co2; + * auto co_off = (un % 4) * ldc + a_unroll - 1 + i * nelems_in_cache_line * sizeof *co; + * prefetch_c(co + co_off); + * } + * } + * } + */ + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(un <= max_b_unroll) && (i <= um_vecs)> prefetch_cs(Scalar *&co1, Scalar *&co2) { + if (un < max_b_unroll) { + if (b_unroll >= un + 1) { + if (un == 4 && i == 0) co2 = co1 + 4 * ldc; + + if (i < um_vecs) { + Scalar *co = (un + 1 <= 4) ? co1 : co2; + auto co_off = (un % 4) * ldc + a_unroll - 1 + i * nelems_in_cache_line * sizeof *co; + prefetch_c(co + co_off); + + prefetch_cs(co1, co2); + } else { + prefetch_cs(co1, co2); + } + + } else { + prefetch_cs(co1, co2); + } + } + } + + // load_c + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(i > um_vecs)> scale_load_c(const Scalar *cox, vec &alpha_reg) { + EIGEN_UNUSED_VARIABLE(cox); + EIGEN_UNUSED_VARIABLE(alpha_reg); + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(i <= um_vecs)> scale_load_c(const Scalar *cox, vec &alpha_reg) { + if (i < um_vecs) { + auto &c_reg = zmm[c_regs[i + idx * 3]]; + auto &c_load_reg = zmm[c_load_regs[i % 3]]; + auto c_mem = cox; + if (is_unit_inc) + c_mem += i * nelems_in_cache_line; + else + c_mem += i * nelems_in_cache_line * inc; + + if (!is_beta0 && is_alpha1) + vaddm(c_reg, c_mem, c_reg, c_load_reg); + else if (!is_beta0 && !is_alpha1) + vfmaddm(c_reg, c_mem, c_reg, alpha_reg, c_load_reg); + else if (is_beta0 && !is_alpha1) + c_reg = pmul(alpha_reg, c_reg); + + scale_load_c(cox, alpha_reg); + } + } + + // store_c + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(i > um_vecs)> write_c(Scalar *cox) { + EIGEN_UNUSED_VARIABLE(cox); + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(i <= um_vecs)> write_c(Scalar *cox) { + if (i < um_vecs) { + auto &c_reg = zmm[c_regs[i + idx * 3]]; + auto c_mem = cox; + if (is_unit_inc) + c_mem += i * nelems_in_cache_line; + else + c_mem += i * nelems_in_cache_line * inc; + + c_store(c_mem, c_reg); + c_reg = pzero(c_reg); + + write_c(cox); + } + } + + /* C update loop structure. + * co2 = co1 + ldc; + * + * auto &alpha_reg = zmm[alpha_load_reg]; + * if (!is_alpha1) alpha_reg = pload1(alpha); + * + * int idx = 0; + * for (pow = 1; pow <= 8; pow <<= 1) { + * + * if (b_unroll >= pow) { + * for (count = 1; count < (pow + 1) / 2 + 1; count++) { + * if (pow >= 4) co2 += ldc; + * + * const Scalar *cox = (idx == 0) ? co1 : co2; + * + * const int um_vecs = div_up(a_unroll, nelems_in_cache_line); + * scale_load_c<0, um_vecs, idx, a_unroll>(cox, alpha_reg); + * write_c<0, um_vecs, idx, a_unroll>(cox); + * + * idx++; + * } + * } + * } + * + * if (b_unroll == 1) + * co1 += ldc; + * else + * co1 = co2 + ldc; + */ + + template + EIGEN_ALWAYS_INLINE void c_update_1count(Scalar *&cox) { + if (pow >= 4) cox += ldc; + + const int um_vecs = div_up(a_unroll, nelems_in_cache_line); + auto &alpha_reg = zmm[alpha_load_reg]; + + scale_load_c<0, um_vecs, idx, a_unroll>(cox, alpha_reg); + write_c<0, um_vecs, idx, a_unroll>(cox); + } + + template + EIGEN_ALWAYS_INLINE void c_update_1pow(Scalar *&co1, Scalar *&co2) { + constexpr int idx = pow / 2; + Scalar *&cox = idx == 0 ? co1 : co2; + + constexpr int max_count = (pow + 1) / 2; + static_assert(max_count <= 4, "Unsupported max_count."); + + if (1 <= max_count) c_update_1count(cox); + if (2 <= max_count) c_update_1count(cox); + if (3 <= max_count) c_update_1count(cox); + if (4 <= max_count) c_update_1count(cox); + } + + template + EIGEN_ALWAYS_INLINE void c_update(Scalar *&co1, Scalar *&co2) { + auto &alpha_reg = zmm[alpha_load_reg]; + + co2 = co1 + ldc; + if (!is_alpha1) alpha_reg = pload1(alpha); + if (!is_unit_inc && a_unroll < nelems_in_cache_line) mask = static_cast((1ull << a_unroll) - 1); + + static_assert(max_b_unroll <= 8, "Unsupported max_b_unroll"); + + if (1 <= max_b_unroll && 1 <= b_unroll) c_update_1pow<1, a_unroll>(co1, co2); + if (2 <= max_b_unroll && 2 <= b_unroll) c_update_1pow<2, a_unroll>(co1, co2); + if (4 <= max_b_unroll && 4 <= b_unroll) c_update_1pow<4, a_unroll>(co1, co2); + if (8 <= max_b_unroll && 8 <= b_unroll) c_update_1pow<8, a_unroll>(co1, co2); + + if (b_unroll == 1) + co1 += ldc; + else + co1 = co2 + ldc; + } + + // compute + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(um > um_vecs)> compute(const Scalar *ao, const Scalar *bo, int &fetchA_idx, + int &fetchB_idx, vec &b_reg) { + EIGEN_UNUSED_VARIABLE(ao); + EIGEN_UNUSED_VARIABLE(bo); + EIGEN_UNUSED_VARIABLE(fetchA_idx); + EIGEN_UNUSED_VARIABLE(fetchB_idx); + EIGEN_UNUSED_VARIABLE(b_reg); + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(um <= um_vecs)> compute(const Scalar *ao, const Scalar *bo, int &fetchA_idx, + int &fetchB_idx, vec &b_reg) { + if (um < um_vecs) { + auto &c_reg = zmm[c_regs[um + idx * 3]]; + auto &a_reg = zmm[a_regs[um + (uk % 2) * 3]]; + + vfmadd(c_reg, a_reg, b_reg); + + if (!fetch_x && um == 0 && + (((idx == 0 || idx == 6) && (uk % 2 == 0 || is_f64 || ktail)) || + (idx == 3 && (uk % 2 == 1 || is_f64 || ktail)))) { + prefetch_a(ao + nelems_in_cache_line * fetchA_idx); + fetchA_idx++; + } + + if (um == 0 && idx == 1 && (uk % 2 == 0 || is_f64 || ktail)) { + prefetch_b(bo + nelems_in_cache_line * fetchB_idx); + fetchB_idx++; + } + + compute(ao, bo, fetchA_idx, fetchB_idx, b_reg); + } + } + + // load_a + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(um > um_vecs)> load_a(const Scalar *ao) { + EIGEN_UNUSED_VARIABLE(ao); + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(um <= um_vecs)> load_a(const Scalar *ao) { + if (um < um_vecs) { + auto &a_reg = zmm[a_regs[um + (uk % 2) * 3]]; + const Scalar *a_addr = ao + nelems * (1 + !ktail * !use_less_a_regs + uk) + nelems_in_cache_line * um - a_shift; + a_load(a_reg, a_addr); + + load_a(ao); + } + } + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(count > (pow + 1) / 2)> innerkernel_1pow(const Scalar *&aa, + const Scalar *const &ao, + const Scalar *const &bo, Scalar *&co2, + int &fetchA_idx, int &fetchB_idx) { + EIGEN_UNUSED_VARIABLE(aa); + EIGEN_UNUSED_VARIABLE(ao); + EIGEN_UNUSED_VARIABLE(bo); + EIGEN_UNUSED_VARIABLE(co2); + EIGEN_UNUSED_VARIABLE(fetchA_idx); + EIGEN_UNUSED_VARIABLE(fetchB_idx); + } + + template + EIGEN_ALWAYS_INLINE std::enable_if_t<(count <= (pow + 1) / 2)> innerkernel_1pow(const Scalar *&aa, + const Scalar *const &ao, + const Scalar *const &bo, Scalar *&co2, + int &fetchA_idx, int &fetchB_idx) { + const int idx = (pow / 2) + count; + + if (count < (pow + 1) / 2) { + auto &b_reg = zmm[b_regs[idx % 2]]; + + if (fetch_x && uk == 3 && idx == 0) prefetch_x(aa); + if (fetch_x && uk == 3 && idx == 4) aa += 8; + + if (b_unroll >= pow) { + compute<0, um_vecs, idx, uk, fetch_x, ktail>(ao, bo, fetchA_idx, fetchB_idx, b_reg); + + const Scalar *b_addr = bo + b_unroll * uk + idx + 1 + (b_unroll > 1) * !use_less_b_regs - b_shift; + b_load(b_reg, b_addr); + } + + // Go to the next count. + innerkernel_1pow(aa, ao, bo, co2, fetchA_idx, + fetchB_idx); + + } else { + // Maybe prefetch C data after count-loop. + if (pow == 2 && c_fetch) { + if (uk % 3 == 0 && uk > 0) { + co2 += ldc; + } else { + prefetch_c(co2 + (uk % 3) * nelems_in_cache_line); + } + } + } + } + + template + EIGEN_ALWAYS_INLINE void innerkernel_1uk(const Scalar *&aa, const Scalar *const &ao, const Scalar *const &bo, + Scalar *&co2, int &fetchA_idx, int &fetchB_idx) { + const int um_vecs = div_up(a_unroll, nelems_in_cache_line); + + if (max_b_unroll >= 1) + innerkernel_1pow(aa, ao, bo, co2, fetchA_idx, fetchB_idx); + if (max_b_unroll >= 2) + innerkernel_1pow(aa, ao, bo, co2, fetchA_idx, fetchB_idx); + if (max_b_unroll >= 4) + innerkernel_1pow(aa, ao, bo, co2, fetchA_idx, fetchB_idx); + if (max_b_unroll >= 8) + innerkernel_1pow(aa, ao, bo, co2, fetchA_idx, fetchB_idx); + + // Load A after pow-loop. Skip this at the end to prevent running over the buffer + if (!no_a_preload) load_a<0, um_vecs, uk, a_unroll, ktail>(ao); + } + + /* Inner kernel loop structure. + * for (int uk = 0; uk < kfactor; uk++) { + * int idx = 0; + * + * for (pow = 1; pow < max_b_unroll << 1; pow <<= 1) { + * for (int count = 0; count < (pow + 1) / 2; count++) { + * auto &b_reg = zmm[b_regs[idx % 2]]; + * + * if (fetch_x && uk == 3 && idx == 0) prefetch_x(aa); + * if (fetch_x && uk == 3 && idx == 4) aa += 8; + * + * if (b_unroll >= pow) { + * compute<0, um_vecs, idx, uk, fetchx, ktail>(ao, bo, fetchA_idx, fetchB_idx, b_reg); + * + * const Scalar *b_addr = bo + b_unroll * uk + idx + 1 + (b_unroll > 1) - b_shift ; + * b_load(b_reg, b_addr); + * } + * idx++; + * } + * + * Maybe prefetch C data. + * if (pow == 2 && c_fetch) { + * if (uk % 3 == 0 && uk > 0) { + * co2 += ldc; + * } else { + * prefetch_c(co2 + (uk % 3) * nelems_in_cache_line); + * } + * } + * } + * + * Load A. + * load_a<0, um_vecs, uk, ktail, a_unroll>(ao); + * } + * + * Advance A/B pointers after uk-loop. + * ao += a_unroll * kfactor; + * bo += b_unroll * kfactor; + */ + + template + EIGEN_ALWAYS_INLINE void innerkernel(const Scalar *&aa, const Scalar *&ao, const Scalar *&bo, Scalar *&co2) { + int fetchA_idx = 0; + int fetchB_idx = 0; + + const bool fetch_x = k_factor == max_k_factor; + const bool ktail = k_factor == 1; + + static_assert(k_factor <= 4 && k_factor > 0, "innerkernel maximum k_factor supported is 4"); + static_assert(no_a_preload == false || (no_a_preload == true && k_factor == 1), "skipping a preload only allowed when k unroll is 1"); + + if (k_factor > 0) + innerkernel_1uk<0, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch, no_a_preload>(aa, ao, bo, co2, fetchA_idx, + fetchB_idx); + if (k_factor > 1) + innerkernel_1uk<1, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch, no_a_preload>(aa, ao, bo, co2, fetchA_idx, + fetchB_idx); + if (k_factor > 2) + innerkernel_1uk<2, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch, no_a_preload>(aa, ao, bo, co2, fetchA_idx, + fetchB_idx); + if (k_factor > 3) + innerkernel_1uk<3, max_b_unroll, a_unroll, b_unroll, ktail, fetch_x, c_fetch, no_a_preload>(aa, ao, bo, co2, fetchA_idx, + fetchB_idx); + + // Advance A/B pointers after uk-loop. + ao += a_unroll * k_factor; + bo += b_unroll * k_factor; + } + + template + EIGEN_ALWAYS_INLINE void kloop(const Scalar *&aa, const Scalar *&ao, const Scalar *&bo, Scalar *&co1, Scalar *&co2) { + const int um_vecs = div_up(a_unroll, nelems_in_cache_line); + if (!use_less_a_regs && k > 1) + a_loads<0, 2, 0, um_vecs, a_unroll>(ao); + else + a_loads<0, 1, 0, um_vecs, a_unroll>(ao); + + b_load(zmm[b_regs[0]], bo - b_shift + 0); + if (!use_less_b_regs) b_load(zmm[b_regs[1]], bo - b_shift + 1); + +#ifndef SECOND_FETCH + prefetch_cs<0, max_b_unroll, 0, um_vecs, a_unroll, b_unroll>(co1, co2); +#endif // SECOND_FETCH + + // Unrolling k-loop by a factor of 4. + const int max_k_factor = 4; + Index kRem = k % max_k_factor; + Index k_ = k - kRem; + if (k_ >= max_k_factor) { + k_ -= max_k_factor; + kRem += max_k_factor; + } + Index loop_count = k_ / max_k_factor; + + if (loop_count > 0) { +#ifdef SECOND_FETCH + loop_count -= SECOND_FETCH; +#endif + while (loop_count > 0) { + innerkernel(aa, ao, bo, co2); + loop_count--; + } +#ifdef SECOND_FETCH + co2 = co1 + nelems_in_cache_line - 1; + + loop_count += b_unroll; + while (loop_count > 0) { + innerkernel(aa, ao, bo, co2); + loop_count--; + } + + loop_count += SECOND_FETCH - b_unroll; + while (loop_count > 0) { + innerkernel(aa, ao, bo, co2); + loop_count--; + } +#endif + } + + // k-loop remainder handling. + loop_count = kRem; + while (loop_count > 1) { + innerkernel(aa, ao, bo, co2); + loop_count--; + } + if (loop_count > 0) { + innerkernel(aa, ao, bo, co2); + } + + // Update C matrix. + c_update(co1, co2); + } + + template + EIGEN_ALWAYS_INLINE void nloop(const Scalar *&aa, const Scalar *&ao, const Scalar *&bo, Scalar *&co1, Scalar *&co2) { + // Set A matrix pointer. + ao = a + a_off * a_unroll; + + // Set B matrix pointer if needed. + bo += b_unroll * b_off; + + kloop(aa, ao, bo, co1, co2); + + // Advance B matrix pointer if needed. + bo += b_unroll * (b_stride - k - b_off); + + // Advance prefetch A pointer. + aa += 16; + } + + template + EIGEN_ALWAYS_INLINE void mloop(const Scalar *&ao, const Scalar *&bo, Scalar *&co1, Scalar *&co2) { + // Set prefetch A pointers. + const Scalar *aa = a + a_unroll * a_stride; + + // Set C matrix pointers. + co1 = c; + if (a_unroll >= max_a_unroll) co2 = c + 2 * ldc; + if (is_unit_inc) + c += a_unroll; + else + c += a_unroll * inc; + + // Set B matrix pointer. + bo = b; + + // Main n-loop. + for (Index i = n / max_b_unroll; i > 0; i--) nloop(aa, ao, bo, co1, co2); + + // n-remainders. + if (n & 4 && max_b_unroll > 4) nloop(aa, ao, bo, co1, co2); +#if 0 + if (n & 2 && max_b_unroll > 2) nloop(aa, ao, bo, co1, co2); + if (n & 1 && max_b_unroll > 1) nloop(aa, ao, bo, co1, co2); +#else + // Copy kernels don't support tails of n = 2 for single/double precision. + // Loop over ones. + int n_rem = 2 * ((n & 2) != 0) + 1 * ((n & 1) != 0); + while (n_rem > 0) { + nloop(aa, ao, bo, co1, co2); + n_rem--; + } +#endif + + // Advance A matrix pointer. + a = ao + a_unroll * (a_stride - k - a_off); + } + + public: + // Compute kernel unrolling C matrix by max_a_unroll x max_b_unroll. + template + EIGEN_ALWAYS_INLINE void compute_kern() { + a -= -a_shift; + b -= -b_shift; + + const Scalar *ao = nullptr; + const Scalar *bo = nullptr; + Scalar *co1 = nullptr; + Scalar *co2 = nullptr; + + // Main m-loop. + for (; m >= max_a_unroll; m -= max_a_unroll) mloop(ao, bo, co1, co2); + + // m-remainders. + if (m & 32 && max_a_unroll > 32) mloop<32, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + if (m & 16 && max_a_unroll > 16) mloop<16, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + if (m & 8 && max_a_unroll > 8) mloop<8, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + if (m & 4 && max_a_unroll > 4) mloop<4, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + if (m & 2 && max_a_unroll > 2 && is_f64) mloop<2, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + if (m & 1 && max_a_unroll > 1 && is_f64) mloop<1, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + + // Copy kernels don't support tails of m = 2 for single precision. + // Loop over ones. + if (is_f32) { + int m_rem = 2 * ((m & 2) != 0) + 1 * ((m & 1) != 0); + while (m_rem > 0) { + mloop<1, max_a_unroll, max_b_unroll>(ao, bo, co1, co2); + m_rem--; + } + } + } + + gemm_class(Index m_, Index n_, Index k_, Index ldc_, Index inc_, const Scalar *alpha_, const Scalar *a_, + const Scalar *b_, Scalar *c_, bool is_alpha1_, bool is_beta0_, Index a_stride_, Index b_stride_, + Index a_off_, Index b_off_) + : m(m_), + n(n_), + k(k_), + ldc(ldc_), + inc(inc_), + alpha(alpha_), + a(a_), + b(b_), + c(c_), + is_alpha1(is_alpha1_), + is_beta0(is_beta0_), + a_stride(a_stride_), + b_stride(b_stride_), + a_off(a_off_), + b_off(b_off_) { + // Zero out all accumulation registers. + zmm[8] = pzero(zmm[8]); + zmm[9] = pzero(zmm[9]); + zmm[10] = pzero(zmm[10]); + zmm[11] = pzero(zmm[11]); + zmm[12] = pzero(zmm[12]); + zmm[13] = pzero(zmm[13]); + zmm[14] = pzero(zmm[14]); + zmm[15] = pzero(zmm[15]); + zmm[16] = pzero(zmm[16]); + zmm[17] = pzero(zmm[17]); + zmm[18] = pzero(zmm[18]); + zmm[19] = pzero(zmm[19]); + zmm[20] = pzero(zmm[20]); + zmm[21] = pzero(zmm[21]); + zmm[22] = pzero(zmm[22]); + zmm[23] = pzero(zmm[23]); + zmm[24] = pzero(zmm[24]); + zmm[25] = pzero(zmm[25]); + zmm[26] = pzero(zmm[26]); + zmm[27] = pzero(zmm[27]); + zmm[28] = pzero(zmm[28]); + zmm[29] = pzero(zmm[29]); + zmm[30] = pzero(zmm[30]); + zmm[31] = pzero(zmm[31]); + } +}; + +// Compute kernel with max unroll support of: +// Single precision: +// max_a_unroll: 48, 32, 16, 8, 4, 2, 1 +// max_b_unroll: 8, 4, 2, 1 +// Double precision: +// max_a_unroll: 24, 16, 8, 4, 2, 1 +// max_b_unroll: 8, 4, 2, 1 +template +EIGEN_DONT_INLINE void gemm_kern_avx512(Index m, Index n, Index k, Scalar *alpha, const Scalar *a, const Scalar *b, + Scalar *c, Index ldc, Index inc = 1, Index a_stride = -1, Index b_stride = -1, + Index a_off = 0, Index b_off = 0) { + if (a_stride == -1) a_stride = k; + if (b_stride == -1) b_stride = k; + + gemm_class g(m, n, k, ldc, inc, alpha, a, b, c, is_alpha1, is_beta0, a_stride, b_stride, a_off, + b_off); + g.template compute_kern(); +} + +// Template specializations of GEBP kernels with nr = 8. +#if EIGEN_USE_AVX512_GEMM_KERNELS +template +class gebp_traits + : public gebp_traits { + using Base = gebp_traits; + + public: + enum { nr = Base::Vectorizable ? 8 : 4 }; +}; + +template +class gebp_traits + : public gebp_traits { + using Base = gebp_traits; + + public: + enum { nr = Base::Vectorizable ? 8 : 4 }; +}; + +template +struct gemm_pack_rhs { + typedef typename packet_traits::type Packet; + typedef typename DataMapper::LinearMapper LinearMapper; + enum { PacketSize = packet_traits::size }; + EIGEN_DONT_INLINE void operator()(Scalar *blockB, const DataMapper &rhs, Index depth, Index cols, Index stride = 0, + Index offset = 0); +}; + +template +EIGEN_DONT_INLINE void gemm_pack_rhs::operator()( + Scalar *blockB, const DataMapper &rhs, Index depth, Index cols, Index stride, Index offset) { + constexpr int nr = 8; + EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR"); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(offset); + eigen_assert(((!PanelMode) && stride == 0 && offset == 0) || (PanelMode && stride >= depth && offset <= stride)); + conj_if::IsComplex && Conjugate> cj; + Index packet_cols8 = nr >= 8 ? (cols / 8) * 8 : 0; + Index packet_cols4 = nr >= 4 ? (cols / 4) * 4 : 0; + Index count = 0; + const Index peeled_k = (depth / PacketSize) * PacketSize; + if (nr >= 8) { + for (Index j2 = 0; j2 < packet_cols8; j2 += 8) { + // skip what we have before + if (PanelMode) count += 8 * offset; + const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0); + const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1); + const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2); + const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3); + const LinearMapper dm4 = rhs.getLinearMapper(0, j2 + 4); + const LinearMapper dm5 = rhs.getLinearMapper(0, j2 + 5); + const LinearMapper dm6 = rhs.getLinearMapper(0, j2 + 6); + const LinearMapper dm7 = rhs.getLinearMapper(0, j2 + 7); + Index k = 0; + if ((PacketSize % 8) == 0) // TODO enable vectorized transposition for PacketSize==4 + { + for (; k < peeled_k; k += PacketSize) { + PacketBlock kernel; + + kernel.packet[0] = dm0.template loadPacket(k); + kernel.packet[1] = dm1.template loadPacket(k); + kernel.packet[2] = dm2.template loadPacket(k); + kernel.packet[3] = dm3.template loadPacket(k); + kernel.packet[4] = dm4.template loadPacket(k); + kernel.packet[5] = dm5.template loadPacket(k); + kernel.packet[6] = dm6.template loadPacket(k); + kernel.packet[7] = dm7.template loadPacket(k); + + ptranspose(kernel); + + pstoreu(blockB + count + 0 * PacketSize, cj.pconj(kernel.packet[0])); + pstoreu(blockB + count + 1 * PacketSize, cj.pconj(kernel.packet[1 % PacketSize])); + pstoreu(blockB + count + 2 * PacketSize, cj.pconj(kernel.packet[2 % PacketSize])); + pstoreu(blockB + count + 3 * PacketSize, cj.pconj(kernel.packet[3 % PacketSize])); + pstoreu(blockB + count + 4 * PacketSize, cj.pconj(kernel.packet[4 % PacketSize])); + pstoreu(blockB + count + 5 * PacketSize, cj.pconj(kernel.packet[5 % PacketSize])); + pstoreu(blockB + count + 6 * PacketSize, cj.pconj(kernel.packet[6 % PacketSize])); + pstoreu(blockB + count + 7 * PacketSize, cj.pconj(kernel.packet[7 % PacketSize])); + count += 8 * PacketSize; + } + } + for (; k < depth; k++) { + blockB[count + 0] = cj(dm0(k)); + blockB[count + 1] = cj(dm1(k)); + blockB[count + 2] = cj(dm2(k)); + blockB[count + 3] = cj(dm3(k)); + blockB[count + 4] = cj(dm4(k)); + blockB[count + 5] = cj(dm5(k)); + blockB[count + 6] = cj(dm6(k)); + blockB[count + 7] = cj(dm7(k)); + count += 8; + } + // skip what we have after + if (PanelMode) count += 8 * (stride - offset - depth); + } + } + + if (nr >= 4) { + for (Index j2 = packet_cols8; j2 < packet_cols4; j2 += 4) { + // skip what we have before + if (PanelMode) count += 4 * offset; + const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0); + const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1); + const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2); + const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3); + + Index k = 0; + if ((PacketSize % 4) == 0) // TODO enable vectorized transposition for PacketSize==2 ?? + { + for (; k < peeled_k; k += PacketSize) { + PacketBlock kernel; + kernel.packet[0] = dm0.template loadPacket(k); + kernel.packet[1 % PacketSize] = dm1.template loadPacket(k); + kernel.packet[2 % PacketSize] = dm2.template loadPacket(k); + kernel.packet[3 % PacketSize] = dm3.template loadPacket(k); + ptranspose(kernel); + pstoreu(blockB + count + 0 * PacketSize, cj.pconj(kernel.packet[0])); + pstoreu(blockB + count + 1 * PacketSize, cj.pconj(kernel.packet[1 % PacketSize])); + pstoreu(blockB + count + 2 * PacketSize, cj.pconj(kernel.packet[2 % PacketSize])); + pstoreu(blockB + count + 3 * PacketSize, cj.pconj(kernel.packet[3 % PacketSize])); + count += 4 * PacketSize; + } + } + for (; k < depth; k++) { + blockB[count + 0] = cj(dm0(k)); + blockB[count + 1] = cj(dm1(k)); + blockB[count + 2] = cj(dm2(k)); + blockB[count + 3] = cj(dm3(k)); + count += 4; + } + // skip what we have after + if (PanelMode) count += 4 * (stride - offset - depth); + } + } + + // copy the remaining columns one at a time (nr==1) + for (Index j2 = packet_cols4; j2 < cols; ++j2) { + if (PanelMode) count += offset; + const LinearMapper dm0 = rhs.getLinearMapper(0, j2); + for (Index k = 0; k < depth; k++) { + blockB[count] = cj(dm0(k)); + count += 1; + } + if (PanelMode) count += (stride - offset - depth); + } +} + +template +struct gemm_pack_rhs { + typedef typename packet_traits::type Packet; + typedef typename unpacket_traits::half HalfPacket; + typedef typename unpacket_traits::half>::half QuarterPacket; + typedef typename DataMapper::LinearMapper LinearMapper; + enum { + PacketSize = packet_traits::size, + HalfPacketSize = unpacket_traits::size, + QuarterPacketSize = unpacket_traits::size + }; + EIGEN_DONT_INLINE void operator()(Scalar *blockB, const DataMapper &rhs, Index depth, Index cols, Index stride = 0, + Index offset = 0) { + constexpr int nr = 8; + EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR"); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(offset); + eigen_assert(((!PanelMode) && stride == 0 && offset == 0) || (PanelMode && stride >= depth && offset <= stride)); + const bool HasHalf = (int)HalfPacketSize < (int)PacketSize; + const bool HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize; + conj_if::IsComplex && Conjugate> cj; + Index packet_cols8 = nr >= 8 ? (cols / 8) * 8 : 0; + Index packet_cols4 = nr >= 4 ? (cols / 4) * 4 : 0; + Index count = 0; + + if (nr >= 8) { + for (Index j2 = 0; j2 < packet_cols8; j2 += 8) { + // skip what we have before + if (PanelMode) count += 8 * offset; + for (Index k = 0; k < depth; k++) { + if (PacketSize == 8) { + // Packet A = ploadu(&rhs.data()[k*rhs.stride() + j2]); + Packet A = rhs.template loadPacket(k, j2); + pstoreu(blockB + count, cj.pconj(A)); + } else if (HasHalf && HalfPacketSize == 8) { + HalfPacket A = rhs.template loadPacket(k, j2); + pstoreu(blockB + count, cj.pconj(A)); + } else if (HasQuarter && QuarterPacketSize == 8) { + QuarterPacket A = rhs.template loadPacket(k, j2); + pstoreu(blockB + count, cj.pconj(A)); + } else if (PacketSize == 4) { + // Packet A = ploadu(&rhs.data()[k*rhs.stride() + j2]); + // Packet B = ploadu(&rhs.data()[k*rhs.stride() + j2 + PacketSize]); + Packet A = rhs.template loadPacket(k, j2); + Packet B = rhs.template loadPacket(k, j2 + PacketSize); + pstoreu(blockB + count, cj.pconj(A)); + pstoreu(blockB + count + PacketSize, cj.pconj(B)); + } else { + // const Scalar* b0 = &rhs.data()[k*rhs.stride() + j2]; + const LinearMapper dm0 = rhs.getLinearMapper(k, j2); + blockB[count + 0] = cj(dm0(0)); + blockB[count + 1] = cj(dm0(1)); + blockB[count + 2] = cj(dm0(2)); + blockB[count + 3] = cj(dm0(3)); + blockB[count + 4] = cj(dm0(4)); + blockB[count + 5] = cj(dm0(5)); + blockB[count + 6] = cj(dm0(6)); + blockB[count + 7] = cj(dm0(7)); + } + count += 8; + } + // skip what we have after + if (PanelMode) count += 8 * (stride - offset - depth); + } + } + + if (nr >= 4) { + for (Index j2 = packet_cols8; j2 < packet_cols4; j2 += 4) { + // skip what we have before + if (PanelMode) count += 4 * offset; + for (Index k = 0; k < depth; k++) { + if (PacketSize == 4) { + Packet A = rhs.template loadPacket(k, j2); + pstoreu(blockB + count, cj.pconj(A)); + count += PacketSize; + } else if (HasHalf && HalfPacketSize == 4) { + HalfPacket A = rhs.template loadPacket(k, j2); + pstoreu(blockB + count, cj.pconj(A)); + count += HalfPacketSize; + } else if (HasQuarter && QuarterPacketSize == 4) { + QuarterPacket A = rhs.template loadPacket(k, j2); + pstoreu(blockB + count, cj.pconj(A)); + count += QuarterPacketSize; + } else { + const LinearMapper dm0 = rhs.getLinearMapper(k, j2); + blockB[count + 0] = cj(dm0(0)); + blockB[count + 1] = cj(dm0(1)); + blockB[count + 2] = cj(dm0(2)); + blockB[count + 3] = cj(dm0(3)); + count += 4; + } + } + // skip what we have after + if (PanelMode) count += 4 * (stride - offset - depth); + } + } + // copy the remaining columns one at a time (nr==1) + for (Index j2 = packet_cols4; j2 < cols; ++j2) { + if (PanelMode) count += offset; + for (Index k = 0; k < depth; k++) { + blockB[count] = cj(rhs(k, j2)); + count += 1; + } + if (PanelMode) count += stride - offset - depth; + } + } +}; + +template +struct gebp_kernel { + EIGEN_ALWAYS_INLINE + void operator()(const DataMapper &res, const Scalar *blockA, const Scalar *blockB, Index rows, Index depth, + Index cols, Scalar alpha, Index strideA = -1, Index strideB = -1, Index offsetA = 0, + Index offsetB = 0); +}; + +template +EIGEN_ALWAYS_INLINE void gebp_kernel::operator()( + const DataMapper &res, const Scalar *blockA, const Scalar *blockB, Index rows, Index depth, Index cols, + Scalar alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) { + if (res.incr() == 1) { + if (alpha == 1) { + gemm_kern_avx512(rows, cols, depth, &alpha, blockA, blockB, + (Scalar *)res.data(), res.stride(), res.incr(), strideA, + strideB, offsetA, offsetB); + } else { + gemm_kern_avx512(rows, cols, depth, &alpha, blockA, blockB, + (Scalar *)res.data(), res.stride(), res.incr(), strideA, + strideB, offsetA, offsetB); + } + } else { + if (alpha == 1) { + gemm_kern_avx512(rows, cols, depth, &alpha, blockA, blockB, + (Scalar *)res.data(), res.stride(), res.incr(), strideA, + strideB, offsetA, offsetB); + } else { + gemm_kern_avx512(rows, cols, depth, &alpha, blockA, blockB, + (Scalar *)res.data(), res.stride(), res.incr(), strideA, + strideB, offsetA, offsetB); + } + } +} +#endif // EIGEN_USE_AVX512_GEMM_KERNELS + +} // namespace internal +} // namespace Eigen + +#undef SECOND_FETCH + +#endif // EIGEN_CORE_ARCH_AVX512_GEMM_KERNEL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h new file mode 100644 index 0000000..b327988 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h @@ -0,0 +1,139 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Pedro Gonnet (pedro.gonnet@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_ +#define THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_ + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet16f) +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_DOUBLE(Packet8d) + +template <> +EIGEN_STRONG_INLINE Packet16h pfrexp(const Packet16h& a, Packet16h& exponent) { + Packet16f fexponent; + const Packet16h out = float2half(pfrexp(half2float(a), fexponent)); + exponent = float2half(fexponent); + return out; +} + +template <> +EIGEN_STRONG_INLINE Packet16h pldexp(const Packet16h& a, const Packet16h& exponent) { + return float2half(pldexp(half2float(a), half2float(exponent))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pfrexp(const Packet16bf& a, Packet16bf& exponent) { + Packet16f fexponent; + const Packet16bf out = F32ToBf16(pfrexp(Bf16ToF32(a), fexponent)); + exponent = F32ToBf16(fexponent); + return out; +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pldexp(const Packet16bf& a, const Packet16bf& exponent) { + return F32ToBf16(pldexp(Bf16ToF32(a), Bf16ToF32(exponent))); +} + +#if EIGEN_FAST_MATH +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f +psqrt(const Packet16f& _x) { + return generic_sqrt_newton_step::run(_x, _mm512_rsqrt14_ps(_x)); +} + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d +psqrt(const Packet8d& _x) { +#ifdef EIGEN_VECTORIZE_AVX512ER + return generic_sqrt_newton_step::run(_x, _mm512_rsqrt28_pd(_x)); +#else + return generic_sqrt_newton_step::run(_x, _mm512_rsqrt14_pd(_x)); +#endif +} +#else +template <> +EIGEN_STRONG_INLINE Packet16f psqrt(const Packet16f& x) { + return _mm512_sqrt_ps(x); +} + +template <> +EIGEN_STRONG_INLINE Packet8d psqrt(const Packet8d& x) { + return _mm512_sqrt_pd(x); +} +#endif + +// prsqrt for float. +#if defined(EIGEN_VECTORIZE_AVX512ER) +template <> +EIGEN_STRONG_INLINE Packet16f prsqrt(const Packet16f& x) { + return _mm512_rsqrt28_ps(x); +} +#elif EIGEN_FAST_MATH + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f +prsqrt(const Packet16f& _x) { + return generic_rsqrt_newton_step::run(_x, _mm512_rsqrt14_ps(_x)); +} +#endif + + +// prsqrt for double. +#if EIGEN_FAST_MATH +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d +prsqrt(const Packet8d& _x) { + #ifdef EIGEN_VECTORIZE_AVX512ER + return generic_rsqrt_newton_step::run(_x, _mm512_rsqrt28_pd(_x)); + #else + return generic_rsqrt_newton_step::run(_x, _mm512_rsqrt14_pd(_x)); + #endif +} + +template<> EIGEN_STRONG_INLINE Packet16f preciprocal(const Packet16f& a) { +#ifdef EIGEN_VECTORIZE_AVX512ER + return _mm512_rcp28_ps(a); +#else + return generic_reciprocal_newton_step::run(a, _mm512_rcp14_ps(a)); +#endif +} +#endif + +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pcos) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexp) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexpm1) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog1p) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog2) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, preciprocal) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, prsqrt) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, psin) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, psqrt) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, ptanh) +F16_PACKET_FUNCTION(Packet16f, Packet16h, pcos) +F16_PACKET_FUNCTION(Packet16f, Packet16h, pexp) +F16_PACKET_FUNCTION(Packet16f, Packet16h, pexpm1) +F16_PACKET_FUNCTION(Packet16f, Packet16h, plog) +F16_PACKET_FUNCTION(Packet16f, Packet16h, plog1p) +F16_PACKET_FUNCTION(Packet16f, Packet16h, plog2) +F16_PACKET_FUNCTION(Packet16f, Packet16h, preciprocal) +F16_PACKET_FUNCTION(Packet16f, Packet16h, prsqrt) +F16_PACKET_FUNCTION(Packet16f, Packet16h, psin) +F16_PACKET_FUNCTION(Packet16f, Packet16h, psqrt) +F16_PACKET_FUNCTION(Packet16f, Packet16h, ptanh) + +} // end namespace internal + +} // end namespace Eigen + +#endif // THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_ diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/PacketMath.h new file mode 100644 index 0000000..129a68c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/PacketMath.h @@ -0,0 +1,2757 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner (benoit.steiner.goog@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_AVX512_H +#define EIGEN_PACKET_MATH_AVX512_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 +#endif + +#ifdef EIGEN_VECTORIZE_FMA +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif +#endif + +typedef __m512 Packet16f; +typedef __m512i Packet16i; +typedef __m512d Packet8d; +#ifndef EIGEN_VECTORIZE_AVX512FP16 +typedef eigen_packet_wrapper<__m256i, 1> Packet16h; +#endif +typedef eigen_packet_wrapper<__m256i, 2> Packet16bf; + +template <> +struct is_arithmetic<__m512> { + enum { value = true }; +}; +template <> +struct is_arithmetic<__m512i> { + enum { value = true }; +}; +template <> +struct is_arithmetic<__m512d> { + enum { value = true }; +}; + +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> struct is_arithmetic { enum { value = true }; }; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet16h type; + // There is no half-size packet for Packet16h. + typedef Packet16h half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 1, + HasAbs2 = 0, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 0, + HasSqrt = 1, + HasRsqrt = 1, + HasLog = 1, + HasLog1p = 1, + HasExp = 1, + HasExpm1 = 1, + HasBessel = 1, + HasNdtri = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBlend = 0, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1 + }; +}; +#endif + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet16f type; + typedef Packet8f half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + + HasAbs = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasBlend = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasACos = 1, + HasASin = 1, + HasATan = 1, + HasATanh = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasLog = 1, + HasLog1p = 1, + HasExpm1 = 1, + HasNdtri = 1, + HasBessel = 1, + HasExp = 1, + HasReciprocal = EIGEN_FAST_MATH, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasCmp = 1, + HasDiv = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1 + }; + }; +template<> struct packet_traits : default_packet_traits +{ + typedef Packet8d type; + typedef Packet4d half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + HasBlend = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasLog = 1, + HasExp = 1, + HasATan = 1, + HasCmp = 1, + HasDiv = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1 + }; +}; + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet16i type; + typedef Packet8i half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + HasBlend = 0, + HasCmp = 1, + HasDiv = 1, + size=16 + }; +}; + +template <> +struct unpacket_traits { + typedef float type; + typedef Packet8f half; + typedef Packet16i integer_packet; + typedef uint16_t mask_t; + enum { size = 16, alignment=Aligned64, vectorizable=true, masked_load_available=true, masked_store_available=true, masked_fpops_available=true }; +}; +template <> +struct unpacket_traits { + typedef double type; + typedef Packet4d half; + typedef uint8_t mask_t; + enum { size = 8, alignment=Aligned64, vectorizable=true, masked_load_available=true, masked_store_available=true, masked_fpops_available=true }; +}; +template <> +struct unpacket_traits { + typedef int type; + typedef Packet8i half; + enum { size = 16, alignment=Aligned64, vectorizable=true, masked_load_available=false, masked_store_available=false }; +}; + +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> +struct unpacket_traits { + typedef Eigen::half type; + typedef Packet8h half; + enum {size=16, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +#endif + +template <> +EIGEN_STRONG_INLINE Packet16f pset1(const float& from) { + return _mm512_set1_ps(from); +} +template <> +EIGEN_STRONG_INLINE Packet8d pset1(const double& from) { + return _mm512_set1_pd(from); +} +template <> +EIGEN_STRONG_INLINE Packet16i pset1(const int& from) { + return _mm512_set1_epi32(from); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pset1frombits(unsigned int from) { + return _mm512_castsi512_ps(_mm512_set1_epi32(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet8d pset1frombits(const numext::uint64_t from) { + return _mm512_castsi512_pd(_mm512_set1_epi64(from)); +} + +template<> EIGEN_STRONG_INLINE Packet16f pzero(const Packet16f& /*a*/) { return _mm512_setzero_ps(); } +template<> EIGEN_STRONG_INLINE Packet8d pzero(const Packet8d& /*a*/) { return _mm512_setzero_pd(); } +template<> EIGEN_STRONG_INLINE Packet16i pzero(const Packet16i& /*a*/) { return _mm512_setzero_si512(); } + +template<> EIGEN_STRONG_INLINE Packet16f peven_mask(const Packet16f& /*a*/) { + return _mm512_castsi512_ps(_mm512_set_epi32(0, -1, 0, -1, 0, -1, 0, -1, + 0, -1, 0, -1, 0, -1, 0, -1)); +} +template<> EIGEN_STRONG_INLINE Packet16i peven_mask(const Packet16i& /*a*/) { + return _mm512_set_epi32(0, -1, 0, -1, 0, -1, 0, -1, + 0, -1, 0, -1, 0, -1, 0, -1); +} +template<> EIGEN_STRONG_INLINE Packet8d peven_mask(const Packet8d& /*a*/) { + return _mm512_castsi512_pd(_mm512_set_epi32(0, 0, -1, -1, 0, 0, -1, -1, + 0, 0, -1, -1, 0, 0, -1, -1)); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pload1(const float* from) { +#if (EIGEN_COMP_GNUC != 0) || (EIGEN_COMP_CLANG != 0) + // Inline asm here helps reduce some register spilling in TRSM kernels. + // See note in unrolls::gemm::microKernel in TrsmKernel.h + Packet16f ret; + __asm__ ("vbroadcastss %[mem], %[dst]" : [dst] "=v" (ret) : [mem] "m" (*from)); + return ret; +#else + return _mm512_broadcastss_ps(_mm_load_ps1(from)); +#endif +} +template <> +EIGEN_STRONG_INLINE Packet8d pload1(const double* from) { +#if (EIGEN_COMP_GNUC != 0) || (EIGEN_COMP_CLANG != 0) + Packet8d ret; + __asm__ ("vbroadcastsd %[mem], %[dst]" : [dst] "=v" (ret) : [mem] "m" (*from)); + return ret; +#else + return _mm512_set1_pd(*from); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet16f plset(const float& a) { + return _mm512_add_ps( + _mm512_set1_ps(a), + _mm512_set_ps(15.0f, 14.0f, 13.0f, 12.0f, 11.0f, 10.0f, 9.0f, 8.0f, 7.0f, 6.0f, 5.0f, + 4.0f, 3.0f, 2.0f, 1.0f, 0.0f)); +} +template <> +EIGEN_STRONG_INLINE Packet8d plset(const double& a) { + return _mm512_add_pd(_mm512_set1_pd(a), + _mm512_set_pd(7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0)); +} +template <> +EIGEN_STRONG_INLINE Packet16i plset(const int& a) { + return _mm512_add_epi32( + _mm512_set1_epi32(a), + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)); +} + +template <> +EIGEN_STRONG_INLINE Packet16f padd(const Packet16f& a, + const Packet16f& b) { + return _mm512_add_ps(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet8d padd(const Packet8d& a, + const Packet8d& b) { + return _mm512_add_pd(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet16i padd(const Packet16i& a, + const Packet16i& b) { + return _mm512_add_epi32(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f padd(const Packet16f& a, + const Packet16f& b, + uint16_t umask) { + __mmask16 mask = static_cast<__mmask16>(umask); + return _mm512_maskz_add_ps(mask, a, b); +} +template <> +EIGEN_STRONG_INLINE Packet8d padd(const Packet8d& a, + const Packet8d& b, + uint8_t umask) { + __mmask8 mask = static_cast<__mmask8>(umask); + return _mm512_maskz_add_pd(mask, a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f psub(const Packet16f& a, + const Packet16f& b) { + return _mm512_sub_ps(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet8d psub(const Packet8d& a, + const Packet8d& b) { + return _mm512_sub_pd(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet16i psub(const Packet16i& a, + const Packet16i& b) { + return _mm512_sub_epi32(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pnegate(const Packet16f& a) { + // NOTE: MSVC seems to struggle with _mm512_set1_epi32, leading to random results. + // The intel docs give it a relatively high latency as well, so we're probably + // better off with using _mm512_set_epi32 directly anyways. + const __m512i mask = _mm512_set_epi32(0x80000000,0x80000000,0x80000000,0x80000000, + 0x80000000,0x80000000,0x80000000,0x80000000, + 0x80000000,0x80000000,0x80000000,0x80000000, + 0x80000000,0x80000000,0x80000000,0x80000000); + return _mm512_castsi512_ps(_mm512_xor_epi32(_mm512_castps_si512(a), mask)); +} +template <> +EIGEN_STRONG_INLINE Packet8d pnegate(const Packet8d& a) { + const __m512i mask = _mm512_set_epi64(0x8000000000000000ULL, 0x8000000000000000ULL, 0x8000000000000000ULL, 0x8000000000000000ULL, + 0x8000000000000000ULL, 0x8000000000000000ULL, 0x8000000000000000ULL, 0x8000000000000000ULL); + return _mm512_castsi512_pd(_mm512_xor_epi64(_mm512_castpd_si512(a), mask)); +} +template <> +EIGEN_STRONG_INLINE Packet16i pnegate(const Packet16i& a) { + return _mm512_sub_epi32(_mm512_setzero_si512(), a); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pconj(const Packet16f& a) { + return a; +} +template <> +EIGEN_STRONG_INLINE Packet8d pconj(const Packet8d& a) { + return a; +} +template <> +EIGEN_STRONG_INLINE Packet16i pconj(const Packet16i& a) { + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet16f pmul(const Packet16f& a, + const Packet16f& b) { + return _mm512_mul_ps(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet8d pmul(const Packet8d& a, + const Packet8d& b) { + return _mm512_mul_pd(a, b); +} +template <> +EIGEN_STRONG_INLINE Packet16i pmul(const Packet16i& a, + const Packet16i& b) { + return _mm512_mullo_epi32(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pdiv(const Packet16f& a, + const Packet16f& b) { + return _mm512_div_ps(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet8d pdiv(const Packet8d& a, + const Packet8d& b) { + return _mm512_div_pd(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16i pdiv(const Packet16i& a, + const Packet16i& b) { + Packet8i q_lo = pdiv(_mm512_extracti64x4_epi64(a, 0), _mm512_extracti64x4_epi64(b,0)); + Packet8i q_hi = pdiv(_mm512_extracti64x4_epi64(a, 1), _mm512_extracti64x4_epi64(b, 1)); + return _mm512_inserti64x4(_mm512_castsi256_si512(q_lo), q_hi, 1); +} + +#ifdef EIGEN_VECTORIZE_FMA +template <> +EIGEN_STRONG_INLINE Packet16f pmadd(const Packet16f& a, const Packet16f& b, + const Packet16f& c) { + return _mm512_fmadd_ps(a, b, c); +} +template <> +EIGEN_STRONG_INLINE Packet8d pmadd(const Packet8d& a, const Packet8d& b, + const Packet8d& c) { + return _mm512_fmadd_pd(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pmsub(const Packet16f& a, const Packet16f& b, + const Packet16f& c) { + return _mm512_fmsub_ps(a, b, c); +} +template <> +EIGEN_STRONG_INLINE Packet8d pmsub(const Packet8d& a, const Packet8d& b, + const Packet8d& c) { + return _mm512_fmsub_pd(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pnmadd(const Packet16f& a, const Packet16f& b, + const Packet16f& c) { + return _mm512_fnmadd_ps(a, b, c); +} +template <> +EIGEN_STRONG_INLINE Packet8d pnmadd(const Packet8d& a, const Packet8d& b, + const Packet8d& c) { + return _mm512_fnmadd_pd(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pnmsub(const Packet16f& a, const Packet16f& b, + const Packet16f& c) { + return _mm512_fnmsub_ps(a, b, c); +} +template <> +EIGEN_STRONG_INLINE Packet8d pnmsub(const Packet8d& a, const Packet8d& b, + const Packet8d& c) { + return _mm512_fnmsub_pd(a, b, c); +} +#endif + +template <> +EIGEN_DEVICE_FUNC inline Packet16f pselect(const Packet16f& mask, + const Packet16f& a, + const Packet16f& b) { + __mmask16 mask16 = _mm512_cmpeq_epi32_mask(_mm512_castps_si512(mask), _mm512_setzero_epi32()); + return _mm512_mask_blend_ps(mask16, a, b); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet16i pselect(const Packet16i& mask, + const Packet16i& a, + const Packet16i& b) { + __mmask16 mask16 = _mm512_cmpeq_epi32_mask(mask, _mm512_setzero_epi32()); + return _mm512_mask_blend_epi32(mask16, a, b); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet8d pselect(const Packet8d& mask, + const Packet8d& a, + const Packet8d& b) { + __mmask8 mask8 = _mm512_cmp_epi64_mask(_mm512_castpd_si512(mask), + _mm512_setzero_epi32(), _MM_CMPINT_EQ); + return _mm512_mask_blend_pd(mask8, a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pmin(const Packet16f& a, + const Packet16f& b) { + // Arguments are reversed to match NaN propagation behavior of std::min. + return _mm512_min_ps(b, a); +} +template <> +EIGEN_STRONG_INLINE Packet8d pmin(const Packet8d& a, + const Packet8d& b) { + // Arguments are reversed to match NaN propagation behavior of std::min. + return _mm512_min_pd(b, a); +} +template <> +EIGEN_STRONG_INLINE Packet16i pmin(const Packet16i& a, + const Packet16i& b) { + return _mm512_min_epi32(b, a); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pmax(const Packet16f& a, + const Packet16f& b) { + // Arguments are reversed to match NaN propagation behavior of std::max. + return _mm512_max_ps(b, a); +} +template <> +EIGEN_STRONG_INLINE Packet8d pmax(const Packet8d& a, + const Packet8d& b) { + // Arguments are reversed to match NaN propagation behavior of std::max. + return _mm512_max_pd(b, a); +} +template <> +EIGEN_STRONG_INLINE Packet16i pmax(const Packet16i& a, + const Packet16i& b) { + return _mm512_max_epi32(b, a); +} + +// Add specializations for min/max with prescribed NaN progation. +template<> +EIGEN_STRONG_INLINE Packet16f pmin(const Packet16f& a, const Packet16f& b) { + return pminmax_propagate_numbers(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet8d pmin(const Packet8d& a, const Packet8d& b) { + return pminmax_propagate_numbers(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet16f pmax(const Packet16f& a, const Packet16f& b) { + return pminmax_propagate_numbers(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet8d pmax(const Packet8d& a, const Packet8d& b) { + return pminmax_propagate_numbers(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet16f pmin(const Packet16f& a, const Packet16f& b) { + return pminmax_propagate_nan(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet8d pmin(const Packet8d& a, const Packet8d& b) { + return pminmax_propagate_nan(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet16f pmax(const Packet16f& a, const Packet16f& b) { + return pminmax_propagate_nan(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet8d pmax(const Packet8d& a, const Packet8d& b) { + return pminmax_propagate_nan(a, b, pmax); +} + + +#ifdef EIGEN_VECTORIZE_AVX512DQ +template EIGEN_STRONG_INLINE Packet8f extract256(Packet16f x) { return _mm512_extractf32x8_ps(x,I_); } +template EIGEN_STRONG_INLINE Packet2d extract128(Packet8d x) { return _mm512_extractf64x2_pd(x,I_); } +EIGEN_STRONG_INLINE Packet16f cat256(Packet8f a, Packet8f b) { return _mm512_insertf32x8(_mm512_castps256_ps512(a),b,1); } +EIGEN_STRONG_INLINE Packet16i cat256i(Packet8i a, Packet8i b) { return _mm512_inserti32x8(_mm512_castsi256_si512(a), b, 1); } +#else +// AVX512F does not define _mm512_extractf32x8_ps to extract _m256 from _m512 +template EIGEN_STRONG_INLINE Packet8f extract256(Packet16f x) { + return _mm256_castsi256_ps(_mm512_extracti64x4_epi64( _mm512_castps_si512(x),I_)); +} + +// AVX512F does not define _mm512_extractf64x2_pd to extract _m128 from _m512 +template EIGEN_STRONG_INLINE Packet2d extract128(Packet8d x) { + return _mm_castsi128_pd(_mm512_extracti32x4_epi32( _mm512_castpd_si512(x),I_)); +} + +EIGEN_STRONG_INLINE Packet16f cat256(Packet8f a, Packet8f b) { + return _mm512_castsi512_ps(_mm512_inserti64x4(_mm512_castsi256_si512(_mm256_castps_si256(a)), + _mm256_castps_si256(b),1)); +} +EIGEN_STRONG_INLINE Packet16i cat256i(Packet8i a, Packet8i b) { + return _mm512_inserti64x4(_mm512_castsi256_si512(a), b, 1); +} +#endif + +// Helper function for bit packing snippet of low precision comparison. +// It packs the flags from 32x16 to 16x16. +EIGEN_STRONG_INLINE __m256i Pack32To16(Packet16f rf) { + // Split data into small pieces and handle with AVX instructions + // to guarantee internal order of vector. + // Operation: + // dst[15:0] := Saturate16(rf[31:0]) + // dst[31:16] := Saturate16(rf[63:32]) + // ... + // dst[255:240] := Saturate16(rf[255:224]) + __m256i lo = _mm256_castps_si256(extract256<0>(rf)); + __m256i hi = _mm256_castps_si256(extract256<1>(rf)); + __m128i result_lo = _mm_packs_epi32(_mm256_extractf128_si256(lo, 0), + _mm256_extractf128_si256(lo, 1)); + __m128i result_hi = _mm_packs_epi32(_mm256_extractf128_si256(hi, 0), + _mm256_extractf128_si256(hi, 1)); + return _mm256_insertf128_si256(_mm256_castsi128_si256(result_lo), result_hi, 1); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pisnan(const Packet16f& a) { + __mmask16 mask = _mm512_cmp_ps_mask(a, a, _CMP_UNORD_Q); + return _mm512_castsi512_ps(_mm512_maskz_set1_epi32(mask, 0xffffffffu)); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pcmp_eq(const Packet16f& a, const Packet16f& b) { + __mmask16 mask = _mm512_cmp_ps_mask(a, b, _CMP_EQ_OQ); + return _mm512_castsi512_ps( + _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu)); +} +template<> EIGEN_STRONG_INLINE Packet16f pcmp_le(const Packet16f& a, const Packet16f& b) { + __mmask16 mask = _mm512_cmp_ps_mask(a, b, _CMP_LE_OQ); + return _mm512_castsi512_ps( + _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu)); +} + +template<> EIGEN_STRONG_INLINE Packet16f pcmp_lt(const Packet16f& a, const Packet16f& b) { + __mmask16 mask = _mm512_cmp_ps_mask(a, b, _CMP_LT_OQ); + return _mm512_castsi512_ps( + _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu)); +} + +template<> EIGEN_STRONG_INLINE Packet16f pcmp_lt_or_nan(const Packet16f& a, const Packet16f& b) { + __mmask16 mask = _mm512_cmp_ps_mask(a, b, _CMP_NGE_UQ); + return _mm512_castsi512_ps( + _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu)); +} + +template<> EIGEN_STRONG_INLINE Packet16i pcmp_eq(const Packet16i& a, const Packet16i& b) { + __mmask16 mask = _mm512_cmp_epi32_mask(a, b, _MM_CMPINT_EQ); + return _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu); +} +template<> EIGEN_STRONG_INLINE Packet16i pcmp_le(const Packet16i& a, const Packet16i& b) { + __mmask16 mask = _mm512_cmp_epi32_mask(a, b, _MM_CMPINT_LE); + return _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu); +} +template<> EIGEN_STRONG_INLINE Packet16i pcmp_lt(const Packet16i& a, const Packet16i& b) { + __mmask16 mask = _mm512_cmp_epi32_mask(a, b, _MM_CMPINT_LT); + return _mm512_mask_set1_epi32(_mm512_setzero_epi32(), mask, 0xffffffffu); +} + +template <> +EIGEN_STRONG_INLINE Packet8d pcmp_eq(const Packet8d& a, const Packet8d& b) { + __mmask8 mask = _mm512_cmp_pd_mask(a, b, _CMP_EQ_OQ); + return _mm512_castsi512_pd( + _mm512_mask_set1_epi64(_mm512_setzero_epi32(), mask, 0xffffffffffffffffu)); +} +template <> +EIGEN_STRONG_INLINE Packet8d pcmp_le(const Packet8d& a, const Packet8d& b) { + __mmask8 mask = _mm512_cmp_pd_mask(a, b, _CMP_LE_OQ); + return _mm512_castsi512_pd( + _mm512_mask_set1_epi64(_mm512_setzero_epi32(), mask, 0xffffffffffffffffu)); +} +template <> +EIGEN_STRONG_INLINE Packet8d pcmp_lt(const Packet8d& a, const Packet8d& b) { + __mmask8 mask = _mm512_cmp_pd_mask(a, b, _CMP_LT_OQ); + return _mm512_castsi512_pd( + _mm512_mask_set1_epi64(_mm512_setzero_epi32(), mask, 0xffffffffffffffffu)); +} +template <> +EIGEN_STRONG_INLINE Packet8d pcmp_lt_or_nan(const Packet8d& a, const Packet8d& b) { + __mmask8 mask = _mm512_cmp_pd_mask(a, b, _CMP_NGE_UQ); + return _mm512_castsi512_pd( + _mm512_mask_set1_epi64(_mm512_setzero_epi32(), mask, 0xffffffffffffffffu)); +} + +template<> EIGEN_STRONG_INLINE Packet16f print(const Packet16f& a) { return _mm512_roundscale_ps(a, _MM_FROUND_CUR_DIRECTION); } +template<> EIGEN_STRONG_INLINE Packet8d print(const Packet8d& a) { return _mm512_roundscale_pd(a, _MM_FROUND_CUR_DIRECTION); } + +template<> EIGEN_STRONG_INLINE Packet16f pceil(const Packet16f& a) { return _mm512_roundscale_ps(a, _MM_FROUND_TO_POS_INF); } +template<> EIGEN_STRONG_INLINE Packet8d pceil(const Packet8d& a) { return _mm512_roundscale_pd(a, _MM_FROUND_TO_POS_INF); } + +template<> EIGEN_STRONG_INLINE Packet16f pfloor(const Packet16f& a) { return _mm512_roundscale_ps(a, _MM_FROUND_TO_NEG_INF); } +template<> EIGEN_STRONG_INLINE Packet8d pfloor(const Packet8d& a) { return _mm512_roundscale_pd(a, _MM_FROUND_TO_NEG_INF); } + +template <> +EIGEN_STRONG_INLINE Packet16i ptrue(const Packet16i& /*a*/) { + return _mm512_set1_epi32(0xffffffffu); +} + +template <> +EIGEN_STRONG_INLINE Packet16f ptrue(const Packet16f& a) { + return _mm512_castsi512_ps(ptrue(_mm512_castps_si512(a))); +} + +template <> +EIGEN_STRONG_INLINE Packet8d ptrue(const Packet8d& a) { + return _mm512_castsi512_pd(ptrue(_mm512_castpd_si512(a))); +} + +template <> +EIGEN_STRONG_INLINE Packet16i pand(const Packet16i& a, + const Packet16i& b) { + return _mm512_and_si512(a,b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pand(const Packet16f& a, + const Packet16f& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_and_ps(a, b); +#else + return _mm512_castsi512_ps(pand(_mm512_castps_si512(a),_mm512_castps_si512(b))); +#endif +} +template <> +EIGEN_STRONG_INLINE Packet8d pand(const Packet8d& a, + const Packet8d& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_and_pd(a, b); +#else + Packet8d res = _mm512_undefined_pd(); + Packet4d lane0_a = _mm512_extractf64x4_pd(a, 0); + Packet4d lane0_b = _mm512_extractf64x4_pd(b, 0); + res = _mm512_insertf64x4(res, _mm256_and_pd(lane0_a, lane0_b), 0); + + Packet4d lane1_a = _mm512_extractf64x4_pd(a, 1); + Packet4d lane1_b = _mm512_extractf64x4_pd(b, 1); + return _mm512_insertf64x4(res, _mm256_and_pd(lane1_a, lane1_b), 1); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet16i por(const Packet16i& a, const Packet16i& b) { + return _mm512_or_si512(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f por(const Packet16f& a, const Packet16f& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_or_ps(a, b); +#else + return _mm512_castsi512_ps(por(_mm512_castps_si512(a),_mm512_castps_si512(b))); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet8d por(const Packet8d& a, + const Packet8d& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_or_pd(a, b); +#else + return _mm512_castsi512_pd(por(_mm512_castpd_si512(a),_mm512_castpd_si512(b))); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet16i pxor(const Packet16i& a, const Packet16i& b) { + return _mm512_xor_si512(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pxor(const Packet16f& a, const Packet16f& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_xor_ps(a, b); +#else + return _mm512_castsi512_ps(pxor(_mm512_castps_si512(a),_mm512_castps_si512(b))); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet8d pxor(const Packet8d& a, const Packet8d& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_xor_pd(a, b); +#else + return _mm512_castsi512_pd(pxor(_mm512_castpd_si512(a),_mm512_castpd_si512(b))); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet16i pandnot(const Packet16i& a, const Packet16i& b) { + return _mm512_andnot_si512(b, a); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pandnot(const Packet16f& a, const Packet16f& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_andnot_ps(b, a); +#else + return _mm512_castsi512_ps(pandnot(_mm512_castps_si512(a),_mm512_castps_si512(b))); +#endif +} +template <> +EIGEN_STRONG_INLINE Packet8d pandnot(const Packet8d& a,const Packet8d& b) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_andnot_pd(b, a); +#else + return _mm512_castsi512_pd(pandnot(_mm512_castpd_si512(a),_mm512_castpd_si512(b))); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet16f pround(const Packet16f& a) +{ + // Work-around for default std::round rounding mode. + const Packet16f mask = pset1frombits(static_cast(0x80000000u)); + const Packet16f prev0dot5 = pset1frombits(static_cast(0x3EFFFFFFu)); + return _mm512_roundscale_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} +template<> EIGEN_STRONG_INLINE Packet8d pround(const Packet8d& a) +{ + // Work-around for default std::round rounding mode. + const Packet8d mask = pset1frombits(static_cast(0x8000000000000000ull)); + const Packet8d prev0dot5 = pset1frombits(static_cast(0x3FDFFFFFFFFFFFFFull)); + return _mm512_roundscale_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} + +template EIGEN_STRONG_INLINE Packet16i parithmetic_shift_right(Packet16i a) { + return _mm512_srai_epi32(a, N); +} + +template EIGEN_STRONG_INLINE Packet16i plogical_shift_right(Packet16i a) { + return _mm512_srli_epi32(a, N); +} + +template EIGEN_STRONG_INLINE Packet16i plogical_shift_left(Packet16i a) { + return _mm512_slli_epi32(a, N); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pload(const float* from) { + EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_ps(from); +} +template <> +EIGEN_STRONG_INLINE Packet8d pload(const double* from) { + EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_pd(from); +} +template <> +EIGEN_STRONG_INLINE Packet16i pload(const int* from) { + EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_si512( + reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet16f ploadu(const float* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_ps(from); +} +template <> +EIGEN_STRONG_INLINE Packet8d ploadu(const double* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_pd(from); +} +template <> +EIGEN_STRONG_INLINE Packet16i ploadu(const int* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_si512( + reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet16f ploadu(const float* from, uint16_t umask) { + __mmask16 mask = static_cast<__mmask16>(umask); + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_maskz_loadu_ps(mask, from); +} +template <> +EIGEN_STRONG_INLINE Packet8d ploadu(const double* from, uint8_t umask) { + __mmask8 mask = static_cast<__mmask8>(umask); + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_maskz_loadu_pd(mask, from); +} + +// Loads 8 floats from memory a returns the packet +// {a0, a0 a1, a1, a2, a2, a3, a3, a4, a4, a5, a5, a6, a6, a7, a7} +template <> +EIGEN_STRONG_INLINE Packet16f ploaddup(const float* from) { + // an unaligned load is required here as there is no requirement + // on the alignment of input pointer 'from' + __m256i low_half = _mm256_loadu_si256(reinterpret_cast(from)); + __m512 even_elements = _mm512_castsi512_ps(_mm512_cvtepu32_epi64(low_half)); + __m512 pairs = _mm512_permute_ps(even_elements, _MM_SHUFFLE(2, 2, 0, 0)); + return pairs; +} + +#ifdef EIGEN_VECTORIZE_AVX512DQ +// FIXME: this does not look optimal, better load a Packet4d and shuffle... +// Loads 4 doubles from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, +// a3} +template <> +EIGEN_STRONG_INLINE Packet8d ploaddup(const double* from) { + __m512d x = _mm512_setzero_pd(); + x = _mm512_insertf64x2(x, _mm_loaddup_pd(&from[0]), 0); + x = _mm512_insertf64x2(x, _mm_loaddup_pd(&from[1]), 1); + x = _mm512_insertf64x2(x, _mm_loaddup_pd(&from[2]), 2); + x = _mm512_insertf64x2(x, _mm_loaddup_pd(&from[3]), 3); + return x; +} +#else +template <> +EIGEN_STRONG_INLINE Packet8d ploaddup(const double* from) { + __m512d x = _mm512_setzero_pd(); + x = _mm512_mask_broadcastsd_pd(x, 0x3<<0, _mm_load_sd(from+0)); + x = _mm512_mask_broadcastsd_pd(x, 0x3<<2, _mm_load_sd(from+1)); + x = _mm512_mask_broadcastsd_pd(x, 0x3<<4, _mm_load_sd(from+2)); + x = _mm512_mask_broadcastsd_pd(x, 0x3<<6, _mm_load_sd(from+3)); + return x; +} +#endif + +// Loads 8 integers from memory and returns the packet +// {a0, a0 a1, a1, a2, a2, a3, a3, a4, a4, a5, a5, a6, a6, a7, a7} +template <> +EIGEN_STRONG_INLINE Packet16i ploaddup(const int* from) { + __m256i low_half = _mm256_loadu_si256(reinterpret_cast(from)); + __m512 even_elements = _mm512_castsi512_ps(_mm512_cvtepu32_epi64(low_half)); + __m512 pairs = _mm512_permute_ps(even_elements, _MM_SHUFFLE(2, 2, 0, 0)); + return _mm512_castps_si512(pairs); +} + +// Loads 4 floats from memory a returns the packet +// {a0, a0 a0, a0, a1, a1, a1, a1, a2, a2, a2, a2, a3, a3, a3, a3} +template <> +EIGEN_STRONG_INLINE Packet16f ploadquad(const float* from) { + Packet16f tmp = _mm512_castps128_ps512(ploadu(from)); + const Packet16i scatter_mask = _mm512_set_epi32(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0); + return _mm512_permutexvar_ps(scatter_mask, tmp); +} + +// Loads 2 doubles from memory a returns the packet +// {a0, a0 a0, a0, a1, a1, a1, a1} +template <> +EIGEN_STRONG_INLINE Packet8d ploadquad(const double* from) { + __m256d lane0 = _mm256_set1_pd(*from); + __m256d lane1 = _mm256_set1_pd(*(from+1)); + __m512d tmp = _mm512_undefined_pd(); + tmp = _mm512_insertf64x4(tmp, lane0, 0); + return _mm512_insertf64x4(tmp, lane1, 1); +} + +// Loads 4 integers from memory and returns the packet +// {a0, a0 a0, a0, a1, a1, a1, a1, a2, a2, a2, a2, a3, a3, a3, a3} +template <> +EIGEN_STRONG_INLINE Packet16i ploadquad(const int* from) { + Packet16i tmp = _mm512_castsi128_si512(ploadu(from)); + const Packet16i scatter_mask = _mm512_set_epi32(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0); + return _mm512_permutexvar_epi32(scatter_mask, tmp); +} + +template <> +EIGEN_STRONG_INLINE void pstore(float* to, const Packet16f& from) { + EIGEN_DEBUG_ALIGNED_STORE _mm512_store_ps(to, from); +} +template <> +EIGEN_STRONG_INLINE void pstore(double* to, const Packet8d& from) { + EIGEN_DEBUG_ALIGNED_STORE _mm512_store_pd(to, from); +} +template <> +EIGEN_STRONG_INLINE void pstore(int* to, const Packet16i& from) { + EIGEN_DEBUG_ALIGNED_STORE _mm512_storeu_si512(reinterpret_cast<__m512i*>(to), + from); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet16f& from) { + EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_ps(to, from); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet8d& from) { + EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_pd(to, from); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet16i& from) { + EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_si512( + reinterpret_cast<__m512i*>(to), from); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet16f& from, uint16_t umask) { + __mmask16 mask = static_cast<__mmask16>(umask); + EIGEN_DEBUG_UNALIGNED_STORE return _mm512_mask_storeu_ps(to, mask, from); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet8d& from, uint8_t umask) { + __mmask8 mask = static_cast<__mmask8>(umask); + EIGEN_DEBUG_UNALIGNED_STORE return _mm512_mask_storeu_pd(to, mask, from); +} + +template +EIGEN_DEVICE_FUNC inline Packet pgather(const Packet& src, const Scalar* from, + Index stride, typename unpacket_traits::mask_t umask); +template <> +EIGEN_DEVICE_FUNC inline Packet16f pgather(const Packet16f& src, + const float* from, + Index stride, + uint16_t umask) { + Packet16i stride_vector = _mm512_set1_epi32(convert_index(stride)); + Packet16i stride_multiplier = + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); + __mmask16 mask = static_cast<__mmask16>(umask); + + return _mm512_mask_i32gather_ps(src, mask, indices, from, 4); +} +template <> +EIGEN_DEVICE_FUNC inline Packet8d pgather(const Packet8d& src, + const double* from, + Index stride, + uint8_t umask) { + Packet8i stride_vector = _mm256_set1_epi32(convert_index(stride)); + Packet8i stride_multiplier = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); + Packet8i indices = _mm256_mullo_epi32(stride_vector, stride_multiplier); + __mmask8 mask = static_cast<__mmask8>(umask); + + return _mm512_mask_i32gather_pd(src, mask, indices, from, 8); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet16f pgather(const float* from, + Index stride) { + Packet16i stride_vector = _mm512_set1_epi32(convert_index(stride)); + Packet16i stride_multiplier = + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); + + return _mm512_i32gather_ps(indices, from, 4); +} +template <> +EIGEN_DEVICE_FUNC inline Packet8d pgather(const double* from, + Index stride) { + Packet8i stride_vector = _mm256_set1_epi32(convert_index(stride)); + Packet8i stride_multiplier = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); + Packet8i indices = _mm256_mullo_epi32(stride_vector, stride_multiplier); + + return _mm512_i32gather_pd(indices, from, 8); +} +template <> +EIGEN_DEVICE_FUNC inline Packet16i pgather(const int* from, + Index stride) { + Packet16i stride_vector = _mm512_set1_epi32(convert_index(stride)); + Packet16i stride_multiplier = + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); + return _mm512_i32gather_epi32(indices, from, 4); +} + +template +EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, + Index stride, typename unpacket_traits::mask_t umask); +template <> +EIGEN_DEVICE_FUNC inline void pscatter(float* to, + const Packet16f& from, + Index stride, + uint16_t umask) { + Packet16i stride_vector = _mm512_set1_epi32(convert_index(stride)); + Packet16i stride_multiplier = + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); + __mmask16 mask = static_cast<__mmask16>(umask); + _mm512_mask_i32scatter_ps(to, mask, indices, from, 4); +} +template <> +EIGEN_DEVICE_FUNC inline void pscatter(double* to, + const Packet8d& from, + Index stride, + uint8_t umask) { + Packet8i stride_vector = _mm256_set1_epi32(convert_index(stride)); + Packet8i stride_multiplier = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); + Packet8i indices = _mm256_mullo_epi32(stride_vector, stride_multiplier); + __mmask8 mask = static_cast<__mmask8>(umask); + _mm512_mask_i32scatter_pd(to, mask, indices, from, 8); +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter(float* to, + const Packet16f& from, + Index stride) { + Packet16i stride_vector = _mm512_set1_epi32(convert_index(stride)); + Packet16i stride_multiplier = + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); + _mm512_i32scatter_ps(to, indices, from, 4); +} +template <> +EIGEN_DEVICE_FUNC inline void pscatter(double* to, + const Packet8d& from, + Index stride) { + Packet8i stride_vector = _mm256_set1_epi32(convert_index(stride)); + Packet8i stride_multiplier = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); + Packet8i indices = _mm256_mullo_epi32(stride_vector, stride_multiplier); + _mm512_i32scatter_pd(to, indices, from, 8); +} +template <> +EIGEN_DEVICE_FUNC inline void pscatter(int* to, + const Packet16i& from, + Index stride) { + Packet16i stride_vector = _mm512_set1_epi32(convert_index(stride)); + Packet16i stride_multiplier = + _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); + _mm512_i32scatter_epi32(to, indices, from, 4); +} + +template <> +EIGEN_STRONG_INLINE void pstore1(float* to, const float& a) { + Packet16f pa = pset1(a); + pstore(to, pa); +} +template <> +EIGEN_STRONG_INLINE void pstore1(double* to, const double& a) { + Packet8d pa = pset1(a); + pstore(to, pa); +} +template <> +EIGEN_STRONG_INLINE void pstore1(int* to, const int& a) { + Packet16i pa = pset1(a); + pstore(to, pa); +} + +template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } + +template <> +EIGEN_STRONG_INLINE float pfirst(const Packet16f& a) { + return _mm_cvtss_f32(_mm512_extractf32x4_ps(a, 0)); +} +template <> +EIGEN_STRONG_INLINE double pfirst(const Packet8d& a) { + return _mm_cvtsd_f64(_mm256_extractf128_pd(_mm512_extractf64x4_pd(a, 0), 0)); +} +template <> +EIGEN_STRONG_INLINE int pfirst(const Packet16i& a) { + return _mm_extract_epi32(_mm512_extracti32x4_epi32(a, 0), 0); +} + +template<> EIGEN_STRONG_INLINE Packet16f preverse(const Packet16f& a) +{ + return _mm512_permutexvar_ps(_mm512_set_epi32(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), a); +} + +template<> EIGEN_STRONG_INLINE Packet8d preverse(const Packet8d& a) +{ + return _mm512_permutexvar_pd(_mm512_set_epi32(0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7), a); +} + +template<> EIGEN_STRONG_INLINE Packet16i preverse(const Packet16i& a) +{ + return _mm512_permutexvar_epi32(_mm512_set_epi32(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), a); +} + +template<> EIGEN_STRONG_INLINE Packet16f pabs(const Packet16f& a) +{ + // _mm512_abs_ps intrinsic not found, so hack around it + return _mm512_castsi512_ps(_mm512_and_si512(_mm512_castps_si512(a), _mm512_set1_epi32(0x7fffffff))); +} +template <> +EIGEN_STRONG_INLINE Packet8d pabs(const Packet8d& a) { + // _mm512_abs_ps intrinsic not found, so hack around it + return _mm512_castsi512_pd(_mm512_and_si512(_mm512_castpd_si512(a), + _mm512_set1_epi64(0x7fffffffffffffff))); +} +template<> EIGEN_STRONG_INLINE Packet16i pabs(const Packet16i& a) +{ + return _mm512_abs_epi32(a); +} + +template<> EIGEN_STRONG_INLINE Packet16h psignbit(const Packet16h& a) { return _mm256_srai_epi16(a, 15); } +template<> EIGEN_STRONG_INLINE Packet16bf psignbit(const Packet16bf& a) { return _mm256_srai_epi16(a, 15); } +template<> EIGEN_STRONG_INLINE Packet16f psignbit(const Packet16f& a) { return _mm512_castsi512_ps(_mm512_srai_epi32(_mm512_castps_si512(a), 31)); } +template<> EIGEN_STRONG_INLINE Packet8d psignbit(const Packet8d& a) { return _mm512_castsi512_pd(_mm512_srai_epi64(_mm512_castpd_si512(a), 63)); } + +template<> +EIGEN_STRONG_INLINE Packet16f pfrexp(const Packet16f& a, Packet16f& exponent){ + return pfrexp_generic(a, exponent); +} + +// Extract exponent without existence of Packet8l. +template<> +EIGEN_STRONG_INLINE +Packet8d pfrexp_generic_get_biased_exponent(const Packet8d& a) { + const Packet8d cst_exp_mask = pset1frombits(static_cast(0x7ff0000000000000ull)); + #ifdef EIGEN_VECTORIZE_AVX512DQ + return _mm512_cvtepi64_pd(_mm512_srli_epi64(_mm512_castpd_si512(pand(a, cst_exp_mask)), 52)); + #else + return _mm512_cvtepi32_pd(_mm512_cvtepi64_epi32(_mm512_srli_epi64(_mm512_castpd_si512(pand(a, cst_exp_mask)), 52))); + #endif +} + +template<> +EIGEN_STRONG_INLINE Packet8d pfrexp(const Packet8d& a, Packet8d& exponent) { + return pfrexp_generic(a, exponent); +} + +template<> EIGEN_STRONG_INLINE Packet16f pldexp(const Packet16f& a, const Packet16f& exponent) { + return pldexp_generic(a, exponent); +} + +template<> EIGEN_STRONG_INLINE Packet8d pldexp(const Packet8d& a, const Packet8d& exponent) { + // Clamp exponent to [-2099, 2099] + const Packet8d max_exponent = pset1(2099.0); + const Packet8i e = _mm512_cvtpd_epi32(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent)); + + // Split 2^e into four factors and multiply. + const Packet8i bias = pset1(1023); + Packet8i b = parithmetic_shift_right<2>(e); // floor(e/4) + + // 2^b + const Packet8i permute_idx = _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7); + Packet8i hi = _mm256_permutevar8x32_epi32(padd(b, bias), permute_idx); + Packet8i lo = _mm256_slli_epi64(hi, 52); + hi = _mm256_slli_epi64(_mm256_srli_epi64(hi, 32), 52); + Packet8d c = _mm512_castsi512_pd(_mm512_inserti64x4(_mm512_castsi256_si512(lo), hi, 1)); + Packet8d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) + + // 2^(e - 3b) + b = psub(psub(psub(e, b), b), b); // e - 3b + hi = _mm256_permutevar8x32_epi32(padd(b, bias), permute_idx); + lo = _mm256_slli_epi64(hi, 52); + hi = _mm256_slli_epi64(_mm256_srli_epi64(hi, 32), 52); + c = _mm512_castsi512_pd(_mm512_inserti64x4(_mm512_castsi256_si512(lo), hi, 1)); + out = pmul(out, c); // a * 2^e + return out; +} + +#ifdef EIGEN_VECTORIZE_AVX512DQ +// AVX512F does not define _mm512_extractf32x8_ps to extract _m256 from _m512 +#define EIGEN_EXTRACT_8f_FROM_16f(INPUT, OUTPUT) \ + __m256 OUTPUT##_0 = _mm512_extractf32x8_ps(INPUT, 0); \ + __m256 OUTPUT##_1 = _mm512_extractf32x8_ps(INPUT, 1) + +// AVX512F does not define _mm512_extracti32x8_epi32 to extract _m256i from _m512i +#define EIGEN_EXTRACT_8i_FROM_16i(INPUT, OUTPUT) \ + __m256i OUTPUT##_0 = _mm512_extracti32x8_epi32(INPUT, 0); \ + __m256i OUTPUT##_1 = _mm512_extracti32x8_epi32(INPUT, 1) +#else +#define EIGEN_EXTRACT_8f_FROM_16f(INPUT, OUTPUT) \ + __m256 OUTPUT##_0 = _mm256_insertf128_ps( \ + _mm256_castps128_ps256(_mm512_extractf32x4_ps(INPUT, 0)), \ + _mm512_extractf32x4_ps(INPUT, 1), 1); \ + __m256 OUTPUT##_1 = _mm256_insertf128_ps( \ + _mm256_castps128_ps256(_mm512_extractf32x4_ps(INPUT, 2)), \ + _mm512_extractf32x4_ps(INPUT, 3), 1) + +#define EIGEN_EXTRACT_8i_FROM_16i(INPUT, OUTPUT) \ + __m256i OUTPUT##_0 = _mm256_insertf128_si256( \ + _mm256_castsi128_si256(_mm512_extracti32x4_epi32(INPUT, 0)), \ + _mm512_extracti32x4_epi32(INPUT, 1), 1); \ + __m256i OUTPUT##_1 = _mm256_insertf128_si256( \ + _mm256_castsi128_si256(_mm512_extracti32x4_epi32(INPUT, 2)), \ + _mm512_extracti32x4_epi32(INPUT, 3), 1) +#endif + +#ifdef EIGEN_VECTORIZE_AVX512DQ +#define EIGEN_INSERT_8f_INTO_16f(OUTPUT, INPUTA, INPUTB) \ + OUTPUT = _mm512_insertf32x8(_mm512_castps256_ps512(INPUTA), INPUTB, 1); + +#define EIGEN_INSERT_8i_INTO_16i(OUTPUT, INPUTA, INPUTB) \ + OUTPUT = _mm512_inserti32x8(_mm512_castsi256_si512(INPUTA), INPUTB, 1); +#else +#define EIGEN_INSERT_8f_INTO_16f(OUTPUT, INPUTA, INPUTB) \ + OUTPUT = _mm512_undefined_ps(); \ + OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTA, 0), 0); \ + OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTA, 1), 1); \ + OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTB, 0), 2); \ + OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTB, 1), 3); + +#define EIGEN_INSERT_8i_INTO_16i(OUTPUT, INPUTA, INPUTB) \ + OUTPUT = _mm512_undefined_epi32(); \ + OUTPUT = _mm512_inserti32x4(OUTPUT, _mm256_extractf128_si256(INPUTA, 0), 0); \ + OUTPUT = _mm512_inserti32x4(OUTPUT, _mm256_extractf128_si256(INPUTA, 1), 1); \ + OUTPUT = _mm512_inserti32x4(OUTPUT, _mm256_extractf128_si256(INPUTB, 0), 2); \ + OUTPUT = _mm512_inserti32x4(OUTPUT, _mm256_extractf128_si256(INPUTB, 1), 3); +#endif + +template <> +EIGEN_STRONG_INLINE float predux(const Packet16f& a) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + __m256 lane0 = _mm512_extractf32x8_ps(a, 0); + __m256 lane1 = _mm512_extractf32x8_ps(a, 1); + Packet8f x = _mm256_add_ps(lane0, lane1); + return predux(x); +#else + __m128 lane0 = _mm512_extractf32x4_ps(a, 0); + __m128 lane1 = _mm512_extractf32x4_ps(a, 1); + __m128 lane2 = _mm512_extractf32x4_ps(a, 2); + __m128 lane3 = _mm512_extractf32x4_ps(a, 3); + __m128 sum = _mm_add_ps(_mm_add_ps(lane0, lane1), _mm_add_ps(lane2, lane3)); + sum = _mm_hadd_ps(sum, sum); + sum = _mm_hadd_ps(sum, _mm_permute_ps(sum, 1)); + return _mm_cvtss_f32(sum); +#endif +} +template <> +EIGEN_STRONG_INLINE double predux(const Packet8d& a) { + __m256d lane0 = _mm512_extractf64x4_pd(a, 0); + __m256d lane1 = _mm512_extractf64x4_pd(a, 1); + __m256d sum = _mm256_add_pd(lane0, lane1); + __m256d tmp0 = _mm256_hadd_pd(sum, _mm256_permute2f128_pd(sum, sum, 1)); + return _mm_cvtsd_f64(_mm256_castpd256_pd128(_mm256_hadd_pd(tmp0, tmp0))); +} +template <> +EIGEN_STRONG_INLINE int predux(const Packet16i& a) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + __m256i lane0 = _mm512_extracti32x8_epi32(a, 0); + __m256i lane1 = _mm512_extracti32x8_epi32(a, 1); + Packet8i x = _mm256_add_epi32(lane0, lane1); + return predux(x); +#else + __m128i lane0 = _mm512_extracti32x4_epi32(a, 0); + __m128i lane1 = _mm512_extracti32x4_epi32(a, 1); + __m128i lane2 = _mm512_extracti32x4_epi32(a, 2); + __m128i lane3 = _mm512_extracti32x4_epi32(a, 3); + __m128i sum = _mm_add_epi32(_mm_add_epi32(lane0, lane1), _mm_add_epi32(lane2, lane3)); + sum = _mm_hadd_epi32(sum, sum); + sum = _mm_hadd_epi32(sum, _mm_castps_si128(_mm_permute_ps(_mm_castsi128_ps(sum), 1))); + return _mm_cvtsi128_si32(sum); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet8f predux_half_dowto4(const Packet16f& a) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + __m256 lane0 = _mm512_extractf32x8_ps(a, 0); + __m256 lane1 = _mm512_extractf32x8_ps(a, 1); + return _mm256_add_ps(lane0, lane1); +#else + __m128 lane0 = _mm512_extractf32x4_ps(a, 0); + __m128 lane1 = _mm512_extractf32x4_ps(a, 1); + __m128 lane2 = _mm512_extractf32x4_ps(a, 2); + __m128 lane3 = _mm512_extractf32x4_ps(a, 3); + __m128 sum0 = _mm_add_ps(lane0, lane2); + __m128 sum1 = _mm_add_ps(lane1, lane3); + return _mm256_insertf128_ps(_mm256_castps128_ps256(sum0), sum1, 1); +#endif +} +template <> +EIGEN_STRONG_INLINE Packet4d predux_half_dowto4(const Packet8d& a) { + __m256d lane0 = _mm512_extractf64x4_pd(a, 0); + __m256d lane1 = _mm512_extractf64x4_pd(a, 1); + return _mm256_add_pd(lane0, lane1); +} +template <> +EIGEN_STRONG_INLINE Packet8i predux_half_dowto4(const Packet16i& a) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + __m256i lane0 = _mm512_extracti32x8_epi32(a, 0); + __m256i lane1 = _mm512_extracti32x8_epi32(a, 1); + return _mm256_add_epi32(lane0, lane1); +#else + __m128i lane0 = _mm512_extracti32x4_epi32(a, 0); + __m128i lane1 = _mm512_extracti32x4_epi32(a, 1); + __m128i lane2 = _mm512_extracti32x4_epi32(a, 2); + __m128i lane3 = _mm512_extracti32x4_epi32(a, 3); + __m128i sum0 = _mm_add_epi32(lane0, lane2); + __m128i sum1 = _mm_add_epi32(lane1, lane3); + return _mm256_inserti128_si256(_mm256_castsi128_si256(sum0), sum1, 1); +#endif +} + +template <> +EIGEN_STRONG_INLINE float predux_mul(const Packet16f& a) { +//#ifdef EIGEN_VECTORIZE_AVX512DQ +#if 0 + Packet8f lane0 = _mm512_extractf32x8_ps(a, 0); + Packet8f lane1 = _mm512_extractf32x8_ps(a, 1); + Packet8f res = pmul(lane0, lane1); + res = pmul(res, _mm256_permute2f128_ps(res, res, 1)); + res = pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); + return pfirst(pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); +#else + __m128 lane0 = _mm512_extractf32x4_ps(a, 0); + __m128 lane1 = _mm512_extractf32x4_ps(a, 1); + __m128 lane2 = _mm512_extractf32x4_ps(a, 2); + __m128 lane3 = _mm512_extractf32x4_ps(a, 3); + __m128 res = pmul(pmul(lane0, lane1), pmul(lane2, lane3)); + res = pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); + return pfirst(pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); +#endif +} +template <> +EIGEN_STRONG_INLINE double predux_mul(const Packet8d& a) { + __m256d lane0 = _mm512_extractf64x4_pd(a, 0); + __m256d lane1 = _mm512_extractf64x4_pd(a, 1); + __m256d res = pmul(lane0, lane1); + res = pmul(res, _mm256_permute2f128_pd(res, res, 1)); + return pfirst(pmul(res, _mm256_shuffle_pd(res, res, 1))); +} + +template <> +EIGEN_STRONG_INLINE float predux_min(const Packet16f& a) { + __m128 lane0 = _mm512_extractf32x4_ps(a, 0); + __m128 lane1 = _mm512_extractf32x4_ps(a, 1); + __m128 lane2 = _mm512_extractf32x4_ps(a, 2); + __m128 lane3 = _mm512_extractf32x4_ps(a, 3); + __m128 res = _mm_min_ps(_mm_min_ps(lane0, lane1), _mm_min_ps(lane2, lane3)); + res = _mm_min_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); + return pfirst(_mm_min_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); +} +template <> +EIGEN_STRONG_INLINE double predux_min(const Packet8d& a) { + __m256d lane0 = _mm512_extractf64x4_pd(a, 0); + __m256d lane1 = _mm512_extractf64x4_pd(a, 1); + __m256d res = _mm256_min_pd(lane0, lane1); + res = _mm256_min_pd(res, _mm256_permute2f128_pd(res, res, 1)); + return pfirst(_mm256_min_pd(res, _mm256_shuffle_pd(res, res, 1))); +} + +template <> +EIGEN_STRONG_INLINE float predux_max(const Packet16f& a) { + __m128 lane0 = _mm512_extractf32x4_ps(a, 0); + __m128 lane1 = _mm512_extractf32x4_ps(a, 1); + __m128 lane2 = _mm512_extractf32x4_ps(a, 2); + __m128 lane3 = _mm512_extractf32x4_ps(a, 3); + __m128 res = _mm_max_ps(_mm_max_ps(lane0, lane1), _mm_max_ps(lane2, lane3)); + res = _mm_max_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); + return pfirst(_mm_max_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); +} + +template <> +EIGEN_STRONG_INLINE double predux_max(const Packet8d& a) { + __m256d lane0 = _mm512_extractf64x4_pd(a, 0); + __m256d lane1 = _mm512_extractf64x4_pd(a, 1); + __m256d res = _mm256_max_pd(lane0, lane1); + res = _mm256_max_pd(res, _mm256_permute2f128_pd(res, res, 1)); + return pfirst(_mm256_max_pd(res, _mm256_shuffle_pd(res, res, 1))); +} + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet16f& x) +{ + Packet16i xi = _mm512_castps_si512(x); + __mmask16 tmp = _mm512_test_epi32_mask(xi,xi); + return !_mm512_kortestz(tmp,tmp); +} + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet16i& x) +{ + __mmask16 tmp = _mm512_test_epi32_mask(x,x); + return !_mm512_kortestz(tmp,tmp); +} + +#define PACK_OUTPUT(OUTPUT, INPUT, INDEX, STRIDE) \ + EIGEN_INSERT_8f_INTO_16f(OUTPUT[INDEX], INPUT[INDEX], INPUT[INDEX + STRIDE]); + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512 T0 = _mm512_unpacklo_ps(kernel.packet[0], kernel.packet[1]); + __m512 T1 = _mm512_unpackhi_ps(kernel.packet[0], kernel.packet[1]); + __m512 T2 = _mm512_unpacklo_ps(kernel.packet[2], kernel.packet[3]); + __m512 T3 = _mm512_unpackhi_ps(kernel.packet[2], kernel.packet[3]); + __m512 T4 = _mm512_unpacklo_ps(kernel.packet[4], kernel.packet[5]); + __m512 T5 = _mm512_unpackhi_ps(kernel.packet[4], kernel.packet[5]); + __m512 T6 = _mm512_unpacklo_ps(kernel.packet[6], kernel.packet[7]); + __m512 T7 = _mm512_unpackhi_ps(kernel.packet[6], kernel.packet[7]); + __m512 T8 = _mm512_unpacklo_ps(kernel.packet[8], kernel.packet[9]); + __m512 T9 = _mm512_unpackhi_ps(kernel.packet[8], kernel.packet[9]); + __m512 T10 = _mm512_unpacklo_ps(kernel.packet[10], kernel.packet[11]); + __m512 T11 = _mm512_unpackhi_ps(kernel.packet[10], kernel.packet[11]); + __m512 T12 = _mm512_unpacklo_ps(kernel.packet[12], kernel.packet[13]); + __m512 T13 = _mm512_unpackhi_ps(kernel.packet[12], kernel.packet[13]); + __m512 T14 = _mm512_unpacklo_ps(kernel.packet[14], kernel.packet[15]); + __m512 T15 = _mm512_unpackhi_ps(kernel.packet[14], kernel.packet[15]); + __m512 S0 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S1 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S2 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S3 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S4 = _mm512_shuffle_ps(T4, T6, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S5 = _mm512_shuffle_ps(T4, T6, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S6 = _mm512_shuffle_ps(T5, T7, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S7 = _mm512_shuffle_ps(T5, T7, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S8 = _mm512_shuffle_ps(T8, T10, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S9 = _mm512_shuffle_ps(T8, T10, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S10 = _mm512_shuffle_ps(T9, T11, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S11 = _mm512_shuffle_ps(T9, T11, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S12 = _mm512_shuffle_ps(T12, T14, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S13 = _mm512_shuffle_ps(T12, T14, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S14 = _mm512_shuffle_ps(T13, T15, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S15 = _mm512_shuffle_ps(T13, T15, _MM_SHUFFLE(3, 2, 3, 2)); + + EIGEN_EXTRACT_8f_FROM_16f(S0, S0); + EIGEN_EXTRACT_8f_FROM_16f(S1, S1); + EIGEN_EXTRACT_8f_FROM_16f(S2, S2); + EIGEN_EXTRACT_8f_FROM_16f(S3, S3); + EIGEN_EXTRACT_8f_FROM_16f(S4, S4); + EIGEN_EXTRACT_8f_FROM_16f(S5, S5); + EIGEN_EXTRACT_8f_FROM_16f(S6, S6); + EIGEN_EXTRACT_8f_FROM_16f(S7, S7); + EIGEN_EXTRACT_8f_FROM_16f(S8, S8); + EIGEN_EXTRACT_8f_FROM_16f(S9, S9); + EIGEN_EXTRACT_8f_FROM_16f(S10, S10); + EIGEN_EXTRACT_8f_FROM_16f(S11, S11); + EIGEN_EXTRACT_8f_FROM_16f(S12, S12); + EIGEN_EXTRACT_8f_FROM_16f(S13, S13); + EIGEN_EXTRACT_8f_FROM_16f(S14, S14); + EIGEN_EXTRACT_8f_FROM_16f(S15, S15); + + PacketBlock tmp; + + tmp.packet[0] = _mm256_permute2f128_ps(S0_0, S4_0, 0x20); + tmp.packet[1] = _mm256_permute2f128_ps(S1_0, S5_0, 0x20); + tmp.packet[2] = _mm256_permute2f128_ps(S2_0, S6_0, 0x20); + tmp.packet[3] = _mm256_permute2f128_ps(S3_0, S7_0, 0x20); + tmp.packet[4] = _mm256_permute2f128_ps(S0_0, S4_0, 0x31); + tmp.packet[5] = _mm256_permute2f128_ps(S1_0, S5_0, 0x31); + tmp.packet[6] = _mm256_permute2f128_ps(S2_0, S6_0, 0x31); + tmp.packet[7] = _mm256_permute2f128_ps(S3_0, S7_0, 0x31); + + tmp.packet[8] = _mm256_permute2f128_ps(S0_1, S4_1, 0x20); + tmp.packet[9] = _mm256_permute2f128_ps(S1_1, S5_1, 0x20); + tmp.packet[10] = _mm256_permute2f128_ps(S2_1, S6_1, 0x20); + tmp.packet[11] = _mm256_permute2f128_ps(S3_1, S7_1, 0x20); + tmp.packet[12] = _mm256_permute2f128_ps(S0_1, S4_1, 0x31); + tmp.packet[13] = _mm256_permute2f128_ps(S1_1, S5_1, 0x31); + tmp.packet[14] = _mm256_permute2f128_ps(S2_1, S6_1, 0x31); + tmp.packet[15] = _mm256_permute2f128_ps(S3_1, S7_1, 0x31); + + // Second set of _m256 outputs + tmp.packet[16] = _mm256_permute2f128_ps(S8_0, S12_0, 0x20); + tmp.packet[17] = _mm256_permute2f128_ps(S9_0, S13_0, 0x20); + tmp.packet[18] = _mm256_permute2f128_ps(S10_0, S14_0, 0x20); + tmp.packet[19] = _mm256_permute2f128_ps(S11_0, S15_0, 0x20); + tmp.packet[20] = _mm256_permute2f128_ps(S8_0, S12_0, 0x31); + tmp.packet[21] = _mm256_permute2f128_ps(S9_0, S13_0, 0x31); + tmp.packet[22] = _mm256_permute2f128_ps(S10_0, S14_0, 0x31); + tmp.packet[23] = _mm256_permute2f128_ps(S11_0, S15_0, 0x31); + + tmp.packet[24] = _mm256_permute2f128_ps(S8_1, S12_1, 0x20); + tmp.packet[25] = _mm256_permute2f128_ps(S9_1, S13_1, 0x20); + tmp.packet[26] = _mm256_permute2f128_ps(S10_1, S14_1, 0x20); + tmp.packet[27] = _mm256_permute2f128_ps(S11_1, S15_1, 0x20); + tmp.packet[28] = _mm256_permute2f128_ps(S8_1, S12_1, 0x31); + tmp.packet[29] = _mm256_permute2f128_ps(S9_1, S13_1, 0x31); + tmp.packet[30] = _mm256_permute2f128_ps(S10_1, S14_1, 0x31); + tmp.packet[31] = _mm256_permute2f128_ps(S11_1, S15_1, 0x31); + + // Pack them into the output + PACK_OUTPUT(kernel.packet, tmp.packet, 0, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 1, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 2, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 3, 16); + + PACK_OUTPUT(kernel.packet, tmp.packet, 4, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 5, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 6, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 7, 16); + + PACK_OUTPUT(kernel.packet, tmp.packet, 8, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 9, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 10, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 11, 16); + + PACK_OUTPUT(kernel.packet, tmp.packet, 12, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 13, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 14, 16); + PACK_OUTPUT(kernel.packet, tmp.packet, 15, 16); +} +#define PACK_OUTPUT_2(OUTPUT, INPUT, INDEX, STRIDE) \ + EIGEN_INSERT_8f_INTO_16f(OUTPUT[INDEX], INPUT[2 * INDEX], \ + INPUT[2 * INDEX + STRIDE]); + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512 T0 = _mm512_unpacklo_ps(kernel.packet[0],kernel.packet[1]); + __m512 T1 = _mm512_unpackhi_ps(kernel.packet[0],kernel.packet[1]); + __m512 T2 = _mm512_unpacklo_ps(kernel.packet[2],kernel.packet[3]); + __m512 T3 = _mm512_unpackhi_ps(kernel.packet[2],kernel.packet[3]); + __m512 T4 = _mm512_unpacklo_ps(kernel.packet[4],kernel.packet[5]); + __m512 T5 = _mm512_unpackhi_ps(kernel.packet[4],kernel.packet[5]); + __m512 T6 = _mm512_unpacklo_ps(kernel.packet[6],kernel.packet[7]); + __m512 T7 = _mm512_unpackhi_ps(kernel.packet[6],kernel.packet[7]); + + kernel.packet[0] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T0),_mm512_castps_pd(T2))); + kernel.packet[1] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T0),_mm512_castps_pd(T2))); + kernel.packet[2] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T1),_mm512_castps_pd(T3))); + kernel.packet[3] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T1),_mm512_castps_pd(T3))); + kernel.packet[4] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T4),_mm512_castps_pd(T6))); + kernel.packet[5] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T4),_mm512_castps_pd(T6))); + kernel.packet[6] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T5),_mm512_castps_pd(T7))); + kernel.packet[7] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T5),_mm512_castps_pd(T7))); + + T0 = _mm512_shuffle_f32x4(kernel.packet[0], kernel.packet[4], 0x44); + T1 = _mm512_shuffle_f32x4(kernel.packet[0], kernel.packet[4], 0xee); + T2 = _mm512_shuffle_f32x4(kernel.packet[1], kernel.packet[5], 0x44); + T3 = _mm512_shuffle_f32x4(kernel.packet[1], kernel.packet[5], 0xee); + T4 = _mm512_shuffle_f32x4(kernel.packet[2], kernel.packet[6], 0x44); + T5 = _mm512_shuffle_f32x4(kernel.packet[2], kernel.packet[6], 0xee); + T6 = _mm512_shuffle_f32x4(kernel.packet[3], kernel.packet[7], 0x44); + T7 = _mm512_shuffle_f32x4(kernel.packet[3], kernel.packet[7], 0xee); + + kernel.packet[0] = _mm512_shuffle_f32x4(T0, T2, 0x88); + kernel.packet[2] = _mm512_shuffle_f32x4(T0, T2, 0xdd); + kernel.packet[1] = _mm512_shuffle_f32x4(T4, T6, 0x88); + kernel.packet[3] = _mm512_shuffle_f32x4(T4, T6, 0xdd); + kernel.packet[4] = _mm512_shuffle_f32x4(T1, T3, 0x88); + kernel.packet[6] = _mm512_shuffle_f32x4(T1, T3, 0xdd); + kernel.packet[5] = _mm512_shuffle_f32x4(T5, T7, 0x88); + kernel.packet[7] = _mm512_shuffle_f32x4(T5, T7, 0xdd); +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512 T0 = _mm512_unpacklo_ps(kernel.packet[0], kernel.packet[1]); + __m512 T1 = _mm512_unpackhi_ps(kernel.packet[0], kernel.packet[1]); + __m512 T2 = _mm512_unpacklo_ps(kernel.packet[2], kernel.packet[3]); + __m512 T3 = _mm512_unpackhi_ps(kernel.packet[2], kernel.packet[3]); + + __m512 S0 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S1 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(3, 2, 3, 2)); + __m512 S2 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(1, 0, 1, 0)); + __m512 S3 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(3, 2, 3, 2)); + + EIGEN_EXTRACT_8f_FROM_16f(S0, S0); + EIGEN_EXTRACT_8f_FROM_16f(S1, S1); + EIGEN_EXTRACT_8f_FROM_16f(S2, S2); + EIGEN_EXTRACT_8f_FROM_16f(S3, S3); + + PacketBlock tmp; + + tmp.packet[0] = _mm256_permute2f128_ps(S0_0, S1_0, 0x20); + tmp.packet[1] = _mm256_permute2f128_ps(S2_0, S3_0, 0x20); + tmp.packet[2] = _mm256_permute2f128_ps(S0_0, S1_0, 0x31); + tmp.packet[3] = _mm256_permute2f128_ps(S2_0, S3_0, 0x31); + + tmp.packet[4] = _mm256_permute2f128_ps(S0_1, S1_1, 0x20); + tmp.packet[5] = _mm256_permute2f128_ps(S2_1, S3_1, 0x20); + tmp.packet[6] = _mm256_permute2f128_ps(S0_1, S1_1, 0x31); + tmp.packet[7] = _mm256_permute2f128_ps(S2_1, S3_1, 0x31); + + PACK_OUTPUT_2(kernel.packet, tmp.packet, 0, 1); + PACK_OUTPUT_2(kernel.packet, tmp.packet, 1, 1); + PACK_OUTPUT_2(kernel.packet, tmp.packet, 2, 1); + PACK_OUTPUT_2(kernel.packet, tmp.packet, 3, 1); +} + +#define PACK_OUTPUT_SQ_D(OUTPUT, INPUT, INDEX, STRIDE) \ + OUTPUT[INDEX] = _mm512_insertf64x4(OUTPUT[INDEX], INPUT[INDEX], 0); \ + OUTPUT[INDEX] = _mm512_insertf64x4(OUTPUT[INDEX], INPUT[INDEX + STRIDE], 1); + +#define PACK_OUTPUT_D(OUTPUT, INPUT, INDEX, STRIDE) \ + OUTPUT[INDEX] = _mm512_insertf64x4(OUTPUT[INDEX], INPUT[(2 * INDEX)], 0); \ + OUTPUT[INDEX] = \ + _mm512_insertf64x4(OUTPUT[INDEX], INPUT[(2 * INDEX) + STRIDE], 1); + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512d T0 = _mm512_shuffle_pd(kernel.packet[0], kernel.packet[1], 0); + __m512d T1 = _mm512_shuffle_pd(kernel.packet[0], kernel.packet[1], 0xff); + __m512d T2 = _mm512_shuffle_pd(kernel.packet[2], kernel.packet[3], 0); + __m512d T3 = _mm512_shuffle_pd(kernel.packet[2], kernel.packet[3], 0xff); + + PacketBlock tmp; + + tmp.packet[0] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 0), + _mm512_extractf64x4_pd(T2, 0), 0x20); + tmp.packet[1] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 0), + _mm512_extractf64x4_pd(T3, 0), 0x20); + tmp.packet[2] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 0), + _mm512_extractf64x4_pd(T2, 0), 0x31); + tmp.packet[3] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 0), + _mm512_extractf64x4_pd(T3, 0), 0x31); + + tmp.packet[4] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 1), + _mm512_extractf64x4_pd(T2, 1), 0x20); + tmp.packet[5] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 1), + _mm512_extractf64x4_pd(T3, 1), 0x20); + tmp.packet[6] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 1), + _mm512_extractf64x4_pd(T2, 1), 0x31); + tmp.packet[7] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 1), + _mm512_extractf64x4_pd(T3, 1), 0x31); + + PACK_OUTPUT_D(kernel.packet, tmp.packet, 0, 1); + PACK_OUTPUT_D(kernel.packet, tmp.packet, 1, 1); + PACK_OUTPUT_D(kernel.packet, tmp.packet, 2, 1); + PACK_OUTPUT_D(kernel.packet, tmp.packet, 3, 1); +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512d T0 = _mm512_unpacklo_pd(kernel.packet[0],kernel.packet[1]); + __m512d T1 = _mm512_unpackhi_pd(kernel.packet[0],kernel.packet[1]); + __m512d T2 = _mm512_unpacklo_pd(kernel.packet[2],kernel.packet[3]); + __m512d T3 = _mm512_unpackhi_pd(kernel.packet[2],kernel.packet[3]); + __m512d T4 = _mm512_unpacklo_pd(kernel.packet[4],kernel.packet[5]); + __m512d T5 = _mm512_unpackhi_pd(kernel.packet[4],kernel.packet[5]); + __m512d T6 = _mm512_unpacklo_pd(kernel.packet[6],kernel.packet[7]); + __m512d T7 = _mm512_unpackhi_pd(kernel.packet[6],kernel.packet[7]); + + kernel.packet[0] = _mm512_permutex_pd(T2, 0x4E); + kernel.packet[0] = _mm512_mask_blend_pd(0xCC, T0, kernel.packet[0]); + kernel.packet[2] = _mm512_permutex_pd(T0, 0x4E); + kernel.packet[2] = _mm512_mask_blend_pd(0xCC, kernel.packet[2], T2); + kernel.packet[1] = _mm512_permutex_pd(T3, 0x4E); + kernel.packet[1] = _mm512_mask_blend_pd(0xCC, T1, kernel.packet[1]); + kernel.packet[3] = _mm512_permutex_pd(T1, 0x4E); + kernel.packet[3] = _mm512_mask_blend_pd(0xCC, kernel.packet[3], T3); + kernel.packet[4] = _mm512_permutex_pd(T6, 0x4E); + kernel.packet[4] = _mm512_mask_blend_pd(0xCC, T4, kernel.packet[4]); + kernel.packet[6] = _mm512_permutex_pd(T4, 0x4E); + kernel.packet[6] = _mm512_mask_blend_pd(0xCC, kernel.packet[6], T6); + kernel.packet[5] = _mm512_permutex_pd(T7, 0x4E); + kernel.packet[5] = _mm512_mask_blend_pd(0xCC, T5, kernel.packet[5]); + kernel.packet[7] = _mm512_permutex_pd(T5, 0x4E); + kernel.packet[7] = _mm512_mask_blend_pd(0xCC, kernel.packet[7], T7); + + T0 = _mm512_shuffle_f64x2(kernel.packet[4], kernel.packet[4], 0x4E); + T0 = _mm512_mask_blend_pd(0xF0, kernel.packet[0], T0); + T4 = _mm512_shuffle_f64x2(kernel.packet[0], kernel.packet[0], 0x4E); + T4 = _mm512_mask_blend_pd(0xF0, T4, kernel.packet[4]); + T1 = _mm512_shuffle_f64x2(kernel.packet[5], kernel.packet[5], 0x4E); + T1 = _mm512_mask_blend_pd(0xF0, kernel.packet[1], T1); + T5 = _mm512_shuffle_f64x2(kernel.packet[1], kernel.packet[1], 0x4E); + T5 = _mm512_mask_blend_pd(0xF0, T5, kernel.packet[5]); + T2 = _mm512_shuffle_f64x2(kernel.packet[6], kernel.packet[6], 0x4E); + T2 = _mm512_mask_blend_pd(0xF0, kernel.packet[2], T2); + T6 = _mm512_shuffle_f64x2(kernel.packet[2], kernel.packet[2], 0x4E); + T6 = _mm512_mask_blend_pd(0xF0, T6, kernel.packet[6]); + T3 = _mm512_shuffle_f64x2(kernel.packet[7], kernel.packet[7], 0x4E); + T3 = _mm512_mask_blend_pd(0xF0, kernel.packet[3], T3); + T7 = _mm512_shuffle_f64x2(kernel.packet[3], kernel.packet[3], 0x4E); + T7 = _mm512_mask_blend_pd(0xF0, T7, kernel.packet[7]); + + kernel.packet[0] = T0; kernel.packet[1] = T1; + kernel.packet[2] = T2; kernel.packet[3] = T3; + kernel.packet[4] = T4; kernel.packet[5] = T5; + kernel.packet[6] = T6; kernel.packet[7] = T7; +} + +#define PACK_OUTPUT_I32(OUTPUT, INPUT, INDEX, STRIDE) \ + EIGEN_INSERT_8i_INTO_16i(OUTPUT[INDEX], INPUT[INDEX], INPUT[INDEX + STRIDE]); + +#define PACK_OUTPUT_I32_2(OUTPUT, INPUT, INDEX, STRIDE) \ + EIGEN_INSERT_8i_INTO_16i(OUTPUT[INDEX], INPUT[2 * INDEX], \ + INPUT[2 * INDEX + STRIDE]); + +#define SHUFFLE_EPI32(A, B, M) \ + _mm512_castps_si512(_mm512_shuffle_ps(_mm512_castsi512_ps(A), _mm512_castsi512_ps(B), M)) + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512i T0 = _mm512_unpacklo_epi32(kernel.packet[0], kernel.packet[1]); + __m512i T1 = _mm512_unpackhi_epi32(kernel.packet[0], kernel.packet[1]); + __m512i T2 = _mm512_unpacklo_epi32(kernel.packet[2], kernel.packet[3]); + __m512i T3 = _mm512_unpackhi_epi32(kernel.packet[2], kernel.packet[3]); + __m512i T4 = _mm512_unpacklo_epi32(kernel.packet[4], kernel.packet[5]); + __m512i T5 = _mm512_unpackhi_epi32(kernel.packet[4], kernel.packet[5]); + __m512i T6 = _mm512_unpacklo_epi32(kernel.packet[6], kernel.packet[7]); + __m512i T7 = _mm512_unpackhi_epi32(kernel.packet[6], kernel.packet[7]); + __m512i T8 = _mm512_unpacklo_epi32(kernel.packet[8], kernel.packet[9]); + __m512i T9 = _mm512_unpackhi_epi32(kernel.packet[8], kernel.packet[9]); + __m512i T10 = _mm512_unpacklo_epi32(kernel.packet[10], kernel.packet[11]); + __m512i T11 = _mm512_unpackhi_epi32(kernel.packet[10], kernel.packet[11]); + __m512i T12 = _mm512_unpacklo_epi32(kernel.packet[12], kernel.packet[13]); + __m512i T13 = _mm512_unpackhi_epi32(kernel.packet[12], kernel.packet[13]); + __m512i T14 = _mm512_unpacklo_epi32(kernel.packet[14], kernel.packet[15]); + __m512i T15 = _mm512_unpackhi_epi32(kernel.packet[14], kernel.packet[15]); + __m512i S0 = SHUFFLE_EPI32(T0, T2, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S1 = SHUFFLE_EPI32(T0, T2, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S2 = SHUFFLE_EPI32(T1, T3, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S3 = SHUFFLE_EPI32(T1, T3, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S4 = SHUFFLE_EPI32(T4, T6, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S5 = SHUFFLE_EPI32(T4, T6, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S6 = SHUFFLE_EPI32(T5, T7, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S7 = SHUFFLE_EPI32(T5, T7, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S8 = SHUFFLE_EPI32(T8, T10, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S9 = SHUFFLE_EPI32(T8, T10, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S10 = SHUFFLE_EPI32(T9, T11, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S11 = SHUFFLE_EPI32(T9, T11, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S12 = SHUFFLE_EPI32(T12, T14, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S13 = SHUFFLE_EPI32(T12, T14, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S14 = SHUFFLE_EPI32(T13, T15, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S15 = SHUFFLE_EPI32(T13, T15, _MM_SHUFFLE(3, 2, 3, 2)); + + EIGEN_EXTRACT_8i_FROM_16i(S0, S0); + EIGEN_EXTRACT_8i_FROM_16i(S1, S1); + EIGEN_EXTRACT_8i_FROM_16i(S2, S2); + EIGEN_EXTRACT_8i_FROM_16i(S3, S3); + EIGEN_EXTRACT_8i_FROM_16i(S4, S4); + EIGEN_EXTRACT_8i_FROM_16i(S5, S5); + EIGEN_EXTRACT_8i_FROM_16i(S6, S6); + EIGEN_EXTRACT_8i_FROM_16i(S7, S7); + EIGEN_EXTRACT_8i_FROM_16i(S8, S8); + EIGEN_EXTRACT_8i_FROM_16i(S9, S9); + EIGEN_EXTRACT_8i_FROM_16i(S10, S10); + EIGEN_EXTRACT_8i_FROM_16i(S11, S11); + EIGEN_EXTRACT_8i_FROM_16i(S12, S12); + EIGEN_EXTRACT_8i_FROM_16i(S13, S13); + EIGEN_EXTRACT_8i_FROM_16i(S14, S14); + EIGEN_EXTRACT_8i_FROM_16i(S15, S15); + + PacketBlock tmp; + + tmp.packet[0] = _mm256_permute2f128_si256(S0_0, S4_0, 0x20); + tmp.packet[1] = _mm256_permute2f128_si256(S1_0, S5_0, 0x20); + tmp.packet[2] = _mm256_permute2f128_si256(S2_0, S6_0, 0x20); + tmp.packet[3] = _mm256_permute2f128_si256(S3_0, S7_0, 0x20); + tmp.packet[4] = _mm256_permute2f128_si256(S0_0, S4_0, 0x31); + tmp.packet[5] = _mm256_permute2f128_si256(S1_0, S5_0, 0x31); + tmp.packet[6] = _mm256_permute2f128_si256(S2_0, S6_0, 0x31); + tmp.packet[7] = _mm256_permute2f128_si256(S3_0, S7_0, 0x31); + + tmp.packet[8] = _mm256_permute2f128_si256(S0_1, S4_1, 0x20); + tmp.packet[9] = _mm256_permute2f128_si256(S1_1, S5_1, 0x20); + tmp.packet[10] = _mm256_permute2f128_si256(S2_1, S6_1, 0x20); + tmp.packet[11] = _mm256_permute2f128_si256(S3_1, S7_1, 0x20); + tmp.packet[12] = _mm256_permute2f128_si256(S0_1, S4_1, 0x31); + tmp.packet[13] = _mm256_permute2f128_si256(S1_1, S5_1, 0x31); + tmp.packet[14] = _mm256_permute2f128_si256(S2_1, S6_1, 0x31); + tmp.packet[15] = _mm256_permute2f128_si256(S3_1, S7_1, 0x31); + + // Second set of _m256 outputs + tmp.packet[16] = _mm256_permute2f128_si256(S8_0, S12_0, 0x20); + tmp.packet[17] = _mm256_permute2f128_si256(S9_0, S13_0, 0x20); + tmp.packet[18] = _mm256_permute2f128_si256(S10_0, S14_0, 0x20); + tmp.packet[19] = _mm256_permute2f128_si256(S11_0, S15_0, 0x20); + tmp.packet[20] = _mm256_permute2f128_si256(S8_0, S12_0, 0x31); + tmp.packet[21] = _mm256_permute2f128_si256(S9_0, S13_0, 0x31); + tmp.packet[22] = _mm256_permute2f128_si256(S10_0, S14_0, 0x31); + tmp.packet[23] = _mm256_permute2f128_si256(S11_0, S15_0, 0x31); + + tmp.packet[24] = _mm256_permute2f128_si256(S8_1, S12_1, 0x20); + tmp.packet[25] = _mm256_permute2f128_si256(S9_1, S13_1, 0x20); + tmp.packet[26] = _mm256_permute2f128_si256(S10_1, S14_1, 0x20); + tmp.packet[27] = _mm256_permute2f128_si256(S11_1, S15_1, 0x20); + tmp.packet[28] = _mm256_permute2f128_si256(S8_1, S12_1, 0x31); + tmp.packet[29] = _mm256_permute2f128_si256(S9_1, S13_1, 0x31); + tmp.packet[30] = _mm256_permute2f128_si256(S10_1, S14_1, 0x31); + tmp.packet[31] = _mm256_permute2f128_si256(S11_1, S15_1, 0x31); + + // Pack them into the output + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 0, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 1, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 2, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 3, 16); + + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 4, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 5, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 6, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 7, 16); + + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 8, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 9, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 10, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 11, 16); + + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 12, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 13, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 14, 16); + PACK_OUTPUT_I32(kernel.packet, tmp.packet, 15, 16); +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + __m512i T0 = _mm512_unpacklo_epi32(kernel.packet[0], kernel.packet[1]); + __m512i T1 = _mm512_unpackhi_epi32(kernel.packet[0], kernel.packet[1]); + __m512i T2 = _mm512_unpacklo_epi32(kernel.packet[2], kernel.packet[3]); + __m512i T3 = _mm512_unpackhi_epi32(kernel.packet[2], kernel.packet[3]); + + __m512i S0 = SHUFFLE_EPI32(T0, T2, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S1 = SHUFFLE_EPI32(T0, T2, _MM_SHUFFLE(3, 2, 3, 2)); + __m512i S2 = SHUFFLE_EPI32(T1, T3, _MM_SHUFFLE(1, 0, 1, 0)); + __m512i S3 = SHUFFLE_EPI32(T1, T3, _MM_SHUFFLE(3, 2, 3, 2)); + + EIGEN_EXTRACT_8i_FROM_16i(S0, S0); + EIGEN_EXTRACT_8i_FROM_16i(S1, S1); + EIGEN_EXTRACT_8i_FROM_16i(S2, S2); + EIGEN_EXTRACT_8i_FROM_16i(S3, S3); + + PacketBlock tmp; + + tmp.packet[0] = _mm256_permute2f128_si256(S0_0, S1_0, 0x20); + tmp.packet[1] = _mm256_permute2f128_si256(S2_0, S3_0, 0x20); + tmp.packet[2] = _mm256_permute2f128_si256(S0_0, S1_0, 0x31); + tmp.packet[3] = _mm256_permute2f128_si256(S2_0, S3_0, 0x31); + + tmp.packet[4] = _mm256_permute2f128_si256(S0_1, S1_1, 0x20); + tmp.packet[5] = _mm256_permute2f128_si256(S2_1, S3_1, 0x20); + tmp.packet[6] = _mm256_permute2f128_si256(S0_1, S1_1, 0x31); + tmp.packet[7] = _mm256_permute2f128_si256(S2_1, S3_1, 0x31); + + PACK_OUTPUT_I32_2(kernel.packet, tmp.packet, 0, 1); + PACK_OUTPUT_I32_2(kernel.packet, tmp.packet, 1, 1); + PACK_OUTPUT_I32_2(kernel.packet, tmp.packet, 2, 1); + PACK_OUTPUT_I32_2(kernel.packet, tmp.packet, 3, 1); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pblend(const Selector<16>& ifPacket, + const Packet16f& thenPacket, + const Packet16f& elsePacket) { + __mmask16 m = (ifPacket.select[0]) | (ifPacket.select[1] << 1) | (ifPacket.select[2] << 2) | + (ifPacket.select[3] << 3) | (ifPacket.select[4] << 4) | (ifPacket.select[5] << 5) | + (ifPacket.select[6] << 6) | (ifPacket.select[7] << 7) | (ifPacket.select[8] << 8) | + (ifPacket.select[9] << 9) | (ifPacket.select[10] << 10) | (ifPacket.select[11] << 11) | + (ifPacket.select[12] << 12) | (ifPacket.select[13] << 13) | (ifPacket.select[14] << 14) | + (ifPacket.select[15] << 15); + return _mm512_mask_blend_ps(m, elsePacket, thenPacket); +} +template <> +EIGEN_STRONG_INLINE Packet8d pblend(const Selector<8>& ifPacket, + const Packet8d& thenPacket, + const Packet8d& elsePacket) { + __mmask8 m = (ifPacket.select[0] ) + | (ifPacket.select[1]<<1) + | (ifPacket.select[2]<<2) + | (ifPacket.select[3]<<3) + | (ifPacket.select[4]<<4) + | (ifPacket.select[5]<<5) + | (ifPacket.select[6]<<6) + | (ifPacket.select[7]<<7); + return _mm512_mask_blend_pd(m, elsePacket, thenPacket); +} + +// Packet math for Eigen::half +template<> EIGEN_STRONG_INLINE Packet16h pset1(const Eigen::half& from) { + return _mm256_set1_epi16(from.x); +} + +template<> EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet16h& from) { + return half_impl::raw_uint16_to_half(static_cast(_mm256_extract_epi16(from, 0))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pload(const Eigen::half* from) { + return _mm256_load_si256(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE Packet16h ploadu(const Eigen::half* from) { + return _mm256_loadu_si256(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet16h& from) { + // (void*) -> workaround clang warning: + // cast from 'Eigen::half *' to '__m256i *' increases required alignment from 2 to 32 + _mm256_store_si256((__m256i*)(void*)to, from); +} + +template<> EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet16h& from) { + // (void*) -> workaround clang warning: + // cast from 'Eigen::half *' to '__m256i *' increases required alignment from 2 to 32 + _mm256_storeu_si256((__m256i*)(void*)to, from); +} + +template<> EIGEN_STRONG_INLINE Packet16h +ploaddup(const Eigen::half* from) { + unsigned short a = from[0].x; + unsigned short b = from[1].x; + unsigned short c = from[2].x; + unsigned short d = from[3].x; + unsigned short e = from[4].x; + unsigned short f = from[5].x; + unsigned short g = from[6].x; + unsigned short h = from[7].x; + return _mm256_set_epi16(h, h, g, g, f, f, e, e, d, d, c, c, b, b, a, a); +} + +template<> EIGEN_STRONG_INLINE Packet16h +ploadquad(const Eigen::half* from) { + unsigned short a = from[0].x; + unsigned short b = from[1].x; + unsigned short c = from[2].x; + unsigned short d = from[3].x; + return _mm256_set_epi16(d, d, d, d, c, c, c, c, b, b, b, b, a, a, a, a); +} + +EIGEN_STRONG_INLINE Packet16f half2float(const Packet16h& a) { + return _mm512_cvtph_ps(a); +} + +EIGEN_STRONG_INLINE Packet16h float2half(const Packet16f& a) { + return _mm512_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC); +} + +template<> EIGEN_STRONG_INLINE Packet16h ptrue(const Packet16h& a) { + return Packet16h(ptrue(Packet8i(a))); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pabs(const Packet16h& a) { + const __m256i sign_mask = _mm256_set1_epi16(static_cast(0x8000)); + return _mm256_andnot_si256(sign_mask, a); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pmin(const Packet16h& a, + const Packet16h& b) { + return float2half(pmin(half2float(a), half2float(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pmax(const Packet16h& a, + const Packet16h& b) { + return float2half(pmax(half2float(a), half2float(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16h plset(const half& a) { + return float2half(plset(static_cast(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16h por(const Packet16h& a,const Packet16h& b) { + // in some cases Packet8i is a wrapper around __m256i, so we need to + // cast to Packet8i to call the correct overload. + return Packet16h(por(Packet8i(a),Packet8i(b))); +} +template<> EIGEN_STRONG_INLINE Packet16h pxor(const Packet16h& a,const Packet16h& b) { + return Packet16h(pxor(Packet8i(a),Packet8i(b))); +} +template<> EIGEN_STRONG_INLINE Packet16h pand(const Packet16h& a,const Packet16h& b) { + return Packet16h(pand(Packet8i(a),Packet8i(b))); +} +template<> EIGEN_STRONG_INLINE Packet16h pandnot(const Packet16h& a,const Packet16h& b) { + return Packet16h(pandnot(Packet8i(a),Packet8i(b))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pselect(const Packet16h& mask, const Packet16h& a, const Packet16h& b) { + return _mm256_blendv_epi8(b, a, mask); +} + +template<> EIGEN_STRONG_INLINE Packet16h pround(const Packet16h& a) { + return float2half(pround(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16h print(const Packet16h& a) { + return float2half(print(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pceil(const Packet16h& a) { + return float2half(pceil(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pfloor(const Packet16h& a) { + return float2half(pfloor(half2float(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pcmp_eq(const Packet16h& a,const Packet16h& b) { + Packet16f af = half2float(a); + Packet16f bf = half2float(b); + return Pack32To16(pcmp_eq(af, bf)); +} + +template<> EIGEN_STRONG_INLINE Packet16h pcmp_le(const Packet16h& a,const Packet16h& b) { + return Pack32To16(pcmp_le(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pcmp_lt(const Packet16h& a,const Packet16h& b) { + return Pack32To16(pcmp_lt(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pcmp_lt_or_nan(const Packet16h& a,const Packet16h& b) { + return Pack32To16(pcmp_lt_or_nan(half2float(a), half2float(b))); +} + +template<> EIGEN_STRONG_INLINE Packet16h pconj(const Packet16h& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet16h pnegate(const Packet16h& a) { + Packet16h sign_mask = _mm256_set1_epi16(static_cast(0x8000)); + return _mm256_xor_si256(a, sign_mask); +} + +#ifndef EIGEN_VECTORIZE_AVX512FP16 +template<> EIGEN_STRONG_INLINE Packet16h padd(const Packet16h& a, const Packet16h& b) { + Packet16f af = half2float(a); + Packet16f bf = half2float(b); + Packet16f rf = padd(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE Packet16h psub(const Packet16h& a, const Packet16h& b) { + Packet16f af = half2float(a); + Packet16f bf = half2float(b); + Packet16f rf = psub(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE Packet16h pmul(const Packet16h& a, const Packet16h& b) { + Packet16f af = half2float(a); + Packet16f bf = half2float(b); + Packet16f rf = pmul(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE Packet16h pdiv(const Packet16h& a, const Packet16h& b) { + Packet16f af = half2float(a); + Packet16f bf = half2float(b); + Packet16f rf = pdiv(af, bf); + return float2half(rf); +} + +template<> EIGEN_STRONG_INLINE half predux(const Packet16h& from) { + Packet16f from_float = half2float(from); + return half(predux(from_float)); +} + +#endif + +template <> +EIGEN_STRONG_INLINE Packet8h predux_half_dowto4(const Packet16h& a) { + Packet8h lane0 = _mm256_extractf128_si256(a, 0); + Packet8h lane1 = _mm256_extractf128_si256(a, 1); + return padd(lane0, lane1); +} + +template<> EIGEN_STRONG_INLINE Eigen::half predux_max(const Packet16h& a) { + Packet16f af = half2float(a); + float reduced = predux_max(af); + return Eigen::half(reduced); +} + +template<> EIGEN_STRONG_INLINE Eigen::half predux_min(const Packet16h& a) { + Packet16f af = half2float(a); + float reduced = predux_min(af); + return Eigen::half(reduced); +} + +template<> EIGEN_STRONG_INLINE half predux_mul(const Packet16h& from) { + Packet16f from_float = half2float(from); + return half(predux_mul(from_float)); +} + +template<> EIGEN_STRONG_INLINE Packet16h preverse(const Packet16h& a) +{ + __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1); + return _mm256_insertf128_si256( + _mm256_castsi128_si256(_mm_shuffle_epi8(_mm256_extractf128_si256(a,1),m)), + _mm_shuffle_epi8(_mm256_extractf128_si256(a,0),m), 1); +} + +template<> EIGEN_STRONG_INLINE Packet16h pgather(const Eigen::half* from, Index stride) +{ + return _mm256_set_epi16( + from[15*stride].x, from[14*stride].x, from[13*stride].x, from[12*stride].x, + from[11*stride].x, from[10*stride].x, from[9*stride].x, from[8*stride].x, + from[7*stride].x, from[6*stride].x, from[5*stride].x, from[4*stride].x, + from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x); +} + +template<> EIGEN_STRONG_INLINE void pscatter(half* to, const Packet16h& from, Index stride) +{ + EIGEN_ALIGN64 half aux[16]; + pstore(aux, from); + to[stride*0] = aux[0]; + to[stride*1] = aux[1]; + to[stride*2] = aux[2]; + to[stride*3] = aux[3]; + to[stride*4] = aux[4]; + to[stride*5] = aux[5]; + to[stride*6] = aux[6]; + to[stride*7] = aux[7]; + to[stride*8] = aux[8]; + to[stride*9] = aux[9]; + to[stride*10] = aux[10]; + to[stride*11] = aux[11]; + to[stride*12] = aux[12]; + to[stride*13] = aux[13]; + to[stride*14] = aux[14]; + to[stride*15] = aux[15]; +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + __m256i a = kernel.packet[0]; + __m256i b = kernel.packet[1]; + __m256i c = kernel.packet[2]; + __m256i d = kernel.packet[3]; + __m256i e = kernel.packet[4]; + __m256i f = kernel.packet[5]; + __m256i g = kernel.packet[6]; + __m256i h = kernel.packet[7]; + __m256i i = kernel.packet[8]; + __m256i j = kernel.packet[9]; + __m256i k = kernel.packet[10]; + __m256i l = kernel.packet[11]; + __m256i m = kernel.packet[12]; + __m256i n = kernel.packet[13]; + __m256i o = kernel.packet[14]; + __m256i p = kernel.packet[15]; + + __m256i ab_07 = _mm256_unpacklo_epi16(a, b); + __m256i cd_07 = _mm256_unpacklo_epi16(c, d); + __m256i ef_07 = _mm256_unpacklo_epi16(e, f); + __m256i gh_07 = _mm256_unpacklo_epi16(g, h); + __m256i ij_07 = _mm256_unpacklo_epi16(i, j); + __m256i kl_07 = _mm256_unpacklo_epi16(k, l); + __m256i mn_07 = _mm256_unpacklo_epi16(m, n); + __m256i op_07 = _mm256_unpacklo_epi16(o, p); + + __m256i ab_8f = _mm256_unpackhi_epi16(a, b); + __m256i cd_8f = _mm256_unpackhi_epi16(c, d); + __m256i ef_8f = _mm256_unpackhi_epi16(e, f); + __m256i gh_8f = _mm256_unpackhi_epi16(g, h); + __m256i ij_8f = _mm256_unpackhi_epi16(i, j); + __m256i kl_8f = _mm256_unpackhi_epi16(k, l); + __m256i mn_8f = _mm256_unpackhi_epi16(m, n); + __m256i op_8f = _mm256_unpackhi_epi16(o, p); + + __m256i abcd_03 = _mm256_unpacklo_epi32(ab_07, cd_07); + __m256i abcd_47 = _mm256_unpackhi_epi32(ab_07, cd_07); + __m256i efgh_03 = _mm256_unpacklo_epi32(ef_07, gh_07); + __m256i efgh_47 = _mm256_unpackhi_epi32(ef_07, gh_07); + __m256i ijkl_03 = _mm256_unpacklo_epi32(ij_07, kl_07); + __m256i ijkl_47 = _mm256_unpackhi_epi32(ij_07, kl_07); + __m256i mnop_03 = _mm256_unpacklo_epi32(mn_07, op_07); + __m256i mnop_47 = _mm256_unpackhi_epi32(mn_07, op_07); + + __m256i abcd_8b = _mm256_unpacklo_epi32(ab_8f, cd_8f); + __m256i abcd_cf = _mm256_unpackhi_epi32(ab_8f, cd_8f); + __m256i efgh_8b = _mm256_unpacklo_epi32(ef_8f, gh_8f); + __m256i efgh_cf = _mm256_unpackhi_epi32(ef_8f, gh_8f); + __m256i ijkl_8b = _mm256_unpacklo_epi32(ij_8f, kl_8f); + __m256i ijkl_cf = _mm256_unpackhi_epi32(ij_8f, kl_8f); + __m256i mnop_8b = _mm256_unpacklo_epi32(mn_8f, op_8f); + __m256i mnop_cf = _mm256_unpackhi_epi32(mn_8f, op_8f); + + __m256i abcdefgh_01 = _mm256_unpacklo_epi64(abcd_03, efgh_03); + __m256i abcdefgh_23 = _mm256_unpackhi_epi64(abcd_03, efgh_03); + __m256i ijklmnop_01 = _mm256_unpacklo_epi64(ijkl_03, mnop_03); + __m256i ijklmnop_23 = _mm256_unpackhi_epi64(ijkl_03, mnop_03); + __m256i abcdefgh_45 = _mm256_unpacklo_epi64(abcd_47, efgh_47); + __m256i abcdefgh_67 = _mm256_unpackhi_epi64(abcd_47, efgh_47); + __m256i ijklmnop_45 = _mm256_unpacklo_epi64(ijkl_47, mnop_47); + __m256i ijklmnop_67 = _mm256_unpackhi_epi64(ijkl_47, mnop_47); + __m256i abcdefgh_89 = _mm256_unpacklo_epi64(abcd_8b, efgh_8b); + __m256i abcdefgh_ab = _mm256_unpackhi_epi64(abcd_8b, efgh_8b); + __m256i ijklmnop_89 = _mm256_unpacklo_epi64(ijkl_8b, mnop_8b); + __m256i ijklmnop_ab = _mm256_unpackhi_epi64(ijkl_8b, mnop_8b); + __m256i abcdefgh_cd = _mm256_unpacklo_epi64(abcd_cf, efgh_cf); + __m256i abcdefgh_ef = _mm256_unpackhi_epi64(abcd_cf, efgh_cf); + __m256i ijklmnop_cd = _mm256_unpacklo_epi64(ijkl_cf, mnop_cf); + __m256i ijklmnop_ef = _mm256_unpackhi_epi64(ijkl_cf, mnop_cf); + + // NOTE: no unpacklo/hi instr in this case, so using permute instr. + __m256i a_p_0 = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x20); + __m256i a_p_1 = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x20); + __m256i a_p_2 = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x20); + __m256i a_p_3 = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x20); + __m256i a_p_4 = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x20); + __m256i a_p_5 = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x20); + __m256i a_p_6 = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x20); + __m256i a_p_7 = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x20); + __m256i a_p_8 = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x31); + __m256i a_p_9 = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x31); + __m256i a_p_a = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x31); + __m256i a_p_b = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x31); + __m256i a_p_c = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x31); + __m256i a_p_d = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x31); + __m256i a_p_e = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x31); + __m256i a_p_f = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x31); + + kernel.packet[0] = a_p_0; + kernel.packet[1] = a_p_1; + kernel.packet[2] = a_p_2; + kernel.packet[3] = a_p_3; + kernel.packet[4] = a_p_4; + kernel.packet[5] = a_p_5; + kernel.packet[6] = a_p_6; + kernel.packet[7] = a_p_7; + kernel.packet[8] = a_p_8; + kernel.packet[9] = a_p_9; + kernel.packet[10] = a_p_a; + kernel.packet[11] = a_p_b; + kernel.packet[12] = a_p_c; + kernel.packet[13] = a_p_d; + kernel.packet[14] = a_p_e; + kernel.packet[15] = a_p_f; +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + EIGEN_ALIGN64 half in[8][16]; + pstore(in[0], kernel.packet[0]); + pstore(in[1], kernel.packet[1]); + pstore(in[2], kernel.packet[2]); + pstore(in[3], kernel.packet[3]); + pstore(in[4], kernel.packet[4]); + pstore(in[5], kernel.packet[5]); + pstore(in[6], kernel.packet[6]); + pstore(in[7], kernel.packet[7]); + + EIGEN_ALIGN64 half out[8][16]; + + for (int i = 0; i < 8; ++i) { + for (int j = 0; j < 8; ++j) { + out[i][j] = in[j][2*i]; + } + for (int j = 0; j < 8; ++j) { + out[i][j+8] = in[j][2*i+1]; + } + } + + kernel.packet[0] = pload(out[0]); + kernel.packet[1] = pload(out[1]); + kernel.packet[2] = pload(out[2]); + kernel.packet[3] = pload(out[3]); + kernel.packet[4] = pload(out[4]); + kernel.packet[5] = pload(out[5]); + kernel.packet[6] = pload(out[6]); + kernel.packet[7] = pload(out[7]); +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + EIGEN_ALIGN64 half in[4][16]; + pstore(in[0], kernel.packet[0]); + pstore(in[1], kernel.packet[1]); + pstore(in[2], kernel.packet[2]); + pstore(in[3], kernel.packet[3]); + + EIGEN_ALIGN64 half out[4][16]; + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) { + out[i][j] = in[j][4*i]; + } + for (int j = 0; j < 4; ++j) { + out[i][j+4] = in[j][4*i+1]; + } + for (int j = 0; j < 4; ++j) { + out[i][j+8] = in[j][4*i+2]; + } + for (int j = 0; j < 4; ++j) { + out[i][j+12] = in[j][4*i+3]; + } + } + + kernel.packet[0] = pload(out[0]); + kernel.packet[1] = pload(out[1]); + kernel.packet[2] = pload(out[2]); + kernel.packet[3] = pload(out[3]); +} + +template <> struct is_arithmetic { enum { value = true }; }; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet16bf type; + typedef Packet8bf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + HasBlend = 0, + HasInsert = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasSqrt = 1, + HasRsqrt = 1, +#ifdef EIGEN_VECTORIZE_AVX512DQ + HasLog = 1, // Currently fails test with bad accuracy. + HasLog1p = 1, + HasExpm1 = 1, + HasNdtri = 1, + HasBessel = 1, +#endif + HasExp = 1, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasCmp = 1, + HasDiv = 1 + }; +}; + +template <> +struct unpacket_traits +{ + typedef bfloat16 type; + enum {size=16, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; + typedef Packet8bf half; +}; + +template <> +EIGEN_STRONG_INLINE Packet16bf pset1(const bfloat16& from) { + return _mm256_set1_epi16(from.value); +} + +template <> +EIGEN_STRONG_INLINE bfloat16 pfirst(const Packet16bf& from) { + bfloat16 t; + t.value = static_cast(_mm256_extract_epi16(from, 0)); + return t; +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pload(const bfloat16* from) { + return _mm256_load_si256(reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf ploadu(const bfloat16* from) { + return _mm256_loadu_si256(reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE void pstore(bfloat16* to, + const Packet16bf& from) { + _mm256_store_si256(reinterpret_cast<__m256i*>(to), from); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(bfloat16* to, + const Packet16bf& from) { + _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); +} + +template<> EIGEN_STRONG_INLINE Packet16bf +ploaddup(const bfloat16* from) { + unsigned short a = from[0].value; + unsigned short b = from[1].value; + unsigned short c = from[2].value; + unsigned short d = from[3].value; + unsigned short e = from[4].value; + unsigned short f = from[5].value; + unsigned short g = from[6].value; + unsigned short h = from[7].value; + return _mm256_set_epi16(h, h, g, g, f, f, e, e, d, d, c, c, b, b, a, a); +} + +template<> EIGEN_STRONG_INLINE Packet16bf +ploadquad(const bfloat16* from) { + unsigned short a = from[0].value; + unsigned short b = from[1].value; + unsigned short c = from[2].value; + unsigned short d = from[3].value; + return _mm256_set_epi16(d, d, d, d, c, c, c, c, b, b, b, b, a, a, a, a); +} + +EIGEN_STRONG_INLINE Packet16f Bf16ToF32(const Packet16bf& a) { + return _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(a), 16)); +} + +// Convert float to bfloat16 according to round-to-nearest-even/denormals algorithm. +EIGEN_STRONG_INLINE Packet16bf F32ToBf16(const Packet16f& a) { + Packet16bf r; + +#if defined(EIGEN_VECTORIZE_AVX512BF16) && EIGEN_GNUC_STRICT_AT_LEAST(10,1,0) + // Since GCC 10.1 supports avx512bf16 and C style explicit cast + // (C++ static_cast is not supported yet), do conversion via intrinsic + // and register path for performance. + r = (__m256i)(_mm512_cvtneps_pbh(a)); + +#else + __m512i t; + __m512i input = _mm512_castps_si512(a); + __m512i nan = _mm512_set1_epi32(0x7fc0); + + // uint32_t lsb = (input >> 16) & 1; + t = _mm512_and_si512(_mm512_srli_epi32(input, 16), _mm512_set1_epi32(1)); + // uint32_t rounding_bias = 0x7fff + lsb; + t = _mm512_add_epi32(t, _mm512_set1_epi32(0x7fff)); + // input += rounding_bias; + t = _mm512_add_epi32(t, input); + // input = input >> 16; + t = _mm512_srli_epi32(t, 16); + + // Check NaN before converting back to bf16 + __mmask16 mask = _mm512_cmp_ps_mask(a, a, _CMP_ORD_Q); + + t = _mm512_mask_blend_epi32(mask, nan, t); + // output.value = static_cast(input); + r = _mm512_cvtepi32_epi16(t); +#endif // EIGEN_VECTORIZE_AVX512BF16 + + return r; +} + +template <> +EIGEN_STRONG_INLINE Packet16bf ptrue(const Packet16bf& a) { + return Packet16bf(ptrue(Packet8i(a))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf por(const Packet16bf& a, const Packet16bf& b) { + return Packet16bf(por(Packet8i(a), Packet8i(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pxor(const Packet16bf& a, const Packet16bf& b) { + return Packet16bf(pxor(Packet8i(a), Packet8i(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pand(const Packet16bf& a, const Packet16bf& b) { + return Packet16bf(pand(Packet8i(a), Packet8i(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pandnot(const Packet16bf& a, + const Packet16bf& b) { + return Packet16bf(pandnot(Packet8i(a), Packet8i(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pselect(const Packet16bf& mask, + const Packet16bf& a, + const Packet16bf& b) { + // Input mask is expected to be all 0/1, handle it with 8-bit + // intrinsic for performance. + return _mm256_blendv_epi8(b, a, mask); +} + +template<> EIGEN_STRONG_INLINE Packet16bf pround(const Packet16bf& a) +{ + return F32ToBf16(pround(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16bf print(const Packet16bf& a) { + return F32ToBf16(print(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16bf pceil(const Packet16bf& a) { + return F32ToBf16(pceil(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet16bf pfloor(const Packet16bf& a) { + return F32ToBf16(pfloor(Bf16ToF32(a))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pcmp_eq(const Packet16bf& a, + const Packet16bf& b) { + return Pack32To16(pcmp_eq(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pcmp_le(const Packet16bf& a, + const Packet16bf& b) { + return Pack32To16(pcmp_le(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pcmp_lt(const Packet16bf& a, + const Packet16bf& b) { + return Pack32To16(pcmp_lt(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pcmp_lt_or_nan(const Packet16bf& a, + const Packet16bf& b) { + return Pack32To16(pcmp_lt_or_nan(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pnegate(const Packet16bf& a) { + Packet16bf sign_mask = _mm256_set1_epi16(static_cast(0x8000)); + return _mm256_xor_si256(a, sign_mask); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pconj(const Packet16bf& a) { + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pabs(const Packet16bf& a) { + const __m256i sign_mask = _mm256_set1_epi16(static_cast(0x8000)); + return _mm256_andnot_si256(sign_mask, a); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf padd(const Packet16bf& a, + const Packet16bf& b) { + return F32ToBf16(padd(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf psub(const Packet16bf& a, + const Packet16bf& b) { + return F32ToBf16(psub(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pmul(const Packet16bf& a, + const Packet16bf& b) { + return F32ToBf16(pmul(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pdiv(const Packet16bf& a, + const Packet16bf& b) { + return F32ToBf16(pdiv(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pmin(const Packet16bf& a, + const Packet16bf& b) { + return F32ToBf16(pmin(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pmax(const Packet16bf& a, + const Packet16bf& b) { + return F32ToBf16(pmax(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf plset(const bfloat16& a) { + return F32ToBf16(plset(static_cast(a))); +} + +template <> +EIGEN_STRONG_INLINE Packet8bf predux_half_dowto4(const Packet16bf& a) { + Packet8bf lane0 = _mm256_extractf128_si256(a, 0); + Packet8bf lane1 = _mm256_extractf128_si256(a, 1); + return padd(lane0, lane1); +} + +template <> +EIGEN_STRONG_INLINE bfloat16 predux(const Packet16bf& p) { + return static_cast(predux(Bf16ToF32(p))); +} + +template <> +EIGEN_STRONG_INLINE bfloat16 predux_mul(const Packet16bf& from) { + return static_cast(predux_mul(Bf16ToF32(from))); +} + +template <> +EIGEN_STRONG_INLINE bfloat16 predux_min(const Packet16bf& from) { + return static_cast(predux_min(Bf16ToF32(from))); +} + +template <> +EIGEN_STRONG_INLINE bfloat16 predux_max(const Packet16bf& from) { + return static_cast(predux_max(Bf16ToF32(from))); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf preverse(const Packet16bf& a) { + __m256i m = _mm256_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1, + 14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1); + + Packet16bf res; + // Swap hi and lo first because shuffle is in 128-bit lanes. + res = _mm256_permute2x128_si256(a, a, 1); + // Shuffle 8-bit values in src within 2*128-bit lanes. + return _mm256_shuffle_epi8(res, m); +} + +template <> +EIGEN_STRONG_INLINE Packet16bf pgather(const bfloat16* from, + Index stride) { + return _mm256_set_epi16( + from[15*stride].value, from[14*stride].value, from[13*stride].value, from[12*stride].value, + from[11*stride].value, from[10*stride].value, from[9*stride].value, from[8*stride].value, + from[7*stride].value, from[6*stride].value, from[5*stride].value, from[4*stride].value, + from[3*stride].value, from[2*stride].value, from[1*stride].value, from[0*stride].value); +} + +template <> +EIGEN_STRONG_INLINE void pscatter(bfloat16* to, + const Packet16bf& from, + Index stride) { + EIGEN_ALIGN64 bfloat16 aux[16]; + pstore(aux, from); + to[stride*0] = aux[0]; + to[stride*1] = aux[1]; + to[stride*2] = aux[2]; + to[stride*3] = aux[3]; + to[stride*4] = aux[4]; + to[stride*5] = aux[5]; + to[stride*6] = aux[6]; + to[stride*7] = aux[7]; + to[stride*8] = aux[8]; + to[stride*9] = aux[9]; + to[stride*10] = aux[10]; + to[stride*11] = aux[11]; + to[stride*12] = aux[12]; + to[stride*13] = aux[13]; + to[stride*14] = aux[14]; + to[stride*15] = aux[15]; +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + __m256i a = kernel.packet[0]; + __m256i b = kernel.packet[1]; + __m256i c = kernel.packet[2]; + __m256i d = kernel.packet[3]; + __m256i e = kernel.packet[4]; + __m256i f = kernel.packet[5]; + __m256i g = kernel.packet[6]; + __m256i h = kernel.packet[7]; + __m256i i = kernel.packet[8]; + __m256i j = kernel.packet[9]; + __m256i k = kernel.packet[10]; + __m256i l = kernel.packet[11]; + __m256i m = kernel.packet[12]; + __m256i n = kernel.packet[13]; + __m256i o = kernel.packet[14]; + __m256i p = kernel.packet[15]; + + __m256i ab_07 = _mm256_unpacklo_epi16(a, b); + __m256i cd_07 = _mm256_unpacklo_epi16(c, d); + __m256i ef_07 = _mm256_unpacklo_epi16(e, f); + __m256i gh_07 = _mm256_unpacklo_epi16(g, h); + __m256i ij_07 = _mm256_unpacklo_epi16(i, j); + __m256i kl_07 = _mm256_unpacklo_epi16(k, l); + __m256i mn_07 = _mm256_unpacklo_epi16(m, n); + __m256i op_07 = _mm256_unpacklo_epi16(o, p); + + __m256i ab_8f = _mm256_unpackhi_epi16(a, b); + __m256i cd_8f = _mm256_unpackhi_epi16(c, d); + __m256i ef_8f = _mm256_unpackhi_epi16(e, f); + __m256i gh_8f = _mm256_unpackhi_epi16(g, h); + __m256i ij_8f = _mm256_unpackhi_epi16(i, j); + __m256i kl_8f = _mm256_unpackhi_epi16(k, l); + __m256i mn_8f = _mm256_unpackhi_epi16(m, n); + __m256i op_8f = _mm256_unpackhi_epi16(o, p); + + __m256i abcd_03 = _mm256_unpacklo_epi32(ab_07, cd_07); + __m256i abcd_47 = _mm256_unpackhi_epi32(ab_07, cd_07); + __m256i efgh_03 = _mm256_unpacklo_epi32(ef_07, gh_07); + __m256i efgh_47 = _mm256_unpackhi_epi32(ef_07, gh_07); + __m256i ijkl_03 = _mm256_unpacklo_epi32(ij_07, kl_07); + __m256i ijkl_47 = _mm256_unpackhi_epi32(ij_07, kl_07); + __m256i mnop_03 = _mm256_unpacklo_epi32(mn_07, op_07); + __m256i mnop_47 = _mm256_unpackhi_epi32(mn_07, op_07); + + __m256i abcd_8b = _mm256_unpacklo_epi32(ab_8f, cd_8f); + __m256i abcd_cf = _mm256_unpackhi_epi32(ab_8f, cd_8f); + __m256i efgh_8b = _mm256_unpacklo_epi32(ef_8f, gh_8f); + __m256i efgh_cf = _mm256_unpackhi_epi32(ef_8f, gh_8f); + __m256i ijkl_8b = _mm256_unpacklo_epi32(ij_8f, kl_8f); + __m256i ijkl_cf = _mm256_unpackhi_epi32(ij_8f, kl_8f); + __m256i mnop_8b = _mm256_unpacklo_epi32(mn_8f, op_8f); + __m256i mnop_cf = _mm256_unpackhi_epi32(mn_8f, op_8f); + + __m256i abcdefgh_01 = _mm256_unpacklo_epi64(abcd_03, efgh_03); + __m256i abcdefgh_23 = _mm256_unpackhi_epi64(abcd_03, efgh_03); + __m256i ijklmnop_01 = _mm256_unpacklo_epi64(ijkl_03, mnop_03); + __m256i ijklmnop_23 = _mm256_unpackhi_epi64(ijkl_03, mnop_03); + __m256i abcdefgh_45 = _mm256_unpacklo_epi64(abcd_47, efgh_47); + __m256i abcdefgh_67 = _mm256_unpackhi_epi64(abcd_47, efgh_47); + __m256i ijklmnop_45 = _mm256_unpacklo_epi64(ijkl_47, mnop_47); + __m256i ijklmnop_67 = _mm256_unpackhi_epi64(ijkl_47, mnop_47); + __m256i abcdefgh_89 = _mm256_unpacklo_epi64(abcd_8b, efgh_8b); + __m256i abcdefgh_ab = _mm256_unpackhi_epi64(abcd_8b, efgh_8b); + __m256i ijklmnop_89 = _mm256_unpacklo_epi64(ijkl_8b, mnop_8b); + __m256i ijklmnop_ab = _mm256_unpackhi_epi64(ijkl_8b, mnop_8b); + __m256i abcdefgh_cd = _mm256_unpacklo_epi64(abcd_cf, efgh_cf); + __m256i abcdefgh_ef = _mm256_unpackhi_epi64(abcd_cf, efgh_cf); + __m256i ijklmnop_cd = _mm256_unpacklo_epi64(ijkl_cf, mnop_cf); + __m256i ijklmnop_ef = _mm256_unpackhi_epi64(ijkl_cf, mnop_cf); + + // NOTE: no unpacklo/hi instr in this case, so using permute instr. + kernel.packet[0] = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x20); + kernel.packet[1] = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x20); + kernel.packet[2] = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x20); + kernel.packet[3] = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x20); + kernel.packet[4] = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x20); + kernel.packet[5] = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x20); + kernel.packet[6] = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x20); + kernel.packet[7] = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x20); + kernel.packet[8] = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x31); + kernel.packet[9] = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x31); + kernel.packet[10] = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x31); + kernel.packet[11] = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x31); + kernel.packet[12] = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x31); + kernel.packet[13] = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x31); + kernel.packet[14] = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x31); + kernel.packet[15] = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x31); +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + __m256i a = kernel.packet[0]; + __m256i b = kernel.packet[1]; + __m256i c = kernel.packet[2]; + __m256i d = kernel.packet[3]; + + __m256i ab_07 = _mm256_unpacklo_epi16(a, b); + __m256i cd_07 = _mm256_unpacklo_epi16(c, d); + __m256i ab_8f = _mm256_unpackhi_epi16(a, b); + __m256i cd_8f = _mm256_unpackhi_epi16(c, d); + + __m256i abcd_03 = _mm256_unpacklo_epi32(ab_07, cd_07); + __m256i abcd_47 = _mm256_unpackhi_epi32(ab_07, cd_07); + __m256i abcd_8b = _mm256_unpacklo_epi32(ab_8f, cd_8f); + __m256i abcd_cf = _mm256_unpackhi_epi32(ab_8f, cd_8f); + + // NOTE: no unpacklo/hi instr in this case, so using permute instr. + kernel.packet[0] = _mm256_permute2x128_si256(abcd_03, abcd_47, 0x20); + kernel.packet[1] = _mm256_permute2x128_si256(abcd_8b, abcd_cf, 0x20); + kernel.packet[2] = _mm256_permute2x128_si256(abcd_03, abcd_47, 0x31); + kernel.packet[3] = _mm256_permute2x128_si256(abcd_8b, abcd_cf, 0x31); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_AVX512_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/PacketMathFP16.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/PacketMathFP16.h new file mode 100644 index 0000000..52fee1e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/PacketMathFP16.h @@ -0,0 +1,869 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_FP16_AVX512_H +#define EIGEN_PACKET_MATH_FP16_AVX512_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +typedef __m512h Packet32h; +typedef eigen_packet_wrapper<__m256i, 1> Packet16h; +typedef eigen_packet_wrapper<__m128i, 2> Packet8h; + +template <> +struct is_arithmetic { + enum { value = true }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet32h type; + typedef Packet16h half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 32, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 1, + HasAbs2 = 0, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 0, + HasLog = 1, + HasLog1p = 1, + HasExp = 1, + HasExpm1 = 1, + HasSqrt = 1, + HasRsqrt = 1, + // These ones should be implemented in future + HasBessel = 0, + HasNdtri = 0, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasTanh = EIGEN_FAST_MATH, + HasErf = 0, // EIGEN_FAST_MATH, + HasBlend = 0, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1 + }; +}; + +template <> +struct unpacket_traits { + typedef Eigen::half type; + typedef Packet16h half; + enum { + size = 32, + alignment = Aligned64, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template <> +struct unpacket_traits { + typedef Eigen::half type; + typedef Packet8h half; + enum { + size = 16, + alignment = Aligned32, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template <> +struct unpacket_traits { + typedef Eigen::half type; + typedef Packet8h half; + enum { + size = 8, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +// Memory functions + +// pset1 + +template <> +EIGEN_STRONG_INLINE Packet32h pset1(const Eigen::half& from) { + return _mm512_set1_ph(static_cast<_Float16>(from)); +} + +// pset1frombits +template <> +EIGEN_STRONG_INLINE Packet32h pset1frombits(unsigned short from) { + return _mm512_castsi512_ph(_mm512_set1_epi16(from)); +} + +// pfirst + +template <> +EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet32h& from) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + return half_impl::raw_uint16_to_half( + static_cast(_mm256_extract_epi16(_mm512_extracti32x8_epi32(_mm512_castph_si512(from), 0), 0))); +#else + Eigen::half dest[32]; + _mm512_storeu_ph(dest, from); + return dest[0]; +#endif +} + +// pload + +template <> +EIGEN_STRONG_INLINE Packet32h pload(const Eigen::half* from) { + EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_ph(from); +} + +// ploadu + +template <> +EIGEN_STRONG_INLINE Packet32h ploadu(const Eigen::half* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_ph(from); +} + +// pstore + +template <> +EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet32h& from) { + EIGEN_DEBUG_ALIGNED_STORE _mm512_store_ph(to, from); +} + +// pstoreu + +template <> +EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet32h& from) { + EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_ph(to, from); +} + +// ploaddup +template <> +EIGEN_STRONG_INLINE Packet32h ploaddup(const Eigen::half* from) { + __m512h a = _mm512_castph256_ph512(_mm256_loadu_ph(from)); + return _mm512_permutexvar_ph(_mm512_set_epi16(15, 15, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, + 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0), + a); +} + +// ploadquad +template <> +EIGEN_STRONG_INLINE Packet32h ploadquad(const Eigen::half* from) { + __m512h a = _mm512_castph128_ph512(_mm_loadu_ph(from)); + return _mm512_permutexvar_ph( + _mm512_set_epi16(7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0), + a); +} + +// pabs + +template <> +EIGEN_STRONG_INLINE Packet32h pabs(const Packet32h& a) { + return _mm512_abs_ph(a); +} + +// psignbit + +template <> +EIGEN_STRONG_INLINE Packet32h psignbit(const Packet32h& a) { + return _mm512_castsi512_ph(_mm512_srai_epi16(_mm512_castph_si512(a), 15)); +} + +// pmin + +template <> +EIGEN_STRONG_INLINE Packet32h pmin(const Packet32h& a, const Packet32h& b) { + return _mm512_min_ph(a, b); +} + +// pmax + +template <> +EIGEN_STRONG_INLINE Packet32h pmax(const Packet32h& a, const Packet32h& b) { + return _mm512_max_ph(a, b); +} + +// plset +template <> +EIGEN_STRONG_INLINE Packet32h plset(const half& a) { + return _mm512_add_ph(_mm512_set1_ph(a), + _mm512_set_ph(31.0f, 30.0f, 29.0f, 28.0f, 27.0f, 26.0f, 25.0f, 24.0f, 23.0f, 22.0f, 21.0f, 20.0f, + 19.0f, 18.0f, 17.0f, 16.0f, 15.0f, 14.0f, 13.0f, 12.0f, 11.0f, 10.0f, 9.0f, 8.0f, + 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f)); +} + +// por + +template <> +EIGEN_STRONG_INLINE Packet32h por(const Packet32h& a, const Packet32h& b) { + return _mm512_castsi512_ph(_mm512_or_si512(_mm512_castph_si512(a), _mm512_castph_si512(b))); +} + +// pxor + +template <> +EIGEN_STRONG_INLINE Packet32h pxor(const Packet32h& a, const Packet32h& b) { + return _mm512_castsi512_ph(_mm512_xor_si512(_mm512_castph_si512(a), _mm512_castph_si512(b))); +} + +// pand + +template <> +EIGEN_STRONG_INLINE Packet32h pand(const Packet32h& a, const Packet32h& b) { + return _mm512_castsi512_ph(_mm512_and_si512(_mm512_castph_si512(a), _mm512_castph_si512(b))); +} + +// pandnot + +template <> +EIGEN_STRONG_INLINE Packet32h pandnot(const Packet32h& a, const Packet32h& b) { + return _mm512_castsi512_ph(_mm512_andnot_si512(_mm512_castph_si512(b), _mm512_castph_si512(a))); +} + +// pselect + +template <> +EIGEN_DEVICE_FUNC inline Packet32h pselect(const Packet32h& mask, const Packet32h& a, const Packet32h& b) { + __mmask32 mask32 = _mm512_cmp_epi16_mask(_mm512_castph_si512(mask), _mm512_setzero_epi32(), _MM_CMPINT_EQ); + return _mm512_mask_blend_ph(mask32, a, b); +} + +// pcmp_eq + +template <> +EIGEN_STRONG_INLINE Packet32h pcmp_eq(const Packet32h& a, const Packet32h& b) { + __mmask32 mask = _mm512_cmp_ph_mask(a, b, _CMP_EQ_OQ); + return _mm512_castsi512_ph(_mm512_mask_set1_epi16(_mm512_set1_epi32(0), mask, 0xffffu)); +} + +// pcmp_le + +template <> +EIGEN_STRONG_INLINE Packet32h pcmp_le(const Packet32h& a, const Packet32h& b) { + __mmask32 mask = _mm512_cmp_ph_mask(a, b, _CMP_LE_OQ); + return _mm512_castsi512_ph(_mm512_mask_set1_epi16(_mm512_set1_epi32(0), mask, 0xffffu)); +} + +// pcmp_lt + +template <> +EIGEN_STRONG_INLINE Packet32h pcmp_lt(const Packet32h& a, const Packet32h& b) { + __mmask32 mask = _mm512_cmp_ph_mask(a, b, _CMP_LT_OQ); + return _mm512_castsi512_ph(_mm512_mask_set1_epi16(_mm512_set1_epi32(0), mask, 0xffffu)); +} + +// pcmp_lt_or_nan + +template <> +EIGEN_STRONG_INLINE Packet32h pcmp_lt_or_nan(const Packet32h& a, const Packet32h& b) { + __mmask32 mask = _mm512_cmp_ph_mask(a, b, _CMP_NGE_UQ); + return _mm512_castsi512_ph(_mm512_mask_set1_epi16(_mm512_set1_epi16(0), mask, 0xffffu)); +} + +// padd + +template <> +EIGEN_STRONG_INLINE Packet32h padd(const Packet32h& a, const Packet32h& b) { + return _mm512_add_ph(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16h padd(const Packet16h& a, const Packet16h& b) { + return _mm256_castph_si256(_mm256_add_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h padd(const Packet8h& a, const Packet8h& b) { + return _mm_castph_si128(_mm_add_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b))); +} + +// psub + +template <> +EIGEN_STRONG_INLINE Packet32h psub(const Packet32h& a, const Packet32h& b) { + return _mm512_sub_ph(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16h psub(const Packet16h& a, const Packet16h& b) { + return _mm256_castph_si256(_mm256_sub_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h psub(const Packet8h& a, const Packet8h& b) { + return _mm_castph_si128(_mm_sub_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b))); +} + +// pmul + +template <> +EIGEN_STRONG_INLINE Packet32h pmul(const Packet32h& a, const Packet32h& b) { + return _mm512_mul_ph(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pmul(const Packet16h& a, const Packet16h& b) { + return _mm256_castph_si256(_mm256_mul_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pmul(const Packet8h& a, const Packet8h& b) { + return _mm_castph_si128(_mm_mul_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b))); +} + +// pdiv + +template <> +EIGEN_STRONG_INLINE Packet32h pdiv(const Packet32h& a, const Packet32h& b) { + return _mm512_div_ph(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pdiv(const Packet16h& a, const Packet16h& b) { + return _mm256_castph_si256(_mm256_div_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pdiv(const Packet8h& a, const Packet8h& b) { + return _mm_castph_si128(_mm_div_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b))); +} + +// pround + +template <> +EIGEN_STRONG_INLINE Packet32h pround(const Packet32h& a) { + // Work-around for default std::round rounding mode. + + // Mask for the sign bit + const Packet32h signMask = pset1frombits(static_cast(0x8000u)); + // The largest half-preicision float less than 0.5 + const Packet32h prev0dot5 = pset1frombits(static_cast(0x37FFu)); + + return _mm512_roundscale_ph(padd(por(pand(a, signMask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} + +// print + +template <> +EIGEN_STRONG_INLINE Packet32h print(const Packet32h& a) { + return _mm512_roundscale_ph(a, _MM_FROUND_CUR_DIRECTION); +} + +// pceil + +template <> +EIGEN_STRONG_INLINE Packet32h pceil(const Packet32h& a) { + return _mm512_roundscale_ph(a, _MM_FROUND_TO_POS_INF); +} + +// pfloor + +template <> +EIGEN_STRONG_INLINE Packet32h pfloor(const Packet32h& a) { + return _mm512_roundscale_ph(a, _MM_FROUND_TO_NEG_INF); +} + +// predux +template <> +EIGEN_STRONG_INLINE half predux(const Packet32h& a) { + return (half)_mm512_reduce_add_ph(a); +} + +template <> +EIGEN_STRONG_INLINE half predux(const Packet16h& a) { + return (half)_mm256_reduce_add_ph(_mm256_castsi256_ph(a)); +} + +template <> +EIGEN_STRONG_INLINE half predux(const Packet8h& a) { + return (half)_mm_reduce_add_ph(_mm_castsi128_ph(a)); +} + +// predux_half_dowto4 +template <> +EIGEN_STRONG_INLINE Packet16h predux_half_dowto4(const Packet32h& a) { +#ifdef EIGEN_VECTORIZE_AVX512DQ + __m256i lowHalf = _mm256_castps_si256(_mm512_extractf32x8_ps(_mm512_castph_ps(a), 0)); + __m256i highHalf = _mm256_castps_si256(_mm512_extractf32x8_ps(_mm512_castph_ps(a), 1)); + + return Packet16h(padd(lowHalf, highHalf)); +#else + Eigen::half data[32]; + _mm512_storeu_ph(data, a); + + __m256i lowHalf = _mm256_castph_si256(_mm256_loadu_ph(data)); + __m256i highHalf = _mm256_castph_si256(_mm256_loadu_ph(data + 16)); + + return Packet16h(padd(lowHalf, highHalf)); +#endif +} + +// predux_max + +// predux_min + +// predux_mul + +#ifdef EIGEN_VECTORIZE_FMA + +// pmadd + +template <> +EIGEN_STRONG_INLINE Packet32h pmadd(const Packet32h& a, const Packet32h& b, const Packet32h& c) { + return _mm512_fmadd_ph(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pmadd(const Packet16h& a, const Packet16h& b, const Packet16h& c) { + return _mm256_castph_si256(_mm256_fmadd_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b), _mm256_castsi256_ph(c))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pmadd(const Packet8h& a, const Packet8h& b, const Packet8h& c) { + return _mm_castph_si128(_mm_fmadd_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b), _mm_castsi128_ph(c))); +} + +// pmsub + +template <> +EIGEN_STRONG_INLINE Packet32h pmsub(const Packet32h& a, const Packet32h& b, const Packet32h& c) { + return _mm512_fmsub_ph(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pmsub(const Packet16h& a, const Packet16h& b, const Packet16h& c) { + return _mm256_castph_si256(_mm256_fmsub_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b), _mm256_castsi256_ph(c))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pmsub(const Packet8h& a, const Packet8h& b, const Packet8h& c) { + return _mm_castph_si128(_mm_fmsub_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b), _mm_castsi128_ph(c))); +} + +// pnmadd + +template <> +EIGEN_STRONG_INLINE Packet32h pnmadd(const Packet32h& a, const Packet32h& b, const Packet32h& c) { + return _mm512_fnmadd_ph(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pnmadd(const Packet16h& a, const Packet16h& b, const Packet16h& c) { + return _mm256_castph_si256(_mm256_fnmadd_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b), _mm256_castsi256_ph(c))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pnmadd(const Packet8h& a, const Packet8h& b, const Packet8h& c) { + return _mm_castph_si128(_mm_fnmadd_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b), _mm_castsi128_ph(c))); +} + +// pnmsub + +template <> +EIGEN_STRONG_INLINE Packet32h pnmsub(const Packet32h& a, const Packet32h& b, const Packet32h& c) { + return _mm512_fnmsub_ph(a, b, c); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pnmsub(const Packet16h& a, const Packet16h& b, const Packet16h& c) { + return _mm256_castph_si256(_mm256_fnmsub_ph(_mm256_castsi256_ph(a), _mm256_castsi256_ph(b), _mm256_castsi256_ph(c))); +} + +template <> +EIGEN_STRONG_INLINE Packet8h pnmsub(const Packet8h& a, const Packet8h& b, const Packet8h& c) { + return _mm_castph_si128(_mm_fnmsub_ph(_mm_castsi128_ph(a), _mm_castsi128_ph(b), _mm_castsi128_ph(c))); +} + +#endif + +// pnegate + +template <> +EIGEN_STRONG_INLINE Packet32h pnegate(const Packet32h& a) { + return _mm512_sub_ph(_mm512_set1_ph(0.0), a); +} + +// pconj + +template <> +EIGEN_STRONG_INLINE Packet32h pconj(const Packet32h& a) { + return a; +} + +// psqrt + +template <> +EIGEN_STRONG_INLINE Packet32h psqrt(const Packet32h& a) { + return _mm512_sqrt_ph(a); +} + +// prsqrt + +template <> +EIGEN_STRONG_INLINE Packet32h prsqrt(const Packet32h& a) { + return _mm512_rsqrt_ph(a); +} + +// preciprocal + +template <> +EIGEN_STRONG_INLINE Packet32h preciprocal(const Packet32h& a) { + return _mm512_rcp_ph(a); +} + +// ptranspose + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& a) { + __m512i t[32]; + + EIGEN_UNROLL_LOOP + for (int i = 0; i < 16; i++) { + t[2 * i] = _mm512_unpacklo_epi16(_mm512_castph_si512(a.packet[2 * i]), _mm512_castph_si512(a.packet[2 * i + 1])); + t[2 * i + 1] = + _mm512_unpackhi_epi16(_mm512_castph_si512(a.packet[2 * i]), _mm512_castph_si512(a.packet[2 * i + 1])); + } + + __m512i p[32]; + + EIGEN_UNROLL_LOOP + for (int i = 0; i < 8; i++) { + p[4 * i] = _mm512_unpacklo_epi32(t[4 * i], t[4 * i + 2]); + p[4 * i + 1] = _mm512_unpackhi_epi32(t[4 * i], t[4 * i + 2]); + p[4 * i + 2] = _mm512_unpacklo_epi32(t[4 * i + 1], t[4 * i + 3]); + p[4 * i + 3] = _mm512_unpackhi_epi32(t[4 * i + 1], t[4 * i + 3]); + } + + __m512i q[32]; + + EIGEN_UNROLL_LOOP + for (int i = 0; i < 4; i++) { + q[8 * i] = _mm512_unpacklo_epi64(p[8 * i], p[8 * i + 4]); + q[8 * i + 1] = _mm512_unpackhi_epi64(p[8 * i], p[8 * i + 4]); + q[8 * i + 2] = _mm512_unpacklo_epi64(p[8 * i + 1], p[8 * i + 5]); + q[8 * i + 3] = _mm512_unpackhi_epi64(p[8 * i + 1], p[8 * i + 5]); + q[8 * i + 4] = _mm512_unpacklo_epi64(p[8 * i + 2], p[8 * i + 6]); + q[8 * i + 5] = _mm512_unpackhi_epi64(p[8 * i + 2], p[8 * i + 6]); + q[8 * i + 6] = _mm512_unpacklo_epi64(p[8 * i + 3], p[8 * i + 7]); + q[8 * i + 7] = _mm512_unpackhi_epi64(p[8 * i + 3], p[8 * i + 7]); + } + + __m512i f[32]; + +#define PACKET32H_TRANSPOSE_HELPER(X, Y) \ + do { \ + f[Y * 8] = _mm512_inserti32x4(f[Y * 8], _mm512_extracti32x4_epi32(q[X * 8], Y), X); \ + f[Y * 8 + 1] = _mm512_inserti32x4(f[Y * 8 + 1], _mm512_extracti32x4_epi32(q[X * 8 + 1], Y), X); \ + f[Y * 8 + 2] = _mm512_inserti32x4(f[Y * 8 + 2], _mm512_extracti32x4_epi32(q[X * 8 + 2], Y), X); \ + f[Y * 8 + 3] = _mm512_inserti32x4(f[Y * 8 + 3], _mm512_extracti32x4_epi32(q[X * 8 + 3], Y), X); \ + f[Y * 8 + 4] = _mm512_inserti32x4(f[Y * 8 + 4], _mm512_extracti32x4_epi32(q[X * 8 + 4], Y), X); \ + f[Y * 8 + 5] = _mm512_inserti32x4(f[Y * 8 + 5], _mm512_extracti32x4_epi32(q[X * 8 + 5], Y), X); \ + f[Y * 8 + 6] = _mm512_inserti32x4(f[Y * 8 + 6], _mm512_extracti32x4_epi32(q[X * 8 + 6], Y), X); \ + f[Y * 8 + 7] = _mm512_inserti32x4(f[Y * 8 + 7], _mm512_extracti32x4_epi32(q[X * 8 + 7], Y), X); \ + } while (false); + + PACKET32H_TRANSPOSE_HELPER(0, 0); + PACKET32H_TRANSPOSE_HELPER(1, 1); + PACKET32H_TRANSPOSE_HELPER(2, 2); + PACKET32H_TRANSPOSE_HELPER(3, 3); + + PACKET32H_TRANSPOSE_HELPER(1, 0); + PACKET32H_TRANSPOSE_HELPER(2, 0); + PACKET32H_TRANSPOSE_HELPER(3, 0); + PACKET32H_TRANSPOSE_HELPER(2, 1); + PACKET32H_TRANSPOSE_HELPER(3, 1); + PACKET32H_TRANSPOSE_HELPER(3, 2); + + PACKET32H_TRANSPOSE_HELPER(0, 1); + PACKET32H_TRANSPOSE_HELPER(0, 2); + PACKET32H_TRANSPOSE_HELPER(0, 3); + PACKET32H_TRANSPOSE_HELPER(1, 2); + PACKET32H_TRANSPOSE_HELPER(1, 3); + PACKET32H_TRANSPOSE_HELPER(2, 3); + +#undef PACKET32H_TRANSPOSE_HELPER + + EIGEN_UNROLL_LOOP + for (int i = 0; i < 32; i++) { + a.packet[i] = _mm512_castsi512_ph(f[i]); + } +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& a) { + __m512i p0, p1, p2, p3, t0, t1, t2, t3, a0, a1, a2, a3; + t0 = _mm512_unpacklo_epi16(_mm512_castph_si512(a.packet[0]), _mm512_castph_si512(a.packet[1])); + t1 = _mm512_unpackhi_epi16(_mm512_castph_si512(a.packet[0]), _mm512_castph_si512(a.packet[1])); + t2 = _mm512_unpacklo_epi16(_mm512_castph_si512(a.packet[2]), _mm512_castph_si512(a.packet[3])); + t3 = _mm512_unpackhi_epi16(_mm512_castph_si512(a.packet[2]), _mm512_castph_si512(a.packet[3])); + + p0 = _mm512_unpacklo_epi32(t0, t2); + p1 = _mm512_unpackhi_epi32(t0, t2); + p2 = _mm512_unpacklo_epi32(t1, t3); + p3 = _mm512_unpackhi_epi32(t1, t3); + + a0 = p0; + a1 = p1; + a2 = p2; + a3 = p3; + + a0 = _mm512_inserti32x4(a0, _mm512_extracti32x4_epi32(p1, 0), 1); + a1 = _mm512_inserti32x4(a1, _mm512_extracti32x4_epi32(p0, 1), 0); + + a0 = _mm512_inserti32x4(a0, _mm512_extracti32x4_epi32(p2, 0), 2); + a2 = _mm512_inserti32x4(a2, _mm512_extracti32x4_epi32(p0, 2), 0); + + a0 = _mm512_inserti32x4(a0, _mm512_extracti32x4_epi32(p3, 0), 3); + a3 = _mm512_inserti32x4(a3, _mm512_extracti32x4_epi32(p0, 3), 0); + + a1 = _mm512_inserti32x4(a1, _mm512_extracti32x4_epi32(p2, 1), 2); + a2 = _mm512_inserti32x4(a2, _mm512_extracti32x4_epi32(p1, 2), 1); + + a2 = _mm512_inserti32x4(a2, _mm512_extracti32x4_epi32(p3, 2), 3); + a3 = _mm512_inserti32x4(a3, _mm512_extracti32x4_epi32(p2, 3), 2); + + a1 = _mm512_inserti32x4(a1, _mm512_extracti32x4_epi32(p3, 1), 3); + a3 = _mm512_inserti32x4(a3, _mm512_extracti32x4_epi32(p1, 3), 1); + + a.packet[0] = _mm512_castsi512_ph(a0); + a.packet[1] = _mm512_castsi512_ph(a1); + a.packet[2] = _mm512_castsi512_ph(a2); + a.packet[3] = _mm512_castsi512_ph(a3); +} + +// preverse + +template <> +EIGEN_STRONG_INLINE Packet32h preverse(const Packet32h& a) { + return _mm512_permutexvar_ph(_mm512_set_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31), + a); +} + +// pscatter + +template <> +EIGEN_STRONG_INLINE void pscatter(half* to, const Packet32h& from, Index stride) { + EIGEN_ALIGN64 half aux[32]; + pstore(aux, from); + + EIGEN_UNROLL_LOOP + for (int i = 0; i < 32; i++) { + to[stride * i] = aux[i]; + } +} + +// pgather + +template <> +EIGEN_STRONG_INLINE Packet32h pgather(const Eigen::half* from, Index stride) { + return _mm512_castsi512_ph(_mm512_set_epi16( + from[31 * stride].x, from[30 * stride].x, from[29 * stride].x, from[28 * stride].x, from[27 * stride].x, + from[26 * stride].x, from[25 * stride].x, from[24 * stride].x, from[23 * stride].x, from[22 * stride].x, + from[21 * stride].x, from[20 * stride].x, from[19 * stride].x, from[18 * stride].x, from[17 * stride].x, + from[16 * stride].x, from[15 * stride].x, from[14 * stride].x, from[13 * stride].x, from[12 * stride].x, + from[11 * stride].x, from[10 * stride].x, from[9 * stride].x, from[8 * stride].x, from[7 * stride].x, + from[6 * stride].x, from[5 * stride].x, from[4 * stride].x, from[3 * stride].x, from[2 * stride].x, + from[1 * stride].x, from[0 * stride].x)); +} + +template <> +EIGEN_STRONG_INLINE Packet16h pcos(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h psin(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h plog(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h plog2(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h plog1p(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h pexp(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h pexpm1(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h ptanh(const Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h pfrexp(const Packet16h&, Packet16h&); +template <> +EIGEN_STRONG_INLINE Packet16h pldexp(const Packet16h&, const Packet16h&); + +EIGEN_STRONG_INLINE Packet32h combine2Packet16h(const Packet16h& a, const Packet16h& b) { + __m512d result = _mm512_undefined_pd(); + result = _mm512_insertf64x4(result, _mm256_castsi256_pd(a), 0); + result = _mm512_insertf64x4(result, _mm256_castsi256_pd(b), 1); + return _mm512_castpd_ph(result); +} + +EIGEN_STRONG_INLINE void extract2Packet16h(const Packet32h& x, Packet16h& a, Packet16h& b) { + a = _mm256_castpd_si256(_mm512_extractf64x4_pd(_mm512_castph_pd(x), 0)); + b = _mm256_castpd_si256(_mm512_extractf64x4_pd(_mm512_castph_pd(x), 1)); +} + +// psin +template <> +EIGEN_STRONG_INLINE Packet32h psin(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = psin(low); + Packet16h highOut = psin(high); + + return combine2Packet16h(lowOut, highOut); +} + +// pcos +template <> +EIGEN_STRONG_INLINE Packet32h pcos(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = pcos(low); + Packet16h highOut = pcos(high); + + return combine2Packet16h(lowOut, highOut); +} + +// plog +template <> +EIGEN_STRONG_INLINE Packet32h plog(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = plog(low); + Packet16h highOut = plog(high); + + return combine2Packet16h(lowOut, highOut); +} + +// plog2 +template <> +EIGEN_STRONG_INLINE Packet32h plog2(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = plog2(low); + Packet16h highOut = plog2(high); + + return combine2Packet16h(lowOut, highOut); +} + +// plog1p +template <> +EIGEN_STRONG_INLINE Packet32h plog1p(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = plog1p(low); + Packet16h highOut = plog1p(high); + + return combine2Packet16h(lowOut, highOut); +} + +// pexp +template <> +EIGEN_STRONG_INLINE Packet32h pexp(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = pexp(low); + Packet16h highOut = pexp(high); + + return combine2Packet16h(lowOut, highOut); +} + +// pexpm1 +template <> +EIGEN_STRONG_INLINE Packet32h pexpm1(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = pexpm1(low); + Packet16h highOut = pexpm1(high); + + return combine2Packet16h(lowOut, highOut); +} + +// ptanh +template <> +EIGEN_STRONG_INLINE Packet32h ptanh(const Packet32h& a) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h lowOut = ptanh(low); + Packet16h highOut = ptanh(high); + + return combine2Packet16h(lowOut, highOut); +} + +// pfrexp +template <> +EIGEN_STRONG_INLINE Packet32h pfrexp(const Packet32h& a, Packet32h& exponent) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h exp1 = _mm256_undefined_si256(); + Packet16h exp2 = _mm256_undefined_si256(); + + Packet16h lowOut = pfrexp(low, exp1); + Packet16h highOut = pfrexp(high, exp2); + + exponent = combine2Packet16h(exp1, exp2); + + return combine2Packet16h(lowOut, highOut); +} + +// pldexp +template <> +EIGEN_STRONG_INLINE Packet32h pldexp(const Packet32h& a, const Packet32h& exponent) { + Packet16h low; + Packet16h high; + extract2Packet16h(a, low, high); + + Packet16h exp1; + Packet16h exp2; + extract2Packet16h(exponent, exp1, exp2); + + Packet16h lowOut = pldexp(low, exp1); + Packet16h highOut = pldexp(high, exp2); + + return combine2Packet16h(lowOut, highOut); +} + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_FP16_AVX512_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TrsmKernel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TrsmKernel.h new file mode 100644 index 0000000..714afac --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TrsmKernel.h @@ -0,0 +1,1164 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2022 Intel Corporation +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CORE_ARCH_AVX512_TRSM_KERNEL_H +#define EIGEN_CORE_ARCH_AVX512_TRSM_KERNEL_H + +#include "../../InternalHeaderCheck.h" + +#if !defined(EIGEN_USE_AVX512_TRSM_KERNELS) +#define EIGEN_USE_AVX512_TRSM_KERNELS 1 +#endif + +// TRSM kernels currently unconditionally rely on malloc with AVX512. +// Disable them if malloc is explicitly disabled at compile-time. +#ifdef EIGEN_NO_MALLOC +#undef EIGEN_USE_AVX512_TRSM_KERNELS +#define EIGEN_USE_AVX512_TRSM_KERNELS 0 +#endif + +#if EIGEN_USE_AVX512_TRSM_KERNELS +#if !defined(EIGEN_USE_AVX512_TRSM_R_KERNELS) +#define EIGEN_USE_AVX512_TRSM_R_KERNELS 1 +#endif +#if !defined(EIGEN_USE_AVX512_TRSM_L_KERNELS) +#define EIGEN_USE_AVX512_TRSM_L_KERNELS 1 +#endif +#else // EIGEN_USE_AVX512_TRSM_KERNELS == 0 +#define EIGEN_USE_AVX512_TRSM_R_KERNELS 0 +#define EIGEN_USE_AVX512_TRSM_L_KERNELS 0 +#endif + +// Need this for some std::min calls. +#ifdef min +#undef min +#endif + +namespace Eigen { +namespace internal { + +#define EIGEN_AVX_MAX_NUM_ACC (int64_t(24)) +#define EIGEN_AVX_MAX_NUM_ROW (int64_t(8)) // Denoted L in code. +#define EIGEN_AVX_MAX_K_UNROL (int64_t(4)) +#define EIGEN_AVX_B_LOAD_SETS (int64_t(2)) +#define EIGEN_AVX_MAX_A_BCAST (int64_t(2)) +typedef Packet16f vecFullFloat; +typedef Packet8d vecFullDouble; +typedef Packet8f vecHalfFloat; +typedef Packet4d vecHalfDouble; + +// Compile-time unrolls are implemented here. +// Note: this depends on macros and typedefs above. +#include "TrsmUnrolls.inc" + +#if (EIGEN_USE_AVX512_TRSM_KERNELS) && (EIGEN_COMP_CLANG != 0) +/** + * For smaller problem sizes, and certain compilers, using the optimized kernels trsmKernelL/R directly + * is faster than the packed versions in TriangularSolverMatrix.h. + * + * The current heuristic is based on having having all arrays used in the largest gemm-update + * in triSolve fit in roughly L2Cap (percentage) of the L2 cache. These cutoffs are a bit conservative and could be + * larger for some trsm cases. + * The formula: + * + * (L*M + M*N + L*N)*sizeof(Scalar) < L2Cache*L2Cap + * + * L = number of rows to solve at a time + * N = number of rhs + * M = Dimension of triangular matrix + * + */ +#if !defined(EIGEN_ENABLE_AVX512_NOCOPY_TRSM_CUTOFFS) +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_CUTOFFS 1 +#endif + +#if EIGEN_ENABLE_AVX512_NOCOPY_TRSM_CUTOFFS + +#if EIGEN_USE_AVX512_TRSM_R_KERNELS +#if !defined(EIGEN_ENABLE_AVX512_NOCOPY_TRSM_R_CUTOFFS) +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_R_CUTOFFS 1 +#endif // !defined(EIGEN_ENABLE_AVX512_NOCOPY_TRSM_R_CUTOFFS) +#endif + +#if EIGEN_USE_AVX512_TRSM_L_KERNELS +#if !defined(EIGEN_ENABLE_AVX512_NOCOPY_TRSM_L_CUTOFFS) +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_L_CUTOFFS 1 +#endif +#endif // EIGEN_USE_AVX512_TRSM_L_KERNELS + +#else // EIGEN_ENABLE_AVX512_NOCOPY_TRSM_CUTOFFS == 0 +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_R_CUTOFFS 0 +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_L_CUTOFFS 0 +#endif // EIGEN_ENABLE_AVX512_NOCOPY_TRSM_CUTOFFS + +template +int64_t avx512_trsm_cutoff(int64_t L2Size, int64_t N, double L2Cap) { + const int64_t U3 = 3 * packet_traits::size; + const int64_t MaxNb = 5 * U3; + int64_t Nb = std::min(MaxNb, N); + double cutoff_d = + (((L2Size * L2Cap) / (sizeof(Scalar))) - (EIGEN_AVX_MAX_NUM_ROW)*Nb) / ((EIGEN_AVX_MAX_NUM_ROW) + Nb); + int64_t cutoff_l = static_cast(cutoff_d); + return (cutoff_l / EIGEN_AVX_MAX_NUM_ROW) * EIGEN_AVX_MAX_NUM_ROW; +} +#else // !(EIGEN_USE_AVX512_TRSM_KERNELS) || !(EIGEN_COMP_CLANG != 0) +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_CUTOFFS 0 +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_R_CUTOFFS 0 +#define EIGEN_ENABLE_AVX512_NOCOPY_TRSM_L_CUTOFFS 0 +#endif + +/** + * Used by gemmKernel for the case A/B row-major and C col-major. + */ +template +EIGEN_ALWAYS_INLINE void transStoreC(PacketBlock &zmm, + Scalar *C_arr, int64_t LDC, int64_t remM_ = 0, int64_t remN_ = 0) { + EIGEN_UNUSED_VARIABLE(remN_); + EIGEN_UNUSED_VARIABLE(remM_); + using urolls = unrolls::trans; + + constexpr int64_t U3 = urolls::PacketSize * 3; + constexpr int64_t U2 = urolls::PacketSize * 2; + constexpr int64_t U1 = urolls::PacketSize * 1; + + static_assert(unrollN == U1 || unrollN == U2 || unrollN == U3, "unrollN should be a multiple of PacketSize"); + static_assert(unrollM == EIGEN_AVX_MAX_NUM_ROW, "unrollM should be equal to EIGEN_AVX_MAX_NUM_ROW"); + + urolls::template transpose(zmm); + EIGEN_IF_CONSTEXPR(unrollN > U2) urolls::template transpose(zmm); + EIGEN_IF_CONSTEXPR(unrollN > U1) urolls::template transpose(zmm); + + static_assert((remN && unrollN == U1) || !remN, "When handling N remainder set unrollN=U1"); + EIGEN_IF_CONSTEXPR(!remN) { + urolls::template storeC(C_arr, LDC, zmm, remM_); + EIGEN_IF_CONSTEXPR(unrollN > U1) { + constexpr int64_t unrollN_ = std::min(unrollN - U1, U1); + urolls::template storeC(C_arr + U1 * LDC, LDC, zmm, remM_); + } + EIGEN_IF_CONSTEXPR(unrollN > U2) { + constexpr int64_t unrollN_ = std::min(unrollN - U2, U1); + urolls::template storeC(C_arr + U2 * LDC, LDC, zmm, remM_); + } + } + else { + EIGEN_IF_CONSTEXPR((std::is_same::value)) { + // Note: without "if constexpr" this section of code will also be + // parsed by the compiler so each of the storeC will still be instantiated. + // We use enable_if in aux_storeC to set it to an empty function for + // these cases. + if (remN_ == 15) + urolls::template storeC<15, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 14) + urolls::template storeC<14, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 13) + urolls::template storeC<13, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 12) + urolls::template storeC<12, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 11) + urolls::template storeC<11, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 10) + urolls::template storeC<10, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 9) + urolls::template storeC<9, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 8) + urolls::template storeC<8, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 7) + urolls::template storeC<7, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 6) + urolls::template storeC<6, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 5) + urolls::template storeC<5, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 4) + urolls::template storeC<4, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 3) + urolls::template storeC<3, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 2) + urolls::template storeC<2, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 1) + urolls::template storeC<1, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + } + else { + if (remN_ == 7) + urolls::template storeC<7, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 6) + urolls::template storeC<6, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 5) + urolls::template storeC<5, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 4) + urolls::template storeC<4, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 3) + urolls::template storeC<3, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 2) + urolls::template storeC<2, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + else if (remN_ == 1) + urolls::template storeC<1, unrollN, 0, remM>(C_arr, LDC, zmm, remM_); + } + } +} + +/** + * GEMM like operation for trsm panel updates. + * Computes: C -= A*B + * K must be multipe of 4. + * + * Unrolls used are {1,2,4,8}x{U1,U2,U3}; + * For good performance we want K to be large with M/N relatively small, but also large enough + * to use the {8,U3} unroll block. + * + * isARowMajor: is A_arr row-major? + * isCRowMajor: is C_arr row-major? (B_arr is assumed to be row-major). + * isAdd: C += A*B or C -= A*B (used by trsm) + * handleKRem: Handle arbitrary K? This is not needed for trsm. + */ +template +void gemmKernel(Scalar *A_arr, Scalar *B_arr, Scalar *C_arr, int64_t M, int64_t N, int64_t K, int64_t LDA, int64_t LDB, + int64_t LDC) { + using urolls = unrolls::gemm; + constexpr int64_t U3 = urolls::PacketSize * 3; + constexpr int64_t U2 = urolls::PacketSize * 2; + constexpr int64_t U1 = urolls::PacketSize * 1; + using vec = typename std::conditional::value, vecFullFloat, vecFullDouble>::type; + int64_t N_ = (N / U3) * U3; + int64_t M_ = (M / EIGEN_AVX_MAX_NUM_ROW) * EIGEN_AVX_MAX_NUM_ROW; + int64_t K_ = (K / EIGEN_AVX_MAX_K_UNROL) * EIGEN_AVX_MAX_K_UNROL; + int64_t j = 0; + for (; j < N_; j += U3) { + constexpr int64_t EIGEN_AVX_MAX_B_LOAD = EIGEN_AVX_B_LOAD_SETS * 3; + int64_t i = 0; + for (; i < M_; i += EIGEN_AVX_MAX_NUM_ROW) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)], *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<3, EIGEN_AVX_MAX_NUM_ROW>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<3, EIGEN_AVX_MAX_NUM_ROW>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<3, EIGEN_AVX_MAX_NUM_ROW>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC); + } + } + if (M - i >= 4) { // Note: this block assumes EIGEN_AVX_MAX_NUM_ROW = 8. Should be removed otherwise + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<3, 4>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel( + B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<3, 4>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<3, 4>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 4); + } + i += 4; + } + if (M - i >= 2) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<3, 2>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel( + B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<3, 2>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<3, 2>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 2); + } + i += 2; + } + if (M - i > 0) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<3, 1>(zmm); + { + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel( + B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<3, 1>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<3, 1>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 1); + } + } + } + } + if (N - j >= U2) { + constexpr int64_t EIGEN_AVX_MAX_B_LOAD = EIGEN_AVX_B_LOAD_SETS * 2; + int64_t i = 0; + for (; i < M_; i += EIGEN_AVX_MAX_NUM_ROW) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)], *B_t = &B_arr[0 * LDB + j]; + EIGEN_IF_CONSTEXPR(isCRowMajor) B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<2, EIGEN_AVX_MAX_NUM_ROW>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<2, EIGEN_AVX_MAX_NUM_ROW>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<2, EIGEN_AVX_MAX_NUM_ROW>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC); + } + } + if (M - i >= 4) { // Note: this block assumes EIGEN_AVX_MAX_NUM_ROW = 8. Should be removed otherwise + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<2, 4>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, + LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<2, 4>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<2, 4>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 4); + } + i += 4; + } + if (M - i >= 2) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<2, 2>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, + LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<2, 2>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<2, 2>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 2); + } + i += 2; + } + if (M - i > 0) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<2, 1>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, + LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<2, 1>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<2, 1>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 1); + } + } + j += U2; + } + if (N - j >= U1) { + constexpr int64_t EIGEN_AVX_MAX_B_LOAD = EIGEN_AVX_B_LOAD_SETS * 1; + int64_t i = 0; + for (; i < M_; i += EIGEN_AVX_MAX_NUM_ROW) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)], *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, EIGEN_AVX_MAX_NUM_ROW>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, EIGEN_AVX_MAX_NUM_ROW>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<1, EIGEN_AVX_MAX_NUM_ROW>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC); + } + } + if (M - i >= 4) { // Note: this block assumes EIGEN_AVX_MAX_NUM_ROW = 8. Should be removed otherwise + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, 4>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, + LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, 4>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<1, 4>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 4); + } + i += 4; + } + if (M - i >= 2) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, 2>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, + LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, 2>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<1, 2>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 2); + } + i += 2; + } + if (M - i > 0) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, 1>(zmm); + { + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, + LDA, zmm); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, 1>(&C_arr[i * LDC + j], LDC, zmm); + urolls::template storeC<1, 1>(&C_arr[i * LDC + j], LDC, zmm); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 1); + } + } + } + j += U1; + } + if (N - j > 0) { + constexpr int64_t EIGEN_AVX_MAX_B_LOAD = EIGEN_AVX_B_LOAD_SETS * 1; + int64_t i = 0; + for (; i < M_; i += EIGEN_AVX_MAX_NUM_ROW) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, EIGEN_AVX_MAX_NUM_ROW>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm, N - j); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm, N - j); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, EIGEN_AVX_MAX_NUM_ROW, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + urolls::template storeC<1, EIGEN_AVX_MAX_NUM_ROW, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 0, N - j); + } + } + if (M - i >= 4) { // Note: this block assumes EIGEN_AVX_MAX_NUM_ROW = 8. Should be removed otherwise + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, 4>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm, N - j); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel( + B_t, A_t, LDB, LDA, zmm, N - j); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, 4, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + urolls::template storeC<1, 4, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 4, N - j); + } + i += 4; + } + if (M - i >= 2) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, 2>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm, N - j); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel( + B_t, A_t, LDB, LDA, zmm, N - j); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, 2, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + urolls::template storeC<1, 2, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 2, N - j); + } + i += 2; + } + if (M - i > 0) { + Scalar *A_t = &A_arr[idA(i, 0, LDA)]; + Scalar *B_t = &B_arr[0 * LDB + j]; + PacketBlock zmm; + urolls::template setzero<1, 1>(zmm); + for (int64_t k = 0; k < K_; k += EIGEN_AVX_MAX_K_UNROL) { + urolls::template microKernel( + B_t, A_t, LDB, LDA, zmm, N - j); + B_t += EIGEN_AVX_MAX_K_UNROL * LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t += EIGEN_AVX_MAX_K_UNROL; + else A_t += EIGEN_AVX_MAX_K_UNROL * LDA; + } + EIGEN_IF_CONSTEXPR(handleKRem) { + for (int64_t k = K_; k < K; k++) { + urolls::template microKernel(B_t, A_t, LDB, LDA, zmm, + N - j); + B_t += LDB; + EIGEN_IF_CONSTEXPR(isARowMajor) A_t++; + else A_t += LDA; + } + } + EIGEN_IF_CONSTEXPR(isCRowMajor) { + urolls::template updateC<1, 1, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + urolls::template storeC<1, 1, true>(&C_arr[i * LDC + j], LDC, zmm, N - j); + } + else { + transStoreC(zmm, &C_arr[i + j * LDC], LDC, 1, N - j); + } + } + } +} + +/** + * Triangular solve kernel with A on left with K number of rhs. dim(A) = unrollM + * + * unrollM: dimension of A matrix (triangular matrix). unrollM should be <= EIGEN_AVX_MAX_NUM_ROW + * isFWDSolve: is forward solve? + * isUnitDiag: is the diagonal of A all ones? + * The B matrix (RHS) is assumed to be row-major + */ +template +EIGEN_ALWAYS_INLINE void triSolveKernel(Scalar *A_arr, Scalar *B_arr, int64_t K, int64_t LDA, int64_t LDB) { + static_assert(unrollM <= EIGEN_AVX_MAX_NUM_ROW, "unrollM should be equal to EIGEN_AVX_MAX_NUM_ROW"); + using urolls = unrolls::trsm; + constexpr int64_t U3 = urolls::PacketSize * 3; + constexpr int64_t U2 = urolls::PacketSize * 2; + constexpr int64_t U1 = urolls::PacketSize * 1; + + PacketBlock RHSInPacket; + PacketBlock AInPacket; + + int64_t k = 0; + while (K - k >= U3) { + urolls::template loadRHS(B_arr + k, LDB, RHSInPacket); + urolls::template triSolveMicroKernel(A_arr, LDA, RHSInPacket, + AInPacket); + urolls::template storeRHS(B_arr + k, LDB, RHSInPacket); + k += U3; + } + if (K - k >= U2) { + urolls::template loadRHS(B_arr + k, LDB, RHSInPacket); + urolls::template triSolveMicroKernel(A_arr, LDA, RHSInPacket, + AInPacket); + urolls::template storeRHS(B_arr + k, LDB, RHSInPacket); + k += U2; + } + if (K - k >= U1) { + urolls::template loadRHS(B_arr + k, LDB, RHSInPacket); + urolls::template triSolveMicroKernel(A_arr, LDA, RHSInPacket, + AInPacket); + urolls::template storeRHS(B_arr + k, LDB, RHSInPacket); + k += U1; + } + if (K - k > 0) { + // Handle remaining number of RHS + urolls::template loadRHS(B_arr + k, LDB, RHSInPacket, K - k); + urolls::template triSolveMicroKernel(A_arr, LDA, RHSInPacket, + AInPacket); + urolls::template storeRHS(B_arr + k, LDB, RHSInPacket, K - k); + } +} + +/** + * Triangular solve routine with A on left and dimension of at most L with K number of rhs. This is essentially + * a wrapper for triSolveMicrokernel for M = {1,2,3,4,5,6,7,8}. + * + * isFWDSolve: is forward solve? + * isUnitDiag: is the diagonal of A all ones? + * The B matrix (RHS) is assumed to be row-major + */ +template +void triSolveKernelLxK(Scalar *A_arr, Scalar *B_arr, int64_t M, int64_t K, int64_t LDA, int64_t LDB) { + // Note: this assumes EIGEN_AVX_MAX_NUM_ROW = 8. Unrolls should be adjusted + // accordingly if EIGEN_AVX_MAX_NUM_ROW is smaller. + using vec = typename std::conditional::value, vecFullFloat, vecFullDouble>::type; + if (M == 8) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 7) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 6) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 5) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 4) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 3) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 2) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + else if (M == 1) + triSolveKernel(A_arr, B_arr, K, LDA, LDB); + return; +} + +/** + * This routine is used to copy B to/from a temporary array (row-major) for cases where B is column-major. + * + * toTemp: true => copy to temporary array, false => copy from temporary array + * remM: true = need to handle remainder values for M (M < EIGEN_AVX_MAX_NUM_ROW) + * + */ +template +EIGEN_ALWAYS_INLINE void copyBToRowMajor(Scalar *B_arr, int64_t LDB, int64_t K, Scalar *B_temp, int64_t LDB_, + int64_t remM_ = 0) { + EIGEN_UNUSED_VARIABLE(remM_); + using urolls = unrolls::transB; + using vecHalf = typename std::conditional::value, vecHalfFloat, vecFullDouble>::type; + PacketBlock ymm; + constexpr int64_t U3 = urolls::PacketSize * 3; + constexpr int64_t U2 = urolls::PacketSize * 2; + constexpr int64_t U1 = urolls::PacketSize * 1; + int64_t K_ = K / U3 * U3; + int64_t k = 0; + + for (; k < K_; k += U3) { + urolls::template transB_kernel(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += U3; + } + if (K - k >= U2) { + urolls::template transB_kernel(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += U2; + k += U2; + } + if (K - k >= U1) { + urolls::template transB_kernel(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += U1; + k += U1; + } + EIGEN_IF_CONSTEXPR(U1 > 8) { + // Note: without "if constexpr" this section of code will also be + // parsed by the compiler so there is an additional check in {load/store}BBlock + // to make sure the counter is not non-negative. + if (K - k >= 8) { + urolls::template transB_kernel<8, toTemp, remM>(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += 8; + k += 8; + } + } + EIGEN_IF_CONSTEXPR(U1 > 4) { + // Note: without "if constexpr" this section of code will also be + // parsed by the compiler so there is an additional check in {load/store}BBlock + // to make sure the counter is not non-negative. + if (K - k >= 4) { + urolls::template transB_kernel<4, toTemp, remM>(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += 4; + k += 4; + } + } + if (K - k >= 2) { + urolls::template transB_kernel<2, toTemp, remM>(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += 2; + k += 2; + } + if (K - k >= 1) { + urolls::template transB_kernel<1, toTemp, remM>(B_arr + k * LDB, LDB, B_temp, LDB_, ymm, remM_); + B_temp += 1; + k += 1; + } +} + +/** + * Main triangular solve driver + * + * Triangular solve with A on the left. + * Scalar: Scalar precision, only float/double is supported. + * isARowMajor: is A row-major? + * isBRowMajor: is B row-major? + * isFWDSolve: is this forward solve or backward (true => forward)? + * isUnitDiag: is diagonal of A unit or nonunit (true => A has unit diagonal)? + * + * M: dimension of A + * numRHS: number of right hand sides (coincides with K dimension for gemm updates) + * + * Here are the mapping between the different TRSM cases (col-major) and triSolve: + * + * LLN (left , lower, A non-transposed) :: isARowMajor=false, isBRowMajor=false, isFWDSolve=true + * LUT (left , upper, A transposed) :: isARowMajor=true, isBRowMajor=false, isFWDSolve=true + * LUN (left , upper, A non-transposed) :: isARowMajor=false, isBRowMajor=false, isFWDSolve=false + * LLT (left , lower, A transposed) :: isARowMajor=true, isBRowMajor=false, isFWDSolve=false + * RUN (right, upper, A non-transposed) :: isARowMajor=true, isBRowMajor=true, isFWDSolve=true + * RLT (right, lower, A transposed) :: isARowMajor=false, isBRowMajor=true, isFWDSolve=true + * RUT (right, upper, A transposed) :: isARowMajor=false, isBRowMajor=true, isFWDSolve=false + * RLN (right, lower, A non-transposed) :: isARowMajor=true, isBRowMajor=true, isFWDSolve=false + * + * Note: For RXX cases M,numRHS should be swapped. + * + */ +template +void triSolve(Scalar *A_arr, Scalar *B_arr, int64_t M, int64_t numRHS, int64_t LDA, int64_t LDB) { + constexpr int64_t psize = packet_traits::size; + /** + * The values for kB, numM were determined experimentally. + * kB: Number of RHS we process at a time. + * numM: number of rows of B we will store in a temporary array (see below.) This should be a multiple of L. + * + * kB was determined by initially setting kB = numRHS and benchmarking triSolve (TRSM-RUN case) + * performance with M=numRHS. + * It was observed that performance started to drop around M=numRHS=240. This is likely machine dependent. + * + * numM was chosen "arbitrarily". It should be relatively small so B_temp is not too large, but it should be + * large enough to allow GEMM updates to have larger "K"s (see below.) No benchmarking has been done so far to + * determine optimal values for numM. + */ + constexpr int64_t kB = (3 * psize) * 5; // 5*U3 + constexpr int64_t numM = 8 * EIGEN_AVX_MAX_NUM_ROW; + + int64_t sizeBTemp = 0; + Scalar *B_temp = NULL; + EIGEN_IF_CONSTEXPR(!isBRowMajor) { + /** + * If B is col-major, we copy it to a fixed-size temporary array of size at most ~numM*kB and + * transpose it to row-major. Call the solve routine, and copy+transpose it back to the original array. + * The updated row-major copy of B is reused in the GEMM updates. + */ + sizeBTemp = (((std::min(kB, numRHS) + psize - 1) / psize + 4) * psize) * numM; + } + + EIGEN_IF_CONSTEXPR(!isBRowMajor) B_temp = (Scalar *)handmade_aligned_malloc(sizeof(Scalar) * sizeBTemp, 64); + + for (int64_t k = 0; k < numRHS; k += kB) { + int64_t bK = numRHS - k > kB ? kB : numRHS - k; + int64_t M_ = (M / EIGEN_AVX_MAX_NUM_ROW) * EIGEN_AVX_MAX_NUM_ROW, gemmOff = 0; + + // bK rounded up to next multiple of L=EIGEN_AVX_MAX_NUM_ROW. When B_temp is used, we solve for bkL RHS + // instead of bK RHS in triSolveKernelLxK. + int64_t bkL = ((bK + (EIGEN_AVX_MAX_NUM_ROW - 1)) / EIGEN_AVX_MAX_NUM_ROW) * EIGEN_AVX_MAX_NUM_ROW; + const int64_t numScalarPerCache = 64 / sizeof(Scalar); + // Leading dimension of B_temp, will be a multiple of the cache line size. + int64_t LDT = ((bkL + (numScalarPerCache - 1)) / numScalarPerCache) * numScalarPerCache; + int64_t offsetBTemp = 0; + for (int64_t i = 0; i < M_; i += EIGEN_AVX_MAX_NUM_ROW) { + EIGEN_IF_CONSTEXPR(!isBRowMajor) { + int64_t indA_i = isFWDSolve ? i : M - 1 - i; + int64_t indB_i = isFWDSolve ? i : M - (i + EIGEN_AVX_MAX_NUM_ROW); + int64_t offB_1 = isFWDSolve ? offsetBTemp : sizeBTemp - EIGEN_AVX_MAX_NUM_ROW * LDT - offsetBTemp; + int64_t offB_2 = isFWDSolve ? offsetBTemp : sizeBTemp - LDT - offsetBTemp; + // Copy values from B to B_temp. + copyBToRowMajor(B_arr + indB_i + k * LDB, LDB, bK, B_temp + offB_1, LDT); + // Triangular solve with a small block of A and long horizontal blocks of B (or B_temp if B col-major) + triSolveKernelLxK( + &A_arr[idA(indA_i, indA_i, LDA)], B_temp + offB_2, EIGEN_AVX_MAX_NUM_ROW, bkL, LDA, LDT); + // Copy values from B_temp back to B. B_temp will be reused in gemm call below. + copyBToRowMajor(B_arr + indB_i + k * LDB, LDB, bK, B_temp + offB_1, LDT); + + offsetBTemp += EIGEN_AVX_MAX_NUM_ROW * LDT; + } + else { + int64_t ind = isFWDSolve ? i : M - 1 - i; + triSolveKernelLxK( + &A_arr[idA(ind, ind, LDA)], B_arr + k + ind * LDB, EIGEN_AVX_MAX_NUM_ROW, bK, LDA, LDB); + } + if (i + EIGEN_AVX_MAX_NUM_ROW < M_) { + /** + * For the GEMM updates, we want "K" (K=i+8 in this case) to be large as soon as possible + * to reuse the accumulators in GEMM as much as possible. So we only update 8xbK blocks of + * B as follows: + * + * A B + * __ + * |__|__ |__| + * |__|__|__ |__| + * |__|__|__|__ |__| + * |********|__| |**| + */ + EIGEN_IF_CONSTEXPR(isBRowMajor) { + int64_t indA_i = isFWDSolve ? i + EIGEN_AVX_MAX_NUM_ROW : M - (i + 2 * EIGEN_AVX_MAX_NUM_ROW); + int64_t indA_j = isFWDSolve ? 0 : M - (i + EIGEN_AVX_MAX_NUM_ROW); + int64_t indB_i = isFWDSolve ? 0 : M - (i + EIGEN_AVX_MAX_NUM_ROW); + int64_t indB_i2 = isFWDSolve ? i + EIGEN_AVX_MAX_NUM_ROW : M - (i + 2 * EIGEN_AVX_MAX_NUM_ROW); + gemmKernel( + &A_arr[idA(indA_i, indA_j, LDA)], B_arr + k + indB_i * LDB, B_arr + k + indB_i2 * LDB, + EIGEN_AVX_MAX_NUM_ROW, bK, i + EIGEN_AVX_MAX_NUM_ROW, LDA, LDB, LDB); + } + else { + if (offsetBTemp + EIGEN_AVX_MAX_NUM_ROW * LDT > sizeBTemp) { + /** + * Similar idea as mentioned above, but here we are limited by the number of updated values of B + * that can be stored (row-major) in B_temp. + * + * If there is not enough space to store the next batch of 8xbK of B in B_temp, we call GEMM + * update and partially update the remaining old values of B which depends on the new values + * of B stored in B_temp. These values are then no longer needed and can be overwritten. + */ + int64_t indA_i = isFWDSolve ? i + EIGEN_AVX_MAX_NUM_ROW : 0; + int64_t indA_j = isFWDSolve ? gemmOff : M - (i + EIGEN_AVX_MAX_NUM_ROW); + int64_t indB_i = isFWDSolve ? i + EIGEN_AVX_MAX_NUM_ROW : 0; + int64_t offB_1 = isFWDSolve ? 0 : sizeBTemp - offsetBTemp; + gemmKernel( + &A_arr[idA(indA_i, indA_j, LDA)], B_temp + offB_1, B_arr + indB_i + (k)*LDB, + M - (i + EIGEN_AVX_MAX_NUM_ROW), bK, i + EIGEN_AVX_MAX_NUM_ROW - gemmOff, LDA, LDT, LDB); + offsetBTemp = 0; + gemmOff = i + EIGEN_AVX_MAX_NUM_ROW; + } else { + /** + * If there is enough space in B_temp, we only update the next 8xbK values of B. + */ + int64_t indA_i = isFWDSolve ? i + EIGEN_AVX_MAX_NUM_ROW : M - (i + 2 * EIGEN_AVX_MAX_NUM_ROW); + int64_t indA_j = isFWDSolve ? gemmOff : M - (i + EIGEN_AVX_MAX_NUM_ROW); + int64_t indB_i = isFWDSolve ? i + EIGEN_AVX_MAX_NUM_ROW : M - (i + 2 * EIGEN_AVX_MAX_NUM_ROW); + int64_t offB_1 = isFWDSolve ? 0 : sizeBTemp - offsetBTemp; + gemmKernel( + &A_arr[idA(indA_i, indA_j, LDA)], B_temp + offB_1, B_arr + indB_i + (k)*LDB, + EIGEN_AVX_MAX_NUM_ROW, bK, i + EIGEN_AVX_MAX_NUM_ROW - gemmOff, LDA, LDT, LDB); + } + } + } + } + // Handle M remainder.. + int64_t bM = M - M_; + if (bM > 0) { + if (M_ > 0) { + EIGEN_IF_CONSTEXPR(isBRowMajor) { + int64_t indA_i = isFWDSolve ? M_ : 0; + int64_t indA_j = isFWDSolve ? 0 : bM; + int64_t indB_i = isFWDSolve ? 0 : bM; + int64_t indB_i2 = isFWDSolve ? M_ : 0; + gemmKernel( + &A_arr[idA(indA_i, indA_j, LDA)], B_arr + k + indB_i * LDB, B_arr + k + indB_i2 * LDB, bM, + bK, M_, LDA, LDB, LDB); + } + else { + int64_t indA_i = isFWDSolve ? M_ : 0; + int64_t indA_j = isFWDSolve ? gemmOff : bM; + int64_t indB_i = isFWDSolve ? M_ : 0; + int64_t offB_1 = isFWDSolve ? 0 : sizeBTemp - offsetBTemp; + gemmKernel(&A_arr[idA(indA_i, indA_j, LDA)], + B_temp + offB_1, B_arr + indB_i + (k)*LDB, bM, bK, + M_ - gemmOff, LDA, LDT, LDB); + } + } + EIGEN_IF_CONSTEXPR(!isBRowMajor) { + int64_t indA_i = isFWDSolve ? M_ : M - 1 - M_; + int64_t indB_i = isFWDSolve ? M_ : 0; + int64_t offB_1 = isFWDSolve ? 0 : (bM - 1) * bkL; + copyBToRowMajor(B_arr + indB_i + k * LDB, LDB, bK, B_temp, bkL, bM); + triSolveKernelLxK(&A_arr[idA(indA_i, indA_i, LDA)], + B_temp + offB_1, bM, bkL, LDA, bkL); + copyBToRowMajor(B_arr + indB_i + k * LDB, LDB, bK, B_temp, bkL, bM); + } + else { + int64_t ind = isFWDSolve ? M_ : M - 1 - M_; + triSolveKernelLxK(&A_arr[idA(ind, ind, LDA)], + B_arr + k + ind * LDB, bM, bK, LDA, LDB); + } + } + } + + EIGEN_IF_CONSTEXPR(!isBRowMajor) handmade_aligned_free(B_temp); +} + +// Template specializations of trsmKernelL/R for float/double and inner strides of 1. +#if (EIGEN_USE_AVX512_TRSM_KERNELS) +#if (EIGEN_USE_AVX512_TRSM_R_KERNELS) +template +struct trsmKernelR; + +template +struct trsmKernelR { + static void kernel(Index size, Index otherSize, const float *_tri, Index triStride, float *_other, Index otherIncr, + Index otherStride); +}; + +template +struct trsmKernelR { + static void kernel(Index size, Index otherSize, const double *_tri, Index triStride, double *_other, Index otherIncr, + Index otherStride); +}; + +template +EIGEN_DONT_INLINE void trsmKernelR::kernel( + Index size, Index otherSize, const float *_tri, Index triStride, float *_other, Index otherIncr, + Index otherStride) { + EIGEN_UNUSED_VARIABLE(otherIncr); +#ifdef EIGEN_NO_RUNTIME_MALLOC + if (!is_malloc_allowed()) { + trsmKernelR::kernel( + size, otherSize, _tri, triStride, _other, otherIncr, otherStride); + return; + } +#endif + triSolve( + const_cast(_tri), _other, size, otherSize, triStride, otherStride); +} + +template +EIGEN_DONT_INLINE void trsmKernelR::kernel( + Index size, Index otherSize, const double *_tri, Index triStride, double *_other, Index otherIncr, + Index otherStride) { + EIGEN_UNUSED_VARIABLE(otherIncr); +#ifdef EIGEN_NO_RUNTIME_MALLOC + if (!is_malloc_allowed()) { + trsmKernelR::kernel( + size, otherSize, _tri, triStride, _other, otherIncr, otherStride); + return; + } +#endif + triSolve( + const_cast(_tri), _other, size, otherSize, triStride, otherStride); +} +#endif // (EIGEN_USE_AVX512_TRSM_R_KERNELS) + +// These trsm kernels require temporary memory allocation +#if (EIGEN_USE_AVX512_TRSM_L_KERNELS) +template +struct trsmKernelL; + +template +struct trsmKernelL { + static void kernel(Index size, Index otherSize, const float *_tri, Index triStride, float *_other, Index otherIncr, + Index otherStride); +}; + +template +struct trsmKernelL { + static void kernel(Index size, Index otherSize, const double *_tri, Index triStride, double *_other, Index otherIncr, + Index otherStride); +}; + +template +EIGEN_DONT_INLINE void trsmKernelL::kernel( + Index size, Index otherSize, const float *_tri, Index triStride, float *_other, Index otherIncr, + Index otherStride) { + EIGEN_UNUSED_VARIABLE(otherIncr); +#ifdef EIGEN_NO_RUNTIME_MALLOC + if (!is_malloc_allowed()) { + trsmKernelL::kernel( + size, otherSize, _tri, triStride, _other, otherIncr, otherStride); + return; + } +#endif + triSolve( + const_cast(_tri), _other, size, otherSize, triStride, otherStride); +} + +template +EIGEN_DONT_INLINE void trsmKernelL::kernel( + Index size, Index otherSize, const double *_tri, Index triStride, double *_other, Index otherIncr, + Index otherStride) { + EIGEN_UNUSED_VARIABLE(otherIncr); +#ifdef EIGEN_NO_RUNTIME_MALLOC + if (!is_malloc_allowed()) { + trsmKernelL::kernel( + size, otherSize, _tri, triStride, _other, otherIncr, otherStride); + return; + } +#endif + triSolve( + const_cast(_tri), _other, size, otherSize, triStride, otherStride); +} +#endif // EIGEN_USE_AVX512_TRSM_L_KERNELS +#endif // EIGEN_USE_AVX512_TRSM_KERNELS +} // namespace internal +} // namespace Eigen +#endif // EIGEN_CORE_ARCH_AVX512_TRSM_KERNEL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TrsmUnrolls.inc b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TrsmUnrolls.inc new file mode 100644 index 0000000..4c6116c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TrsmUnrolls.inc @@ -0,0 +1,1218 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2022 Intel Corporation +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CORE_ARCH_AVX512_TRSM_UNROLLS_H +#define EIGEN_CORE_ARCH_AVX512_TRSM_UNROLLS_H + +template +EIGEN_ALWAYS_INLINE int64_t idA(int64_t i, int64_t j, int64_t LDA) { + EIGEN_IF_CONSTEXPR(isARowMajor) return i * LDA + j; + else return i + j * LDA; +} + +/** + * This namespace contains various classes used to generate compile-time unrolls which are + * used throughout the trsm/gemm kernels. The unrolls are characterized as for-loops (1-D), nested + * for-loops (2-D), or triple nested for-loops (3-D). Unrolls are generated using template recursion + * + * Example, the 2-D for-loop is unrolled recursively by first flattening to a 1-D loop. + * + * for(startI = 0; startI < endI; startI++) for(startC = 0; startC < endI*endJ; startC++) + * for(startJ = 0; startJ < endJ; startJ++) ----> startI = (startC)/(endJ) + * func(startI,startJ) startJ = (startC)%(endJ) + * func(...) + * + * The 1-D loop can be unrolled recursively by using enable_if and defining an auxillary function + * with a template parameter used as a counter. + * + * template + * std::enable_if_t<(counter <= 0)> <---- tail case. + * aux_func {} + * + * template + * std::enable_if_t<(counter > 0)> <---- actual for-loop + * aux_func { + * startC = endI*endJ - counter + * startI = (startC)/(endJ) + * startJ = (startC)%(endJ) + * func(startI, startJ) + * aux_func() + * } + * + * Note: Additional wrapper functions are provided for aux_func which hides the counter template + * parameter since counter usually depends on endI, endJ, etc... + * + * Conventions: + * 1) endX: specifies the terminal value for the for-loop, (ex: for(startX = 0; startX < endX; startX++)) + * + * 2) rem, remM, remK template parameters are used for deciding whether to use masked operations for + * handling remaining tails (when sizes are not multiples of PacketSize or EIGEN_AVX_MAX_NUM_ROW) + */ +namespace unrolls { + +template +EIGEN_ALWAYS_INLINE auto remMask(int64_t m) { + EIGEN_IF_CONSTEXPR(N == 16) { return 0xFFFF >> (16 - m); } + else EIGEN_IF_CONSTEXPR(N == 8) { + return 0xFF >> (8 - m); + } + else EIGEN_IF_CONSTEXPR(N == 4) { + return 0x0F >> (4 - m); + } + return 0; +} + +template +EIGEN_ALWAYS_INLINE void trans8x8blocks(PacketBlock &kernel); + +template <> +EIGEN_ALWAYS_INLINE void trans8x8blocks(PacketBlock &kernel) { + __m512 T0 = _mm512_unpacklo_ps(kernel.packet[0], kernel.packet[1]); + __m512 T1 = _mm512_unpackhi_ps(kernel.packet[0], kernel.packet[1]); + __m512 T2 = _mm512_unpacklo_ps(kernel.packet[2], kernel.packet[3]); + __m512 T3 = _mm512_unpackhi_ps(kernel.packet[2], kernel.packet[3]); + __m512 T4 = _mm512_unpacklo_ps(kernel.packet[4], kernel.packet[5]); + __m512 T5 = _mm512_unpackhi_ps(kernel.packet[4], kernel.packet[5]); + __m512 T6 = _mm512_unpacklo_ps(kernel.packet[6], kernel.packet[7]); + __m512 T7 = _mm512_unpackhi_ps(kernel.packet[6], kernel.packet[7]); + + kernel.packet[0] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T0), _mm512_castps_pd(T2))); + kernel.packet[1] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T0), _mm512_castps_pd(T2))); + kernel.packet[2] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T1), _mm512_castps_pd(T3))); + kernel.packet[3] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T1), _mm512_castps_pd(T3))); + kernel.packet[4] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T4), _mm512_castps_pd(T6))); + kernel.packet[5] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T4), _mm512_castps_pd(T6))); + kernel.packet[6] = _mm512_castpd_ps(_mm512_unpacklo_pd(_mm512_castps_pd(T5), _mm512_castps_pd(T7))); + kernel.packet[7] = _mm512_castpd_ps(_mm512_unpackhi_pd(_mm512_castps_pd(T5), _mm512_castps_pd(T7))); + + T0 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[4]), 0x4E)); + T0 = _mm512_mask_blend_ps(0xF0F0, kernel.packet[0], T0); + T4 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[0]), 0x4E)); + T4 = _mm512_mask_blend_ps(0xF0F0, T4, kernel.packet[4]); + T1 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[5]), 0x4E)); + T1 = _mm512_mask_blend_ps(0xF0F0, kernel.packet[1], T1); + T5 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[1]), 0x4E)); + T5 = _mm512_mask_blend_ps(0xF0F0, T5, kernel.packet[5]); + T2 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[6]), 0x4E)); + T2 = _mm512_mask_blend_ps(0xF0F0, kernel.packet[2], T2); + T6 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[2]), 0x4E)); + T6 = _mm512_mask_blend_ps(0xF0F0, T6, kernel.packet[6]); + T3 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[7]), 0x4E)); + T3 = _mm512_mask_blend_ps(0xF0F0, kernel.packet[3], T3); + T7 = _mm512_castpd_ps(_mm512_permutex_pd(_mm512_castps_pd(kernel.packet[3]), 0x4E)); + T7 = _mm512_mask_blend_ps(0xF0F0, T7, kernel.packet[7]); + + kernel.packet[0] = T0; + kernel.packet[1] = T1; + kernel.packet[2] = T2; + kernel.packet[3] = T3; + kernel.packet[4] = T4; + kernel.packet[5] = T5; + kernel.packet[6] = T6; + kernel.packet[7] = T7; +} + +template <> +EIGEN_ALWAYS_INLINE void trans8x8blocks(PacketBlock &kernel) { + ptranspose(kernel); +} + +/*** + * Unrolls for tranposed C stores + */ +template +class trans { + public: + using vec = typename std::conditional::value, vecFullFloat, vecFullDouble>::type; + using vecHalf = typename std::conditional::value, vecHalfFloat, vecFullDouble>::type; + static constexpr int64_t PacketSize = packet_traits::size; + + /*********************************** + * Auxillary Functions for: + * - storeC + *********************************** + */ + + /** + * aux_storeC + * + * 1-D unroll + * for(startN = 0; startN < endN; startN++) + * + * (endN <= PacketSize) is required to handle the fp32 case, see comments in transStoreC + * + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0 && endN <= PacketSize)> aux_storeC( + Scalar *C_arr, int64_t LDC, PacketBlock &zmm, int64_t remM_ = 0) { + constexpr int64_t counterReverse = endN - counter; + constexpr int64_t startN = counterReverse; + + EIGEN_IF_CONSTEXPR(startN < EIGEN_AVX_MAX_NUM_ROW) { + EIGEN_IF_CONSTEXPR(remM) { + pstoreu( + C_arr + LDC * startN, + padd(ploadu((const Scalar *)C_arr + LDC * startN, remMask(remM_)), + preinterpret(zmm.packet[packetIndexOffset + (unrollN / PacketSize) * startN]), + remMask(remM_)), + remMask(remM_)); + } + else { + pstoreu(C_arr + LDC * startN, + padd(ploadu((const Scalar *)C_arr + LDC * startN), + preinterpret(zmm.packet[packetIndexOffset + (unrollN / PacketSize) * startN]))); + } + } + else { // This block is only needed for fp32 case + // Reinterpret as __m512 for _mm512_shuffle_f32x4 + vecFullFloat zmm2vecFullFloat = preinterpret( + zmm.packet[packetIndexOffset + (unrollN / PacketSize) * (startN - EIGEN_AVX_MAX_NUM_ROW)]); + // Swap lower and upper half of avx register. + zmm.packet[packetIndexOffset + (unrollN / PacketSize) * (startN - EIGEN_AVX_MAX_NUM_ROW)] = + preinterpret(_mm512_shuffle_f32x4(zmm2vecFullFloat, zmm2vecFullFloat, 0b01001110)); + + EIGEN_IF_CONSTEXPR(remM) { + pstoreu( + C_arr + LDC * startN, + padd(ploadu((const Scalar *)C_arr + LDC * startN, remMask(remM_)), + preinterpret( + zmm.packet[packetIndexOffset + (unrollN / PacketSize) * (startN - EIGEN_AVX_MAX_NUM_ROW)])), + remMask(remM_)); + } + else { + pstoreu( + C_arr + LDC * startN, + padd(ploadu((const Scalar *)C_arr + LDC * startN), + preinterpret( + zmm.packet[packetIndexOffset + (unrollN / PacketSize) * (startN - EIGEN_AVX_MAX_NUM_ROW)]))); + } + } + aux_storeC(C_arr, LDC, zmm, remM_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t 0 && endN <= PacketSize)> aux_storeC( + Scalar *C_arr, int64_t LDC, PacketBlock &zmm, int64_t remM_ = 0) { + EIGEN_UNUSED_VARIABLE(C_arr); + EIGEN_UNUSED_VARIABLE(LDC); + EIGEN_UNUSED_VARIABLE(zmm); + EIGEN_UNUSED_VARIABLE(remM_); + } + + template + static EIGEN_ALWAYS_INLINE void storeC(Scalar *C_arr, int64_t LDC, + PacketBlock &zmm, + int64_t remM_ = 0) { + aux_storeC(C_arr, LDC, zmm, remM_); + } + + /** + * Transposes LxunrollN row major block of matrices stored EIGEN_AVX_MAX_NUM_ACC zmm registers to + * "unrollN"xL ymm registers to be stored col-major into C. + * + * For 8x48, the 8x48 block (row-major) is stored in zmm as follows: + * + * row0: zmm0 zmm1 zmm2 + * row1: zmm3 zmm4 zmm5 + * . + * . + * row7: zmm21 zmm22 zmm23 + * + * For 8x32, the 8x32 block (row-major) is stored in zmm as follows: + * + * row0: zmm0 zmm1 + * row1: zmm2 zmm3 + * . + * . + * row7: zmm14 zmm15 + * + * + * In general we will have {1,2,3} groups of avx registers each of size + * EIGEN_AVX_MAX_NUM_ROW. packetIndexOffset is used to select which "block" of + * avx registers are being transposed. + */ + template + static EIGEN_ALWAYS_INLINE void transpose(PacketBlock &zmm) { + // Note: this assumes EIGEN_AVX_MAX_NUM_ROW = 8. Unrolls should be adjusted + // accordingly if EIGEN_AVX_MAX_NUM_ROW is smaller. + constexpr int64_t zmmStride = unrollN / PacketSize; + PacketBlock r; + r.packet[0] = zmm.packet[packetIndexOffset + zmmStride * 0]; + r.packet[1] = zmm.packet[packetIndexOffset + zmmStride * 1]; + r.packet[2] = zmm.packet[packetIndexOffset + zmmStride * 2]; + r.packet[3] = zmm.packet[packetIndexOffset + zmmStride * 3]; + r.packet[4] = zmm.packet[packetIndexOffset + zmmStride * 4]; + r.packet[5] = zmm.packet[packetIndexOffset + zmmStride * 5]; + r.packet[6] = zmm.packet[packetIndexOffset + zmmStride * 6]; + r.packet[7] = zmm.packet[packetIndexOffset + zmmStride * 7]; + trans8x8blocks(r); + zmm.packet[packetIndexOffset + zmmStride * 0] = r.packet[0]; + zmm.packet[packetIndexOffset + zmmStride * 1] = r.packet[1]; + zmm.packet[packetIndexOffset + zmmStride * 2] = r.packet[2]; + zmm.packet[packetIndexOffset + zmmStride * 3] = r.packet[3]; + zmm.packet[packetIndexOffset + zmmStride * 4] = r.packet[4]; + zmm.packet[packetIndexOffset + zmmStride * 5] = r.packet[5]; + zmm.packet[packetIndexOffset + zmmStride * 6] = r.packet[6]; + zmm.packet[packetIndexOffset + zmmStride * 7] = r.packet[7]; + } +}; + +/** + * Unrolls for copyBToRowMajor + * + * Idea: + * 1) Load a block of right-hand sides to registers (using loadB). + * 2) Convert the block from column-major to row-major (transposeLxL) + * 3) Store the blocks from register either to a temp array (toTemp == true), or back to B (toTemp == false). + * + * We use at most EIGEN_AVX_MAX_NUM_ACC avx registers to store the blocks of B. The remaining registers are + * used as temps for transposing. + * + * Blocks will be of size Lx{U1,U2,U3}. packetIndexOffset is used to index between these subblocks + * For fp32, PacketSize = 2*EIGEN_AVX_MAX_NUM_ROW, so we reinterpret packets as packets half the size (zmm -> ymm). + */ +template +class transB { + public: + using vec = typename std::conditional::value, vecFullFloat, vecFullDouble>::type; + using vecHalf = typename std::conditional::value, vecHalfFloat, vecFullDouble>::type; + static constexpr int64_t PacketSize = packet_traits::size; + + /*********************************** + * Auxillary Functions for: + * - loadB + * - storeB + * - loadBBlock + * - storeBBlock + *********************************** + */ + + /** + * aux_loadB + * + * 1-D unroll + * for(startN = 0; startN < endN; startN++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_loadB( + Scalar *B_arr, int64_t LDB, PacketBlock &ymm, + int64_t remM_ = 0) { + constexpr int64_t counterReverse = endN - counter; + constexpr int64_t startN = counterReverse; + + EIGEN_IF_CONSTEXPR(remM) { + ymm.packet[packetIndexOffset + startN] = + ploadu((const Scalar *)&B_arr[startN * LDB], remMask(remM_)); + } + else { + EIGEN_IF_CONSTEXPR(remN_ == 0) { + ymm.packet[packetIndexOffset + startN] = ploadu((const Scalar *)&B_arr[startN * LDB]); + } + else ymm.packet[packetIndexOffset + startN] = + ploadu((const Scalar *)&B_arr[startN * LDB], remMask(remN_)); + } + + aux_loadB(B_arr, LDB, ymm, remM_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_loadB( + Scalar *B_arr, int64_t LDB, PacketBlock &ymm, + int64_t remM_ = 0) { + EIGEN_UNUSED_VARIABLE(B_arr); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(ymm); + EIGEN_UNUSED_VARIABLE(remM_); + } + + /** + * aux_storeB + * + * 1-D unroll + * for(startN = 0; startN < endN; startN++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_storeB( + Scalar *B_arr, int64_t LDB, PacketBlock &ymm, int64_t rem_ = 0) { + constexpr int64_t counterReverse = endN - counter; + constexpr int64_t startN = counterReverse; + + EIGEN_IF_CONSTEXPR(remK || remM) { + pstoreu(&B_arr[startN * LDB], ymm.packet[packetIndexOffset + startN], + remMask(rem_)); + } + else { + pstoreu(&B_arr[startN * LDB], ymm.packet[packetIndexOffset + startN]); + } + + aux_storeB(B_arr, LDB, ymm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_storeB( + Scalar *B_arr, int64_t LDB, PacketBlock &ymm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(B_arr); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(ymm); + EIGEN_UNUSED_VARIABLE(rem_); + } + + /** + * aux_loadBBlock + * + * 1-D unroll + * for(startN = 0; startN < endN; startN += EIGEN_AVX_MAX_NUM_ROW) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_loadBBlock( + Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, int64_t remM_ = 0) { + constexpr int64_t counterReverse = endN - counter; + constexpr int64_t startN = counterReverse; + transB::template loadB(&B_temp[startN], LDB_, ymm); + aux_loadBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_loadBBlock( + Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, int64_t remM_ = 0) { + EIGEN_UNUSED_VARIABLE(B_arr); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(B_temp); + EIGEN_UNUSED_VARIABLE(LDB_); + EIGEN_UNUSED_VARIABLE(ymm); + EIGEN_UNUSED_VARIABLE(remM_); + } + + /** + * aux_storeBBlock + * + * 1-D unroll + * for(startN = 0; startN < endN; startN += EIGEN_AVX_MAX_NUM_ROW) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_storeBBlock( + Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, int64_t remM_ = 0) { + constexpr int64_t counterReverse = endN - counter; + constexpr int64_t startN = counterReverse; + + EIGEN_IF_CONSTEXPR(toTemp) { + transB::template storeB(&B_temp[startN], LDB_, ymm, remK_); + } + else { + transB::template storeB(&B_arr[0 + startN * LDB], LDB, + ymm, remM_); + } + aux_storeBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_storeBBlock( + Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, int64_t remM_ = 0) { + EIGEN_UNUSED_VARIABLE(B_arr); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(B_temp); + EIGEN_UNUSED_VARIABLE(LDB_); + EIGEN_UNUSED_VARIABLE(ymm); + EIGEN_UNUSED_VARIABLE(remM_); + } + + /******************************************************** + * Wrappers for aux_XXXX to hide counter parameter + ********************************************************/ + + template + static EIGEN_ALWAYS_INLINE void loadB(Scalar *B_arr, int64_t LDB, + PacketBlock &ymm, + int64_t remM_ = 0) { + aux_loadB(B_arr, LDB, ymm, remM_); + } + + template + static EIGEN_ALWAYS_INLINE void storeB(Scalar *B_arr, int64_t LDB, + PacketBlock &ymm, + int64_t rem_ = 0) { + aux_storeB(B_arr, LDB, ymm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE void loadBBlock(Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, + int64_t remM_ = 0) { + EIGEN_IF_CONSTEXPR(toTemp) { transB::template loadB(&B_arr[0], LDB, ymm, remM_); } + else { + aux_loadBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + } + + template + static EIGEN_ALWAYS_INLINE void storeBBlock(Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, + int64_t remM_ = 0) { + aux_storeBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + + template + static EIGEN_ALWAYS_INLINE void transposeLxL(PacketBlock &ymm) { + // Note: this assumes EIGEN_AVX_MAX_NUM_ROW = 8. Unrolls should be adjusted + // accordingly if EIGEN_AVX_MAX_NUM_ROW is smaller. + PacketBlock r; + r.packet[0] = ymm.packet[packetIndexOffset + 0]; + r.packet[1] = ymm.packet[packetIndexOffset + 1]; + r.packet[2] = ymm.packet[packetIndexOffset + 2]; + r.packet[3] = ymm.packet[packetIndexOffset + 3]; + r.packet[4] = ymm.packet[packetIndexOffset + 4]; + r.packet[5] = ymm.packet[packetIndexOffset + 5]; + r.packet[6] = ymm.packet[packetIndexOffset + 6]; + r.packet[7] = ymm.packet[packetIndexOffset + 7]; + ptranspose(r); + ymm.packet[packetIndexOffset + 0] = r.packet[0]; + ymm.packet[packetIndexOffset + 1] = r.packet[1]; + ymm.packet[packetIndexOffset + 2] = r.packet[2]; + ymm.packet[packetIndexOffset + 3] = r.packet[3]; + ymm.packet[packetIndexOffset + 4] = r.packet[4]; + ymm.packet[packetIndexOffset + 5] = r.packet[5]; + ymm.packet[packetIndexOffset + 6] = r.packet[6]; + ymm.packet[packetIndexOffset + 7] = r.packet[7]; + } + + template + static EIGEN_ALWAYS_INLINE void transB_kernel(Scalar *B_arr, int64_t LDB, Scalar *B_temp, int64_t LDB_, + PacketBlock &ymm, + int64_t remM_ = 0) { + constexpr int64_t U3 = PacketSize * 3; + constexpr int64_t U2 = PacketSize * 2; + constexpr int64_t U1 = PacketSize * 1; + /** + * Unrolls needed for each case: + * - AVX512 fp32 48 32 16 8 4 2 1 + * - AVX512 fp64 24 16 8 4 2 1 + * + * For fp32 L and U1 are 1:2 so for U3/U2 cases the loads/stores need to be split up. + */ + EIGEN_IF_CONSTEXPR(unrollN == U3) { + // load LxU3 B col major, transpose LxU3 row major + constexpr int64_t maxUBlock = std::min(3 * EIGEN_AVX_MAX_NUM_ROW, U3); + transB::template loadBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template transposeLxL<1 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template transposeLxL<2 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template storeBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + + EIGEN_IF_CONSTEXPR(maxUBlock < U3) { + transB::template loadBBlock(&B_arr[maxUBlock * LDB], LDB, &B_temp[maxUBlock], LDB_, + ymm, remM_); + transB::template transposeLxL<0 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template transposeLxL<1 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template transposeLxL<2 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template storeBBlock(&B_arr[maxUBlock * LDB], LDB, &B_temp[maxUBlock], LDB_, + ymm, remM_); + } + } + else EIGEN_IF_CONSTEXPR(unrollN == U2) { + // load LxU2 B col major, transpose LxU2 row major + constexpr int64_t maxUBlock = std::min(3 * EIGEN_AVX_MAX_NUM_ROW, U2); + transB::template loadBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template transposeLxL<1 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + EIGEN_IF_CONSTEXPR(maxUBlock < U2) transB::template transposeLxL<2 * EIGEN_AVX_MAX_NUM_ROW>(ymm); + transB::template storeBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + + EIGEN_IF_CONSTEXPR(maxUBlock < U2) { + transB::template loadBBlock(&B_arr[maxUBlock * LDB], LDB, + &B_temp[maxUBlock], LDB_, ymm, remM_); + transB::template transposeLxL<0>(ymm); + transB::template storeBBlock(&B_arr[maxUBlock * LDB], LDB, + &B_temp[maxUBlock], LDB_, ymm, remM_); + } + } + else EIGEN_IF_CONSTEXPR(unrollN == U1) { + // load LxU1 B col major, transpose LxU1 row major + transB::template loadBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0>(ymm); + EIGEN_IF_CONSTEXPR(EIGEN_AVX_MAX_NUM_ROW < U1) { transB::template transposeLxL<1 * EIGEN_AVX_MAX_NUM_ROW>(ymm); } + transB::template storeBBlock(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + else EIGEN_IF_CONSTEXPR(unrollN == 8 && U1 > 8) { + // load Lx4 B col major, transpose Lx4 row major + transB::template loadBBlock<8, toTemp, remM>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0>(ymm); + transB::template storeBBlock<8, toTemp, remM, 8>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + else EIGEN_IF_CONSTEXPR(unrollN == 4 && U1 > 4) { + // load Lx4 B col major, transpose Lx4 row major + transB::template loadBBlock<4, toTemp, remM>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0>(ymm); + transB::template storeBBlock<4, toTemp, remM, 4>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + else EIGEN_IF_CONSTEXPR(unrollN == 2) { + // load Lx2 B col major, transpose Lx2 row major + transB::template loadBBlock<2, toTemp, remM, 2>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0>(ymm); + transB::template storeBBlock<2, toTemp, remM, 2>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + else EIGEN_IF_CONSTEXPR(unrollN == 1) { + // load Lx1 B col major, transpose Lx1 row major + transB::template loadBBlock<1, toTemp, remM, 1>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + transB::template transposeLxL<0>(ymm); + transB::template storeBBlock<1, toTemp, remM, 1>(B_arr, LDB, B_temp, LDB_, ymm, remM_); + } + } +}; + +/** + * Unrolls for triSolveKernel + * + * Idea: + * 1) Load a block of right-hand sides to registers in RHSInPacket (using loadRHS). + * 2) Do triangular solve with RHSInPacket and a small block of A (triangular matrix) + * stored in AInPacket (using triSolveMicroKernel). + * 3) Store final results (in avx registers) back into memory (using storeRHS). + * + * RHSInPacket uses at most EIGEN_AVX_MAX_NUM_ACC avx registers and AInPacket uses at most + * EIGEN_AVX_MAX_NUM_ROW registers. + */ +template +class trsm { + public: + using vec = typename std::conditional::value, vecFullFloat, vecFullDouble>::type; + static constexpr int64_t PacketSize = packet_traits::size; + + /*********************************** + * Auxillary Functions for: + * - loadRHS + * - storeRHS + * - divRHSByDiag + * - updateRHS + * - triSolveMicroKernel + ************************************/ + /** + * aux_loadRHS + * + * 2-D unroll + * for(startM = 0; startM < endM; startM++) + * for(startK = 0; startK < endK; startK++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_loadRHS( + Scalar *B_arr, int64_t LDB, PacketBlock &RHSInPacket, int64_t rem = 0) { + constexpr int64_t counterReverse = endM * endK - counter; + constexpr int64_t startM = counterReverse / (endK); + constexpr int64_t startK = counterReverse % endK; + + constexpr int64_t packetIndex = startM * endK + startK; + constexpr int64_t startM_ = isFWDSolve ? startM : -startM; + const int64_t rhsIndex = (startK * PacketSize) + startM_ * LDB; + EIGEN_IF_CONSTEXPR(krem) { + RHSInPacket.packet[packetIndex] = ploadu(&B_arr[rhsIndex], remMask(rem)); + } + else { + RHSInPacket.packet[packetIndex] = ploadu(&B_arr[rhsIndex]); + } + aux_loadRHS(B_arr, LDB, RHSInPacket, rem); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_loadRHS( + Scalar *B_arr, int64_t LDB, PacketBlock &RHSInPacket, int64_t rem = 0) { + EIGEN_UNUSED_VARIABLE(B_arr); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(RHSInPacket); + EIGEN_UNUSED_VARIABLE(rem); + } + + /** + * aux_storeRHS + * + * 2-D unroll + * for(startM = 0; startM < endM; startM++) + * for(startK = 0; startK < endK; startK++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_storeRHS( + Scalar *B_arr, int64_t LDB, PacketBlock &RHSInPacket, int64_t rem = 0) { + constexpr int64_t counterReverse = endM * endK - counter; + constexpr int64_t startM = counterReverse / (endK); + constexpr int64_t startK = counterReverse % endK; + + constexpr int64_t packetIndex = startM * endK + startK; + constexpr int64_t startM_ = isFWDSolve ? startM : -startM; + const int64_t rhsIndex = (startK * PacketSize) + startM_ * LDB; + EIGEN_IF_CONSTEXPR(krem) { + pstoreu(&B_arr[rhsIndex], RHSInPacket.packet[packetIndex], remMask(rem)); + } + else { + pstoreu(&B_arr[rhsIndex], RHSInPacket.packet[packetIndex]); + } + aux_storeRHS(B_arr, LDB, RHSInPacket, rem); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_storeRHS( + Scalar *B_arr, int64_t LDB, PacketBlock &RHSInPacket, int64_t rem = 0) { + EIGEN_UNUSED_VARIABLE(B_arr); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(RHSInPacket); + EIGEN_UNUSED_VARIABLE(rem); + } + + /** + * aux_divRHSByDiag + * + * currM may be -1, (currM >=0) in enable_if checks for this + * + * 1-D unroll + * for(startK = 0; startK < endK; startK++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0 && currM >= 0)> aux_divRHSByDiag( + PacketBlock &RHSInPacket, PacketBlock &AInPacket) { + constexpr int64_t counterReverse = endK - counter; + constexpr int64_t startK = counterReverse; + + constexpr int64_t packetIndex = currM * endK + startK; + RHSInPacket.packet[packetIndex] = pmul(AInPacket.packet[currM], RHSInPacket.packet[packetIndex]); + aux_divRHSByDiag(RHSInPacket, AInPacket); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t 0 && currM >= 0)> aux_divRHSByDiag( + PacketBlock &RHSInPacket, PacketBlock &AInPacket) { + EIGEN_UNUSED_VARIABLE(RHSInPacket); + EIGEN_UNUSED_VARIABLE(AInPacket); + } + + /** + * aux_updateRHS + * + * 2-D unroll + * for(startM = initM; startM < endM; startM++) + * for(startK = 0; startK < endK; startK++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_updateRHS( + Scalar *A_arr, int64_t LDA, PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + constexpr int64_t counterReverse = (endM - initM) * endK - counter; + constexpr int64_t startM = initM + counterReverse / (endK); + constexpr int64_t startK = counterReverse % endK; + + // For each row of A, first update all corresponding RHS + constexpr int64_t packetIndex = startM * endK + startK; + EIGEN_IF_CONSTEXPR(currentM > 0) { + RHSInPacket.packet[packetIndex] = + pnmadd(AInPacket.packet[startM], RHSInPacket.packet[(currentM - 1) * endK + startK], + RHSInPacket.packet[packetIndex]); + } + + EIGEN_IF_CONSTEXPR(startK == endK - 1) { + // Once all RHS for previous row of A is updated, we broadcast the next element in the column A_{i, currentM}. + EIGEN_IF_CONSTEXPR(startM == currentM && !isUnitDiag) { + // If diagonal is not unit, we broadcast reciprocals of diagonals AinPacket.packet[currentM]. + // This will be used in divRHSByDiag + EIGEN_IF_CONSTEXPR(isFWDSolve) + AInPacket.packet[currentM] = pset1(Scalar(1) / A_arr[idA(currentM, currentM, LDA)]); + else AInPacket.packet[currentM] = pset1(Scalar(1) / A_arr[idA(-currentM, -currentM, LDA)]); + } + else { + // Broadcast next off diagonal element of A + EIGEN_IF_CONSTEXPR(isFWDSolve) + AInPacket.packet[startM] = pset1(A_arr[idA(startM, currentM, LDA)]); + else AInPacket.packet[startM] = pset1(A_arr[idA(-startM, -currentM, LDA)]); + } + } + + aux_updateRHS( + A_arr, LDA, RHSInPacket, AInPacket); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_updateRHS( + Scalar *A_arr, int64_t LDA, PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + EIGEN_UNUSED_VARIABLE(A_arr); + EIGEN_UNUSED_VARIABLE(LDA); + EIGEN_UNUSED_VARIABLE(RHSInPacket); + EIGEN_UNUSED_VARIABLE(AInPacket); + } + + /** + * aux_triSolverMicroKernel + * + * 1-D unroll + * for(startM = 0; startM < endM; startM++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_triSolveMicroKernel( + Scalar *A_arr, int64_t LDA, PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + constexpr int64_t counterReverse = endM - counter; + constexpr int64_t startM = counterReverse; + + constexpr int64_t currentM = startM; + // Divides the right-hand side in row startM, by digonal value of A + // broadcasted to AInPacket.packet[startM-1] in the previous iteration. + // + // Without "if constexpr" the compiler instantiates the case <-1, numK> + // this is handled with enable_if to prevent out-of-bound warnings + // from the compiler + EIGEN_IF_CONSTEXPR(!isUnitDiag && startM > 0) + trsm::template divRHSByDiag(RHSInPacket, AInPacket); + + // After division, the rhs corresponding to subsequent rows of A can be partially updated + // We also broadcast the reciprocal of the next diagonal to AInPacket.packet[currentM] (if needed) + // to be used in the next iteration. + trsm::template updateRHS(A_arr, LDA, RHSInPacket, + AInPacket); + + // Handle division for the RHS corresponding to the final row of A. + EIGEN_IF_CONSTEXPR(!isUnitDiag && startM == endM - 1) + trsm::template divRHSByDiag(RHSInPacket, AInPacket); + + aux_triSolveMicroKernel(A_arr, LDA, RHSInPacket, + AInPacket); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_triSolveMicroKernel( + Scalar *A_arr, int64_t LDA, PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + EIGEN_UNUSED_VARIABLE(A_arr); + EIGEN_UNUSED_VARIABLE(LDA); + EIGEN_UNUSED_VARIABLE(RHSInPacket); + EIGEN_UNUSED_VARIABLE(AInPacket); + } + + /******************************************************** + * Wrappers for aux_XXXX to hide counter parameter + ********************************************************/ + + /** + * Load endMxendK block of B to RHSInPacket + * Masked loads are used for cases where endK is not a multiple of PacketSize + */ + template + static EIGEN_ALWAYS_INLINE void loadRHS(Scalar *B_arr, int64_t LDB, + PacketBlock &RHSInPacket, int64_t rem = 0) { + aux_loadRHS(B_arr, LDB, RHSInPacket, rem); + } + + /** + * Load endMxendK block of B to RHSInPacket + * Masked loads are used for cases where endK is not a multiple of PacketSize + */ + template + static EIGEN_ALWAYS_INLINE void storeRHS(Scalar *B_arr, int64_t LDB, + PacketBlock &RHSInPacket, int64_t rem = 0) { + aux_storeRHS(B_arr, LDB, RHSInPacket, rem); + } + + /** + * Only used if Triangular matrix has non-unit diagonal values + */ + template + static EIGEN_ALWAYS_INLINE void divRHSByDiag(PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + aux_divRHSByDiag(RHSInPacket, AInPacket); + } + + /** + * Update right-hand sides (stored in avx registers) + * Traversing along the column A_{i,currentM}, where currentM <= i <= endM, and broadcasting each value to AInPacket. + **/ + template + static EIGEN_ALWAYS_INLINE void updateRHS(Scalar *A_arr, int64_t LDA, + PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + aux_updateRHS( + A_arr, LDA, RHSInPacket, AInPacket); + } + + /** + * endM: dimension of A. 1 <= endM <= EIGEN_AVX_MAX_NUM_ROW + * numK: number of avx registers to use for each row of B (ex fp32: 48 rhs => 3 avx reg used). 1 <= endK <= 3. + * isFWDSolve: true => forward substitution, false => backwards substitution + * isUnitDiag: true => triangular matrix has unit diagonal. + */ + template + static EIGEN_ALWAYS_INLINE void triSolveMicroKernel(Scalar *A_arr, int64_t LDA, + PacketBlock &RHSInPacket, + PacketBlock &AInPacket) { + static_assert(numK >= 1 && numK <= 3, "numK out of range"); + aux_triSolveMicroKernel(A_arr, LDA, RHSInPacket, AInPacket); + } +}; + +/** + * Unrolls for gemm kernel + * + * isAdd: true => C += A*B, false => C -= A*B + */ +template +class gemm { + public: + using vec = typename std::conditional::value, vecFullFloat, vecFullDouble>::type; + static constexpr int64_t PacketSize = packet_traits::size; + + /*********************************** + * Auxillary Functions for: + * - setzero + * - updateC + * - storeC + * - startLoadB + * - triSolveMicroKernel + ************************************/ + + /** + * aux_setzero + * + * 2-D unroll + * for(startM = 0; startM < endM; startM++) + * for(startN = 0; startN < endN; startN++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_setzero( + PacketBlock &zmm) { + constexpr int64_t counterReverse = endM * endN - counter; + constexpr int64_t startM = counterReverse / (endN); + constexpr int64_t startN = counterReverse % endN; + + zmm.packet[startN * endM + startM] = pzero(zmm.packet[startN * endM + startM]); + aux_setzero(zmm); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_setzero( + PacketBlock &zmm) { + EIGEN_UNUSED_VARIABLE(zmm); + } + + /** + * aux_updateC + * + * 2-D unroll + * for(startM = 0; startM < endM; startM++) + * for(startN = 0; startN < endN; startN++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_updateC( + Scalar *C_arr, int64_t LDC, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + constexpr int64_t counterReverse = endM * endN - counter; + constexpr int64_t startM = counterReverse / (endN); + constexpr int64_t startN = counterReverse % endN; + + EIGEN_IF_CONSTEXPR(rem) + zmm.packet[startN * endM + startM] = + padd(ploadu(&C_arr[(startN)*LDC + startM * PacketSize], remMask(rem_)), + zmm.packet[startN * endM + startM], remMask(rem_)); + else zmm.packet[startN * endM + startM] = + padd(ploadu(&C_arr[(startN)*LDC + startM * PacketSize]), zmm.packet[startN * endM + startM]); + aux_updateC(C_arr, LDC, zmm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_updateC( + Scalar *C_arr, int64_t LDC, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(C_arr); + EIGEN_UNUSED_VARIABLE(LDC); + EIGEN_UNUSED_VARIABLE(zmm); + EIGEN_UNUSED_VARIABLE(rem_); + } + + /** + * aux_storeC + * + * 2-D unroll + * for(startM = 0; startM < endM; startM++) + * for(startN = 0; startN < endN; startN++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_storeC( + Scalar *C_arr, int64_t LDC, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + constexpr int64_t counterReverse = endM * endN - counter; + constexpr int64_t startM = counterReverse / (endN); + constexpr int64_t startN = counterReverse % endN; + + EIGEN_IF_CONSTEXPR(rem) + pstoreu(&C_arr[(startN)*LDC + startM * PacketSize], zmm.packet[startN * endM + startM], + remMask(rem_)); + else pstoreu(&C_arr[(startN)*LDC + startM * PacketSize], zmm.packet[startN * endM + startM]); + aux_storeC(C_arr, LDC, zmm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_storeC( + Scalar *C_arr, int64_t LDC, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(C_arr); + EIGEN_UNUSED_VARIABLE(LDC); + EIGEN_UNUSED_VARIABLE(zmm); + EIGEN_UNUSED_VARIABLE(rem_); + } + + /** + * aux_startLoadB + * + * 1-D unroll + * for(startL = 0; startL < endL; startL++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_startLoadB( + Scalar *B_t, int64_t LDB, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + constexpr int64_t counterReverse = endL - counter; + constexpr int64_t startL = counterReverse; + + EIGEN_IF_CONSTEXPR(rem) + zmm.packet[unrollM * unrollN + startL] = + ploadu(&B_t[(startL / unrollM) * LDB + (startL % unrollM) * PacketSize], remMask(rem_)); + else zmm.packet[unrollM * unrollN + startL] = + ploadu(&B_t[(startL / unrollM) * LDB + (startL % unrollM) * PacketSize]); + + aux_startLoadB(B_t, LDB, zmm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_startLoadB( + Scalar *B_t, int64_t LDB, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(B_t); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(zmm); + EIGEN_UNUSED_VARIABLE(rem_); + } + + /** + * aux_startBCastA + * + * 1-D unroll + * for(startB = 0; startB < endB; startB++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_startBCastA( + Scalar *A_t, int64_t LDA, PacketBlock &zmm) { + constexpr int64_t counterReverse = endB - counter; + constexpr int64_t startB = counterReverse; + + zmm.packet[unrollM * unrollN + numLoad + startB] = pload1(&A_t[idA(startB, 0, LDA)]); + + aux_startBCastA(A_t, LDA, zmm); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_startBCastA( + Scalar *A_t, int64_t LDA, PacketBlock &zmm) { + EIGEN_UNUSED_VARIABLE(A_t); + EIGEN_UNUSED_VARIABLE(LDA); + EIGEN_UNUSED_VARIABLE(zmm); + } + + /** + * aux_loadB + * currK: current K + * + * 1-D unroll + * for(startM = 0; startM < endM; startM++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_loadB( + Scalar *B_t, int64_t LDB, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + if ((numLoad / endM + currK < unrollK)) { + constexpr int64_t counterReverse = endM - counter; + constexpr int64_t startM = counterReverse; + + EIGEN_IF_CONSTEXPR(rem) { + zmm.packet[endM * unrollN + (startM + currK * endM) % numLoad] = + ploadu(&B_t[(numLoad / endM + currK) * LDB + startM * PacketSize], remMask(rem_)); + } + else { + zmm.packet[endM * unrollN + (startM + currK * endM) % numLoad] = + ploadu(&B_t[(numLoad / endM + currK) * LDB + startM * PacketSize]); + } + + aux_loadB(B_t, LDB, zmm, rem_); + } + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_loadB( + Scalar *B_t, int64_t LDB, PacketBlock &zmm, int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(B_t); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(zmm); + EIGEN_UNUSED_VARIABLE(rem_); + } + + /** + * aux_microKernel + * + * 3-D unroll + * for(startM = 0; startM < endM; startM++) + * for(startN = 0; startN < endN; startN++) + * for(startK = 0; startK < endK; startK++) + **/ + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter > 0)> aux_microKernel( + Scalar *B_t, Scalar *A_t, int64_t LDB, int64_t LDA, PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + constexpr int64_t counterReverse = endM * endN * endK - counter; + constexpr int startK = counterReverse / (endM * endN); + constexpr int startN = (counterReverse / (endM)) % endN; + constexpr int startM = counterReverse % endM; + + EIGEN_IF_CONSTEXPR(startK == 0 && startM == 0 && startN == 0) { + gemm::template startLoadB(B_t, LDB, zmm, rem_); + gemm::template startBCastA(A_t, LDA, zmm); + } + + { + // Interleave FMA and Bcast + EIGEN_IF_CONSTEXPR(isAdd) { + zmm.packet[startN * endM + startM] = + pmadd(zmm.packet[endM * endN + numLoad + (startN + startK * endN) % numBCast], + zmm.packet[endM * endN + (startM + startK * endM) % numLoad], zmm.packet[startN * endM + startM]); + } + else { + zmm.packet[startN * endM + startM] = + pnmadd(zmm.packet[endM * endN + numLoad + (startN + startK * endN) % numBCast], + zmm.packet[endM * endN + (startM + startK * endM) % numLoad], zmm.packet[startN * endM + startM]); + } + // Bcast + EIGEN_IF_CONSTEXPR(startM == endM - 1 && (numBCast + startN + startK * endN < endK * endN)) { + zmm.packet[endM * endN + numLoad + (startN + startK * endN) % numBCast] = pload1(&A_t[idA( + (numBCast + startN + startK * endN) % endN, (numBCast + startN + startK * endN) / endN, LDA)]); + } + } + + // We have updated all accumlators, time to load next set of B's + EIGEN_IF_CONSTEXPR((startN == endN - 1) && (startM == endM - 1)) { + gemm::template loadB(B_t, LDB, zmm, rem_); + } + aux_microKernel(B_t, A_t, LDB, LDA, zmm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE std::enable_if_t<(counter <= 0)> aux_microKernel( + Scalar *B_t, Scalar *A_t, int64_t LDB, int64_t LDA, PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(B_t); + EIGEN_UNUSED_VARIABLE(A_t); + EIGEN_UNUSED_VARIABLE(LDB); + EIGEN_UNUSED_VARIABLE(LDA); + EIGEN_UNUSED_VARIABLE(zmm); + EIGEN_UNUSED_VARIABLE(rem_); + } + + /******************************************************** + * Wrappers for aux_XXXX to hide counter parameter + ********************************************************/ + + template + static EIGEN_ALWAYS_INLINE void setzero(PacketBlock &zmm) { + aux_setzero(zmm); + } + + /** + * Ideally the compiler folds these into vaddp{s,d} with an embedded memory load. + */ + template + static EIGEN_ALWAYS_INLINE void updateC(Scalar *C_arr, int64_t LDC, + PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + aux_updateC(C_arr, LDC, zmm, rem_); + } + + template + static EIGEN_ALWAYS_INLINE void storeC(Scalar *C_arr, int64_t LDC, + PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + aux_storeC(C_arr, LDC, zmm, rem_); + } + + /** + * Use numLoad registers for loading B at start of microKernel + */ + template + static EIGEN_ALWAYS_INLINE void startLoadB(Scalar *B_t, int64_t LDB, + PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + aux_startLoadB(B_t, LDB, zmm, rem_); + } + + /** + * Use numBCast registers for broadcasting A at start of microKernel + */ + template + static EIGEN_ALWAYS_INLINE void startBCastA(Scalar *A_t, int64_t LDA, + PacketBlock &zmm) { + aux_startBCastA(A_t, LDA, zmm); + } + + /** + * Loads next set of B into vector registers between each K unroll. + */ + template + static EIGEN_ALWAYS_INLINE void loadB(Scalar *B_t, int64_t LDB, + PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + aux_loadB(B_t, LDB, zmm, rem_); + } + + /** + * Generates a microkernel for gemm (row-major) with unrolls {1,2,4,8}x{U1,U2,U3} to compute C -= A*B. + * A matrix can be row/col-major. B matrix is assumed row-major. + * + * isARowMajor: is A row major + * endM: Number registers per row + * endN: Number of rows + * endK: Loop unroll for K. + * numLoad: Number of registers for loading B. + * numBCast: Number of registers for broadcasting A. + * + * Ex: microkernel: 8x48 unroll (24 accumulators), k unrolled 4 times, + * 6 register for loading B, 2 for broadcasting A. + * + * Note: Ideally the microkernel should not have any register spilling. + * The avx instruction counts should be: + * - endK*endN vbroadcasts{s,d} + * - endK*endM vmovup{s,d} + * - endK*endN*endM FMAs + * + * From testing, there are no register spills with clang. There are register spills with GNU, which + * causes a performance hit. + */ + template + static EIGEN_ALWAYS_INLINE void microKernel(Scalar *B_t, Scalar *A_t, int64_t LDB, int64_t LDA, + PacketBlock &zmm, + int64_t rem_ = 0) { + EIGEN_UNUSED_VARIABLE(rem_); + aux_microKernel(B_t, A_t, LDB, LDA, zmm, + rem_); + } +}; +} // namespace unrolls + +#endif // EIGEN_CORE_ARCH_AVX512_TRSM_UNROLLS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h new file mode 100644 index 0000000..02c5628 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h @@ -0,0 +1,232 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2019 Rasmus Munk Larsen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_AVX512_H +#define EIGEN_TYPE_CASTING_AVX512_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> EIGEN_STRONG_INLINE Packet16b pcast(const Packet16f& a) { + __mmask16 mask = _mm512_cmpneq_ps_mask(a, pzero(a)); + return _mm512_maskz_cvtepi32_epi8(mask, _mm512_set1_epi32(1)); +} + +template<> EIGEN_STRONG_INLINE Packet16f pcast(const Packet16b& a) { + return _mm512_cvtepi32_ps(_mm512_and_si512(_mm512_cvtepi8_epi32(a), _mm512_set1_epi32(1))); +} + +template<> EIGEN_STRONG_INLINE Packet16i pcast(const Packet16f& a) { + return _mm512_cvttps_epi32(a); +} + +template<> EIGEN_STRONG_INLINE Packet8d pcast(const Packet16f& a) { + return _mm512_cvtps_pd(_mm512_castps512_ps256(a)); +} + +template<> EIGEN_STRONG_INLINE Packet8d pcast(const Packet8f& a) { + return _mm512_cvtps_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet16f pcast(const Packet16i& a) { + return _mm512_cvtepi32_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet8d pcast(const Packet16i& a) { + return _mm512_cvtepi32_pd(_mm512_castsi512_si256(a)); +} + +template<> EIGEN_STRONG_INLINE Packet8d pcast(const Packet8i& a) { + return _mm512_cvtepi32_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet16f pcast(const Packet8d& a, const Packet8d& b) { + return cat256(_mm512_cvtpd_ps(a), _mm512_cvtpd_ps(b)); +} + +template<> EIGEN_STRONG_INLINE Packet16i pcast(const Packet8d& a, const Packet8d& b) { + return cat256i(_mm512_cvttpd_epi32(a), _mm512_cvttpd_epi32(b)); +} + +template<> EIGEN_STRONG_INLINE Packet8i pcast(const Packet8d& a) { + return _mm512_cvtpd_epi32(a); +} +template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet8d& a) { + return _mm512_cvtpd_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet16i preinterpret(const Packet16f& a) { + return _mm512_castps_si512(a); +} + +template<> EIGEN_STRONG_INLINE Packet16f preinterpret(const Packet16i& a) { + return _mm512_castsi512_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet8d preinterpret(const Packet16f& a) { + return _mm512_castps_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet16f preinterpret(const Packet8d& a) { + return _mm512_castpd_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet8f preinterpret(const Packet16f& a) { + return _mm512_castps512_ps256(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet16f& a) { + return _mm512_castps512_ps128(a); +} + +template<> EIGEN_STRONG_INLINE Packet4d preinterpret(const Packet8d& a) { + return _mm512_castpd512_pd256(a); +} + +template<> EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet8d& a) { + return _mm512_castpd512_pd128(a); +} + +template<> EIGEN_STRONG_INLINE Packet16f preinterpret(const Packet8f& a) { + return _mm512_castps256_ps512(a); +} + +template<> EIGEN_STRONG_INLINE Packet16f preinterpret(const Packet4f& a) { + return _mm512_castps128_ps512(a); +} + +template<> EIGEN_STRONG_INLINE Packet8d preinterpret(const Packet4d& a) { + return _mm512_castpd256_pd512(a); +} + +template<> EIGEN_STRONG_INLINE Packet8d preinterpret(const Packet2d& a) { + return _mm512_castpd128_pd512(a); +} + +template<> EIGEN_STRONG_INLINE Packet8i preinterpret(const Packet16i& a) { + return _mm512_castsi512_si256(a); +} +template<> EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet16i& a) { + return _mm512_castsi512_si128(a); +} + +template<> EIGEN_STRONG_INLINE Packet8h preinterpret(const Packet16h& a) { + return _mm256_castsi256_si128(a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf preinterpret(const Packet16bf& a) { + return _mm256_castsi256_si128(a); +} + +#ifndef EIGEN_VECTORIZE_AVX512FP16 + +template<> EIGEN_STRONG_INLINE Packet16f pcast(const Packet16h& a) { + return half2float(a); +} + +template<> EIGEN_STRONG_INLINE Packet16h pcast(const Packet16f& a) { + return float2half(a); +} + +#endif + +template<> EIGEN_STRONG_INLINE Packet16f pcast(const Packet16bf& a) { + return Bf16ToF32(a); +} + +template<> EIGEN_STRONG_INLINE Packet16bf pcast(const Packet16f& a) { + return F32ToBf16(a); +} + +#ifdef EIGEN_VECTORIZE_AVX512FP16 + +template<> EIGEN_STRONG_INLINE Packet16h preinterpret(const Packet32h& a) { + return _mm256_castpd_si256(_mm512_extractf64x4_pd(_mm512_castph_pd(a), 0)); +} +template<> EIGEN_STRONG_INLINE Packet8h preinterpret(const Packet32h& a) { + return _mm256_castsi256_si128(preinterpret(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet16f pcast(const Packet32h& a) { + // Discard second-half of input. + Packet16h low = _mm256_castpd_si256(_mm512_extractf64x4_pd(_mm512_castph_pd(a), 0)); + return _mm512_cvtxph_ps(_mm256_castsi256_ph(low)); +} + + +template <> +EIGEN_STRONG_INLINE Packet32h pcast(const Packet16f& a, const Packet16f& b) { + __m512d result = _mm512_undefined_pd(); + result = _mm512_insertf64x4(result, _mm256_castsi256_pd(_mm512_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC)), 0); + result = _mm512_insertf64x4(result, _mm256_castsi256_pd(_mm512_cvtps_ph(b, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC)), 1); + return _mm512_castpd_ph(result); +} + +template <> +EIGEN_STRONG_INLINE Packet8f pcast(const Packet16h& a) { + // Discard second-half of input. + Packet8h low = _mm_castps_si128(_mm256_extractf32x4_ps(_mm256_castsi256_ps(a), 0)); + return _mm256_cvtxph_ps(_mm_castsi128_ph(low)); +} + + +template <> +EIGEN_STRONG_INLINE Packet16h pcast(const Packet8f& a, const Packet8f& b) { + __m256d result = _mm256_undefined_pd(); + result = _mm256_insertf64x2(result, _mm_castsi128_pd(_mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC)), 0); + result = _mm256_insertf64x2(result, _mm_castsi128_pd(_mm256_cvtps_ph(b, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC)), 1); + return _mm256_castpd_si256(result); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet8h& a) { + Packet8f full = _mm256_cvtxph_ps(_mm_castsi128_ph(a)); + // Discard second-half of input. + return _mm256_extractf32x4_ps(full, 0); +} + + +template <> +EIGEN_STRONG_INLINE Packet8h pcast(const Packet4f& a, const Packet4f& b) { + __m256 result = _mm256_undefined_ps(); + result = _mm256_insertf128_ps(result, a, 0); + result = _mm256_insertf128_ps(result, b, 1); + return _mm256_cvtps_ph(result, _MM_FROUND_TO_NEAREST_INT); +} + + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_AVX512_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/Complex.h new file mode 100644 index 0000000..e24581f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/Complex.h @@ -0,0 +1,482 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Gael Guennebaud +// Copyright (C) 2010-2016 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX32_ALTIVEC_H +#define EIGEN_COMPLEX32_ALTIVEC_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; +#ifdef EIGEN_VECTORIZE_VSX +#if defined(_BIG_ENDIAN) +static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; +static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; +#else +static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; +static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; +#endif +#endif + +//---------- float ---------- +struct Packet2cf +{ + EIGEN_STRONG_INLINE explicit Packet2cf() {} + EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} + + EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) + { + Packet4f v1, v2; + + // Permute and multiply the real parts of a and b + v1 = vec_perm(a.v, a.v, p16uc_PSET32_WODD); + // Get the imaginary parts of a + v2 = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN); + // multiply a_re * b + v1 = vec_madd(v1, b.v, p4f_ZERO); + // multiply a_im * b and get the conjugate result + v2 = vec_madd(v2, b.v, p4f_ZERO); + v2 = reinterpret_cast(pxor(v2, reinterpret_cast(p4ui_CONJ_XOR))); + // permute back to a proper order + v2 = vec_perm(v2, v2, p16uc_COMPLEX32_REV); + + return Packet2cf(padd(v1, v2)); + } + + EIGEN_STRONG_INLINE Packet2cf& operator*=(const Packet2cf& b) { + v = pmul(Packet2cf(*this), b).v; + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator*(const Packet2cf& b) const { + return Packet2cf(*this) *= b; + } + + EIGEN_STRONG_INLINE Packet2cf& operator+=(const Packet2cf& b) { + v = padd(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator+(const Packet2cf& b) const { + return Packet2cf(*this) += b; + } + EIGEN_STRONG_INLINE Packet2cf& operator-=(const Packet2cf& b) { + v = psub(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator-(const Packet2cf& b) const { + return Packet2cf(*this) -= b; + } + EIGEN_STRONG_INLINE Packet2cf operator-(void) const { + return Packet2cf(-v); + } + + Packet4f v; +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet2cf type; + typedef Packet2cf half; + typedef Packet4f as_real; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSqrt = 1, +#ifdef EIGEN_VECTORIZE_VSX + HasBlend = 1, +#endif + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits { typedef std::complex type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet2cf half; typedef Packet4f as_real; }; + +template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) +{ + Packet2cf res; +#ifdef EIGEN_VECTORIZE_VSX + // Load a single std::complex from memory and duplicate + // + // Using pload would read past the end of the reference in this case + // Using vec_xl_len + vec_splat, generates poor assembly + __asm__ ("lxvdsx %x0,%y1" : "=wa" (res.v) : "Z" (from)); +#else + if((std::ptrdiff_t(&from) % 16) == 0) + res.v = pload((const float *)&from); + else + res.v = ploadu((const float *)&from); + res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI); +#endif + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pload(const std::complex* from) { return Packet2cf(pload((const float *) from)); } +template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { return Packet2cf(ploadu((const float*) from)); } +template<> EIGEN_ALWAYS_INLINE Packet2cf pload_partial(const std::complex* from, const Index n, const Index offset) +{ + return Packet2cf(pload_partial((const float *) from, n * 2, offset * 2)); +} +template<> EIGEN_ALWAYS_INLINE Packet2cf ploadu_partial(const std::complex* from, const Index n, const Index offset) +{ + return Packet2cf(ploadu_partial((const float*) from, n * 2, offset * 2)); +} +template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { pstore((float*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { pstoreu((float*)to, from.v); } +template<> EIGEN_ALWAYS_INLINE void pstore_partial >(std::complex * to, const Packet2cf& from, const Index n, const Index offset) { pstore_partial((float*)to, from.v, n * 2, offset * 2); } +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial >(std::complex * to, const Packet2cf& from, const Index n, const Index offset) { pstoreu_partial((float*)to, from.v, n * 2, offset * 2); } + +EIGEN_STRONG_INLINE Packet2cf pload2(const std::complex& from0, const std::complex& from1) +{ + Packet4f res0, res1; +#ifdef EIGEN_VECTORIZE_VSX + // Load two std::complex from memory and combine + __asm__ ("lxsdx %x0,%y1" : "=wa" (res0) : "Z" (from0)); + __asm__ ("lxsdx %x0,%y1" : "=wa" (res1) : "Z" (from1)); +#ifdef _BIG_ENDIAN + __asm__ ("xxpermdi %x0, %x1, %x2, 0" : "=wa" (res0) : "wa" (res0), "wa" (res1)); +#else + __asm__ ("xxpermdi %x0, %x2, %x1, 0" : "=wa" (res0) : "wa" (res0), "wa" (res1)); +#endif +#else + *reinterpret_cast *>(&res0) = from0; + *reinterpret_cast *>(&res1) = from1; + res0 = vec_perm(res0, res1, p16uc_TRANSPOSE64_HI); +#endif + return Packet2cf(res0); +} + +template<> EIGEN_ALWAYS_INLINE Packet2cf pload_ignore(const std::complex* from) +{ + Packet2cf res; + res.v = pload_ignore(reinterpret_cast(from)); + return res; +} + +template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pgather_complex_size2(const Scalar* from, Index stride, const Index n = 2) +{ + eigen_internal_assert(n <= unpacket_traits::size && "number of elements will gather past end of packet"); + EIGEN_ALIGN16 Scalar af[2]; + for (Index i = 0; i < n; i++) { + af[i] = from[i*stride]; + } + return pload_ignore(af); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) +{ + return pgather_complex_size2, Packet2cf>(from, stride); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet2cf pgather_partial, Packet2cf>(const std::complex* from, Index stride, const Index n) +{ + return pgather_complex_size2, Packet2cf>(from, stride, n); +} +template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_complex_size2(Scalar* to, const Packet& from, Index stride, const Index n = 2) +{ + eigen_internal_assert(n <= unpacket_traits::size && "number of elements will scatter past end of packet"); + EIGEN_ALIGN16 Scalar af[2]; + pstore((Scalar *) af, from); + for (Index i = 0; i < n; i++) { + to[i*stride] = af[i]; + } +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) +{ + pscatter_complex_size2, Packet2cf>(to, from, stride); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride, const Index n) +{ + pscatter_complex_size2, Packet2cf>(to, from, stride, n); +} + +template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v + b.v); } +template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v - b.v); } +template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf(pxor(a.v, reinterpret_cast(p4ui_CONJ_XOR))); } + +template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot(a.v, b.v)); } + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_PPC_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) +{ + EIGEN_ALIGN16 std::complex res[2]; + pstore((float *)&res, a.v); + + return res[0]; +} + +template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) +{ + Packet4f rev_a; + rev_a = vec_sld(a.v, a.v, 8); + return Packet2cf(rev_a); +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) +{ + Packet4f b; + b = vec_sld(a.v, a.v, 8); + b = padd(a.v, b); + return pfirst(Packet2cf(b)); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) +{ + Packet4f b; + Packet2cf prod; + b = vec_sld(a.v, a.v, 8); + prod = pmul(a, Packet2cf(b)); + + return pfirst(prod); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) + +template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) +{ + return pdiv_complex(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& x) +{ + return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV)); +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ +#ifdef EIGEN_VECTORIZE_VSX + Packet4f tmp = reinterpret_cast(vec_mergeh(reinterpret_cast(kernel.packet[0].v), reinterpret_cast(kernel.packet[1].v))); + kernel.packet[1].v = reinterpret_cast(vec_mergel(reinterpret_cast(kernel.packet[0].v), reinterpret_cast(kernel.packet[1].v))); +#else + Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); + kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); +#endif + kernel.packet[0].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) { + Packet4f eq = reinterpret_cast(vec_cmpeq(a.v,b.v)); + return Packet2cf(vec_and(eq, vec_perm(eq, eq, p16uc_COMPLEX32_REV))); +} + +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { + Packet2cf result; + result.v = reinterpret_cast(pblend(ifPacket, reinterpret_cast(thenPacket.v), reinterpret_cast(elsePacket.v))); + return result; +} +#endif + +template<> EIGEN_STRONG_INLINE Packet2cf psqrt(const Packet2cf& a) +{ + return psqrt_complex(a); +} + +//---------- double ---------- +#ifdef EIGEN_VECTORIZE_VSX +struct Packet1cd +{ + EIGEN_STRONG_INLINE Packet1cd() {} + EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} + + EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) + { + Packet2d a_re, a_im, v1, v2; + + // Permute and multiply the real parts of a and b + a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI); + // Get the imaginary parts of a + a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO); + // multiply a_re * b + v1 = vec_madd(a_re, b.v, p2d_ZERO); + // multiply a_im * b and get the conjugate result + v2 = vec_madd(a_im, b.v, p2d_ZERO); + v2 = reinterpret_cast(vec_sld(reinterpret_cast(v2), reinterpret_cast(v2), 8)); + v2 = pxor(v2, reinterpret_cast(p2ul_CONJ_XOR1)); + + return Packet1cd(padd(v1, v2)); + } + + EIGEN_STRONG_INLINE Packet1cd& operator*=(const Packet1cd& b) { + v = pmul(Packet1cd(*this), b).v; + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator*(const Packet1cd& b) const { + return Packet1cd(*this) *= b; + } + + EIGEN_STRONG_INLINE Packet1cd& operator+=(const Packet1cd& b) { + v = padd(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator+(const Packet1cd& b) const { + return Packet1cd(*this) += b; + } + EIGEN_STRONG_INLINE Packet1cd& operator-=(const Packet1cd& b) { + v = psub(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator-(const Packet1cd& b) const { + return Packet1cd(*this) -= b; + } + EIGEN_STRONG_INLINE Packet1cd operator-(void) const { + return Packet1cd(-v); + } + + Packet2d v; +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet1cd type; + typedef Packet1cd half; + typedef Packet2d as_real; + enum { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 1, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSqrt = 1, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits { typedef std::complex type; enum {size=1, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet1cd half; typedef Packet2d as_real; }; + +template<> EIGEN_STRONG_INLINE Packet1cd pload (const std::complex* from) { return Packet1cd(pload((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) { return Packet1cd(ploadu((const double*)from)); } +template<> EIGEN_ALWAYS_INLINE Packet1cd pload_partial(const std::complex* from, const Index n, const Index offset) +{ + return Packet1cd(pload_partial((const double*)from, n * 2, offset * 2)); +} +template<> EIGEN_ALWAYS_INLINE Packet1cd ploadu_partial(const std::complex* from, const Index n, const Index offset) +{ + return Packet1cd(ploadu_partial((const double*)from, n * 2, offset * 2)); +} +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { pstore((double*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { pstoreu((double*)to, from.v); } +template<> EIGEN_ALWAYS_INLINE void pstore_partial >(std::complex * to, const Packet1cd& from, const Index n, const Index offset) { pstore_partial((double*)to, from.v, n * 2, offset * 2); } +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial >(std::complex * to, const Packet1cd& from, const Index n, const Index offset) { pstoreu_partial((double*)to, from.v, n * 2, offset * 2); } + +template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) +{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet1cd pgather, Packet1cd>(const std::complex* from, Index) +{ + return pload(from); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet1cd pgather_partial, Packet1cd>(const std::complex* from, Index, const Index) +{ + return pload(from); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter, Packet1cd>(std::complex* to, const Packet1cd& from, Index) +{ + pstore >(to, from); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial, Packet1cd>(std::complex* to, const Packet1cd& from, Index, const Index) +{ + pstore >(to, from); +} + +template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); } +template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); } +template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } +template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(pxor(a.v, reinterpret_cast(p2ul_CONJ_XOR2))); } + +template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pand(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(por(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pxor(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pandnot(a.v, b.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_PPC_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) +{ + EIGEN_ALIGN16 std::complex res[1]; + pstore >(res, a); + + return res[0]; +} + +template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) { return pfirst(a); } + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) { return pfirst(a); } + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) + +template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) +{ + return pdiv_complex(a, b); +} + +EIGEN_STRONG_INLINE Packet1cd pcplxflip/**/(const Packet1cd& x) +{ + return Packet1cd(preverse(Packet2d(x.v))); +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + Packet2d tmp = vec_mergeh(kernel.packet[0].v, kernel.packet[1].v); + kernel.packet[1].v = vec_mergel(kernel.packet[0].v, kernel.packet[1].v); + kernel.packet[0].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) { + // Compare real and imaginary parts of a and b to get the mask vector: + // [re(a)==re(b), im(a)==im(b)] + Packet2d eq = reinterpret_cast(vec_cmpeq(a.v,b.v)); + // Swap real/imag elements in the mask in to get: + // [im(a)==im(b), re(a)==re(b)] + Packet2d eq_swapped = reinterpret_cast(vec_sld(reinterpret_cast(eq), reinterpret_cast(eq), 8)); + // Return re(a)==re(b) & im(a)==im(b) by computing bitwise AND of eq and eq_swapped + return Packet1cd(vec_and(eq, eq_swapped)); +} + +template<> EIGEN_STRONG_INLINE Packet1cd psqrt(const Packet1cd& a) +{ + return psqrt_complex(a); +} + +#endif // __VSX__ +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX32_ALTIVEC_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h new file mode 100644 index 0000000..609e443 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h @@ -0,0 +1,83 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007 Julien Pommier +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2016 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATH_FUNCTIONS_ALTIVEC_H +#define EIGEN_MATH_FUNCTIONS_ALTIVEC_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet4f) +#ifdef EIGEN_VECTORIZE_VSX +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_DOUBLE(Packet2d) +#endif + +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f psqrt(const Packet4f& x) +{ + return vec_sqrt(x); +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet2d psqrt(const Packet2d& x) +{ + return vec_sqrt(x); +} + +#if !EIGEN_COMP_CLANG +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f prsqrt(const Packet4f& x) +{ + return pset1(1.0f) / psqrt(x); +// vec_rsqrt returns different results from the generic version +// return vec_rsqrt(x); +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet2d prsqrt(const Packet2d& x) +{ + return pset1(1.0) / psqrt(x); +// vec_rsqrt returns different results from the generic version +// return vec_rsqrt(x); +} + +#endif + +template<> EIGEN_STRONG_INLINE Packet8bf psqrt (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(psqrt, a); +} + +#if !EIGEN_COMP_CLANG +template<> EIGEN_STRONG_INLINE Packet8bf prsqrt (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(prsqrt, a); +} +#endif +#else +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f psqrt(const Packet4f& x) +{ + Packet4f a; + for (Index i = 0; i < packet_traits::size; i++) { + a[i] = numext::sqrt(x[i]); + } + return a; +} +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_ALTIVEC_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h new file mode 100644 index 0000000..1c5c048 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h @@ -0,0 +1,3812 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2020 Everton Constantino (everton.constantino@ibm.com) +// Copyright (C) 2021 Chip Kerchner (chip.kerchner@ibm.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_PRODUCT_ALTIVEC_H +#define EIGEN_MATRIX_PRODUCT_ALTIVEC_H + +#ifndef EIGEN_ALTIVEC_USE_CUSTOM_PACK +#define EIGEN_ALTIVEC_USE_CUSTOM_PACK 1 +#endif + +#if !defined(EIGEN_ALTIVEC_DISABLE_MMA) +#define EIGEN_ALTIVEC_DISABLE_MMA 0 +#endif + +// Check for MMA builtin support. +#if !EIGEN_ALTIVEC_DISABLE_MMA && defined(__has_builtin) +#if __has_builtin(__builtin_mma_assemble_acc) + #define EIGEN_ALTIVEC_MMA_SUPPORT +#endif +#endif + +// Check if and how we should actually use MMA if supported. +#if defined(EIGEN_ALTIVEC_MMA_SUPPORT) + +#if !defined(EIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH) +#define EIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH 0 +#endif + +// Check if we want to enable dynamic dispatch. Not supported by LLVM. +#if EIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH && !EIGEN_COMP_LLVM +#define EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH 1 +// Otherwise, use MMA by default if available. +#elif defined(__MMA__) +#define EIGEN_ALTIVEC_MMA_ONLY 1 +#endif + +#endif // EIGEN_ALTIVEC_MMA_SUPPORT + +#include "MatrixProductCommon.h" + +#if defined(EIGEN_ALTIVEC_MMA_ONLY) || defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH) + #include "MatrixProductMMA.h" +#endif + +/************************************************************************************************** + * TODO * + * - Check StorageOrder on dhs_pack (the innermost second loop seems unvectorized when it could). * + * - Check the possibility of transposing as GETREAL and GETIMAG when needed. * + **************************************************************************************************/ +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/************************** + * Constants and typedefs * + **************************/ +template +struct quad_traits +{ + typedef typename packet_traits::type vectortype; + typedef PacketBlock type; + typedef vectortype rhstype; + enum + { + vectorsize = packet_traits::size, + size = 4, + rows = 4 + }; +}; + +template<> +struct quad_traits +{ + typedef Packet2d vectortype; + typedef PacketBlock type; + typedef PacketBlock rhstype; + enum + { + vectorsize = packet_traits::size, + size = 2, + rows = 4 + }; +}; + +template<> +struct quad_traits +{ + typedef Packet8bf vectortype; + typedef PacketBlock type; + typedef vectortype rhstype; + enum + { + vectorsize = packet_traits::size, + size = 8, + rows = 4 + }; +}; + +// MatrixProduct decomposes real/imaginary vectors into a real vector and an imaginary vector, this turned out +// to be faster than Eigen's usual approach of having real/imaginary pairs on a single vector. This constants then +// are responsible to extract from convert between Eigen's and MatrixProduct approach. + +const static Packet16uc p16uc_GETREAL32 = { 0, 1, 2, 3, + 8, 9, 10, 11, + 16, 17, 18, 19, + 24, 25, 26, 27}; + +const static Packet16uc p16uc_GETIMAG32 = { 4, 5, 6, 7, + 12, 13, 14, 15, + 20, 21, 22, 23, + 28, 29, 30, 31}; + +/********************************************* + * Single precision real and complex packing * + * *******************************************/ + +/** + * Symm packing is related to packing of symmetric adjoint blocks, as expected the packing leaves + * the diagonal real, whatever is below it is copied from the respective upper diagonal element and + * conjugated. There's no PanelMode available for symm packing. + * + * Packing in general is supposed to leave the lhs block and the rhs block easy to be read by gemm using + * its respective rank-update instructions. The float32/64 versions are different because at this moment + * the size of the accumulator is fixed at 512-bits so you can't have a 4x4 accumulator of 64-bit elements. + * + * As mentioned earlier MatrixProduct breaks complex numbers into a real vector and a complex vector so packing has + * to take that into account, at the moment, we run pack the real part and then the imaginary part, this is the main + * reason why packing for complex is broken down into several different parts, also the reason why we endup having a + * float32/64 and complex float32/64 version. + **/ +template +EIGEN_ALWAYS_INLINE std::complex getAdjointVal(Index i, Index j, const_blas_data_mapper, Index, StorageOrder>& dt) +{ + std::complex v; + if(i < j) + { + v.real( dt(j,i).real()); + v.imag(-dt(j,i).imag()); + } else if(i > j) + { + v.real( dt(i,j).real()); + v.imag( dt(i,j).imag()); + } else { + v.real( dt(i,j).real()); + v.imag((Scalar)0.0); + } + return v; +} + +template +EIGEN_STRONG_INLINE void symm_pack_complex_rhs_helper(std::complex* blockB, const std::complex* _rhs, Index rhsStride, Index rows, Index cols, Index k2) +{ + const Index depth = k2 + rows; + const_blas_data_mapper, Index, StorageOrder> rhs(_rhs, rhsStride); + const Index vectorSize = N*quad_traits::vectorsize; + const Index vectorDelta = vectorSize * rows; + Scalar* blockBf = reinterpret_cast(blockB); + + Index rir = 0, rii, j = 0; + for(; j + vectorSize <= cols; j+=vectorSize) + { + rii = rir + vectorDelta; + + for(Index i = k2; i < depth; i++) + { + for(Index k = 0; k < vectorSize; k++) + { + std::complex v = getAdjointVal(i, j + k, rhs); + + blockBf[rir + k] = v.real(); + blockBf[rii + k] = v.imag(); + } + rir += vectorSize; + rii += vectorSize; + } + + rir += vectorDelta; + } + + for(; j < cols; j++) + { + rii = rir + rows; + + for(Index i = k2; i < depth; i++) + { + std::complex v = getAdjointVal(i, j, rhs); + + blockBf[rir] = v.real(); + blockBf[rii] = v.imag(); + + rir += 1; + rii += 1; + } + + rir += rows; + } +} + +template +EIGEN_STRONG_INLINE void symm_pack_complex_lhs_helper(std::complex* blockA, const std::complex* _lhs, Index lhsStride, Index cols, Index rows) +{ + const Index depth = cols; + const_blas_data_mapper, Index, StorageOrder> lhs(_lhs, lhsStride); + const Index vectorSize = quad_traits::vectorsize; + const Index vectorDelta = vectorSize * depth; + Scalar* blockAf = reinterpret_cast(blockA); + + Index rir = 0, rii, j = 0; + for(; j + vectorSize <= rows; j+=vectorSize) + { + rii = rir + vectorDelta; + + for(Index i = 0; i < depth; i++) + { + for(Index k = 0; k < vectorSize; k++) + { + std::complex v = getAdjointVal(j+k, i, lhs); + + blockAf[rir + k] = v.real(); + blockAf[rii + k] = v.imag(); + } + rir += vectorSize; + rii += vectorSize; + } + + rir += vectorDelta; + } + + if (j < rows) + { + rii = rir + ((rows - j) * depth); + + for(Index i = 0; i < depth; i++) + { + Index k = j; + for(; k < rows; k++) + { + std::complex v = getAdjointVal(k, i, lhs); + + blockAf[rir] = v.real(); + blockAf[rii] = v.imag(); + + rir += 1; + rii += 1; + } + } + } +} + +template +EIGEN_STRONG_INLINE void symm_pack_rhs_helper(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2) +{ + const Index depth = k2 + rows; + const_blas_data_mapper rhs(_rhs, rhsStride); + const Index vectorSize = quad_traits::vectorsize; + + Index ri = 0, j = 0; + for(; j + N*vectorSize <= cols; j+=N*vectorSize) + { + Index i = k2; + for(; i < depth; i++) + { + for(Index k = 0; k < N*vectorSize; k++) + { + if(i <= j+k) + blockB[ri + k] = rhs(j+k, i); + else + blockB[ri + k] = rhs(i, j+k); + } + ri += N*vectorSize; + } + } + + for(; j < cols; j++) + { + for(Index i = k2; i < depth; i++) + { + if(j <= i) + blockB[ri] = rhs(i, j); + else + blockB[ri] = rhs(j, i); + ri += 1; + } + } +} + +template +EIGEN_STRONG_INLINE void symm_pack_lhs_helper(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows) +{ + const Index depth = cols; + const_blas_data_mapper lhs(_lhs, lhsStride); + const Index vectorSize = quad_traits::vectorsize; + + Index ri = 0, j = 0; + for(; j + vectorSize <= rows; j+=vectorSize) + { + Index i = 0; + + for(; i < depth; i++) + { + for(Index k = 0; k < vectorSize; k++) + { + if(i <= j+k) + blockA[ri + k] = lhs(j+k, i); + else + blockA[ri + k] = lhs(i, j+k); + } + ri += vectorSize; + } + } + + if (j < rows) + { + for(Index i = 0; i < depth; i++) + { + Index k = j; + for(; k < rows; k++) + { + if(i <= k) + blockA[ri] = lhs(k, i); + else + blockA[ri] = lhs(i, k); + ri += 1; + } + } + } +} + +template +struct symm_pack_rhs, Index, nr, StorageOrder> +{ + void operator()(std::complex* blockB, const std::complex* _rhs, Index rhsStride, Index rows, Index cols, Index k2) + { + symm_pack_complex_rhs_helper(blockB, _rhs, rhsStride, rows, cols, k2); + } +}; + +template +struct symm_pack_lhs, Index, Pack1, Pack2_dummy, StorageOrder> +{ + void operator()(std::complex* blockA, const std::complex* _lhs, Index lhsStride, Index cols, Index rows) + { + symm_pack_complex_lhs_helper(blockA, _lhs, lhsStride, cols, rows); + } +}; + +// *********** symm_pack std::complex *********** + +template +struct symm_pack_rhs, Index, nr, StorageOrder> +{ + void operator()(std::complex* blockB, const std::complex* _rhs, Index rhsStride, Index rows, Index cols, Index k2) + { + symm_pack_complex_rhs_helper(blockB, _rhs, rhsStride, rows, cols, k2); + } +}; + +template +struct symm_pack_lhs, Index, Pack1, Pack2_dummy, StorageOrder> +{ + void operator()(std::complex* blockA, const std::complex* _lhs, Index lhsStride, Index cols, Index rows) + { + symm_pack_complex_lhs_helper(blockA, _lhs, lhsStride, cols, rows); + } +}; + +// *********** symm_pack float32 *********** +template +struct symm_pack_rhs +{ + void operator()(float* blockB, const float* _rhs, Index rhsStride, Index rows, Index cols, Index k2) + { + symm_pack_rhs_helper(blockB, _rhs, rhsStride, rows, cols, k2); + } +}; + +template +struct symm_pack_lhs +{ + void operator()(float* blockA, const float* _lhs, Index lhsStride, Index cols, Index rows) + { + symm_pack_lhs_helper(blockA, _lhs, lhsStride, cols, rows); + } +}; + +// *********** symm_pack float64 *********** +template +struct symm_pack_rhs +{ + void operator()(double* blockB, const double* _rhs, Index rhsStride, Index rows, Index cols, Index k2) + { + symm_pack_rhs_helper(blockB, _rhs, rhsStride, rows, cols, k2); + } +}; + +template +struct symm_pack_lhs +{ + void operator()(double* blockA, const double* _lhs, Index lhsStride, Index cols, Index rows) + { + symm_pack_lhs_helper(blockA, _lhs, lhsStride, cols, rows); + } +}; + +/** + * PanelMode + * Packing might be called several times before being multiplied by gebp_kernel, this happens because + * on special occasions it fills part of block with other parts of the matrix. Two variables control + * how PanelMode should behave: offset and stride. The idea is that those variables represent whatever + * is going to be the real offset and stride in the future and this is what you should obey. The process + * is to behave as you would with normal packing but leave the start of each part with the correct offset + * and the end as well respecting the real stride the block will have. Gebp is aware of both blocks stride + * and offset and behaves accordingly. + **/ + +template +EIGEN_ALWAYS_INLINE void storeBlock(Scalar* to, PacketBlock& block) +{ + const Index size = 16 / sizeof(Scalar); + pstore(to + (0 * size), block.packet[0]); + pstore(to + (1 * size), block.packet[1]); + if (N > 2) { + pstore(to + (2 * size), block.packet[2]); + } + if (N > 3) { + pstore(to + (3 * size), block.packet[3]); + } +} + +// General template for lhs & rhs complex packing. +template +struct dhs_cpack { + EIGEN_STRONG_INLINE void operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + const Index vectorDelta = vectorSize * ((PanelMode) ? stride : depth); + Index rir = ((PanelMode) ? (vectorSize*offset) : 0), rii; + Scalar* blockAt = reinterpret_cast(blockA); + Index j = 0; + + for(; j + vectorSize <= rows; j+=vectorSize) + { + const DataMapper lhs2 = UseLhs ? lhs.getSubMapper(j, 0) : lhs.getSubMapper(0, j); + Index i = 0; + + rii = rir + vectorDelta; + + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock blockr, blocki; + PacketBlock cblock; + + if (UseLhs) { + bload(cblock, lhs2, 0, i); + } else { + bload(cblock, lhs2, i, 0); + } + + blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[4].v, p16uc_GETREAL32); + blockr.packet[1] = vec_perm(cblock.packet[1].v, cblock.packet[5].v, p16uc_GETREAL32); + blockr.packet[2] = vec_perm(cblock.packet[2].v, cblock.packet[6].v, p16uc_GETREAL32); + blockr.packet[3] = vec_perm(cblock.packet[3].v, cblock.packet[7].v, p16uc_GETREAL32); + + blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[4].v, p16uc_GETIMAG32); + blocki.packet[1] = vec_perm(cblock.packet[1].v, cblock.packet[5].v, p16uc_GETIMAG32); + blocki.packet[2] = vec_perm(cblock.packet[2].v, cblock.packet[6].v, p16uc_GETIMAG32); + blocki.packet[3] = vec_perm(cblock.packet[3].v, cblock.packet[7].v, p16uc_GETIMAG32); + + if(Conjugate) + { + blocki.packet[0] = -blocki.packet[0]; + blocki.packet[1] = -blocki.packet[1]; + blocki.packet[2] = -blocki.packet[2]; + blocki.packet[3] = -blocki.packet[3]; + } + + if(((StorageOrder == RowMajor) && UseLhs) || (((StorageOrder == ColMajor) && !UseLhs))) + { + ptranspose(blockr); + ptranspose(blocki); + } + + storeBlock(blockAt + rir, blockr); + storeBlock(blockAt + rii, blocki); + + rir += 4*vectorSize; + rii += 4*vectorSize; + } + for(; i < depth; i++) + { + PacketBlock blockr, blocki; + PacketBlock cblock; + + if(((StorageOrder == ColMajor) && UseLhs) || (((StorageOrder == RowMajor) && !UseLhs))) + { + if (UseLhs) { + cblock.packet[0] = lhs2.template loadPacket(0, i); + cblock.packet[1] = lhs2.template loadPacket(2, i); + } else { + cblock.packet[0] = lhs2.template loadPacket(i, 0); + cblock.packet[1] = lhs2.template loadPacket(i, 2); + } + } else { + if (UseLhs) { + cblock.packet[0] = pload2(lhs2(0, i), lhs2(1, i)); + cblock.packet[1] = pload2(lhs2(2, i), lhs2(3, i)); + } else { + cblock.packet[0] = pload2(lhs2(i, 0), lhs2(i, 1)); + cblock.packet[1] = pload2(lhs2(i, 2), lhs2(i, 3)); + } + } + + blockr.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETREAL32); + blocki.packet[0] = vec_perm(cblock.packet[0].v, cblock.packet[1].v, p16uc_GETIMAG32); + + if(Conjugate) + { + blocki.packet[0] = -blocki.packet[0]; + } + + pstore(blockAt + rir, blockr.packet[0]); + pstore(blockAt + rii, blocki.packet[0]); + + rir += vectorSize; + rii += vectorSize; + } + + rir += ((PanelMode) ? (vectorSize*(2*stride - depth)) : vectorDelta); + } + + if (!UseLhs) + { + if(PanelMode) rir -= (offset*(vectorSize - 1)); + + for(; j < rows; j++) + { + const DataMapper lhs2 = lhs.getSubMapper(0, j); + rii = rir + ((PanelMode) ? stride : depth); + + for(Index i = 0; i < depth; i++) + { + blockAt[rir] = lhs2(i, 0).real(); + + if(Conjugate) + blockAt[rii] = -lhs2(i, 0).imag(); + else + blockAt[rii] = lhs2(i, 0).imag(); + + rir += 1; + rii += 1; + } + + rir += ((PanelMode) ? (2*stride - depth) : depth); + } + } else { + if (j < rows) + { + if(PanelMode) rir += (offset*(rows - j - vectorSize)); + rii = rir + (((PanelMode) ? stride : depth) * (rows - j)); + + for(Index i = 0; i < depth; i++) + { + Index k = j; + for(; k < rows; k++) + { + blockAt[rir] = lhs(k, i).real(); + + if(Conjugate) + blockAt[rii] = -lhs(k, i).imag(); + else + blockAt[rii] = lhs(k, i).imag(); + + rir += 1; + rii += 1; + } + } + } + } + } +}; + +// General template for lhs & rhs packing. +template +struct dhs_pack{ + EIGEN_STRONG_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + Index ri = 0, j = 0; + + for(; j + vectorSize <= rows; j+=vectorSize) + { + const DataMapper lhs2 = UseLhs ? lhs.getSubMapper(j, 0) : lhs.getSubMapper(0, j); + Index i = 0; + + if(PanelMode) ri += vectorSize*offset; + + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock block; + + if (UseLhs) { + bload(block, lhs2, 0, i); + } else { + bload(block, lhs2, i, 0); + } + if(((StorageOrder == RowMajor) && UseLhs) || ((StorageOrder == ColMajor) && !UseLhs)) + { + ptranspose(block); + } + + storeBlock(blockA + ri, block); + + ri += 4*vectorSize; + } + for(; i < depth; i++) + { + if(((StorageOrder == RowMajor) && UseLhs) || ((StorageOrder == ColMajor) && !UseLhs)) + { + if (UseLhs) { + blockA[ri+0] = lhs2(0, i); + blockA[ri+1] = lhs2(1, i); + blockA[ri+2] = lhs2(2, i); + blockA[ri+3] = lhs2(3, i); + } else { + blockA[ri+0] = lhs2(i, 0); + blockA[ri+1] = lhs2(i, 1); + blockA[ri+2] = lhs2(i, 2); + blockA[ri+3] = lhs2(i, 3); + } + } else { + Packet lhsV; + if (UseLhs) { + lhsV = lhs2.template loadPacket(0, i); + } else { + lhsV = lhs2.template loadPacket(i, 0); + } + pstore(blockA + ri, lhsV); + } + + ri += vectorSize; + } + + if(PanelMode) ri += vectorSize*(stride - offset - depth); + } + + if (!UseLhs) + { + if(PanelMode) ri += offset; + + for(; j < rows; j++) + { + const DataMapper lhs2 = lhs.getSubMapper(0, j); + for(Index i = 0; i < depth; i++) + { + blockA[ri] = lhs2(i, 0); + ri += 1; + } + + if(PanelMode) ri += stride - depth; + } + } else { + if (j < rows) + { + if(PanelMode) ri += offset*(rows - j); + + for(Index i = 0; i < depth; i++) + { + Index k = j; + for(; k < rows; k++) + { + blockA[ri] = lhs(k, i); + ri += 1; + } + } + } + } + } +}; + +// General template for lhs packing, float64 specialization. +template +struct dhs_pack +{ + EIGEN_STRONG_INLINE void operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + Index ri = 0, j = 0; + + for(; j + vectorSize <= rows; j+=vectorSize) + { + const DataMapper lhs2 = lhs.getSubMapper(j, 0); + Index i = 0; + + if(PanelMode) ri += vectorSize*offset; + + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock block; + if(StorageOrder == RowMajor) + { + block.packet[0] = lhs2.template loadPacket(0, i); + block.packet[1] = lhs2.template loadPacket(1, i); + + ptranspose(block); + } else { + block.packet[0] = lhs2.template loadPacket(0, i + 0); + block.packet[1] = lhs2.template loadPacket(0, i + 1); + } + + storeBlock(blockA + ri, block); + + ri += 2*vectorSize; + } + for(; i < depth; i++) + { + if(StorageOrder == RowMajor) + { + blockA[ri+0] = lhs2(0, i); + blockA[ri+1] = lhs2(1, i); + } else { + Packet2d lhsV = lhs2.template loadPacket(0, i); + pstore(blockA + ri, lhsV); + } + + ri += vectorSize; + } + + if(PanelMode) ri += vectorSize*(stride - offset - depth); + } + + if (j < rows) + { + if(PanelMode) ri += offset*(rows - j); + + for(Index i = 0; i < depth; i++) + { + Index k = j; + for(; k < rows; k++) + { + blockA[ri] = lhs(k, i); + ri += 1; + } + } + } + } +}; + +// General template for rhs packing, float64 specialization. +template +struct dhs_pack +{ + EIGEN_STRONG_INLINE void operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + Index ri = 0, j = 0; + + for(; j + 2*vectorSize <= cols; j+=2*vectorSize) + { + const DataMapper rhs2 = rhs.getSubMapper(0, j); + Index i = 0; + + if(PanelMode) ri += offset*(2*vectorSize); + + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock block; + if(StorageOrder == ColMajor) + { + PacketBlock block1, block2; + block1.packet[0] = rhs2.template loadPacket(i, 0); + block1.packet[1] = rhs2.template loadPacket(i, 1); + block2.packet[0] = rhs2.template loadPacket(i, 2); + block2.packet[1] = rhs2.template loadPacket(i, 3); + + ptranspose(block1); + ptranspose(block2); + + pstore(blockB + ri , block1.packet[0]); + pstore(blockB + ri + 2, block2.packet[0]); + pstore(blockB + ri + 4, block1.packet[1]); + pstore(blockB + ri + 6, block2.packet[1]); + } else { + block.packet[0] = rhs2.template loadPacket(i + 0, 0); //[a1 a2] + block.packet[1] = rhs2.template loadPacket(i + 0, 2); //[a3 a4] + block.packet[2] = rhs2.template loadPacket(i + 1, 0); //[b1 b2] + block.packet[3] = rhs2.template loadPacket(i + 1, 2); //[b3 b4] + + storeBlock(blockB + ri, block); + } + + ri += 4*vectorSize; + } + for(; i < depth; i++) + { + if(StorageOrder == ColMajor) + { + blockB[ri+0] = rhs2(i, 0); + blockB[ri+1] = rhs2(i, 1); + + ri += vectorSize; + + blockB[ri+0] = rhs2(i, 2); + blockB[ri+1] = rhs2(i, 3); + } else { + Packet2d rhsV = rhs2.template loadPacket(i, 0); + pstore(blockB + ri, rhsV); + + ri += vectorSize; + + rhsV = rhs2.template loadPacket(i, 2); + pstore(blockB + ri, rhsV); + } + ri += vectorSize; + } + + if(PanelMode) ri += (2*vectorSize)*(stride - offset - depth); + } + + if(PanelMode) ri += offset; + + for(; j < cols; j++) + { + const DataMapper rhs2 = rhs.getSubMapper(0, j); + for(Index i = 0; i < depth; i++) + { + blockB[ri] = rhs2(i, 0); + ri += 1; + } + + if(PanelMode) ri += stride - depth; + } + } +}; + +// General template for lhs packing, bfloat16 specialization. +template +struct dhs_pack +{ + EIGEN_STRONG_INLINE void operator()(bfloat16* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + Index ri = 0, j = 0; + + for(; j + 2*vectorSize <= rows; j+=2*vectorSize) + { + const DataMapper lhs2 = lhs.getSubMapper(j, 0); + Index i = 0; + + if(PanelMode) ri += 2*vectorSize*offset; + + if(StorageOrder == ColMajor) + { + for(; i + 2 <= depth; i+=2) + { + PacketBlock block; + + block.packet[0] = lhs2.template loadPacket(0 * vectorSize, i + 0); + block.packet[1] = lhs2.template loadPacket(1 * vectorSize, i + 0); + block.packet[2] = lhs2.template loadPacket(0 * vectorSize, i + 1); + block.packet[3] = lhs2.template loadPacket(1 * vectorSize, i + 1); + + Packet8bf t0, t1; + t0 = vec_mergeh(block.packet[0].m_val, block.packet[2].m_val); + t1 = vec_mergel(block.packet[0].m_val, block.packet[2].m_val); + block.packet[2] = vec_mergeh(block.packet[1].m_val, block.packet[3].m_val); + block.packet[3] = vec_mergel(block.packet[1].m_val, block.packet[3].m_val); + block.packet[0] = t0; + block.packet[1] = t1; + + storeBlock(blockA + ri, block); + + ri += 2*2*vectorSize; + } + if (depth & 1) + { + PacketBlock block; + + block.packet[0] = lhs2.template loadPacket(0 * vectorSize, i + 0); + block.packet[1] = lhs2.template loadPacket(1 * vectorSize, i + 0); + + storeBlock(blockA + ri, block); + + ri += 2*vectorSize; + } + } else { + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock block1, block2; + + bload(block1, lhs2, 0 * vectorSize, i); + bload(block2, lhs2, 1 * vectorSize, i); + + Packet4ui v1[8], v2[8]; + + v1[0] = vec_mergeh(reinterpret_cast(block1.packet[0].m_val), reinterpret_cast(block1.packet[1].m_val)); + v1[1] = vec_mergel(reinterpret_cast(block1.packet[0].m_val), reinterpret_cast(block1.packet[1].m_val)); + v1[2] = vec_mergeh(reinterpret_cast(block1.packet[2].m_val), reinterpret_cast(block1.packet[3].m_val)); + v1[3] = vec_mergel(reinterpret_cast(block1.packet[2].m_val), reinterpret_cast(block1.packet[3].m_val)); + v1[4] = vec_mergeh(reinterpret_cast(block1.packet[4].m_val), reinterpret_cast(block1.packet[5].m_val)); + v1[5] = vec_mergel(reinterpret_cast(block1.packet[4].m_val), reinterpret_cast(block1.packet[5].m_val)); + v1[6] = vec_mergeh(reinterpret_cast(block1.packet[6].m_val), reinterpret_cast(block1.packet[7].m_val)); + v1[7] = vec_mergel(reinterpret_cast(block1.packet[6].m_val), reinterpret_cast(block1.packet[7].m_val)); + v2[0] = vec_mergeh(reinterpret_cast(block2.packet[0].m_val), reinterpret_cast(block2.packet[1].m_val)); + v2[1] = vec_mergel(reinterpret_cast(block2.packet[0].m_val), reinterpret_cast(block2.packet[1].m_val)); + v2[2] = vec_mergeh(reinterpret_cast(block2.packet[2].m_val), reinterpret_cast(block2.packet[3].m_val)); + v2[3] = vec_mergel(reinterpret_cast(block2.packet[2].m_val), reinterpret_cast(block2.packet[3].m_val)); + v2[4] = vec_mergeh(reinterpret_cast(block2.packet[4].m_val), reinterpret_cast(block2.packet[5].m_val)); + v2[5] = vec_mergel(reinterpret_cast(block2.packet[4].m_val), reinterpret_cast(block2.packet[5].m_val)); + v2[6] = vec_mergeh(reinterpret_cast(block2.packet[6].m_val), reinterpret_cast(block2.packet[7].m_val)); + v2[7] = vec_mergel(reinterpret_cast(block2.packet[6].m_val), reinterpret_cast(block2.packet[7].m_val)); + +#ifdef EIGEN_VECTORIZE_VSX + block1.packet[0] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[0]),reinterpret_cast(v1[2]))); + block1.packet[2] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[0]),reinterpret_cast(v1[2]))); + block1.packet[4] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[1]),reinterpret_cast(v1[3]))); + block1.packet[6] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[1]),reinterpret_cast(v1[3]))); + block1.packet[1] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[4]),reinterpret_cast(v1[6]))); + block1.packet[3] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[4]),reinterpret_cast(v1[6]))); + block1.packet[5] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[5]),reinterpret_cast(v1[7]))); + block1.packet[7] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[5]),reinterpret_cast(v1[7]))); + block2.packet[0] = reinterpret_cast(vec_mergeh(reinterpret_cast(v2[0]),reinterpret_cast(v2[2]))); + block2.packet[2] = reinterpret_cast(vec_mergel(reinterpret_cast(v2[0]),reinterpret_cast(v2[2]))); + block2.packet[4] = reinterpret_cast(vec_mergeh(reinterpret_cast(v2[1]),reinterpret_cast(v2[3]))); + block2.packet[6] = reinterpret_cast(vec_mergel(reinterpret_cast(v2[1]),reinterpret_cast(v2[3]))); + block2.packet[1] = reinterpret_cast(vec_mergeh(reinterpret_cast(v2[4]),reinterpret_cast(v2[6]))); + block2.packet[3] = reinterpret_cast(vec_mergel(reinterpret_cast(v2[4]),reinterpret_cast(v2[6]))); + block2.packet[5] = reinterpret_cast(vec_mergeh(reinterpret_cast(v2[5]),reinterpret_cast(v2[7]))); + block2.packet[7] = reinterpret_cast(vec_mergel(reinterpret_cast(v2[5]),reinterpret_cast(v2[7]))); +#else + block1.packet[0] = reinterpret_cast(vec_perm(v1[0],v1[2],p16uc_TRANSPOSE64_HI)); + block1.packet[2] = reinterpret_cast(vec_perm(v1[0],v1[2],p16uc_TRANSPOSE64_LO)); + block1.packet[4] = reinterpret_cast(vec_perm(v1[1],v1[3],p16uc_TRANSPOSE64_HI)); + block1.packet[6] = reinterpret_cast(vec_perm(v1[1],v1[3],p16uc_TRANSPOSE64_LO)); + block1.packet[1] = reinterpret_cast(vec_perm(v1[4],v1[6],p16uc_TRANSPOSE64_HI)); + block1.packet[3] = reinterpret_cast(vec_perm(v1[4],v1[6],p16uc_TRANSPOSE64_LO)); + block1.packet[5] = reinterpret_cast(vec_perm(v1[5],v1[7],p16uc_TRANSPOSE64_HI)); + block1.packet[7] = reinterpret_cast(vec_perm(v1[5],v1[7],p16uc_TRANSPOSE64_LO)); + block2.packet[0] = reinterpret_cast(vec_perm(v2[0],v2[2],p16uc_TRANSPOSE64_HI)); + block2.packet[2] = reinterpret_cast(vec_perm(v2[0],v2[2],p16uc_TRANSPOSE64_LO)); + block2.packet[4] = reinterpret_cast(vec_perm(v2[1],v2[3],p16uc_TRANSPOSE64_HI)); + block2.packet[6] = reinterpret_cast(vec_perm(v2[1],v2[3],p16uc_TRANSPOSE64_LO)); + block2.packet[1] = reinterpret_cast(vec_perm(v2[4],v2[6],p16uc_TRANSPOSE64_HI)); + block2.packet[3] = reinterpret_cast(vec_perm(v2[4],v2[6],p16uc_TRANSPOSE64_LO)); + block2.packet[5] = reinterpret_cast(vec_perm(v2[5],v2[7],p16uc_TRANSPOSE64_HI)); + block2.packet[7] = reinterpret_cast(vec_perm(v2[5],v2[7],p16uc_TRANSPOSE64_LO)); +#endif + + for(Index M = 0; M < 8; M+=2) { + pstore(blockA + ri + (0 * vectorSize) + (2*vectorSize * M), block1.packet[M+0]); + pstore(blockA + ri + (1 * vectorSize) + (2*vectorSize * M), block1.packet[M+1]); + pstore(blockA + ri + (2 * vectorSize) + (2*vectorSize * M), block2.packet[M+0]); + pstore(blockA + ri + (3 * vectorSize) + (2*vectorSize * M), block2.packet[M+1]); + } + + ri += 2*vectorSize*vectorSize; + } + for(; i + 2 <= depth; i+=2) + { + for(Index M = 0; M < 2*vectorSize; M++) { + blockA[ri + (M * 2) + 0] = lhs2(M, i + 0); + blockA[ri + (M * 2) + 1] = lhs2(M, i + 1); + } + + ri += 2*2*vectorSize; + } + if (depth & 1) + { + for(Index M = 0; M < 2*vectorSize; M++) { + blockA[ri + M] = lhs2(M, i); + } + ri += 2*vectorSize; + } + } + + if(PanelMode) ri += 2*vectorSize*(stride - offset - depth); + } + for(; j + vectorSize <= rows; j+=vectorSize) + { + const DataMapper lhs2 = lhs.getSubMapper(j, 0); + Index i = 0; + + if(PanelMode) ri += vectorSize*offset; + + if(StorageOrder == ColMajor) + { + for(; i + 2 <= depth; i+=2) + { + PacketBlock block; + + block.packet[0] = lhs2.template loadPacket(0 * vectorSize, i + 0); + block.packet[1] = lhs2.template loadPacket(0 * vectorSize, i + 1); + + Packet8bf t0; + t0 = vec_mergeh(block.packet[0].m_val, block.packet[1].m_val); + block.packet[1] = vec_mergel(block.packet[0].m_val, block.packet[1].m_val); + block.packet[0] = t0; + + storeBlock(blockA + ri, block); + + ri += 2*vectorSize; + } + if (depth & 1) + { + Packet8bf lhsV = lhs2.template loadPacket(0 * vectorSize, i + 0); + pstore(blockA + ri, lhsV); + + ri += vectorSize; + } + } else { + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock block1; + + bload(block1, lhs2, 0 * vectorSize, i); + + Packet4ui v1[8]; + + // This is transposing and interleaving data + v1[0] = vec_mergeh(reinterpret_cast(block1.packet[0].m_val), reinterpret_cast(block1.packet[1].m_val)); + v1[1] = vec_mergel(reinterpret_cast(block1.packet[0].m_val), reinterpret_cast(block1.packet[1].m_val)); + v1[2] = vec_mergeh(reinterpret_cast(block1.packet[2].m_val), reinterpret_cast(block1.packet[3].m_val)); + v1[3] = vec_mergel(reinterpret_cast(block1.packet[2].m_val), reinterpret_cast(block1.packet[3].m_val)); + v1[4] = vec_mergeh(reinterpret_cast(block1.packet[4].m_val), reinterpret_cast(block1.packet[5].m_val)); + v1[5] = vec_mergel(reinterpret_cast(block1.packet[4].m_val), reinterpret_cast(block1.packet[5].m_val)); + v1[6] = vec_mergeh(reinterpret_cast(block1.packet[6].m_val), reinterpret_cast(block1.packet[7].m_val)); + v1[7] = vec_mergel(reinterpret_cast(block1.packet[6].m_val), reinterpret_cast(block1.packet[7].m_val)); + +#ifdef EIGEN_VECTORIZE_VSX + block1.packet[0] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[0]),reinterpret_cast(v1[2]))); + block1.packet[2] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[0]),reinterpret_cast(v1[2]))); + block1.packet[4] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[1]),reinterpret_cast(v1[3]))); + block1.packet[6] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[1]),reinterpret_cast(v1[3]))); + block1.packet[1] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[4]),reinterpret_cast(v1[6]))); + block1.packet[3] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[4]),reinterpret_cast(v1[6]))); + block1.packet[5] = reinterpret_cast(vec_mergeh(reinterpret_cast(v1[5]),reinterpret_cast(v1[7]))); + block1.packet[7] = reinterpret_cast(vec_mergel(reinterpret_cast(v1[5]),reinterpret_cast(v1[7]))); +#else + block1.packet[0] = reinterpret_cast(vec_perm(v1[0],v1[2],p16uc_TRANSPOSE64_HI)); + block1.packet[2] = reinterpret_cast(vec_perm(v1[0],v1[2],p16uc_TRANSPOSE64_LO)); + block1.packet[4] = reinterpret_cast(vec_perm(v1[1],v1[3],p16uc_TRANSPOSE64_HI)); + block1.packet[6] = reinterpret_cast(vec_perm(v1[1],v1[3],p16uc_TRANSPOSE64_LO)); + block1.packet[1] = reinterpret_cast(vec_perm(v1[4],v1[6],p16uc_TRANSPOSE64_HI)); + block1.packet[3] = reinterpret_cast(vec_perm(v1[4],v1[6],p16uc_TRANSPOSE64_LO)); + block1.packet[5] = reinterpret_cast(vec_perm(v1[5],v1[7],p16uc_TRANSPOSE64_HI)); + block1.packet[7] = reinterpret_cast(vec_perm(v1[5],v1[7],p16uc_TRANSPOSE64_LO)); +#endif + + for(Index M = 0; M < 8; M++) { + pstore(blockA + ri + (vectorSize * M), block1.packet[M]); + } + + ri += vectorSize*vectorSize; + } + for(; i + 2 <= depth; i+=2) + { + for(Index M = 0; M < vectorSize; M++) { + blockA[ri + (M * 2) + 0] = lhs2(M, i + 0); + blockA[ri + (M * 2) + 1] = lhs2(M, i + 1); + } + + ri += 2*vectorSize; + } + if (depth & 1) + { + for(Index M = 0; M < vectorSize; M++) { + blockA[ri + M] = lhs2(M, i); + } + + ri += vectorSize; + } + } + + if(PanelMode) ri += vectorSize*(stride - offset - depth); + } + if(j + 4 <= rows) + { + const DataMapper lhs2 = lhs.getSubMapper(j, 0); + Index i = 0; + + if(PanelMode) ri += 4*offset; + + for(; i + 2 <= depth; i+=2) + { + if(StorageOrder == ColMajor) + { + PacketBlock block; + + block.packet[0] = lhs2.template loadPacketPartial(0, i + 0, 4); + block.packet[1] = lhs2.template loadPacketPartial(0, i + 1, 4); + + block.packet[0] = vec_mergeh(block.packet[0].m_val, block.packet[1].m_val); + + pstore(blockA + ri, block.packet[0]); + } else { + blockA[ri+0] = lhs2(0, i + 0); + blockA[ri+1] = lhs2(0, i + 1); + blockA[ri+2] = lhs2(1, i + 0); + blockA[ri+3] = lhs2(1, i + 1); + blockA[ri+4] = lhs2(2, i + 0); + blockA[ri+5] = lhs2(2, i + 1); + blockA[ri+6] = lhs2(3, i + 0); + blockA[ri+7] = lhs2(3, i + 1); + } + + ri += 2*4; + } + if (depth & 1) + { + if(StorageOrder == ColMajor) + { + Packet8bf lhsV = lhs2.template loadPacketPartial(0, i + 0, 4); + + pstore_partial(blockA + ri, lhsV, 4); + } else { + blockA[ri+0] = lhs2(0, i); + blockA[ri+1] = lhs2(1, i); + blockA[ri+2] = lhs2(2, i); + blockA[ri+3] = lhs2(3, i); + } + + ri += 4; + } + + if(PanelMode) ri += 4*(stride - offset - depth); + j += 4; + } + + if (j < rows) + { + if(PanelMode) ri += offset*(rows - j); + + Index i = 0; + for(; i + 2 <= depth; i+=2) + { + Index k = j; + for(; k < rows; k++) + { + blockA[ri+0] = lhs(k, i + 0); + blockA[ri+1] = lhs(k, i + 1); + ri += 2; + } + } + if (depth & 1) + { + for(; j < rows; j++) + { + blockA[ri] = lhs(j, i); + ri += 1; + } + } + } + } +}; + +// General template for rhs packing, bfloat16 specialization. +template +struct dhs_pack +{ + EIGEN_STRONG_INLINE void operator()(bfloat16* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + Index ri = 0, j = 0; + + for(; j + 4 <= cols; j+=4) + { + const DataMapper rhs2 = rhs.getSubMapper(0, j); + Index i = 0; + + if(PanelMode) ri += 4*offset; + + for(; i + vectorSize <= depth; i+=vectorSize) + { + if(StorageOrder == ColMajor) + { + PacketBlock block; + + bload(block, rhs2, i, 0); + + Packet4ui t0, t1, t2, t3; + + t0 = vec_mergeh(reinterpret_cast(block.packet[0].m_val), reinterpret_cast(block.packet[1].m_val)); + t1 = vec_mergel(reinterpret_cast(block.packet[0].m_val), reinterpret_cast(block.packet[1].m_val)); + t2 = vec_mergeh(reinterpret_cast(block.packet[2].m_val), reinterpret_cast(block.packet[3].m_val)); + t3 = vec_mergel(reinterpret_cast(block.packet[2].m_val), reinterpret_cast(block.packet[3].m_val)); + +#ifdef EIGEN_VECTORIZE_VSX + block.packet[0] = reinterpret_cast(vec_mergeh(reinterpret_cast(t0),reinterpret_cast(t2))); + block.packet[1] = reinterpret_cast(vec_mergel(reinterpret_cast(t0),reinterpret_cast(t2))); + block.packet[2] = reinterpret_cast(vec_mergeh(reinterpret_cast(t1),reinterpret_cast(t3))); + block.packet[3] = reinterpret_cast(vec_mergel(reinterpret_cast(t1),reinterpret_cast(t3))); +#else + block.packet[0] = reinterpret_cast(vec_perm(t0,t2,p16uc_TRANSPOSE64_HI)); + block.packet[1] = reinterpret_cast(vec_perm(t0,t2,p16uc_TRANSPOSE64_LO)); + block.packet[2] = reinterpret_cast(vec_perm(t1,t3,p16uc_TRANSPOSE64_HI)); + block.packet[3] = reinterpret_cast(vec_perm(t1,t3,p16uc_TRANSPOSE64_LO)); +#endif + + storeBlock(blockB + ri, block); + } else { + PacketBlock block; + + for (int M = 0; M < 8; M++) { + block.packet[M] = rhs2.template loadPacketPartial(i + M, 0, 4); + } + + block.packet[0] = vec_mergeh(block.packet[0].m_val, block.packet[1].m_val); + block.packet[1] = vec_mergeh(block.packet[2].m_val, block.packet[3].m_val); + block.packet[2] = vec_mergeh(block.packet[4].m_val, block.packet[5].m_val); + block.packet[3] = vec_mergeh(block.packet[6].m_val, block.packet[7].m_val); + + const Index size = 16 / sizeof(bfloat16); + + for (int M = 0; M < 4; M++) { + pstore(blockB + ri + (M * size), block.packet[M]); + } + } + + ri += 4*vectorSize; + } + for (; i + 2 <= depth; i += 2) { + if(StorageOrder == ColMajor) + { + blockB[ri+0] = rhs2(i + 0, 0); + blockB[ri+1] = rhs2(i + 1, 0); + blockB[ri+2] = rhs2(i + 0, 1); + blockB[ri+3] = rhs2(i + 1, 1); + blockB[ri+4] = rhs2(i + 0, 2); + blockB[ri+5] = rhs2(i + 1, 2); + blockB[ri+6] = rhs2(i + 0, 3); + blockB[ri+7] = rhs2(i + 1, 3); + } else { + PacketBlock block; + + for (int M = 0; M < 2; M++) { + block.packet[M] = rhs2.template loadPacketPartial(i + M, 0, 4); + } + + block.packet[0] = vec_mergeh(block.packet[0].m_val, block.packet[1].m_val); + + pstore(blockB + ri, block.packet[0]); + } + + ri += 4*2; + } + if (depth & 1) + { + blockB[ri+0] = rhs2(i, 0); + blockB[ri+1] = rhs2(i, 1); + blockB[ri+2] = rhs2(i, 2); + blockB[ri+3] = rhs2(i, 3); + + ri += 4; + } + + if(PanelMode) ri += 4*(stride - offset - depth); + } + + if (j < cols) + { + if(PanelMode) ri += offset*(cols - j); + + Index i = 0; + for(; i + 2 <= depth; i+=2) + { + Index k = j; + for(; k < cols; k++) + { + blockB[ri+0] = rhs(i + 0, k); + blockB[ri+1] = rhs(i + 1, k); + ri += 2; + } + } + if (depth & 1) + { + for(; j < cols; j++) + { + blockB[ri] = rhs(i, j); + ri += 1; + } + } + } + } +}; + +// General template for lhs complex packing, float64 specialization. +template +struct dhs_cpack +{ + EIGEN_STRONG_INLINE void operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + const Index vectorDelta = vectorSize * ((PanelMode) ? stride : depth); + Index rir = ((PanelMode) ? (vectorSize*offset) : 0), rii; + double* blockAt = reinterpret_cast(blockA); + Index j = 0; + + for(; j + vectorSize <= rows; j+=vectorSize) + { + const DataMapper lhs2 = lhs.getSubMapper(j, 0); + Index i = 0; + + rii = rir + vectorDelta; + + for(; i + vectorSize <= depth; i+=vectorSize) + { + PacketBlock blockr, blocki; + PacketBlock cblock; + + if(StorageOrder == ColMajor) + { + cblock.packet[0] = lhs2.template loadPacket(0, i + 0); //[a1 a1i] + cblock.packet[1] = lhs2.template loadPacket(0, i + 1); //[b1 b1i] + + cblock.packet[2] = lhs2.template loadPacket(1, i + 0); //[a2 a2i] + cblock.packet[3] = lhs2.template loadPacket(1, i + 1); //[b2 b2i] + + blockr.packet[0] = vec_mergeh(cblock.packet[0].v, cblock.packet[2].v); //[a1 a2] + blockr.packet[1] = vec_mergeh(cblock.packet[1].v, cblock.packet[3].v); //[b1 b2] + + blocki.packet[0] = vec_mergel(cblock.packet[0].v, cblock.packet[2].v); + blocki.packet[1] = vec_mergel(cblock.packet[1].v, cblock.packet[3].v); + } else { + cblock.packet[0] = lhs2.template loadPacket(0, i); //[a1 a1i] + cblock.packet[1] = lhs2.template loadPacket(1, i); //[a2 a2i] + + cblock.packet[2] = lhs2.template loadPacket(0, i + 1); //[b1 b1i] + cblock.packet[3] = lhs2.template loadPacket(1, i + 1); //[b2 b2i + + blockr.packet[0] = vec_mergeh(cblock.packet[0].v, cblock.packet[1].v); //[a1 a2] + blockr.packet[1] = vec_mergeh(cblock.packet[2].v, cblock.packet[3].v); //[b1 b2] + + blocki.packet[0] = vec_mergel(cblock.packet[0].v, cblock.packet[1].v); + blocki.packet[1] = vec_mergel(cblock.packet[2].v, cblock.packet[3].v); + } + + if(Conjugate) + { + blocki.packet[0] = -blocki.packet[0]; + blocki.packet[1] = -blocki.packet[1]; + } + + storeBlock(blockAt + rir, blockr); + storeBlock(blockAt + rii, blocki); + + rir += 2*vectorSize; + rii += 2*vectorSize; + } + for(; i < depth; i++) + { + PacketBlock blockr, blocki; + PacketBlock cblock; + + cblock.packet[0] = lhs2.template loadPacket(0, i); + cblock.packet[1] = lhs2.template loadPacket(1, i); + + blockr.packet[0] = vec_mergeh(cblock.packet[0].v, cblock.packet[1].v); + blocki.packet[0] = vec_mergel(cblock.packet[0].v, cblock.packet[1].v); + + if(Conjugate) + { + blocki.packet[0] = -blocki.packet[0]; + } + + pstore(blockAt + rir, blockr.packet[0]); + pstore(blockAt + rii, blocki.packet[0]); + + rir += vectorSize; + rii += vectorSize; + } + + rir += ((PanelMode) ? (vectorSize*(2*stride - depth)) : vectorDelta); + } + + if (j < rows) + { + if(PanelMode) rir += (offset*(rows - j - vectorSize)); + rii = rir + (((PanelMode) ? stride : depth) * (rows - j)); + + for(Index i = 0; i < depth; i++) + { + Index k = j; + for(; k < rows; k++) + { + blockAt[rir] = lhs(k, i).real(); + + if(Conjugate) + blockAt[rii] = -lhs(k, i).imag(); + else + blockAt[rii] = lhs(k, i).imag(); + + rir += 1; + rii += 1; + } + } + } + } +}; + +// General template for rhs complex packing, float64 specialization. +template +struct dhs_cpack +{ + EIGEN_STRONG_INLINE void operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) + { + const Index vectorSize = quad_traits::vectorsize; + const Index vectorDelta = 2*vectorSize * ((PanelMode) ? stride : depth); + Index rir = ((PanelMode) ? (2*vectorSize*offset) : 0), rii; + double* blockBt = reinterpret_cast(blockB); + Index j = 0; + + for(; j + 2*vectorSize <= cols; j+=2*vectorSize) + { + const DataMapper rhs2 = rhs.getSubMapper(0, j); + Index i = 0; + + rii = rir + vectorDelta; + + for(; i < depth; i++) + { + PacketBlock cblock; + PacketBlock blockr, blocki; + + bload(cblock, rhs2, i, 0); + + blockr.packet[0] = vec_mergeh(cblock.packet[0].v, cblock.packet[1].v); + blockr.packet[1] = vec_mergeh(cblock.packet[2].v, cblock.packet[3].v); + + blocki.packet[0] = vec_mergel(cblock.packet[0].v, cblock.packet[1].v); + blocki.packet[1] = vec_mergel(cblock.packet[2].v, cblock.packet[3].v); + + if(Conjugate) + { + blocki.packet[0] = -blocki.packet[0]; + blocki.packet[1] = -blocki.packet[1]; + } + + storeBlock(blockBt + rir, blockr); + storeBlock(blockBt + rii, blocki); + + rir += 2*vectorSize; + rii += 2*vectorSize; + } + + rir += ((PanelMode) ? (2*vectorSize*(2*stride - depth)) : vectorDelta); + } + + if(PanelMode) rir -= (offset*(2*vectorSize - 1)); + + for(; j < cols; j++) + { + const DataMapper rhs2 = rhs.getSubMapper(0, j); + rii = rir + ((PanelMode) ? stride : depth); + + for(Index i = 0; i < depth; i++) + { + blockBt[rir] = rhs2(i, 0).real(); + + if(Conjugate) + blockBt[rii] = -rhs2(i, 0).imag(); + else + blockBt[rii] = rhs2(i, 0).imag(); + + rir += 1; + rii += 1; + } + + rir += ((PanelMode) ? (2*stride - depth) : depth); + } + } +}; + +/************** + * GEMM utils * + **************/ + +// 512-bits rank1-update of acc. It can either positive or negative accumulate (useful for complex gemm). +template +EIGEN_ALWAYS_INLINE void pger_common(PacketBlock* acc, const Packet& lhsV, const Packet* rhsV) +{ + if(NegativeAccumulate) + { + for (int M = 0; M < N; M++) { + acc->packet[M] = vec_nmsub(lhsV, rhsV[M], acc->packet[M]); + } + } else { + for (int M = 0; M < N; M++) { + acc->packet[M] = vec_madd(lhsV, rhsV[M], acc->packet[M]); + } + } +} + +template +EIGEN_ALWAYS_INLINE void pger(PacketBlock* acc, const Scalar* lhs, const Packet* rhsV) +{ + Packet lhsV = pload(lhs); + + pger_common(acc, lhsV, rhsV); +} + +// 512-bits rank1-update of complex acc. It takes decoupled accumulators as entries. It also takes cares of mixed types real * complex and complex * real. +template +EIGEN_ALWAYS_INLINE void pgerc_common(PacketBlock* accReal, PacketBlock* accImag, const Packet &lhsV, Packet &lhsVi, const Packet* rhsV, const Packet* rhsVi) +{ + pger_common(accReal, lhsV, rhsV); + if(LhsIsReal) + { + pger_common(accImag, lhsV, rhsVi); + EIGEN_UNUSED_VARIABLE(lhsVi); + } else { + if (!RhsIsReal) { + pger_common(accReal, lhsVi, rhsVi); + pger_common(accImag, lhsV, rhsVi); + } else { + EIGEN_UNUSED_VARIABLE(rhsVi); + } + pger_common(accImag, lhsVi, rhsV); + } +} + +template +EIGEN_ALWAYS_INLINE void pgerc(PacketBlock* accReal, PacketBlock* accImag, const Scalar* lhs_ptr, const Scalar* lhs_ptr_imag, const Packet* rhsV, const Packet* rhsVi) +{ + Packet lhsV = ploadLhs(lhs_ptr); + Packet lhsVi; + if(!LhsIsReal) lhsVi = ploadLhs(lhs_ptr_imag); + else EIGEN_UNUSED_VARIABLE(lhs_ptr_imag); + + pgerc_common(accReal, accImag, lhsV, lhsVi, rhsV, rhsVi); +} + +template +EIGEN_ALWAYS_INLINE Packet ploadLhs(const __UNPACK_TYPE__(Packet)* lhs) +{ + return ploadu(lhs); +} + +// Zero the accumulator on PacketBlock. +template +EIGEN_ALWAYS_INLINE void bsetzero(PacketBlock& acc) +{ + for (int M = 0; M < N; M++) { + acc.packet[M] = pset1((__UNPACK_TYPE__(Packet))0); + } +} + +template +EIGEN_ALWAYS_INLINE void bscalec_common(PacketBlock& acc, PacketBlock& accZ, const Packet& pAlpha) +{ + for (int M = 0; M < N; M++) { + acc.packet[M] = vec_mul(accZ.packet[M], pAlpha); + } +} + +template +EIGEN_ALWAYS_INLINE void band(PacketBlock& acc, const Packet& pMask) +{ + for (int M = 0; M < N; M++) { + acc.packet[M] = pand(acc.packet[M], pMask); + } +} + +// Complex version of PacketBlock scaling. +template +EIGEN_ALWAYS_INLINE void bscalec(PacketBlock& aReal, PacketBlock& aImag, const Packet& bReal, const Packet& bImag, PacketBlock& cReal, PacketBlock& cImag, const Packet& pMask) +{ + if (mask && (sizeof(__UNPACK_TYPE__(Packet)) == sizeof(float))) { + band(aReal, pMask); + band(aImag, pMask); + } else { + EIGEN_UNUSED_VARIABLE(pMask); + } + + bscalec_common(cReal, aReal, bReal); + + bscalec_common(cImag, aImag, bReal); + + pger_common(&cReal, bImag, aImag.packet); + + pger_common(&cImag, bImag, aReal.packet); +} + +// Load a PacketBlock, the N parameters make tunning gemm easier so we can add more accumulators as needed. +// +// full = operate (load) on the entire PacketBlock or only half +template +EIGEN_ALWAYS_INLINE void bload(PacketBlock& acc, const DataMapper& res, Index row, Index col) +{ + if (StorageOrder == RowMajor) { + for (int M = 0; M < N; M++) { + acc.packet[M] = res.template loadPacket(row + M, col); + } + if (Complex) { + for (int M = 0; M < N; M++) { + acc.packet[M+N] = res.template loadPacket(row + M, col + accCols); + } + } + } else { + for (int M = 0; M < N; M++) { + acc.packet[M] = res.template loadPacket(row, col + M); + } + if (Complex && full) { + for (int M = 0; M < N; M++) { + acc.packet[M+N] = res.template loadPacket(row + accCols, col + M); + } + } + } +} + +template +EIGEN_ALWAYS_INLINE void bstore(PacketBlock& acc, const DataMapper& res, Index row) +{ + for (int M = 0; M < N; M++) { + res.template storePacket(row, M, acc.packet[M]); + } +} + +#ifdef USE_PARTIAL_PACKETS +template +EIGEN_ALWAYS_INLINE void bload_partial(PacketBlock& acc, const DataMapper& res, Index row, Index elements) +{ + for (Index M = 0; M < N; M++) { + acc.packet[M] = res.template loadPacketPartial(row, M, elements); + } + if (Complex && full) { + for (Index M = 0; M < N; M++) { + acc.packet[M+N] = res.template loadPacketPartial(row + accCols, M, elements); + } + } +} + +template +EIGEN_ALWAYS_INLINE void bstore_partial(PacketBlock& acc, const DataMapper& res, Index row, Index elements) +{ + for (Index M = 0; M < N; M++) { + res.template storePacketPartial(row, M, acc.packet[M], elements); + } +} +#endif + +#ifdef _ARCH_PWR10 +#define USE_P10_AND_PVIPR2_0 (EIGEN_COMP_LLVM || (__GNUC__ >= 11)) +#else +#define USE_P10_AND_PVIPR2_0 0 +#endif + +#if !USE_P10_AND_PVIPR2_0 +const static Packet4i mask4[4] = { { 0, 0, 0, 0 }, { -1, 0, 0, 0 }, { -1, -1, 0, 0 }, { -1, -1, -1, 0 } }; +#endif + +template +EIGEN_ALWAYS_INLINE Packet bmask(const Index remaining_rows) +{ +#if USE_P10_AND_PVIPR2_0 +#ifdef _BIG_ENDIAN + return Packet(vec_reve(vec_genwm((1 << remaining_rows) - 1))); +#else + return Packet(vec_genwm((1 << remaining_rows) - 1)); +#endif +#else + return Packet(mask4[remaining_rows]); +#endif +} + +template<> +EIGEN_ALWAYS_INLINE Packet2d bmask(const Index remaining_rows) +{ +#if USE_P10_AND_PVIPR2_0 + Packet2d mask2 = Packet2d(vec_gendm(remaining_rows)); +#ifdef _BIG_ENDIAN + return preverse(mask2); +#else + return mask2; +#endif +#else + Packet2l ret = { -remaining_rows, 0 }; + return Packet2d(ret); +#endif +} + +template +EIGEN_ALWAYS_INLINE void bscale(PacketBlock& acc, PacketBlock& accZ, const Packet& pAlpha) +{ + for (int M = 0; M < N; M++) { + acc.packet[M] = pmadd(pAlpha, accZ.packet[M], acc.packet[M]); + } +} + +// Scale the PacketBlock vectors by alpha. +template +EIGEN_ALWAYS_INLINE void bscale(PacketBlock& acc, PacketBlock& accZ, const Packet& pAlpha, const Packet& pMask) +{ + if (mask) { + band(accZ, pMask); + } else { + EIGEN_UNUSED_VARIABLE(pMask); + } + + bscale(acc, accZ, pAlpha); +} + +template +EIGEN_ALWAYS_INLINE void pbroadcastN(const __UNPACK_TYPE__(Packet) *ap0, + const __UNPACK_TYPE__(Packet) *ap1, const __UNPACK_TYPE__(Packet) *ap2, + Packet& a0, Packet& a1, Packet& a2, Packet& a3) +{ + a0 = pset1(ap0[0]); + if (N == 4) { + a1 = pset1(ap0[1]); + a2 = pset1(ap0[2]); + a3 = pset1(ap0[3]); + EIGEN_UNUSED_VARIABLE(ap1); + EIGEN_UNUSED_VARIABLE(ap2); + } else { + if (N > 1) { + a1 = pset1(ap1[0]); + } else { + EIGEN_UNUSED_VARIABLE(a1); + EIGEN_UNUSED_VARIABLE(ap1); + } + if (N > 2) { + a2 = pset1(ap2[0]); + } else { + EIGEN_UNUSED_VARIABLE(a2); + EIGEN_UNUSED_VARIABLE(ap2); + } + } +} + +template<> EIGEN_ALWAYS_INLINE void +pbroadcastN(const float *ap0, const float *, const float *, + Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) +{ + pbroadcast4(ap0, a0, a1, a2, a3); +} + +template<> EIGEN_ALWAYS_INLINE void +pbroadcastN(const float *ap0, const float *ap1, const float *ap2, + Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) +{ + pbroadcastN(ap0, ap1, ap2, a0, a1, a2, a3); +} + +template<> +EIGEN_ALWAYS_INLINE void pbroadcastN(const double* ap0, const double *, + const double *, Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) +{ + a1 = pload(ap0); + a3 = pload(ap0 + 2); + a0 = vec_splat(a1, 0); + a1 = vec_splat(a1, 1); + a2 = vec_splat(a3, 0); + a3 = vec_splat(a3, 1); +} + +// Grab two decouples real/imaginary PacketBlocks and return two coupled (real/imaginary pairs) PacketBlocks. +template +EIGEN_ALWAYS_INLINE void bcouple_common(PacketBlock& taccReal, PacketBlock& taccImag, PacketBlock& acc1, PacketBlock& acc2) +{ + for (int M = 0; M < N; M++) { + acc1.packet[M].v = vec_mergeh(taccReal.packet[M], taccImag.packet[M]); + } + + if (full) { + for (int M = 0; M < N; M++) { + acc2.packet[M].v = vec_mergel(taccReal.packet[M], taccImag.packet[M]); + } + } +} + +template +EIGEN_ALWAYS_INLINE void bcouple(PacketBlock& taccReal, PacketBlock& taccImag, PacketBlock& tRes, PacketBlock& acc1, PacketBlock& acc2) +{ + bcouple_common(taccReal, taccImag, acc1, acc2); + + for (int M = 0; M < N; M++) { + acc1.packet[M] = padd(tRes.packet[M], acc1.packet[M]); + } + + if (full) { + for (int M = 0; M < N; M++) { + acc2.packet[M] = padd(tRes.packet[M+N], acc2.packet[M]); + } + } +} + +// PEEL loop factor. +#define PEEL 7 +#define PEEL_ROW 7 + +#define MICRO_UNROLL(func) \ + func(0) func(1) func(2) func(3) func(4) func(5) func(6) func(7) + +#define MICRO_NORMAL_ROWS \ + accRows == quad_traits::rows || accRows == 1 + +#define MICRO_NEW_ROWS ((MICRO_NORMAL_ROWS) ? accRows : 1) + +#define MICRO_RHS(ptr, N) rhs_##ptr##N + +#define MICRO_ZERO_PEEL(peel) \ + if ((PEEL_ROW > peel) && (peel != 0)) { \ + bsetzero(accZero##peel); \ + } else { \ + EIGEN_UNUSED_VARIABLE(accZero##peel); \ + } + +#define MICRO_ADD(ptr, N) \ + if (MICRO_NORMAL_ROWS) { \ + MICRO_RHS(ptr,0) += (accRows * N); \ + } else { \ + MICRO_RHS(ptr,0) += N; \ + MICRO_RHS(ptr,1) += N; \ + if (accRows == 3) { \ + MICRO_RHS(ptr,2) += N; \ + } \ + } + +#define MICRO_ADD_ROWS(N) MICRO_ADD(ptr, N) + +#define MICRO_BROADCAST1(peel, ptr, rhsV, real) \ + if (MICRO_NORMAL_ROWS) { \ + pbroadcastN(MICRO_RHS(ptr,0) + (accRows * peel), MICRO_RHS(ptr,0), MICRO_RHS(ptr,0), rhsV##peel[0], rhsV##peel[1], rhsV##peel[2], rhsV##peel[3]); \ + } else { \ + pbroadcastN(MICRO_RHS(ptr,0) + peel, MICRO_RHS(ptr,1) + peel, MICRO_RHS(ptr,2) + peel, rhsV##peel[0], rhsV##peel[1], rhsV##peel[2], rhsV##peel[3]); \ + } + +#define MICRO_BROADCAST(peel) MICRO_BROADCAST1(peel, ptr, rhsV, true) + +#define MICRO_BROADCAST_EXTRA1(ptr, rhsV, real) \ + pbroadcastN(MICRO_RHS(ptr,0), MICRO_RHS(ptr,1), MICRO_RHS(ptr,2), rhsV[0], rhsV[1], rhsV[2], rhsV[3]); + +#define MICRO_BROADCAST_EXTRA \ + Packet rhsV[4]; \ + MICRO_BROADCAST_EXTRA1(ptr, rhsV, true) \ + MICRO_ADD_ROWS(1) + +#define MICRO_SRC2(ptr, N, M) \ + if (MICRO_NORMAL_ROWS) { \ + EIGEN_UNUSED_VARIABLE(strideB); \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr,1)); \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr,2)); \ + } else { \ + MICRO_RHS(ptr,1) = rhs_base + N + M; \ + if (accRows == 3) { \ + MICRO_RHS(ptr,2) = rhs_base + N*2 + M; \ + } else { \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr,2)); \ + } \ + } + +#define MICRO_SRC2_PTR MICRO_SRC2(ptr, strideB, 0) + +#define MICRO_ZERO_PEEL_ROW MICRO_UNROLL(MICRO_ZERO_PEEL) + +#define MICRO_WORK_PEEL(peel) \ + if (PEEL_ROW > peel) { \ + MICRO_BROADCAST(peel) \ + pger(&accZero##peel, lhs_ptr + (remaining_rows * peel), rhsV##peel); \ + } else { \ + EIGEN_UNUSED_VARIABLE(rhsV##peel); \ + } + +#define MICRO_WORK_PEEL_ROW \ + Packet rhsV0[4], rhsV1[4], rhsV2[4], rhsV3[4], rhsV4[4], rhsV5[4], rhsV6[4], rhsV7[4]; \ + MICRO_UNROLL(MICRO_WORK_PEEL) \ + lhs_ptr += (remaining_rows * PEEL_ROW); \ + MICRO_ADD_ROWS(PEEL_ROW) + +#define MICRO_ADD_PEEL(peel, sum) \ + if (PEEL_ROW > peel) { \ + for (Index i = 0; i < accRows; i++) { \ + accZero##sum.packet[i] += accZero##peel.packet[i]; \ + } \ + } + +#define MICRO_ADD_PEEL_ROW \ + MICRO_ADD_PEEL(4, 0) MICRO_ADD_PEEL(5, 1) MICRO_ADD_PEEL(6, 2) MICRO_ADD_PEEL(7, 3) \ + MICRO_ADD_PEEL(2, 0) MICRO_ADD_PEEL(3, 1) MICRO_ADD_PEEL(1, 0) + +#define MICRO_PREFETCHN1(ptr, N) \ + EIGEN_POWER_PREFETCH(MICRO_RHS(ptr,0)); \ + if (N == 2 || N == 3) { \ + EIGEN_POWER_PREFETCH(MICRO_RHS(ptr,1)); \ + if (N == 3) { \ + EIGEN_POWER_PREFETCH(MICRO_RHS(ptr,2)); \ + } \ + } + +#define MICRO_PREFETCHN(N) MICRO_PREFETCHN1(ptr, N) + +#define MICRO_COMPLEX_PREFETCHN(N) \ + MICRO_PREFETCHN1(ptr_real, N); \ + if(!RhsIsReal) { \ + MICRO_PREFETCHN1(ptr_imag, N); \ + } + +template +EIGEN_ALWAYS_INLINE void MICRO_EXTRA_ROW( + const Scalar* &lhs_ptr, + const Scalar* &rhs_ptr0, + const Scalar* &rhs_ptr1, + const Scalar* &rhs_ptr2, + PacketBlock &accZero) +{ + MICRO_BROADCAST_EXTRA + pger(&accZero, lhs_ptr, rhsV); + lhs_ptr += remaining_rows; +} + +template +EIGEN_ALWAYS_INLINE void gemm_unrolled_row_iteration( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index row, + Index rows, + const Packet& pAlpha, + const Packet& pMask) +{ + const Scalar* rhs_ptr0 = rhs_base, * rhs_ptr1 = NULL, * rhs_ptr2 = NULL; + const Scalar* lhs_ptr = lhs_base + row*strideA + remaining_rows*offsetA; + PacketBlock accZero0, accZero1, accZero2, accZero3, accZero4, accZero5, accZero6, accZero7, acc; + + MICRO_SRC2_PTR + bsetzero(accZero0); + + Index remaining_depth = depth & -quad_traits::rows; + Index k = 0; + if (remaining_depth >= PEEL_ROW) { + MICRO_ZERO_PEEL_ROW + do + { + MICRO_PREFETCHN(accRows) + EIGEN_POWER_PREFETCH(lhs_ptr); + MICRO_WORK_PEEL_ROW + } while ((k += PEEL_ROW) + PEEL_ROW <= remaining_depth); + MICRO_ADD_PEEL_ROW + } + for(; k < depth; k++) + { + MICRO_EXTRA_ROW(lhs_ptr, rhs_ptr0, rhs_ptr1, rhs_ptr2, accZero0); + } + +#ifdef USE_PARTIAL_PACKETS + EIGEN_UNUSED_VARIABLE(rows); + EIGEN_UNUSED_VARIABLE(pMask); + bload_partial(acc, res, row, remaining_rows); + bscale(acc, accZero0, pAlpha); + bstore_partial(acc, res, row, remaining_rows); +#else + bload(acc, res, row, 0); + if ((accRows == 1) || (rows >= accCols)) + { + bscale(acc, accZero0, pAlpha, pMask); + bstore(acc, res, row); + } else { + bscale(acc, accZero0, pAlpha, pMask); + for(Index j = 0; j < accRows; j++) { + for(Index i = 0; i < remaining_rows; i++) { + res(row + i, j) = acc.packet[j][i]; + } + } + } +#endif +} + +#define MICRO_EXTRA(MICRO_EXTRA_UNROLL, value, is_col) \ + switch(value) { \ + default: \ + MICRO_EXTRA_UNROLL(1) \ + break; \ + case 2: \ + if (is_col || (sizeof(Scalar) == sizeof(float))) { \ + MICRO_EXTRA_UNROLL(2) \ + } \ + break; \ + case 3: \ + if (is_col || (sizeof(Scalar) == sizeof(float))) { \ + MICRO_EXTRA_UNROLL(3) \ + } \ + break; \ + } + +#define MICRO_EXTRA_ROWS(N) \ + gemm_unrolled_row_iteration(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, rows, pAlpha, pMask); + +template +EIGEN_ALWAYS_INLINE void gemm_extra_row( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index row, + Index rows, + Index remaining_rows, + const Packet& pAlpha, + const Packet& pMask) +{ + MICRO_EXTRA(MICRO_EXTRA_ROWS, remaining_rows, false) +} + +#define MICRO_UNROLL_WORK(func, func2, peel) \ + MICRO_UNROLL(func2); \ + func(0,peel) func(1,peel) func(2,peel) func(3,peel) \ + func(4,peel) func(5,peel) func(6,peel) func(7,peel) + +#define MICRO_WORK_ONE(iter, peel) \ + if (unroll_factor > iter) { \ + pger_common(&accZero##iter, lhsV##iter, rhsV##peel); \ + } + +#define MICRO_TYPE_PEEL4(func, func2, peel) \ + if (PEEL > peel) { \ + Packet lhsV0, lhsV1, lhsV2, lhsV3, lhsV4, lhsV5, lhsV6, lhsV7; \ + MICRO_BROADCAST(peel) \ + MICRO_UNROLL_WORK(func, func2, peel) \ + } else { \ + EIGEN_UNUSED_VARIABLE(rhsV##peel); \ + } + +#define MICRO_UNROLL_TYPE_PEEL(M, func, func1, func2) \ + Packet rhsV0[M], rhsV1[M], rhsV2[M], rhsV3[M], rhsV4[M], rhsV5[M], rhsV6[M], rhsV7[M]; \ + func(func1,func2,0) func(func1,func2,1) \ + func(func1,func2,2) func(func1,func2,3) \ + func(func1,func2,4) func(func1,func2,5) \ + func(func1,func2,6) func(func1,func2,7) + +#define MICRO_UNROLL_TYPE_ONE(M, func, func1, func2) \ + Packet rhsV0[M]; \ + func(func1,func2,0) + +#define MICRO_UNROLL_TYPE(MICRO_TYPE, size) \ + MICRO_TYPE(4, MICRO_TYPE_PEEL4, MICRO_WORK_ONE, MICRO_LOAD_ONE) \ + MICRO_ADD_ROWS(size) + +#define MICRO_ONE_PEEL4 MICRO_UNROLL_TYPE(MICRO_UNROLL_TYPE_PEEL, PEEL) + +#define MICRO_ONE4 MICRO_UNROLL_TYPE(MICRO_UNROLL_TYPE_ONE, 1) + +#define MICRO_DST_PTR_ONE(iter) \ + if (unroll_factor > iter) { \ + bsetzero(accZero##iter); \ + } else { \ + EIGEN_UNUSED_VARIABLE(accZero##iter); \ + } + +#define MICRO_DST_PTR MICRO_UNROLL(MICRO_DST_PTR_ONE) + +#define MICRO_SRC_PTR MICRO_UNROLL(MICRO_SRC_PTR_ONE) + +#define MICRO_PREFETCH MICRO_UNROLL(MICRO_PREFETCH_ONE) + +#ifdef USE_PARTIAL_PACKETS +#define MICRO_STORE_ONE(iter) \ + if (unroll_factor > iter) { \ + if (MICRO_NORMAL_PARTIAL(iter)) { \ + bload(acc, res, row + iter*accCols, 0); \ + bscale(acc, accZero##iter, pAlpha); \ + bstore(acc, res, row + iter*accCols); \ + } else { \ + bload_partial(acc, res, row + iter*accCols, accCols2); \ + bscale(acc, accZero##iter, pAlpha); \ + bstore_partial(acc, res, row + iter*accCols, accCols2); \ + } \ + } +#else +#define MICRO_STORE_ONE(iter) \ + if (unroll_factor > iter) { \ + bload(acc, res, row + iter*accCols, 0); \ + bscale(acc, accZero##iter, pAlpha, pMask); \ + bstore(acc, res, row + iter*accCols); \ + } +#endif + +#define MICRO_STORE MICRO_UNROLL(MICRO_STORE_ONE) + +#ifdef USE_PARTIAL_PACKETS +template +#else +template +#endif +EIGEN_ALWAYS_INLINE void gemm_unrolled_iteration( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index& row, + const Packet& pAlpha, +#ifdef USE_PARTIAL_PACKETS + Index accCols2 +#else + const Packet& pMask +#endif + ) +{ + const Scalar* rhs_ptr0 = rhs_base, * rhs_ptr1 = NULL, * rhs_ptr2 = NULL; + const Scalar* lhs_ptr0 = NULL, * lhs_ptr1 = NULL, * lhs_ptr2 = NULL, * lhs_ptr3 = NULL, * lhs_ptr4 = NULL, * lhs_ptr5 = NULL, * lhs_ptr6 = NULL, * lhs_ptr7 = NULL; + PacketBlock accZero0, accZero1, accZero2, accZero3, accZero4, accZero5, accZero6, accZero7; + PacketBlock acc; + + MICRO_SRC2_PTR + MICRO_SRC_PTR + MICRO_DST_PTR + + Index k = 0; + for(; k + PEEL <= depth; k+= PEEL) + { + MICRO_PREFETCHN(accRows) + MICRO_PREFETCH + MICRO_ONE_PEEL4 + } + for(; k < depth; k++) + { + MICRO_ONE4 + } + MICRO_STORE + + MICRO_UPDATE +} + +#ifdef USE_PARTIAL_PACKETS +#define MICRO_UNROLL_ITER2(N, M) \ + gemm_unrolled_iteration(res3, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, pAlpha, M ? remaining_rows : accCols); \ + if (M) return; +#else +#define MICRO_UNROLL_ITER2(N, M) \ + gemm_unrolled_iteration(res3, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, pAlpha, pMask); \ + if (M) return; +#endif + +template +EIGEN_ALWAYS_INLINE void gemm_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index remaining_rows, + const Packet& pAlpha, + const Packet& pMask) +{ + const DataMapper res3 = res.getSubMapper(0, col); + + const Scalar* rhs_base = blockB + col*strideB + MICRO_NEW_ROWS*offsetB; + const Scalar* lhs_base = blockA + accCols*offsetA; + Index row = 0; + +#define MAX_UNROLL 7 + while(row + MAX_UNROLL*accCols <= rows) { + MICRO_UNROLL_ITER2(MAX_UNROLL, 0); + } + switch( (rows-row)/accCols ) { +#if MAX_UNROLL > 7 + case 7: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 7) + break; +#endif +#if MAX_UNROLL > 6 + case 6: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 6) + break; +#endif +#if MAX_UNROLL > 5 + case 5: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 5) + break; +#endif +#if MAX_UNROLL > 4 + case 4: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 4) + break; +#endif +#if MAX_UNROLL > 3 + case 3: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 3) + break; +#endif +#if MAX_UNROLL > 2 + case 2: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 2) + break; +#endif +#if MAX_UNROLL > 1 + case 1: + MICRO_UNROLL_ITER(MICRO_UNROLL_ITER2, 1) + break; +#endif + default: + break; + } +#undef MAX_UNROLL + + if(remaining_rows > 0) + { + gemm_extra_row(res3, blockA, rhs_base, depth, strideA, offsetA, strideB, row, rows, remaining_rows, pAlpha, pMask); + } +} + +#define MICRO_EXTRA_COLS(N) \ + gemm_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlpha, pMask); + +template +EIGEN_ALWAYS_INLINE void gemm_extra_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index cols, + Index remaining_rows, + const Packet& pAlpha, + const Packet& pMask) +{ + MICRO_EXTRA(MICRO_EXTRA_COLS, cols-col, true) +} + +/**************** + * GEMM kernels * + * **************/ +template +EIGEN_STRONG_INLINE void gemm(const DataMapper& res, const Scalar* blockA, const Scalar* blockB, Index rows, Index depth, Index cols, Scalar alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) +{ + const Index remaining_rows = rows % accCols; + + if( strideA == -1 ) strideA = depth; + if( strideB == -1 ) strideB = depth; + + const Packet pAlpha = pset1(alpha); + const Packet pMask = bmask(remaining_rows); + + Index col = 0; + for(; col + accRows <= cols; col += accRows) + { + gemm_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlpha, pMask); + } + + if (col != cols) + { + gemm_extra_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, cols, remaining_rows, pAlpha, pMask); + } +} + +#define accColsC (accCols / 2) +#define advanceRows ((LhsIsReal) ? 1 : 2) +#define advanceCols ((RhsIsReal) ? 1 : 2) + +// PEEL_COMPLEX loop factor. +#define PEEL_COMPLEX 3 +#define PEEL_COMPLEX_ROW 3 + +#define MICRO_COMPLEX_UNROLL(func) \ + func(0) func(1) func(2) func(3) + +#define MICRO_COMPLEX_ZERO_PEEL(peel) \ + if ((PEEL_COMPLEX_ROW > peel) && (peel != 0)) { \ + bsetzero(accReal##peel); \ + bsetzero(accImag##peel); \ + } else { \ + EIGEN_UNUSED_VARIABLE(accReal##peel); \ + EIGEN_UNUSED_VARIABLE(accImag##peel); \ + } + +#define MICRO_COMPLEX_ADD_ROWS(N, used) \ + MICRO_ADD(ptr_real, N) \ + if (!RhsIsReal) { \ + MICRO_ADD(ptr_imag, N) \ + } else if (used) { \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,0)); \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,1)); \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,2)); \ + } + +#define MICRO_COMPLEX_BROADCAST(peel) \ + MICRO_BROADCAST1(peel, ptr_real, rhsV, false) \ + if (!RhsIsReal) { \ + MICRO_BROADCAST1(peel, ptr_imag, rhsVi, false) \ + } else { \ + EIGEN_UNUSED_VARIABLE(rhsVi##peel); \ + } + +#define MICRO_COMPLEX_BROADCAST_EXTRA \ + Packet rhsV[4], rhsVi[4]; \ + MICRO_BROADCAST_EXTRA1(ptr_real, rhsV, false) \ + if(!RhsIsReal) { \ + MICRO_BROADCAST_EXTRA1(ptr_imag, rhsVi, false) \ + } else { \ + EIGEN_UNUSED_VARIABLE(rhsVi); \ + } \ + MICRO_COMPLEX_ADD_ROWS(1, true) + +#define MICRO_COMPLEX_SRC2_PTR \ + MICRO_SRC2(ptr_real, strideB*advanceCols, 0) \ + if (!RhsIsReal) { \ + MICRO_RHS(ptr_imag,0) = rhs_base + MICRO_NEW_ROWS*strideB; \ + MICRO_SRC2(ptr_imag, strideB*advanceCols, strideB) \ + } else { \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,0)); \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,1)); \ + EIGEN_UNUSED_VARIABLE(MICRO_RHS(ptr_imag,2)); \ + } + +#define MICRO_COMPLEX_ZERO_PEEL_ROW MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_ZERO_PEEL) + +#define MICRO_COMPLEX_WORK_PEEL(peel) \ + if (PEEL_COMPLEX_ROW > peel) { \ + MICRO_COMPLEX_BROADCAST(peel) \ + pgerc(&accReal##peel, &accImag##peel, lhs_ptr_real + (remaining_rows * peel), lhs_ptr_imag + (remaining_rows * peel), rhsV##peel, rhsVi##peel); \ + } else { \ + EIGEN_UNUSED_VARIABLE(rhsV##peel); \ + EIGEN_UNUSED_VARIABLE(rhsVi##peel); \ + } + +#define MICRO_COMPLEX_ADD_COLS(size) \ + lhs_ptr_real += (remaining_rows * size); \ + if(!LhsIsReal) lhs_ptr_imag += (remaining_rows * size); \ + else EIGEN_UNUSED_VARIABLE(lhs_ptr_imag); + +#define MICRO_COMPLEX_WORK_PEEL_ROW \ + Packet rhsV0[4], rhsV1[4], rhsV2[4], rhsV3[4]; \ + Packet rhsVi0[4], rhsVi1[4], rhsVi2[4], rhsVi3[4]; \ + MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_WORK_PEEL) \ + MICRO_COMPLEX_ADD_COLS(PEEL_COMPLEX_ROW) \ + MICRO_COMPLEX_ADD_ROWS(PEEL_COMPLEX_ROW, false) + +#define MICRO_COMPLEX_ADD_PEEL(peel, sum) \ + if (PEEL_COMPLEX_ROW > peel) { \ + for (Index i = 0; i < accRows; i++) { \ + accReal##sum.packet[i] += accReal##peel.packet[i]; \ + accImag##sum.packet[i] += accImag##peel.packet[i]; \ + } \ + } + +#define MICRO_COMPLEX_ADD_PEEL_ROW \ + MICRO_COMPLEX_ADD_PEEL(2, 0) MICRO_COMPLEX_ADD_PEEL(3, 1) \ + MICRO_COMPLEX_ADD_PEEL(1, 0) + +template +EIGEN_ALWAYS_INLINE void MICRO_COMPLEX_EXTRA_ROW( + const Scalar* &lhs_ptr_real, const Scalar* &lhs_ptr_imag, + const Scalar* &rhs_ptr_real0, const Scalar* &rhs_ptr_real1, const Scalar* &rhs_ptr_real2, + const Scalar* &rhs_ptr_imag0, const Scalar* &rhs_ptr_imag1, const Scalar* &rhs_ptr_imag2, + PacketBlock &accReal, PacketBlock &accImag) +{ + MICRO_COMPLEX_BROADCAST_EXTRA + pgerc(&accReal, &accImag, lhs_ptr_real, lhs_ptr_imag, rhsV, rhsVi); + MICRO_COMPLEX_ADD_COLS(1) +} + +template +EIGEN_ALWAYS_INLINE void gemm_unrolled_complex_row_iteration( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index row, + Index rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + const Scalar* rhs_ptr_real0 = rhs_base, * rhs_ptr_real1 = NULL, * rhs_ptr_real2 = NULL; + const Scalar* rhs_ptr_imag0 = NULL, * rhs_ptr_imag1 = NULL, * rhs_ptr_imag2 = NULL; + const Scalar* lhs_ptr_real = lhs_base + advanceRows*row*strideA + remaining_rows*offsetA; + const Scalar* lhs_ptr_imag = NULL; + if(!LhsIsReal) lhs_ptr_imag = lhs_ptr_real + remaining_rows*strideA; + else EIGEN_UNUSED_VARIABLE(lhs_ptr_imag); + PacketBlock accReal0, accImag0, accReal1, accImag1, accReal2, accImag2, accReal3, accImag3; + PacketBlock taccReal, taccImag; + PacketBlock acc0, acc1; + PacketBlock tRes; + + MICRO_COMPLEX_SRC2_PTR + + bsetzero(accReal0); + bsetzero(accImag0); + + Index remaining_depth = depth & -quad_traits::rows; + Index k = 0; + if (remaining_depth >= PEEL_COMPLEX_ROW) { + MICRO_COMPLEX_ZERO_PEEL_ROW + do + { + MICRO_COMPLEX_PREFETCHN(accRows) + EIGEN_POWER_PREFETCH(lhs_ptr_real); + if(!LhsIsReal) { + EIGEN_POWER_PREFETCH(lhs_ptr_imag); + } + MICRO_COMPLEX_WORK_PEEL_ROW + } while ((k += PEEL_COMPLEX_ROW) + PEEL_COMPLEX_ROW <= remaining_depth); + MICRO_COMPLEX_ADD_PEEL_ROW + } + for(; k < depth; k++) + { + MICRO_COMPLEX_EXTRA_ROW(lhs_ptr_real, lhs_ptr_imag, rhs_ptr_real0, rhs_ptr_real1, rhs_ptr_real2, rhs_ptr_imag0, rhs_ptr_imag1, rhs_ptr_imag2, accReal0, accImag0); + } + + constexpr bool full = (remaining_rows > accColsC); + bload(tRes, res, row, 0); + if ((accRows == 1) || (rows >= accCols)) + { + bscalec(accReal0, accImag0, pAlphaReal, pAlphaImag, taccReal, taccImag, pMask); + bcouple(taccReal, taccImag, tRes, acc0, acc1); + bstore(acc0, res, row + 0); + if (full) { + bstore(acc1, res, row + accColsC); + } + } else { + bscalec(accReal0, accImag0, pAlphaReal, pAlphaImag, taccReal, taccImag, pMask); + bcouple(taccReal, taccImag, tRes, acc0, acc1); + + if ((sizeof(Scalar) == sizeof(float)) && (remaining_rows == 1)) + { + for(Index j = 0; j < accRows; j++) { + res(row + 0, j) = pfirst(acc0.packet[j]); + } + } else { + bstore(acc0, res, row + 0); + if (full) { + for(Index j = 0; j < accRows; j++) { + res(row + accColsC, j) = pfirst(acc1.packet[j]); + } + } + } + } +} + +#define MICRO_COMPLEX_EXTRA_ROWS(N) \ + gemm_unrolled_complex_row_iteration(res, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, rows, pAlphaReal, pAlphaImag, pMask); + +template +EIGEN_ALWAYS_INLINE void gemm_complex_extra_row( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index row, + Index rows, + Index remaining_rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + MICRO_EXTRA(MICRO_COMPLEX_EXTRA_ROWS, remaining_rows, false) +} + +#define MICRO_COMPLEX_UNROLL_WORK(func, func2, peel) \ + MICRO_COMPLEX_UNROLL(func2); \ + func(0,peel) func(1,peel) func(2,peel) func(3,peel) + +#define MICRO_COMPLEX_WORK_ONE4(iter, peel) \ + if (unroll_factor > iter) { \ + pgerc_common(&accReal##iter, &accImag##iter, lhsV##iter, lhsVi##iter, rhsV##peel, rhsVi##peel); \ + } + +#define MICRO_COMPLEX_TYPE_PEEL4(func, func2, peel) \ + if (PEEL_COMPLEX > peel) { \ + Packet lhsV0, lhsV1, lhsV2, lhsV3; \ + Packet lhsVi0, lhsVi1, lhsVi2, lhsVi3; \ + MICRO_COMPLEX_BROADCAST(peel) \ + MICRO_COMPLEX_UNROLL_WORK(func, func2, peel) \ + } else { \ + EIGEN_UNUSED_VARIABLE(rhsV##peel); \ + EIGEN_UNUSED_VARIABLE(rhsVi##peel); \ + } + +#define MICRO_COMPLEX_UNROLL_TYPE_PEEL(M, func, func1, func2) \ + Packet rhsV0[M], rhsV1[M], rhsV2[M], rhsV3[M]; \ + Packet rhsVi0[M], rhsVi1[M], rhsVi2[M], rhsVi3[M]; \ + func(func1,func2,0) func(func1,func2,1) \ + func(func1,func2,2) func(func1,func2,3) + +#define MICRO_COMPLEX_UNROLL_TYPE_ONE(M, func, func1, func2) \ + Packet rhsV0[M], rhsVi0[M];\ + func(func1,func2,0) + +#define MICRO_COMPLEX_UNROLL_TYPE(MICRO_COMPLEX_TYPE, size) \ + MICRO_COMPLEX_TYPE(4, MICRO_COMPLEX_TYPE_PEEL4, MICRO_COMPLEX_WORK_ONE4, MICRO_COMPLEX_LOAD_ONE) \ + MICRO_COMPLEX_ADD_ROWS(size, false) + +#define MICRO_COMPLEX_ONE_PEEL4 MICRO_COMPLEX_UNROLL_TYPE(MICRO_COMPLEX_UNROLL_TYPE_PEEL, PEEL_COMPLEX) + +#define MICRO_COMPLEX_ONE4 MICRO_COMPLEX_UNROLL_TYPE(MICRO_COMPLEX_UNROLL_TYPE_ONE, 1) + +#define MICRO_COMPLEX_DST_PTR_ONE(iter) \ + if (unroll_factor > iter) { \ + bsetzero(accReal##iter); \ + bsetzero(accImag##iter); \ + } else { \ + EIGEN_UNUSED_VARIABLE(accReal##iter); \ + EIGEN_UNUSED_VARIABLE(accImag##iter); \ + } + +#define MICRO_COMPLEX_DST_PTR MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_DST_PTR_ONE) + +#define MICRO_COMPLEX_SRC_PTR MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_SRC_PTR_ONE) + +#define MICRO_COMPLEX_PREFETCH MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_PREFETCH_ONE) + +#define MICRO_COMPLEX_STORE_ONE(iter) \ + if (unroll_factor > iter) { \ + constexpr bool full = ((MICRO_NORMAL(iter)) || (accCols2 > accColsC)); \ + bload(tRes, res, row + iter*accCols, 0); \ + bscalec(accReal##iter, accImag##iter, pAlphaReal, pAlphaImag, taccReal, taccImag, pMask); \ + bcouple(taccReal, taccImag, tRes, acc0, acc1); \ + bstore(acc0, res, row + iter*accCols + 0); \ + if (full) { \ + bstore(acc1, res, row + iter*accCols + accColsC); \ + } \ + } + +#define MICRO_COMPLEX_STORE MICRO_COMPLEX_UNROLL(MICRO_COMPLEX_STORE_ONE) + +template +EIGEN_ALWAYS_INLINE void gemm_complex_unrolled_iteration( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index& row, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + const Scalar* rhs_ptr_real0 = rhs_base, * rhs_ptr_real1 = NULL, * rhs_ptr_real2 = NULL; + const Scalar* rhs_ptr_imag0 = NULL, * rhs_ptr_imag1 = NULL, * rhs_ptr_imag2 = NULL; + const Index imag_delta = accCols*strideA; + const Index imag_delta2 = accCols2*strideA; + const Scalar* lhs_ptr_real0 = NULL, * lhs_ptr_real1 = NULL; + const Scalar* lhs_ptr_real2 = NULL, * lhs_ptr_real3 = NULL; + PacketBlock accReal0, accImag0, accReal1, accImag1; + PacketBlock accReal2, accImag2, accReal3, accImag3; + PacketBlock taccReal, taccImag; + PacketBlock acc0, acc1; + PacketBlock tRes; + + MICRO_COMPLEX_SRC2_PTR + MICRO_COMPLEX_SRC_PTR + MICRO_COMPLEX_DST_PTR + + Index k = 0; + for(; k + PEEL_COMPLEX <= depth; k+= PEEL_COMPLEX) + { + MICRO_COMPLEX_PREFETCHN(accRows) + MICRO_COMPLEX_PREFETCH + MICRO_COMPLEX_ONE_PEEL4 + } + for(; k < depth; k++) + { + MICRO_COMPLEX_ONE4 + } + MICRO_COMPLEX_STORE + + MICRO_COMPLEX_UPDATE +} + +#define MICRO_COMPLEX_UNROLL_ITER2(N, M) \ + gemm_complex_unrolled_iteration(res3, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, pAlphaReal, pAlphaImag, pMask); \ + if (M) return; + +template +EIGEN_ALWAYS_INLINE void gemm_complex_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index remaining_rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + const DataMapper res3 = res.getSubMapper(0, col); + + const Scalar* rhs_base = blockB + advanceCols*col*strideB + MICRO_NEW_ROWS*offsetB; + const Scalar* lhs_base = blockA + accCols*offsetA; + Index row = 0; + +#define MAX_COMPLEX_UNROLL 4 + while(row + MAX_COMPLEX_UNROLL*accCols <= rows) { + MICRO_COMPLEX_UNROLL_ITER2(MAX_COMPLEX_UNROLL, 0); + } + switch( (rows-row)/accCols ) { +#if MAX_COMPLEX_UNROLL > 4 + case 4: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 4) + break; +#endif +#if MAX_COMPLEX_UNROLL > 3 + case 3: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 3) + break; +#endif +#if MAX_COMPLEX_UNROLL > 2 + case 2: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 2) + break; +#endif +#if MAX_COMPLEX_UNROLL > 1 + case 1: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_UNROLL_ITER2, 1) + break; +#endif + default: + break; + } +#undef MAX_COMPLEX_UNROLL + + if(remaining_rows > 0) + { + gemm_complex_extra_row(res3, blockA, rhs_base, depth, strideA, offsetA, strideB, row, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask); + } +} + +#define MICRO_COMPLEX_EXTRA_COLS(N) \ + gemm_complex_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask); + +template +EIGEN_ALWAYS_INLINE void gemm_complex_extra_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index cols, + Index remaining_rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + MICRO_EXTRA(MICRO_COMPLEX_EXTRA_COLS, cols-col, true) +} + +template +EIGEN_STRONG_INLINE void gemm_complex(const DataMapper& res, const LhsScalar* blockAc, const RhsScalar* blockBc, Index rows, Index depth, Index cols, Scalarc alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) +{ + const Index remaining_rows = rows % accCols; + + if( strideA == -1 ) strideA = depth; + if( strideB == -1 ) strideB = depth; + + const Packet pAlphaReal = pset1(alpha.real()); + const Packet pAlphaImag = pset1(alpha.imag()); + const Packet pMask = bmask(remaining_rows); + + const Scalar* blockA = (Scalar *) blockAc; + const Scalar* blockB = (Scalar *) blockBc; + + Index col = 0; + for(; col + accRows <= cols; col += accRows) + { + gemm_complex_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask); + } + + if (col != cols) + { + gemm_complex_extra_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, cols, remaining_rows, pAlphaReal, pAlphaImag, pMask); + } +} + +#undef accColsC +#undef advanceCols +#undef advanceRows + +EIGEN_ALWAYS_INLINE bool supportsMMA() +{ +#if defined(EIGEN_ALTIVEC_MMA_ONLY) + return true; +#elif defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH) && defined(__BUILTIN_CPU_SUPPORTS__) + return __builtin_cpu_supports ("arch_3_1") && __builtin_cpu_supports ("mma"); +#else + return false; // No dynamic dispatch for LLVM or older GCC +#endif +} + +EIGEN_ALWAYS_INLINE Packet4f loadAndMultiplyF32(Packet4f acc, const Packet4f pAlpha, float* result) +{ + Packet4f result_block = ploadu(result); + return pmadd(acc, pAlpha, result_block); +} + +template +EIGEN_ALWAYS_INLINE void storeF32(float*& result, Packet4f result_block, Index rows, Index extra_rows) +{ + if (lhsExtraRows) { + pstoreu_partial(result, result_block, extra_rows); + } else { + pstoreu(result, result_block); + } + result += rows; +} + +template +EIGEN_ALWAYS_INLINE void storeResults(Packet4f (&acc)[4], Index rows, const Packet4f pAlpha, float* result, Index extra_cols, Index extra_rows) +{ + Index x = 0; + if (rhsExtraCols) { + do{ + Packet4f result_block = loadAndMultiplyF32(acc[x], pAlpha, result); + storeF32(result, result_block, rows, extra_rows); + } while (++x < extra_cols); + } else { + Packet4f result_block[4]; + float *result2 = result; + do{ + result_block[x] = loadAndMultiplyF32(acc[x], pAlpha, result); + result += rows; + } while (++x < 4); + x = 0; + do{ + storeF32(result2, result_block[x], rows, extra_rows); + } while (++x < 4); + } +} + +EIGEN_ALWAYS_INLINE Packet4f oneConvertBF16Hi(Packet8us data) +{ + Packet8us z = pset1(0); +#ifdef _BIG_ENDIAN + return reinterpret_cast(vec_mergeh(data, z)); +#else + return reinterpret_cast(vec_mergeh(z, data)); +#endif +} + +EIGEN_ALWAYS_INLINE Packet4f oneConvertBF16Lo(Packet8us data) +{ + Packet8us z = pset1(0); +#ifdef _BIG_ENDIAN + return reinterpret_cast(vec_mergel(data, z)); +#else + return reinterpret_cast(vec_mergel(z, data)); +#endif +} + +template +EIGEN_ALWAYS_INLINE void storeConvertTwoBF16(float* to, PacketBlock& block, Index extra = 0) +{ + if (N < 4) { + pstoreu_partial(to + 0, oneConvertBF16Hi(block.packet[0].m_val), extra); + } else if (N >= (M*8+4)) { + pstoreu(to + 0, oneConvertBF16Hi(block.packet[M].m_val)); + if (N >= 8) { + pstoreu(to + 4, oneConvertBF16Lo(block.packet[M].m_val)); + } + } +} + +template +EIGEN_ALWAYS_INLINE void storeConvertBlockBF16(float* to, PacketBlock& block, Index extra) +{ + storeConvertTwoBF16(to + 0, block, extra); + if (N >= 16) { + storeConvertTwoBF16(to + 8, block); + } + if (N >= 32) { + storeConvertTwoBF16(to + 16, block); + storeConvertTwoBF16(to + 24, block); + } +} + +template +EIGEN_ALWAYS_INLINE Packet8bf loadBF16fromResult(bfloat16* src, Index resInc) +{ + if (non_unit_stride) { + return pgather(src + delta*resInc, resInc); + } else { + return ploadu(src + delta); + } +} + +static Packet16uc p16uc_MERGE16_32_1 = { 0, 1, 16,17, 2, 3, 18,19, 0, 1, 16,17, 2, 3, 18,19 }; +static Packet16uc p16uc_MERGE16_32_2 = { 4, 5, 20,21, 6, 7, 22,23, 4, 5, 20,21, 6, 7, 22,23 }; +static Packet16uc p16uc_MERGE16_32_3 = { 8, 9, 24,25, 10,11, 26,27, 8, 9, 24,25, 10,11, 26,27 }; +static Packet16uc p16uc_MERGE16_32_4 = { 12,13, 28,29, 14,15, 30,31, 12,13, 28,29, 14,15, 30,31 }; + +static Packet16uc p16uc_MERGE16_32_5 = { 0,1, 16,17, 16,17, 16,17, 0,1, 16,17, 16,17, 16,17 }; +static Packet16uc p16uc_MERGE16_32_6 = { 2,3, 18,19, 18,19, 18,19, 2,3, 18,19, 18,19, 18,19 }; +static Packet16uc p16uc_MERGE16_32_7 = { 4,5, 20,21, 20,21, 20,21, 4,5, 20,21, 20,21, 20,21 }; +static Packet16uc p16uc_MERGE16_32_8 = { 6,7, 22,23, 22,23, 22,23, 6,7, 22,23, 22,23, 22,23 }; + +EIGEN_ALWAYS_INLINE Packet4f oneConvertBF16Perm(Packet8us data, Packet16uc mask) +{ + Packet8us z = pset1(0); +#ifdef _BIG_ENDIAN + return reinterpret_cast(vec_perm(data, z, mask)); +#else + return reinterpret_cast(vec_perm(z, data, mask)); +#endif +} + +template +EIGEN_ALWAYS_INLINE void convertArrayPointerBF16toF32DupOne(float *result, Index rows, const bfloat16* src, Index extra_rows) +{ + Packet4f dup[4*4]; + Packet8bf data[4]; + + for (Index i = 0; i < size; i++) { + data[i] = ploadu(src + rows*i); + } + + for (Index i = 0, j = 0; i < size; i++, j += 4) { + dup[j+0] = oneConvertBF16Perm(data[i].m_val, odd ? p16uc_MERGE16_32_5 : p16uc_MERGE16_32_1); + dup[j+1] = oneConvertBF16Perm(data[i].m_val, odd ? p16uc_MERGE16_32_6 : p16uc_MERGE16_32_2); + dup[j+2] = oneConvertBF16Perm(data[i].m_val, odd ? p16uc_MERGE16_32_7 : p16uc_MERGE16_32_3); + dup[j+3] = oneConvertBF16Perm(data[i].m_val, odd ? p16uc_MERGE16_32_8 : p16uc_MERGE16_32_4); + } + + for (Index j = 0; j < 4*size; j += 4) { + if (lhsExtraRows) { + Packet4f z = pset1(float(0)); + Index i = 0; + do { + pstoreu(result + (j+i)*4, dup[j+i]); + } while (++i < extra_rows); + do { + pstoreu(result + (j+i)*4, z); + } while (++i < 4); + } else { + for (Index i = 0; i < 4; i++) { + pstoreu(result + (j+i)*4, dup[j+i]); + } + } + } +} + +template +EIGEN_ALWAYS_INLINE void convertArrayPointerBF16toF32Dup(float *result, Index cols, Index rows, const bfloat16* src, Index delta, Index extra_rows) +{ + Index col = 0; + src += delta*2; + for(; col + 4*2 <= cols; col += 4*2, result += 4*4*4, src += 4*rows) { + convertArrayPointerBF16toF32DupOne(result, rows, src, extra_rows); + } + for(; col + 2 <= cols; col += 2, result += 4*4, src += rows) { + convertArrayPointerBF16toF32DupOne(result, rows, src, extra_rows); + } + if (cols & 1) { + convertArrayPointerBF16toF32DupOne(result, rows, src - delta, extra_rows); + } +} + +template +EIGEN_ALWAYS_INLINE void convertPointerBF16toF32(Index& i, float *result, Index rows, bfloat16*& src, Index resInc) +{ + constexpr Index extra = ((size < 4) ? 4 : size); + while (i + size <= rows) { + PacketBlock r32; + r32.packet[0] = loadBF16fromResult(src, resInc); + if (size >= 16) { + r32.packet[1] = loadBF16fromResult(src, resInc); + } + if (size >= 32) { + r32.packet[2] = loadBF16fromResult(src, resInc); + r32.packet[3] = loadBF16fromResult(src, resInc); + } + storeConvertBlockBF16(result + i, r32, rows & 3); + i += extra; src += extra*resInc; + if (size != 32) break; + } +} + +template +EIGEN_ALWAYS_INLINE void convertArrayPointerBF16toF32(float *result, Index cols, Index rows, bfloat16* src, Index resInc) +{ + for(Index col = 0; col < cols; col++, src += (rows*resInc), result += rows) { + Index i = 0; + bfloat16* src2 = src; + convertPointerBF16toF32<32, non_unit_stride>(i, result, rows, src2, resInc); + convertPointerBF16toF32<16, non_unit_stride>(i, result, rows, src2, resInc); + convertPointerBF16toF32<8, non_unit_stride>(i, result, rows, src2, resInc); + convertPointerBF16toF32<4, non_unit_stride>(i, result, rows, src2, resInc); + convertPointerBF16toF32<1, non_unit_stride>(i, result, rows, src2, resInc); + } +} + +template +EIGEN_ALWAYS_INLINE void zeroAccumulators(Packet4f (&acc)[num_acc][size]) +{ + Packet4f z = pset1(float(0)); + + for(Index k = 0; k < num_acc; k++) { + for(Index j = 0; j < size; j++) { + acc[k][j] = z; + } + } +} + +template +EIGEN_ALWAYS_INLINE void tranposeResults(Packet4f (&acc)[num_acc][4]) +{ + for(Index i = 0; i < num_acc; i++) { + Packet4ui t0, t1, t2, t3; + t0 = vec_mergeh(reinterpret_cast(acc[i][0]), reinterpret_cast(acc[i][2])); + t1 = vec_mergel(reinterpret_cast(acc[i][0]), reinterpret_cast(acc[i][2])); + t2 = vec_mergeh(reinterpret_cast(acc[i][1]), reinterpret_cast(acc[i][3])); + t3 = vec_mergel(reinterpret_cast(acc[i][1]), reinterpret_cast(acc[i][3])); + acc[i][0] = reinterpret_cast(vec_mergeh(t0, t2)); + acc[i][1] = reinterpret_cast(vec_mergel(t0, t2)); + acc[i][2] = reinterpret_cast(vec_mergeh(t1, t3)); + acc[i][3] = reinterpret_cast(vec_mergel(t1, t3)); + } +} + +template +EIGEN_ALWAYS_INLINE void addResults(Packet4f (&acc)[num_acc][4]) +{ + for(Index i = 0, j = 0; j < num_acc; i++, j += 2) { + for(Index x = 0, y = 0; x < 2; x++, y += 2) { + for(Index w = 0, z = 0; w < 2; w++, z += 2) { + acc[i][y+w] = acc[j+x][z+0] + acc[j+x][z+1]; + } + } + } +} + +template +EIGEN_ALWAYS_INLINE void outputResultsVSX(Packet4f (&acc)[num_acc][4], Index rows, const Packet4f pAlpha, float* result, const Index extra_cols, Index extra_rows) +{ + tranposeResults(acc); + addResults(acc); + + constexpr Index real_rhs = ((num_rhs / 2) - (rhsExtraCols ? 1 : 0)); + Index k = 0; + for(Index i = 0; i < real_rhs; i++, result += 4*rows, k++){ + storeResults(acc[k], rows, pAlpha, result, extra_cols, extra_rows); + } + if(rhsExtraCols) { + storeResults(acc[k], rows, pAlpha, result, extra_cols, extra_rows); + } +} + +template +EIGEN_ALWAYS_INLINE void loadTwoRhsFloat32(const float* block, Index strideB, Index i, Packet4f& dhs0, Packet4f &dhs1) +{ + dhs0 = ploadu(block + strideB*i + 0); + if (zero) { + Packet4f dhs2 = pset1(float(0)); + dhs1 = vec_mergel(dhs0, dhs2); + dhs0 = vec_mergeh(dhs0, dhs2); + } else { + dhs1 = ploadu(block + strideB*i + 4); + } +} + +template +EIGEN_ALWAYS_INLINE void KLoop +( + const float* indexA, + const float* indexB, + Packet4f (&acc)[num_acc][4], + Index strideB, + Index k, + Index offsetB, + Index extra_cols +) +{ + constexpr Index num_lhs = 4; + Packet4f lhs[num_lhs], rhs[num_rhs]; + + constexpr Index real_rhs = (num_rhs - (rhsExtraCols ? 2 : 0)); + for(Index i = 0; i < real_rhs; i += 2){ + loadTwoRhsFloat32(indexB + k*4, strideB, i, rhs[i + 0], rhs[i + 1]); + } + if(rhsExtraCols) { + loadTwoRhsFloat32(indexB + k*extra_cols - offsetB, strideB, real_rhs, rhs[real_rhs + 0], rhs[real_rhs + 1]); + } + + indexA += 2*k*4; + for(Index j = 0; j < num_lhs; j++) { + lhs[j] = ploadu(indexA + j*4); + } + + for(Index j = 0; j < num_rhs; j++) { + for(Index i = 0; i < num_lhs; i++) { + acc[j][i] = pmadd(rhs[j], lhs[i], acc[j][i]); + } + } +} + +template +EIGEN_ALWAYS_INLINE void colVSXLoopBodyIter(Index depth, Index rows, const Packet4f pAlpha, const float* indexA, const float* indexB, Index strideB, Index offsetB, float* result, const Index extra_cols, const Index extra_rows) +{ + constexpr Index num_rhs = num_acc; + + Packet4f acc[num_acc][4]; + + zeroAccumulators(acc); + + Index k; + for(k = 0; k + 2 <= depth; k += 2){ + KLoop(indexA, indexB, acc, strideB, k, offsetB, extra_cols); + } + if(depth&1){ + KLoop(indexA, indexB, acc, strideB, k, offsetB, extra_cols); + } + + outputResultsVSX(acc, rows, pAlpha, result, extra_cols, extra_rows); +} + +// No more than 4 (uses 2X the accumulators or 8X the number of VSX registers) +#define MAX_BFLOAT16_ACC_VSX 4 + +template +void colVSXLoopBody(Index& col, Index depth, Index cols, Index rows, const Packet4f pAlpha, const float* indexA, const float* indexB, Index strideB, Index offsetB, float* result) +{ + constexpr Index step = (num_acc * 4); // each accumulator has 4 elements + const Index extra_cols = (rhsExtraCols) ? (cols & 3) : 0; + const Index extra_rows = (lhsExtraRows) ? (rows & 3) : 0; + constexpr bool multiIters = !rhsExtraCols && (num_acc == MAX_BFLOAT16_ACC_VSX); + + do{ + colVSXLoopBodyIter(depth, rows, pAlpha, indexA, indexB, strideB, offsetB, result, extra_cols, extra_rows); + + indexB += strideB*(num_acc * 2); + result += rows*step; + } while(multiIters && (step <= cols - (col += step))); +} + +template +EIGEN_ALWAYS_INLINE void colVSXLoopBodyExtraN(Index col, Index depth, Index cols, Index rows, const Packet4f pAlpha, const float* indexA, const float* blockB, Index strideB, Index offsetB, float* result) +{ + if (MAX_BFLOAT16_ACC_VSX > num_acc) { + colVSXLoopBody(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + } +} + +template +void colVSXLoopBodyExtra(Index col, Index depth, Index cols, Index rows, const Packet4f pAlpha, const float* indexA, const float* blockB, Index strideB, Index offsetB, float* result) +{ + switch ((cols - col) >> 2) { + case 3: + colVSXLoopBodyExtraN<3, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 2: + colVSXLoopBodyExtraN<2, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 1: + colVSXLoopBodyExtraN<1, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + default: + if (rhsExtraCols) { + colVSXLoopBody<1, true, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + } + break; + } +} + +template +EIGEN_ALWAYS_INLINE void colVSXLoops(Index depth, Index cols, Index rows, const Packet4f pAlpha, const bfloat16* indexA, const float* indexA2, const float* blockB2, Index strideA, Index strideB, Index offsetB, float* result2) +{ + Index delta_rows = 2*(lhsExtraRows ? (rows & 3) : size); + for (Index row = 0; row < size; row += 4) { + convertArrayPointerBF16toF32Dup(const_cast(indexA2), strideA, delta_rows, indexA, row, rows & 3); + + const float *blockB = blockB2; + float *result = result2 + row; + + Index col = 0; + if (cols >= (MAX_BFLOAT16_ACC_VSX * 4)) { + colVSXLoopBody(col, depth, cols, rows, pAlpha, indexA2, blockB, strideB, 0, result); + blockB += (strideB >> 1)*col; + result += rows*col; + } + if (cols & 3) { + colVSXLoopBodyExtra(col, depth, cols, rows, pAlpha, indexA2, blockB, strideB, offsetB, result); + } else { + colVSXLoopBodyExtra(col, depth, cols, rows, pAlpha, indexA2, blockB, strideB, 0, result); + } + } +} + +template +EIGEN_ALWAYS_INLINE void calcVSXColLoops(const bfloat16*& indexA, const float* indexA2, Index& row, Index depth, Index cols, Index rows, const Packet4f pAlpha, const float* indexB, Index strideA, Index strideB, Index offsetA, Index offsetB, Index bigSuffix, float *result) +{ + if ((size == 16) || (rows & size)) { + indexA += size*offsetA; + colVSXLoops(depth, cols, rows, pAlpha, indexA, indexA2, indexB, strideA, strideB, offsetB, result + row); + row += size; + indexA += bigSuffix*size/16; + } +} + +template +EIGEN_ALWAYS_INLINE void convertBF16toF32(Index& i, float *result, Index rows, const DataMapper& src) +{ + constexpr Index extra = ((size < 4) ? 4 : size); + while (i + size <= rows) { + PacketBlock r32; + r32.packet[0] = src.template loadPacket(i + 0); + if (size >= 16) { + r32.packet[1] = src.template loadPacket(i + 8); + } + if (size >= 32) { + r32.packet[2] = src.template loadPacket(i + 16); + r32.packet[3] = src.template loadPacket(i + 24); + } + storeConvertBlockBF16(result + i, r32, rows & 3); + i += extra; + if (size != 32) break; + } +} + +template +EIGEN_ALWAYS_INLINE void convertArrayBF16toF32(float *result, Index cols, Index rows, const DataMapper& src) +{ + typedef typename DataMapper::LinearMapper LinearMapper; + for(Index j = 0; j < cols; j++, result += rows){ + const LinearMapper src2 = src.getLinearMapper(0, j); + Index i = 0; + convertBF16toF32<32, LinearMapper>(i, result, rows, src2); + convertBF16toF32<16, LinearMapper>(i, result, rows, src2); + convertBF16toF32<8, LinearMapper>(i, result, rows, src2); + convertBF16toF32<4, LinearMapper>(i, result, rows, src2); + convertBF16toF32<1, LinearMapper>(i, result, rows, src2); + } +} + +EIGEN_ALWAYS_INLINE Packet8bf convertF32toBF16VSX(const float *res) +{ + return F32ToBf16Both(ploadu(res + 0), ploadu(res + 4)); +} + +template +EIGEN_ALWAYS_INLINE void convertArrayF32toBF16ColVSX(float *result, Index col, Index rows, const DataMapper& res) +{ + const DataMapper res2 = res.getSubMapper(0, col); + Index row; + float *result2 = result + col*rows; + for(row = 0; row + 8 <= rows; row += 8, result2 += 8){ + // get and save block + PacketBlock block; + for(Index j = 0; j < size; j++){ + block.packet[j] = convertF32toBF16VSX(result2 + j*rows); + } + res2.template storePacketBlock(row, 0, block); + } + // extra rows + if(row < rows){ + for(Index j = 0; j < size; j++){ + Packet8bf fp16 = convertF32toBF16VSX(result2 + j*rows); + res2.template storePacketPartial(row, j, fp16, rows & 7); + } + } +} + +template +EIGEN_ALWAYS_INLINE void convertArrayF32toBF16VSX(float *result, Index cols, Index rows, const DataMapper& res) +{ + Index col; + for(col = 0; col + 4 <= cols; col += 4){ + convertArrayF32toBF16ColVSX(result, col, rows, res); + } + // extra cols + switch (cols - col) { + case 1: + convertArrayF32toBF16ColVSX(result, col, rows, res); + break; + case 2: + convertArrayF32toBF16ColVSX(result, col, rows, res); + break; + case 3: + convertArrayF32toBF16ColVSX(result, col, rows, res); + break; + } +} + +template +void gemmbfloat16(const DataMapper& res, const bfloat16* indexA, const bfloat16* indexB, Index rows, Index depth, Index cols, bfloat16 alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) +{ + float falpha = Eigen::bfloat16_impl::bfloat16_to_float(alpha); + const Packet4f pAlpha = pset1(falpha); + + if( strideA == -1 ) strideA = depth; + if( strideB == -1 ) strideB = depth; + + ei_declare_aligned_stack_constructed_variable(float, result, cols*rows, 0); + ei_declare_aligned_stack_constructed_variable(float, indexB2, strideB*cols, 0); + ei_declare_aligned_stack_constructed_variable(float, indexA2, ((strideA + 1) & -2)*4*2, 0); + + convertArrayBF16toF32(result, cols, rows, res); + convertArrayPointerBF16toF32(indexB2, cols, strideB, const_cast(indexB)); + + Index bigSuffix = 2*8*(strideA-offsetA); + float* indexBF32 = indexB2 + 4*offsetB; + offsetB *= 3; + strideB *= 2; + + Index row = 0; + // LHS (8x16) block + while(row + 16 <= rows){ + calcVSXColLoops<16>(indexA, indexA2, row, depth, cols, rows, pAlpha, indexBF32, strideA, strideB, offsetA, offsetB, bigSuffix, result); + } + // LHS (8x8) block + calcVSXColLoops<8>(indexA, indexA2, row, depth, cols, rows, pAlpha, indexBF32, strideA, strideB, offsetA, offsetB, bigSuffix, result); + // LHS (8x4) block + calcVSXColLoops<4>(indexA, indexA2, row, depth, cols, rows, pAlpha, indexBF32, strideA, strideB, offsetA, offsetB, bigSuffix, result); + // extra rows + if(rows & 3){ + // This index is the beginning of remaining block. + colVSXLoops<4, true>(depth, cols, rows, pAlpha, indexA, indexA2, indexBF32, strideA, strideB, offsetB, result + row); + } + + // Convert back to bfloat16 + convertArrayF32toBF16VSX(result, cols, rows, res); +} + +#undef MAX_BFLOAT16_ACC_VSX + +#include "MatrixVectorProduct.h" + +/************************************ + * ppc64le template specializations * + * **********************************/ +template +struct gemm_pack_lhs +{ + void operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs + ::operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs +{ + void operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs + ::operator()(double* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +#if EIGEN_ALTIVEC_USE_CUSTOM_PACK +template +struct gemm_pack_rhs +{ + void operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs + ::operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_rhs +{ + void operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs + ::operator()(double* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_rhs +{ + void operator()(bfloat16* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs + ::operator()(bfloat16* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_rhs +{ + void operator()(bfloat16* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs + ::operator()(bfloat16* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} +#endif + +template +struct gemm_pack_lhs +{ + void operator()(bfloat16* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs + ::operator()(bfloat16* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs +{ + void operator()(bfloat16* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs + ::operator()(bfloat16* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs +{ + void operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs + ::operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs +{ + void operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs + ::operator()(float* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +#if EIGEN_ALTIVEC_USE_CUSTOM_PACK +template +struct gemm_pack_rhs +{ + void operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs + ::operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_rhs +{ + void operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs + ::operator()(float* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_pack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} +#endif + +template +struct gemm_pack_rhs, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_rhs, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, RowMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_lhs, Index, DataMapper, Pack1, Pack2, Packet, ColMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockA, lhs, depth, rows, stride, offset); +} + +template +struct gemm_pack_rhs, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +template +struct gemm_pack_rhs, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode> +{ + void operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +void gemm_pack_rhs, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode> + ::operator()(std::complex* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + dhs_cpack pack; + pack(blockB, rhs, depth, cols, stride, offset); +} + +// ********* gebp specializations ********* +template +struct gebp_kernel +{ + typedef typename quad_traits::vectortype Packet; + typedef typename quad_traits::rhstype RhsPacket; + + void operator()(const DataMapper& res, const float* blockA, const float* blockB, + Index rows, Index depth, Index cols, float alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel + ::operator()(const DataMapper& res, const float* blockA, const float* blockB, + Index rows, Index depth, Index cols, float alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const float*, const float*, Index, Index, Index, float, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemmMMA : + #endif + &Eigen::internal::gemm; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel, std::complex, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> +{ + typedef Packet4f Packet; + typedef Packet2cf Packetc; + typedef Packet4f RhsPacket; + + void operator()(const DataMapper& res, const std::complex* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel, std::complex, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> + ::operator()(const DataMapper& res, const std::complex* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const std::complex*, const std::complex*, + Index, Index, Index, std::complex, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemm_complexMMA, std::complex, std::complex, float, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false> : + #endif + &Eigen::internal::gemm_complex, std::complex, std::complex, float, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> +{ + typedef Packet4f Packet; + typedef Packet2cf Packetc; + typedef Packet4f RhsPacket; + + void operator()(const DataMapper& res, const float* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> + ::operator()(const DataMapper& res, const float* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const float*, const std::complex*, + Index, Index, Index, std::complex, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemm_complexMMA, std::complex, float, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false> : + #endif + &Eigen::internal::gemm_complex, std::complex, float, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel, float, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> +{ + typedef Packet4f Packet; + typedef Packet2cf Packetc; + typedef Packet4f RhsPacket; + + void operator()(const DataMapper& res, const std::complex* blockA, const float* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel, float, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> + ::operator()(const DataMapper& res, const std::complex* blockA, const float* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const std::complex*, const float*, + Index, Index, Index, std::complex, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemm_complexMMA, float, std::complex, float, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true> : + #endif + &Eigen::internal::gemm_complex, float, std::complex, float, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel +{ + typedef typename quad_traits::vectortype Packet; + typedef typename quad_traits::rhstype RhsPacket; + + void operator()(const DataMapper& res, const double* blockA, const double* blockB, + Index rows, Index depth, Index cols, double alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel + ::operator()(const DataMapper& res, const double* blockA, const double* blockB, + Index rows, Index depth, Index cols, double alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const double*, const double*, Index, Index, Index, double, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemmMMA : + #endif + &Eigen::internal::gemm; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel, std::complex, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> +{ + typedef quad_traits::vectortype Packet; + typedef Packet1cd Packetc; + typedef quad_traits::rhstype RhsPacket; + + void operator()(const DataMapper& res, const std::complex* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel, std::complex, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> + ::operator()(const DataMapper& res, const std::complex* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const std::complex*, const std::complex*, + Index, Index, Index, std::complex, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemm_complexMMA, std::complex, std::complex, double, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false> : + #endif + &Eigen::internal::gemm_complex, std::complex, std::complex, double, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, false>; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel, double, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> +{ + typedef quad_traits::vectortype Packet; + typedef Packet1cd Packetc; + typedef quad_traits::rhstype RhsPacket; + + void operator()(const DataMapper& res, const std::complex* blockA, const double* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel, double, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> + ::operator()(const DataMapper& res, const std::complex* blockA, const double* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const std::complex*, const double*, + Index, Index, Index, std::complex, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemm_complexMMA, double, std::complex, double, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true> : + #endif + &Eigen::internal::gemm_complex, double, std::complex, double, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, false, true>; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> +{ + typedef quad_traits::vectortype Packet; + typedef Packet1cd Packetc; + typedef quad_traits::rhstype RhsPacket; + + void operator()(const DataMapper& res, const double* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel, Index, DataMapper, mr, nr, ConjugateLhs, ConjugateRhs> + ::operator()(const DataMapper& res, const double* blockA, const std::complex* blockB, + Index rows, Index depth, Index cols, std::complex alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + const Index accRows = quad_traits::rows; + const Index accCols = quad_traits::size; + static void (*gemm_function)(const DataMapper&, const double*, const std::complex*, + Index, Index, Index, std::complex, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemm_complexMMA, std::complex, double, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false> : + #endif + &Eigen::internal::gemm_complex, std::complex, double, Packet, Packetc, RhsPacket, DataMapper, accRows, accCols, ConjugateLhs, ConjugateRhs, true, false>; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } + +template +struct gebp_kernel +{ + typedef typename quad_traits::vectortype Packet; + typedef typename quad_traits::rhstype RhsPacket; + + void operator()(const DataMapper& res, const bfloat16* blockA, const bfloat16* blockB, + Index rows, Index depth, Index cols, bfloat16 alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template +void gebp_kernel + ::operator()(const DataMapper& res, const bfloat16* blockA, const bfloat16* blockB, + Index rows, Index depth, Index cols, bfloat16 alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + static void (*gemm_function)(const DataMapper&, const bfloat16*, const bfloat16*, Index, Index, Index, bfloat16, Index, Index, Index, Index) = + #ifdef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + (supportsMMA()) ? + &Eigen::internal::gemmMMAbfloat16 : + #endif + &Eigen::internal::gemmbfloat16; + gemm_function(res, blockA, blockB, rows, depth, cols, alpha, strideA, strideB, offsetA, offsetB); + } +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATRIX_PRODUCT_ALTIVEC_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h new file mode 100644 index 0000000..daed8c1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h @@ -0,0 +1,237 @@ +//#define EIGEN_POWER_USE_PREFETCH // Use prefetching in gemm routines +#ifdef EIGEN_POWER_USE_PREFETCH +#define EIGEN_POWER_PREFETCH(p) prefetch(p) +#else +#define EIGEN_POWER_PREFETCH(p) +#endif + +#if defined(_ARCH_PWR9) || defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH) +#define USE_PARTIAL_PACKETS +#endif + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +EIGEN_ALWAYS_INLINE void gemm_extra_row( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index row, + Index rows, + Index remaining_rows, + const Packet& pAlpha, + const Packet& pMask); + +template +EIGEN_ALWAYS_INLINE void gemm_extra_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index cols, + Index remaining_rows, + const Packet& pAlpha, + const Packet& pMask); + +template +EIGEN_ALWAYS_INLINE Packet bmask(const Index remaining_rows); + +template +EIGEN_ALWAYS_INLINE void gemm_complex_extra_row( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index row, + Index rows, + Index remaining_rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask); + +template +EIGEN_ALWAYS_INLINE void gemm_complex_extra_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index cols, + Index remaining_rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask); + +template +EIGEN_ALWAYS_INLINE void convertArrayBF16toF32(float *result, Index cols, Index rows, const DataMapper& src); + +template +EIGEN_ALWAYS_INLINE void storeBF16fromResult(bfloat16* dst, Packet8bf data, Index resInc, Index extra = 0); + +template +EIGEN_ALWAYS_INLINE void convertArrayPointerBF16toF32(float *result, Index cols, Index rows, bfloat16* src, Index resInc = 1); + +template +EIGEN_ALWAYS_INLINE void storeResults(Packet4f (&acc)[4], Index rows, const Packet4f pAlpha, float* result, Index extra_cols, Index extra_rows); + +template +EIGEN_ALWAYS_INLINE void outputVecColResults(Packet4f (&acc)[num_acc][size], float *result, Packet4f pAlpha, Index extra_rows); + +template +EIGEN_ALWAYS_INLINE void outputVecResults(Packet4f (&acc)[num_acc][size], float *result, Packet4f pAlpha); + +template +EIGEN_ALWAYS_INLINE Packet8bf loadColData(RhsMapper& rhs, Index j); + +template +EIGEN_ALWAYS_INLINE Packet ploadLhs(const __UNPACK_TYPE__(Packet)* lhs); + +template +EIGEN_ALWAYS_INLINE void bload(PacketBlock& acc, const DataMapper& res, Index row, Index col); + +template +EIGEN_ALWAYS_INLINE void bstore(PacketBlock& acc, const DataMapper& res, Index row); + +#ifdef USE_PARTIAL_PACKETS +template +EIGEN_ALWAYS_INLINE void bload_partial(PacketBlock& acc, const DataMapper& res, Index row, Index elements); + +template +EIGEN_ALWAYS_INLINE void bstore_partial(PacketBlock& acc, const DataMapper& res, Index row, Index elements); +#endif + +template +EIGEN_ALWAYS_INLINE void bscale(PacketBlock& acc, PacketBlock& accZ, const Packet& pAlpha); + +template +EIGEN_ALWAYS_INLINE void bscale(PacketBlock& acc, PacketBlock& accZ, const Packet& pAlpha, const Packet& pMask); + +template +EIGEN_ALWAYS_INLINE void bscalec(PacketBlock& aReal, PacketBlock& aImag, const Packet& bReal, const Packet& bImag, PacketBlock& cReal, PacketBlock& cImag, const Packet& pMask); + +template +EIGEN_ALWAYS_INLINE void bcouple(PacketBlock& taccReal, PacketBlock& taccImag, PacketBlock& tRes, PacketBlock& acc1, PacketBlock& acc2); + +#define MICRO_NORMAL(iter) \ + (accCols == accCols2) || (unroll_factor != (iter + 1)) + +#define MICRO_UNROLL_ITER1(func, N) \ + switch (remaining_rows) { \ + default: \ + func(N, 0) \ + break; \ + case 1: \ + func(N, 1) \ + break; \ + case 2: \ + if (sizeof(Scalar) == sizeof(float)) { \ + func(N, 2) \ + } \ + break; \ + case 3: \ + if (sizeof(Scalar) == sizeof(float)) { \ + func(N, 3) \ + } \ + break; \ + } + +#ifdef USE_PARTIAL_PACKETS +#define MICRO_UNROLL_ITER(func, N) \ + if (remaining_rows) { \ + func(N, true); \ + } else { \ + func(N, false); \ + } + +#define MICRO_NORMAL_PARTIAL(iter) \ + full || (unroll_factor != (iter + 1)) +#else +#define MICRO_UNROLL_ITER(func, N) MICRO_UNROLL_ITER1(func, N) +#endif + +#define MICRO_COMPLEX_UNROLL_ITER(func, N) MICRO_UNROLL_ITER1(func, N) + +#define MICRO_NORMAL_COLS(iter, a, b) ((MICRO_NORMAL(iter)) ? a : b) + +#define MICRO_LOAD1(lhs_ptr, iter) \ + if (unroll_factor > iter) { \ + lhsV##iter = ploadLhs(lhs_ptr##iter); \ + lhs_ptr##iter += MICRO_NORMAL_COLS(iter, accCols, accCols2); \ + } else { \ + EIGEN_UNUSED_VARIABLE(lhsV##iter); \ + } + +#define MICRO_LOAD_ONE(iter) MICRO_LOAD1(lhs_ptr, iter) + +#define MICRO_COMPLEX_LOAD_ONE(iter) \ + if (!LhsIsReal && (unroll_factor > iter)) { \ + lhsVi##iter = ploadLhs(lhs_ptr_real##iter + MICRO_NORMAL_COLS(iter, imag_delta, imag_delta2)); \ + } else { \ + EIGEN_UNUSED_VARIABLE(lhsVi##iter); \ + } \ + MICRO_LOAD1(lhs_ptr_real, iter) \ + +#define MICRO_SRC_PTR1(lhs_ptr, advRows, iter) \ + if (unroll_factor > iter) { \ + lhs_ptr##iter = lhs_base + (row+(iter*accCols))*strideA*advRows - MICRO_NORMAL_COLS(iter, 0, (accCols-accCols2)*offsetA); \ + } else { \ + EIGEN_UNUSED_VARIABLE(lhs_ptr##iter); \ + } + +#define MICRO_SRC_PTR_ONE(iter) MICRO_SRC_PTR1(lhs_ptr, 1, iter) + +#define MICRO_COMPLEX_SRC_PTR_ONE(iter) MICRO_SRC_PTR1(lhs_ptr_real, advanceRows, iter) + +#define MICRO_PREFETCH1(lhs_ptr, iter) \ + if (unroll_factor > iter) { \ + EIGEN_POWER_PREFETCH(lhs_ptr##iter); \ + } + +#define MICRO_PREFETCH_ONE(iter) MICRO_PREFETCH1(lhs_ptr, iter) + +#define MICRO_COMPLEX_PREFETCH_ONE(iter) MICRO_PREFETCH1(lhs_ptr_real, iter) + +#ifdef USE_PARTIAL_PACKETS +#define MICRO_UPDATE_MASK +#else +#define MICRO_UPDATE_MASK EIGEN_UNUSED_VARIABLE(pMask); +#endif + +#define MICRO_UPDATE \ + if (accCols == accCols2) { \ + MICRO_UPDATE_MASK \ + EIGEN_UNUSED_VARIABLE(offsetA); \ + row += unroll_factor*accCols; \ + } + +#define MICRO_COMPLEX_UPDATE \ + MICRO_UPDATE \ + if(LhsIsReal || (accCols == accCols2)) { \ + EIGEN_UNUSED_VARIABLE(imag_delta2); \ + } + + +} // end namespace internal +} // end namespace Eigen diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h new file mode 100644 index 0000000..e4013a7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h @@ -0,0 +1,757 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2020 Everton Constantino (everton.constantino@ibm.com) +// Copyright (C) 2021 Chip Kerchner (chip.kerchner@ibm.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H +#define EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + +// If using dynamic dispatch, set the CPU target. +#if defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH) +#pragma GCC push_options +#pragma GCC target("cpu=power10,htm") +#endif + +#ifdef __has_builtin +#if !__has_builtin(__builtin_vsx_assemble_pair) +#define __builtin_vsx_assemble_pair __builtin_mma_assemble_pair +#endif +#if !__has_builtin(__builtin_vsx_disassemble_pair) +#define __builtin_vsx_disassemble_pair __builtin_mma_disassemble_pair +#endif +#endif + +#include "../../InternalHeaderCheck.h" + +#include "MatrixProductMMAbfloat16.h" + +namespace Eigen { + +namespace internal { + +#define accColsC (accCols / 2) + +EIGEN_ALWAYS_INLINE void bsetzeroMMA(__vector_quad* acc) +{ + __builtin_mma_xxsetaccz(acc); +} + +#ifdef USE_PARTIAL_PACKETS +template +EIGEN_ALWAYS_INLINE void storeAccumulator(Index i, const DataMapper& data, const Packet& alpha, const Index elements, __vector_quad* acc) +#else +template +EIGEN_ALWAYS_INLINE void storeAccumulator(Index i, const DataMapper& data, const Packet& alpha, const Packet& pMask, __vector_quad* acc) +#endif +{ + PacketBlock result; + __builtin_mma_disassemble_acc(&result.packet, acc); + + PacketBlock tRes; +#ifdef USE_PARTIAL_PACKETS + if (full) { + EIGEN_UNUSED_VARIABLE(elements); + bload(tRes, data, i, 0); + bscale(tRes, result, alpha); + bstore(tRes, data, i); + } else { + bload_partial(tRes, data, i, elements); + bscale(tRes, result, alpha); + bstore_partial(tRes, data, i, elements); + } +#else + bload(tRes, data, i, 0); + bscale(tRes, result, alpha, pMask); + bstore(tRes, data, i); +#endif +} + +template +EIGEN_ALWAYS_INLINE void storeComplexAccumulator(Index i, const DataMapper& data, const Packet& alphaReal, const Packet& alphaImag, const Packet& pMask, __vector_quad* accReal, __vector_quad* accImag) +{ + constexpr bool full = (accCols2 > accColsC); + PacketBlock resultReal, resultImag; + __builtin_mma_disassemble_acc(&resultReal.packet, accReal); + __builtin_mma_disassemble_acc(&resultImag.packet, accImag); + + PacketBlock tRes; + bload(tRes, data, i, 0); + + PacketBlock taccReal, taccImag; + bscalec(resultReal, resultImag, alphaReal, alphaImag, taccReal, taccImag, pMask); + + PacketBlock acc1, acc2; + bcouple(taccReal, taccImag, tRes, acc1, acc2); + + bstore(acc1, data, i); + if (full) { + bstore(acc2, data, i + accColsC); + } +} + +// Defaults to float32, since Eigen still supports C++03 we can't use default template arguments +template +EIGEN_ALWAYS_INLINE void pgerMMA(__vector_quad* acc, const RhsPacket& a, const LhsPacket& b) +{ + if(NegativeAccumulate) + { + __builtin_mma_xvf32gernp(acc, (__vector unsigned char)a, (__vector unsigned char)b); + } else { + __builtin_mma_xvf32gerpp(acc, (__vector unsigned char)a, (__vector unsigned char)b); + } +} + +template +EIGEN_ALWAYS_INLINE void pgerMMA(__vector_quad* acc, const __vector_pair& a, const Packet2d& b) +{ + if(NegativeAccumulate) + { + __builtin_mma_xvf64gernp(acc, (__vector_pair)a, (__vector unsigned char)b); + } else { + __builtin_mma_xvf64gerpp(acc, (__vector_pair)a, (__vector unsigned char)b); + } +} + +template +EIGEN_ALWAYS_INLINE void pgercMMA(__vector_quad* accReal, __vector_quad* accImag, const Packet& lhsV, Packet& lhsVi, const RhsPacket& rhsV, RhsPacket& rhsVi) +{ + pgerMMA(accReal, rhsV, lhsV); + if(LhsIsReal) { + pgerMMA(accImag, rhsVi, lhsV); + EIGEN_UNUSED_VARIABLE(lhsVi); + } else { + if(!RhsIsReal) { + pgerMMA(accReal, rhsVi, lhsVi); + pgerMMA(accImag, rhsVi, lhsV); + } else { + EIGEN_UNUSED_VARIABLE(rhsVi); + } + pgerMMA(accImag, rhsV, lhsVi); + } +} + +// This is necessary because ploadRhs for double returns a pair of vectors when MMA is enabled. +template +EIGEN_ALWAYS_INLINE Packet ploadRhs(const __UNPACK_TYPE__(Packet)* rhs) +{ + return ploadu(rhs); +} + +template +EIGEN_ALWAYS_INLINE void ploadRhsMMA(const Scalar* rhs, Packet& rhsV) +{ + rhsV = ploadRhs(rhs); +} + +template<> +EIGEN_ALWAYS_INLINE void ploadRhsMMA(const double* rhs, __vector_pair& rhsV) +{ +#if EIGEN_COMP_LLVM + __builtin_vsx_assemble_pair(&rhsV, + reinterpret_cast<__vector unsigned char>(ploadRhs(rhs + (sizeof(Packet2d) / sizeof(double)))), + reinterpret_cast<__vector unsigned char>(ploadRhs(rhs))); +#else + rhsV = *reinterpret_cast<__vector_pair *>(const_cast(rhs)); +#endif +} + +EIGEN_ALWAYS_INLINE void ploadLhsMMA(const double* lhs, __vector_pair& lhsV) +{ + ploadRhsMMA(lhs, lhsV); +} + +#if (EIGEN_COMP_LLVM || (__GNUC__ >= 11)) +#define VECTOR_PAIR_LOADS_LHS +#endif + +// PEEL_MMA loop factor. +#define PEEL_MMA 7 + +#define MICRO_MMA_UNROLL(func) \ + func(0) func(1) func(2) func(3) func(4) func(5) func(6) func(7) + +#define MICRO_MMA_WORK(func, type, peel) \ + func(0,type,peel) func(1,type,peel) func(2,type,peel) func(3,type,peel) \ + func(4,type,peel) func(5,type,peel) func(6,type,peel) func(7,type,peel) + +#define MICRO_MMA_WORK_ONE(iter, type, peel) \ + if (unroll_factor > iter) { \ + pgerMMA(&accZero##iter, rhsV[peel], lhsV##iter); \ + } + +#ifdef VECTOR_PAIR_LOADS_LHS +#define MICRO_MMA_WORK_TWO(iter, type, peel) \ + if (unroll_factor > iter) { \ + pgerMMA(&accZero##iter, rhsV[peel], lhsV2##iter.packet[peel & 1]); \ + } + +#define MICRO_MMA_LOAD1_TWO(lhs_ptr, iter) \ + if (unroll_factor > iter) { \ + if (MICRO_NORMAL(iter)) { \ + ploadLhsMMA(reinterpret_cast(lhs_ptr##iter), plhsV##iter); \ + __builtin_vsx_disassemble_pair(reinterpret_cast(&lhsV2##iter.packet), &plhsV##iter); \ + lhs_ptr##iter += accCols*2; \ + } else { \ + lhsV2##iter.packet[0] = ploadLhs(lhs_ptr##iter); \ + lhsV2##iter.packet[1] = ploadLhs(lhs_ptr##iter + accCols2); \ + lhs_ptr##iter += accCols2*2; \ + EIGEN_UNUSED_VARIABLE(plhsV##iter) \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(lhsV2##iter); \ + EIGEN_UNUSED_VARIABLE(plhsV##iter) \ + } + +#define MICRO_MMA_LOAD_TWO(iter) MICRO_MMA_LOAD1_TWO(lhs_ptr, iter) +#endif + +#define MICRO_MMA_TYPE_PEEL(funcw, funcl, type, peel) \ + if (PEEL_MMA > peel) { \ + Packet lhsV0, lhsV1, lhsV2, lhsV3, lhsV4, lhsV5, lhsV6, lhsV7; \ + ploadRhsMMA(rhs_ptr + (accRows * peel), rhsV[peel]); \ + MICRO_MMA_UNROLL(funcl) \ + MICRO_MMA_WORK(funcw, type, peel) \ + } + +#ifndef VECTOR_PAIR_LOADS_LHS +#define MICRO_MMA_UNROLL_TYPE_PEEL(funcw, funcl, type) \ + type rhsV[8]; \ + MICRO_MMA_TYPE_PEEL(funcw,funcl,type,0) MICRO_MMA_TYPE_PEEL(funcw,funcl,type,1) \ + MICRO_MMA_TYPE_PEEL(funcw,funcl,type,2) MICRO_MMA_TYPE_PEEL(funcw,funcl,type,3) \ + MICRO_MMA_TYPE_PEEL(funcw,funcl,type,4) MICRO_MMA_TYPE_PEEL(funcw,funcl,type,5) \ + MICRO_MMA_TYPE_PEEL(funcw,funcl,type,6) MICRO_MMA_TYPE_PEEL(funcw,funcl,type,7) +#else +#define MICRO_MMA_TYPE_PEEL2(funcw1, funcl1, funcw2, funcl2, type, peel1, peel2) \ + if (PEEL_MMA > peel2) { \ + PacketBlock lhsV20, lhsV21, lhsV22, lhsV23, lhsV24, lhsV25, lhsV26, lhsV27; \ + __vector_pair plhsV0, plhsV1, plhsV2, plhsV3, plhsV4, plhsV5, plhsV6, plhsV7; \ + if (sizeof(type) == 16) { \ + ploadRhsMMA(reinterpret_cast(rhs_ptr + (accRows * peel1)), prhsV##peel1); \ + __builtin_vsx_disassemble_pair(reinterpret_cast(&rhsV[peel1]), &prhsV##peel1); \ + } else { \ + EIGEN_UNUSED_VARIABLE(prhsV##peel1); \ + ploadRhsMMA(rhs_ptr + (accRows * peel1), rhsV[peel1]); \ + ploadRhsMMA(rhs_ptr + (accRows * peel2), rhsV[peel2]); \ + } \ + MICRO_MMA_UNROLL(funcl2) \ + MICRO_MMA_WORK(funcw2, type, peel1) \ + MICRO_MMA_WORK(funcw2, type, peel2) \ + } else { \ + EIGEN_UNUSED_VARIABLE(prhsV##peel1); \ + MICRO_MMA_TYPE_PEEL(funcw1, funcl1, type, peel1) \ + } + +#define MICRO_MMA_UNROLL_TYPE_PEEL2(funcw1, funcl1, funcw2, funcl2, type) \ + type rhsV[8]; \ + __vector_pair prhsV0, prhsV2, prhsV4, prhsV6; \ + MICRO_MMA_TYPE_PEEL2(funcw1,funcl1,funcw2,funcl2,type,0,1) \ + MICRO_MMA_TYPE_PEEL2(funcw1,funcl1,funcw2,funcl2,type,2,3) \ + MICRO_MMA_TYPE_PEEL2(funcw1,funcl1,funcw2,funcl2,type,4,5) \ + MICRO_MMA_TYPE_PEEL2(funcw1,funcl1,funcw2,funcl2,type,6,7) +#endif + +#define MICRO_MMA_UNROLL_TYPE_ONE(funcw, funcl, type) \ + type rhsV[1]; \ + MICRO_MMA_TYPE_PEEL(funcw,funcl,type,0) + +#define MICRO_MMA_UNROLL_TYPE(MICRO_MMA_TYPE, size) \ + MICRO_MMA_TYPE(MICRO_MMA_WORK_ONE, MICRO_LOAD_ONE, RhsPacket) \ + rhs_ptr += (accRows * size); + +#ifndef VECTOR_PAIR_LOADS_LHS +#define MICRO_MMA_ONE_PEEL MICRO_MMA_UNROLL_TYPE(MICRO_MMA_UNROLL_TYPE_PEEL, PEEL_MMA) +#else +#define MICRO_MMA_UNROLL_TYPE2(MICRO_MMA_TYPE, size) \ + MICRO_MMA_TYPE(MICRO_MMA_WORK_ONE, MICRO_LOAD_ONE, MICRO_MMA_WORK_TWO, MICRO_MMA_LOAD_TWO, RhsPacket) \ + rhs_ptr += (accRows * size); + +#define MICRO_MMA_ONE_PEEL MICRO_MMA_UNROLL_TYPE2(MICRO_MMA_UNROLL_TYPE_PEEL2, PEEL_MMA) +#endif + +#define MICRO_MMA_ONE MICRO_MMA_UNROLL_TYPE(MICRO_MMA_UNROLL_TYPE_ONE, 1) + +#define MICRO_MMA_DST_PTR_ONE(iter) \ + if (unroll_factor > iter) { \ + bsetzeroMMA(&accZero##iter); \ + } else { \ + EIGEN_UNUSED_VARIABLE(accZero##iter); \ + } + +#define MICRO_MMA_DST_PTR MICRO_MMA_UNROLL(MICRO_MMA_DST_PTR_ONE) + +#define MICRO_MMA_SRC_PTR MICRO_MMA_UNROLL(MICRO_SRC_PTR_ONE) + +#define MICRO_MMA_PREFETCH MICRO_MMA_UNROLL(MICRO_PREFETCH_ONE) + +#ifdef USE_PARTIAL_PACKETS +#define MICRO_MMA_STORE_ONE(iter) \ + if (unroll_factor > iter) { \ + storeAccumulator(row + iter*accCols, res, pAlpha, accCols2, &accZero##iter); \ + } +#else +#define MICRO_MMA_STORE_ONE(iter) \ + if (unroll_factor > iter) { \ + storeAccumulator(row + iter*accCols, res, pAlpha, pMask, &accZero##iter); \ + } +#endif + +#define MICRO_MMA_STORE MICRO_MMA_UNROLL(MICRO_MMA_STORE_ONE) + +#ifdef USE_PARTIAL_PACKETS +template +#else +template +#endif +EIGEN_ALWAYS_INLINE void gemm_unrolled_MMA_iteration( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index& row, + const Packet& pAlpha, +#ifdef USE_PARTIAL_PACKETS + Index accCols2 +#else + const Packet& pMask +#endif + ) +{ + const Scalar* rhs_ptr = rhs_base; + const Scalar* lhs_ptr0 = NULL, * lhs_ptr1 = NULL, * lhs_ptr2 = NULL, * lhs_ptr3 = NULL, * lhs_ptr4 = NULL, * lhs_ptr5 = NULL, * lhs_ptr6 = NULL, * lhs_ptr7 = NULL; + __vector_quad accZero0, accZero1, accZero2, accZero3, accZero4, accZero5, accZero6, accZero7; + + MICRO_MMA_SRC_PTR + MICRO_MMA_DST_PTR + + Index k = 0, depth2 = depth - PEEL_MMA; + for(; k <= depth2; k += PEEL_MMA) + { + EIGEN_POWER_PREFETCH(rhs_ptr); + MICRO_MMA_PREFETCH + MICRO_MMA_ONE_PEEL + } + for(; k < depth; k++) + { + MICRO_MMA_ONE + } + MICRO_MMA_STORE + + MICRO_UPDATE +} + +#ifdef USE_PARTIAL_PACKETS +#define MICRO_MMA_UNROLL_ITER2(N, M) \ + gemm_unrolled_MMA_iteration(res3, lhs_base, rhs_base, depth, strideA, offsetA, row, pAlpha, M ? remaining_rows : accCols); \ + if (M) return; +#else +#define MICRO_MMA_UNROLL_ITER2(N, M) \ + gemm_unrolled_MMA_iteration(res3, lhs_base, rhs_base, depth, strideA, offsetA, row, pAlpha, pMask); \ + if (M) return; +#endif + +template +EIGEN_ALWAYS_INLINE void gemmMMA_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index remaining_rows, + const Packet& pAlpha, + const Packet& pMask) +{ + const DataMapper res3 = res.getSubMapper(0, col); + + const Scalar* rhs_base = blockB + col*strideB + accRows*offsetB; + const Scalar* lhs_base = blockA + accCols*offsetA; + Index row = 0; + +#define MAX_MMA_UNROLL 7 + while(row + MAX_MMA_UNROLL*accCols <= rows) { + MICRO_MMA_UNROLL_ITER2(MAX_MMA_UNROLL, 0); + } + switch( (rows-row)/accCols ) { +#if MAX_MMA_UNROLL > 7 + case 7: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 7) + break; +#endif +#if MAX_MMA_UNROLL > 6 + case 6: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 6) + break; +#endif +#if MAX_MMA_UNROLL > 5 + case 5: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 5) + break; +#endif +#if MAX_MMA_UNROLL > 4 + case 4: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 4) + break; +#endif +#if MAX_MMA_UNROLL > 3 + case 3: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 3) + break; +#endif +#if MAX_MMA_UNROLL > 2 + case 2: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 2) + break; +#endif +#if MAX_MMA_UNROLL > 1 + case 1: + MICRO_UNROLL_ITER(MICRO_MMA_UNROLL_ITER2, 1) + break; +#endif + default: + break; + } +#undef MAX_MMA_UNROLL + + if(remaining_rows > 0) + { + gemm_extra_row(res3, blockA, rhs_base, depth, strideA, offsetA, strideB, row, rows, remaining_rows, pAlpha, pMask); + } +} + +template +void gemmMMA(const DataMapper& res, const Scalar* blockA, const Scalar* blockB, Index rows, Index depth, Index cols, Scalar alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) +{ + const Index remaining_rows = rows % accCols; + + if( strideA == -1 ) strideA = depth; + if( strideB == -1 ) strideB = depth; + + const Packet pAlpha = pset1(alpha); + const Packet pMask = bmask(remaining_rows); + + typedef typename std::conditional_t<(sizeof(Scalar) == sizeof(float)), RhsPacket, __vector_pair> RhsPacket2; + + Index col = 0; + for(; col + accRows <= cols; col += accRows) + { + gemmMMA_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlpha, pMask); + } + + if (col != cols) + { + gemm_extra_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, cols, remaining_rows, pAlpha, pMask); + } +} + +#define advanceRows ((LhsIsReal) ? 1 : 2) +#define advanceCols ((RhsIsReal) ? 1 : 2) + +// PEEL_COMPLEX_MMA loop factor. +#define PEEL_COMPLEX_MMA 3 + +#define MICRO_COMPLEX_MMA_UNROLL(func) \ + func(0) func(1) func(2) func(3) + +#define MICRO_COMPLEX_MMA_WORK(func, type, peel) \ + func(0,type,peel) func(1,type,peel) func(2,type,peel) func(3,type,peel) + +#define MICRO_COMPLEX_MMA_WORK_ONE(iter, type, peel) \ + if (unroll_factor > iter) { \ + pgercMMA(&accReal##iter, &accImag##iter, lhsV##iter, lhsVi##iter, rhsV[peel], rhsVi[peel]); \ + } + +#ifdef VECTOR_PAIR_LOADS_LHS +#define MICRO_COMPLEX_MMA_WORK_TWO(iter, type, peel) \ + if (unroll_factor > iter) { \ + pgercMMA(&accReal##iter, &accImag##iter, lhsV2##iter.packet[peel & 1], lhsVi2##iter.packet[peel & 1], rhsV[peel], rhsVi[peel]); \ + } + +#define MICRO_COMPLEX_MMA_LOAD1_TWO(lhs_ptr, iter) \ + if (!LhsIsReal && (unroll_factor > iter)) { \ + if (MICRO_NORMAL(iter)) { \ + ploadLhsMMA(reinterpret_cast(lhs_ptr_real##iter + imag_delta), plhsVi##iter); \ + __builtin_vsx_disassemble_pair(reinterpret_cast(&lhsVi2##iter.packet), &plhsVi##iter); \ + } else { \ + lhsVi2##iter.packet[0] = ploadLhs(lhs_ptr_real##iter + imag_delta2); \ + lhsVi2##iter.packet[1] = ploadLhs(lhs_ptr_real##iter + imag_delta2 + accCols2); \ + EIGEN_UNUSED_VARIABLE(plhsVi##iter) \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(lhsVi2##iter); \ + EIGEN_UNUSED_VARIABLE(plhsVi##iter) \ + } \ + MICRO_MMA_LOAD1_TWO(lhs_ptr_real, iter) + +#define MICRO_COMPLEX_MMA_LOAD_TWO(iter) MICRO_COMPLEX_MMA_LOAD1_TWO(lhs_ptr, iter) +#endif + +#define MICRO_COMPLEX_MMA_TYPE_PEEL(funcw, funcl, type, peel) \ + if (PEEL_COMPLEX_MMA > peel) { \ + Packet lhsV0, lhsV1, lhsV2, lhsV3; \ + Packet lhsVi0, lhsVi1, lhsVi2, lhsVi3; \ + ploadRhsMMA(rhs_ptr_real + (accRows * peel), rhsV[peel]); \ + if(!RhsIsReal) { \ + ploadRhsMMA(rhs_ptr_imag + (accRows * peel), rhsVi[peel]); \ + } \ + MICRO_COMPLEX_MMA_UNROLL(funcl) \ + MICRO_COMPLEX_MMA_WORK(funcw, type, peel) \ + } + +#ifndef VECTOR_PAIR_LOADS_LHS +#define MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL(funcw, funcl, type) \ + type rhsV[4], rhsVi[4]; \ + MICRO_COMPLEX_MMA_TYPE_PEEL(funcw,funcl,type,0) MICRO_COMPLEX_MMA_TYPE_PEEL(funcw,funcl,type,1) \ + MICRO_COMPLEX_MMA_TYPE_PEEL(funcw,funcl,type,2) MICRO_COMPLEX_MMA_TYPE_PEEL(funcw,funcl,type,3) +#else +#define MICRO_COMPLEX_MMA_TYPE_PEEL2(funcw1, funcl1, funcw2, funcl2, type, peel1, peel2) \ + if (PEEL_COMPLEX_MMA > peel2) { \ + PacketBlock lhsV20, lhsV21, lhsV22, lhsV23; \ + PacketBlock lhsVi20, lhsVi21, lhsVi22, lhsVi23; \ + __vector_pair plhsV0, plhsV1, plhsV2, plhsV3; \ + __vector_pair plhsVi0, plhsVi1, plhsVi2, plhsVi3; \ + if (sizeof(type) == 16) { \ + ploadRhsMMA(reinterpret_cast(rhs_ptr_real + (accRows * peel1)), prhsV##peel1); \ + __builtin_vsx_disassemble_pair(reinterpret_cast(&rhsV[peel1]), &prhsV##peel1); \ + if(!RhsIsReal) { \ + ploadRhsMMA(reinterpret_cast(rhs_ptr_imag + (accRows * peel1)), prhsVi##peel1); \ + __builtin_vsx_disassemble_pair(reinterpret_cast(&rhsVi[peel1]), &prhsVi##peel1); \ + } else { \ + EIGEN_UNUSED_VARIABLE(prhsVi##peel1); \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(prhsV##peel1); \ + EIGEN_UNUSED_VARIABLE(prhsVi##peel1); \ + ploadRhsMMA(rhs_ptr_real + (accRows * peel1), rhsV[peel1]); \ + ploadRhsMMA(rhs_ptr_real + (accRows * peel2), rhsV[peel2]); \ + if(!RhsIsReal) { \ + ploadRhsMMA(rhs_ptr_imag + (accRows * peel1), rhsVi[peel1]); \ + ploadRhsMMA(rhs_ptr_imag + (accRows * peel2), rhsVi[peel2]); \ + } \ + } \ + MICRO_COMPLEX_MMA_UNROLL(funcl2) \ + MICRO_COMPLEX_MMA_WORK(funcw2, type, peel1) \ + MICRO_COMPLEX_MMA_WORK(funcw2, type, peel2) \ + } else { \ + EIGEN_UNUSED_VARIABLE(prhsV##peel1); \ + EIGEN_UNUSED_VARIABLE(prhsVi##peel1); \ + MICRO_COMPLEX_MMA_TYPE_PEEL(funcw1, funcl1, type, peel1) \ + } + +#define MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL2(funcw1, funcl1, funcw2, funcl2, type) \ + type rhsV[4], rhsVi[4]; \ + __vector_pair prhsV0, prhsV2; \ + __vector_pair prhsVi0, prhsVi2; \ + MICRO_COMPLEX_MMA_TYPE_PEEL2(funcw1,funcl1,funcw2,funcl2,type,0,1) \ + MICRO_COMPLEX_MMA_TYPE_PEEL2(funcw1,funcl1,funcw2,funcl2,type,2,3) +#endif + +#define MICRO_COMPLEX_MMA_UNROLL_TYPE_ONE(funcw, funcl, type) \ + type rhsV[1], rhsVi[1]; \ + MICRO_COMPLEX_MMA_TYPE_PEEL(funcw,funcl,type,0) + +#define MICRO_COMPLEX_MMA_UNROLL_TYPE(MICRO_COMPLEX_MMA_TYPE, size) \ + MICRO_COMPLEX_MMA_TYPE(MICRO_COMPLEX_MMA_WORK_ONE, MICRO_COMPLEX_LOAD_ONE, RhsPacket) \ + rhs_ptr_real += (accRows * size); \ + if(!RhsIsReal) rhs_ptr_imag += (accRows * size); + +#ifndef VECTOR_PAIR_LOADS_LHS +#define MICRO_COMPLEX_MMA_ONE_PEEL MICRO_COMPLEX_MMA_UNROLL_TYPE(MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL, PEEL_COMPLEX_MMA) +#else +#define MICRO_COMPLEX_MMA_UNROLL_TYPE2(MICRO_COMPLEX_MMA_TYPE, size) \ + MICRO_COMPLEX_MMA_TYPE(MICRO_COMPLEX_MMA_WORK_ONE, MICRO_COMPLEX_LOAD_ONE, MICRO_COMPLEX_MMA_WORK_TWO, MICRO_COMPLEX_MMA_LOAD_TWO, RhsPacket) \ + rhs_ptr_real += (accRows * size); \ + if(!RhsIsReal) rhs_ptr_imag += (accRows * size); + +#define MICRO_COMPLEX_MMA_ONE_PEEL MICRO_COMPLEX_MMA_UNROLL_TYPE2(MICRO_COMPLEX_MMA_UNROLL_TYPE_PEEL2, PEEL_COMPLEX_MMA) +#endif + +#define MICRO_COMPLEX_MMA_ONE MICRO_COMPLEX_MMA_UNROLL_TYPE(MICRO_COMPLEX_MMA_UNROLL_TYPE_ONE, 1) + +#define MICRO_COMPLEX_MMA_DST_PTR_ONE(iter) \ + if (unroll_factor > iter) { \ + bsetzeroMMA(&accReal##iter); \ + bsetzeroMMA(&accImag##iter); \ + } else { \ + EIGEN_UNUSED_VARIABLE(accReal##iter); \ + EIGEN_UNUSED_VARIABLE(accImag##iter); \ + } + +#define MICRO_COMPLEX_MMA_DST_PTR MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_MMA_DST_PTR_ONE) + +#define MICRO_COMPLEX_MMA_SRC_PTR MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_SRC_PTR_ONE) + +#define MICRO_COMPLEX_MMA_PREFETCH MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_PREFETCH_ONE) + +#define MICRO_COMPLEX_MMA_STORE_ONE(iter) \ + if (unroll_factor > iter) { \ + storeComplexAccumulator(row + iter*accCols, res, pAlphaReal, pAlphaImag, pMask, &accReal##iter, &accImag##iter); \ + } + +#define MICRO_COMPLEX_MMA_STORE MICRO_COMPLEX_MMA_UNROLL(MICRO_COMPLEX_MMA_STORE_ONE) + +template +EIGEN_ALWAYS_INLINE void gemm_complex_unrolled_MMA_iteration( + const DataMapper& res, + const Scalar* lhs_base, + const Scalar* rhs_base, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index& row, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + const Scalar* rhs_ptr_real = rhs_base; + const Scalar* rhs_ptr_imag = NULL; + const Index imag_delta = accCols*strideA; + const Index imag_delta2 = accCols2*strideA; + if(!RhsIsReal) { + rhs_ptr_imag = rhs_base + accRows*strideB; + } else { + EIGEN_UNUSED_VARIABLE(rhs_ptr_imag); + } + const Scalar* lhs_ptr_real0 = NULL, * lhs_ptr_real1 = NULL; + const Scalar* lhs_ptr_real2 = NULL, * lhs_ptr_real3 = NULL; + __vector_quad accReal0, accImag0, accReal1, accImag1, accReal2, accImag2, accReal3, accImag3; + + MICRO_COMPLEX_MMA_SRC_PTR + MICRO_COMPLEX_MMA_DST_PTR + + Index k = 0, depth2 = depth - PEEL_COMPLEX_MMA; + for(; k <= depth2; k += PEEL_COMPLEX_MMA) + { + EIGEN_POWER_PREFETCH(rhs_ptr_real); + if(!RhsIsReal) { + EIGEN_POWER_PREFETCH(rhs_ptr_imag); + } + MICRO_COMPLEX_MMA_PREFETCH + MICRO_COMPLEX_MMA_ONE_PEEL + } + for(; k < depth; k++) + { + MICRO_COMPLEX_MMA_ONE + } + MICRO_COMPLEX_MMA_STORE + + MICRO_COMPLEX_UPDATE +} + +#define MICRO_COMPLEX_MMA_UNROLL_ITER2(N, M) \ + gemm_complex_unrolled_MMA_iteration(res3, lhs_base, rhs_base, depth, strideA, offsetA, strideB, row, pAlphaReal, pAlphaImag, pMask); \ + if (M) return; + +template +EIGEN_ALWAYS_INLINE void gemmMMA_complex_cols( + const DataMapper& res, + const Scalar* blockA, + const Scalar* blockB, + Index depth, + Index strideA, + Index offsetA, + Index strideB, + Index offsetB, + Index col, + Index rows, + Index remaining_rows, + const Packet& pAlphaReal, + const Packet& pAlphaImag, + const Packet& pMask) +{ + const DataMapper res3 = res.getSubMapper(0, col); + + const Scalar* rhs_base = blockB + advanceCols*col*strideB + accRows*offsetB; + const Scalar* lhs_base = blockA + accCols*offsetA; + Index row = 0; + +#define MAX_COMPLEX_MMA_UNROLL 4 + while(row + MAX_COMPLEX_MMA_UNROLL*accCols <= rows) { + MICRO_COMPLEX_MMA_UNROLL_ITER2(MAX_COMPLEX_MMA_UNROLL, 0); + } + switch( (rows-row)/accCols ) { +#if MAX_COMPLEX_MMA_UNROLL > 4 + case 4: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_MMA_UNROLL_ITER2, 4) + break; +#endif +#if MAX_COMPLEX_MMA_UNROLL > 3 + case 3: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_MMA_UNROLL_ITER2, 3) + break; +#endif +#if MAX_COMPLEX_MMA_UNROLL > 2 + case 2: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_MMA_UNROLL_ITER2, 2) + break; +#endif +#if MAX_COMPLEX_MMA_UNROLL > 1 + case 1: + MICRO_COMPLEX_UNROLL_ITER(MICRO_COMPLEX_MMA_UNROLL_ITER2, 1) + break; +#endif + default: + break; + } +#undef MAX_COMPLEX_MMA_UNROLL + + if(remaining_rows > 0) + { + gemm_complex_extra_row(res3, blockA, rhs_base, depth, strideA, offsetA, strideB, row, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask); + } +} + +template +void gemm_complexMMA(const DataMapper& res, const LhsScalar* blockAc, const RhsScalar* blockBc, Index rows, Index depth, Index cols, Scalarc alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) +{ + const Index remaining_rows = rows % accCols; + + if( strideA == -1 ) strideA = depth; + if( strideB == -1 ) strideB = depth; + + const Packet pAlphaReal = pset1(alpha.real()); + const Packet pAlphaImag = pset1(alpha.imag()); + const Packet pMask = bmask(remaining_rows); + + const Scalar* blockA = (Scalar *) blockAc; + const Scalar* blockB = (Scalar *) blockBc; + + typedef typename std::conditional_t<(sizeof(Scalar) == sizeof(float)), RhsPacket, __vector_pair> RhsPacket2; + + Index col = 0; + for(; col + accRows <= cols; col += accRows) + { + gemmMMA_complex_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, remaining_rows, pAlphaReal, pAlphaImag, pMask); + } + + if (col != cols) + { + gemm_complex_extra_cols(res, blockA, blockB, depth, strideA, offsetA, strideB, offsetB, col, rows, cols, remaining_rows, pAlphaReal, pAlphaImag, pMask); + } +} + +#undef accColsC +#undef advanceRows +#undef advanceCols + +} // end namespace internal + +} // end namespace Eigen + +#if defined(EIGEN_ALTIVEC_MMA_DYNAMIC_DISPATCH) +#pragma GCC pop_options +#endif + +#endif // EIGEN_MATRIX_PRODUCT_MMA_ALTIVEC_H + diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMAbfloat16.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMAbfloat16.h new file mode 100644 index 0000000..5094118 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMAbfloat16.h @@ -0,0 +1,749 @@ +#ifndef EIGEN_MATRIX_PRODUCT_MMA_BFLOAT16_ALTIVEC_H +#define EIGEN_MATRIX_PRODUCT_MMA_BFLOAT16_ALTIVEC_H + +#if EIGEN_COMP_LLVM +#define BFLOAT16_UNROLL _Pragma("unroll 8") +#else +#define BFLOAT16_UNROLL _Pragma("GCC unroll(8)") +#endif + +namespace Eigen { + +namespace internal { + +template +EIGEN_ALWAYS_INLINE Packet8bf loadBfloat16(const bfloat16* indexA) +{ + Packet8bf lhs1 = ploadu(indexA); + if(zero){ + Packet8bf lhs2 = pset1(Eigen::bfloat16(0)); + return vec_mergeh(lhs1.m_val, lhs2.m_val); + } else { + return lhs1; + } +} + +template +EIGEN_ALWAYS_INLINE Packet8bf loadRhsBfloat16(const bfloat16* blockB, Index strideB, Index i) +{ + return loadBfloat16(blockB + strideB*i); +} + +template +EIGEN_ALWAYS_INLINE void KLoop +( + const bfloat16* indexA, + const bfloat16* indexB, + __vector_quad (&quad_acc)[num_acc], + Index strideB, + Index k, + Index offsetB, + Index extra_cols, + Index extra_rows +) +{ + Packet8bf lhs[num_lhs], rhs[num_rhs]; + + BFLOAT16_UNROLL + for(Index i = 0; i < (num_rhs - (rhsExtraCols ? 1 : 0)); i++){ + rhs[i] = loadRhsBfloat16(indexB + k*4, strideB, i); + } + if(rhsExtraCols) { + rhs[num_rhs - 1] = loadRhsBfloat16(indexB + k*extra_cols - offsetB, strideB, num_rhs - 1); + } + + indexA += k*(lhsExtraRows ? extra_rows : num_packets); + if (num_lhs == 1) { + lhs[0] = loadBfloat16(indexA); + } else { + BFLOAT16_UNROLL + for(Index j = 0; j < num_lhs; j += 2) { + Packet8bf lhs1 = ploadu(indexA + (j + 0)*(zero ? 4 : 8)); + if (zero) { + Packet8bf lhs2 = pset1(Eigen::bfloat16(0)); + lhs[j + 0] = vec_mergeh(lhs1.m_val, lhs2.m_val); + lhs[j + 1] = vec_mergel(lhs1.m_val, lhs2.m_val); + } else { + lhs[j + 0] = lhs1; + lhs[j + 1] = ploadu(indexA + (j + 1)*8); + } + } + } + + BFLOAT16_UNROLL + for(Index i = 0, x = 0; i < num_rhs; i++) { + BFLOAT16_UNROLL + for(Index j = 0; j < num_lhs; j++, x++) { + __builtin_mma_xvbf16ger2pp(&(quad_acc[x]), reinterpret_cast(rhs[i].m_val), reinterpret_cast(lhs[j].m_val)); + } + } +} + +template +EIGEN_ALWAYS_INLINE void zeroAccumulators(__vector_quad (&quad_acc)[num_acc]) +{ + BFLOAT16_UNROLL + for(Index k = 0; k < num_acc; k++) + __builtin_mma_xxsetaccz(&(quad_acc[k])); +} + +template +EIGEN_ALWAYS_INLINE void disassembleAccumulators(__vector_quad (&quad_acc)[num_acc], Packet4f (&acc)[num_acc][4]) +{ + BFLOAT16_UNROLL + for(Index k = 0; k < num_acc; k++) + __builtin_mma_disassemble_acc((void*)acc[k], &(quad_acc[k])); +} + +template +EIGEN_ALWAYS_INLINE void outputResults(Packet4f (&acc)[num_acc][4], Index rows, const Packet4f pAlpha, float* result, const Index extra_cols, Index extra_rows) +{ + BFLOAT16_UNROLL + for(Index i = 0, k = 0; i < num_rhs - (rhsExtraCols ? 1 : 0); i++, result += 4*rows){ + BFLOAT16_UNROLL + for(Index j = 0; j < num_lhs; j++, k++) { + storeResults(acc[k], rows, pAlpha, result + j*4, extra_cols, extra_rows); + } + } + if(rhsExtraCols) { + storeResults(acc[num_acc - 1], rows, pAlpha, result, extra_cols, extra_rows); + } +} + +template +EIGEN_ALWAYS_INLINE void colLoopBodyIter(Index depth, Index rows, const Packet4f pAlpha, const bfloat16* indexA, const bfloat16* indexB, Index strideB, Index offsetB, float* result, const Index extra_cols, const Index extra_rows) +{ + constexpr Index num_lhs = multiIter ? (num_packets / 4) : 1; + constexpr Index num_rhs = (num_acc + num_lhs - 1) / num_lhs; + + for(Index offset_row = 0; offset_row < num_packets; offset_row += 4, indexA += (multiIter ? 0 : 8), indexB += (multiIter ? (num_rhs*strideB) : 0), result += (multiIter ? (4*rows*num_rhs) : 4)) { + Packet4f acc[num_acc][4]; + __vector_quad quad_acc[num_acc]; + + zeroAccumulators(quad_acc); + + Index k; + for(k = 0; k + 2 <= depth; k += 2){ + KLoop(indexA, indexB, quad_acc, strideB, k, offsetB, extra_cols, extra_rows); + } + if(depth&1){ + KLoop(indexA - (multiIter ? 0 : offset_row), indexB, quad_acc, strideB, k, offsetB, extra_cols, extra_rows); + } + + disassembleAccumulators(quad_acc, acc); + + outputResults(acc, rows, pAlpha, result, extra_cols, extra_rows); + } +} + +#define MAX_BFLOAT16_ACC 8 + +template +void colLoopBody(Index& col, Index depth, Index cols, Index rows, const Packet4f pAlpha, const bfloat16* indexA, const bfloat16* indexB, Index strideB, Index offsetB, float* result) +{ + constexpr Index step = (num_acc * 4); // each accumulator has 4 elements + const Index extra_cols = (rhsExtraCols) ? (cols & 3) : 0; + const Index extra_rows = (lhsExtraRows) ? (rows & 3) : 0; + constexpr bool multiIters = !rhsExtraCols && (num_acc == MAX_BFLOAT16_ACC); + constexpr bool normIters = multiIters && ((num_acc % (num_packets / 4)) == 0); + + do{ + colLoopBodyIter(depth, rows, pAlpha, indexA, indexB, strideB, offsetB, result, extra_cols, extra_rows); + + indexB += strideB*num_acc; + result += rows*step; + } while(multiIters && (step <= cols - (col += step))); +} + +template +EIGEN_ALWAYS_INLINE void colLoopBodyExtraN(Index col, Index depth, Index cols, Index rows, const Packet4f pAlpha, const bfloat16* indexA, const bfloat16* blockB, Index strideB, Index offsetB, float* result) +{ + if (MAX_BFLOAT16_ACC > num_acc) { + colLoopBody(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + } +} + +template +void colLoopBodyExtra(Index col, Index depth, Index cols, Index rows, const Packet4f pAlpha, const bfloat16* indexA, const bfloat16* blockB, Index strideB, Index offsetB, float* result) +{ + switch ((cols - col) >> 2) { + case 7: + colLoopBodyExtraN<7, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 6: + colLoopBodyExtraN<6, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 5: + colLoopBodyExtraN<5, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 4: + colLoopBodyExtraN<4, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 3: + colLoopBodyExtraN<3, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 2: + colLoopBodyExtraN<2, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + case 1: + colLoopBodyExtraN<1, num_packets, rhsExtraCols, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + break; + default: + if (rhsExtraCols) { + colLoopBody<1, num_packets, true, lhsExtraRows>(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + } + break; + } +} + +template +EIGEN_ALWAYS_INLINE void colLoops(Index depth, Index cols, Index rows, const Packet4f pAlpha, const bfloat16* indexA, const bfloat16* blockB, Index strideB, Index offsetB, float* result) +{ + Index col = 0; + if (cols >= (MAX_BFLOAT16_ACC * 4)) { + colLoopBody(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, 0, result); + blockB += (strideB >> 2)*col; + result += rows*col; + } + if (cols & 3) { + colLoopBodyExtra(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, offsetB, result); + } else { + colLoopBodyExtra(col, depth, cols, rows, pAlpha, indexA, blockB, strideB, 0, result); + } +} + +EIGEN_ALWAYS_INLINE Packet8bf convertF32toBF16(const float *res) +{ + Packet16uc fp16[2]; + __vector_pair fp16_vp = *reinterpret_cast<__vector_pair *>(const_cast(res)); + __builtin_vsx_disassemble_pair(reinterpret_cast(fp16), &fp16_vp); + fp16[0] = __builtin_vsx_xvcvspbf16(fp16[0]); + fp16[1] = __builtin_vsx_xvcvspbf16(fp16[1]); + return vec_pack(reinterpret_cast(fp16[0]), reinterpret_cast(fp16[1])); +} + +template +EIGEN_ALWAYS_INLINE void convertArrayF32toBF16Col(float *result, Index col, Index rows, const DataMapper& res) +{ + const DataMapper res2 = res.getSubMapper(0, col); + Index row; + float *result2 = result + col*rows; + for(row = 0; row + 8 <= rows; row += 8, result2 += 8){ + // get and save block + PacketBlock block; + BFLOAT16_UNROLL + for(Index j = 0; j < size; j++){ + block.packet[j] = convertF32toBF16(result2 + j*rows); + } + res2.template storePacketBlock(row, 0, block); + } + // extra rows + if(row < rows){ + BFLOAT16_UNROLL + for(Index j = 0; j < size; j++){ + Packet8bf fp16 = convertF32toBF16(result2 + j*rows); + res2.template storePacketPartial(row, j, fp16, rows & 7); + } + } +} + +template +EIGEN_ALWAYS_INLINE void convertPointerF32toBF16(Index& i, float* result, Index rows, bfloat16*& dst, Index resInc = 1) +{ + constexpr Index extra = ((size < 8) ? 8 : size); + while (i + size <= rows){ + PacketBlock r32; + r32.packet[0] = convertF32toBF16(result + i + 0); + if (size >= 16) { + r32.packet[1] = convertF32toBF16(result + i + 8); + } + if (size >= 32) { + r32.packet[2] = convertF32toBF16(result + i + 16); + r32.packet[3] = convertF32toBF16(result + i + 24); + } + storeBF16fromResult(dst, r32.packet[0], resInc, rows & 7); + if (size >= 16) { + storeBF16fromResult(dst, r32.packet[1], resInc); + } + if (size >= 32) { + storeBF16fromResult(dst, r32.packet[2], resInc); + storeBF16fromResult(dst, r32.packet[3], resInc); + } + i += extra; dst += extra*resInc; + if (size != 32) break; + } +} + +template +EIGEN_ALWAYS_INLINE void convertArrayPointerF32toBF16(float *result, Index rows, bfloat16* dst, Index resInc = 1) +{ + Index i = 0; + convertPointerF32toBF16<32,non_unit_stride>(i, result, rows, dst, resInc); + convertPointerF32toBF16<16,non_unit_stride>(i, result, rows, dst, resInc); + convertPointerF32toBF16<8,non_unit_stride>(i, result, rows, dst, resInc); + convertPointerF32toBF16<1,non_unit_stride>(i, result, rows, dst, resInc); +} + +template +EIGEN_ALWAYS_INLINE void convertArrayF32toBF16(float *result, Index cols, Index rows, const DataMapper& res) +{ + Index col; + for(col = 0; col + 4 <= cols; col += 4){ + convertArrayF32toBF16Col(result, col, rows, res); + } + // extra cols + switch (cols - col) { + case 1: + convertArrayF32toBF16Col(result, col, rows, res); + break; + case 2: + convertArrayF32toBF16Col(result, col, rows, res); + break; + case 3: + convertArrayF32toBF16Col(result, col, rows, res); + break; + } +} + +template +EIGEN_ALWAYS_INLINE void calcColLoops(const bfloat16*& indexA, Index& row, Index depth, Index cols, Index rows, const Packet4f pAlpha, const bfloat16* indexB, Index strideB, Index offsetA, Index offsetB, Index bigSuffix, float *result) +{ + if ((size == 16) || (rows & size)) { + indexA += size*offsetA; + colLoops(depth, cols, rows, pAlpha, indexA, indexB, strideB, offsetB, result + row); + row += size; + indexA += bigSuffix*size/16; + } +} + +template +void gemmMMAbfloat16(const DataMapper& res, const bfloat16* indexA, const bfloat16* indexB, Index rows, Index depth, Index cols, bfloat16 alpha, Index strideA, Index strideB, Index offsetA, Index offsetB) +{ + float falpha = Eigen::bfloat16_impl::bfloat16_to_float(alpha); + const Packet4f pAlpha = pset1(falpha); + ei_declare_aligned_stack_constructed_variable(float, result, cols*rows, 0); + + convertArrayBF16toF32(result, cols, rows, res); + + if( strideA == -1 ) strideA = depth; + if( strideB == -1 ) strideB = depth; + // Packing is done in blocks. + // There's 4 possible sizes of blocks + // Blocks of 8 columns with 16 elements (8x16) + // Blocks of 8 columns with 8 elements (8x8). This happens when there's 16 > rows >= 8 + // Blocks of 8 columns with 4 elements (8x4). This happens when there's 8 > rows >= 4 + // Blocks of 8 columns with < 4 elements. This happens when there's less than 4 remaining rows + + // Loop for LHS standard block (8x16) + Index bigSuffix = (2*8) * (strideA-offsetA); + indexB += 4*offsetB; + strideB *= 4; + offsetB *= 3; + + Index row = 0; + while(row + 16 <= rows){ + calcColLoops<16>(indexA, row, depth, cols, rows, pAlpha, indexB, strideB, offsetA, offsetB, bigSuffix, result); + } + // LHS (8x8) block + calcColLoops<8>(indexA, row, depth, cols, rows, pAlpha, indexB, strideB, offsetA, offsetB, bigSuffix, result); + // LHS (8x4) block + calcColLoops<4>(indexA, row, depth, cols, rows, pAlpha, indexB, strideB, offsetA, offsetB, bigSuffix, result); + // extra rows + if(rows & 3){ + // This index is the beginning of remaining block. + colLoops<4, true>(depth, cols, rows, pAlpha, indexA, indexB, strideB, offsetB, result + row); + } + + // Convert back to bfloat16 + convertArrayF32toBF16(result, cols, rows, res); +} + +#undef MAX_BFLOAT16_ACC + +#if !EIGEN_ALTIVEC_DISABLE_MMA +template +EIGEN_ALWAYS_INLINE void loadVecLoop(Index k, LhsMapper& lhs, Packet8bf (&a0)[num_acc], Packet8bf b1) +{ + a0[k + 0] = lhs.template loadPacket(k*4, 0); + if (!zero) { + b1 = lhs.template loadPacket(k*4, 1); + } + if (num_acc > (k + 1)) { + a0[k + 1] = vec_mergel(a0[k + 0].m_val, b1.m_val); + } + a0[k + 0] = vec_mergeh(a0[k + 0].m_val, b1.m_val); +} + +template +EIGEN_ALWAYS_INLINE void multVec(__vector_quad (&quad_acc)[num_acc], Packet8bf (&a0)[num_acc], Packet8bf b0) +{ + BFLOAT16_UNROLL + for(Index k = 0; k < num_acc; k++) { + __builtin_mma_xvbf16ger2pp(&(quad_acc[k]), reinterpret_cast(b0.m_val), reinterpret_cast(a0[k].m_val)); + } +} + +template +EIGEN_ALWAYS_INLINE void vecColLoop(Index j, LhsMapper& lhs, RhsMapper& rhs, __vector_quad (&quad_acc)[num_acc]) +{ + Packet8bf a0[num_acc]; + Packet8bf b1 = pset1(Eigen::bfloat16(0)); + Packet8bf b0 = loadColData(rhs, j); + + if (zero) { + b0 = vec_mergeh(b0.m_val, b1.m_val); + } + + using LhsSubMapper = typename LhsMapper::SubMapper; + + LhsSubMapper lhs2 = lhs.getSubMapper(0, j); + BFLOAT16_UNROLL + for(Index k = 0; k < num_acc; k += 2) { + loadVecLoop(k, lhs2, a0, b1); + } + + multVec(quad_acc, a0, b0); +} + +#define MAX_BFLOAT16_VEC_ACC 8 + +template +void colVecColLoopBody(Index& row, Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + constexpr Index step = (num_acc * 4); + const Index extra_rows = (extraRows) ? (rows & 3) : 0; + constexpr bool multiIters = !extraRows && (num_acc == MAX_BFLOAT16_VEC_ACC); + + do{ + Packet4f acc[num_acc][4]; + __vector_quad quad_acc[num_acc]; + + zeroAccumulators(quad_acc); + + using LhsSubMapper = typename LhsMapper::SubMapper; + + LhsSubMapper lhs2 = lhs.getSubMapper(row, 0); + for(Index j = 0; j + 2 <= cend; j += 2) { + vecColLoop(j, lhs2, rhs, quad_acc); + } + if (cend & 1) { + vecColLoop(cend - 1, lhs2, rhs, quad_acc); + } + + disassembleAccumulators(quad_acc, acc); + + outputVecColResults(acc, result, pAlpha, extra_rows); + + result += step; + } while(multiIters && (step <= rows - (row += step))); +} + +template +EIGEN_ALWAYS_INLINE void colVecColLoopBodyExtraN(Index& row, Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + if (MAX_BFLOAT16_VEC_ACC > num_acc) { + colVecColLoopBody(row, cend, rows, lhs, rhs, pAlpha, result); + } +} + +template +EIGEN_ALWAYS_INLINE void colVecColLoopBodyExtra(Index& row, Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + switch ((rows - row) >> 2) { + case 7: + colVecColLoopBodyExtraN<7, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 6: + colVecColLoopBodyExtraN<6, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 5: + colVecColLoopBodyExtraN<5, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 4: + colVecColLoopBodyExtraN<4, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 3: + colVecColLoopBodyExtraN<3, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 2: + colVecColLoopBodyExtraN<2, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 1: + colVecColLoopBodyExtraN<1, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + default: + if (extraRows) { + colVecColLoopBody<1, LhsMapper, RhsMapper, true, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + } + break; + } +} + +template +EIGEN_ALWAYS_INLINE void calcVecColLoops(Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + Index row = 0; + if (rows >= (MAX_BFLOAT16_VEC_ACC * 4)) { + colVecColLoopBody(row, cend, rows, lhs, rhs, pAlpha, result); + result += row; + } + if (rows & 3) { + colVecColLoopBodyExtra(row, cend, rows, lhs, rhs, pAlpha, result); + } else { + colVecColLoopBodyExtra(row, cend, rows, lhs, rhs, pAlpha, result); + } +} + +template +struct UseMMAStride : std::false_type { + static EIGEN_ALWAYS_INLINE void run(Index j2, Index jend, Index rows, LhsMapper& lhs, RhsMapper& rhs, Packet4f pAlpha, float *result) + { + using RhsSubMapper = typename RhsMapper::SubMapper; + + RhsSubMapper rhs2 = rhs.getSubMapper(j2, 0); + calcVecColLoops(jend - j2, rows, lhs, rhs2, pAlpha, result); + } +}; + +template +struct UseMMAStride::value>> : std::true_type { + static EIGEN_ALWAYS_INLINE void run(Index j2, Index jend, Index rows, LhsMapper& lhs, RhsMapper& rhs, Packet4f pAlpha, float *result) + { + using RhsSubMapper = typename RhsMapper::SubMapper; + + RhsSubMapper rhs2 = rhs.getSubMapper(j2, 0); + if (rhs.stride() == 1) { + calcVecColLoops(jend - j2, rows, lhs, rhs2, pAlpha, result); + } else { + calcVecColLoops(jend - j2, rows, lhs, rhs2, pAlpha, result); + } + } +}; + +template +void gemvMMA_bfloat16_col( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + bfloat16* res, Index resIncr, + bfloat16 alpha) +{ + EIGEN_UNUSED_VARIABLE(resIncr); + eigen_internal_assert(resIncr == 1); + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + RhsMapper rhs2(rhs); + + const Index lhsStride = lhs.stride(); + + // TODO: improve the following heuristic: + const Index block_cols = cols < 128 ? cols : (lhsStride * sizeof(bfloat16) < 16000 ? 16 : 8); + float falpha = Eigen::bfloat16_impl::bfloat16_to_float(alpha); + Packet4f pAlpha = pset1(falpha); + + ei_declare_aligned_stack_constructed_variable(float, result, rows, 0); + + convertArrayPointerBF16toF32(result, 1, rows, res); + + for (Index j2 = 0; j2 < cols; j2 += block_cols) + { + Index jend = numext::mini(j2 + block_cols, cols); + + using LhsSubMapper = typename LhsMapper::SubMapper; + + LhsSubMapper lhs2 = lhs.getSubMapper(0, j2); + UseMMAStride::run(j2, jend, rows, lhs2, rhs2, pAlpha, result); + } + + convertArrayPointerF32toBF16(result, rows, res); +} + +static Packet16uc p16uc_ELEMENT_VEC3 = { 0x0c,0x0d,0x0e,0x0f, 0x1c,0x1d,0x1e,0x1f, 0x0c,0x0d,0x0e,0x0f, 0x1c,0x1d,0x1e,0x1f }; + +template +EIGEN_ALWAYS_INLINE void preduxVecResults2(Packet4f (&acc)[num_acc][4], Index k) +{ + if (num_acc > (k + 1)) { + acc[k][0] = vec_mergeh(acc[k][0], acc[k + 1][0]); + acc[k][1] = vec_mergeo(acc[k][1], acc[k + 1][1]); + acc[k][2] = vec_mergel(acc[k][2], acc[k + 1][2]); + acc[k][3] = vec_perm(acc[k][3], acc[k + 1][3], p16uc_ELEMENT_VEC3); + + acc[k][0] = (acc[k][0] + acc[k][2]) + (acc[k][1] + acc[k][3]); + } else { + acc[k][0] = vec_mergeh(acc[k][0], acc[k][1]); + acc[k][0] += vec_mergel(acc[k][2], acc[k][3]); +#ifdef _BIG_ENDIAN + acc[k][0] += vec_sld(acc[k][0], acc[k][0], 12); +#else + acc[k][0] += vec_sld(acc[k][0], acc[k][0], 4); +#endif + } +} + +template +EIGEN_ALWAYS_INLINE void preduxVecResults(Packet4f (&acc)[num_acc][4]) +{ + BFLOAT16_UNROLL + for(Index k = 0; k < num_acc; k += 4) { + preduxVecResults2(acc, k + 0); + if (num_acc > (k + 2)) { + preduxVecResults2(acc, k + 2); + acc[k + 0][0] = reinterpret_cast(vec_mergeh(reinterpret_cast(acc[k + 0][0]), reinterpret_cast(acc[k + 2][0]))); + } + } +} + +template +EIGEN_ALWAYS_INLINE void multVecLoop(__vector_quad (&quad_acc)[num_acc], const LhsMapper& lhs, RhsMapper& rhs, Index j, Index extra_cols) +{ + Packet8bf a0[num_acc], b0; + + if (extra) { + b0 = rhs.template loadPacketPartial(j, extra_cols); + } else { + b0 = rhs.template loadPacket(j); + } + + const LhsMapper lhs2 = lhs.getSubMapper(0, j); + BFLOAT16_UNROLL + for(Index k = 0; k < num_acc; k++) { + if (extra) { + a0[k] = lhs2.template loadPacketPartial(k, 0, extra_cols); + } else { + a0[k] = lhs2.template loadPacket(k, 0); + } + } + + multVec(quad_acc, a0, b0); +} + +template +EIGEN_ALWAYS_INLINE void vecLoop(Index cols, const LhsMapper& lhs, RhsMapper& rhs, __vector_quad (&quad_acc)[num_acc], Index extra_cols) +{ + Index j = 0; + for(; j + 8 <= cols; j += 8){ + multVecLoop(quad_acc, lhs, rhs, j, extra_cols); + } + + if (extra_cols) { + multVecLoop(quad_acc, lhs, rhs, j, extra_cols); + } +} + +template +void colVecLoopBody(Index& row, Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + constexpr bool multiIters = (num_acc == MAX_BFLOAT16_VEC_ACC); + const Index extra_cols = (cols & 7); + + do{ + Packet4f acc[num_acc][4]; + __vector_quad quad_acc[num_acc]; + + zeroAccumulators(quad_acc); + + const LhsMapper lhs2 = lhs.getSubMapper(row, 0); + vecLoop(cols, lhs2, rhs, quad_acc, extra_cols); + + disassembleAccumulators(quad_acc, acc); + + preduxVecResults(acc); + + outputVecResults(acc, result, pAlpha); + + result += num_acc; + } while(multiIters && (num_acc <= rows - (row += num_acc))); +} + +template +EIGEN_ALWAYS_INLINE void colVecLoopBodyExtraN(Index& row, Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + if (MAX_BFLOAT16_VEC_ACC > num_acc) { + colVecLoopBody(row, cols, rows, lhs, rhs, pAlpha, result); + } +} + +template +EIGEN_ALWAYS_INLINE void colVecLoopBodyExtra(Index& row, Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + switch (rows - row) { + case 7: + colVecLoopBodyExtraN<7, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 6: + colVecLoopBodyExtraN<6, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 5: + colVecLoopBodyExtraN<5, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 4: + colVecLoopBodyExtraN<4, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 3: + colVecLoopBodyExtraN<3, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 2: + colVecLoopBodyExtraN<2, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 1: + colVecLoopBodyExtraN<1, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + } +} + +template +EIGEN_ALWAYS_INLINE void calcVecLoops(Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + Index row = 0; + if (rows >= MAX_BFLOAT16_VEC_ACC) { + colVecLoopBody(row, cols, rows, lhs, rhs, pAlpha, result); + result += row; + } + colVecLoopBodyExtra(row, cols, rows, lhs, rhs, pAlpha, result); +} + +template +EIGEN_STRONG_INLINE void gemvMMA_bfloat16_row( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + bfloat16* res, Index resIncr, + bfloat16 alpha) +{ + typedef typename RhsMapper::LinearMapper LinearMapper; + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + LinearMapper rhs2 = rhs.getLinearMapper(0, 0); + + eigen_internal_assert(rhs.stride() == 1); + + float falpha = Eigen::bfloat16_impl::bfloat16_to_float(alpha); + const Packet4f pAlpha = pset1(falpha); + + ei_declare_aligned_stack_constructed_variable(float, result, rows, 0); + if (resIncr == 1) { + convertArrayPointerBF16toF32(result, 1, rows, res); + } else { + convertArrayPointerBF16toF32(result, 1, rows, res, resIncr); + } + calcVecLoops(cols, rows, lhs, rhs2, pAlpha, result); + if (resIncr == 1) { + convertArrayPointerF32toBF16(result, rows, res); + } else { + convertArrayPointerF32toBF16(result, rows, res, resIncr); + } +} +#endif + +#undef MAX_BFLOAT16_VEC_ACC +#undef BFLOAT16_UNROLL + +} +} +#endif //EIGEN_MATRIX_PRODUCT_MMA_BFLOAT16_ALTIVEC_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixVectorProduct.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixVectorProduct.h new file mode 100644 index 0000000..9170230 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/MatrixVectorProduct.h @@ -0,0 +1,2989 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2021 Chip Kerchner (chip.kerchner@ibm.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_VECTOR_PRODUCT_ALTIVEC_H +#define EIGEN_MATRIX_VECTOR_PRODUCT_ALTIVEC_H + +#include "../../InternalHeaderCheck.h" + +#if defined(__MMA__) && !EIGEN_ALTIVEC_DISABLE_MMA +#if EIGEN_COMP_LLVM || (__GNUC__ > 10 || __GNUC_MINOR__ >= 3) +#define USE_GEMV_MMA +#endif + +#if !EIGEN_COMP_LLVM && (__GNUC__ < 11) +// Only allow one vector_pair in buggy gcc - gcc 10.x has a bug +#define GCC_ONE_VECTORPAIR_BUG +#endif +#endif + +//#define USE_SLOWER_GEMV_MMA // MMA is currently not as fast as VSX in complex double GEMV (revisit when gcc is improved) + +//#define EIGEN_POWER_USE_GEMV_PREFETCH +#ifdef EIGEN_POWER_USE_GEMV_PREFETCH +#define EIGEN_POWER_GEMV_PREFETCH(p) prefetch(p) +#else +#define EIGEN_POWER_GEMV_PREFETCH(p) +#endif + +#ifdef __has_builtin +#if !__has_builtin(__builtin_vsx_assemble_pair) +#define __builtin_vsx_assemble_pair __builtin_mma_assemble_pair +#endif +#if !__has_builtin(__builtin_vsx_disassemble_pair) +#define __builtin_vsx_disassemble_pair __builtin_mma_disassemble_pair +#endif +#endif + +#if EIGEN_COMP_LLVM +#define GEMV_BUILDPAIR_MMA(dst, src1, src2) \ + __builtin_vsx_assemble_pair(&dst, (__vector unsigned char)src2, (__vector unsigned char)src1) +#else +#if (__GNUC__ <= 10) +#if (__GNUC_MINOR__ > 3) +#define GEMV_BUILDPAIR_MMA(dst, src1, src2) \ + __builtin_vsx_assemble_pair(&dst, (__vector unsigned char)src2, (__vector unsigned char)src1) +#else +#define GEMV_BUILDPAIR_MMA(dst, src1, src2) \ + __builtin_vsx_assemble_pair(&dst, (__vector unsigned char)src1, (__vector unsigned char)src2) +#endif +#else +#define GEMV_BUILDPAIR_MMA(dst, src1, src2) \ + __builtin_vsx_build_pair(&dst, (__vector unsigned char)src1, (__vector unsigned char)src2) +#endif +#endif + +#define GEMV_IS_COMPLEX_COMPLEX ((sizeof(LhsPacket) == 16) && (sizeof(RhsPacket) == 16)) +#define GEMV_IS_FLOAT (ResPacketSize == (16 / sizeof(float))) +#define GEMV_IS_SCALAR (sizeof(ResPacket) != 16) +#define GEMV_IS_COMPLEX_FLOAT (ResPacketSize == (16 / sizeof(std::complex))) + +/** \internal multiply and add and store results */ +template +EIGEN_ALWAYS_INLINE void storeMaddData(ResScalar* res, ResPacket& palpha, ResPacket& data) +{ + pstoreu(res, pmadd(data, palpha, ploadu(res))); +} + +template +EIGEN_ALWAYS_INLINE void storeMaddData(ResScalar* res, ResScalar& alpha, ResScalar& data) +{ + *res += (alpha * data); +} + +#define GEMV_UNROLL(func, N) \ + func(0, N) func(1, N) func(2, N) func(3, N) \ + func(4, N) func(5, N) func(6, N) func(7, N) + +#define GEMV_UNROLL_HALF(func, N) \ + func(0, 0, 1, N) func(1, 2, 3, N) func(2, 4, 5, N) func(3, 6, 7, N) + +#define GEMV_GETN(N) (((N) * ResPacketSize) >> 2) + +#define GEMV_LOADPACKET_COL(iter) \ + lhs.template load(i + ((iter) * LhsPacketSize), j) + +#ifdef USE_GEMV_MMA +#define GEMV_UNROLL3(func, N, which) \ + func(0, N, which) func(1, N, which) func(2, N, which) func(3, N, which) \ + func(4, N, which) func(5, N, which) func(6, N, which) func(7, N, which) + +#define GEMV_UNUSED_VAR(iter, N, which) \ + if (GEMV_GETN(N) <= iter) { \ + EIGEN_UNUSED_VARIABLE(which##iter); \ + } + +#define GEMV_UNUSED_EXTRA_VAR(iter, N, which) \ + if (N <= iter) { \ + EIGEN_UNUSED_VARIABLE(which##iter); \ + } + +#define GEMV_UNUSED_EXTRA(N, which) \ + GEMV_UNROLL3(GEMV_UNUSED_EXTRA_VAR, N, which) + +#define GEMV_UNUSED(N, which) \ + GEMV_UNROLL3(GEMV_UNUSED_VAR, N, which) + +#define GEMV_INIT_MMA(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + __builtin_mma_xxsetaccz(&e##iter); \ + } + +#if EIGEN_COMP_LLVM +#define GEMV_LOADPAIR_COL_MMA(iter1, iter2) \ + GEMV_BUILDPAIR_MMA(b##iter1, GEMV_LOADPACKET_COL(iter2), GEMV_LOADPACKET_COL((iter2) + 1)); +#else +#define GEMV_LOADPAIR_COL_MMA(iter1, iter2) \ + const LhsScalar& src##iter1 = lhs(i + ((iter1 * 32) / sizeof(LhsScalar)), j); \ + b##iter1 = *reinterpret_cast<__vector_pair *>(const_cast(&src##iter1)); +#endif + +#define GEMV_LOAD1A_COL_MMA(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + if (GEMV_IS_FLOAT) { \ + g##iter = GEMV_LOADPACKET_COL(iter); \ + EIGEN_UNUSED_VARIABLE(b##iter); \ + } else { \ + GEMV_LOADPAIR_COL_MMA(iter, iter << 1) \ + EIGEN_UNUSED_VARIABLE(g##iter); \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(b##iter); \ + EIGEN_UNUSED_VARIABLE(g##iter); \ + } + +#define GEMV_WORK1A_COL_MMA(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + if (GEMV_IS_FLOAT) { \ + pger_vecMMA_acc(&e##iter, a0, g##iter); \ + } else { \ + pger_vecMMA_acc(&e##iter, b##iter, a0); \ + } \ + } + +#define GEMV_LOAD1B_COL_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN(N) > iter1) { \ + if (GEMV_IS_FLOAT) { \ + GEMV_LOADPAIR_COL_MMA(iter2, iter2) \ + EIGEN_UNUSED_VARIABLE(b##iter3); \ + } else { \ + GEMV_LOADPAIR_COL_MMA(iter2, iter2 << 1) \ + GEMV_LOADPAIR_COL_MMA(iter3, iter3 << 1) \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(b##iter2); \ + EIGEN_UNUSED_VARIABLE(b##iter3); \ + } \ + EIGEN_UNUSED_VARIABLE(g##iter2); \ + EIGEN_UNUSED_VARIABLE(g##iter3); + +#define GEMV_WORK1B_COL_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN(N) > iter1) { \ + if (GEMV_IS_FLOAT) { \ + LhsPacket h[2]; \ + __builtin_vsx_disassemble_pair(reinterpret_cast(h), &b##iter2); \ + pger_vecMMA_acc(&e##iter2, a0, h[0]); \ + pger_vecMMA_acc(&e##iter3, a0, h[1]); \ + } else { \ + pger_vecMMA_acc(&e##iter2, b##iter2, a0); \ + pger_vecMMA_acc(&e##iter3, b##iter3, a0); \ + } \ + } + +#if EIGEN_COMP_LLVM +#define GEMV_LOAD_COL_MMA(N) \ + if (GEMV_GETN(N) > 1) { \ + GEMV_UNROLL_HALF(GEMV_LOAD1B_COL_MMA, (N >> 1)) \ + } else { \ + GEMV_UNROLL(GEMV_LOAD1A_COL_MMA, N) \ + } + +#define GEMV_WORK_COL_MMA(N) \ + if (GEMV_GETN(N) > 1) { \ + GEMV_UNROLL_HALF(GEMV_WORK1B_COL_MMA, (N >> 1)) \ + } else { \ + GEMV_UNROLL(GEMV_WORK1A_COL_MMA, N) \ + } +#else +#define GEMV_LOAD_COL_MMA(N) \ + GEMV_UNROLL(GEMV_LOAD1A_COL_MMA, N) + +#define GEMV_WORK_COL_MMA(N) \ + GEMV_UNROLL(GEMV_WORK1A_COL_MMA, N) +#endif + +#define GEMV_DISASSEMBLE_MMA(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + __builtin_mma_disassemble_acc(&result##iter.packet, &e##iter); \ + if (!GEMV_IS_FLOAT) { \ + result##iter.packet[0][1] = result##iter.packet[1][0]; \ + result##iter.packet[2][1] = result##iter.packet[3][0]; \ + } \ + } + +#define GEMV_LOADPAIR2_COL_MMA(iter1, iter2) \ + b##iter1 = *reinterpret_cast<__vector_pair *>(res + i + ((iter2) * ResPacketSize)); + +#define GEMV_LOAD2_COL_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN(N) > iter1) { \ + if (GEMV_IS_FLOAT) { \ + GEMV_LOADPAIR2_COL_MMA(iter2, iter2); \ + EIGEN_UNUSED_VARIABLE(b##iter3); \ + } else { \ + GEMV_LOADPAIR2_COL_MMA(iter2, iter2 << 1); \ + GEMV_LOADPAIR2_COL_MMA(iter3, iter3 << 1); \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(b##iter2); \ + EIGEN_UNUSED_VARIABLE(b##iter3); \ + } + +#if EIGEN_COMP_LLVM +#define GEMV_WORKPAIR2_COL_MMA(iter2, iter3, iter4) \ + ResPacket f##iter2[2]; \ + __builtin_vsx_disassemble_pair(reinterpret_cast(f##iter2), &b##iter2); \ + f##iter2[0] = pmadd(result##iter2.packet[0], palpha, f##iter2[0]); \ + f##iter2[1] = pmadd(result##iter3.packet[(iter2 == iter3) ? 2 : 0], palpha, f##iter2[1]); \ + GEMV_BUILDPAIR_MMA(b##iter2, f##iter2[0], f##iter2[1]); +#else +#define GEMV_WORKPAIR2_COL_MMA(iter2, iter3, iter4) \ + if (GEMV_IS_FLOAT) { \ + __asm__ ("xvmaddasp %0,%x1,%x3\n\txvmaddasp %L0,%x2,%x3" : "+&d" (b##iter2) : "wa" (result##iter3.packet[0]), "wa" (result##iter2.packet[0]), "wa" (palpha)); \ + } else { \ + __asm__ ("xvmaddadp %0,%x1,%x3\n\txvmaddadp %L0,%x2,%x3" : "+&d" (b##iter2) : "wa" (result##iter2.packet[2]), "wa" (result##iter2.packet[0]), "wa" (palpha)); \ + } +#endif + +#define GEMV_WORK2_COL_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN(N) > iter1) { \ + if (GEMV_IS_FLOAT) { \ + GEMV_WORKPAIR2_COL_MMA(iter2, iter3, iter2); \ + } else { \ + GEMV_WORKPAIR2_COL_MMA(iter2, iter2, iter2 << 1); \ + GEMV_WORKPAIR2_COL_MMA(iter3, iter3, iter3 << 1); \ + } \ + } + +#define GEMV_STOREPAIR2_COL_MMA(iter1, iter2) \ + *reinterpret_cast<__vector_pair *>(res + i + ((iter2) * ResPacketSize)) = b##iter1; + +#define GEMV_STORE_COL_MMA(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + if (GEMV_IS_FLOAT) { \ + storeMaddData(res + i + (iter * ResPacketSize), palpha, result##iter.packet[0]); \ + } else { \ + GEMV_LOADPAIR2_COL_MMA(iter, iter << 1) \ + GEMV_WORKPAIR2_COL_MMA(iter, iter, iter << 1) \ + GEMV_STOREPAIR2_COL_MMA(iter, iter << 1) \ + } \ + } + +#define GEMV_STORE2_COL_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN(N) > iter1) { \ + if (GEMV_IS_FLOAT) { \ + GEMV_STOREPAIR2_COL_MMA(iter2, iter2); \ + } else { \ + GEMV_STOREPAIR2_COL_MMA(iter2, iter2 << 1) \ + GEMV_STOREPAIR2_COL_MMA(iter3, iter3 << 1) \ + } \ + } + +#define GEMV_PROCESS_COL_ONE_MMA(N) \ + GEMV_UNROLL(GEMV_INIT_MMA, N) \ + Index j = j2; \ + __vector_pair b0, b1, b2, b3, b4, b5, b6, b7; \ + do { \ + LhsPacket g0, g1, g2, g3, g4, g5, g6, g7; \ + RhsPacket a0 = pset1(rhs2(j, 0)); \ + GEMV_UNROLL(GEMV_PREFETCH, N) \ + GEMV_LOAD_COL_MMA(N) \ + GEMV_WORK_COL_MMA(N) \ + } while (++j < jend); \ + GEMV_UNROLL(GEMV_DISASSEMBLE_MMA, N) \ + if (GEMV_GETN(N) <= 1) { \ + GEMV_UNROLL(GEMV_STORE_COL_MMA, N) \ + } else { \ + GEMV_UNROLL_HALF(GEMV_LOAD2_COL_MMA, (N >> 1)) \ + GEMV_UNROLL_HALF(GEMV_WORK2_COL_MMA, (N >> 1)) \ + GEMV_UNROLL_HALF(GEMV_STORE2_COL_MMA, (N >> 1)) \ + } \ + i += (ResPacketSize * N); +#endif + +#define GEMV_INIT(iter, N) \ + if (N > iter) { \ + c##iter = pset1(ResScalar(0)); \ + } else { \ + EIGEN_UNUSED_VARIABLE(c##iter); \ + } + +#ifdef EIGEN_POWER_USE_GEMV_PREFETCH +#define GEMV_PREFETCH(iter, N) \ + if (GEMV_GETN(N) > ((iter >> 1) + ((N >> 1) * (iter & 1)))) { \ + lhs.prefetch(i + (iter * LhsPacketSize) + prefetch_dist, j); \ + } +#else +#define GEMV_PREFETCH(iter, N) +#endif + +#define GEMV_WORK_COL(iter, N) \ + if (N > iter) { \ + c##iter = pcj.pmadd(GEMV_LOADPACKET_COL(iter), a0, c##iter); \ + } + +#define GEMV_STORE_COL(iter, N) \ + if (N > iter) { \ + pstoreu(res + i + (iter * ResPacketSize), pmadd(c##iter, palpha, ploadu(res + i + (iter * ResPacketSize)))); \ + } + +/** \internal main macro for gemv_col - initialize accumulators, multiply and add inputs, and store results */ +#define GEMV_PROCESS_COL_ONE(N) \ + GEMV_UNROLL(GEMV_INIT, N) \ + Index j = j2; \ + do { \ + RhsPacket a0 = pset1(rhs2(j, 0)); \ + GEMV_UNROLL(GEMV_PREFETCH, N) \ + GEMV_UNROLL(GEMV_WORK_COL, N) \ + } while (++j < jend); \ + GEMV_UNROLL(GEMV_STORE_COL, N) \ + i += (ResPacketSize * N); + +#ifdef USE_GEMV_MMA +#define GEMV_PROCESS_COL(N) \ + GEMV_PROCESS_COL_ONE_MMA(N) +#else +#define GEMV_PROCESS_COL(N) \ + GEMV_PROCESS_COL_ONE(N) +#endif + +/** \internal perform a matrix multiply and accumulate of packet a and packet b */ +#ifdef USE_GEMV_MMA +template +EIGEN_ALWAYS_INLINE void pger_vecMMA_acc(__vector_quad* acc, const RhsPacket& a, const LhsPacket& b) +{ + if (accumulate) + { + __builtin_mma_xvf32gerpp(acc, (__vector unsigned char)a, (__vector unsigned char)b); + } + else + { + __builtin_mma_xvf32ger(acc, (__vector unsigned char)a, (__vector unsigned char)b); + } +} + +/** \internal perform a matrix multiply and accumulate of vector_pair a and packet b */ +template +EIGEN_ALWAYS_INLINE void pger_vecMMA_acc(__vector_quad* acc, __vector_pair& a, const LhsPacket& b) +{ + if (accumulate) + { + __builtin_mma_xvf64gerpp(acc, a, (__vector unsigned char)b); + } + else + { + __builtin_mma_xvf64ger(acc, a, (__vector unsigned char)b); + } +} +#endif + +template +EIGEN_STRONG_INLINE void gemv_col( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + ResScalar alpha) +{ + typedef gemv_traits Traits; + + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + + EIGEN_UNUSED_VARIABLE(resIncr); + eigen_internal_assert(resIncr == 1); + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + RhsMapper rhs2(rhs); + + conj_helper cj; + conj_helper pcj; + + const Index lhsStride = lhs.stride(); + // TODO: for padded aligned inputs, we could enable aligned reads + enum { + LhsAlignment = Unaligned, + ResPacketSize = Traits::ResPacketSize, + LhsPacketSize = Traits::LhsPacketSize, + RhsPacketSize = Traits::RhsPacketSize, + }; + +#ifndef GCC_ONE_VECTORPAIR_BUG + const Index n8 = rows - 8 * ResPacketSize + 1; + const Index n4 = rows - 4 * ResPacketSize + 1; + const Index n2 = rows - 2 * ResPacketSize + 1; +#endif + const Index n1 = rows - 1 * ResPacketSize + 1; +#ifdef EIGEN_POWER_USE_GEMV_PREFETCH + const Index prefetch_dist = 64 * LhsPacketSize; +#endif + + // TODO: improve the following heuristic: + const Index block_cols = cols < 128 ? cols : (lhsStride * sizeof(LhsScalar) < 16000 ? 16 : 8); + ResPacket palpha = pset1(alpha); + + for (Index j2 = 0; j2 < cols; j2 += block_cols) + { + Index jend = numext::mini(j2 + block_cols, cols); + Index i = 0; + ResPacket c0, c1, c2, c3, c4, c5, c6, c7; +#ifdef USE_GEMV_MMA + __vector_quad e0, e1, e2, e3, e4, e5, e6, e7; + PacketBlock result0, result1, result2, result3, result4, result5, result6, result7; + GEMV_UNUSED(8, e) + GEMV_UNUSED(8, result) + GEMV_UNUSED_EXTRA(1, c) +#endif +#ifndef GCC_ONE_VECTORPAIR_BUG + while (i < n8) + { + GEMV_PROCESS_COL(8) + } + if (i < n4) + { + GEMV_PROCESS_COL(4) + } + if (i < n2) + { + GEMV_PROCESS_COL(2) + } + if (i < n1) +#else + while (i < n1) +#endif + { + GEMV_PROCESS_COL_ONE(1) + } + for (;i < rows;++i) + { + ResScalar d0(0); + Index j = j2; + do { + d0 += cj.pmul(lhs(i, j), rhs2(j, 0)); + } while (++j < jend); + res[i] += alpha * d0; + } + } +} + +template +EIGEN_ALWAYS_INLINE void outputVecCol(Packet4f acc, float *result, Packet4f pAlpha, Index extra_rows) +{ + Packet4f d0 = ploadu(result); + d0 = pmadd(acc, pAlpha, d0); + if (extraRows) { + pstoreu_partial(result, d0, extra_rows); + } else { + pstoreu(result, d0); + } +} + +template +EIGEN_ALWAYS_INLINE void outputVecColResults(Packet4f (&acc)[num_acc][size], float *result, Packet4f pAlpha, Index extra_rows) +{ + constexpr Index real_acc = (num_acc - (extraRows ? 1 : 0)); + for(Index k = 0; k < real_acc; k++) { + outputVecCol(acc[k][0], result + k*4, pAlpha, extra_rows); + } + if (extraRows) { + outputVecCol(acc[real_acc][0], result + real_acc*4, pAlpha, extra_rows); + } +} + +static Packet16uc p16uc_MERGE16_32_V1 = { 0, 1, 16,17, 0, 1, 16,17, 0, 1, 16,17, 0, 1, 16,17 }; +static Packet16uc p16uc_MERGE16_32_V2 = { 2, 3, 18,19, 2, 3, 18,19, 2, 3, 18,19, 2, 3, 18,19 }; + +template +EIGEN_ALWAYS_INLINE void loadVecLoopVSX(Index k, LhsMapper& lhs, Packet4f (&a0)[num_acc][2]) +{ + Packet8bf c0 = lhs.template loadPacket(k*4, 0); + Packet8bf b1; + if (!zero) { + b1 = lhs.template loadPacket(k*4, 1); + + a0[k + 0][1] = oneConvertBF16Hi(b1.m_val); + } + a0[k + 0][0] = oneConvertBF16Hi(c0.m_val); + + if (num_acc > (k + 1)) { + a0[k + 1][0] = oneConvertBF16Lo(c0.m_val); + if (!zero) { + a0[k + 1][1] = oneConvertBF16Lo(b1.m_val); + } + } +} + +template +EIGEN_ALWAYS_INLINE void multVecVSX(Packet4f (&acc)[num_acc][2], Packet4f (&a0)[num_acc][2], Packet4f (&b0)[2]) +{ + for(Index k = 0; k < num_acc; k++) { + for(Index i = 0; i < (zero ? 1 : 2); i++) { + acc[k][i] = pmadd(b0[i], a0[k][i], acc[k][i]); + } + } +} + +template +struct loadColData_impl +{ + // linear == false + static EIGEN_ALWAYS_INLINE Packet8bf run(RhsMapper& rhs, Index j) + { + const Index n = unpacket_traits::size; + EIGEN_ALIGN16 bfloat16 to[n]; + LOAD_STORE_UNROLL_16 + for (Index i = 0; i < n; i++) { + to[i] = rhs(j + i, 0); + } + return pload(to); + } +}; + +template +struct loadColData_impl +{ + // linear == true + static EIGEN_ALWAYS_INLINE Packet8bf run(RhsMapper& rhs, Index j) + { + return rhs.template loadPacket(j + 0, 0); + } +}; + +template +EIGEN_ALWAYS_INLINE Packet8bf loadColData(RhsMapper& rhs, Index j) +{ + return loadColData_impl::run(rhs, j); +} + +template +EIGEN_ALWAYS_INLINE void vecColLoopVSX(Index j, LhsMapper& lhs, RhsMapper& rhs, Packet4f (&acc)[num_acc][2]) +{ + Packet4f a0[num_acc][2], b0[2]; + Packet8bf b2 = loadColData(rhs, j); + + b0[0] = oneConvertBF16Perm(b2.m_val, p16uc_MERGE16_32_V1); + if (!zero) { + b0[1] = oneConvertBF16Perm(b2.m_val, p16uc_MERGE16_32_V2); + } + + using LhsSubMapper = typename LhsMapper::SubMapper; + + LhsSubMapper lhs2 = lhs.getSubMapper(0, j); + for(Index k = 0; k < num_acc; k += 2) { + loadVecLoopVSX(k, lhs2, a0); + } + + multVecVSX(acc, a0, b0); +} + +template +EIGEN_ALWAYS_INLINE void addResultsVSX(Packet4f (&acc)[num_acc][2]) +{ + for(Index i = 0; i < num_acc; i++) { + acc[i][0] = acc[i][0] + acc[i][1]; + } +} + +// Uses 2X the accumulators or 4X the number of VSX registers +#define MAX_BFLOAT16_VEC_ACC_VSX 8 + +template +void colVSXVecColLoopBody(Index& row, Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + constexpr Index step = (num_acc * 4); + const Index extra_rows = (extraRows) ? (rows & 3) : 0; + constexpr bool multiIters = !extraRows && (num_acc == MAX_BFLOAT16_VEC_ACC_VSX); + + do{ + Packet4f acc[num_acc][2]; + + zeroAccumulators(acc); + + using LhsSubMapper = typename LhsMapper::SubMapper; + + LhsSubMapper lhs2 = lhs.getSubMapper(row, 0); + for(Index j = 0; j + 2 <= cend; j += 2) { + vecColLoopVSX(j, lhs2, rhs, acc); + } + if (cend & 1) { + vecColLoopVSX(cend - 1, lhs2, rhs, acc); + } + + addResultsVSX(acc); + + outputVecColResults(acc, result, pAlpha, extra_rows); + + result += step; + } while(multiIters && (step <= rows - (row += step))); +} + +template +EIGEN_ALWAYS_INLINE void colVSXVecColLoopBodyExtraN(Index& row, Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + if (MAX_BFLOAT16_VEC_ACC_VSX > num_acc) { + colVSXVecColLoopBody(row, cend, rows, lhs, rhs, pAlpha, result); + } +} + +template +EIGEN_ALWAYS_INLINE void colVSXVecColLoopBodyExtra(Index& row, Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + switch ((rows - row) >> 2) { + case 7: + colVSXVecColLoopBodyExtraN<7, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 6: + colVSXVecColLoopBodyExtraN<6, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 5: + colVSXVecColLoopBodyExtraN<5, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 4: + colVSXVecColLoopBodyExtraN<4, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 3: + colVSXVecColLoopBodyExtraN<3, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 2: + colVSXVecColLoopBodyExtraN<2, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + case 1: + colVSXVecColLoopBodyExtraN<1, LhsMapper, RhsMapper, extraRows, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + break; + default: + if (extraRows) { + colVSXVecColLoopBody<1, LhsMapper, RhsMapper, true, linear>(row, cend, rows, lhs, rhs, pAlpha, result); + } + break; + } +} + +template +EIGEN_ALWAYS_INLINE void calcVSXVecColLoops(Index cend, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + Index row = 0; + if (rows >= (MAX_BFLOAT16_VEC_ACC_VSX * 4)) { + colVSXVecColLoopBody(row, cend, rows, lhs, rhs, pAlpha, result); + result += row; + } + if (rows & 3) { + colVSXVecColLoopBodyExtra(row, cend, rows, lhs, rhs, pAlpha, result); + } else { + colVSXVecColLoopBodyExtra(row, cend, rows, lhs, rhs, pAlpha, result); + } +} + +template +EIGEN_ALWAYS_INLINE void storeBF16fromResult(bfloat16* dst, Packet8bf data, Index resInc, Index extra) +{ + if (inc) { + if (size < 8) { + pscatter_partial(dst + delta*resInc, data, resInc, extra); + } else { + pscatter(dst + delta*resInc, data, resInc); + } + } else { + if (size < 8) { + pstoreu_partial(dst + delta, data, extra); + } else { + pstoreu(dst + delta, data); + } + } +} + +template +EIGEN_ALWAYS_INLINE void convertPointerF32toBF16VSX(Index& i, float* result, Index rows, bfloat16*& dst, Index resInc = 1) +{ + constexpr Index extra = ((size < 8) ? 8 : size); + while (i + size <= rows) { + PacketBlock r32; + r32.packet[0] = convertF32toBF16VSX(result + i + 0); + if (size >= 16) { + r32.packet[1] = convertF32toBF16VSX(result + i + 8); + } + if (size >= 32) { + r32.packet[2] = convertF32toBF16VSX(result + i + 16); + r32.packet[3] = convertF32toBF16VSX(result + i + 24); + } + storeBF16fromResult(dst, r32.packet[0], resInc, rows & 7); + if (size >= 16) { + storeBF16fromResult(dst, r32.packet[1], resInc); + } + if (size >= 32) { + storeBF16fromResult(dst, r32.packet[2], resInc); + storeBF16fromResult(dst, r32.packet[3], resInc); + } + i += extra; dst += extra*resInc; + if (size != 32) break; + } +} + +template +EIGEN_ALWAYS_INLINE void convertArrayPointerF32toBF16VSX(float *result, Index rows, bfloat16* dst, Index resInc = 1) +{ + Index i = 0; + convertPointerF32toBF16VSX<32,inc>(i, result, rows, dst, resInc); + convertPointerF32toBF16VSX<16,inc>(i, result, rows, dst, resInc); + convertPointerF32toBF16VSX<8,inc>(i, result, rows, dst, resInc); + convertPointerF32toBF16VSX<1,inc>(i, result, rows, dst, resInc); +} + +template +struct UseStride : std::false_type { + static EIGEN_ALWAYS_INLINE void run(Index j2, Index jend, Index rows, LhsMapper& lhs, RhsMapper& rhs, Packet4f pAlpha, float *result) + { + using RhsSubMapper = typename RhsMapper::SubMapper; + + RhsSubMapper rhs2 = rhs.getSubMapper(j2, 0); + calcVSXVecColLoops(jend - j2, rows, lhs, rhs2, pAlpha, result); + } +}; + +template +struct UseStride::value>> : std::true_type { + static EIGEN_ALWAYS_INLINE void run(Index j2, Index jend, Index rows, LhsMapper& lhs, RhsMapper& rhs, Packet4f pAlpha, float *result) + { + using RhsSubMapper = typename RhsMapper::SubMapper; + + RhsSubMapper rhs2 = rhs.getSubMapper(j2, 0); + if (rhs.stride() == 1) { + calcVSXVecColLoops(jend - j2, rows, lhs, rhs2, pAlpha, result); + } else { + calcVSXVecColLoops(jend - j2, rows, lhs, rhs2, pAlpha, result); + } + } +}; + +template +void gemv_bfloat16_col( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + bfloat16* res, Index resIncr, + bfloat16 alpha) +{ + EIGEN_UNUSED_VARIABLE(resIncr); + eigen_internal_assert(resIncr == 1); + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + RhsMapper rhs2(rhs); + + const Index lhsStride = lhs.stride(); + + // TODO: improve the following heuristic: + const Index block_cols = cols < 128 ? cols : (lhsStride * sizeof(bfloat16) < 16000 ? 16 : 8); + float falpha = Eigen::bfloat16_impl::bfloat16_to_float(alpha); + Packet4f pAlpha = pset1(falpha); + + ei_declare_aligned_stack_constructed_variable(float, result, rows, 0); + + convertArrayPointerBF16toF32(result, 1, rows, res); + + for (Index j2 = 0; j2 < cols; j2 += block_cols) + { + Index jend = numext::mini(j2 + block_cols, cols); + + using LhsSubMapper = typename LhsMapper::SubMapper; + + LhsSubMapper lhs2 = lhs.getSubMapper(0, j2); + UseStride::run(j2, jend, rows, lhs2, rhs2, pAlpha, result); + } + + convertArrayPointerF32toBF16VSX(result, rows, res); +} + +template +EIGEN_ALWAYS_INLINE void outputVecResults(Packet4f (&acc)[num_acc][size], float *result, Packet4f pAlpha) +{ + constexpr Index extra = num_acc & 3; + + for(Index k = 0; k < num_acc; k += 4) { + Packet4f d0 = ploadu(result + k); + d0 = pmadd(acc[k + 0][0], pAlpha, d0); + + if (num_acc > (k + 3)) { + pstoreu(result + k, d0); + } else { + if (extra == 3) { + pstoreu_partial(result + k, d0, extra); + } else { + memcpy((void *)(result + k), (void *)(&d0), sizeof(float) * extra); + } + } + } +} + +template +EIGEN_ALWAYS_INLINE void preduxVecResults2VSX(Packet4f (&acc)[num_acc][2], Index k) +{ + if (num_acc > (k + 1)) { + acc[k][1] = vec_mergel(acc[k + 0][0], acc[k + 1][0]); + acc[k][0] = vec_mergeh(acc[k + 0][0], acc[k + 1][0]); + acc[k][0] = acc[k][0] + acc[k][1]; + acc[k][0] += vec_sld(acc[k][0], acc[k][0], 8); + } else { + acc[k][0] += vec_sld(acc[k][0], acc[k][0], 8); +#ifdef _BIG_ENDIAN + acc[k][0] += vec_sld(acc[k][0], acc[k][0], 12); +#else + acc[k][0] += vec_sld(acc[k][0], acc[k][0], 4); +#endif + } +} + +template +EIGEN_ALWAYS_INLINE void preduxVecResultsVSX(Packet4f (&acc)[num_acc][2]) +{ + for(Index k = 0; k < num_acc; k += 4) { + preduxVecResults2VSX(acc, k + 0); + if (num_acc > (k + 2)) { + preduxVecResults2VSX(acc, k + 2); +#ifdef EIGEN_VECTORIZE_VSX + acc[k + 0][0] = reinterpret_cast(vec_mergeh(reinterpret_cast(acc[k + 0][0]), reinterpret_cast(acc[k + 2][0]))); +#else + acc[k + 0][0] = reinterpret_cast(vec_perm(acc[k + 0][0],acc[k + 2][0],p16uc_TRANSPOSE64_HI)); +#endif + } + } +} + +#ifndef _ARCH_PWR9 +EIGEN_ALWAYS_INLINE Packet8us loadPacketPartialZero(Packet8us data, Index extra_cols) +{ + Packet16uc shift = pset1(8 * 2 * (8 - extra_cols)); +#ifdef _BIG_ENDIAN + return reinterpret_cast(vec_slo(vec_sro(reinterpret_cast(data), shift), shift)); +#else + return reinterpret_cast(vec_sro(vec_slo(reinterpret_cast(data), shift), shift)); +#endif +} +#endif + +template +EIGEN_ALWAYS_INLINE void multVSXVecLoop(Packet4f (&acc)[num_acc][2], const LhsMapper& lhs, RhsMapper& rhs, Index j, Index extra_cols) +{ + Packet4f a0[num_acc][2], b0[2]; + Packet8bf a1, b1; + + if (extra) { + b1 = rhs.template loadPacketPartial(j, extra_cols); +#ifndef _ARCH_PWR9 + b1 = loadPacketPartialZero(b1.m_val, extra_cols); +#endif + } else { + b1 = rhs.template loadPacket(j); + } + b0[0] = oneConvertBF16Hi(b1.m_val); + b0[1] = oneConvertBF16Lo(b1.m_val); + + const LhsMapper lhs2 = lhs.getSubMapper(0, j); + for(Index k = 0; k < num_acc; k++) { + if (extra) { + a1 = lhs2.template loadPacketPartial(k, 0, extra_cols); +#ifndef _ARCH_PWR9 + a1 = loadPacketPartialZero(a1.m_val, extra_cols); +#endif + } else { + a1 = lhs2.template loadPacket(k, 0); + } + a0[k][0] = oneConvertBF16Hi(a1.m_val); + a0[k][1] = oneConvertBF16Lo(a1.m_val); + } + + multVecVSX(acc, a0, b0); +} + +template +EIGEN_ALWAYS_INLINE void vecVSXLoop(Index cols, const LhsMapper& lhs, RhsMapper& rhs, Packet4f (&acc)[num_acc][2], Index extra_cols) +{ + Index j = 0; + for(; j + 8 <= cols; j += 8){ + multVSXVecLoop(acc, lhs, rhs, j, extra_cols); + } + + if (extra_cols) { + multVSXVecLoop(acc, lhs, rhs, j, extra_cols); + } +} + +template +void colVSXVecLoopBody(Index& row, Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + constexpr bool multiIters = (num_acc == MAX_BFLOAT16_VEC_ACC_VSX); + const Index extra_cols = (cols & 7); + + do{ + Packet4f acc[num_acc][2]; + + zeroAccumulators(acc); + + const LhsMapper lhs2 = lhs.getSubMapper(row, 0); + vecVSXLoop(cols, lhs2, rhs, acc, extra_cols); + + addResultsVSX(acc); + + preduxVecResultsVSX(acc); + + outputVecResults(acc, result, pAlpha); + + result += num_acc; + } while(multiIters && (num_acc <= rows - (row += num_acc))); +} + +template +EIGEN_ALWAYS_INLINE void colVSXVecLoopBodyExtraN(Index& row, Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + if (MAX_BFLOAT16_VEC_ACC_VSX > num_acc) { + colVSXVecLoopBody(row, cols, rows, lhs, rhs, pAlpha, result); + } +} + +template +EIGEN_ALWAYS_INLINE void colVSXVecLoopBodyExtra(Index& row, Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + switch (rows - row) { + case 7: + colVSXVecLoopBodyExtraN<7, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 6: + colVSXVecLoopBodyExtraN<6, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 5: + colVSXVecLoopBodyExtraN<5, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 4: + colVSXVecLoopBodyExtraN<4, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 3: + colVSXVecLoopBodyExtraN<3, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 2: + colVSXVecLoopBodyExtraN<2, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + case 1: + colVSXVecLoopBodyExtraN<1, LhsMapper, RhsMapper>(row, cols, rows, lhs, rhs, pAlpha, result); + break; + } +} + +template +EIGEN_ALWAYS_INLINE void calcVSXVecLoops(Index cols, Index rows, LhsMapper& lhs, RhsMapper& rhs, const Packet4f pAlpha, float *result) +{ + Index row = 0; + if (rows >= MAX_BFLOAT16_VEC_ACC_VSX) { + colVSXVecLoopBody(row, cols, rows, lhs, rhs, pAlpha, result); + result += row; + } + colVSXVecLoopBodyExtra(row, cols, rows, lhs, rhs, pAlpha, result); +} + +template +EIGEN_STRONG_INLINE void gemv_bfloat16_row( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + bfloat16* res, Index resIncr, + bfloat16 alpha) +{ + typedef typename RhsMapper::LinearMapper LinearMapper; + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + LinearMapper rhs2 = rhs.getLinearMapper(0, 0); + + eigen_internal_assert(rhs.stride() == 1); + + float falpha = Eigen::bfloat16_impl::bfloat16_to_float(alpha); + const Packet4f pAlpha = pset1(falpha); + + ei_declare_aligned_stack_constructed_variable(float, result, rows, 0); + if (resIncr == 1) { + convertArrayPointerBF16toF32(result, 1, rows, res); + } else { + convertArrayPointerBF16toF32(result, 1, rows, res, resIncr); + } + calcVSXVecLoops(cols, rows, lhs, rhs2, pAlpha, result); + if (resIncr == 1) { + convertArrayPointerF32toBF16VSX(result, rows, res); + } else { + convertArrayPointerF32toBF16VSX(result, rows, res, resIncr); + } +} + +#undef MAX_BFLOAT16_VEC_ACC_VSX + +const Packet16uc p16uc_COMPLEX32_XORFLIP = { 0x44,0x55,0x66,0x77, 0x00,0x11,0x22,0x33, 0xcc,0xdd,0xee,0xff, 0x88,0x99,0xaa,0xbb }; +const Packet16uc p16uc_COMPLEX64_XORFLIP = { 0x88,0x99,0xaa,0xbb, 0xcc,0xdd,0xee,0xff, 0x00,0x11,0x22,0x33, 0x44,0x55,0x66,0x77 }; + +#ifdef _BIG_ENDIAN +const Packet16uc p16uc_COMPLEX32_CONJ_XOR = { 0x00,0x00,0x00,0x00, 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x80,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX64_CONJ_XOR = { 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX32_CONJ_XOR2 = { 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX64_CONJ_XOR2 = { 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX32_NEGATE = { 0x80,0x00,0x00,0x00, 0x80,0x00,0x00,0x00, 0x80,0x00,0x00,0x00, 0x80,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX64_NEGATE = { 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x80,0x00,0x00,0x00, 0x00,0x00,0x00,0x00 }; +#else +const Packet16uc p16uc_COMPLEX32_CONJ_XOR = { 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80 }; +const Packet16uc p16uc_COMPLEX64_CONJ_XOR = { 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80 }; +const Packet16uc p16uc_COMPLEX32_CONJ_XOR2 = { 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX64_CONJ_XOR2 = { 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00 }; +const Packet16uc p16uc_COMPLEX32_NEGATE = { 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x80 }; +const Packet16uc p16uc_COMPLEX64_NEGATE = { 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x80 }; +#endif + +#ifdef _BIG_ENDIAN +#define COMPLEX_DELTA 0 +#else +#define COMPLEX_DELTA 2 +#endif + +/** \internal packet conjugate (same as pconj but uses the constants in pcplxflipconj for better code generation) */ +EIGEN_ALWAYS_INLINE Packet2cf pconj2(const Packet2cf& a) { + return Packet2cf(pxor(a.v, reinterpret_cast(p16uc_COMPLEX32_CONJ_XOR))); +} + +EIGEN_ALWAYS_INLINE Packet1cd pconj2(const Packet1cd& a) { + return Packet1cd(pxor(a.v, reinterpret_cast(p16uc_COMPLEX64_CONJ_XOR))); +} + +/** \internal packet conjugate with real & imaginary operation inverted */ +EIGEN_ALWAYS_INLINE Packet2cf pconjinv(const Packet2cf& a) { +#ifdef __POWER8_VECTOR__ + return Packet2cf(Packet4f(vec_neg(Packet2d(a.v)))); +#else + return Packet2cf(pxor(a.v, reinterpret_cast(p16uc_COMPLEX32_CONJ_XOR2))); +#endif +} + +EIGEN_ALWAYS_INLINE Packet1cd pconjinv(const Packet1cd& a) { + return Packet1cd(pxor(a.v, reinterpret_cast(p16uc_COMPLEX64_CONJ_XOR2))); +} + +#if defined(_ARCH_PWR8) && (!EIGEN_COMP_LLVM || __clang_major__ >= 12) +#define PERMXOR_GOOD // Clang had a bug with vec_permxor and endianness prior to version 12 +#endif + +/** \internal flip the real & imaginary results and packet conjugate */ +EIGEN_ALWAYS_INLINE Packet2cf pcplxflipconj(Packet2cf a) +{ +#ifdef PERMXOR_GOOD + return Packet2cf(Packet4f(vec_permxor(Packet16uc(a.v), p16uc_COMPLEX32_CONJ_XOR, p16uc_COMPLEX32_XORFLIP))); +#else + return pcplxflip(pconj2(a)); +#endif +} + +EIGEN_ALWAYS_INLINE Packet1cd pcplxflipconj(Packet1cd a) +{ +#ifdef PERMXOR_GOOD + return Packet1cd(Packet2d(vec_permxor(Packet16uc(a.v), p16uc_COMPLEX64_CONJ_XOR, p16uc_COMPLEX64_XORFLIP))); +#else + return pcplxflip(pconj2(a)); +#endif +} + +/** \internal packet conjugate and flip the real & imaginary results */ +EIGEN_ALWAYS_INLINE Packet2cf pcplxconjflip(Packet2cf a) +{ +#ifdef PERMXOR_GOOD + return Packet2cf(Packet4f(vec_permxor(Packet16uc(a.v), p16uc_COMPLEX32_CONJ_XOR2, p16uc_COMPLEX32_XORFLIP))); +#else + return pconj2(pcplxflip(a)); +#endif +} + +EIGEN_ALWAYS_INLINE Packet1cd pcplxconjflip(Packet1cd a) +{ +#ifdef PERMXOR_GOOD + return Packet1cd(Packet2d(vec_permxor(Packet16uc(a.v), p16uc_COMPLEX64_CONJ_XOR2, p16uc_COMPLEX64_XORFLIP))); +#else + return pconj2(pcplxflip(a)); +#endif +} + +/** \internal packet negate */ +EIGEN_ALWAYS_INLINE Packet2cf pnegate2(Packet2cf a) +{ +#ifdef __POWER8_VECTOR__ + return Packet2cf(vec_neg(a.v)); +#else + return Packet2cf(pxor(a.v, reinterpret_cast(p16uc_COMPLEX32_NEGATE))); +#endif +} + +EIGEN_ALWAYS_INLINE Packet1cd pnegate2(Packet1cd a) +{ +#ifdef __POWER8_VECTOR__ + return Packet1cd(vec_neg(a.v)); +#else + return Packet1cd(pxor(a.v, reinterpret_cast(p16uc_COMPLEX64_NEGATE))); +#endif +} + +/** \internal flip the real & imaginary results and negate */ +EIGEN_ALWAYS_INLINE Packet2cf pcplxflipnegate(Packet2cf a) +{ +#ifdef PERMXOR_GOOD + return Packet2cf(Packet4f(vec_permxor(Packet16uc(a.v), p16uc_COMPLEX32_NEGATE, p16uc_COMPLEX32_XORFLIP))); +#else + return pcplxflip(pnegate2(a)); +#endif +} + +EIGEN_ALWAYS_INLINE Packet1cd pcplxflipnegate(Packet1cd a) +{ +#ifdef PERMXOR_GOOD + return Packet1cd(Packet2d(vec_permxor(Packet16uc(a.v), p16uc_COMPLEX64_NEGATE, p16uc_COMPLEX64_XORFLIP))); +#else + return pcplxflip(pnegate2(a)); +#endif +} + +/** \internal flip the real & imaginary results */ +EIGEN_ALWAYS_INLINE Packet2cf pcplxflip2(Packet2cf a) +{ + return Packet2cf(Packet4f(vec_perm(Packet16uc(a.v), Packet16uc(a.v), p16uc_COMPLEX32_XORFLIP))); +} + +EIGEN_ALWAYS_INLINE Packet1cd pcplxflip2(Packet1cd a) +{ +#ifdef EIGEN_VECTORIZE_VSX + return Packet1cd(__builtin_vsx_xxpermdi(a.v, a.v, 2)); +#else + return Packet1cd(Packet2d(vec_perm(Packet16uc(a.v), Packet16uc(a.v), p16uc_COMPLEX64_XORFLIP))); +#endif +} + +/** \internal load half a vector with one complex value */ +EIGEN_ALWAYS_INLINE Packet4f pload_complex_half(std::complex* src) +{ + Packet4f t; +#ifdef EIGEN_VECTORIZE_VSX + // Load float64/two float32 (doubleword alignment) + __asm__("lxsdx %x0,%y1" : "=wa" (t) : "Z" (*src)); +#else + *reinterpret_cast*>(reinterpret_cast(&t) + COMPLEX_DELTA) = *src; +#endif + return t; +} + +/** \internal load two vectors from the real and imaginary portions of a complex value */ +template +EIGEN_ALWAYS_INLINE void pload_realimag(RhsScalar* src, Packet4f& r, Packet4f& i) +{ +#ifdef _ARCH_PWR9 + __asm__("lxvwsx %x0,%y1" : "=wa" (r) : "Z" (*(reinterpret_cast(src) + 0))); + __asm__("lxvwsx %x0,%y1" : "=wa" (i) : "Z" (*(reinterpret_cast(src) + 1))); +#else + Packet4f t = pload_complex_half(src); + r = vec_splat(t, COMPLEX_DELTA + 0); + i = vec_splat(t, COMPLEX_DELTA + 1); +#endif +} + +template +EIGEN_ALWAYS_INLINE void pload_realimag(RhsScalar* src, Packet2d& r, Packet2d& i) +{ +#ifdef EIGEN_VECTORIZE_VSX + __asm__("lxvdsx %x0,%y1" : "=wa" (r) : "Z" (*(reinterpret_cast(src) + 0))); + __asm__("lxvdsx %x0,%y1" : "=wa" (i) : "Z" (*(reinterpret_cast(src) + 1))); +#else + Packet2d t = ploadu(reinterpret_cast(src)); + r = vec_splat(t, 0); + i = vec_splat(t, 1); +#endif +} + +#ifndef __POWER8_VECTOR__ +const Packet16uc p16uc_MERGEE = { 0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13, 0x08, 0x09, 0x0A, 0x0B, 0x18, 0x19, 0x1A, 0x1B }; + +const Packet16uc p16uc_MERGEO = { 0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17, 0x0C, 0x0D, 0x0E, 0x0F, 0x1C, 0x1D, 0x1E, 0x1F }; +#endif + +/** \internal load two vectors from the interleaved real & imaginary values of src */ +template +EIGEN_ALWAYS_INLINE void pload_realimag_row(RhsScalar* src, Packet4f& r, Packet4f& i) +{ + Packet4f t = ploadu(reinterpret_cast(src)); +#ifdef __POWER8_VECTOR__ + r = vec_mergee(t, t); + i = vec_mergeo(t, t); +#else + r = vec_perm(t, t, p16uc_MERGEE); + i = vec_perm(t, t, p16uc_MERGEO); +#endif +} + +template +EIGEN_ALWAYS_INLINE void pload_realimag_row(RhsScalar* src, Packet2d& r, Packet2d& i) +{ + return pload_realimag(src, r, i); +} + +/** \internal load and splat a complex value into a vector - column-wise */ +EIGEN_ALWAYS_INLINE Packet4f pload_realimag_combine(std::complex* src) +{ +#ifdef EIGEN_VECTORIZE_VSX + Packet4f ret; + __asm__("lxvdsx %x0,%y1" : "=wa" (ret) : "Z" (*(reinterpret_cast(src) + 0))); + return ret; +#else + return Packet4f(ploaddup(reinterpret_cast(src))); +#endif +} + +EIGEN_ALWAYS_INLINE Packet2d pload_realimag_combine(std::complex* src) +{ + return ploadu(src).v; +} + +/** \internal load a complex value into a vector - row-wise */ +EIGEN_ALWAYS_INLINE Packet4f pload_realimag_combine_row(std::complex* src) +{ + return ploadu(src).v; +} + +EIGEN_ALWAYS_INLINE Packet2d pload_realimag_combine_row(std::complex* src) +{ + return ploadu(src).v; +} + +/** \internal load a scalar or a vector from complex location */ +template +EIGEN_ALWAYS_INLINE Packet4f pload_complex(std::complex* src) +{ + if (GEMV_IS_SCALAR) { + return pload_complex_half(src); + } + else + { + return ploadu(reinterpret_cast(src)); + } +} + +template +EIGEN_ALWAYS_INLINE Packet2d pload_complex(std::complex* src) +{ + return ploadu(reinterpret_cast(src)); +} + +/** \internal load from a complex vector and convert to a real vector */ +template +EIGEN_ALWAYS_INLINE Packet4f pload_complex(Packet2cf* src) +{ + return src->v; +} + +template +EIGEN_ALWAYS_INLINE Packet2d pload_complex(Packet1cd* src) +{ + return src->v; +} + +/** \internal load a full vector from complex location - column-wise */ +EIGEN_ALWAYS_INLINE Packet4f pload_complex_full(std::complex* src) +{ + return Packet4f(ploaddup(reinterpret_cast(src))); +} + +EIGEN_ALWAYS_INLINE Packet2d pload_complex_full(std::complex* src) +{ + return ploadu(src).v; +} + +/** \internal load a full vector from complex location - row-wise */ +EIGEN_ALWAYS_INLINE Packet4f pload_complex_full_row(std::complex* src) +{ + return ploadu(src).v; +} + +EIGEN_ALWAYS_INLINE Packet2d pload_complex_full_row(std::complex* src) +{ + return pload_complex_full(src); +} + +/** \internal load a vector from a real-only scalar location - column-wise */ +EIGEN_ALWAYS_INLINE Packet4f pload_real(float* src) +{ + return pset1(*src); +} + +EIGEN_ALWAYS_INLINE Packet2d pload_real(double* src) +{ + return pset1(*src); +} + +EIGEN_ALWAYS_INLINE Packet4f pload_real(Packet4f& src) +{ + return src; +} + +EIGEN_ALWAYS_INLINE Packet2d pload_real(Packet2d& src) +{ + return src; +} + +/** \internal load a vector from a real-only vector location */ +EIGEN_ALWAYS_INLINE Packet4f pload_real_full(float* src) +{ + Packet4f ret = ploadu(src); + return vec_mergeh(ret, ret); +} + +EIGEN_ALWAYS_INLINE Packet2d pload_real_full(double* src) +{ + return pload_real(src); +} + +EIGEN_ALWAYS_INLINE Packet4f pload_real_full(std::complex* src) +{ + return pload_complex_full(src); // Just for compilation +} + +EIGEN_ALWAYS_INLINE Packet2d pload_real_full(std::complex* src) +{ + return pload_complex_full(src); // Just for compilation +} + +/** \internal load a vector from a real-only scalar location - row-wise */ +template +EIGEN_ALWAYS_INLINE Packet4f pload_real_row(float* src) +{ + if (GEMV_IS_SCALAR) { + return pload_real_full(src); + } + else { + return ploadu(src); + } +} + +template +EIGEN_ALWAYS_INLINE Packet2d pload_real_row(double* src) +{ + return pload_real(src); +} + +EIGEN_ALWAYS_INLINE Packet2cf padd(Packet2cf& a, std::complex& b) +{ + EIGEN_UNUSED_VARIABLE(b); + return a; // Just for compilation +} + +EIGEN_ALWAYS_INLINE Packet1cd padd(Packet1cd& a, std::complex& b) +{ + EIGEN_UNUSED_VARIABLE(b); + return a; // Just for compilation +} + +/** \internal set a scalar from complex location */ +template +EIGEN_ALWAYS_INLINE Scalar pset1_realimag(ResScalar& alpha, int which, int conj) +{ + return (which) ? ((conj) ? -alpha.real() : alpha.real()) : ((conj) ? -alpha.imag() : alpha.imag()); +} + +/** \internal set a vector from complex location */ +template +EIGEN_ALWAYS_INLINE Packet2cf pset1_complex(std::complex& alpha) +{ + Packet2cf ret; + ret.v[COMPLEX_DELTA + 0] = pset1_realimag(alpha, (which & 0x01), (which & 0x04)); + ret.v[COMPLEX_DELTA + 1] = pset1_realimag(alpha, (which & 0x02), (which & 0x08)); + ret.v[2 - COMPLEX_DELTA] = ret.v[COMPLEX_DELTA + 0]; + ret.v[3 - COMPLEX_DELTA] = ret.v[COMPLEX_DELTA + 1]; + return ret; +} + +template +EIGEN_ALWAYS_INLINE Packet1cd pset1_complex(std::complex& alpha) +{ + Packet1cd ret; + ret.v[0] = pset1_realimag(alpha, (which & 0x01), (which & 0x04)); + ret.v[1] = pset1_realimag(alpha, (which & 0x02), (which & 0x08)); + return ret; +} + +/** \internal zero out a vector for real or complex forms */ +template +EIGEN_ALWAYS_INLINE Packet pset_zero() +{ + return pset1(__UNPACK_TYPE__(Packet)(0)); +} + +template<> +EIGEN_ALWAYS_INLINE Packet2cf pset_zero() +{ + return Packet2cf(pset1(float(0))); +} + +template<> +EIGEN_ALWAYS_INLINE Packet1cd pset_zero() +{ + return Packet1cd(pset1(double(0))); +} + +/** \internal initialize a vector from another vector */ +template +EIGEN_ALWAYS_INLINE Packet pset_init(Packet& c1) +{ + if (GEMV_IS_COMPLEX_COMPLEX) { + EIGEN_UNUSED_VARIABLE(c1); + return pset_zero(); + } + else + { + return c1; // Intentionally left uninitialized + } +} + +template +struct alpha_store +{ + alpha_store(ResScalar& alpha) { + separate.r = pset1_complex(alpha); + separate.i = pset1_complex(alpha); + } + struct ri { + PResPacket r; + PResPacket i; + } separate; +}; + +/** \internal multiply and add for complex math */ +template +EIGEN_ALWAYS_INLINE ScalarPacket pmadd_complex(ScalarPacket& c0, ScalarPacket& c2, ScalarPacket& c4, AlphaData& b0) +{ + return pmadd(c2, b0.separate.i.v, pmadd(c0, b0.separate.r.v, c4)); +} + +/** \internal store and madd for complex math */ +template +EIGEN_ALWAYS_INLINE void pstoreu_pmadd_complex(PResPacket& c0, AlphaData& b0, ResScalar* res) +{ + PResPacket c2 = pcplxflipconj(c0); + if (GEMV_IS_SCALAR) { + ScalarPacket c4 = ploadu(reinterpret_cast(res)); + ScalarPacket c3 = pmadd_complex(c0.v, c2.v, c4, b0); + pstoreu(reinterpret_cast(res), c3); + } else { + ScalarPacket c4 = pload_complex(res); + PResPacket c3 = PResPacket(pmadd_complex(c0.v, c2.v, c4, b0)); + pstoreu(res, c3); + } +} + +template +EIGEN_ALWAYS_INLINE void pstoreu_pmadd_complex(PResPacket& c0, PResPacket& c1, AlphaData& b0, ResScalar* res) +{ + PResPacket c2 = pcplxflipconj(c0); + PResPacket c3 = pcplxflipconj(c1); +#if !defined(_ARCH_PWR10) + ScalarPacket c4 = pload_complex(res + (iter2 * ResPacketSize)); + ScalarPacket c5 = pload_complex(res + ((iter2 + 1) * ResPacketSize)); + PResPacket c6 = PResPacket(pmadd_complex(c0.v, c2.v, c4, b0)); + PResPacket c7 = PResPacket(pmadd_complex(c1.v, c3.v, c5, b0)); + pstoreu(res + (iter2 * ResPacketSize), c6); + pstoreu(res + ((iter2 + 1) * ResPacketSize), c7); +#else + __vector_pair a = *reinterpret_cast<__vector_pair *>(res + (iter2 * ResPacketSize)); +#if EIGEN_COMP_LLVM + PResPacket c6[2]; + __builtin_vsx_disassemble_pair(reinterpret_cast(c6), &a); + c6[0] = PResPacket(pmadd_complex(c0.v, c2.v, c6[0].v, b0)); + c6[1] = PResPacket(pmadd_complex(c1.v, c3.v, c6[1].v, b0)); + GEMV_BUILDPAIR_MMA(a, c6[0].v, c6[1].v); +#else + if (GEMV_IS_COMPLEX_FLOAT) { + __asm__ ("xvmaddasp %L0,%x1,%x2\n\txvmaddasp %0,%x1,%x3" : "+&d" (a) : "wa" (b0.separate.r.v), "wa" (c0.v), "wa" (c1.v)); + __asm__ ("xvmaddasp %L0,%x1,%x2\n\txvmaddasp %0,%x1,%x3" : "+&d" (a) : "wa" (b0.separate.i.v), "wa" (c2.v), "wa" (c3.v)); + } else { + __asm__ ("xvmaddadp %L0,%x1,%x2\n\txvmaddadp %0,%x1,%x3" : "+&d" (a) : "wa" (b0.separate.r.v), "wa" (c0.v), "wa" (c1.v)); + __asm__ ("xvmaddadp %L0,%x1,%x2\n\txvmaddadp %0,%x1,%x3" : "+&d" (a) : "wa" (b0.separate.i.v), "wa" (c2.v), "wa" (c3.v)); + } +#endif + *reinterpret_cast<__vector_pair *>(res + (iter2 * ResPacketSize)) = a; +#endif +} + +/** \internal load lhs packet */ +template +EIGEN_ALWAYS_INLINE LhsPacket loadLhsPacket(LhsMapper& lhs, Index i, Index j) +{ + if (sizeof(Scalar) == sizeof(LhsScalar)) { + const LhsScalar& src = lhs(i + 0, j); + return LhsPacket(pload_real_full(const_cast(&src))); + } + return lhs.template load(i + 0, j); +} + +/** \internal madd for complex times complex */ +template +EIGEN_ALWAYS_INLINE RealPacket pmadd_complex_complex(RealPacket& a, RealPacket& b, RealPacket& c) +{ + if (ConjugateLhs && ConjugateRhs) { + return vec_madd(a, pconj2(ComplexPacket(b)).v, c); + } + else if (Negate && !ConjugateLhs && ConjugateRhs) { + return vec_nmsub(a, b, c); + } + else { + return vec_madd(a, b, c); + } +} + +/** \internal madd for complex times real */ +template +EIGEN_ALWAYS_INLINE RealPacket pmadd_complex_real(RealPacket& a, RealPacket& b, RealPacket& c) +{ + if (Conjugate) { + return vec_madd(a, pconj2(ComplexPacket(b)).v, c); + } + else { + return vec_madd(a, b, c); + } +} + +template +EIGEN_ALWAYS_INLINE void gemv_mult_generic(LhsPacket& a0, RhsScalar* b, PResPacket& c0) +{ + conj_helper pcj; + RhsPacket b0; + if (StorageOrder == ColMajor) { + b0 = pset1(*b); + } + else { + b0 = ploadu(b); + } + c0 = pcj.pmadd(a0, b0, c0); +} + +/** \internal core multiply operation for vectors - complex times complex */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_complex_complex(LhsPacket& a0, RhsScalar* b, PResPacket& c0, ResPacket& c1) +{ + ScalarPacket br, bi; + if (StorageOrder == ColMajor) { + pload_realimag(b, br, bi); + } + else { + pload_realimag_row(b, br, bi); + } + if (ConjugateLhs && !ConjugateRhs) a0 = pconj2(a0); + LhsPacket a1 = pcplxflipconj(a0); + ScalarPacket cr = pmadd_complex_complex(a0.v, br, c0.v); + ScalarPacket ci = pmadd_complex_complex(a1.v, bi, c1.v); + c1 = ResPacket(ci); + c0 = PResPacket(cr); +} + +/** \internal core multiply operation for vectors - real times complex */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_real_complex(LhsPacket& a0, RhsScalar* b, PResPacket& c0) +{ + ScalarPacket b0; + if (StorageOrder == ColMajor) { + b0 = pload_complex_full(b); + } + else { + b0 = pload_complex_full_row(b); + } + ScalarPacket cri = pmadd_complex_real(a0, b0, c0.v); + c0 = PResPacket(cri); +} + +/** \internal core multiply operation for vectors - complex times real */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_complex_real(LhsPacket& a0, RhsScalar* b, PResPacket& c0) +{ + ScalarPacket a1 = pload_complex(&a0); + ScalarPacket b0; + if (StorageOrder == ColMajor) { + b0 = pload_real(b); + } + else { + b0 = pload_real_row(b); + } + ScalarPacket cri = pmadd_complex_real(a1, b0, c0.v); + c0 = PResPacket(cri); +} + +#define GEMV_MULT_COMPLEX_COMPLEX(LhsType, RhsType, ResType) \ +template \ +EIGEN_ALWAYS_INLINE void gemv_mult_complex(LhsType& a0, RhsType* b, ResType& c0, ResType& c1) \ +{ \ + gemv_mult_complex_complex(a0, b, c0, c1); \ +} + +GEMV_MULT_COMPLEX_COMPLEX(Packet2cf, std::complex, Packet2cf) +GEMV_MULT_COMPLEX_COMPLEX(Packet1cd, std::complex, Packet1cd) + +#define GEMV_MULT_REAL_COMPLEX(LhsType, RhsType, ResType) \ +template \ +EIGEN_ALWAYS_INLINE void gemv_mult_complex(LhsType& a0, RhsType* b, ResType& c0, RhsType&) \ +{ \ + gemv_mult_real_complex(a0, b, c0); \ +} + +GEMV_MULT_REAL_COMPLEX(float, std::complex, Packet2cf) +GEMV_MULT_REAL_COMPLEX(double, std::complex, Packet1cd) +GEMV_MULT_REAL_COMPLEX(Packet4f, std::complex, Packet2cf) +GEMV_MULT_REAL_COMPLEX(Packet2d, std::complex, Packet1cd) + +#define GEMV_MULT_COMPLEX_REAL(LhsType, RhsType, ResType1, ResType2) \ +template \ +EIGEN_ALWAYS_INLINE void gemv_mult_complex(LhsType& a0, RhsType* b, ResType1& c0, ResType2&) \ +{ \ + gemv_mult_complex_real(a0, b, c0); \ +} + +GEMV_MULT_COMPLEX_REAL(Packet2cf, float, Packet2cf, std::complex) +GEMV_MULT_COMPLEX_REAL(Packet1cd, double, Packet1cd, std::complex) +GEMV_MULT_COMPLEX_REAL(std::complex, float, Packet2cf, std::complex) +GEMV_MULT_COMPLEX_REAL(std::complex, double, Packet1cd, std::complex) + +#ifdef USE_GEMV_MMA +/** \internal convert packet to real form */ +template +EIGEN_ALWAYS_INLINE T convertReal(T a) +{ + return a; +} + +EIGEN_ALWAYS_INLINE Packet4f convertReal(Packet2cf a) +{ + return a.v; +} + +EIGEN_ALWAYS_INLINE Packet2d convertReal(Packet1cd a) +{ + return a.v; +} + +/** \internal convert packet to complex form */ +template +EIGEN_ALWAYS_INLINE T convertComplex(T a) +{ + return a; +} + +EIGEN_ALWAYS_INLINE Packet2cf convertComplex(Packet4f a) +{ + return Packet2cf(a); +} + +EIGEN_ALWAYS_INLINE Packet1cd convertComplex(Packet2d a) +{ + return Packet1cd(a); +} + +/** \internal load a vector from a complex location (for MMA version) */ +template +EIGEN_ALWAYS_INLINE void pload_complex_MMA(SLhsPacket& a) +{ + a = SLhsPacket(pload_complex(&a)); +} + +template +EIGEN_ALWAYS_INLINE void pload_complex_MMA(__vector_pair&) +{ + // Pass thru +} + +/** \internal perform a matrix multiply and accumulate (positive and negative) of packet a and packet b */ +template +EIGEN_ALWAYS_INLINE void pger_vecMMA(__vector_quad* acc, RhsPacket& a, LhsPacket& b) +{ + if (NegativeAccumulate) + { + __builtin_mma_xvf32gernp(acc, (__vector unsigned char)a, (__vector unsigned char)b); + } + else { + __builtin_mma_xvf32gerpp(acc, (__vector unsigned char)a, (__vector unsigned char)b); + } +} + +/** \internal perform a matrix multiply and accumulate (positive and negative) of vector_pair a and packet b */ +template +EIGEN_ALWAYS_INLINE void pger_vecMMA(__vector_quad* acc, __vector_pair& a, Packet2d& b) +{ + if (NegativeAccumulate) + { + __builtin_mma_xvf64gernp(acc, (__vector_pair)a, (__vector unsigned char)b); + } + else { + __builtin_mma_xvf64gerpp(acc, (__vector_pair)a, (__vector unsigned char)b); + } +} + +template +EIGEN_ALWAYS_INLINE void pger_vecMMA(__vector_quad*, __vector_pair&, Packet4f&) +{ + // Just for compilation +} + +/** \internal madd for complex times complex (MMA version) */ +template +EIGEN_ALWAYS_INLINE void pmadd_complex_complex_MMA(LhsPacket& a, RealPacket& b, __vector_quad* c) +{ + if (ConjugateLhs && ConjugateRhs) { + RealPacket b2 = pconj2(convertComplex(b)).v; + return pger_vecMMA(c, b2, a.v); + } + else if (Negate && !ConjugateLhs && ConjugateRhs) { + return pger_vecMMA(c, b, a.v); + } + else { + return pger_vecMMA(c, b, a.v); + } +} + +template +EIGEN_ALWAYS_INLINE void pmadd_complex_complex_MMA(__vector_pair& a, RealPacket& b, __vector_quad* c) +{ + if (ConjugateLhs && ConjugateRhs) { + RealPacket b2 = pconj2(convertComplex(b)).v; + return pger_vecMMA(c, a, b2); + } + else if (Negate && !ConjugateLhs && ConjugateRhs) { + return pger_vecMMA(c, a, b); + } + else { + return pger_vecMMA(c, a, b); + } +} + +/** \internal madd for complex times real (MMA version) */ +template +EIGEN_ALWAYS_INLINE void pmadd_complex_real_MMA(LhsPacket& a, RealPacket& b, __vector_quad* c) +{ + RealPacket a2 = convertReal(a); + if (Conjugate) { + RealPacket b2 = pconj2(convertComplex(b)).v; + if (StorageOrder == ColMajor) { + return pger_vecMMA(c, b2, a2); + } else { + return pger_vecMMA(c, a2, b2); + } + } + else { + if (StorageOrder == ColMajor) { + return pger_vecMMA(c, b, a2); + } else { + return pger_vecMMA(c, a2, b); + } + } +} + +/** \internal madd for real times complex (MMA version) */ +template +EIGEN_ALWAYS_INLINE void pmadd_complex_real_MMA(__vector_pair& a, RealPacket& b, __vector_quad* c) +{ + if (Conjugate) { + RealPacket b2 = pconj2(convertComplex(b)).v; + return pger_vecMMA(c, a, b2); + } + else { + return pger_vecMMA(c, a, b); + } +} + +/** \internal core multiply operation for vectors (MMA version) - complex times complex */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_complex_complex_MMA(SLhsPacket& a0, RhsScalar* b, __vector_quad* c0) +{ + ScalarPacket b0; + if (StorageOrder == ColMajor) { + b0 = pload_realimag_combine(b); + } else { + b0 = pload_realimag_combine_row(b); + } + pmadd_complex_complex_MMA(a0, b0, c0); +} + +/** \internal core multiply operation for vectors (MMA version) - complex times real */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_complex_real_MMA(SLhsPacket& a0, RhsScalar* b, __vector_quad* c0) +{ + pload_complex_MMA(a0); + ScalarPacket b0; + if (StorageOrder == ColMajor) { + b0 = pload_real(b); + } + else { + b0 = pload_real_row(b); + } + pmadd_complex_real_MMA(a0, b0, c0); +} + +/** \internal core multiply operation for vectors (MMA version) - real times complex */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_real_complex_MMA(SLhsPacket& a0, RhsScalar* b, __vector_quad* c0) +{ + ScalarPacket b0; + if (StorageOrder == ColMajor) { + b0 = pload_complex_full(b); + } + else { + b0 = pload_complex_full_row(b); + } + pmadd_complex_real_MMA)) ? StorageOrder : ColMajor>(a0, b0, c0); +} + +#define GEMV_MULT_COMPLEX_COMPLEX_MMA(LhsType, RhsType) \ +template \ +EIGEN_ALWAYS_INLINE void gemv_mult_complex_MMA(LhsType& a0, RhsType* b, __vector_quad* c0) \ +{ \ + gemv_mult_complex_complex_MMA(a0, b, c0); \ +} + +GEMV_MULT_COMPLEX_COMPLEX_MMA(Packet2cf, std::complex) +GEMV_MULT_COMPLEX_COMPLEX_MMA(__vector_pair, std::complex) +GEMV_MULT_COMPLEX_COMPLEX_MMA(Packet1cd, std::complex) + +/** \internal core multiply operation for vectors (MMA version) - complex times complex */ +template +EIGEN_ALWAYS_INLINE void gemv_mult_complex_MMA(__vector_pair& a0, std::complex* b, __vector_quad* c0) +{ + if (sizeof(LhsScalar) == 16) { + gemv_mult_complex_complex_MMA(a0, b, c0); + } + else { + gemv_mult_real_complex_MMA(a0, b, c0); + } +} + +#define GEMV_MULT_REAL_COMPLEX_MMA(LhsType, RhsType) \ +template \ +EIGEN_ALWAYS_INLINE void gemv_mult_complex_MMA(LhsType& a0, RhsType* b, __vector_quad* c0) \ +{ \ + gemv_mult_real_complex_MMA(a0, b, c0); \ +} + +GEMV_MULT_REAL_COMPLEX_MMA(Packet4f, std::complex) +GEMV_MULT_REAL_COMPLEX_MMA(Packet2d, std::complex) + +#define GEMV_MULT_COMPLEX_REAL_MMA(LhsType, RhsType) \ +template \ +EIGEN_ALWAYS_INLINE void gemv_mult_complex_MMA(LhsType& a0, RhsType* b, __vector_quad* c0) \ +{ \ + gemv_mult_complex_real_MMA(a0, b, c0); \ +} + +GEMV_MULT_COMPLEX_REAL_MMA(Packet2cf, float) +GEMV_MULT_COMPLEX_REAL_MMA(Packet1cd, double) +GEMV_MULT_COMPLEX_REAL_MMA(__vector_pair, float) +GEMV_MULT_COMPLEX_REAL_MMA(__vector_pair, double) + +/** \internal disassemble MMA accumulator results into packets */ +template +EIGEN_ALWAYS_INLINE void disassembleResults2(__vector_quad* c0, PacketBlock& result0) +{ + __builtin_mma_disassemble_acc(&result0.packet, c0); + if (sizeof(LhsPacket) == 16) { + if (sizeof(RhsPacket) == 16) { + ScalarPacket tmp0, tmp2; + tmp2 = vec_mergeh(result0.packet[2], result0.packet[3]); + tmp0 = vec_mergeh(result0.packet[0], result0.packet[1]); + result0.packet[3] = vec_mergel(result0.packet[3], result0.packet[2]); + result0.packet[1] = vec_mergel(result0.packet[1], result0.packet[0]); + result0.packet[2] = tmp2; + result0.packet[0] = tmp0; + + if (ConjugateLhs) { + result0.packet[0] = pconj2(convertComplex(result0.packet[0])).v; + result0.packet[2] = pconj2(convertComplex(result0.packet[2])).v; + } else if (ConjugateRhs) { + result0.packet[1] = pconj2(convertComplex(result0.packet[1])).v; + result0.packet[3] = pconj2(convertComplex(result0.packet[3])).v; + } else { + result0.packet[1] = pconjinv(convertComplex(result0.packet[1])).v; + result0.packet[3] = pconjinv(convertComplex(result0.packet[3])).v; + } + result0.packet[0] = vec_add(result0.packet[0], result0.packet[1]); + result0.packet[2] = vec_add(result0.packet[2], result0.packet[3]); + } else { + result0.packet[0][1] = result0.packet[1][1]; + result0.packet[2][1] = result0.packet[3][1]; + } + } +} + +template +EIGEN_ALWAYS_INLINE void disassembleResults4(__vector_quad* c0, PacketBlock& result0) +{ + __builtin_mma_disassemble_acc(&result0.packet, c0); + if (GEMV_IS_COMPLEX_COMPLEX) { + if (ConjugateLhs) { + result0.packet[0] = pconj2(convertComplex(result0.packet[0])).v; + result0.packet[1] = pcplxflip2(convertComplex(result0.packet[1])).v; + } else { + if (ConjugateRhs) { + result0.packet[1] = pcplxconjflip(convertComplex(result0.packet[1])).v; + } else { + result0.packet[1] = pcplxflipconj(convertComplex(result0.packet[1])).v; + } + } + result0.packet[0] = vec_add(result0.packet[0], result0.packet[1]); + } else if (sizeof(LhsPacket) == sizeof(std::complex)) { + if (ConjugateLhs) { + result0.packet[0] = pconj2(convertComplex(result0.packet[0])).v; + } + } else { + result0.packet[0] = vec_mergee(result0.packet[0], result0.packet[1]); + } +} + +template +EIGEN_ALWAYS_INLINE void disassembleResults(__vector_quad* c0, PacketBlock& result0) +{ + if (!GEMV_IS_COMPLEX_FLOAT) { + disassembleResults2(c0, result0); + } else { + disassembleResults4(c0, result0); + } +} +#endif + +#define GEMV_GETN_COMPLEX(N) (((N) * ResPacketSize) >> 1) + +#define GEMV_LOADPACKET_COL_COMPLEX(iter) \ + loadLhsPacket(lhs, i + ((iter) * ResPacketSize), j) + +#define GEMV_LOADPACKET_COL_COMPLEX_DATA(iter) \ + convertReal(GEMV_LOADPACKET_COL_COMPLEX(iter)) + +#ifdef USE_GEMV_MMA +#define GEMV_INIT_COL_COMPLEX_MMA(iter, N) \ + if (GEMV_GETN_COMPLEX(N) > iter) { \ + __builtin_mma_xxsetaccz(&e0##iter); \ + } + +#if EIGEN_COMP_LLVM +#define GEMV_LOADPAIR_COL_COMPLEX_MMA(iter1, iter2) \ + GEMV_BUILDPAIR_MMA(a##iter1, GEMV_LOADPACKET_COL_COMPLEX_DATA(iter2), GEMV_LOADPACKET_COL_COMPLEX_DATA((iter2) + 1)); \ + EIGEN_UNUSED_VARIABLE(f##iter1); +#else +#define GEMV_LOADPAIR_COL_COMPLEX_MMA(iter1, iter2) \ + if (sizeof(LhsPacket) == 16) { \ + const LhsScalar& src = lhs(i + ((32 * iter1) / sizeof(LhsScalar)), j); \ + a##iter1 = *reinterpret_cast<__vector_pair *>(const_cast(&src)); \ + EIGEN_UNUSED_VARIABLE(f##iter1); \ + } else { \ + f##iter1 = lhs.template load(i + ((iter2) * ResPacketSize), j); \ + GEMV_BUILDPAIR_MMA(a##iter1, vec_splat(convertReal(f##iter1), 0), vec_splat(convertReal(f##iter1), 1)); \ + } +#endif + +#define GEMV_LOAD1_COL_COMPLEX_MMA(iter, N) \ + if (GEMV_GETN_COMPLEX(N) > iter) { \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + f##iter = GEMV_LOADPACKET_COL_COMPLEX(iter); \ + EIGEN_UNUSED_VARIABLE(a##iter); \ + } else { \ + GEMV_LOADPAIR_COL_COMPLEX_MMA(iter, iter << 1) \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(a##iter); \ + EIGEN_UNUSED_VARIABLE(f##iter); \ + } + +#define GEMV_WORK1_COL_COMPLEX_MMA(iter, N) \ + if (GEMV_GETN_COMPLEX(N) > iter) { \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + gemv_mult_complex_MMA(f##iter, b, &e0##iter); \ + } else { \ + gemv_mult_complex_MMA(a##iter, b, &e0##iter); \ + } \ + } + +#define GEMV_LOADPAIR2_COL_COMPLEX_MMA(iter1, iter2) \ + GEMV_BUILDPAIR_MMA(a##iter1, GEMV_LOADPACKET_COL_COMPLEX_DATA(iter2), GEMV_LOADPACKET_COL_COMPLEX_DATA((iter2) + 1)); + +#define GEMV_LOAD2_COL_COMPLEX_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN_COMPLEX(N) > iter1) { \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + GEMV_LOADPAIR2_COL_COMPLEX_MMA(iter2, iter2); \ + EIGEN_UNUSED_VARIABLE(a##iter3) \ + } else { \ + GEMV_LOADPAIR2_COL_COMPLEX_MMA(iter2, iter2 << 1); \ + GEMV_LOADPAIR2_COL_COMPLEX_MMA(iter3, iter3 << 1); \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(a##iter2); \ + EIGEN_UNUSED_VARIABLE(a##iter3); \ + } \ + EIGEN_UNUSED_VARIABLE(f##iter2); \ + EIGEN_UNUSED_VARIABLE(f##iter3); + +#define GEMV_WORK2_COL_COMPLEX_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN_COMPLEX(N) > iter1) { \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + PLhsPacket g[2]; \ + __builtin_vsx_disassemble_pair(reinterpret_cast(g), &a##iter2); \ + gemv_mult_complex_MMA(g[0], b, &e0##iter2); \ + gemv_mult_complex_MMA(g[1], b, &e0##iter3); \ + } else { \ + gemv_mult_complex_MMA(a##iter2, b, &e0##iter2); \ + gemv_mult_complex_MMA(a##iter3, b, &e0##iter3); \ + } \ + } + +#if EIGEN_COMP_LLVM +#define GEMV_LOAD_COL_COMPLEX_MMA(N) \ + if (GEMV_GETN_COMPLEX(N) > 1) { \ + GEMV_UNROLL_HALF(GEMV_LOAD2_COL_COMPLEX_MMA, (N >> 1)) \ + } else { \ + GEMV_UNROLL(GEMV_LOAD1_COL_COMPLEX_MMA, N) \ + } + +#define GEMV_WORK_COL_COMPLEX_MMA(N) \ + if (GEMV_GETN_COMPLEX(N) > 1) { \ + GEMV_UNROLL_HALF(GEMV_WORK2_COL_COMPLEX_MMA, (N >> 1)) \ + } else { \ + GEMV_UNROLL(GEMV_WORK1_COL_COMPLEX_MMA, N) \ + } +#else +#define GEMV_LOAD_COL_COMPLEX_MMA(N) \ + GEMV_UNROLL(GEMV_LOAD1_COL_COMPLEX_MMA, N) + +#define GEMV_WORK_COL_COMPLEX_MMA(N) \ + GEMV_UNROLL(GEMV_WORK1_COL_COMPLEX_MMA, N) +#endif + +#define GEMV_DISASSEMBLE_COMPLEX_MMA(iter) \ + disassembleResults(&e0##iter, result0##iter); + +#define GEMV_STORE_COL_COMPLEX_MMA(iter, N) \ + if (GEMV_GETN_COMPLEX(N) > iter) { \ + GEMV_DISASSEMBLE_COMPLEX_MMA(iter); \ + c0##iter = PResPacket(result0##iter.packet[0]); \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + pstoreu_pmadd_complex(c0##iter, alpha_data, res + i + (iter * ResPacketSize)); \ + } else { \ + pstoreu_pmadd_complex(c0##iter, alpha_data, res + i + ((iter << 1) * ResPacketSize)); \ + c0##iter = PResPacket(result0##iter.packet[2]); \ + pstoreu_pmadd_complex(c0##iter, alpha_data, res + i + (((iter << 1) + 1) * ResPacketSize)); \ + } \ + } + +#define GEMV_STORE2_COL_COMPLEX_MMA(iter1, iter2, iter3, N) \ + if (GEMV_GETN_COMPLEX(N) > iter1) { \ + GEMV_DISASSEMBLE_COMPLEX_MMA(iter2); \ + GEMV_DISASSEMBLE_COMPLEX_MMA(iter3); \ + c0##iter2 = PResPacket(result0##iter2.packet[0]); \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + c0##iter3 = PResPacket(result0##iter3.packet[0]); \ + pstoreu_pmadd_complex(c0##iter2, c0##iter3, alpha_data, res + i); \ + } else { \ + c0##iter3 = PResPacket(result0##iter2.packet[2]); \ + pstoreu_pmadd_complex(c0##iter2, c0##iter3, alpha_data, res + i); \ + c0##iter2 = PResPacket(result0##iter3.packet[0]); \ + c0##iter3 = PResPacket(result0##iter3.packet[2]); \ + pstoreu_pmadd_complex(c0##iter2, c0##iter3, alpha_data, res + i); \ + } \ + } + +#define GEMV_PROCESS_COL_COMPLEX_ONE_MMA(N) \ + GEMV_UNROLL(GEMV_INIT_COL_COMPLEX_MMA, N) \ + Index j = j2; \ + do { \ + const RhsScalar& b1 = rhs2(j, 0); \ + RhsScalar* b = const_cast(&b1); \ + GEMV_UNROLL(GEMV_PREFETCH, N) \ + GEMV_LOAD_COL_COMPLEX_MMA(N) \ + GEMV_WORK_COL_COMPLEX_MMA(N) \ + } while (++j < jend); \ + if (GEMV_GETN(N) <= 2) { \ + GEMV_UNROLL(GEMV_STORE_COL_COMPLEX_MMA, N) \ + } else { \ + GEMV_UNROLL_HALF(GEMV_STORE2_COL_COMPLEX_MMA, (N >> 1)) \ + } \ + i += (ResPacketSize * N); +#endif + +#define GEMV_INIT_COMPLEX(iter, N) \ + if (N > iter) { \ + c0##iter = pset_zero(); \ + c1##iter = pset_init(c1##iter); \ + } else { \ + EIGEN_UNUSED_VARIABLE(c0##iter); \ + EIGEN_UNUSED_VARIABLE(c1##iter); \ + } + +#define GEMV_WORK_COL_COMPLEX(iter, N) \ + if (N > iter) { \ + f##iter = GEMV_LOADPACKET_COL_COMPLEX(iter); \ + gemv_mult_complex(f##iter, b, c0##iter, c1##iter); \ + } else { \ + EIGEN_UNUSED_VARIABLE(f##iter); \ + } + +#define GEMV_STORE_COL_COMPLEX(iter, N) \ + if (N > iter) { \ + if (GEMV_IS_COMPLEX_COMPLEX) { \ + c0##iter = padd(c0##iter, c1##iter); \ + } \ + pstoreu_pmadd_complex(c0##iter, alpha_data, res + i + (iter * ResPacketSize)); \ + } + +/** \internal main macro for gemv_complex_col - initialize accumulators, multiply and add inputs, and store results */ +#define GEMV_PROCESS_COL_COMPLEX_ONE(N) \ + GEMV_UNROLL(GEMV_INIT_COMPLEX, N) \ + Index j = j2; \ + do { \ + const RhsScalar& b1 = rhs2(j, 0); \ + RhsScalar* b = const_cast(&b1); \ + GEMV_UNROLL(GEMV_PREFETCH, N) \ + GEMV_UNROLL(GEMV_WORK_COL_COMPLEX, N) \ + } while (++j < jend); \ + GEMV_UNROLL(GEMV_STORE_COL_COMPLEX, N) \ + i += (ResPacketSize * N); + +#if defined(USE_GEMV_MMA) && (EIGEN_COMP_LLVM || defined(USE_SLOWER_GEMV_MMA)) +#define USE_GEMV_COL_COMPLEX_MMA +#endif + +#ifdef USE_GEMV_COL_COMPLEX_MMA +#define GEMV_PROCESS_COL_COMPLEX(N) \ + GEMV_PROCESS_COL_COMPLEX_ONE_MMA(N) +#else +#if defined(USE_GEMV_MMA) && (__GNUC__ > 10) +#define GEMV_PROCESS_COL_COMPLEX(N) \ + if (sizeof(Scalar) != sizeof(LhsPacket)) { \ + GEMV_PROCESS_COL_COMPLEX_ONE_MMA(N) \ + } else { \ + GEMV_PROCESS_COL_COMPLEX_ONE(N) \ + } +#else +#define GEMV_PROCESS_COL_COMPLEX(N) \ + GEMV_PROCESS_COL_COMPLEX_ONE(N) +#endif +#endif + +template +EIGEN_STRONG_INLINE void gemv_complex_col( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + ResScalar alpha) +{ + typedef gemv_traits Traits; + + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + + typedef typename packet_traits::type ScalarPacket; + typedef typename packet_traits::type PLhsPacket; + typedef typename packet_traits::type PResPacket; + typedef gemv_traits PTraits; + + EIGEN_UNUSED_VARIABLE(resIncr); + eigen_internal_assert(resIncr == 1); + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + RhsMapper rhs2(rhs); + + conj_helper cj; + + const Index lhsStride = lhs.stride(); + // TODO: for padded aligned inputs, we could enable aligned reads + enum { + LhsAlignment = Unaligned, + ResPacketSize = PTraits::ResPacketSize, + LhsPacketSize = PTraits::LhsPacketSize, + RhsPacketSize = PTraits::RhsPacketSize, + }; +#ifdef EIGEN_POWER_USE_GEMV_PREFETCH + const Index prefetch_dist = 64 * LhsPacketSize; +#endif + +#ifndef GCC_ONE_VECTORPAIR_BUG + const Index n8 = rows - 8 * ResPacketSize + 1; + const Index n4 = rows - 4 * ResPacketSize + 1; + const Index n2 = rows - 2 * ResPacketSize + 1; +#endif + const Index n1 = rows - 1 * ResPacketSize + 1; + + // TODO: improve the following heuristic: + const Index block_cols = cols < 128 ? cols : (lhsStride * sizeof(LhsScalar) < 16000 ? 16 : 8); + + typedef alpha_store AlphaData; + AlphaData alpha_data(alpha); + + for (Index j2 = 0; j2 < cols; j2 += block_cols) + { + Index jend = numext::mini(j2 + block_cols, cols); + Index i = 0; + PResPacket c00, c01, c02, c03, c04, c05, c06, c07; + ResPacket c10, c11, c12, c13, c14, c15, c16, c17; + PLhsPacket f0, f1, f2, f3, f4, f5, f6, f7; +#ifdef USE_GEMV_MMA + __vector_quad e00, e01, e02, e03, e04, e05, e06, e07; + __vector_pair a0, a1, a2, a3, a4, a5, a6, a7; + PacketBlock result00, result01, result02, result03, result04, result05, result06, result07; + GEMV_UNUSED(8, e0) + GEMV_UNUSED(8, result0) + GEMV_UNUSED(8, a) + GEMV_UNUSED(8, f) +#if !defined(GCC_ONE_VECTORPAIR_BUG) && defined(USE_GEMV_COL_COMPLEX_MMA) + if (GEMV_IS_COMPLEX_COMPLEX || !GEMV_IS_COMPLEX_FLOAT) +#endif +#endif +#ifndef GCC_ONE_VECTORPAIR_BUG + { + while (i < n8) + { + GEMV_PROCESS_COL_COMPLEX(8) + } + } + while (i < n4) + { + GEMV_PROCESS_COL_COMPLEX(4) + } + if (i < n2) + { + GEMV_PROCESS_COL_COMPLEX(2) + } + if (i < n1) +#else + while (i < n1) +#endif + { + GEMV_PROCESS_COL_COMPLEX_ONE(1) + } + for (;i < rows;++i) + { + ResScalar d0(0); + Index j = j2; + do { + d0 += cj.pmul(lhs(i, j), rhs2(j, 0)); + } while (++j < jend); + res[i] += alpha * d0; + } + } +} + +template struct ScalarBlock { + Scalar scalar[N]; +}; + +#ifdef USE_GEMV_MMA +static Packet16uc p16uc_ELEMENT_3 = { 0x0c,0x0d,0x0e,0x0f, 0x1c,0x1d,0x1e,0x1f, 0x0c,0x0d,0x0e,0x0f, 0x1c,0x1d,0x1e,0x1f }; + +/** \internal predux (add elements of a vector) from a MMA accumulator - real results */ +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_real(__vector_quad* acc0, __vector_quad* acc1) +{ + PacketBlock result0, result1; + __builtin_mma_disassemble_acc(&result0.packet, acc0); + __builtin_mma_disassemble_acc(&result1.packet, acc1); + result0.packet[0] = vec_mergeh(result0.packet[0], result1.packet[0]); + result0.packet[1] = vec_mergeo(result0.packet[1], result1.packet[1]); + result0.packet[2] = vec_mergel(result0.packet[2], result1.packet[2]); + result0.packet[3] = vec_perm(result0.packet[3], result1.packet[3], p16uc_ELEMENT_3); + result0.packet[0] = vec_add(vec_add(result0.packet[0], result0.packet[2]), vec_add(result0.packet[1], result0.packet[3])); + return *reinterpret_cast *>(&result0.packet[0]); +} + +template<> +EIGEN_ALWAYS_INLINE ScalarBlock predux_real(__vector_quad* acc0, __vector_quad* acc1) +{ + PacketBlock result0, result1; + __builtin_mma_disassemble_acc(&result0.packet, acc0); + __builtin_mma_disassemble_acc(&result1.packet, acc1); + result0.packet[0] = vec_add(vec_mergeh(result0.packet[0], result1.packet[0]), vec_mergel(result0.packet[1], result1.packet[1])); + return *reinterpret_cast *>(&result0.packet[0]); +} + +/** \internal add complex results together */ +template +EIGEN_ALWAYS_INLINE ScalarBlock, 2> addComplexResults(PacketBlock& result0, PacketBlock& result1) +{ + ScalarBlock, 2> cc0; + result0.packet[0] = reinterpret_cast(vec_mergeh(reinterpret_cast(result0.packet[0]), reinterpret_cast(result1.packet[0]))); + result0.packet[2] = reinterpret_cast(vec_mergel(reinterpret_cast(result0.packet[2]), reinterpret_cast(result1.packet[2]))); + result0.packet[0] = vec_add(result0.packet[0], result0.packet[2]); + if (GEMV_IS_COMPLEX_COMPLEX) { + result0.packet[1] = reinterpret_cast(vec_mergeh(reinterpret_cast(result0.packet[1]), reinterpret_cast(result1.packet[1]))); + result0.packet[3] = reinterpret_cast(vec_mergel(reinterpret_cast(result0.packet[3]), reinterpret_cast(result1.packet[3]))); + result0.packet[1] = vec_add(result0.packet[1], result0.packet[3]); + if (ConjugateLhs) { + result0.packet[0] = pconj2(convertComplex(result0.packet[0])).v; + result0.packet[1] = pcplxflip2(convertComplex(result0.packet[1])).v; + } else if (ConjugateRhs) { + result0.packet[1] = pcplxconjflip(convertComplex(result0.packet[1])).v; + } else { + result0.packet[1] = pcplxflipconj(convertComplex(result0.packet[1])).v; + } + result0.packet[0] = vec_add(result0.packet[0], result0.packet[1]); + } else { + if (ConjugateLhs && (sizeof(LhsPacket) == sizeof(std::complex))) { + result0.packet[0] = pconj2(convertComplex(result0.packet[0])).v; + } + } + cc0.scalar[0].real(result0.packet[0][0]); + cc0.scalar[0].imag(result0.packet[0][1]); + cc0.scalar[1].real(result0.packet[0][2]); + cc0.scalar[1].imag(result0.packet[0][3]); + return cc0; +} + +template +EIGEN_ALWAYS_INLINE ScalarBlock, 2> addComplexResults(PacketBlock&, PacketBlock&) +{ + ScalarBlock, 2> cc0; + EIGEN_UNUSED_VARIABLE(cc0); + return cc0; // Just for compilation +} + +/** \internal predux (add elements of a vector) from a MMA accumulator - complex results */ +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_complex(__vector_quad* acc0, __vector_quad* acc1) +{ + PacketBlock result0, result1; + __builtin_mma_disassemble_acc(&result0.packet, acc0); + __builtin_mma_disassemble_acc(&result1.packet, acc1); + return addComplexResults(result0, result1); +} + +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_real(__vector_quad* acc0) +{ + PacketBlock result0; + __builtin_mma_disassemble_acc(&result0.packet, acc0); + result0.packet[0] = vec_add(vec_mergeh(result0.packet[0], result0.packet[2]), vec_mergel(result0.packet[1], result0.packet[3])); + return *reinterpret_cast *>(&result0.packet[0]); +} + +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_complex(__vector_quad* acc0) +{ + ScalarBlock cc0; + PacketBlock result0; + __builtin_mma_disassemble_acc(&result0.packet, acc0); + if (GEMV_IS_COMPLEX_COMPLEX) { + if (ConjugateLhs) { + result0.packet[1] = pconjinv(convertComplex(result0.packet[1])).v; + result0.packet[3] = pconjinv(convertComplex(result0.packet[3])).v; + } else if (ConjugateRhs) { + result0.packet[0] = pconj2(convertComplex(result0.packet[0])).v; + result0.packet[2] = pconj2(convertComplex(result0.packet[2])).v; + } else { + result0.packet[1] = pconj2(convertComplex(result0.packet[1])).v; + result0.packet[3] = pconj2(convertComplex(result0.packet[3])).v; + } + result0.packet[0] = vec_add(result0.packet[0], __builtin_vsx_xxpermdi(result0.packet[1], result0.packet[1], 2)); + result0.packet[2] = vec_add(result0.packet[2], __builtin_vsx_xxpermdi(result0.packet[3], result0.packet[3], 2)); + } else { + result0.packet[0] = __builtin_vsx_xxpermdi(result0.packet[0], result0.packet[1], 1); + result0.packet[2] = __builtin_vsx_xxpermdi(result0.packet[2], result0.packet[3], 1); + } + cc0.scalar[0].real(result0.packet[0][0]); + cc0.scalar[0].imag(result0.packet[0][1]); + cc0.scalar[1].real(result0.packet[2][0]); + cc0.scalar[1].imag(result0.packet[2][1]); + return cc0; +} +#endif + +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_real(ResPacket& a, ResPacket& b) +{ + ScalarBlock cc0; + cc0.scalar[0] = predux(a); + cc0.scalar[1] = predux(b); + return cc0; +} + +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_complex(ResPacket& a, ResPacket& b) +{ + return predux_real(a, b); +} + +#define GEMV_UNROLL_ROW(func, N) \ + func(0, N) func(1, N) func(2, N) func(3, N) func(4, N) func(5, N) func(6, N) func(7, N) + +#define GEMV_UNROLL_ROW_HALF(func, N) \ + func(0, 0, 1, N) func(1, 2, 3, N) func(2, 4, 5, N) func(3, 6, 7, N) + +#define GEMV_LOADPACKET_ROW(iter) \ + lhs.template load(i + (iter), j) + +#ifdef USE_GEMV_MMA +#define GEMV_UNROLL3_ROW(func, N, which) \ + func(0, N, which) func(1, N, which) func(2, N, which) func(3, N, which) \ + func(4, N, which) func(5, N, which) func(6, N, which) func(7, N, which) + +#define GEMV_UNUSED_ROW(N, which) \ + GEMV_UNROLL3_ROW(GEMV_UNUSED_VAR, N, which) + +#define GEMV_INIT_ROW(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + __builtin_mma_xxsetaccz(&c##iter); \ + } + +#define GEMV_LOADPAIR_ROW(iter1, iter2) \ + GEMV_BUILDPAIR_MMA(b##iter1, GEMV_LOADPACKET_ROW(iter2), GEMV_LOADPACKET_ROW((iter2) + 1)); + +#define GEMV_WORK_ROW(iter, N) \ + if (GEMV_GETN(N) > iter) { \ + if (GEMV_IS_FLOAT) { \ + pger_vecMMA_acc(&c##iter, a0, GEMV_LOADPACKET_ROW(iter)); \ + } else { \ + __vector_pair b##iter; \ + GEMV_LOADPAIR_ROW(iter, iter << 1) \ + pger_vecMMA_acc(&c##iter, b##iter, a0); \ + } \ + } + +#define GEMV_PREDUX2(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + if (GEMV_IS_FLOAT) { \ + cc##iter1 = predux_real(&c##iter2, &c##iter3); \ + } else { \ + cc##iter1 = predux_real(&c##iter1); \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(cc##iter1); \ + } +#else +#define GEMV_INIT_ROW(iter, N) \ + if (N > iter) { \ + c##iter = pset1(ResScalar(0)); \ + } else { \ + EIGEN_UNUSED_VARIABLE(c##iter); \ + } + +#define GEMV_WORK_ROW(iter, N) \ + if (N > iter) { \ + c##iter = pcj.pmadd(GEMV_LOADPACKET_ROW(iter), a0, c##iter); \ + } + +#define GEMV_PREDUX2(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + cc##iter1 = predux_real(c##iter2, c##iter3); \ + } else { \ + EIGEN_UNUSED_VARIABLE(cc##iter1); \ + } +#endif + +#define GEMV_MULT(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + cc##iter1.scalar[0] += cj.pmul(lhs(i + iter2, j), a0); \ + cc##iter1.scalar[1] += cj.pmul(lhs(i + iter3, j), a0); \ + } + +#define GEMV_STORE_ROW(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + storeMaddData(res + ((i + iter2) * resIncr), alpha, cc##iter1.scalar[0]); \ + storeMaddData(res + ((i + iter3) * resIncr), alpha, cc##iter1.scalar[1]); \ + } + +/** \internal main macro for gemv_row - initialize accumulators, multiply and add inputs, predux and store results */ +#define GEMV_PROCESS_ROW(N) \ + for (; i < n##N; i += N) { \ + GEMV_UNROLL_ROW(GEMV_INIT_ROW, N) \ + Index j = 0; \ + for (; j + LhsPacketSize <= cols; j += LhsPacketSize) { \ + RhsPacket a0 = rhs2.template load(j); \ + GEMV_UNROLL_ROW(GEMV_WORK_ROW, N) \ + } \ + GEMV_UNROLL_ROW_HALF(GEMV_PREDUX2, (N >> 1)) \ + for (; j < cols; ++j) { \ + RhsScalar a0 = rhs2(j); \ + GEMV_UNROLL_ROW_HALF(GEMV_MULT, (N >> 1)) \ + } \ + GEMV_UNROLL_ROW_HALF(GEMV_STORE_ROW, (N >> 1)) \ + } + +template +EIGEN_STRONG_INLINE void gemv_row( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + ResScalar alpha) +{ + typedef gemv_traits Traits; + + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + typename RhsMapper::LinearMapper rhs2 = rhs.getLinearMapper(0, 0); + + eigen_internal_assert(rhs.stride() == 1); + conj_helper cj; + conj_helper pcj; + + // TODO: fine tune the following heuristic. The rationale is that if the matrix is very large, + // processing 8 rows at once might be counter productive wrt cache. +#ifndef GCC_ONE_VECTORPAIR_BUG + const Index n8 = lhs.stride() * sizeof(LhsScalar) > 32000 ? (rows - 7) : (rows - 7); + const Index n4 = rows - 3; + const Index n2 = rows - 1; +#endif + + // TODO: for padded aligned inputs, we could enable aligned reads + enum { + LhsAlignment = Unaligned, + ResPacketSize = Traits::ResPacketSize, + LhsPacketSize = Traits::LhsPacketSize, + RhsPacketSize = Traits::RhsPacketSize, + }; + + Index i = 0; +#ifdef USE_GEMV_MMA + __vector_quad c0, c1, c2, c3, c4, c5, c6, c7; + GEMV_UNUSED_ROW(8, c) +#else + ResPacket c0, c1, c2, c3, c4, c5, c6, c7; +#endif +#ifndef GCC_ONE_VECTORPAIR_BUG + ScalarBlock cc0, cc1, cc2, cc3; + GEMV_PROCESS_ROW(8) + GEMV_PROCESS_ROW(4) + GEMV_PROCESS_ROW(2) +#endif + for (; i < rows; ++i) + { + ResPacket d0 = pset1(ResScalar(0)); + Index j = 0; + for (; j + LhsPacketSize <= cols; j += LhsPacketSize) + { + RhsPacket b0 = rhs2.template load(j); + + d0 = pcj.pmadd(lhs.template load(i + 0, j), b0, d0); + } + ResScalar dd0 = predux(d0); + for (; j < cols; ++j) + { + dd0 += cj.pmul(lhs(i, j), rhs2(j)); + } + res[i * resIncr] += alpha * dd0; + } +} + +#define EIGEN_POWER_GEMV_REAL_SPECIALIZE_COL(Scalar) \ +template \ +struct general_matrix_vector_product \ +{ \ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; \ +\ + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( \ + Index rows, Index cols, \ + const LhsMapper& lhs, \ + const RhsMapper& rhs, \ + ResScalar* res, Index resIncr, \ + ResScalar alpha) { \ + gemv_col(rows, cols, lhs, rhs, res, resIncr, alpha); \ + } \ +}; + +#define EIGEN_POWER_GEMV_REAL_SPECIALIZE_ROW(Scalar) \ +template \ +struct general_matrix_vector_product \ +{ \ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; \ +\ + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( \ + Index rows, Index cols, \ + const LhsMapper& lhs, \ + const RhsMapper& rhs, \ + ResScalar* res, Index resIncr, \ + ResScalar alpha) { \ + gemv_row(rows, cols, lhs, rhs, res, resIncr, alpha); \ + } \ +}; + +EIGEN_POWER_GEMV_REAL_SPECIALIZE_COL(float) +EIGEN_POWER_GEMV_REAL_SPECIALIZE_COL(double) +EIGEN_POWER_GEMV_REAL_SPECIALIZE_ROW(float) +EIGEN_POWER_GEMV_REAL_SPECIALIZE_ROW(double) + +#ifdef USE_GEMV_MMA +#define gemv_bf16_col gemvMMA_bfloat16_col +#define gemv_bf16_row gemvMMA_bfloat16_row +#else +#define gemv_bf16_col gemv_bfloat16_col +#define gemv_bf16_row gemv_bfloat16_row +#endif + +#define EIGEN_POWER_GEMV_REAL_SPECIALIZE_COL_BFLOAT16() \ +template \ +struct general_matrix_vector_product \ +{ \ + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( \ + Index rows, Index cols, \ + const LhsMapper& lhs, \ + const RhsMapper& rhs, \ + bfloat16* res, Index resIncr, \ + bfloat16 alpha) { \ + gemv_bf16_col(rows, cols, lhs, rhs, res, resIncr, alpha); \ + } \ +}; + +#define EIGEN_POWER_GEMV_REAL_SPECIALIZE_ROW_BFLOAT16() \ +template \ +struct general_matrix_vector_product \ +{ \ + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( \ + Index rows, Index cols, \ + const LhsMapper& lhs, \ + const RhsMapper& rhs, \ + bfloat16* res, Index resIncr, \ + bfloat16 alpha) { \ + gemv_bf16_row(rows, cols, lhs, rhs, res, resIncr, alpha); \ + } \ +}; + +EIGEN_POWER_GEMV_REAL_SPECIALIZE_COL_BFLOAT16() +EIGEN_POWER_GEMV_REAL_SPECIALIZE_ROW_BFLOAT16() + +template +EIGEN_ALWAYS_INLINE ScalarBlock predux_complex(PResPacket& a0, PResPacket& b0, ResPacket& a1, ResPacket& b1) +{ + if (GEMV_IS_COMPLEX_COMPLEX) { + a0 = padd(a0, a1); + b0 = padd(b0, b1); + } + return predux_complex(a0, b0); +} + +#define GEMV_LOADPACKET_ROW_COMPLEX(iter) \ + loadLhsPacket(lhs, i + (iter), j) + +#define GEMV_LOADPACKET_ROW_COMPLEX_DATA(iter) \ + convertReal(GEMV_LOADPACKET_ROW_COMPLEX(iter)) + +#define GEMV_PROCESS_ROW_COMPLEX_SINGLE_WORK(which, N) \ + j = 0; \ + for (; j + LhsPacketSize <= cols; j += LhsPacketSize) { \ + const RhsScalar& b1 = rhs2(j); \ + RhsScalar* b = const_cast(&b1); \ + GEMV_UNROLL_ROW(which, N) \ + } + +#define GEMV_PROCESS_END_ROW_COMPLEX(N) \ + for (; j < cols; ++j) { \ + RhsScalar b0 = rhs2(j); \ + GEMV_UNROLL_ROW_HALF(GEMV_MULT_COMPLEX, (N >> 1)) \ + } \ + GEMV_UNROLL_ROW_HALF(GEMV_STORE_ROW_COMPLEX, (N >> 1)) + +#ifdef USE_GEMV_MMA +#define GEMV_INIT_ROW_COMPLEX_MMA(iter, N) \ + if (GEMV_GETN_COMPLEX(N) > iter) { \ + __builtin_mma_xxsetaccz(&e0##iter); \ + } + +#define GEMV_LOADPAIR_ROW_COMPLEX_MMA(iter1, iter2) \ + GEMV_BUILDPAIR_MMA(a##iter1, GEMV_LOADPACKET_ROW_COMPLEX_DATA(iter2), GEMV_LOADPACKET_ROW_COMPLEX_DATA((iter2) + 1)); + +#define GEMV_WORK_ROW_COMPLEX_MMA(iter, N) \ + if (GEMV_GETN_COMPLEX(N) > iter) { \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + PLhsPacket a##iter = GEMV_LOADPACKET_ROW_COMPLEX(iter); \ + gemv_mult_complex_MMA(a##iter, b, &e0##iter); \ + } else { \ + __vector_pair a##iter; \ + GEMV_LOADPAIR_ROW_COMPLEX_MMA(iter, iter << 1) \ + gemv_mult_complex_MMA(a##iter, b, &e0##iter); \ + } \ + } + +#define GEMV_PREDUX4_COMPLEX_MMA(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + if (GEMV_IS_COMPLEX_FLOAT) { \ + cc##iter1 = predux_complex(&e0##iter2, &e0##iter3); \ + } else { \ + cc##iter1 = predux_complex(&e0##iter1); \ + } \ + } else { \ + EIGEN_UNUSED_VARIABLE(cc##iter1); \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_SINGLE_MMA(N) \ + GEMV_UNROLL_ROW(GEMV_INIT_ROW_COMPLEX_MMA, N) \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_WORK(GEMV_WORK_ROW_COMPLEX_MMA, N) + +#define GEMV_PROCESS_ROW_COMPLEX_ONE_MMA(N) \ + for (; i < n##N; i += N) { \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_MMA(N) \ + GEMV_UNROLL_ROW_HALF(GEMV_PREDUX4_COMPLEX_MMA, (N >> 1)) \ + GEMV_PROCESS_END_ROW_COMPLEX(N); \ + } +#endif + +#define GEMV_WORK_ROW_COMPLEX(iter, N) \ + if (N > iter) { \ + PLhsPacket a##iter = GEMV_LOADPACKET_ROW_COMPLEX(iter); \ + gemv_mult_complex(a##iter, b, c0##iter, c1##iter); \ + } + +#define GEMV_PREDUX4_COMPLEX(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + cc##iter1 = predux_complex(c0##iter2, c0##iter3, c1##iter2, c1##iter3); \ + } else { \ + EIGEN_UNUSED_VARIABLE(cc##iter1); \ + } + +#define GEMV_MULT_COMPLEX(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + cc##iter1.scalar[0] += cj.pmul(lhs(i + iter2, j), b0); \ + cc##iter1.scalar[1] += cj.pmul(lhs(i + iter3, j), b0); \ + } + +#define GEMV_STORE_ROW_COMPLEX(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + storeMaddData(res + ((i + iter2) * resIncr), alpha, cc##iter1.scalar[0]); \ + storeMaddData(res + ((i + iter3) * resIncr), alpha, cc##iter1.scalar[1]); \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_SINGLE_NEW(N) \ + GEMV_UNROLL_ROW(GEMV_INIT_COMPLEX, N) \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_WORK(GEMV_WORK_ROW_COMPLEX, N) + +/** \internal main macro for gemv_complex_row - initialize accumulators, multiply and add inputs, predux and store results */ +#define GEMV_PROCESS_ROW_COMPLEX_ONE_NEW(N) \ + for (; i < n##N; i += N) { \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_NEW(N) \ + GEMV_UNROLL_ROW_HALF(GEMV_PREDUX4_COMPLEX, (N >> 1)) \ + GEMV_PROCESS_END_ROW_COMPLEX(N); \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_PREDUX_NEW(iter) \ + if (GEMV_IS_COMPLEX_COMPLEX) { \ + c0##iter = padd(c0##iter, c1##iter); \ + } \ + dd0 = predux(c0##iter); + +#if EIGEN_COMP_LLVM +#define GEMV_PROCESS_ROW_COMPLEX_SINGLE(N) \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_NEW(N) + +#define GEMV_PROCESS_ROW_COMPLEX_ONE(N) \ + GEMV_PROCESS_ROW_COMPLEX_ONE_NEW(N) + +#define GEMV_PROCESS_ROW_COMPLEX_PREDUX(iter) \ + GEMV_PROCESS_ROW_COMPLEX_PREDUX_NEW(iter) +#else +// gcc seems to be reading and writing registers unnecessarily to memory. +// Use the old way for complex double until it is fixed. + +#define GEMV_LOADPACKET_ROW_COMPLEX_OLD(iter) \ + lhs.template load(i + (iter), j) + +#define GEMV_INIT_COMPLEX_OLD(iter, N) \ + EIGEN_UNUSED_VARIABLE(c0##iter); \ + if (N > iter) { \ + c1##iter = pset_zero(); \ + } else { \ + EIGEN_UNUSED_VARIABLE(c1##iter); \ + } + +#define GEMV_WORK_ROW_COMPLEX_OLD(iter, N) \ + if (N > iter) { \ + LhsPacket a##iter = GEMV_LOADPACKET_ROW_COMPLEX_OLD(iter); \ + c1##iter = pcj.pmadd(a##iter, b0, c1##iter); \ + } + +#define GEMV_PREDUX4_COMPLEX_OLD(iter1, iter2, iter3, N) \ + if (N > iter1) { \ + cc##iter1.scalar[0] = predux(c1##iter2); \ + cc##iter1.scalar[1] = predux(c1##iter3); \ + } else { \ + EIGEN_UNUSED_VARIABLE(cc##iter1); \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_SINGLE_OLD(N) \ + GEMV_UNROLL_ROW(GEMV_INIT_COMPLEX_OLD, N) \ + j = 0; \ + for (; j + LhsPacketSize <= cols; j += LhsPacketSize) { \ + RhsPacket b0 = rhs2.template load(j); \ + GEMV_UNROLL_ROW(GEMV_WORK_ROW_COMPLEX_OLD, N) \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_ONE_OLD(N) \ + for (; i < n##N; i += N) { \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_OLD(N) \ + GEMV_UNROLL_ROW_HALF(GEMV_PREDUX4_COMPLEX_OLD, (N >> 1)) \ + GEMV_PROCESS_END_ROW_COMPLEX(N) \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_PREDUX_OLD(iter) \ + dd0 = predux(c1##iter); + +#if (__GNUC__ > 10) +#define GEMV_PROCESS_ROW_COMPLEX_IS_NEW 1 +#else +#define GEMV_PROCESS_ROW_COMPLEX_IS_NEW \ + (sizeof(Scalar) == sizeof(float)) || GEMV_IS_COMPLEX_COMPLEX +#endif + +#define GEMV_PROCESS_ROW_COMPLEX_SINGLE(N) \ + if (GEMV_PROCESS_ROW_COMPLEX_IS_NEW) { \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_NEW(N) \ + } else { \ + GEMV_PROCESS_ROW_COMPLEX_SINGLE_OLD(N) \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_ONE(N) \ + if (GEMV_PROCESS_ROW_COMPLEX_IS_NEW) { \ + GEMV_PROCESS_ROW_COMPLEX_ONE_NEW(N) \ + } else { \ + GEMV_PROCESS_ROW_COMPLEX_ONE_OLD(N) \ + } + +#define GEMV_PROCESS_ROW_COMPLEX_PREDUX(iter) \ + if (GEMV_PROCESS_ROW_COMPLEX_IS_NEW) { \ + GEMV_PROCESS_ROW_COMPLEX_PREDUX_NEW(iter) \ + } else { \ + GEMV_PROCESS_ROW_COMPLEX_PREDUX_OLD(iter) \ + } +#endif + +#ifdef USE_GEMV_MMA +#define GEMV_PROCESS_ROW_COMPLEX(N) \ + GEMV_PROCESS_ROW_COMPLEX_ONE_MMA(N) +#else +#define GEMV_PROCESS_ROW_COMPLEX(N) \ + GEMV_PROCESS_ROW_COMPLEX_ONE(N) +#endif + +template +EIGEN_STRONG_INLINE void gemv_complex_row( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + ResScalar alpha) +{ + typedef gemv_traits Traits; + + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + + typedef typename packet_traits::type ScalarPacket; + typedef typename packet_traits::type PLhsPacket; + typedef typename packet_traits::type PResPacket; + typedef gemv_traits PTraits; + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate proper code. + LhsMapper lhs(alhs); + typename RhsMapper::LinearMapper rhs2 = rhs.getLinearMapper(0, 0); + + eigen_internal_assert(rhs.stride() == 1); + conj_helper cj; +#if !EIGEN_COMP_LLVM + conj_helper pcj; +#endif + + // TODO: fine tune the following heuristic. The rationale is that if the matrix is very large, + // processing 8 rows at once might be counter productive wrt cache. +#ifndef GCC_ONE_VECTORPAIR_BUG + const Index n8 = lhs.stride() * sizeof(LhsScalar) > 32000 ? (rows - 7) : (rows - 7); + const Index n4 = rows - 3; + const Index n2 = rows - 1; +#endif + + // TODO: for padded aligned inputs, we could enable aligned reads + enum { + LhsAlignment = Unaligned, + ResPacketSize = PTraits::ResPacketSize, + LhsPacketSize = PTraits::LhsPacketSize, + RhsPacketSize = PTraits::RhsPacketSize, + }; + + Index i = 0, j; + PResPacket c00, c01, c02, c03, c04, c05, c06, c07; + ResPacket c10, c11, c12, c13, c14, c15, c16, c17; +#ifdef USE_GEMV_MMA + __vector_quad e00, e01, e02, e03, e04, e05, e06, e07; + GEMV_UNUSED_ROW(8, e0) + GEMV_UNUSED_EXTRA(1, c0) + GEMV_UNUSED_EXTRA(1, c1) +#endif + ResScalar dd0; +#ifndef GCC_ONE_VECTORPAIR_BUG + ScalarBlock cc0, cc1, cc2, cc3; +#ifdef USE_GEMV_MMA + if (!GEMV_IS_COMPLEX_COMPLEX) +#endif + { + GEMV_PROCESS_ROW_COMPLEX(8) + } + GEMV_PROCESS_ROW_COMPLEX(4) + GEMV_PROCESS_ROW_COMPLEX(2) +#endif + for (; i < rows; ++i) + { + GEMV_PROCESS_ROW_COMPLEX_SINGLE(1) + GEMV_PROCESS_ROW_COMPLEX_PREDUX(0) + for (; j < cols; ++j) + { + dd0 += cj.pmul(lhs(i, j), rhs2(j)); + } + res[i * resIncr] += alpha * dd0; + } +} + +#define EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(Scalar, LhsScalar, RhsScalar) \ +template \ +struct general_matrix_vector_product \ +{ \ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; \ +\ + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( \ + Index rows, Index cols, \ + const LhsMapper& lhs, \ + const RhsMapper& rhs, \ + ResScalar* res, Index resIncr, \ + ResScalar alpha) { \ + gemv_complex_col(rows, cols, lhs, rhs, res, resIncr, alpha); \ + } \ +}; + +#define EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(Scalar, LhsScalar, RhsScalar) \ +template \ +struct general_matrix_vector_product \ +{ \ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; \ +\ + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( \ + Index rows, Index cols, \ + const LhsMapper& lhs, \ + const RhsMapper& rhs, \ + ResScalar* res, Index resIncr, \ + ResScalar alpha) { \ + gemv_complex_row(rows, cols, lhs, rhs, res, resIncr, alpha); \ + } \ +}; + +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(float, float, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(float, std::complex, float) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(float, std::complex, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(double, double, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(double, std::complex, double) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_COL(double, std::complex, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(float, float, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(float, std::complex, float) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(float, std::complex, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(double, double, std::complex) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(double, std::complex, double) +EIGEN_POWER_GEMV_COMPLEX_SPECIALIZE_ROW(double, std::complex, std::complex) + +#endif // EIGEN_MATRIX_VECTOR_PRODUCT_ALTIVEC_H + diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h new file mode 100644 index 0000000..f12dc19 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h @@ -0,0 +1,3218 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2016 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_ALTIVEC_H +#define EIGEN_PACKET_MATH_ALTIVEC_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4 +#endif + +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif + +// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16 +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 +#endif + +typedef __vector float Packet4f; +typedef __vector int Packet4i; +typedef __vector unsigned int Packet4ui; +typedef __vector __bool int Packet4bi; +typedef __vector short int Packet8s; +typedef __vector unsigned short int Packet8us; +typedef __vector __bool short Packet8bi; +typedef __vector signed char Packet16c; +typedef __vector unsigned char Packet16uc; +typedef eigen_packet_wrapper<__vector unsigned short int,0> Packet8bf; + +// We don't want to write the same code all the time, but we need to reuse the constants +// and it doesn't really work to declare them global, so we define macros instead +#define EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \ + Packet4f p4f_##NAME = {X, X, X, X} + +#define EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \ + Packet4i p4i_##NAME = vec_splat_s32(X) + +#define EIGEN_DECLARE_CONST_FAST_Packet4ui(NAME,X) \ + Packet4ui p4ui_##NAME = {X, X, X, X} + +#define EIGEN_DECLARE_CONST_FAST_Packet8us(NAME,X) \ + Packet8us p8us_##NAME = {X, X, X, X, X, X, X, X} + +#define EIGEN_DECLARE_CONST_FAST_Packet16uc(NAME,X) \ + Packet16uc p16uc_##NAME = {X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X} + +#define EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ + Packet4f p4f_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ + Packet4i p4i_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ + Packet2d p2d_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet2l(NAME,X) \ + Packet2l p2l_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ + const Packet4f p4f_##NAME = reinterpret_cast(pset1(X)) + +#define DST_CHAN 1 +#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride)) +#define __UNPACK_TYPE__(PACKETNAME) typename unpacket_traits::type + +// These constants are endian-agnostic +static EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0} +static EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,} +static EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1); //{ 1, 1, 1, 1} +static EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16); //{ -16, -16, -16, -16} +static EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1} +static EIGEN_DECLARE_CONST_FAST_Packet4ui(SIGN, 0x80000000u); +static EIGEN_DECLARE_CONST_FAST_Packet4ui(PREV0DOT5, 0x3EFFFFFFu); +static EIGEN_DECLARE_CONST_FAST_Packet8us(ONE,1); //{ 1, 1, 1, 1, 1, 1, 1, 1} +static Packet4f p4f_MZERO = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1); //{ 0x80000000, 0x80000000, 0x80000000, 0x80000000} +#ifndef __VSX__ +static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0); //{ 1.0, 1.0, 1.0, 1.0} +#endif + +static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 }; +static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 }; +static Packet8s p8s_COUNTDOWN = { 0, 1, 2, 3, 4, 5, 6, 7 }; +static Packet8us p8us_COUNTDOWN = { 0, 1, 2, 3, 4, 5, 6, 7 }; + +static Packet16c p16c_COUNTDOWN = { 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15}; +static Packet16uc p16uc_COUNTDOWN = { 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15}; + +static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 }; +static Packet16uc p16uc_REVERSE16 = { 14,15, 12,13, 10,11, 8,9, 6,7, 4,5, 2,3, 0,1 }; +#ifndef _ARCH_PWR9 +static Packet16uc p16uc_REVERSE8 = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 }; +#endif + +#ifdef _BIG_ENDIAN +static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 }; +#endif +static const Packet16uc p16uc_DUPLICATE16_EVEN= { 0,1 ,0,1, 4,5, 4,5, 8,9, 8,9, 12,13, 12,13 }; +static const Packet16uc p16uc_DUPLICATE16_ODD = { 2,3 ,2,3, 6,7, 6,7, 10,11, 10,11, 14,15, 14,15 }; + +static Packet16uc p16uc_QUADRUPLICATE16_HI = { 0,1,0,1,0,1,0,1, 2,3,2,3,2,3,2,3 }; + +static Packet16uc p16uc_MERGEE16 = { 0,1, 16,17, 4,5, 20,21, 8,9, 24,25, 12,13, 28,29 }; +static Packet16uc p16uc_MERGEO16 = { 2,3, 18,19, 6,7, 22,23, 10,11, 26,27, 14,15, 30,31 }; +#ifdef _BIG_ENDIAN +static Packet16uc p16uc_MERGEH16 = { 0,1, 4,5, 8,9, 12,13, 16,17, 20,21, 24,25, 28,29 }; +#else +static Packet16uc p16uc_MERGEL16 = { 2,3, 6,7, 10,11, 14,15, 18,19, 22,23, 26,27, 30,31 }; +#endif + +// Handle endianness properly while loading constants +// Define global static constants: +#ifdef _BIG_ENDIAN +static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0); +static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; +static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; +static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16}; +#else +static Packet16uc p16uc_FORWARD = p16uc_REVERSE32; +static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; +static Packet16uc p16uc_PSET32_WEVEN = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; +static Packet16uc p16uc_HALF64_0_16 = vec_sld(vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 0), (Packet16uc)p4i_ZERO, 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16}; +#endif // _BIG_ENDIAN + +static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 }; +static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 }; +static Packet16uc p16uc_TRANSPOSE64_HI = p16uc_PSET64_HI + p16uc_HALF64_0_16; //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23}; +static Packet16uc p16uc_TRANSPOSE64_LO = p16uc_PSET64_LO + p16uc_HALF64_0_16; //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31}; + +static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; + +#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC + #define EIGEN_PPC_PREFETCH(ADDR) __builtin_prefetch(ADDR); +#else + #define EIGEN_PPC_PREFETCH(ADDR) asm( " dcbt [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" ); +#endif + +#if EIGEN_COMP_LLVM +#define LOAD_STORE_UNROLL_16 _Pragma("unroll 16") +#else +#define LOAD_STORE_UNROLL_16 _Pragma("GCC unroll(16)") +#endif + +template <> +struct packet_traits : default_packet_traits { + typedef Packet4f type; + typedef Packet4f half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasMin = 1, + HasMax = 1, + HasAbs = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasACos = 1, + HasASin = 1, + HasATan = 1, + HasATanh = 1, + HasLog = 1, + HasExp = 1, +#ifdef EIGEN_VECTORIZE_VSX + HasSqrt = 1, +#if !EIGEN_COMP_CLANG + HasRsqrt = 1, +#else + HasRsqrt = 0, +#endif + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasRint = 1, +#else + HasSqrt = 0, + HasRsqrt = 0, + HasTanh = 0, + HasErf = 0, + HasRint = 0, +#endif + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasNegate = 1, + HasBlend = 1 + }; +}; +template <> +struct packet_traits : default_packet_traits { + typedef Packet8bf type; + typedef Packet8bf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasMin = 1, + HasMax = 1, + HasAbs = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasLog = 1, + HasExp = 1, +#ifdef EIGEN_VECTORIZE_VSX + HasSqrt = 1, +#if !EIGEN_COMP_CLANG + HasRsqrt = 1, +#else + HasRsqrt = 0, +#endif + HasRint = 1, +#else + HasSqrt = 0, + HasRsqrt = 0, + HasRint = 0, +#endif + HasTanh = 0, + HasErf = 0, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasNegate = 1, + HasBlend = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet4i type; + typedef Packet4i half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, +#if defined(_ARCH_PWR10) && (EIGEN_COMP_LLVM || EIGEN_GNUC_STRICT_AT_LEAST(11,0,0)) + HasDiv = 1, +#else + HasDiv = 0, +#endif + HasBlend = 1, + HasCmp = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet8s type; + typedef Packet8s half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 0, + HasBlend = 1, + HasCmp = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet8us type; + typedef Packet8us half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 0, + HasBlend = 1, + HasCmp = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet16c type; + typedef Packet16c half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 0, + HasBlend = 1, + HasCmp = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet16uc type; + typedef Packet16uc half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 0, + HasBlend = 1, + HasCmp = 1 + }; +}; + +template<> struct unpacket_traits +{ + typedef float type; + typedef Packet4f half; + typedef Packet4i integer_packet; + enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits +{ + typedef int type; + typedef Packet4i half; + enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits +{ + typedef short int type; + typedef Packet8s half; + enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits +{ + typedef unsigned short int type; + typedef Packet8us half; + enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; + +template<> struct unpacket_traits +{ + typedef signed char type; + typedef Packet16c half; + enum {size=16, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits +{ + typedef unsigned char type; + typedef Packet16uc half; + enum {size=16, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; + +template<> struct unpacket_traits +{ + typedef bfloat16 type; + typedef Packet8bf half; + enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +inline std::ostream & operator <<(std::ostream & s, const Packet16c & v) +{ + union { + Packet16c v; + signed char n[16]; + } vt; + vt.v = v; + for (int i=0; i< 16; i++) + s << vt.n[i] << ", "; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet16uc & v) +{ + union { + Packet16uc v; + unsigned char n[16]; + } vt; + vt.v = v; + for (int i=0; i< 16; i++) + s << vt.n[i] << ", "; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet4f & v) +{ + union { + Packet4f v; + float n[4]; + } vt; + vt.v = v; + s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet4i & v) +{ + union { + Packet4i v; + int n[4]; + } vt; + vt.v = v; + s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v) +{ + union { + Packet4ui v; + unsigned int n[4]; + } vt; + vt.v = v; + s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; + return s; +} + +template +EIGEN_STRONG_INLINE Packet pload_common(const __UNPACK_TYPE__(Packet)* from) +{ + // some versions of GCC throw "unused-but-set-parameter". + // ignoring these warnings for now. + EIGEN_UNUSED_VARIABLE(from); + EIGEN_DEBUG_ALIGNED_LOAD +#ifdef EIGEN_VECTORIZE_VSX + return vec_xl(0, const_cast<__UNPACK_TYPE__(Packet)*>(from)); +#else + return vec_ld(0, from); +#endif +} + +// Need to define them first or we get specialization after instantiation errors +template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) +{ + return pload_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) +{ + return pload_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet8s pload(const short int* from) +{ + return pload_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet8us pload(const unsigned short int* from) +{ + return pload_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet16c pload(const signed char* from) +{ + return pload_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet16uc pload(const unsigned char* from) +{ + return pload_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pload(const bfloat16* from) +{ + return pload_common(reinterpret_cast(from)); +} + +template +EIGEN_ALWAYS_INLINE Packet pload_ignore(const __UNPACK_TYPE__(Packet)* from) +{ + // some versions of GCC throw "unused-but-set-parameter". + // ignoring these warnings for now. + EIGEN_UNUSED_VARIABLE(from); + EIGEN_DEBUG_ALIGNED_LOAD + // Ignore partial input memory initialized +#if !EIGEN_COMP_LLVM + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" +#endif +#ifdef EIGEN_VECTORIZE_VSX + return vec_xl(0, const_cast<__UNPACK_TYPE__(Packet)*>(from)); +#else + return vec_ld(0, from); +#endif +#if !EIGEN_COMP_LLVM + #pragma GCC diagnostic pop +#endif +} + +template<> EIGEN_ALWAYS_INLINE Packet8bf pload_ignore(const bfloat16* from) +{ + return pload_ignore(reinterpret_cast(from)); +} + +template +EIGEN_ALWAYS_INLINE Packet pload_partial_common(const __UNPACK_TYPE__(Packet)* from, const Index n, const Index offset) +{ + // some versions of GCC throw "unused-but-set-parameter". + // ignoring these warnings for now. + const Index packet_size = unpacket_traits::size; + eigen_internal_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); + const Index size = sizeof(__UNPACK_TYPE__(Packet)); +#ifdef _ARCH_PWR9 + EIGEN_UNUSED_VARIABLE(packet_size); + EIGEN_DEBUG_ALIGNED_LOAD + EIGEN_UNUSED_VARIABLE(from); + Packet load = vec_xl_len(const_cast<__UNPACK_TYPE__(Packet)*>(from), n * size); + if (offset) { + Packet16uc shift = pset1(offset * 8 * size); +#ifdef _BIG_ENDIAN + load = Packet(vec_sro(Packet16uc(load), shift)); +#else + load = Packet(vec_slo(Packet16uc(load), shift)); +#endif + } + return load; +#else + if (n) { + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) load[packet_size]; + unsigned char* load2 = reinterpret_cast(load + offset); + unsigned char* from2 = reinterpret_cast(const_cast<__UNPACK_TYPE__(Packet)*>(from)); + Index n2 = n * size; + if (16 <= n2) { + pstoreu(load2, ploadu(from2)); + } else { + memcpy((void *)load2, (void *)from2, n2); + } + return pload_ignore(load); + } else { + return Packet(pset1(0)); + } +#endif +} + +template<> EIGEN_ALWAYS_INLINE Packet4f pload_partial(const float* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE Packet4i pload_partial(const int* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE Packet8s pload_partial(const short int* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE Packet8us pload_partial(const unsigned short int* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE Packet8bf pload_partial(const bfloat16* from, const Index n, const Index offset) +{ + return pload_partial_common(reinterpret_cast(from), n, offset); +} + +template<> EIGEN_ALWAYS_INLINE Packet16c pload_partial(const signed char* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE Packet16uc pload_partial(const unsigned char* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template +EIGEN_STRONG_INLINE void pstore_common(__UNPACK_TYPE__(Packet)* to, const Packet& from){ + // some versions of GCC throw "unused-but-set-parameter" (float *to). + // ignoring these warnings for now. + EIGEN_UNUSED_VARIABLE(to); + EIGEN_DEBUG_ALIGNED_STORE +#ifdef EIGEN_VECTORIZE_VSX + vec_xst(from, 0, to); +#else + vec_st(from, 0, to); +#endif +} + +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) +{ + pstore_common(to, from); +} + +template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) +{ + pstore_common(to, from); +} + +template<> EIGEN_STRONG_INLINE void pstore(short int* to, const Packet8s& from) +{ + pstore_common(to, from); +} + +template<> EIGEN_STRONG_INLINE void pstore(unsigned short int* to, const Packet8us& from) +{ + pstore_common(to, from); +} + +template<> EIGEN_STRONG_INLINE void pstore(bfloat16* to, const Packet8bf& from) +{ + pstore_common(reinterpret_cast(to), from.m_val); +} + +template<> EIGEN_STRONG_INLINE void pstore(signed char* to, const Packet16c& from) +{ + pstore_common(to, from); +} + +template<> EIGEN_STRONG_INLINE void pstore(unsigned char* to, const Packet16uc& from) +{ + pstore_common(to, from); +} + +template EIGEN_ALWAYS_INLINE void pstore_partial_common(__UNPACK_TYPE__(Packet)* to, const Packet& from, const Index n, const Index offset) +{ + // some versions of GCC throw "unused-but-set-parameter" (float *to). + // ignoring these warnings for now. + const Index packet_size = unpacket_traits::size; + eigen_internal_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); + const Index size = sizeof(__UNPACK_TYPE__(Packet)); +#ifdef _ARCH_PWR9 + EIGEN_UNUSED_VARIABLE(packet_size); + EIGEN_UNUSED_VARIABLE(to); + EIGEN_DEBUG_ALIGNED_STORE + Packet store = from; + if (offset) { + Packet16uc shift = pset1(offset * 8 * size); +#ifdef _BIG_ENDIAN + store = Packet(vec_slo(Packet16uc(store), shift)); +#else + store = Packet(vec_sro(Packet16uc(store), shift)); +#endif + } + vec_xst_len(store, to, n * size); +#else + if (n) { + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) store[packet_size]; + pstore(store, from); + unsigned char* store2 = reinterpret_cast(store + offset); + unsigned char* to2 = reinterpret_cast(to); + Index n2 = n * size; + if (16 <= n2) { + pstore(to2, ploadu(store2)); + } else { + memcpy((void *)to2, (void *)store2, n2); + } + } +#endif +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(float* to, const Packet4f& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(int* to, const Packet4i& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(short int* to, const Packet8s& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(unsigned short int* to, const Packet8us& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(bfloat16* to, const Packet8bf& from, const Index n, const Index offset) +{ + pstore_partial_common(reinterpret_cast(to), from.m_val, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(signed char* to, const Packet16c& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(unsigned char* to, const Packet16uc& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template +EIGEN_STRONG_INLINE Packet pset1_size4(const __UNPACK_TYPE__(Packet)& from) +{ + Packet v = {from, from, from, from}; + return v; +} + +template +EIGEN_STRONG_INLINE Packet pset1_size8(const __UNPACK_TYPE__(Packet)& from) +{ + Packet v = {from, from, from, from, from, from, from, from}; + return v; +} + +template +EIGEN_STRONG_INLINE Packet pset1_size16(const __UNPACK_TYPE__(Packet)& from) +{ + Packet v = {from, from, from, from, from, from, from, from, from, from, from, from, from, from, from, from}; + return v; +} + +template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { + return pset1_size4(from); +} + +template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) { + return pset1_size4(from); +} + +template<> EIGEN_STRONG_INLINE Packet8s pset1(const short int& from) { + return pset1_size8(from); +} + +template<> EIGEN_STRONG_INLINE Packet8us pset1(const unsigned short int& from) { + return pset1_size8(from); +} + +template<> EIGEN_STRONG_INLINE Packet16c pset1(const signed char& from) { + return pset1_size16(from); +} + +template<> EIGEN_STRONG_INLINE Packet16uc pset1(const unsigned char& from) { + return pset1_size16(from); +} + +template<> EIGEN_STRONG_INLINE Packet4f pset1frombits(unsigned int from) { + return reinterpret_cast(pset1(from)); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pset1(const bfloat16& from) { + return pset1_size8(reinterpret_cast(from)); +} + +template EIGEN_STRONG_INLINE void +pbroadcast4_common(const __UNPACK_TYPE__(Packet) *a, + Packet& a0, Packet& a1, Packet& a2, Packet& a3) +{ + a3 = pload(a); + a0 = vec_splat(a3, 0); + a1 = vec_splat(a3, 1); + a2 = vec_splat(a3, 2); + a3 = vec_splat(a3, 3); +} + +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const float *a, + Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) +{ + pbroadcast4_common(a, a0, a1, a2, a3); +} +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const int *a, + Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3) +{ + pbroadcast4_common(a, a0, a1, a2, a3); +} + +template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pgather_common(const __UNPACK_TYPE__(Packet)* from, Index stride, const Index n = unpacket_traits::size) +{ + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) a[unpacket_traits::size]; + eigen_internal_assert(n <= unpacket_traits::size && "number of elements will gather past end of packet"); + if (stride == 1) { + if (n == unpacket_traits::size) { + return ploadu(from); + } else { + return ploadu_partial(from, n); + } + } else { + LOAD_STORE_UNROLL_16 + for (Index i = 0; i < n; i++) { + a[i] = from[i*stride]; + } + // Leave rest of the array uninitialized + return pload_ignore(a); + } +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet4f pgather(const float* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet4i pgather(const int* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet8s pgather(const short int* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet8us pgather(const unsigned short int* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet8bf pgather(const bfloat16* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet16c pgather(const signed char* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet16uc pgather(const unsigned char* from, Index stride) +{ + return pgather_common(from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet4f pgather_partial(const float* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet4i pgather_partial(const int* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet8s pgather_partial(const short int* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet8us pgather_partial(const unsigned short int* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet8bf pgather_partial(const bfloat16* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet16c pgather_partial(const signed char* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet16uc pgather_partial(const unsigned char* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} + +template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_common(__UNPACK_TYPE__(Packet)* to, const Packet& from, Index stride, const Index n = unpacket_traits::size) +{ + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) a[unpacket_traits::size]; + eigen_internal_assert(n <= unpacket_traits::size && "number of elements will scatter past end of packet"); + if (stride == 1) { + if (n == unpacket_traits::size) { + return pstoreu(to, from); + } else { + return pstoreu_partial(to, from, n); + } + } else { + pstore<__UNPACK_TYPE__(Packet)>(a, from); + LOAD_STORE_UNROLL_16 + for (Index i = 0; i < n; i++) { + to[i*stride] = a[i]; + } + } +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(float* to, const Packet4f& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(int* to, const Packet4i& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(short int* to, const Packet8s& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(unsigned short int* to, const Packet8us& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(bfloat16* to, const Packet8bf& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(signed char* to, const Packet16c& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(unsigned char* to, const Packet16uc& from, Index stride) +{ + pscatter_common(to, from, stride); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(float* to, const Packet4f& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(int* to, const Packet4i& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(short int* to, const Packet8s& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(unsigned short int* to, const Packet8us& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(bfloat16* to, const Packet8bf& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(signed char* to, const Packet16c& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(unsigned char* to, const Packet16uc& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) { return pset1(a) + p4f_COUNTDOWN; } +template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { return pset1(a) + p4i_COUNTDOWN; } +template<> EIGEN_STRONG_INLINE Packet8s plset(const short int& a) { return pset1(a) + p8s_COUNTDOWN; } +template<> EIGEN_STRONG_INLINE Packet8us plset(const unsigned short int& a) { return pset1(a) + p8us_COUNTDOWN; } +template<> EIGEN_STRONG_INLINE Packet16c plset(const signed char& a) { return pset1(a) + p16c_COUNTDOWN; } +template<> EIGEN_STRONG_INLINE Packet16uc plset(const unsigned char& a) { return pset1(a) + p16uc_COUNTDOWN; } + +template<> EIGEN_STRONG_INLINE Packet4f padd (const Packet4f& a, const Packet4f& b) { return a + b; } +template<> EIGEN_STRONG_INLINE Packet4i padd (const Packet4i& a, const Packet4i& b) { return a + b; } +template<> EIGEN_STRONG_INLINE Packet4ui padd (const Packet4ui& a, const Packet4ui& b) { return a + b; } +template<> EIGEN_STRONG_INLINE Packet8s padd (const Packet8s& a, const Packet8s& b) { return a + b; } +template<> EIGEN_STRONG_INLINE Packet8us padd (const Packet8us& a, const Packet8us& b) { return a + b; } +template<> EIGEN_STRONG_INLINE Packet16c padd (const Packet16c& a, const Packet16c& b) { return a + b; } +template<> EIGEN_STRONG_INLINE Packet16uc padd(const Packet16uc& a, const Packet16uc& b) { return a + b; } + +template<> EIGEN_STRONG_INLINE Packet4f psub (const Packet4f& a, const Packet4f& b) { return a - b; } +template<> EIGEN_STRONG_INLINE Packet4i psub (const Packet4i& a, const Packet4i& b) { return a - b; } +template<> EIGEN_STRONG_INLINE Packet8s psub (const Packet8s& a, const Packet8s& b) { return a - b; } +template<> EIGEN_STRONG_INLINE Packet8us psub (const Packet8us& a, const Packet8us& b) { return a - b; } +template<> EIGEN_STRONG_INLINE Packet16c psub (const Packet16c& a, const Packet16c& b) { return a - b; } +template<> EIGEN_STRONG_INLINE Packet16uc psub(const Packet16uc& a, const Packet16uc& b) { return a - b; } + +template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) +{ +#ifdef __POWER8_VECTOR__ + return vec_neg(a); +#else + return vec_xor(a, p4f_MZERO); +#endif +} +template<> EIGEN_STRONG_INLINE Packet16c pnegate(const Packet16c& a) +{ +#ifdef __POWER8_VECTOR__ + return vec_neg(a); +#else + return reinterpret_cast(p4i_ZERO) - a; +#endif +} +template<> EIGEN_STRONG_INLINE Packet8s pnegate(const Packet8s& a) +{ +#ifdef __POWER8_VECTOR__ + return vec_neg(a); +#else + return reinterpret_cast(p4i_ZERO) - a; +#endif +} +template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) +{ +#ifdef __POWER8_VECTOR__ + return vec_neg(a); +#else + return p4i_ZERO - a; +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet4f pmul (const Packet4f& a, const Packet4f& b) { return vec_madd(a,b, p4f_MZERO); } +template<> EIGEN_STRONG_INLINE Packet4i pmul (const Packet4i& a, const Packet4i& b) { return a * b; } +template<> EIGEN_STRONG_INLINE Packet8s pmul (const Packet8s& a, const Packet8s& b) { return vec_mul(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pmul (const Packet8us& a, const Packet8us& b) { return vec_mul(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pmul (const Packet16c& a, const Packet16c& b) { return vec_mul(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmul(const Packet16uc& a, const Packet16uc& b) { return vec_mul(a,b); } + + +template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) +{ +#ifndef __VSX__ // VSX actually provides a div instruction + Packet4f t, y_0, y_1; + + // Altivec does not offer a divide instruction, we have to do a reciprocal approximation + y_0 = vec_re(b); + + // Do one Newton-Raphson iteration to get the needed accuracy + t = vec_nmsub(y_0, b, p4f_ONE); + y_1 = vec_madd(y_0, t, y_0); + + return vec_madd(a, y_1, p4f_MZERO); +#else + return vec_div(a, b); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& a, const Packet4i& b) +{ +#if defined(_ARCH_PWR10) && (EIGEN_COMP_LLVM || EIGEN_GNUC_STRICT_AT_LEAST(11,0,0)) + return vec_div(a, b); +#else + EIGEN_UNUSED_VARIABLE(a); + EIGEN_UNUSED_VARIABLE(b); + eigen_assert(false && "packet integer division are not supported by AltiVec"); + return pset1(0); +#endif +} + +// for some weird raisons, it has to be overloaded for packet of integers +template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return a*b + c; } +template<> EIGEN_STRONG_INLINE Packet8s pmadd(const Packet8s& a, const Packet8s& b, const Packet8s& c) { return vec_madd(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet8us pmadd(const Packet8us& a, const Packet8us& b, const Packet8us& c) { return vec_madd(a,b,c); } + +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet4f pmsub(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_msub(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet4f pnmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_nmsub(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet4f pnmsub(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_nmadd(a,b,c); } +#endif + +template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) +{ + #ifdef EIGEN_VECTORIZE_VSX + // NOTE: about 10% slower than vec_min, but consistent with std::min and SSE regarding NaN + Packet4f ret; + __asm__ ("xvcmpgesp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); + return ret; + #else + return vec_min(a, b); + #endif +} +template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); } +template<> EIGEN_STRONG_INLINE Packet8s pmin(const Packet8s& a, const Packet8s& b) { return vec_min(a, b); } +template<> EIGEN_STRONG_INLINE Packet8us pmin(const Packet8us& a, const Packet8us& b) { return vec_min(a, b); } +template<> EIGEN_STRONG_INLINE Packet16c pmin(const Packet16c& a, const Packet16c& b) { return vec_min(a, b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmin(const Packet16uc& a, const Packet16uc& b) { return vec_min(a, b); } + + +template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) +{ + #ifdef EIGEN_VECTORIZE_VSX + // NOTE: about 10% slower than vec_max, but consistent with std::max and SSE regarding NaN + Packet4f ret; + __asm__ ("xvcmpgtsp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); + return ret; + #else + return vec_max(a, b); + #endif +} +template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); } +template<> EIGEN_STRONG_INLINE Packet8s pmax(const Packet8s& a, const Packet8s& b) { return vec_max(a, b); } +template<> EIGEN_STRONG_INLINE Packet8us pmax(const Packet8us& a, const Packet8us& b) { return vec_max(a, b); } +template<> EIGEN_STRONG_INLINE Packet16c pmax(const Packet16c& a, const Packet16c& b) { return vec_max(a, b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmax(const Packet16uc& a, const Packet16uc& b) { return vec_max(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f& a, const Packet4f& b) { return reinterpret_cast(vec_cmple(a,b)); } +// To fix bug with vec_cmplt on older versions +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f& a, const Packet4f& b) { return reinterpret_cast(vec_cmplt(a,b)); } +#endif +template<> EIGEN_STRONG_INLINE Packet4f pcmp_eq(const Packet4f& a, const Packet4f& b) { return reinterpret_cast(vec_cmpeq(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f& a, const Packet4f& b) { + Packet4f c = reinterpret_cast(vec_cmpge(a,b)); + return vec_nor(c,c); +} + +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet4i pcmp_le(const Packet4i& a, const Packet4i& b) { return reinterpret_cast(vec_cmple(a,b)); } +#endif +template<> EIGEN_STRONG_INLINE Packet4i pcmp_lt(const Packet4i& a, const Packet4i& b) { return reinterpret_cast(vec_cmplt(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4i pcmp_eq(const Packet4i& a, const Packet4i& b) { return reinterpret_cast(vec_cmpeq(a,b)); } +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet8s pcmp_le(const Packet8s& a, const Packet8s& b) { return reinterpret_cast(vec_cmple(a,b)); } +#endif +template<> EIGEN_STRONG_INLINE Packet8s pcmp_lt(const Packet8s& a, const Packet8s& b) { return reinterpret_cast(vec_cmplt(a,b)); } +template<> EIGEN_STRONG_INLINE Packet8s pcmp_eq(const Packet8s& a, const Packet8s& b) { return reinterpret_cast(vec_cmpeq(a,b)); } +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet8us pcmp_le(const Packet8us& a, const Packet8us& b) { return reinterpret_cast(vec_cmple(a,b)); } +#endif +template<> EIGEN_STRONG_INLINE Packet8us pcmp_lt(const Packet8us& a, const Packet8us& b) { return reinterpret_cast(vec_cmplt(a,b)); } +template<> EIGEN_STRONG_INLINE Packet8us pcmp_eq(const Packet8us& a, const Packet8us& b) { return reinterpret_cast(vec_cmpeq(a,b)); } +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet16c pcmp_le(const Packet16c& a, const Packet16c& b) { return reinterpret_cast(vec_cmple(a,b)); } +#endif +template<> EIGEN_STRONG_INLINE Packet16c pcmp_lt(const Packet16c& a, const Packet16c& b) { return reinterpret_cast(vec_cmplt(a,b)); } +template<> EIGEN_STRONG_INLINE Packet16c pcmp_eq(const Packet16c& a, const Packet16c& b) { return reinterpret_cast(vec_cmpeq(a,b)); } +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet16uc pcmp_le(const Packet16uc& a, const Packet16uc& b) { return reinterpret_cast(vec_cmple(a,b)); } +#endif +template<> EIGEN_STRONG_INLINE Packet16uc pcmp_lt(const Packet16uc& a, const Packet16uc& b) { return reinterpret_cast(vec_cmplt(a,b)); } +template<> EIGEN_STRONG_INLINE Packet16uc pcmp_eq(const Packet16uc& a, const Packet16uc& b) { return reinterpret_cast(vec_cmpeq(a,b)); } + +template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); } +template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); } +template<> EIGEN_STRONG_INLINE Packet4ui pand(const Packet4ui& a, const Packet4ui& b) { return vec_and(a, b); } +template<> EIGEN_STRONG_INLINE Packet8us pand(const Packet8us& a, const Packet8us& b) { return vec_and(a, b); } +template<> EIGEN_STRONG_INLINE Packet8bf pand(const Packet8bf& a, const Packet8bf& b) { + return pand(a, b); +} + + +template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) { return vec_or(a, b); } +template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); } +template<> EIGEN_STRONG_INLINE Packet8s por(const Packet8s& a, const Packet8s& b) { return vec_or(a, b); } +template<> EIGEN_STRONG_INLINE Packet8us por(const Packet8us& a, const Packet8us& b) { return vec_or(a, b); } +template<> EIGEN_STRONG_INLINE Packet8bf por(const Packet8bf& a, const Packet8bf& b) { + return por(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) { return vec_xor(a, b); } +template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); } +template<> EIGEN_STRONG_INLINE Packet8us pxor(const Packet8us& a, const Packet8us& b) { return vec_xor(a, b); } +template<> EIGEN_STRONG_INLINE Packet8bf pxor(const Packet8bf& a, const Packet8bf& b) { + return pxor(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { return vec_andc(a, b); } +template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return vec_andc(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4f pselect(const Packet4f& mask, const Packet4f& a, const Packet4f& b) { + return vec_sel(b, a, reinterpret_cast(mask)); +} + +template<> EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) +{ + Packet4f t = vec_add(reinterpret_cast(vec_or(vec_and(reinterpret_cast(a), p4ui_SIGN), p4ui_PREV0DOT5)), a); + Packet4f res; + +#ifdef EIGEN_VECTORIZE_VSX + __asm__("xvrspiz %x0, %x1\n\t" + : "=&wa" (res) + : "wa" (t)); +#else + __asm__("vrfiz %0, %1\n\t" + : "=v" (res) + : "v" (t)); +#endif + + return res; +} +template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) { return vec_ceil(a); } +template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) { return vec_floor(a); } +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) +{ + Packet4f res; + + __asm__("xvrspic %x0, %x1\n\t" + : "=&wa" (res) + : "wa" (a)); + + return res; +} +#endif + +template EIGEN_STRONG_INLINE Packet ploadu_common(const __UNPACK_TYPE__(Packet)* from) +{ + EIGEN_DEBUG_ALIGNED_LOAD +#if defined(EIGEN_VECTORIZE_VSX) || !defined(_BIG_ENDIAN) + EIGEN_DEBUG_UNALIGNED_LOAD + return vec_xl(0, const_cast<__UNPACK_TYPE__(Packet)*>(from)); +#else + Packet16uc MSQ, LSQ; + Packet16uc mask; + MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword + LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword + mask = vec_lvsl(0, from); // create the permute mask + //TODO: Add static_cast here + return (Packet) vec_perm(MSQ, LSQ, mask); // align the data +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) +{ + return ploadu_common(from); +} +template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) +{ + return ploadu_common(from); +} +template<> EIGEN_STRONG_INLINE Packet8s ploadu(const short int* from) +{ + return ploadu_common(from); +} +template<> EIGEN_STRONG_INLINE Packet8us ploadu(const unsigned short int* from) +{ + return ploadu_common(from); +} +template<> EIGEN_STRONG_INLINE Packet8bf ploadu(const bfloat16* from) +{ + return ploadu_common(reinterpret_cast(from)); +} +template<> EIGEN_STRONG_INLINE Packet16c ploadu(const signed char* from) +{ + return ploadu_common(from); +} +template<> EIGEN_STRONG_INLINE Packet16uc ploadu(const unsigned char* from) +{ + return ploadu_common(from); +} + +template EIGEN_ALWAYS_INLINE Packet ploadu_partial_common(const __UNPACK_TYPE__(Packet)* from, const Index n, const Index offset) +{ + const Index packet_size = unpacket_traits::size; + eigen_internal_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); + const Index size = sizeof(__UNPACK_TYPE__(Packet)); +#ifdef _ARCH_PWR9 + EIGEN_UNUSED_VARIABLE(packet_size); + EIGEN_DEBUG_ALIGNED_LOAD + EIGEN_DEBUG_UNALIGNED_LOAD + Packet load = vec_xl_len(const_cast<__UNPACK_TYPE__(Packet)*>(from), n * size); + if (offset) { + Packet16uc shift = pset1(offset * 8 * size); +#ifdef _BIG_ENDIAN + load = Packet(vec_sro(Packet16uc(load), shift)); +#else + load = Packet(vec_slo(Packet16uc(load), shift)); +#endif + } + return load; +#else + if (n) { + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) load[packet_size]; + unsigned char* load2 = reinterpret_cast(load + offset); + unsigned char* from2 = reinterpret_cast(const_cast<__UNPACK_TYPE__(Packet)*>(from)); + Index n2 = n * size; + if (16 <= n2) { + pstoreu(load2, ploadu(from2)); + } else { + memcpy((void *)load2, (void *)from2, n2); + } + return pload_ignore(load); + } else { + return Packet(pset1(0)); + } +#endif +} + +template<> EIGEN_ALWAYS_INLINE Packet4f ploadu_partial(const float* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE Packet4i ploadu_partial(const int* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE Packet8s ploadu_partial(const short int* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE Packet8us ploadu_partial(const unsigned short int* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE Packet8bf ploadu_partial(const bfloat16* from, const Index n, const Index offset) +{ + return ploadu_partial_common(reinterpret_cast(from), n, offset); +} +template<> EIGEN_ALWAYS_INLINE Packet16c ploadu_partial(const signed char* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE Packet16uc ploadu_partial(const unsigned char* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} + +template EIGEN_STRONG_INLINE Packet ploaddup_common(const __UNPACK_TYPE__(Packet)* from) +{ + Packet p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_mergeh(p, p); +} +template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) +{ + return ploaddup_common(from); +} +template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) +{ + return ploaddup_common(from); +} + +template<> EIGEN_STRONG_INLINE Packet8s ploaddup(const short int* from) +{ + Packet8s p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_mergeh(p, p); +} + +template<> EIGEN_STRONG_INLINE Packet8us ploaddup(const unsigned short int* from) +{ + Packet8us p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_mergeh(p, p); +} + +template<> EIGEN_STRONG_INLINE Packet8s ploadquad(const short int* from) +{ + Packet8s p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_perm(p, p, p16uc_QUADRUPLICATE16_HI); +} + +template<> EIGEN_STRONG_INLINE Packet8us ploadquad(const unsigned short int* from) +{ + Packet8us p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_perm(p, p, p16uc_QUADRUPLICATE16_HI); +} + +template<> EIGEN_STRONG_INLINE Packet8bf ploadquad(const bfloat16* from) +{ + return ploadquad(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE Packet16c ploaddup(const signed char* from) +{ + Packet16c p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_mergeh(p, p); +} + +template<> EIGEN_STRONG_INLINE Packet16uc ploaddup(const unsigned char* from) +{ + Packet16uc p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_mergeh(p, p); +} + +template EIGEN_STRONG_INLINE void pstoreu_common(__UNPACK_TYPE__(Packet)* to, const Packet& from) +{ + EIGEN_DEBUG_UNALIGNED_STORE +#if defined(EIGEN_VECTORIZE_VSX) || !defined(_BIG_ENDIAN) + vec_xst(from, 0, to); +#else + // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html + // Warning: not thread safe! + Packet16uc MSQ, LSQ, edges; + Packet16uc edgeAlign, align; + + MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword + LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword + edgeAlign = vec_lvsl(0, to); // permute map to extract edges + edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges + align = vec_lvsr( 0, to ); // permute map to misalign data + MSQ = vec_perm(edges,(Packet16uc)from,align); // misalign the data (MSQ) + LSQ = vec_perm((Packet16uc)from,edges,align); // misalign the data (LSQ) + vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first + vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part second +#endif +} +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) +{ + pstoreu_common(to, from); +} +template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) +{ + pstoreu_common(to, from); +} +template<> EIGEN_STRONG_INLINE void pstoreu(short int* to, const Packet8s& from) +{ + pstoreu_common(to, from); +} +template<> EIGEN_STRONG_INLINE void pstoreu(unsigned short int* to, const Packet8us& from) +{ + pstoreu_common(to, from); +} +template<> EIGEN_STRONG_INLINE void pstoreu(bfloat16* to, const Packet8bf& from) +{ + pstoreu_common(reinterpret_cast(to), from.m_val); +} +template<> EIGEN_STRONG_INLINE void pstoreu(signed char* to, const Packet16c& from) +{ + pstoreu_common(to, from); +} +template<> EIGEN_STRONG_INLINE void pstoreu(unsigned char* to, const Packet16uc& from) +{ + pstoreu_common(to, from); +} + +template EIGEN_ALWAYS_INLINE void pstoreu_partial_common(__UNPACK_TYPE__(Packet)* to, const Packet& from, const Index n, const Index offset) +{ + const Index packet_size = unpacket_traits::size; + eigen_internal_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); + const Index size = sizeof(__UNPACK_TYPE__(Packet)); +#ifdef _ARCH_PWR9 + EIGEN_UNUSED_VARIABLE(packet_size); + EIGEN_DEBUG_UNALIGNED_STORE + Packet store = from; + if (offset) { + Packet16uc shift = pset1(offset * 8 * size); +#ifdef _BIG_ENDIAN + store = Packet(vec_slo(Packet16uc(store), shift)); +#else + store = Packet(vec_sro(Packet16uc(store), shift)); +#endif + } + vec_xst_len(store, to, n * size); +#else + if (n) { + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) store[packet_size]; + pstore(store, from); + unsigned char* store2 = reinterpret_cast(store + offset); + unsigned char* to2 = reinterpret_cast(to); + Index n2 = n * size; + if (16 <= n2) { + pstoreu(to2, ploadu(store2)); + } else { + memcpy((void *)to2, (void *)store2, n2); + } + } +#endif +} + +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(float* to, const Packet4f& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(int* to, const Packet4i& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(short int* to, const Packet8s& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(unsigned short int* to, const Packet8us& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(bfloat16* to, const Packet8bf& from, const Index n, const Index offset) +{ + pstoreu_partial_common(reinterpret_cast(to), from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(signed char* to, const Packet16c& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(unsigned char* to, const Packet16uc& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} + +template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { EIGEN_PPC_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { EIGEN_PPC_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { EIGEN_ALIGN16 float x; vec_ste(a, 0, &x); return x; } +template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { EIGEN_ALIGN16 int x; vec_ste(a, 0, &x); return x; } + +template EIGEN_STRONG_INLINE __UNPACK_TYPE__(Packet) pfirst_common(const Packet& a) { + EIGEN_ALIGN16 __UNPACK_TYPE__(Packet) x; + vec_ste(a, 0, &x); + return x; +} + +template<> EIGEN_STRONG_INLINE short int pfirst(const Packet8s& a) { + return pfirst_common(a); +} + +template<> EIGEN_STRONG_INLINE unsigned short int pfirst(const Packet8us& a) { + return pfirst_common(a); +} + +template<> EIGEN_STRONG_INLINE signed char pfirst(const Packet16c& a) +{ + return pfirst_common(a); +} + +template<> EIGEN_STRONG_INLINE unsigned char pfirst(const Packet16uc& a) +{ + return pfirst_common(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); +} +template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); +} +template<> EIGEN_STRONG_INLINE Packet8s preverse(const Packet8s& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE16)); +} +template<> EIGEN_STRONG_INLINE Packet8us preverse(const Packet8us& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE16)); +} +template<> EIGEN_STRONG_INLINE Packet16c preverse(const Packet16c& a) +{ +#ifdef _ARCH_PWR9 + return vec_revb(a); +#else + return vec_perm(a, a, p16uc_REVERSE8); +#endif +} +template<> EIGEN_STRONG_INLINE Packet16uc preverse(const Packet16uc& a) +{ +#ifdef _ARCH_PWR9 + return vec_revb(a); +#else + return vec_perm(a, a, p16uc_REVERSE8); +#endif +} +template<> EIGEN_STRONG_INLINE Packet8bf preverse(const Packet8bf& a) +{ + return preverse(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); } +template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); } +template<> EIGEN_STRONG_INLINE Packet8s pabs(const Packet8s& a) { return vec_abs(a); } +template<> EIGEN_STRONG_INLINE Packet8us pabs(const Packet8us& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet16c pabs(const Packet16c& a) { return vec_abs(a); } +template<> EIGEN_STRONG_INLINE Packet16uc pabs(const Packet16uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8bf pabs(const Packet8bf& a) { + EIGEN_DECLARE_CONST_FAST_Packet8us(abs_mask,0x7FFF); + return pand(p8us_abs_mask, a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf psignbit(const Packet8bf& a) { return vec_sra(a.m_val, vec_splat_u16(15)); } +template<> EIGEN_STRONG_INLINE Packet4f psignbit(const Packet4f& a) { return (Packet4f)vec_sra((Packet4i)a, vec_splats((unsigned int)(31))); } + +template EIGEN_STRONG_INLINE Packet4i parithmetic_shift_right(const Packet4i& a) +{ return vec_sra(a,reinterpret_cast(pset1(N))); } +template EIGEN_STRONG_INLINE Packet4i plogical_shift_right(const Packet4i& a) +{ return vec_sr(a,reinterpret_cast(pset1(N))); } +template EIGEN_STRONG_INLINE Packet4i plogical_shift_left(const Packet4i& a) +{ return vec_sl(a,reinterpret_cast(pset1(N))); } +template EIGEN_STRONG_INLINE Packet4f plogical_shift_left(const Packet4f& a) +{ + const EIGEN_DECLARE_CONST_FAST_Packet4ui(mask, N); + Packet4ui r = vec_sl(reinterpret_cast(a), p4ui_mask); + return reinterpret_cast(r); +} + +template EIGEN_STRONG_INLINE Packet4f plogical_shift_right(const Packet4f& a) +{ + const EIGEN_DECLARE_CONST_FAST_Packet4ui(mask, N); + Packet4ui r = vec_sr(reinterpret_cast(a), p4ui_mask); + return reinterpret_cast(r); +} + +template EIGEN_STRONG_INLINE Packet4ui plogical_shift_right(const Packet4ui& a) +{ + const EIGEN_DECLARE_CONST_FAST_Packet4ui(mask, N); + return vec_sr(a, p4ui_mask); +} + +template EIGEN_STRONG_INLINE Packet4ui plogical_shift_left(const Packet4ui& a) +{ + const EIGEN_DECLARE_CONST_FAST_Packet4ui(mask, N); + return vec_sl(a, p4ui_mask); +} + +template EIGEN_STRONG_INLINE Packet8us plogical_shift_left(const Packet8us& a) +{ + const EIGEN_DECLARE_CONST_FAST_Packet8us(mask, N); + return vec_sl(a, p8us_mask); +} +template EIGEN_STRONG_INLINE Packet8us plogical_shift_right(const Packet8us& a) +{ + const EIGEN_DECLARE_CONST_FAST_Packet8us(mask, N); + return vec_sr(a, p8us_mask); +} + +EIGEN_STRONG_INLINE Packet4f Bf16ToF32Even(const Packet8bf& bf){ + return plogical_shift_left<16>(reinterpret_cast(bf.m_val)); +} + +EIGEN_STRONG_INLINE Packet4f Bf16ToF32Odd(const Packet8bf& bf){ + const EIGEN_DECLARE_CONST_FAST_Packet4ui(high_mask, 0xFFFF0000); + return pand( + reinterpret_cast(bf.m_val), + reinterpret_cast(p4ui_high_mask) + ); +} + +EIGEN_ALWAYS_INLINE Packet8us pmerge(Packet4ui even, Packet4ui odd) { +#ifdef _BIG_ENDIAN + return vec_perm(reinterpret_cast(odd), reinterpret_cast(even), p16uc_MERGEO16); +#else + return vec_perm(reinterpret_cast(even), reinterpret_cast(odd), p16uc_MERGEE16); +#endif +} + +// Simple interleaving of bool masks, prevents true values from being +// converted to NaNs. +EIGEN_STRONG_INLINE Packet8bf F32ToBf16Bool(Packet4f even, Packet4f odd) { + return pmerge(reinterpret_cast(even), reinterpret_cast(odd)); +} + +//#define SUPPORT_BF16_SUBNORMALS + +#ifndef __VEC_CLASS_FP_NAN +#define __VEC_CLASS_FP_NAN (1<<6) +#endif + +#if defined(SUPPORT_BF16_SUBNORMALS) && !defined(__VEC_CLASS_FP_SUBNORMAL) +#define __VEC_CLASS_FP_SUBNORMAL_P (1<<1) +#define __VEC_CLASS_FP_SUBNORMAL_N (1<<0) + +#define __VEC_CLASS_FP_SUBNORMAL (__VEC_CLASS_FP_SUBNORMAL_P | __VEC_CLASS_FP_SUBNORMAL_N) +#endif + +EIGEN_STRONG_INLINE Packet8bf F32ToBf16(Packet4f p4f){ +#ifdef _ARCH_PWR10 + return reinterpret_cast(__builtin_vsx_xvcvspbf16(reinterpret_cast(p4f))); +#else + Packet4ui input = reinterpret_cast(p4f); + Packet4ui lsb = plogical_shift_right<16>(input); + lsb = pand(lsb, reinterpret_cast(p4i_ONE)); + + EIGEN_DECLARE_CONST_FAST_Packet4ui(BIAS,0x7FFFu); + Packet4ui rounding_bias = padd(lsb, p4ui_BIAS); + input = padd(input, rounding_bias); + + const EIGEN_DECLARE_CONST_FAST_Packet4ui(nan, 0x7FC00000); +#ifdef _ARCH_PWR9 + Packet4bi nan_selector = vec_test_data_class(p4f, __VEC_CLASS_FP_NAN); + input = vec_sel(input, p4ui_nan, nan_selector); + +#ifdef SUPPORT_BF16_SUBNORMALS + Packet4bi subnormal_selector = vec_test_data_class(p4f, __VEC_CLASS_FP_SUBNORMAL); + input = vec_sel(input, reinterpret_cast(p4f), subnormal_selector); +#endif +#else +#ifdef SUPPORT_BF16_SUBNORMALS + //Test NaN and Subnormal + const EIGEN_DECLARE_CONST_FAST_Packet4ui(exp_mask, 0x7F800000); + Packet4ui exp = pand(p4ui_exp_mask, reinterpret_cast(p4f)); + + const EIGEN_DECLARE_CONST_FAST_Packet4ui(mantissa_mask, 0x7FFFFF); + Packet4ui mantissa = pand(p4ui_mantissa_mask, reinterpret_cast(p4f)); + + Packet4bi is_max_exp = vec_cmpeq(exp, p4ui_exp_mask); + Packet4bi is_mant_zero = vec_cmpeq(mantissa, reinterpret_cast(p4i_ZERO)); + + Packet4ui nan_selector = pandnot( + reinterpret_cast(is_max_exp), + reinterpret_cast(is_mant_zero) + ); + + Packet4bi is_zero_exp = vec_cmpeq(exp, reinterpret_cast(p4i_ZERO)); + + Packet4ui subnormal_selector = pandnot( + reinterpret_cast(is_zero_exp), + reinterpret_cast(is_mant_zero) + ); + + input = vec_sel(input, p4ui_nan, nan_selector); + input = vec_sel(input, reinterpret_cast(p4f), subnormal_selector); +#else + //Test only NaN + Packet4bi nan_selector = vec_cmpeq(p4f, p4f); + + input = vec_sel(p4ui_nan, input, nan_selector); +#endif +#endif + + input = plogical_shift_right<16>(input); + return reinterpret_cast(input); +#endif +} + +#ifdef _BIG_ENDIAN +/** + * Pack the high portion of two float Packets into one bfloat16 Packet + * + * @param lohi to expect either a low & high OR odd & even order + */ +template +EIGEN_ALWAYS_INLINE Packet8bf Bf16PackHigh(Packet4f lo, Packet4f hi) +{ + if (lohi) { + return vec_perm(reinterpret_cast(lo), reinterpret_cast(hi), p16uc_MERGEH16); + } else { + return vec_perm(reinterpret_cast(hi), reinterpret_cast(lo), p16uc_MERGEE16); + } +} + +/** + * Pack the low portion of two float Packets into one bfloat16 Packet + * + * @param lohi to expect either a low & high OR odd & even order + */ +template +EIGEN_ALWAYS_INLINE Packet8bf Bf16PackLow(Packet4f lo, Packet4f hi) +{ + if (lohi) { + return vec_pack(reinterpret_cast(lo), reinterpret_cast(hi)); + } else { + return vec_perm(reinterpret_cast(hi), reinterpret_cast(lo), p16uc_MERGEO16); + } +} +#else +template +EIGEN_ALWAYS_INLINE Packet8bf Bf16PackLow(Packet4f hi, Packet4f lo) +{ + if (lohi) { + return vec_pack(reinterpret_cast(hi), reinterpret_cast(lo)); + } else { + return vec_perm(reinterpret_cast(hi), reinterpret_cast(lo), p16uc_MERGEE16); + } +} + +template +EIGEN_ALWAYS_INLINE Packet8bf Bf16PackHigh(Packet4f hi, Packet4f lo) +{ + if (lohi) { + return vec_perm(reinterpret_cast(hi), reinterpret_cast(lo), p16uc_MERGEL16); + } else { + return vec_perm(reinterpret_cast(hi), reinterpret_cast(lo), p16uc_MERGEO16); + } +} +#endif + +/** + * Convert and pack two float Packets into one bfloat16 Packet + * + * @param lohi to expect either a low & high OR odd & even order + */ +template +EIGEN_ALWAYS_INLINE Packet8bf F32ToBf16Two(Packet4f lo, Packet4f hi) +{ + Packet8us p4f = Bf16PackHigh(lo, hi); + Packet8us p4f2 = Bf16PackLow(lo, hi); + + Packet8us lsb = pand(p4f, p8us_ONE); + EIGEN_DECLARE_CONST_FAST_Packet8us(BIAS,0x7FFFu); + lsb = padd(lsb, p8us_BIAS); + lsb = padd(lsb, p4f2); + + Packet8bi rounding_bias = vec_cmplt(lsb, p4f2); + Packet8us input = psub(p4f, reinterpret_cast(rounding_bias)); + +#ifdef _ARCH_PWR9 + Packet4bi nan_selector_lo = vec_test_data_class(lo, __VEC_CLASS_FP_NAN); + Packet4bi nan_selector_hi = vec_test_data_class(hi, __VEC_CLASS_FP_NAN); + Packet8us nan_selector = Bf16PackLow(reinterpret_cast(nan_selector_lo), reinterpret_cast(nan_selector_hi)); + + input = vec_sel(input, p8us_BIAS, nan_selector); + +#ifdef SUPPORT_BF16_SUBNORMALS + Packet4bi subnormal_selector_lo = vec_test_data_class(lo, __VEC_CLASS_FP_SUBNORMAL); + Packet4bi subnormal_selector_hi = vec_test_data_class(hi, __VEC_CLASS_FP_SUBNORMAL); + Packet8us subnormal_selector = Bf16PackLow(reinterpret_cast(subnormal_selector_lo), reinterpret_cast(subnormal_selector_hi)); + + input = vec_sel(input, reinterpret_cast(p4f), subnormal_selector); +#endif +#else +#ifdef SUPPORT_BF16_SUBNORMALS + //Test NaN and Subnormal + const EIGEN_DECLARE_CONST_FAST_Packet8us(exp_mask, 0x7F80); + Packet8us exp = pand(p8us_exp_mask, p4f); + + const EIGEN_DECLARE_CONST_FAST_Packet8us(mantissa_mask, 0x7Fu); + Packet8us mantissa = pand(p8us_mantissa_mask, p4f); + + Packet8bi is_max_exp = vec_cmpeq(exp, p8us_exp_mask); + Packet8bi is_mant_zero = vec_cmpeq(mantissa, reinterpret_cast(p4i_ZERO)); + + Packet8us nan_selector = pandnot( + reinterpret_cast(is_max_exp), + reinterpret_cast(is_mant_zero) + ); + + Packet8bi is_zero_exp = vec_cmpeq(exp, reinterpret_cast(p4i_ZERO)); + + Packet8us subnormal_selector = pandnot( + reinterpret_cast(is_zero_exp), + reinterpret_cast(is_mant_zero) + ); + + // Using BIAS as NaN (since any or all of the last 7 bits can be set) + input = vec_sel(input, p8us_BIAS, nan_selector); + input = vec_sel(input, reinterpret_cast(p4f), subnormal_selector); +#else + //Test only NaN + Packet4bi nan_selector_lo = vec_cmpeq(lo, lo); + Packet4bi nan_selector_hi = vec_cmpeq(hi, hi); + Packet8us nan_selector = Bf16PackLow(reinterpret_cast(nan_selector_lo), reinterpret_cast(nan_selector_hi)); + + input = vec_sel(p8us_BIAS, input, nan_selector); +#endif +#endif + + return input; +} + +/** + * Convert and pack two float Packets into one bfloat16 Packet - low & high order + */ +EIGEN_STRONG_INLINE Packet8bf F32ToBf16Both(Packet4f lo, Packet4f hi) +{ +#ifdef _ARCH_PWR10 + Packet8bf fp16_0 = F32ToBf16(lo); + Packet8bf fp16_1 = F32ToBf16(hi); + return vec_pack(reinterpret_cast(fp16_0.m_val), reinterpret_cast(fp16_1.m_val)); +#else + return F32ToBf16Two(lo, hi); +#endif +} + +/** + * Convert and pack two float Packets into one bfloat16 Packet - odd & even order + */ +EIGEN_STRONG_INLINE Packet8bf F32ToBf16(Packet4f even, Packet4f odd){ +#ifdef _ARCH_PWR10 + return pmerge(reinterpret_cast(F32ToBf16(even).m_val), reinterpret_cast(F32ToBf16(odd).m_val)); +#else + return F32ToBf16Two(even, odd); +#endif +} +#define BF16_TO_F32_UNARY_OP_WRAPPER(OP, A) \ + Packet4f a_even = Bf16ToF32Even(A);\ + Packet4f a_odd = Bf16ToF32Odd(A);\ + Packet4f op_even = OP(a_even);\ + Packet4f op_odd = OP(a_odd);\ + return F32ToBf16(op_even, op_odd);\ + +#define BF16_TO_F32_BINARY_OP_WRAPPER(OP, A, B) \ + Packet4f a_even = Bf16ToF32Even(A);\ + Packet4f a_odd = Bf16ToF32Odd(A);\ + Packet4f b_even = Bf16ToF32Even(B);\ + Packet4f b_odd = Bf16ToF32Odd(B);\ + Packet4f op_even = OP(a_even, b_even);\ + Packet4f op_odd = OP(a_odd, b_odd);\ + return F32ToBf16(op_even, op_odd);\ + +#define BF16_TO_F32_BINARY_OP_WRAPPER_BOOL(OP, A, B) \ + Packet4f a_even = Bf16ToF32Even(A);\ + Packet4f a_odd = Bf16ToF32Odd(A);\ + Packet4f b_even = Bf16ToF32Even(B);\ + Packet4f b_odd = Bf16ToF32Odd(B);\ + Packet4f op_even = OP(a_even, b_even);\ + Packet4f op_odd = OP(a_odd, b_odd);\ + return F32ToBf16Bool(op_even, op_odd);\ + +template<> EIGEN_STRONG_INLINE Packet8bf padd(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER(padd, a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pmul(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER(pmul, a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pdiv(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER(pdiv, a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pnegate(const Packet8bf& a) { + EIGEN_DECLARE_CONST_FAST_Packet8us(neg_mask,0x8000); + return pxor(p8us_neg_mask, a); +} + +template<> EIGEN_STRONG_INLINE Packet8bf psub(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER(psub, a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pexp (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(pexp_float, a); +} + +template<> EIGEN_STRONG_INLINE Packet4f pldexp(const Packet4f& a, const Packet4f& exponent) { + return pldexp_generic(a,exponent); +} +template<> EIGEN_STRONG_INLINE Packet8bf pldexp (const Packet8bf& a, const Packet8bf& exponent){ + BF16_TO_F32_BINARY_OP_WRAPPER(pldexp, a, exponent); +} + +template<> EIGEN_STRONG_INLINE Packet4f pfrexp(const Packet4f& a, Packet4f& exponent) { + return pfrexp_generic(a,exponent); +} +template<> EIGEN_STRONG_INLINE Packet8bf pfrexp (const Packet8bf& a, Packet8bf& e){ + Packet4f a_even = Bf16ToF32Even(a); + Packet4f a_odd = Bf16ToF32Odd(a); + Packet4f e_even; + Packet4f e_odd; + Packet4f op_even = pfrexp(a_even, e_even); + Packet4f op_odd = pfrexp(a_odd, e_odd); + e = F32ToBf16(e_even, e_odd); + return F32ToBf16(op_even, op_odd); +} + +template<> EIGEN_STRONG_INLINE Packet8bf psin (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(psin_float, a); +} +template<> EIGEN_STRONG_INLINE Packet8bf pcos (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(pcos_float, a); +} +template<> EIGEN_STRONG_INLINE Packet8bf plog (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(plog_float, a); +} +template<> EIGEN_STRONG_INLINE Packet8bf pfloor (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(pfloor, a); +} +template<> EIGEN_STRONG_INLINE Packet8bf pceil (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(pceil, a); +} +template<> EIGEN_STRONG_INLINE Packet8bf pround (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(pround, a); +} +#ifdef EIGEN_VECTORIZE_VSX +template<> EIGEN_STRONG_INLINE Packet8bf print (const Packet8bf& a){ + BF16_TO_F32_UNARY_OP_WRAPPER(print, a); +} +#endif +template<> EIGEN_STRONG_INLINE Packet8bf pmadd(const Packet8bf& a, const Packet8bf& b, const Packet8bf& c) { + Packet4f a_even = Bf16ToF32Even(a); + Packet4f a_odd = Bf16ToF32Odd(a); + Packet4f b_even = Bf16ToF32Even(b); + Packet4f b_odd = Bf16ToF32Odd(b); + Packet4f c_even = Bf16ToF32Even(c); + Packet4f c_odd = Bf16ToF32Odd(c); + Packet4f pmadd_even = pmadd(a_even, b_even, c_even); + Packet4f pmadd_odd = pmadd(a_odd, b_odd, c_odd); + return F32ToBf16(pmadd_even, pmadd_odd); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pmin(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER(pmin, a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pmax(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER(pmax, a, b); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER_BOOL(pcmp_lt, a, b); +} +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt_or_nan(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER_BOOL(pcmp_lt_or_nan, a, b); +} +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_le(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER_BOOL(pcmp_le, a, b); +} +template<> EIGEN_STRONG_INLINE Packet8bf pcmp_eq(const Packet8bf& a, const Packet8bf& b) { + BF16_TO_F32_BINARY_OP_WRAPPER_BOOL(pcmp_eq, a, b); +} + +template<> EIGEN_STRONG_INLINE bfloat16 pfirst(const Packet8bf& a) { + return Eigen::bfloat16_impl::raw_uint16_to_bfloat16((pfirst(a))); +} + +template<> EIGEN_STRONG_INLINE Packet8bf ploaddup(const bfloat16* from) +{ + return ploaddup(reinterpret_cast(from)); +} + +template<> EIGEN_STRONG_INLINE Packet8bf plset(const bfloat16& a) { + bfloat16 countdown[8] = { bfloat16(0), bfloat16(1), bfloat16(2), bfloat16(3), + bfloat16(4), bfloat16(5), bfloat16(6), bfloat16(7) }; + return padd(pset1(a), pload(countdown)); +} + +template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) +{ + Packet4f b, sum; + b = vec_sld(a, a, 8); + sum = a + b; + b = vec_sld(sum, sum, 4); + sum += b; + return pfirst(sum); +} + +template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) +{ + Packet4i sum; + sum = vec_sums(a, p4i_ZERO); +#ifdef _BIG_ENDIAN + sum = vec_sld(sum, p4i_ZERO, 12); +#else + sum = vec_sld(p4i_ZERO, sum, 4); +#endif + return pfirst(sum); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux(const Packet8bf& a) +{ + float redux_even = predux(Bf16ToF32Even(a)); + float redux_odd = predux(Bf16ToF32Odd(a)); + float f32_result = redux_even + redux_odd; + return bfloat16(f32_result); +} +template EIGEN_STRONG_INLINE __UNPACK_TYPE__(Packet) predux_size8(const Packet& a) +{ + union{ + Packet v; + __UNPACK_TYPE__(Packet) n[8]; + } vt; + vt.v = a; + + EIGEN_ALIGN16 int first_loader[4] = { vt.n[0], vt.n[1], vt.n[2], vt.n[3] }; + EIGEN_ALIGN16 int second_loader[4] = { vt.n[4], vt.n[5], vt.n[6], vt.n[7] }; + Packet4i first_half = pload(first_loader); + Packet4i second_half = pload(second_loader); + + return static_cast<__UNPACK_TYPE__(Packet)>(predux(first_half) + predux(second_half)); +} + +template<> EIGEN_STRONG_INLINE short int predux(const Packet8s& a) +{ + return predux_size8(a); +} + +template<> EIGEN_STRONG_INLINE unsigned short int predux(const Packet8us& a) +{ + return predux_size8(a); +} + +template EIGEN_STRONG_INLINE __UNPACK_TYPE__(Packet) predux_size16(const Packet& a) +{ + union{ + Packet v; + __UNPACK_TYPE__(Packet) n[16]; + } vt; + vt.v = a; + + EIGEN_ALIGN16 int first_loader[4] = { vt.n[0], vt.n[1], vt.n[2], vt.n[3] }; + EIGEN_ALIGN16 int second_loader[4] = { vt.n[4], vt.n[5], vt.n[6], vt.n[7] }; + EIGEN_ALIGN16 int third_loader[4] = { vt.n[8], vt.n[9], vt.n[10], vt.n[11] }; + EIGEN_ALIGN16 int fourth_loader[4] = { vt.n[12], vt.n[13], vt.n[14], vt.n[15] }; + + Packet4i first_quarter = pload(first_loader); + Packet4i second_quarter = pload(second_loader); + Packet4i third_quarter = pload(third_loader); + Packet4i fourth_quarter = pload(fourth_loader); + + return static_cast<__UNPACK_TYPE__(Packet)>(predux(first_quarter) + predux(second_quarter) + + predux(third_quarter) + predux(fourth_quarter)); +} + +template<> EIGEN_STRONG_INLINE signed char predux(const Packet16c& a) +{ + return predux_size16(a); +} + +template<> EIGEN_STRONG_INLINE unsigned char predux(const Packet16uc& a) +{ + return predux_size16(a); +} + +// Other reduction functions: +// mul +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) +{ + Packet4f prod; + prod = pmul(a, vec_sld(a, a, 8)); + return pfirst(pmul(prod, vec_sld(prod, prod, 4))); +} + +template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) +{ + EIGEN_ALIGN16 int aux[4]; + pstore(aux, a); + return aux[0] * aux[1] * aux[2] * aux[3]; +} + +template<> EIGEN_STRONG_INLINE short int predux_mul(const Packet8s& a) +{ + Packet8s pair, quad, octo; + + pair = vec_mul(a, vec_sld(a, a, 8)); + quad = vec_mul(pair, vec_sld(pair, pair, 4)); + octo = vec_mul(quad, vec_sld(quad, quad, 2)); + + return pfirst(octo); +} + +template<> EIGEN_STRONG_INLINE unsigned short int predux_mul(const Packet8us& a) +{ + Packet8us pair, quad, octo; + + pair = vec_mul(a, vec_sld(a, a, 8)); + quad = vec_mul(pair, vec_sld(pair, pair, 4)); + octo = vec_mul(quad, vec_sld(quad, quad, 2)); + + return pfirst(octo); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_mul(const Packet8bf& a) +{ + float redux_even = predux_mul(Bf16ToF32Even(a)); + float redux_odd = predux_mul(Bf16ToF32Odd(a)); + float f32_result = redux_even * redux_odd; + return bfloat16(f32_result); +} + + +template<> EIGEN_STRONG_INLINE signed char predux_mul(const Packet16c& a) +{ + Packet16c pair, quad, octo, result; + + pair = vec_mul(a, vec_sld(a, a, 8)); + quad = vec_mul(pair, vec_sld(pair, pair, 4)); + octo = vec_mul(quad, vec_sld(quad, quad, 2)); + result = vec_mul(octo, vec_sld(octo, octo, 1)); + + return pfirst(result); +} + +template<> EIGEN_STRONG_INLINE unsigned char predux_mul(const Packet16uc& a) +{ + Packet16uc pair, quad, octo, result; + + pair = vec_mul(a, vec_sld(a, a, 8)); + quad = vec_mul(pair, vec_sld(pair, pair, 4)); + octo = vec_mul(quad, vec_sld(quad, quad, 2)); + result = vec_mul(octo, vec_sld(octo, octo, 1)); + + return pfirst(result); +} + +// min +template EIGEN_STRONG_INLINE +__UNPACK_TYPE__(Packet) predux_min4(const Packet& a) +{ + Packet b, res; + b = vec_min(a, vec_sld(a, a, 8)); + res = vec_min(b, vec_sld(b, b, 4)); + return pfirst(res); +} + + +template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) +{ + return predux_min4(a); +} + +template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) +{ + return predux_min4(a); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_min(const Packet8bf& a) +{ + float redux_even = predux_min(Bf16ToF32Even(a)); + float redux_odd = predux_min(Bf16ToF32Odd(a)); + float f32_result = (std::min)(redux_even, redux_odd); + return bfloat16(f32_result); +} + +template<> EIGEN_STRONG_INLINE short int predux_min(const Packet8s& a) +{ + Packet8s pair, quad, octo; + + //pair = { Min(a0,a4), Min(a1,a5), Min(a2,a6), Min(a3,a7) } + pair = vec_min(a, vec_sld(a, a, 8)); + + //quad = { Min(a0, a4, a2, a6), Min(a1, a5, a3, a7) } + quad = vec_min(pair, vec_sld(pair, pair, 4)); + + //octo = { Min(a0, a4, a2, a6, a1, a5, a3, a7) } + octo = vec_min(quad, vec_sld(quad, quad, 2)); + return pfirst(octo); +} + +template<> EIGEN_STRONG_INLINE unsigned short int predux_min(const Packet8us& a) +{ + Packet8us pair, quad, octo; + + //pair = { Min(a0,a4), Min(a1,a5), Min(a2,a6), Min(a3,a7) } + pair = vec_min(a, vec_sld(a, a, 8)); + + //quad = { Min(a0, a4, a2, a6), Min(a1, a5, a3, a7) } + quad = vec_min(pair, vec_sld(pair, pair, 4)); + + //octo = { Min(a0, a4, a2, a6, a1, a5, a3, a7) } + octo = vec_min(quad, vec_sld(quad, quad, 2)); + return pfirst(octo); +} + +template<> EIGEN_STRONG_INLINE signed char predux_min(const Packet16c& a) +{ + Packet16c pair, quad, octo, result; + + pair = vec_min(a, vec_sld(a, a, 8)); + quad = vec_min(pair, vec_sld(pair, pair, 4)); + octo = vec_min(quad, vec_sld(quad, quad, 2)); + result = vec_min(octo, vec_sld(octo, octo, 1)); + + return pfirst(result); +} + +template<> EIGEN_STRONG_INLINE unsigned char predux_min(const Packet16uc& a) +{ + Packet16uc pair, quad, octo, result; + + pair = vec_min(a, vec_sld(a, a, 8)); + quad = vec_min(pair, vec_sld(pair, pair, 4)); + octo = vec_min(quad, vec_sld(quad, quad, 2)); + result = vec_min(octo, vec_sld(octo, octo, 1)); + + return pfirst(result); +} +// max +template EIGEN_STRONG_INLINE __UNPACK_TYPE__(Packet) predux_max4(const Packet& a) +{ + Packet b, res; + b = vec_max(a, vec_sld(a, a, 8)); + res = vec_max(b, vec_sld(b, b, 4)); + return pfirst(res); +} + +template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) +{ + return predux_max4(a); +} + +template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) +{ + return predux_max4(a); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_max(const Packet8bf& a) +{ + float redux_even = predux_max(Bf16ToF32Even(a)); + float redux_odd = predux_max(Bf16ToF32Odd(a)); + float f32_result = (std::max)(redux_even, redux_odd); + return bfloat16(f32_result); +} + +template<> EIGEN_STRONG_INLINE short int predux_max(const Packet8s& a) +{ + Packet8s pair, quad, octo; + + //pair = { Max(a0,a4), Max(a1,a5), Max(a2,a6), Max(a3,a7) } + pair = vec_max(a, vec_sld(a, a, 8)); + + //quad = { Max(a0, a4, a2, a6), Max(a1, a5, a3, a7) } + quad = vec_max(pair, vec_sld(pair, pair, 4)); + + //octo = { Max(a0, a4, a2, a6, a1, a5, a3, a7) } + octo = vec_max(quad, vec_sld(quad, quad, 2)); + return pfirst(octo); +} + +template<> EIGEN_STRONG_INLINE unsigned short int predux_max(const Packet8us& a) +{ + Packet8us pair, quad, octo; + + //pair = { Max(a0,a4), Max(a1,a5), Max(a2,a6), Max(a3,a7) } + pair = vec_max(a, vec_sld(a, a, 8)); + + //quad = { Max(a0, a4, a2, a6), Max(a1, a5, a3, a7) } + quad = vec_max(pair, vec_sld(pair, pair, 4)); + + //octo = { Max(a0, a4, a2, a6, a1, a5, a3, a7) } + octo = vec_max(quad, vec_sld(quad, quad, 2)); + return pfirst(octo); +} + +template<> EIGEN_STRONG_INLINE signed char predux_max(const Packet16c& a) +{ + Packet16c pair, quad, octo, result; + + pair = vec_max(a, vec_sld(a, a, 8)); + quad = vec_max(pair, vec_sld(pair, pair, 4)); + octo = vec_max(quad, vec_sld(quad, quad, 2)); + result = vec_max(octo, vec_sld(octo, octo, 1)); + + return pfirst(result); +} + +template<> EIGEN_STRONG_INLINE unsigned char predux_max(const Packet16uc& a) +{ + Packet16uc pair, quad, octo, result; + + pair = vec_max(a, vec_sld(a, a, 8)); + quad = vec_max(pair, vec_sld(pair, pair, 4)); + octo = vec_max(quad, vec_sld(quad, quad, 2)); + result = vec_max(octo, vec_sld(octo, octo, 1)); + + return pfirst(result); +} + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x) +{ + return vec_any_ne(x, pzero(x)); +} + +template EIGEN_DEVICE_FUNC inline void +ptranpose_common(PacketBlock& kernel){ + T t0, t1, t2, t3; + t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + ptranpose_common(kernel); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + ptranpose_common(kernel); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet8s t0, t1, t2, t3; + t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet8us t0, t1, t2, t3; + t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet8us t0, t1, t2, t3; + + t0 = vec_mergeh(kernel.packet[0].m_val, kernel.packet[2].m_val); + t1 = vec_mergel(kernel.packet[0].m_val, kernel.packet[2].m_val); + t2 = vec_mergeh(kernel.packet[1].m_val, kernel.packet[3].m_val); + t3 = vec_mergel(kernel.packet[1].m_val, kernel.packet[3].m_val); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet16c t0, t1, t2, t3; + t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet16uc t0, t1, t2, t3; + t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet8s v[8], sum[8]; + + v[0] = vec_mergeh(kernel.packet[0], kernel.packet[4]); + v[1] = vec_mergel(kernel.packet[0], kernel.packet[4]); + v[2] = vec_mergeh(kernel.packet[1], kernel.packet[5]); + v[3] = vec_mergel(kernel.packet[1], kernel.packet[5]); + v[4] = vec_mergeh(kernel.packet[2], kernel.packet[6]); + v[5] = vec_mergel(kernel.packet[2], kernel.packet[6]); + v[6] = vec_mergeh(kernel.packet[3], kernel.packet[7]); + v[7] = vec_mergel(kernel.packet[3], kernel.packet[7]); + sum[0] = vec_mergeh(v[0], v[4]); + sum[1] = vec_mergel(v[0], v[4]); + sum[2] = vec_mergeh(v[1], v[5]); + sum[3] = vec_mergel(v[1], v[5]); + sum[4] = vec_mergeh(v[2], v[6]); + sum[5] = vec_mergel(v[2], v[6]); + sum[6] = vec_mergeh(v[3], v[7]); + sum[7] = vec_mergel(v[3], v[7]); + + kernel.packet[0] = vec_mergeh(sum[0], sum[4]); + kernel.packet[1] = vec_mergel(sum[0], sum[4]); + kernel.packet[2] = vec_mergeh(sum[1], sum[5]); + kernel.packet[3] = vec_mergel(sum[1], sum[5]); + kernel.packet[4] = vec_mergeh(sum[2], sum[6]); + kernel.packet[5] = vec_mergel(sum[2], sum[6]); + kernel.packet[6] = vec_mergeh(sum[3], sum[7]); + kernel.packet[7] = vec_mergel(sum[3], sum[7]); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet8us v[8], sum[8]; + + v[0] = vec_mergeh(kernel.packet[0], kernel.packet[4]); + v[1] = vec_mergel(kernel.packet[0], kernel.packet[4]); + v[2] = vec_mergeh(kernel.packet[1], kernel.packet[5]); + v[3] = vec_mergel(kernel.packet[1], kernel.packet[5]); + v[4] = vec_mergeh(kernel.packet[2], kernel.packet[6]); + v[5] = vec_mergel(kernel.packet[2], kernel.packet[6]); + v[6] = vec_mergeh(kernel.packet[3], kernel.packet[7]); + v[7] = vec_mergel(kernel.packet[3], kernel.packet[7]); + sum[0] = vec_mergeh(v[0], v[4]); + sum[1] = vec_mergel(v[0], v[4]); + sum[2] = vec_mergeh(v[1], v[5]); + sum[3] = vec_mergel(v[1], v[5]); + sum[4] = vec_mergeh(v[2], v[6]); + sum[5] = vec_mergel(v[2], v[6]); + sum[6] = vec_mergeh(v[3], v[7]); + sum[7] = vec_mergel(v[3], v[7]); + + kernel.packet[0] = vec_mergeh(sum[0], sum[4]); + kernel.packet[1] = vec_mergel(sum[0], sum[4]); + kernel.packet[2] = vec_mergeh(sum[1], sum[5]); + kernel.packet[3] = vec_mergel(sum[1], sum[5]); + kernel.packet[4] = vec_mergeh(sum[2], sum[6]); + kernel.packet[5] = vec_mergel(sum[2], sum[6]); + kernel.packet[6] = vec_mergeh(sum[3], sum[7]); + kernel.packet[7] = vec_mergel(sum[3], sum[7]); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet8bf v[8], sum[8]; + + v[0] = vec_mergeh(kernel.packet[0].m_val, kernel.packet[4].m_val); + v[1] = vec_mergel(kernel.packet[0].m_val, kernel.packet[4].m_val); + v[2] = vec_mergeh(kernel.packet[1].m_val, kernel.packet[5].m_val); + v[3] = vec_mergel(kernel.packet[1].m_val, kernel.packet[5].m_val); + v[4] = vec_mergeh(kernel.packet[2].m_val, kernel.packet[6].m_val); + v[5] = vec_mergel(kernel.packet[2].m_val, kernel.packet[6].m_val); + v[6] = vec_mergeh(kernel.packet[3].m_val, kernel.packet[7].m_val); + v[7] = vec_mergel(kernel.packet[3].m_val, kernel.packet[7].m_val); + sum[0] = vec_mergeh(v[0].m_val, v[4].m_val); + sum[1] = vec_mergel(v[0].m_val, v[4].m_val); + sum[2] = vec_mergeh(v[1].m_val, v[5].m_val); + sum[3] = vec_mergel(v[1].m_val, v[5].m_val); + sum[4] = vec_mergeh(v[2].m_val, v[6].m_val); + sum[5] = vec_mergel(v[2].m_val, v[6].m_val); + sum[6] = vec_mergeh(v[3].m_val, v[7].m_val); + sum[7] = vec_mergel(v[3].m_val, v[7].m_val); + + kernel.packet[0] = vec_mergeh(sum[0].m_val, sum[4].m_val); + kernel.packet[1] = vec_mergel(sum[0].m_val, sum[4].m_val); + kernel.packet[2] = vec_mergeh(sum[1].m_val, sum[5].m_val); + kernel.packet[3] = vec_mergel(sum[1].m_val, sum[5].m_val); + kernel.packet[4] = vec_mergeh(sum[2].m_val, sum[6].m_val); + kernel.packet[5] = vec_mergel(sum[2].m_val, sum[6].m_val); + kernel.packet[6] = vec_mergeh(sum[3].m_val, sum[7].m_val); + kernel.packet[7] = vec_mergel(sum[3].m_val, sum[7].m_val); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet16c step1[16], step2[16], step3[16]; + + step1[0] = vec_mergeh(kernel.packet[0], kernel.packet[8]); + step1[1] = vec_mergel(kernel.packet[0], kernel.packet[8]); + step1[2] = vec_mergeh(kernel.packet[1], kernel.packet[9]); + step1[3] = vec_mergel(kernel.packet[1], kernel.packet[9]); + step1[4] = vec_mergeh(kernel.packet[2], kernel.packet[10]); + step1[5] = vec_mergel(kernel.packet[2], kernel.packet[10]); + step1[6] = vec_mergeh(kernel.packet[3], kernel.packet[11]); + step1[7] = vec_mergel(kernel.packet[3], kernel.packet[11]); + step1[8] = vec_mergeh(kernel.packet[4], kernel.packet[12]); + step1[9] = vec_mergel(kernel.packet[4], kernel.packet[12]); + step1[10] = vec_mergeh(kernel.packet[5], kernel.packet[13]); + step1[11] = vec_mergel(kernel.packet[5], kernel.packet[13]); + step1[12] = vec_mergeh(kernel.packet[6], kernel.packet[14]); + step1[13] = vec_mergel(kernel.packet[6], kernel.packet[14]); + step1[14] = vec_mergeh(kernel.packet[7], kernel.packet[15]); + step1[15] = vec_mergel(kernel.packet[7], kernel.packet[15]); + + step2[0] = vec_mergeh(step1[0], step1[8]); + step2[1] = vec_mergel(step1[0], step1[8]); + step2[2] = vec_mergeh(step1[1], step1[9]); + step2[3] = vec_mergel(step1[1], step1[9]); + step2[4] = vec_mergeh(step1[2], step1[10]); + step2[5] = vec_mergel(step1[2], step1[10]); + step2[6] = vec_mergeh(step1[3], step1[11]); + step2[7] = vec_mergel(step1[3], step1[11]); + step2[8] = vec_mergeh(step1[4], step1[12]); + step2[9] = vec_mergel(step1[4], step1[12]); + step2[10] = vec_mergeh(step1[5], step1[13]); + step2[11] = vec_mergel(step1[5], step1[13]); + step2[12] = vec_mergeh(step1[6], step1[14]); + step2[13] = vec_mergel(step1[6], step1[14]); + step2[14] = vec_mergeh(step1[7], step1[15]); + step2[15] = vec_mergel(step1[7], step1[15]); + + step3[0] = vec_mergeh(step2[0], step2[8]); + step3[1] = vec_mergel(step2[0], step2[8]); + step3[2] = vec_mergeh(step2[1], step2[9]); + step3[3] = vec_mergel(step2[1], step2[9]); + step3[4] = vec_mergeh(step2[2], step2[10]); + step3[5] = vec_mergel(step2[2], step2[10]); + step3[6] = vec_mergeh(step2[3], step2[11]); + step3[7] = vec_mergel(step2[3], step2[11]); + step3[8] = vec_mergeh(step2[4], step2[12]); + step3[9] = vec_mergel(step2[4], step2[12]); + step3[10] = vec_mergeh(step2[5], step2[13]); + step3[11] = vec_mergel(step2[5], step2[13]); + step3[12] = vec_mergeh(step2[6], step2[14]); + step3[13] = vec_mergel(step2[6], step2[14]); + step3[14] = vec_mergeh(step2[7], step2[15]); + step3[15] = vec_mergel(step2[7], step2[15]); + + kernel.packet[0] = vec_mergeh(step3[0], step3[8]); + kernel.packet[1] = vec_mergel(step3[0], step3[8]); + kernel.packet[2] = vec_mergeh(step3[1], step3[9]); + kernel.packet[3] = vec_mergel(step3[1], step3[9]); + kernel.packet[4] = vec_mergeh(step3[2], step3[10]); + kernel.packet[5] = vec_mergel(step3[2], step3[10]); + kernel.packet[6] = vec_mergeh(step3[3], step3[11]); + kernel.packet[7] = vec_mergel(step3[3], step3[11]); + kernel.packet[8] = vec_mergeh(step3[4], step3[12]); + kernel.packet[9] = vec_mergel(step3[4], step3[12]); + kernel.packet[10] = vec_mergeh(step3[5], step3[13]); + kernel.packet[11] = vec_mergel(step3[5], step3[13]); + kernel.packet[12] = vec_mergeh(step3[6], step3[14]); + kernel.packet[13] = vec_mergel(step3[6], step3[14]); + kernel.packet[14] = vec_mergeh(step3[7], step3[15]); + kernel.packet[15] = vec_mergel(step3[7], step3[15]); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet16uc step1[16], step2[16], step3[16]; + + step1[0] = vec_mergeh(kernel.packet[0], kernel.packet[8]); + step1[1] = vec_mergel(kernel.packet[0], kernel.packet[8]); + step1[2] = vec_mergeh(kernel.packet[1], kernel.packet[9]); + step1[3] = vec_mergel(kernel.packet[1], kernel.packet[9]); + step1[4] = vec_mergeh(kernel.packet[2], kernel.packet[10]); + step1[5] = vec_mergel(kernel.packet[2], kernel.packet[10]); + step1[6] = vec_mergeh(kernel.packet[3], kernel.packet[11]); + step1[7] = vec_mergel(kernel.packet[3], kernel.packet[11]); + step1[8] = vec_mergeh(kernel.packet[4], kernel.packet[12]); + step1[9] = vec_mergel(kernel.packet[4], kernel.packet[12]); + step1[10] = vec_mergeh(kernel.packet[5], kernel.packet[13]); + step1[11] = vec_mergel(kernel.packet[5], kernel.packet[13]); + step1[12] = vec_mergeh(kernel.packet[6], kernel.packet[14]); + step1[13] = vec_mergel(kernel.packet[6], kernel.packet[14]); + step1[14] = vec_mergeh(kernel.packet[7], kernel.packet[15]); + step1[15] = vec_mergel(kernel.packet[7], kernel.packet[15]); + + step2[0] = vec_mergeh(step1[0], step1[8]); + step2[1] = vec_mergel(step1[0], step1[8]); + step2[2] = vec_mergeh(step1[1], step1[9]); + step2[3] = vec_mergel(step1[1], step1[9]); + step2[4] = vec_mergeh(step1[2], step1[10]); + step2[5] = vec_mergel(step1[2], step1[10]); + step2[6] = vec_mergeh(step1[3], step1[11]); + step2[7] = vec_mergel(step1[3], step1[11]); + step2[8] = vec_mergeh(step1[4], step1[12]); + step2[9] = vec_mergel(step1[4], step1[12]); + step2[10] = vec_mergeh(step1[5], step1[13]); + step2[11] = vec_mergel(step1[5], step1[13]); + step2[12] = vec_mergeh(step1[6], step1[14]); + step2[13] = vec_mergel(step1[6], step1[14]); + step2[14] = vec_mergeh(step1[7], step1[15]); + step2[15] = vec_mergel(step1[7], step1[15]); + + step3[0] = vec_mergeh(step2[0], step2[8]); + step3[1] = vec_mergel(step2[0], step2[8]); + step3[2] = vec_mergeh(step2[1], step2[9]); + step3[3] = vec_mergel(step2[1], step2[9]); + step3[4] = vec_mergeh(step2[2], step2[10]); + step3[5] = vec_mergel(step2[2], step2[10]); + step3[6] = vec_mergeh(step2[3], step2[11]); + step3[7] = vec_mergel(step2[3], step2[11]); + step3[8] = vec_mergeh(step2[4], step2[12]); + step3[9] = vec_mergel(step2[4], step2[12]); + step3[10] = vec_mergeh(step2[5], step2[13]); + step3[11] = vec_mergel(step2[5], step2[13]); + step3[12] = vec_mergeh(step2[6], step2[14]); + step3[13] = vec_mergel(step2[6], step2[14]); + step3[14] = vec_mergeh(step2[7], step2[15]); + step3[15] = vec_mergel(step2[7], step2[15]); + + kernel.packet[0] = vec_mergeh(step3[0], step3[8]); + kernel.packet[1] = vec_mergel(step3[0], step3[8]); + kernel.packet[2] = vec_mergeh(step3[1], step3[9]); + kernel.packet[3] = vec_mergel(step3[1], step3[9]); + kernel.packet[4] = vec_mergeh(step3[2], step3[10]); + kernel.packet[5] = vec_mergel(step3[2], step3[10]); + kernel.packet[6] = vec_mergeh(step3[3], step3[11]); + kernel.packet[7] = vec_mergel(step3[3], step3[11]); + kernel.packet[8] = vec_mergeh(step3[4], step3[12]); + kernel.packet[9] = vec_mergel(step3[4], step3[12]); + kernel.packet[10] = vec_mergeh(step3[5], step3[13]); + kernel.packet[11] = vec_mergel(step3[5], step3[13]); + kernel.packet[12] = vec_mergeh(step3[6], step3[14]); + kernel.packet[13] = vec_mergel(step3[6], step3[14]); + kernel.packet[14] = vec_mergeh(step3[7], step3[15]); + kernel.packet[15] = vec_mergel(step3[7], step3[15]); +} + +template EIGEN_STRONG_INLINE +Packet pblend4(const Selector<4>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) { + Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] }; + Packet4ui mask = reinterpret_cast(pnegate(reinterpret_cast(select))); + return vec_sel(elsePacket, thenPacket, mask); +} + +template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { + return pblend4(ifPacket, thenPacket, elsePacket); +} + +template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { + return pblend4(ifPacket, thenPacket, elsePacket); +} + +template<> EIGEN_STRONG_INLINE Packet8s pblend(const Selector<8>& ifPacket, const Packet8s& thenPacket, const Packet8s& elsePacket) { + Packet8us select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3], + ifPacket.select[4], ifPacket.select[5], ifPacket.select[6], ifPacket.select[7] }; + Packet8us mask = reinterpret_cast(pnegate(reinterpret_cast(select))); + Packet8s result = vec_sel(elsePacket, thenPacket, mask); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet8us pblend(const Selector<8>& ifPacket, const Packet8us& thenPacket, const Packet8us& elsePacket) { + Packet8us select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3], + ifPacket.select[4], ifPacket.select[5], ifPacket.select[6], ifPacket.select[7] }; + Packet8us mask = reinterpret_cast(pnegate(reinterpret_cast(select))); + return vec_sel(elsePacket, thenPacket, mask); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pblend(const Selector<8>& ifPacket, const Packet8bf& thenPacket, const Packet8bf& elsePacket) { + return pblend(ifPacket, thenPacket, elsePacket); +} + +template<> EIGEN_STRONG_INLINE Packet16c pblend(const Selector<16>& ifPacket, const Packet16c& thenPacket, const Packet16c& elsePacket) { + Packet16uc select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3], + ifPacket.select[4], ifPacket.select[5], ifPacket.select[6], ifPacket.select[7], + ifPacket.select[8], ifPacket.select[9], ifPacket.select[10], ifPacket.select[11], + ifPacket.select[12], ifPacket.select[13], ifPacket.select[14], ifPacket.select[15] }; + + Packet16uc mask = reinterpret_cast(pnegate(reinterpret_cast(select))); + return vec_sel(elsePacket, thenPacket, mask); +} + +template<> EIGEN_STRONG_INLINE Packet16uc pblend(const Selector<16>& ifPacket, const Packet16uc& thenPacket, const Packet16uc& elsePacket) { + Packet16uc select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3], + ifPacket.select[4], ifPacket.select[5], ifPacket.select[6], ifPacket.select[7], + ifPacket.select[8], ifPacket.select[9], ifPacket.select[10], ifPacket.select[11], + ifPacket.select[12], ifPacket.select[13], ifPacket.select[14], ifPacket.select[15] }; + + Packet16uc mask = reinterpret_cast(pnegate(reinterpret_cast(select))); + return vec_sel(elsePacket, thenPacket, mask); +} + + +//---------- double ---------- +#ifdef EIGEN_VECTORIZE_VSX +typedef __vector double Packet2d; +typedef __vector unsigned long long Packet2ul; +typedef __vector long long Packet2l; +#if EIGEN_COMP_CLANG +typedef Packet2ul Packet2bl; +#else +typedef __vector __bool long Packet2bl; +#endif + +static Packet2l p2l_ZERO = reinterpret_cast(p4i_ZERO); +static Packet2ul p2ul_SIGN = { 0x8000000000000000ull, 0x8000000000000000ull }; +static Packet2ul p2ul_PREV0DOT5 = { 0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull }; +static Packet2d p2d_ONE = { 1.0, 1.0 }; +static Packet2d p2d_ZERO = reinterpret_cast(p4f_ZERO); +static Packet2d p2d_MZERO = { numext::bit_cast(0x8000000000000000ull), + numext::bit_cast(0x8000000000000000ull) }; + +#ifdef _BIG_ENDIAN +static Packet2d p2d_COUNTDOWN = reinterpret_cast(vec_sld(reinterpret_cast(p2d_ZERO), reinterpret_cast(p2d_ONE), 8)); +#else +static Packet2d p2d_COUNTDOWN = reinterpret_cast(vec_sld(reinterpret_cast(p2d_ONE), reinterpret_cast(p2d_ZERO), 8)); +#endif + +template Packet2d vec_splat_dbl(Packet2d& a) +{ + return vec_splat(a, index); +} + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet2d type; + typedef Packet2d half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasMin = 1, + HasMax = 1, + HasAbs = 1, + HasSin = 0, + HasCos = 0, + HasATan = 0, + HasLog = 0, + HasExp = 1, + HasSqrt = 1, +#if !EIGEN_COMP_CLANG + HasRsqrt = 1, +#else + HasRsqrt = 0, +#endif + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + HasNegate = 1, + HasBlend = 1 + }; +}; + +template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet2d half; }; + +inline std::ostream & operator <<(std::ostream & s, const Packet2l & v) +{ + union { + Packet2l v; + int64_t n[2]; + } vt; + vt.v = v; + s << vt.n[0] << ", " << vt.n[1]; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet2d & v) +{ + union { + Packet2d v; + double n[2]; + } vt; + vt.v = v; + s << vt.n[0] << ", " << vt.n[1]; + return s; +} + +// Need to define them first or we get specialization after instantiation errors +template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) +{ + EIGEN_DEBUG_ALIGNED_LOAD + return vec_xl(0, const_cast(from)); // cast needed by Clang +} + +template<> EIGEN_ALWAYS_INLINE Packet2d pload_partial(const double* from, const Index n, const Index offset) +{ + return pload_partial_common(from, n, offset); +} + +template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) +{ + EIGEN_DEBUG_ALIGNED_STORE + vec_xst(from, 0, to); +} + +template<> EIGEN_ALWAYS_INLINE void pstore_partial(double* to, const Packet2d& from, const Index n, const Index offset) +{ + pstore_partial_common(to, from, n, offset); +} + +template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { + Packet2d v = {from, from}; + return v; +} + +template<> EIGEN_STRONG_INLINE Packet2d pset1frombits(unsigned long from) { + Packet2l v = {static_cast(from), static_cast(from)}; + return reinterpret_cast(v); +} + +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const double *a, + Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) +{ + //This way is faster than vec_splat (at least for doubles in Power 9) + a0 = pset1(a[0]); + a1 = pset1(a[1]); + a2 = pset1(a[2]); + a3 = pset1(a[3]); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet2d pgather(const double* from, Index stride) +{ + return pgather_common(from, stride); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet2d pgather_partial(const double* from, Index stride, const Index n) +{ + return pgather_common(from, stride, n); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter(double* to, const Packet2d& from, Index stride) +{ + pscatter_common(to, from, stride); +} +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pscatter_partial(double* to, const Packet2d& from, Index stride, const Index n) +{ + pscatter_common(to, from, stride, n); +} + +template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) { return pset1(a) + p2d_COUNTDOWN; } + +template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return a + b; } + +template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return a - b; } + +template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) +{ +#ifdef __POWER8_VECTOR__ + return vec_neg(a); +#else + return vec_xor(a, p2d_MZERO); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return vec_madd(a,b,p2d_MZERO); } +template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return vec_div(a,b); } + +// for some weird raisons, it has to be overloaded for packet of integers +template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); } +template<> EIGEN_STRONG_INLINE Packet2d pmsub(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_msub(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pnmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_nmsub(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pnmsub(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_nmadd(a,b,c); } + +template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) +{ + // NOTE: about 10% slower than vec_min, but consistent with std::min and SSE regarding NaN + Packet2d ret; + __asm__ ("xvcmpgedp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); + return ret; + } + +template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) +{ + // NOTE: about 10% slower than vec_max, but consistent with std::max and SSE regarding NaN + Packet2d ret; + __asm__ ("xvcmpgtdp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); + return ret; +} + +template<> EIGEN_STRONG_INLINE Packet2d pcmp_le(const Packet2d& a, const Packet2d& b) { return reinterpret_cast(vec_cmple(a,b)); } +template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt(const Packet2d& a, const Packet2d& b) { return reinterpret_cast(vec_cmplt(a,b)); } +template<> EIGEN_STRONG_INLINE Packet2d pcmp_eq(const Packet2d& a, const Packet2d& b) { return reinterpret_cast(vec_cmpeq(a,b)); } +template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt_or_nan(const Packet2d& a, const Packet2d& b) { + Packet2d c = reinterpret_cast(vec_cmpge(a,b)); + return vec_nor(c,c); +} + +template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); } + +template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); } + +template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); } + +template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); } + +template<> EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) +{ + Packet2d t = vec_add(reinterpret_cast(vec_or(vec_and(reinterpret_cast(a), p2ul_SIGN), p2ul_PREV0DOT5)), a); + Packet2d res; + + __asm__("xvrdpiz %x0, %x1\n\t" + : "=&wa" (res) + : "wa" (t)); + + return res; +} +template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { return vec_ceil(a); } +template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { return vec_floor(a); } +template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) +{ + Packet2d res; + + __asm__("xvrdpic %x0, %x1\n\t" + : "=&wa" (res) + : "wa" (a)); + + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD + return vec_xl(0, const_cast(from)); +} + +template<> EIGEN_ALWAYS_INLINE Packet2d ploadu_partial(const double* from, const Index n, const Index offset) +{ + return ploadu_partial_common(from, n, offset); +} + +template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) +{ + Packet2d p; + if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); + else p = ploadu(from); + return vec_splat_dbl<0>(p); +} + +template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) +{ + EIGEN_DEBUG_UNALIGNED_STORE + vec_xst(from, 0, to); +} + +template<> EIGEN_ALWAYS_INLINE void pstoreu_partial(double* to, const Packet2d& from, const Index n, const Index offset) +{ + pstoreu_partial_common(to, from, n, offset); +} + +template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { EIGEN_PPC_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { EIGEN_ALIGN16 double x[2]; pstore(x, a); return x[0]; } + +template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) +{ + return vec_sld(a, a, 8); +} +template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); } +#ifdef __POWER8_VECTOR__ +template<> EIGEN_STRONG_INLINE Packet2d psignbit(const Packet2d& a) { return (Packet2d)vec_sra((Packet2l)a, vec_splats((unsigned long long)(63))); } +#else +#ifdef _BIG_ENDIAN +static Packet16uc p16uc_DUPSIGN = { 0,0,0,0, 0,0,0,0, 8,8,8,8, 8,8,8,8 }; +#else +static Packet16uc p16uc_DUPSIGN = { 7,7,7,7, 7,7,7,7, 15,15,15,15, 15,15,15,15 }; +#endif + +template<> EIGEN_STRONG_INLINE Packet2d psignbit(const Packet2d& a) +{ + Packet16c tmp = vec_sra(reinterpret_cast(a), vec_splats((unsigned char)(7))); + return reinterpret_cast(vec_perm(tmp, tmp, p16uc_DUPSIGN)); +} +#endif + +template<> inline Packet2l pcast(const Packet2d& x); + +template<> inline Packet2d pcast(const Packet2l& x); + +// Packet2l shifts. +// For POWER8 we simply use vec_sr/l. +// +// Things are more complicated for POWER7. There is actually a +// vec_xxsxdi intrinsic but it is not supported by some gcc versions. +// So we need to shift by N % 32 and rearrage bytes. +#ifdef __POWER8_VECTOR__ + +template +EIGEN_STRONG_INLINE Packet2l plogical_shift_left(const Packet2l& a) { + const Packet2ul shift = { N, N }; + return vec_sl(a, shift); +} + +template +EIGEN_STRONG_INLINE Packet2l plogical_shift_right(const Packet2l& a) { + const Packet2ul shift = { N, N }; + return vec_sr(a, shift); +} + +#else + +// Shifts [A, B, C, D] to [B, 0, D, 0]. +// Used to implement left shifts for Packet2l. +EIGEN_ALWAYS_INLINE Packet4i shift_even_left(const Packet4i& a) { + static const Packet16uc perm = { + 0x14, 0x15, 0x16, 0x17, 0x00, 0x01, 0x02, 0x03, + 0x1c, 0x1d, 0x1e, 0x1f, 0x08, 0x09, 0x0a, 0x0b }; + #ifdef _BIG_ENDIAN + return vec_perm(p4i_ZERO, a, perm); + #else + return vec_perm(a, p4i_ZERO, perm); + #endif +} + +// Shifts [A, B, C, D] to [0, A, 0, C]. +// Used to implement right shifts for Packet2l. +EIGEN_ALWAYS_INLINE Packet4i shift_odd_right(const Packet4i& a) { + static const Packet16uc perm = { + 0x04, 0x05, 0x06, 0x07, 0x10, 0x11, 0x12, 0x13, + 0x0c, 0x0d, 0x0e, 0x0f, 0x18, 0x19, 0x1a, 0x1b }; + #ifdef _BIG_ENDIAN + return vec_perm(p4i_ZERO, a, perm); + #else + return vec_perm(a, p4i_ZERO, perm); + #endif +} + +template +struct plogical_shift_left_impl; + +template +struct plogical_shift_left_impl= 0)>> { + static EIGEN_STRONG_INLINE Packet2l run(const Packet2l& a) { + static const unsigned n = static_cast(N); + const Packet4ui shift = {n, n, n, n}; + const Packet4i ai = reinterpret_cast(a); + static const unsigned m = static_cast(32 - N); + const Packet4ui shift_right = {m, m, m, m}; + const Packet4i out_hi = vec_sl(ai, shift); + const Packet4i out_lo = shift_even_left(vec_sr(ai, shift_right)); + return reinterpret_cast(por(out_hi, out_lo)); + } +}; + +template +struct plogical_shift_left_impl= 32)>> { + static EIGEN_STRONG_INLINE Packet2l run(const Packet2l& a) { + static const unsigned m = static_cast(N - 32); + const Packet4ui shift = {m, m, m, m}; + const Packet4i ai = reinterpret_cast(a); + return reinterpret_cast(shift_even_left(vec_sl(ai, shift))); + } +}; + +template +EIGEN_STRONG_INLINE Packet2l plogical_shift_left(const Packet2l& a) { + return plogical_shift_left_impl::run(a); +} + +template +struct plogical_shift_right_impl; + +template +struct plogical_shift_right_impl= 0)>> { + static EIGEN_STRONG_INLINE Packet2l run(const Packet2l& a) { + static const unsigned n = static_cast(N); + const Packet4ui shift = {n, n, n, n}; + const Packet4i ai = reinterpret_cast(a); + static const unsigned m = static_cast(32 - N); + const Packet4ui shift_left = {m, m, m, m}; + const Packet4i out_lo = vec_sr(ai, shift); + const Packet4i out_hi = shift_odd_right(vec_sl(ai, shift_left)); + return reinterpret_cast(por(out_hi, out_lo)); + } +}; + +template +struct plogical_shift_right_impl= 32)>> { + static EIGEN_STRONG_INLINE Packet2l run(const Packet2l& a) { + static const unsigned m = static_cast(N - 32); + const Packet4ui shift = {m, m, m, m}; + const Packet4i ai = reinterpret_cast(a); + return reinterpret_cast(shift_odd_right(vec_sr(ai, shift))); + } +}; + +template +EIGEN_STRONG_INLINE Packet2l plogical_shift_right(const Packet2l& a) { + return plogical_shift_right_impl::run(a); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet2d pldexp(const Packet2d& a, const Packet2d& exponent) { + // Clamp exponent to [-2099, 2099] + const Packet2d max_exponent = pset1(2099.0); + const Packet2l e = pcast(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent)); + + // Split 2^e into four factors and multiply: + const Packet2l bias = { 1023, 1023 }; + Packet2l b = plogical_shift_right<2>(e); // floor(e/4) + Packet2d c = reinterpret_cast(plogical_shift_left<52>(b + bias)); + Packet2d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) + b = psub(psub(psub(e, b), b), b); // e - 3b + c = reinterpret_cast(plogical_shift_left<52>(b + bias)); // 2^(e - 3b) + out = pmul(out, c); // a * 2^e + return out; +} + + +// Extract exponent without existence of Packet2l. +template<> +EIGEN_STRONG_INLINE +Packet2d pfrexp_generic_get_biased_exponent(const Packet2d& a) { + return pcast(plogical_shift_right<52>(reinterpret_cast(pabs(a)))); +} + +template<> EIGEN_STRONG_INLINE Packet2d pfrexp (const Packet2d& a, Packet2d& exponent) { + return pfrexp_generic(a, exponent); +} + +template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) +{ + Packet2d b, sum; + b = reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)); + sum = a + b; + return pfirst(sum); +} + +// Other reduction functions: +// mul +template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) +{ + return pfirst(pmul(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); +} + +// min +template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) +{ + return pfirst(pmin(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); +} + +// max +template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) +{ + return pfirst(pmax(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet2d t0, t1; + t0 = vec_mergeh(kernel.packet[0], kernel.packet[1]); + t1 = vec_mergel(kernel.packet[0], kernel.packet[1]); + kernel.packet[0] = t0; + kernel.packet[1] = t1; +} + +template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { + Packet2l select = { ifPacket.select[0], ifPacket.select[1] }; + Packet2ul mask = reinterpret_cast(pnegate(reinterpret_cast(select))); + return vec_sel(elsePacket, thenPacket, mask); +} + + +#endif // __VSX__ +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_ALTIVEC_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/TypeCasting.h new file mode 100644 index 0000000..bda63d8 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/AltiVec/TypeCasting.h @@ -0,0 +1,178 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2019 Rasmus Munk Larsen +// Copyright (C) 2023 Chip Kerchner (chip.kerchner@ibm.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_ALTIVEC_H +#define EIGEN_TYPE_CASTING_ALTIVEC_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + +template<> EIGEN_STRONG_INLINE Packet4i pcast(const Packet4f& a) { + return vec_cts(a,0); +} + +template<> EIGEN_STRONG_INLINE Packet4ui pcast(const Packet4f& a) { + return vec_ctu(a,0); +} + +template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4i& a) { + return vec_ctf(a,0); +} + +template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4ui& a) { + return vec_ctf(a,0); +} + +template<> EIGEN_STRONG_INLINE Packet8us pcast(const Packet8bf& a) { + Packet4f float_even = Bf16ToF32Even(a); + Packet4f float_odd = Bf16ToF32Odd(a); + Packet4ui int_even = pcast(float_even); + Packet4ui int_odd = pcast(float_odd); + const EIGEN_DECLARE_CONST_FAST_Packet4ui(low_mask, 0x0000FFFF); + Packet4ui low_even = pand(int_even, p4ui_low_mask); + Packet4ui low_odd = pand(int_odd, p4ui_low_mask); + + //Check values that are bigger than USHRT_MAX (0xFFFF) + Packet4bi overflow_selector; + if(vec_any_gt(int_even, p4ui_low_mask)){ + overflow_selector = vec_cmpgt(int_even, p4ui_low_mask); + low_even = vec_sel(low_even, p4ui_low_mask, overflow_selector); + } + if(vec_any_gt(int_odd, p4ui_low_mask)){ + overflow_selector = vec_cmpgt(int_odd, p4ui_low_mask); + low_odd = vec_sel(low_even, p4ui_low_mask, overflow_selector); + } + + return pmerge(low_even, low_odd); +} + +template<> EIGEN_STRONG_INLINE Packet8bf pcast(const Packet8us& a) { + //short -> int -> float -> bfloat16 + const EIGEN_DECLARE_CONST_FAST_Packet4ui(low_mask, 0x0000FFFF); + Packet4ui int_cast = reinterpret_cast(a); + Packet4ui int_even = pand(int_cast, p4ui_low_mask); + Packet4ui int_odd = plogical_shift_right<16>(int_cast); + Packet4f float_even = pcast(int_even); + Packet4f float_odd = pcast(int_odd); + return F32ToBf16(float_even, float_odd); +} + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 2 + }; +}; + +template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet8bf& a) { + Packet8us z = pset1(0); +#ifdef _BIG_ENDIAN + return reinterpret_cast(vec_mergeh(a.m_val, z)); +#else + return reinterpret_cast(vec_mergeh(z, a.m_val)); +#endif +} + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 2, + TgtCoeffRatio = 1 + }; +}; + +template<> EIGEN_STRONG_INLINE Packet8bf pcast(const Packet4f& a, const Packet4f &b) { + return F32ToBf16Both(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet4f& a) { + return reinterpret_cast(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet4i& a) { + return reinterpret_cast(a); +} + +#ifdef EIGEN_VECTORIZE_VSX +// VSX support varies between different compilers and even different +// versions of the same compiler. For gcc version >= 4.9.3, we can use +// vec_cts to efficiently convert Packet2d to Packet2l. Otherwise, use +// a slow version that works with older compilers. +// Update: apparently vec_cts/vec_ctf intrinsics for 64-bit doubles +// are buggy, https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70963 +template<> +inline Packet2l pcast(const Packet2d& x) { +#if EIGEN_GNUC_STRICT_AT_LEAST(7,1,0) + return vec_cts(x, 0); // TODO: check clang version. +#else + double tmp[2]; + memcpy(tmp, &x, sizeof(tmp)); + Packet2l l = { static_cast(tmp[0]), + static_cast(tmp[1]) }; + return l; +#endif +} + +template<> +inline Packet2d pcast(const Packet2l& x) { + unsigned long long tmp[2]; + memcpy(tmp, &x, sizeof(tmp)); + Packet2d d = { static_cast(tmp[0]), + static_cast(tmp[1]) }; + return d; +} +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_ALTIVEC_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/BFloat16.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/BFloat16.h new file mode 100644 index 0000000..d2137d4 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/BFloat16.h @@ -0,0 +1,863 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef EIGEN_BFLOAT16_H +#define EIGEN_BFLOAT16_H + +#include "../../InternalHeaderCheck.h" + +#if defined(EIGEN_HAS_HIP_BF16) +// When compiling with GPU support, the "hip_bfloat16" base class as well as +// some other routines are defined in the GPU compiler header files +// (hip_bfloat16.h), and they are not tagged constexpr +// As a consequence, we get compile failures when compiling Eigen with +// GPU support. Hence the need to disable EIGEN_CONSTEXPR when building +// Eigen with GPU support + #pragma push_macro("EIGEN_CONSTEXPR") + #undef EIGEN_CONSTEXPR + #define EIGEN_CONSTEXPR +#endif + +#define BF16_PACKET_FUNCTION(PACKET_F, PACKET_BF16, METHOD) \ + template <> \ + EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED \ + PACKET_BF16 METHOD(const PACKET_BF16& _x) { \ + return F32ToBf16(METHOD(Bf16ToF32(_x))); \ + } + +// Only use HIP GPU bf16 in kernels +#if defined(EIGEN_HAS_HIP_BF16) && defined(EIGEN_GPU_COMPILE_PHASE) +#define EIGEN_USE_HIP_BF16 +#endif + +namespace Eigen { + +struct bfloat16; + +namespace numext { +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bit_cast(const uint16_t& src); + +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast(const Eigen::bfloat16& src); +} // namespace numext +namespace bfloat16_impl { + +#if defined(EIGEN_USE_HIP_BF16) + +struct __bfloat16_raw : public hip_bfloat16 { + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw() {} + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw(hip_bfloat16 hb) : hip_bfloat16(hb) {} + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw(unsigned short raw) : hip_bfloat16(raw) {} +}; + +#else + +// Make our own __bfloat16_raw definition. +struct __bfloat16_raw { +#if defined(EIGEN_HAS_HIP_BF16) && !defined(EIGEN_GPU_COMPILE_PHASE) + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw() {} +#else + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw() : value(0) {} +#endif + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw(unsigned short raw) : value(raw) {} + unsigned short value; +}; + +#endif // defined(EIGEN_USE_HIP_BF16) + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw raw_uint16_to_bfloat16(unsigned short value); +template +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw float_to_bfloat16_rtne(float ff); +// Forward declarations of template specializations, to avoid Visual C++ 2019 errors, saying: +// > error C2908: explicit specialization; 'float_to_bfloat16_rtne' has already been instantiated +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw float_to_bfloat16_rtne(float ff); +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw float_to_bfloat16_rtne(float ff); +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float bfloat16_to_float(__bfloat16_raw h); + +struct bfloat16_base : public __bfloat16_raw { + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16_base() {} + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16_base(const __bfloat16_raw& h) : __bfloat16_raw(h) {} +}; + +} // namespace bfloat16_impl + +// Class definition. +struct bfloat16 : public bfloat16_impl::bfloat16_base { + + typedef bfloat16_impl::__bfloat16_raw __bfloat16_raw; + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16() {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16(const __bfloat16_raw& h) : bfloat16_impl::bfloat16_base(h) {} + + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16(bool b) + : bfloat16_impl::bfloat16_base(bfloat16_impl::raw_uint16_to_bfloat16(b ? 0x3f80 : 0)) {} + + template + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16(T val) + : bfloat16_impl::bfloat16_base(bfloat16_impl::float_to_bfloat16_rtne::value>(static_cast(val))) {} + + explicit EIGEN_DEVICE_FUNC bfloat16(float f) + : bfloat16_impl::bfloat16_base(bfloat16_impl::float_to_bfloat16_rtne(f)) {} + + // Following the convention of numpy, converting between complex and + // float will lead to loss of imag value. + template + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bfloat16(const std::complex& val) + : bfloat16_impl::bfloat16_base(bfloat16_impl::float_to_bfloat16_rtne(static_cast(val.real()))) {} + + EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless. + return bfloat16_impl::bfloat16_to_float(*this); + } +}; + +// TODO(majnemer): Get rid of this once we can rely on C++17 inline variables do +// solve the ODR issue. +namespace bfloat16_impl { +template +struct numeric_limits_bfloat16_impl { + static EIGEN_CONSTEXPR const bool is_specialized = true; + static EIGEN_CONSTEXPR const bool is_signed = true; + static EIGEN_CONSTEXPR const bool is_integer = false; + static EIGEN_CONSTEXPR const bool is_exact = false; + static EIGEN_CONSTEXPR const bool has_infinity = true; + static EIGEN_CONSTEXPR const bool has_quiet_NaN = true; + static EIGEN_CONSTEXPR const bool has_signaling_NaN = true; + static EIGEN_CONSTEXPR const std::float_denorm_style has_denorm = std::denorm_present; + static EIGEN_CONSTEXPR const bool has_denorm_loss = false; + static EIGEN_CONSTEXPR const std::float_round_style round_style = std::numeric_limits::round_style; + static EIGEN_CONSTEXPR const bool is_iec559 = true; + // The C++ standard defines this as "true if the set of values representable + // by the type is finite." BFloat16 has finite precision. + static EIGEN_CONSTEXPR const bool is_bounded = true; + static EIGEN_CONSTEXPR const bool is_modulo = false; + static EIGEN_CONSTEXPR const int digits = 8; + static EIGEN_CONSTEXPR const int digits10 = 2; + static EIGEN_CONSTEXPR const int max_digits10 = 4; + static EIGEN_CONSTEXPR const int radix = std::numeric_limits::radix; + static EIGEN_CONSTEXPR const int min_exponent = std::numeric_limits::min_exponent; + static EIGEN_CONSTEXPR const int min_exponent10 = std::numeric_limits::min_exponent10; + static EIGEN_CONSTEXPR const int max_exponent = std::numeric_limits::max_exponent; + static EIGEN_CONSTEXPR const int max_exponent10 = std::numeric_limits::max_exponent10; + static EIGEN_CONSTEXPR const bool traps = std::numeric_limits::traps; + // IEEE754: "The implementer shall choose how tininess is detected, but shall + // detect tininess in the same way for all operations in radix two" + static EIGEN_CONSTEXPR const bool tinyness_before = std::numeric_limits::tinyness_before; + + static EIGEN_CONSTEXPR Eigen::bfloat16 (min)() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x0080); } + static EIGEN_CONSTEXPR Eigen::bfloat16 lowest() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0xff7f); } + static EIGEN_CONSTEXPR Eigen::bfloat16 (max)() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x7f7f); } + static EIGEN_CONSTEXPR Eigen::bfloat16 epsilon() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x3c00); } + static EIGEN_CONSTEXPR Eigen::bfloat16 round_error() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x3f00); } + static EIGEN_CONSTEXPR Eigen::bfloat16 infinity() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x7f80); } + static EIGEN_CONSTEXPR Eigen::bfloat16 quiet_NaN() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x7fc0); } + static EIGEN_CONSTEXPR Eigen::bfloat16 signaling_NaN() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x7fa0); } + static EIGEN_CONSTEXPR Eigen::bfloat16 denorm_min() { return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(0x0001); } +}; + +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_specialized; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_signed; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_integer; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_exact; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::has_infinity; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::has_quiet_NaN; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::has_signaling_NaN; +template +EIGEN_CONSTEXPR const std::float_denorm_style numeric_limits_bfloat16_impl::has_denorm; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::has_denorm_loss; +template +EIGEN_CONSTEXPR const std::float_round_style numeric_limits_bfloat16_impl::round_style; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_iec559; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_bounded; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::is_modulo; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::digits; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::digits10; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::max_digits10; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::radix; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::min_exponent; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::min_exponent10; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::max_exponent; +template +EIGEN_CONSTEXPR const int numeric_limits_bfloat16_impl::max_exponent10; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::traps; +template +EIGEN_CONSTEXPR const bool numeric_limits_bfloat16_impl::tinyness_before; +} // end namespace bfloat16_impl +} // end namespace Eigen + +namespace std { +// If std::numeric_limits is specialized, should also specialize +// std::numeric_limits, std::numeric_limits, and +// std::numeric_limits +// https://stackoverflow.com/a/16519653/ +template<> +class numeric_limits : public Eigen::bfloat16_impl::numeric_limits_bfloat16_impl<> {}; +template<> +class numeric_limits : public numeric_limits {}; +template<> +class numeric_limits : public numeric_limits {}; +template<> +class numeric_limits : public numeric_limits {}; +} // end namespace std + +namespace Eigen { + +namespace bfloat16_impl { + +// We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler, +// invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation +// of the functions, while the latter can only deal with one of them. +#if !defined(EIGEN_HAS_NATIVE_BF16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for bfloat16 floats + +#if EIGEN_COMP_CLANG && defined(EIGEN_CUDACC) +// We need to provide emulated *host-side* BF16 operators for clang. +#pragma push_macro("EIGEN_DEVICE_FUNC") +#undef EIGEN_DEVICE_FUNC +#if (defined(EIGEN_HAS_GPU_BF16) && defined(EIGEN_HAS_NATIVE_BF16)) +#define EIGEN_DEVICE_FUNC __host__ +#else // both host and device need emulated ops. +#define EIGEN_DEVICE_FUNC __host__ __device__ +#endif +#endif + +// Definitions for CPUs, mostly working through conversion +// to/from fp32. + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator + (const bfloat16& a, const bfloat16& b) { + return bfloat16(float(a) + float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator + (const bfloat16& a, const int& b) { + return bfloat16(float(a) + static_cast(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator + (const int& a, const bfloat16& b) { + return bfloat16(static_cast(a) + float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator * (const bfloat16& a, const bfloat16& b) { + return bfloat16(float(a) * float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator - (const bfloat16& a, const bfloat16& b) { + return bfloat16(float(a) - float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator / (const bfloat16& a, const bfloat16& b) { + return bfloat16(float(a) / float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator - (const bfloat16& a) { + numext::uint16_t x = numext::bit_cast(a) ^ 0x8000; + return numext::bit_cast(x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16& operator += (bfloat16& a, const bfloat16& b) { + a = bfloat16(float(a) + float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16& operator *= (bfloat16& a, const bfloat16& b) { + a = bfloat16(float(a) * float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16& operator -= (bfloat16& a, const bfloat16& b) { + a = bfloat16(float(a) - float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16& operator /= (bfloat16& a, const bfloat16& b) { + a = bfloat16(float(a) / float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator++(bfloat16& a) { + a += bfloat16(1); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator--(bfloat16& a) { + a -= bfloat16(1); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator++(bfloat16& a, int) { + bfloat16 original_value = a; + ++a; + return original_value; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator--(bfloat16& a, int) { + bfloat16 original_value = a; + --a; + return original_value; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const bfloat16& a, const bfloat16& b) { + return numext::equal_strict(float(a),float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const bfloat16& a, const bfloat16& b) { + return numext::not_equal_strict(float(a), float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const bfloat16& a, const bfloat16& b) { + return float(a) < float(b); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const bfloat16& a, const bfloat16& b) { + return float(a) <= float(b); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const bfloat16& a, const bfloat16& b) { + return float(a) > float(b); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const bfloat16& a, const bfloat16& b) { + return float(a) >= float(b); +} + +#if EIGEN_COMP_CLANG && defined(EIGEN_CUDACC) +#pragma pop_macro("EIGEN_DEVICE_FUNC") +#endif +#endif // Emulate support for bfloat16 floats + +// Division by an index. Do it in full float precision to avoid accuracy +// issues in converting the denominator to bfloat16. +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 operator / (const bfloat16& a, Index b) { + return bfloat16(static_cast(a) / static_cast(b)); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw truncate_to_bfloat16(const float v) { +#if defined(EIGEN_USE_HIP_BF16) + return __bfloat16_raw(__bfloat16_raw::round_to_bfloat16(v, __bfloat16_raw::truncate)); +#else + __bfloat16_raw output; + if (numext::isnan EIGEN_NOT_A_MACRO(v)) { + output.value = std::signbit(v) ? 0xFFC0: 0x7FC0; + return output; + } + output.value = static_cast(numext::bit_cast(v) >> 16); + return output; +#endif +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw raw_uint16_to_bfloat16(numext::uint16_t value) { +#if defined(EIGEN_USE_HIP_BF16) + __bfloat16_raw bf; + bf.data = value; + return bf; +#else + return __bfloat16_raw(value); +#endif +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR numext::uint16_t raw_bfloat16_as_uint16(const __bfloat16_raw& bf) { +#if defined(EIGEN_USE_HIP_BF16) + return bf.data; +#else + return bf.value; +#endif +} + +// float_to_bfloat16_rtne template specialization that does not make any +// assumption about the value of its function argument (ff). +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw float_to_bfloat16_rtne(float ff) { +#if defined(EIGEN_USE_HIP_BF16) + return __bfloat16_raw(__bfloat16_raw::round_to_bfloat16(ff)); +#else + __bfloat16_raw output; + + if (numext::isnan EIGEN_NOT_A_MACRO(ff)) { + // If the value is a NaN, squash it to a qNaN with msb of fraction set, + // this makes sure after truncation we don't end up with an inf. + // + // qNaN magic: All exponent bits set + most significant bit of fraction + // set. + output.value = std::signbit(ff) ? 0xFFC0: 0x7FC0; + } else { + // Fast rounding algorithm that rounds a half value to nearest even. This + // reduces expected error when we convert a large number of floats. Here + // is how it works: + // + // Definitions: + // To convert a float 32 to bfloat16, a float 32 can be viewed as 32 bits + // with the following tags: + // + // Sign | Exp (8 bits) | Frac (23 bits) + // S EEEEEEEE FFFFFFLRTTTTTTTTTTTTTTT + // + // S: Sign bit. + // E: Exponent bits. + // F: First 6 bits of fraction. + // L: Least significant bit of resulting bfloat16 if we truncate away the + // rest of the float32. This is also the 7th bit of fraction + // R: Rounding bit, 8th bit of fraction. + // T: Sticky bits, rest of fraction, 15 bits. + // + // To round half to nearest even, there are 3 cases where we want to round + // down (simply truncate the result of the bits away, which consists of + // rounding bit and sticky bits) and two cases where we want to round up + // (truncate then add one to the result). + // + // The fast converting algorithm simply adds lsb (L) to 0x7fff (15 bits of + // 1s) as the rounding bias, adds the rounding bias to the input, then + // truncates the last 16 bits away. + // + // To understand how it works, we can analyze this algorithm case by case: + // + // 1. L = 0, R = 0: + // Expect: round down, this is less than half value. + // + // Algorithm: + // - Rounding bias: 0x7fff + 0 = 0x7fff + // - Adding rounding bias to input may create any carry, depending on + // whether there is any value set to 1 in T bits. + // - R may be set to 1 if there is a carry. + // - L remains 0. + // - Note that this case also handles Inf and -Inf, where all fraction + // bits, including L, R and Ts are all 0. The output remains Inf after + // this algorithm. + // + // 2. L = 1, R = 0: + // Expect: round down, this is less than half value. + // + // Algorithm: + // - Rounding bias: 0x7fff + 1 = 0x8000 + // - Adding rounding bias to input doesn't change sticky bits but + // adds 1 to rounding bit. + // - L remains 1. + // + // 3. L = 0, R = 1, all of T are 0: + // Expect: round down, this is exactly at half, the result is already + // even (L=0). + // + // Algorithm: + // - Rounding bias: 0x7fff + 0 = 0x7fff + // - Adding rounding bias to input sets all sticky bits to 1, but + // doesn't create a carry. + // - R remains 1. + // - L remains 0. + // + // 4. L = 1, R = 1: + // Expect: round up, this is exactly at half, the result needs to be + // round to the next even number. + // + // Algorithm: + // - Rounding bias: 0x7fff + 1 = 0x8000 + // - Adding rounding bias to input doesn't change sticky bits, but + // creates a carry from rounding bit. + // - The carry sets L to 0, creates another carry bit and propagate + // forward to F bits. + // - If all the F bits are 1, a carry then propagates to the exponent + // bits, which then creates the minimum value with the next exponent + // value. Note that we won't have the case where exponents are all 1, + // since that's either a NaN (handled in the other if condition) or inf + // (handled in case 1). + // + // 5. L = 0, R = 1, any of T is 1: + // Expect: round up, this is greater than half. + // + // Algorithm: + // - Rounding bias: 0x7fff + 0 = 0x7fff + // - Adding rounding bias to input creates a carry from sticky bits, + // sets rounding bit to 0, then create another carry. + // - The second carry sets L to 1. + // + // Examples: + // + // Exact half value that is already even: + // Input: + // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) + // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT + // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1000000000000000 + // + // This falls into case 3. We truncate the rest of 16 bits and no + // carry is created into F and L: + // + // Output: + // Sign | Exp (8 bit) | Frac (first 7 bit) + // S E E E E E E E E F F F F F F L + // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 + // + // Exact half value, round to next even number: + // Input: + // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) + // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT + // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1000000000000000 + // + // This falls into case 4. We create a carry from R and T, + // which then propagates into L and F: + // + // Output: + // Sign | Exp (8 bit) | Frac (first 7 bit) + // S E E E E E E E E F F F F F F L + // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 + // + // + // Max denormal value round to min normal value: + // Input: + // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) + // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT + // 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1111111111111111 + // + // This falls into case 4. We create a carry from R and T, + // propagate into L and F, which then propagates into exponent + // bits: + // + // Output: + // Sign | Exp (8 bit) | Frac (first 7 bit) + // S E E E E E E E E F F F F F F L + // 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 + // + // Max normal value round to Inf: + // Input: + // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) + // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT + // 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1111111111111111 + // + // This falls into case 4. We create a carry from R and T, + // propagate into L and F, which then propagates into exponent + // bits: + // + // Sign | Exp (8 bit) | Frac (first 7 bit) + // S E E E E E E E E F F F F F F L + // 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 + + // At this point, ff must be either a normal float, or +/-infinity. + output = float_to_bfloat16_rtne(ff); + } + return output; +#endif +} + +// float_to_bfloat16_rtne template specialization that assumes that its function +// argument (ff) is either a normal floating point number, or +/-infinity, or +// zero. Used to improve the runtime performance of conversion from an integer +// type to bfloat16. +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __bfloat16_raw float_to_bfloat16_rtne(float ff) { +#if defined(EIGEN_USE_HIP_BF16) + return __bfloat16_raw(__bfloat16_raw::round_to_bfloat16(ff)); +#else + numext::uint32_t input = numext::bit_cast(ff); + __bfloat16_raw output; + + // Least significant bit of resulting bfloat. + numext::uint32_t lsb = (input >> 16) & 1; + numext::uint32_t rounding_bias = 0x7fff + lsb; + input += rounding_bias; + output.value = static_cast(input >> 16); + return output; +#endif +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float bfloat16_to_float(__bfloat16_raw h) { +#if defined(EIGEN_USE_HIP_BF16) + return static_cast(h); +#else + return numext::bit_cast(static_cast(h.value) << 16); +#endif +} + +// --- standard functions --- + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const bfloat16& a) { + EIGEN_USING_STD(isinf); +#if defined(EIGEN_USE_HIP_BF16) + return (isinf)(a); // Uses HIP hip_bfloat16 isinf operator +#else + return (isinf)(float(a)); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const bfloat16& a) { + EIGEN_USING_STD(isnan); +#if defined(EIGEN_USE_HIP_BF16) + return (isnan)(a); // Uses HIP hip_bfloat16 isnan operator +#else + return (isnan)(float(a)); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const bfloat16& a) { + return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a)); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 abs(const bfloat16& a) { + numext::uint16_t x = numext::bit_cast(a) & 0x7FFF; + return numext::bit_cast(x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 exp(const bfloat16& a) { + return bfloat16(::expf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 expm1(const bfloat16& a) { + return bfloat16(numext::expm1(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log(const bfloat16& a) { + return bfloat16(::logf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log1p(const bfloat16& a) { + return bfloat16(numext::log1p(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log10(const bfloat16& a) { + return bfloat16(::log10f(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log2(const bfloat16& a) { + return bfloat16(static_cast(EIGEN_LOG2E) * ::logf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 sqrt(const bfloat16& a) { + return bfloat16(::sqrtf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16& a, const bfloat16& b) { + return bfloat16(::powf(float(a), float(b))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 atan2(const bfloat16& a, const bfloat16& b) { + return bfloat16(::atan2f(float(a), float(b))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 sin(const bfloat16& a) { + return bfloat16(::sinf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 cos(const bfloat16& a) { + return bfloat16(::cosf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 tan(const bfloat16& a) { + return bfloat16(::tanf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 asin(const bfloat16& a) { + return bfloat16(::asinf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 acos(const bfloat16& a) { + return bfloat16(::acosf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 atan(const bfloat16& a) { + return bfloat16(::atanf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 sinh(const bfloat16& a) { + return bfloat16(::sinhf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 cosh(const bfloat16& a) { + return bfloat16(::coshf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 tanh(const bfloat16& a) { + return bfloat16(::tanhf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 asinh(const bfloat16& a) { + return bfloat16(::asinhf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 acosh(const bfloat16& a) { + return bfloat16(::acoshf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 atanh(const bfloat16& a) { + return bfloat16(::atanhf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 floor(const bfloat16& a) { + return bfloat16(::floorf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 ceil(const bfloat16& a) { + return bfloat16(::ceilf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 rint(const bfloat16& a) { + return bfloat16(::rintf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 round(const bfloat16& a) { + return bfloat16(::roundf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 fmod(const bfloat16& a, const bfloat16& b) { + return bfloat16(::fmodf(float(a), float(b))); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 (min)(const bfloat16& a, const bfloat16& b) { + const float f1 = static_cast(a); + const float f2 = static_cast(b); + return f2 < f1 ? b : a; +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 (max)(const bfloat16& a, const bfloat16& b) { + const float f1 = static_cast(a); + const float f2 = static_cast(b); + return f1 < f2 ? b : a; +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 fmin(const bfloat16& a, const bfloat16& b) { + const float f1 = static_cast(a); + const float f2 = static_cast(b); + return bfloat16(::fminf(f1, f2)); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 fmax(const bfloat16& a, const bfloat16& b) { + const float f1 = static_cast(a); + const float f2 = static_cast(b); + return bfloat16(::fmaxf(f1, f2)); +} + +#ifndef EIGEN_NO_IO +EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const bfloat16& v) { + os << static_cast(v); + return os; +} +#endif + +} // namespace bfloat16_impl + +namespace internal { + +template<> +struct random_default_impl +{ + static inline bfloat16 run(const bfloat16& x, const bfloat16& y) + { + return x + (y-x) * bfloat16(float(std::rand()) / float(RAND_MAX)); + } + static inline bfloat16 run() + { + return run(bfloat16(-1.f), bfloat16(1.f)); + } +}; + +template<> struct is_arithmetic { enum { value = true }; }; + +} // namespace internal + +template<> struct NumTraits + : GenericNumTraits +{ + enum { + IsSigned = true, + IsInteger = false, + IsComplex = false, + RequireInitialization = false + }; + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::bfloat16 epsilon() { + return bfloat16_impl::raw_uint16_to_bfloat16(0x3c00); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::bfloat16 dummy_precision() { + return bfloat16_impl::raw_uint16_to_bfloat16(0x3D4D); // bfloat16(5e-2f); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::bfloat16 highest() { + return bfloat16_impl::raw_uint16_to_bfloat16(0x7F7F); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::bfloat16 lowest() { + return bfloat16_impl::raw_uint16_to_bfloat16(0xFF7F); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::bfloat16 infinity() { + return bfloat16_impl::raw_uint16_to_bfloat16(0x7f80); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::bfloat16 quiet_NaN() { + return bfloat16_impl::raw_uint16_to_bfloat16(0x7fc0); + } +}; + +} // namespace Eigen + + +#if defined(EIGEN_HAS_HIP_BF16) + #pragma pop_macro("EIGEN_CONSTEXPR") +#endif + +namespace Eigen { +namespace numext { + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool (isnan)(const Eigen::bfloat16& h) { + return (bfloat16_impl::isnan)(h); +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool (isinf)(const Eigen::bfloat16& h) { + return (bfloat16_impl::isinf)(h); +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool (isfinite)(const Eigen::bfloat16& h) { + return (bfloat16_impl::isfinite)(h); +} + +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bit_cast(const uint16_t& src) { + return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(src); +} + +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast(const Eigen::bfloat16& src) { + return Eigen::bfloat16_impl::raw_bfloat16_as_uint16(src); +} + +} // namespace numext +} // namespace Eigen + +#if EIGEN_HAS_STD_HASH +namespace std { +template <> +struct hash { + EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::bfloat16& a) const { + return static_cast(Eigen::numext::bit_cast(a)); + } +}; +} // namespace std +#endif + +// Add the missing shfl* intrinsics. +// The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300. +// CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__)) +// +// HIP and CUDA prior to SDK 9.0 define +// __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float +// CUDA since 9.0 deprecates those and instead defines +// __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync, +// with native support for __half and __nv_bfloat16 +// +// Note that the following are __device__ - only functions. +#if defined(EIGEN_HIPCC) + +#if defined(EIGEN_HAS_HIP_BF16) + +__device__ EIGEN_STRONG_INLINE Eigen::bfloat16 __shfl(Eigen::bfloat16 var, int srcLane, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl(ivar, srcLane, width))); +} + +__device__ EIGEN_STRONG_INLINE Eigen::bfloat16 __shfl_up(Eigen::bfloat16 var, unsigned int delta, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl_up(ivar, delta, width))); +} + +__device__ EIGEN_STRONG_INLINE Eigen::bfloat16 __shfl_down(Eigen::bfloat16 var, unsigned int delta, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl_down(ivar, delta, width))); +} + +__device__ EIGEN_STRONG_INLINE Eigen::bfloat16 __shfl_xor(Eigen::bfloat16 var, int laneMask, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl_xor(ivar, laneMask, width))); +} + +#endif // HIP + +#endif // __shfl* + +#if defined(EIGEN_HIPCC) +EIGEN_STRONG_INLINE __device__ Eigen::bfloat16 __ldg(const Eigen::bfloat16* ptr) { + return Eigen::bfloat16_impl::raw_uint16_to_bfloat16(__ldg(Eigen::numext::bit_cast(ptr))); +} +#endif // __ldg + +#endif // EIGEN_BFLOAT16_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/ConjHelper.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/ConjHelper.h new file mode 100644 index 0000000..6b5afe3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/ConjHelper.h @@ -0,0 +1,119 @@ + +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ARCH_CONJ_HELPER_H +#define EIGEN_ARCH_CONJ_HELPER_H + +#define EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(PACKET_CPLX, PACKET_REAL) \ + template <> \ + struct conj_helper { \ + EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_REAL& x, \ + const PACKET_CPLX& y, \ + const PACKET_CPLX& c) const { \ + return padd(c, this->pmul(x, y)); \ + } \ + EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_REAL& x, \ + const PACKET_CPLX& y) const { \ + return PACKET_CPLX(Eigen::internal::pmul(x, y.v)); \ + } \ + }; \ + \ + template <> \ + struct conj_helper { \ + EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_CPLX& x, \ + const PACKET_REAL& y, \ + const PACKET_CPLX& c) const { \ + return padd(c, this->pmul(x, y)); \ + } \ + EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_CPLX& x, \ + const PACKET_REAL& y) const { \ + return PACKET_CPLX(Eigen::internal::pmul(x.v, y)); \ + } \ + }; + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +template struct conj_if; + +template<> struct conj_if { + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const { return numext::conj(x); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T pconj(const T& x) const { return internal::pconj(x); } +}; + +template<> struct conj_if { + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& operator()(const T& x) const { return x; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& pconj(const T& x) const { return x; } +}; + +// Generic Implementation, assume scalars since the packet-version is +// specialized below. +template +struct conj_helper { + typedef typename ScalarBinaryOpTraits::ReturnType ResultType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType + pmadd(const LhsType& x, const RhsType& y, const ResultType& c) const + { return this->pmul(x, y) + c; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType + pmul(const LhsType& x, const RhsType& y) const + { return conj_if()(x) * conj_if()(y); } +}; + +template +struct conj_helper { + typedef typename ScalarBinaryOpTraits::ReturnType ResultType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType + pmadd(const LhsScalar& x, const RhsScalar& y, const ResultType& c) const + { return this->pmul(x, y) + c; } + + // We save a conjuation by using the identity conj(a)*conj(b) = conj(a*b). + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType + pmul(const LhsScalar& x, const RhsScalar& y) const + { return numext::conj(x * y); } +}; + +// Implementation with equal type, use packet operations. +template +struct conj_helper +{ + typedef Packet ResultType; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmadd(const Packet& x, const Packet& y, const Packet& c) const + { return Eigen::internal::pmadd(conj_if().pconj(x), conj_if().pconj(y), c); } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmul(const Packet& x, const Packet& y) const + { return Eigen::internal::pmul(conj_if().pconj(x), conj_if().pconj(y)); } +}; + +template +struct conj_helper +{ + typedef Packet ResultType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmadd(const Packet& x, const Packet& y, const Packet& c) const + { return Eigen::internal::pmadd(pconj(x), pconj(y), c); } + // We save a conjuation by using the identity conj(a)*conj(b) = conj(a*b). + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmul(const Packet& x, const Packet& y) const + { return pconj(Eigen::internal::pmul(x, y)); } +}; + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_ARCH_CONJ_HELPER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h new file mode 100644 index 0000000..2739d9a --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h @@ -0,0 +1,2210 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007 Julien Pommier +// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) +// Copyright (C) 2009-2019 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* The exp and log functions of this file initially come from + * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ + */ + +#ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H +#define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +// Creates a Scalar integer type with same bit-width. +template struct make_integer; +template<> struct make_integer { typedef numext::int32_t type; }; +template<> struct make_integer { typedef numext::int64_t type; }; +template<> struct make_integer { typedef numext::int16_t type; }; +template<> struct make_integer { typedef numext::int16_t type; }; + +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet pfrexp_generic_get_biased_exponent(const Packet& a) { + typedef typename unpacket_traits::type Scalar; + typedef typename unpacket_traits::integer_packet PacketI; + static constexpr int mantissa_bits = numext::numeric_limits::digits - 1; + return pcast(plogical_shift_right(preinterpret(pabs(a)))); +} + +// Safely applies frexp, correctly handles denormals. +// Assumes IEEE floating point format. +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet pfrexp_generic(const Packet& a, Packet& exponent) { + typedef typename unpacket_traits::type Scalar; + typedef typename make_unsigned::type>::type ScalarUI; + static constexpr int + TotalBits = sizeof(Scalar) * CHAR_BIT, + MantissaBits = numext::numeric_limits::digits - 1, + ExponentBits = TotalBits - MantissaBits - 1; + + EIGEN_CONSTEXPR ScalarUI scalar_sign_mantissa_mask = + ~(((ScalarUI(1) << ExponentBits) - ScalarUI(1)) << MantissaBits); // ~0x7f800000 + const Packet sign_mantissa_mask = pset1frombits(static_cast(scalar_sign_mantissa_mask)); + const Packet half = pset1(Scalar(0.5)); + const Packet zero = pzero(a); + const Packet normal_min = pset1((numext::numeric_limits::min)()); // Minimum normal value, 2^-126 + + // To handle denormals, normalize by multiplying by 2^(int(MantissaBits)+1). + const Packet is_denormal = pcmp_lt(pabs(a), normal_min); + EIGEN_CONSTEXPR ScalarUI scalar_normalization_offset = ScalarUI(MantissaBits + 1); // 24 + // The following cannot be constexpr because bfloat16(uint16_t) is not constexpr. + const Scalar scalar_normalization_factor = Scalar(ScalarUI(1) << int(scalar_normalization_offset)); // 2^24 + const Packet normalization_factor = pset1(scalar_normalization_factor); + const Packet normalized_a = pselect(is_denormal, pmul(a, normalization_factor), a); + + // Determine exponent offset: -126 if normal, -126-24 if denormal + const Scalar scalar_exponent_offset = -Scalar((ScalarUI(1)<<(ExponentBits-1)) - ScalarUI(2)); // -126 + Packet exponent_offset = pset1(scalar_exponent_offset); + const Packet normalization_offset = pset1(-Scalar(scalar_normalization_offset)); // -24 + exponent_offset = pselect(is_denormal, padd(exponent_offset, normalization_offset), exponent_offset); + + // Determine exponent and mantissa from normalized_a. + exponent = pfrexp_generic_get_biased_exponent(normalized_a); + // Zero, Inf and NaN return 'a' unmodified, exponent is zero + // (technically the exponent is unspecified for inf/NaN, but GCC/Clang set it to zero) + const Scalar scalar_non_finite_exponent = Scalar((ScalarUI(1) << ExponentBits) - ScalarUI(1)); // 255 + const Packet non_finite_exponent = pset1(scalar_non_finite_exponent); + const Packet is_zero_or_not_finite = por(pcmp_eq(a, zero), pcmp_eq(exponent, non_finite_exponent)); + const Packet m = pselect(is_zero_or_not_finite, a, por(pand(normalized_a, sign_mantissa_mask), half)); + exponent = pselect(is_zero_or_not_finite, zero, padd(exponent, exponent_offset)); + return m; +} + +// Safely applies ldexp, correctly handles overflows, underflows and denormals. +// Assumes IEEE floating point format. +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet pldexp_generic(const Packet& a, const Packet& exponent) { + // We want to return a * 2^exponent, allowing for all possible integer + // exponents without overflowing or underflowing in intermediate + // computations. + // + // Since 'a' and the output can be denormal, the maximum range of 'exponent' + // to consider for a float is: + // -255-23 -> 255+23 + // Below -278 any finite float 'a' will become zero, and above +278 any + // finite float will become inf, including when 'a' is the smallest possible + // denormal. + // + // Unfortunately, 2^(278) cannot be represented using either one or two + // finite normal floats, so we must split the scale factor into at least + // three parts. It turns out to be faster to split 'exponent' into four + // factors, since [exponent>>2] is much faster to compute that [exponent/3]. + // + // Set e = min(max(exponent, -278), 278); + // b = floor(e/4); + // out = ((((a * 2^(b)) * 2^(b)) * 2^(b)) * 2^(e-3*b)) + // + // This will avoid any intermediate overflows and correctly handle 0, inf, + // NaN cases. + typedef typename unpacket_traits::integer_packet PacketI; + typedef typename unpacket_traits::type Scalar; + typedef typename unpacket_traits::type ScalarI; + static constexpr int + TotalBits = sizeof(Scalar) * CHAR_BIT, + MantissaBits = numext::numeric_limits::digits - 1, + ExponentBits = TotalBits - MantissaBits - 1; + + const Packet max_exponent = pset1(Scalar((ScalarI(1)<((ScalarI(1)<<(ExponentBits-1)) - ScalarI(1)); // 127 + const PacketI e = pcast(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent)); + PacketI b = parithmetic_shift_right<2>(e); // floor(e/4); + Packet c = preinterpret(plogical_shift_left(padd(b, bias))); // 2^b + Packet out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) + b = psub(psub(psub(e, b), b), b); // e - 3b + c = preinterpret(plogical_shift_left(padd(b, bias))); // 2^(e-3*b) + out = pmul(out, c); + return out; +} + +// Explicitly multiplies +// a * (2^e) +// clamping e to the range +// [NumTraits::min_exponent()-2, NumTraits::max_exponent()] +// +// This is approx 7x faster than pldexp_impl, but will prematurely over/underflow +// if 2^e doesn't fit into a normal floating-point Scalar. +// +// Assumes IEEE floating point format +template +struct pldexp_fast_impl { + typedef typename unpacket_traits::integer_packet PacketI; + typedef typename unpacket_traits::type Scalar; + typedef typename unpacket_traits::type ScalarI; + static constexpr int + TotalBits = sizeof(Scalar) * CHAR_BIT, + MantissaBits = numext::numeric_limits::digits - 1, + ExponentBits = TotalBits - MantissaBits - 1; + + static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC + Packet run(const Packet& a, const Packet& exponent) { + const Packet bias = pset1(Scalar((ScalarI(1)<<(ExponentBits-1)) - ScalarI(1))); // 127 + const Packet limit = pset1(Scalar((ScalarI(1)<(pmin(pmax(padd(exponent, bias), pzero(limit)), limit)); // exponent + 127 + // return a * (2^e) + return pmul(a, preinterpret(plogical_shift_left(e))); + } +}; + +// Natural or base 2 logarithm. +// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) +// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can +// be easily approximated by a polynomial centered on m=1 for stability. +// TODO(gonnet): Further reduce the interval allowing for lower-degree +// polynomial interpolants -> ... -> profit! +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog_impl_float(const Packet _x) +{ + const Packet cst_1 = pset1(1.0f); + const Packet cst_minus_inf = pset1frombits(static_cast(0xff800000u)); + const Packet cst_pos_inf = pset1frombits(static_cast(0x7f800000u)); + + const Packet cst_cephes_SQRTHF = pset1(0.707106781186547524f); + Packet e, x; + // extract significant in the range [0.5,1) and exponent + x = pfrexp(_x,e); + + // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) + // and shift by -1. The values are then centered around 0, which improves + // the stability of the polynomial evaluation. + // if( x < SQRTHF ) { + // e -= 1; + // x = x + x - 1.0; + // } else { x = x - 1.0; } + Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); + Packet tmp = pand(x, mask); + x = psub(x, cst_1); + e = psub(e, pand(cst_1, mask)); + x = padd(x, tmp); + + // Polynomial coefficients for rational (3,3) r(x) = p(x)/q(x) + // approximating log(1+x) on [sqrt(0.5)-1;sqrt(2)-1]. + const Packet cst_p1 = pset1(1.0000000190281136f); + const Packet cst_p2 = pset1(1.0000000190281063f); + const Packet cst_p3 = pset1(0.18256296349849254f); + const Packet cst_q1 = pset1(1.4999999999999927f); + const Packet cst_q2 = pset1(0.59923249590823520f); + const Packet cst_q3 = pset1(0.049616247954120038f); + + Packet p = pmadd(x, cst_p3, cst_p2); + p = pmadd(x, p, cst_p1); + p = pmul(x, p); + Packet q = pmadd(x, cst_q3, cst_q2); + q = pmadd(x, q, cst_q1); + q = pmadd(x, q, cst_1); + x = pdiv(p, q); + + // Add the logarithm of the exponent back to the result of the interpolation. + if (base2) { + const Packet cst_log2e = pset1(static_cast(EIGEN_LOG2E)); + x = pmadd(x, cst_log2e, e); + } else { + const Packet cst_ln2 = pset1(static_cast(EIGEN_LN2)); + x = pmadd(e, cst_ln2, x); + } + + Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); + Packet iszero_mask = pcmp_eq(_x,pzero(_x)); + Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); + // Filter out invalid inputs, i.e.: + // - negative arg will be NAN + // - 0 will be -INF + // - +INF will be +INF + return pselect(iszero_mask, cst_minus_inf, + por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog_float(const Packet _x) +{ + return plog_impl_float(_x); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog2_float(const Packet _x) +{ + return plog_impl_float(_x); +} + +/* Returns the base e (2.718...) or base 2 logarithm of x. + * The argument is separated into its exponent and fractional parts. + * The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)], + * is approximated by + * + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). + * + * for more detail see: http://www.netlib.org/cephes/ + */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog_impl_double(const Packet _x) +{ + Packet x = _x; + + const Packet cst_1 = pset1(1.0); + const Packet cst_neg_half = pset1(-0.5); + const Packet cst_minus_inf = pset1frombits( static_cast(0xfff0000000000000ull)); + const Packet cst_pos_inf = pset1frombits( static_cast(0x7ff0000000000000ull)); + + + // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) + // 1/sqrt(2) <= x < sqrt(2) + const Packet cst_cephes_SQRTHF = pset1(0.70710678118654752440E0); + const Packet cst_cephes_log_p0 = pset1(1.01875663804580931796E-4); + const Packet cst_cephes_log_p1 = pset1(4.97494994976747001425E-1); + const Packet cst_cephes_log_p2 = pset1(4.70579119878881725854E0); + const Packet cst_cephes_log_p3 = pset1(1.44989225341610930846E1); + const Packet cst_cephes_log_p4 = pset1(1.79368678507819816313E1); + const Packet cst_cephes_log_p5 = pset1(7.70838733755885391666E0); + + const Packet cst_cephes_log_q0 = pset1(1.0); + const Packet cst_cephes_log_q1 = pset1(1.12873587189167450590E1); + const Packet cst_cephes_log_q2 = pset1(4.52279145837532221105E1); + const Packet cst_cephes_log_q3 = pset1(8.29875266912776603211E1); + const Packet cst_cephes_log_q4 = pset1(7.11544750618563894466E1); + const Packet cst_cephes_log_q5 = pset1(2.31251620126765340583E1); + + Packet e; + // extract significant in the range [0.5,1) and exponent + x = pfrexp(x,e); + + // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) + // and shift by -1. The values are then centered around 0, which improves + // the stability of the polynomial evaluation. + // if( x < SQRTHF ) { + // e -= 1; + // x = x + x - 1.0; + // } else { x = x - 1.0; } + Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); + Packet tmp = pand(x, mask); + x = psub(x, cst_1); + e = psub(e, pand(cst_1, mask)); + x = padd(x, tmp); + + Packet x2 = pmul(x, x); + Packet x3 = pmul(x2, x); + + // Evaluate the polynomial approximant , probably to improve instruction-level parallelism. + // y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) ); + Packet y, y1, y_; + y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); + y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); + y = pmadd(y, x, cst_cephes_log_p2); + y1 = pmadd(y1, x, cst_cephes_log_p5); + y_ = pmadd(y, x3, y1); + + y = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1); + y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4); + y = pmadd(y, x, cst_cephes_log_q2); + y1 = pmadd(y1, x, cst_cephes_log_q5); + y = pmadd(y, x3, y1); + + y_ = pmul(y_, x3); + y = pdiv(y_, y); + + y = pmadd(cst_neg_half, x2, y); + x = padd(x, y); + + // Add the logarithm of the exponent back to the result of the interpolation. + if (base2) { + const Packet cst_log2e = pset1(static_cast(EIGEN_LOG2E)); + x = pmadd(x, cst_log2e, e); + } else { + const Packet cst_ln2 = pset1(static_cast(EIGEN_LN2)); + x = pmadd(e, cst_ln2, x); + } + + Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); + Packet iszero_mask = pcmp_eq(_x,pzero(_x)); + Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); + // Filter out invalid inputs, i.e.: + // - negative arg will be NAN + // - 0 will be -INF + // - +INF will be +INF + return pselect(iszero_mask, cst_minus_inf, + por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog_double(const Packet _x) +{ + return plog_impl_double(_x); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog2_double(const Packet _x) +{ + return plog_impl_double(_x); +} + +/** \internal \returns log(1 + x) computed using W. Kahan's formula. + See: http://www.plunk.org/~hatch/rightway.php + */ +template +Packet generic_plog1p(const Packet& x) +{ + typedef typename unpacket_traits::type ScalarType; + const Packet one = pset1(ScalarType(1)); + Packet xp1 = padd(x, one); + Packet small_mask = pcmp_eq(xp1, one); + Packet log1 = plog(xp1); + Packet inf_mask = pcmp_eq(xp1, log1); + Packet log_large = pmul(x, pdiv(log1, psub(xp1, one))); + return pselect(por(small_mask, inf_mask), x, log_large); +} + +/** \internal \returns exp(x)-1 computed using W. Kahan's formula. + See: http://www.plunk.org/~hatch/rightway.php + */ +template +Packet generic_expm1(const Packet& x) +{ + typedef typename unpacket_traits::type ScalarType; + const Packet one = pset1(ScalarType(1)); + const Packet neg_one = pset1(ScalarType(-1)); + Packet u = pexp(x); + Packet one_mask = pcmp_eq(u, one); + Packet u_minus_one = psub(u, one); + Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one); + Packet logu = plog(u); + // The following comparison is to catch the case where + // exp(x) = +inf. It is written in this way to avoid having + // to form the constant +inf, which depends on the packet + // type. + Packet pos_inf_mask = pcmp_eq(logu, u); + Packet expm1 = pmul(u_minus_one, pdiv(x, logu)); + expm1 = pselect(pos_inf_mask, u, expm1); + return pselect(one_mask, + x, + pselect(neg_one_mask, + neg_one, + expm1)); +} + + +// Exponential function. Works by writing "x = m*log(2) + r" where +// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then +// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). +// exp(r) is computed using a 6th order minimax polynomial approximation. +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pexp_float(const Packet _x) +{ + const Packet cst_zero = pset1(0.0f); + const Packet cst_one = pset1(1.0f); + const Packet cst_half = pset1(0.5f); + const Packet cst_exp_hi = pset1(88.723f); + const Packet cst_exp_lo = pset1(-104.f); + + const Packet cst_cephes_LOG2EF = pset1(1.44269504088896341f); + const Packet cst_p2 = pset1(0.49999988079071044921875f); + const Packet cst_p3 = pset1(0.16666518151760101318359375f); + const Packet cst_p4 = pset1(4.166965186595916748046875e-2f); + const Packet cst_p5 = pset1(8.36894474923610687255859375e-3f); + const Packet cst_p6 = pset1(1.37449637986719608306884765625e-3f); + + // Clamp x. + Packet zero_mask = pcmp_lt(_x, cst_exp_lo); + Packet x = pmin(_x, cst_exp_hi); + + // Express exp(x) as exp(m*ln(2) + r), start by extracting + // m = floor(x/ln(2) + 0.5). + Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); + + // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is + // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating + // truncation errors. + const Packet cst_cephes_exp_C1 = pset1(-0.693359375f); + const Packet cst_cephes_exp_C2 = pset1(2.12194440e-4f); + Packet r = pmadd(m, cst_cephes_exp_C1, x); + r = pmadd(m, cst_cephes_exp_C2, r); + + // Evaluate the 6th order polynomial approximation to exp(r) + // with r in the interval [-ln(2)/2;ln(2)/2]. + const Packet r2 = pmul(r, r); + Packet p_even = pmadd(r2, cst_p6, cst_p4); + const Packet p_odd = pmadd(r2, cst_p5, cst_p3); + p_even = pmadd(r2, p_even, cst_p2); + const Packet p_low = padd(r, cst_one); + Packet y = pmadd(r, p_odd, p_even); + y = pmadd(r2, y, p_low); + + // Return 2^m * exp(r). + // TODO: replace pldexp with faster implementation since y in [-1, 1). + return pselect(zero_mask, cst_zero, pmax(pldexp(y,m), _x)); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pexp_double(const Packet _x) +{ + Packet x = _x; + const Packet cst_zero = pset1(0.0); + const Packet cst_1 = pset1(1.0); + const Packet cst_2 = pset1(2.0); + const Packet cst_half = pset1(0.5); + + const Packet cst_exp_hi = pset1(709.784); + const Packet cst_exp_lo = pset1(-709.784); + + const Packet cst_cephes_LOG2EF = pset1(1.4426950408889634073599); + const Packet cst_cephes_exp_p0 = pset1(1.26177193074810590878e-4); + const Packet cst_cephes_exp_p1 = pset1(3.02994407707441961300e-2); + const Packet cst_cephes_exp_p2 = pset1(9.99999999999999999910e-1); + const Packet cst_cephes_exp_q0 = pset1(3.00198505138664455042e-6); + const Packet cst_cephes_exp_q1 = pset1(2.52448340349684104192e-3); + const Packet cst_cephes_exp_q2 = pset1(2.27265548208155028766e-1); + const Packet cst_cephes_exp_q3 = pset1(2.00000000000000000009e0); + const Packet cst_cephes_exp_C1 = pset1(0.693145751953125); + const Packet cst_cephes_exp_C2 = pset1(1.42860682030941723212e-6); + + Packet tmp, fx; + + // clamp x + Packet zero_mask = pcmp_lt(_x, cst_exp_lo); + x = pmin(x, cst_exp_hi); + // Express exp(x) as exp(g + n*log(2)). + fx = pmadd(cst_cephes_LOG2EF, x, cst_half); + + // Get the integer modulus of log(2), i.e. the "n" described above. + fx = pfloor(fx); + + // Get the remainder modulo log(2), i.e. the "g" described above. Subtract + // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last + // digits right. + tmp = pmul(fx, cst_cephes_exp_C1); + Packet z = pmul(fx, cst_cephes_exp_C2); + x = psub(x, tmp); + x = psub(x, z); + + Packet x2 = pmul(x, x); + + // Evaluate the numerator polynomial of the rational interpolant. + Packet px = cst_cephes_exp_p0; + px = pmadd(px, x2, cst_cephes_exp_p1); + px = pmadd(px, x2, cst_cephes_exp_p2); + px = pmul(px, x); + + // Evaluate the denominator polynomial of the rational interpolant. + Packet qx = cst_cephes_exp_q0; + qx = pmadd(qx, x2, cst_cephes_exp_q1); + qx = pmadd(qx, x2, cst_cephes_exp_q2); + qx = pmadd(qx, x2, cst_cephes_exp_q3); + + // I don't really get this bit, copied from the SSE2 routines, so... + // TODO(gonnet): Figure out what is going on here, perhaps find a better + // rational interpolant? + x = pdiv(px, psub(qx, px)); + x = pmadd(cst_2, x, cst_1); + + // Construct the result 2^n * exp(g) = e * x. The max is used to catch + // non-finite values in the input. + // TODO: replace pldexp with faster implementation since x in [-1, 1). + return pselect(zero_mask, cst_zero, pmax(pldexp(x,fx), _x)); +} + +// The following code is inspired by the following stack-overflow answer: +// https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751 +// It has been largely optimized: +// - By-pass calls to frexp. +// - Aligned loads of required 96 bits of 2/pi. This is accomplished by +// (1) balancing the mantissa and exponent to the required bits of 2/pi are +// aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi. +// - Avoid a branch in rounding and extraction of the remaining fractional part. +// Overall, I measured a speed up higher than x2 on x86-64. +inline float trig_reduce_huge (float xf, Eigen::numext::int32_t *quadrant) +{ + using Eigen::numext::int32_t; + using Eigen::numext::uint32_t; + using Eigen::numext::int64_t; + using Eigen::numext::uint64_t; + + const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62 + const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point format + + // 192 bits of 2/pi for Payne-Hanek reduction + // Bits are introduced by packet of 8 to enable aligned reads. + static const uint32_t two_over_pi [] = + { + 0x00000028, 0x000028be, 0x0028be60, 0x28be60db, + 0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a, + 0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4, + 0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770, + 0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566, + 0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410, + 0x10e41000, 0xe4100000 + }; + + uint32_t xi = numext::bit_cast(xf); + // Below, -118 = -126 + 8. + // -126 is to get the exponent, + // +8 is to enable alignment of 2/pi's bits on 8 bits. + // This is possible because the fractional part of x as only 24 meaningful bits. + uint32_t e = (xi >> 23) - 118; + // Extract the mantissa and shift it to align it wrt the exponent + xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7); + + uint32_t i = e >> 3; + uint32_t twoopi_1 = two_over_pi[i-1]; + uint32_t twoopi_2 = two_over_pi[i+3]; + uint32_t twoopi_3 = two_over_pi[i+7]; + + // Compute x * 2/pi in 2.62-bit fixed-point format. + uint64_t p; + p = uint64_t(xi) * twoopi_3; + p = uint64_t(xi) * twoopi_2 + (p >> 32); + p = (uint64_t(xi * twoopi_1) << 32) + p; + + // Round to nearest: add 0.5 and extract integral part. + uint64_t q = (p + zero_dot_five) >> 62; + *quadrant = int(q); + // Now it remains to compute "r = x - q*pi/2" with high accuracy, + // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as: + // r = (p-q)*pi/2, + // where the product can be be carried out with sufficient accuracy using double precision. + p -= q<<62; + return float(double(int64_t(p)) * pio2_62); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +#if EIGEN_COMP_GNUC_STRICT +__attribute__((optimize("-fno-unsafe-math-optimizations"))) +#endif +Packet psincos_float(const Packet& _x) +{ + typedef typename unpacket_traits::integer_packet PacketI; + + const Packet cst_2oPI = pset1(0.636619746685028076171875f); // 2/PI + const Packet cst_rounding_magic = pset1(12582912); // 2^23 for rounding + const PacketI csti_1 = pset1(1); + const Packet cst_sign_mask = pset1frombits(static_cast(0x80000000u)); + + Packet x = pabs(_x); + + // Scale x by 2/Pi to find x's octant. + Packet y = pmul(x, cst_2oPI); + + // Rounding trick to find nearest integer: + Packet y_round = padd(y, cst_rounding_magic); + EIGEN_OPTIMIZATION_BARRIER(y_round) + PacketI y_int = preinterpret(y_round); // last 23 digits represent integer (if abs(x)<2^24) + y = psub(y_round, cst_rounding_magic); // nearest integer to x * (2/pi) + + // Subtract y * Pi/2 to reduce x to the interval -Pi/4 <= x <= +Pi/4 + // using "Extended precision modular arithmetic" + #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) + // This version requires true FMA for high accuracy + // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08): + const float huge_th = ComputeSine ? 117435.992f : 71476.0625f; + x = pmadd(y, pset1(-1.57079601287841796875f), x); + x = pmadd(y, pset1(-3.1391647326017846353352069854736328125e-07f), x); + x = pmadd(y, pset1(-5.390302529957764765544681040410068817436695098876953125e-15f), x); + #else + // Without true FMA, the previous set of coefficients maintain 1ULP accuracy + // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7. + // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs. + + // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively. + // and 2 ULP up to: + const float huge_th = ComputeSine ? 25966.f : 18838.f; + x = pmadd(y, pset1(-1.5703125), x); // = 0xbfc90000 + EIGEN_OPTIMIZATION_BARRIER(x) + x = pmadd(y, pset1(-0.000483989715576171875), x); // = 0xb9fdc000 + EIGEN_OPTIMIZATION_BARRIER(x) + x = pmadd(y, pset1(1.62865035235881805419921875e-07), x); // = 0x342ee000 + x = pmadd(y, pset1(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee + + // For the record, the following set of coefficients maintain 2ULP up + // to a slightly larger range: + // const float huge_th = ComputeSine ? 51981.f : 39086.125f; + // but it slightly fails to maintain 1ULP for two values of sin below pi. + // x = pmadd(y, pset1(-3.140625/2.), x); + // x = pmadd(y, pset1(-0.00048351287841796875), x); + // x = pmadd(y, pset1(-3.13855707645416259765625e-07), x); + // x = pmadd(y, pset1(-6.0771006282767103812147979624569416046142578125e-11), x); + + // For the record, with only 3 iterations it is possible to maintain + // 1 ULP up to 3PI (maybe more) and 2ULP up to 255. + // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee + #endif + + if(predux_any(pcmp_le(pset1(huge_th),pabs(_x)))) + { + const int PacketSize = unpacket_traits::size; + EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize]; + EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize]; + EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Eigen::numext::int32_t y_int2[PacketSize]; + pstoreu(vals, pabs(_x)); + pstoreu(x_cpy, x); + pstoreu(y_int2, y_int); + for(int k=0; k=huge_th && (numext::isfinite)(val)) + x_cpy[k] = trig_reduce_huge(val,&y_int2[k]); + } + x = ploadu(x_cpy); + y_int = ploadu(y_int2); + } + + // Compute the sign to apply to the polynomial. + // sin: sign = second_bit(y_int) xor signbit(_x) + // cos: sign = second_bit(y_int+1) + Packet sign_bit = ComputeSine ? pxor(_x, preinterpret(plogical_shift_left<30>(y_int))) + : preinterpret(plogical_shift_left<30>(padd(y_int,csti_1))); + sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit + + // Get the polynomial selection mask from the second bit of y_int + // We'll calculate both (sin and cos) polynomials and then select from the two. + Packet poly_mask = preinterpret(pcmp_eq(pand(y_int, csti_1), pzero(y_int))); + + Packet x2 = pmul(x,x); + + // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4) + Packet y1 = pset1(2.4372266125283204019069671630859375e-05f); + y1 = pmadd(y1, x2, pset1(-0.00138865201734006404876708984375f )); + y1 = pmadd(y1, x2, pset1(0.041666619479656219482421875f )); + y1 = pmadd(y1, x2, pset1(-0.5f)); + y1 = pmadd(y1, x2, pset1(1.f)); + + // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4) + // octave/matlab code to compute those coefficients: + // x = (0:0.0001:pi/4)'; + // A = [x.^3 x.^5 x.^7]; + // w = ((1.-(x/(pi/4)).^2).^5)*2000+1; # weights trading relative accuracy + // c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1 + // printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1)) + // + Packet y2 = pset1(-0.0001959234114083702898469196984621021329076029360294342041015625f); + y2 = pmadd(y2, x2, pset1( 0.0083326873655616851693794799871284340042620897293090820312500000f)); + y2 = pmadd(y2, x2, pset1(-0.1666666203982298255503735617821803316473960876464843750000000000f)); + y2 = pmul(y2, x2); + y2 = pmadd(y2, x, x); + + // Select the correct result from the two polynomials. + y = ComputeSine ? pselect(poly_mask,y2,y1) + : pselect(poly_mask,y1,y2); + + // Update the sign and filter huge inputs + return pxor(y, sign_bit); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psin_float(const Packet& x) +{ + return psincos_float(x); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pcos_float(const Packet& x) +{ + return psincos_float(x); +} + +// Generic implementation of acos(x). +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pacos_float(const Packet& x_in) { + typedef typename unpacket_traits::type Scalar; + static_assert(std::is_same::value, "Scalar type must be float"); + + const Packet cst_one = pset1(Scalar(1)); + const Packet cst_pi = pset1(Scalar(EIGEN_PI)); + const Packet p6 = pset1(Scalar(2.36423197202384471893310546875e-3)); + const Packet p5 = pset1(Scalar(-1.1368644423782825469970703125e-2)); + const Packet p4 = pset1(Scalar(2.717843465507030487060546875e-2)); + const Packet p3 = pset1(Scalar(-4.8969544470310211181640625e-2)); + const Packet p2 = pset1(Scalar(8.8804088532924652099609375e-2)); + const Packet p1 = pset1(Scalar(-0.214591205120086669921875)); + const Packet p0 = pset1(Scalar(1.57079637050628662109375)); + + // For x in [0:1], we approximate acos(x)/sqrt(1-x), which is a smooth + // function, by a 6'th order polynomial. + // For x in [-1:0) we use that acos(-x) = pi - acos(x). + const Packet neg_mask = psignbit(x_in); + const Packet abs_x = pabs(x_in); + + // Evaluate the polynomial using Horner's rule: + // P(x) = p0 + x * (p1 + x * (p2 + ... (p5 + x * p6)) ... ) . + // We evaluate even and odd terms independently to increase + // instruction level parallelism. + Packet x2 = pmul(x_in,x_in); + Packet p_even = pmadd(p6, x2, p4); + Packet p_odd = pmadd(p5, x2, p3); + p_even = pmadd(p_even, x2, p2); + p_odd = pmadd(p_odd, x2, p1); + p_even = pmadd(p_even, x2, p0); + Packet p = pmadd(p_odd, abs_x, p_even); + + // The polynomial approximates acos(x)/sqrt(1-x), so + // multiply by sqrt(1-x) to get acos(x). + // Conveniently returns NaN for arguments outside [-1:1]. + Packet denom = psqrt(psub(cst_one, abs_x)); + Packet result = pmul(denom, p); + // Undo mapping for negative arguments. + return pselect(neg_mask, psub(cst_pi, result), result); +} + +// Generic implementation of asin(x). +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pasin_float(const Packet& x_in) { + typedef typename unpacket_traits::type Scalar; + static_assert(std::is_same::value, "Scalar type must be float"); + + constexpr float kPiOverTwo = static_cast(EIGEN_PI / 2); + + const Packet cst_half = pset1(0.5f); + const Packet cst_one = pset1(1.0f); + const Packet cst_two = pset1(2.0f); + const Packet cst_pi_over_two = pset1(kPiOverTwo); + // For |x| < 0.5 approximate asin(x)/x by an 8th order polynomial with + // even terms only. + const Packet p9 = pset1(5.08838854730129241943359375e-2f); + const Packet p7 = pset1(3.95139865577220916748046875e-2f); + const Packet p5 = pset1(7.550220191478729248046875e-2f); + const Packet p3 = pset1(0.16664917767047882080078125f); + const Packet p1 = pset1(1.00000011920928955078125f); + + const Packet abs_x = pabs(x_in); + const Packet sign_mask = pandnot(x_in, abs_x); + const Packet invalid_mask = pcmp_lt(cst_one, abs_x); + + // For arguments |x| > 0.5, we map x back to [0:0.5] using + // the transformation x_large = sqrt(0.5*(1-x)), and use the + // identity + // asin(x) = pi/2 - 2 * asin( sqrt( 0.5 * (1 - x))) + + const Packet x_large = psqrt(pnmadd(cst_half, abs_x, cst_half)); + const Packet large_mask = pcmp_lt(cst_half, abs_x); + const Packet x = pselect(large_mask, x_large, abs_x); + const Packet x2 = pmul(x, x); + + // Compute polynomial. + // x * (p1 + x^2*(p3 + x^2*(p5 + x^2*(p7 + x^2*p9)))) + + Packet p = pmadd(p9, x2, p7); + p = pmadd(p, x2, p5); + p = pmadd(p, x2, p3); + p = pmadd(p, x2, p1); + p = pmul(p, x); + + const Packet p_large = pnmadd(cst_two, p, cst_pi_over_two); + p = pselect(large_mask, p_large, p); + // Flip the sign for negative arguments. + p = pxor(p, sign_mask); + // Return NaN for arguments outside [-1:1]. + return por(invalid_mask, p); +} + +// Computes elementwise atan(x) for x in [-1:1] with 2 ulp accuracy. +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan_reduced_float(const Packet& x) { + const Packet q0 = pset1(-0.3333314359188079833984375f); + const Packet q2 = pset1(0.19993579387664794921875f); + const Packet q4 = pset1(-0.14209578931331634521484375f); + const Packet q6 = pset1(0.1066047251224517822265625f); + const Packet q8 = pset1(-7.5408883392810821533203125e-2f); + const Packet q10 = pset1(4.3082617223262786865234375e-2f); + const Packet q12 = pset1(-1.62907354533672332763671875e-2f); + const Packet q14 = pset1(2.90188402868807315826416015625e-3f); + + // Approximate atan(x) by a polynomial of the form + // P(x) = x + x^3 * Q(x^2), + // where Q(x^2) is a 7th order polynomial in x^2. + // We evaluate even and odd terms in x^2 in parallel + // to take advantage of instruction level parallelism + // and hardware with multiple FMA units. + + // note: if x == -0, this returns +0 + const Packet x2 = pmul(x, x); + const Packet x4 = pmul(x2, x2); + Packet q_odd = pmadd(q14, x4, q10); + Packet q_even = pmadd(q12, x4, q8); + q_odd = pmadd(q_odd, x4, q6); + q_even = pmadd(q_even, x4, q4); + q_odd = pmadd(q_odd, x4, q2); + q_even = pmadd(q_even, x4, q0); + const Packet q = pmadd(q_odd, x2, q_even); + return pmadd(q, pmul(x, x2), x); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan_float(const Packet& x_in) { + typedef typename unpacket_traits::type Scalar; + static_assert(std::is_same::value, "Scalar type must be float"); + + constexpr float kPiOverTwo = static_cast(EIGEN_PI / 2); + + const Packet cst_signmask = pset1(-0.0f); + const Packet cst_one = pset1(1.0f); + const Packet cst_pi_over_two = pset1(kPiOverTwo); + + // "Large": For |x| > 1, use atan(1/x) = sign(x)*pi/2 - atan(x). + // "Small": For |x| <= 1, approximate atan(x) directly by a polynomial + // calculated using Sollya. + + const Packet abs_x = pabs(x_in); + const Packet x_signmask = pand(x_in, cst_signmask); + const Packet large_mask = pcmp_lt(cst_one, abs_x); + const Packet x = pselect(large_mask, preciprocal(abs_x), abs_x); + const Packet p = patan_reduced_float(x); + // Apply transformations according to the range reduction masks. + Packet result = pselect(large_mask, psub(cst_pi_over_two, p), p); + // Return correct sign + return pxor(result, x_signmask); +} + +// Computes elementwise atan(x) for x in [-tan(pi/8):tan(pi/8)] +// with 2 ulp accuracy. +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet +patan_reduced_double(const Packet& x) { + const Packet q0 = + pset1(-0.33333333333330028569463365784031338989734649658203); + const Packet q2 = + pset1(0.199999999990664090177006073645316064357757568359375); + const Packet q4 = + pset1(-0.142857141937123677255527809393242932856082916259766); + const Packet q6 = + pset1(0.111111065991039953404495577160560060292482376098633); + const Packet q8 = + pset1(-9.0907812986129224452902519715280504897236824035645e-2); + const Packet q10 = + pset1(7.6900542950704739442180368769186316058039665222168e-2); + const Packet q12 = + pset1(-6.6410112986494976294871150912513257935643196105957e-2); + const Packet q14 = + pset1(5.6920144995467943094258345126945641823112964630127e-2); + const Packet q16 = + pset1(-4.3577020814990513608577771265117917209863662719727e-2); + const Packet q18 = + pset1(2.1244050233624342527427586446719942614436149597168e-2); + + // Approximate atan(x) on [0:tan(pi/8)] by a polynomial of the form + // P(x) = x + x^3 * Q(x^2), + // where Q(x^2) is a 9th order polynomial in x^2. + // We evaluate even and odd terms in x^2 in parallel + // to take advantage of instruction level parallelism + // and hardware with multiple FMA units. + const Packet x2 = pmul(x, x); + const Packet x4 = pmul(x2, x2); + Packet q_odd = pmadd(q18, x4, q14); + Packet q_even = pmadd(q16, x4, q12); + q_odd = pmadd(q_odd, x4, q10); + q_even = pmadd(q_even, x4, q8); + q_odd = pmadd(q_odd, x4, q6); + q_even = pmadd(q_even, x4, q4); + q_odd = pmadd(q_odd, x4, q2); + q_even = pmadd(q_even, x4, q0); + const Packet p = pmadd(q_odd, x2, q_even); + return pmadd(p, pmul(x, x2), x); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan_double(const Packet& x_in) { + typedef typename unpacket_traits::type Scalar; + static_assert(std::is_same::value, "Scalar type must be double"); + + constexpr double kPiOverTwo = static_cast(EIGEN_PI / 2); + constexpr double kPiOverFour = static_cast(EIGEN_PI / 4); + constexpr double kTanPiOverEight = 0.4142135623730950488016887; + constexpr double kTan3PiOverEight = 2.4142135623730950488016887; + + const Packet cst_signmask = pset1(-0.0); + const Packet cst_one = pset1(1.0); + const Packet cst_pi_over_two = pset1(kPiOverTwo); + const Packet cst_pi_over_four = pset1(kPiOverFour); + const Packet cst_large = pset1(kTan3PiOverEight); + const Packet cst_medium = pset1(kTanPiOverEight); + + // Use the same range reduction strategy (to [0:tan(pi/8)]) as the + // Cephes library: + // "Large": For x >= tan(3*pi/8), use atan(1/x) = pi/2 - atan(x). + // "Medium": For x in [tan(pi/8) : tan(3*pi/8)), + // use atan(x) = pi/4 + atan((x-1)/(x+1)). + // "Small": For x < tan(pi/8), approximate atan(x) directly by a polynomial + // calculated using Sollya. + + const Packet abs_x = pabs(x_in); + const Packet x_signmask = pand(x_in, cst_signmask); + const Packet large_mask = pcmp_lt(cst_large, abs_x); + const Packet medium_mask = pandnot(pcmp_lt(cst_medium, abs_x), large_mask); + + Packet x = abs_x; + x = pselect(large_mask, preciprocal(abs_x), x); + x = pselect(medium_mask, pdiv(psub(abs_x, cst_one), padd(abs_x, cst_one)), x); + + // Compute approximation of p ~= atan(x') where x' is the argument reduced to + // [0:tan(pi/8)]. + Packet p = patan_reduced_double(x); + + // Apply transformations according to the range reduction masks. + p = pselect(large_mask, psub(cst_pi_over_two, p), p); + p = pselect(medium_mask, padd(cst_pi_over_four, p), p); + // Return the correct sign + return pxor(p, x_signmask); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patanh_float(const Packet& x) { + typedef typename unpacket_traits::type Scalar; + static_assert(std::is_same::value, "Scalar type must be float"); + const Packet half = pset1(0.5f); + const Packet x_gt_half = pcmp_le(half, pabs(x)); + // For |x| in [0:0.5] we use a polynomial approximation of the form + // P(x) = x + x^3*(c3 + x^2 * (c5 + x^2 * (... x^2 * c11) ... )). + const Packet C3 = pset1(0.3333373963832855224609375f); + const Packet C5 = pset1(0.1997792422771453857421875f); + const Packet C7 = pset1(0.14672131836414337158203125f); + const Packet C9 = pset1(8.2311116158962249755859375e-2f); + const Packet C11 = pset1(0.1819281280040740966796875f); + const Packet x2 = pmul(x,x); + Packet p = pmadd(C11, x2, C9); + p = pmadd(x2, p, C7); + p = pmadd(x2, p, C5); + p = pmadd(x2, p, C3); + p = pmadd(pmul(x,x2), p, x); + + // For |x| in ]0.5:1.0] we use atanh = 0.5*ln((1+x)/(1-x)); + const Packet one = pset1(1.0f); + Packet r = pdiv(padd(one, x), psub(one, x)); + r = pmul(half, plog(r)); + return pselect(x_gt_half, r, p); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pdiv_complex(const Packet& x, const Packet& y) { + typedef typename unpacket_traits::as_real RealPacket; + // In the following we annotate the code for the case where the inputs + // are a pair length-2 SIMD vectors representing a single pair of complex + // numbers x = a + i*b, y = c + i*d. + const RealPacket y_abs = pabs(y.v); // |c|, |d| + const RealPacket y_abs_flip = pcplxflip(Packet(y_abs)).v; // |d|, |c| + const RealPacket y_max = pmax(y_abs, y_abs_flip); // max(|c|, |d|), max(|c|, |d|) + const RealPacket y_scaled = pdiv(y.v, y_max); // c / max(|c|, |d|), d / max(|c|, |d|) + // Compute scaled denominator. + const RealPacket y_scaled_sq = pmul(y_scaled, y_scaled); // c'**2, d'**2 + const RealPacket denom = padd(y_scaled_sq, pcplxflip(Packet(y_scaled_sq)).v); + Packet result_scaled = pmul(x, pconj(Packet(y_scaled))); // a * c' + b * d', -a * d + b * c + // Divide elementwise by denom. + result_scaled = Packet(pdiv(result_scaled.v, denom)); + // Rescale result + return Packet(pdiv(result_scaled.v, y_max)); +} + +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psqrt_complex(const Packet& a) { + typedef typename unpacket_traits::type Scalar; + typedef typename Scalar::value_type RealScalar; + typedef typename unpacket_traits::as_real RealPacket; + + // Computes the principal sqrt of the complex numbers in the input. + // + // For example, for packets containing 2 complex numbers stored in interleaved format + // a = [a0, a1] = [x0, y0, x1, y1], + // where x0 = real(a0), y0 = imag(a0) etc., this function returns + // b = [b0, b1] = [u0, v0, u1, v1], + // such that b0^2 = a0, b1^2 = a1. + // + // To derive the formula for the complex square roots, let's consider the equation for + // a single complex square root of the number x + i*y. We want to find real numbers + // u and v such that + // (u + i*v)^2 = x + i*y <=> + // u^2 - v^2 + i*2*u*v = x + i*v. + // By equating the real and imaginary parts we get: + // u^2 - v^2 = x + // 2*u*v = y. + // + // For x >= 0, this has the numerically stable solution + // u = sqrt(0.5 * (x + sqrt(x^2 + y^2))) + // v = 0.5 * (y / u) + // and for x < 0, + // v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2))) + // u = 0.5 * (y / v) + // + // To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as + // l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) , + + // In the following, without lack of generality, we have annotated the code, assuming + // that the input is a packet of 2 complex numbers. + // + // Step 1. Compute l = [l0, l0, l1, l1], where + // l0 = sqrt(x0^2 + y0^2), l1 = sqrt(x1^2 + y1^2) + // To avoid over- and underflow, we use the stable formula for each hypotenuse + // l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)), + // where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1. + + RealPacket a_abs = pabs(a.v); // [|x0|, |y0|, |x1|, |y1|] + RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; // [|y0|, |x0|, |y1|, |x1|] + RealPacket a_max = pmax(a_abs, a_abs_flip); + RealPacket a_min = pmin(a_abs, a_abs_flip); + RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min)); + RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max)); + RealPacket r = pdiv(a_min, a_max); + const RealPacket cst_one = pset1(RealScalar(1)); + RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r)))); // [l0, l0, l1, l1] + // Set l to a_max if a_min is zero. + l = pselect(a_min_zero_mask, a_max, l); + + // Step 2. Compute [rho0, *, rho1, *], where + // rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 = sqrt(0.5 * (l1 + |x1|)) + // We don't care about the imaginary parts computed here. They will be overwritten later. + const RealPacket cst_half = pset1(RealScalar(0.5)); + Packet rho; + rho.v = psqrt(pmul(cst_half, padd(a_abs, l))); + + // Step 3. Compute [rho0, eta0, rho1, eta1], where + // eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2. + // set eta = 0 of input is 0 + i0. + RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask); + RealPacket real_mask = peven_mask(a.v); + Packet positive_real_result; + // Compute result for inputs with positive real part. + positive_real_result.v = pselect(real_mask, rho.v, eta); + + // Step 4. Compute solution for inputs with negative real part: + // [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1] + const RealPacket cst_imag_sign_mask = + pset1(Scalar(RealScalar(0.0), RealScalar(-0.0))).v; + RealPacket imag_signs = pand(a.v, cst_imag_sign_mask); + Packet negative_real_result; + // Notice that rho is positive, so taking it's absolute value is a noop. + negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs); + + // Step 5. Select solution branch based on the sign of the real parts. + Packet negative_real_mask; + negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v)); + negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v); + Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result); + + // Step 6. Handle special cases for infinities: + // * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN + // * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN + // * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y + // * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y + const RealPacket cst_pos_inf = pset1(NumTraits::infinity()); + Packet is_inf; + is_inf.v = pcmp_eq(a_abs, cst_pos_inf); + Packet is_real_inf; + is_real_inf.v = pand(is_inf.v, real_mask); + is_real_inf = por(is_real_inf, pcplxflip(is_real_inf)); + // prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part. + Packet real_inf_result; + real_inf_result.v = pmul(a_abs, pset1(Scalar(RealScalar(1.0), RealScalar(0.0))).v); + real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v); + // prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part. + Packet is_imag_inf; + is_imag_inf.v = pandnot(is_inf.v, real_mask); + is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf)); + Packet imag_inf_result; + imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask)); + // unless otherwise specified, if either the real or imaginary component is nan, the entire result is nan + Packet result_is_nan = pisnan(result); + result = por(result_is_nan, result); + + return pselect(is_imag_inf, imag_inf_result, pselect(is_real_inf, real_inf_result, result)); +} + + +template +struct psign_impl::type>::IsComplex && + !NumTraits::type>::IsInteger>> { + static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { + using Scalar = typename unpacket_traits::type; + const Packet cst_one = pset1(Scalar(1)); + const Packet cst_zero = pzero(a); + + const Packet abs_a = pabs(a); + const Packet sign_mask = pandnot(a, abs_a); + const Packet nonzero_mask = pcmp_lt(cst_zero, abs_a); + + return pselect(nonzero_mask, por(sign_mask, cst_one), abs_a); + } +}; + +template +struct psign_impl::type>::IsComplex && + NumTraits::type>::IsSigned && + NumTraits::type>::IsInteger>> { + static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { + using Scalar = typename unpacket_traits::type; + const Packet cst_one = pset1(Scalar(1)); + const Packet cst_minus_one = pset1(Scalar(-1)); + const Packet cst_zero = pzero(a); + + const Packet positive_mask = pcmp_lt(cst_zero, a); + const Packet positive = pand(positive_mask, cst_one); + const Packet negative_mask = pcmp_lt(a, cst_zero); + const Packet negative = pand(negative_mask, cst_minus_one); + + return por(positive, negative); + } +}; + +template +struct psign_impl::type>::IsComplex && + !NumTraits::type>::IsSigned && + NumTraits::type>::IsInteger>> { + static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { + using Scalar = typename unpacket_traits::type; + const Packet cst_one = pset1(Scalar(1)); + const Packet cst_zero = pzero(a); + + const Packet zero_mask = pcmp_eq(cst_zero, a); + return pandnot(cst_one, zero_mask); + } +}; + +// \internal \returns the the sign of a complex number z, defined as z / abs(z). +template +struct psign_impl::type>::IsComplex && + unpacket_traits::vectorizable>> { + static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { + typedef typename unpacket_traits::type Scalar; + typedef typename Scalar::value_type RealScalar; + typedef typename unpacket_traits::as_real RealPacket; + + // Step 1. Compute (for each element z = x + i*y in a) + // l = abs(z) = sqrt(x^2 + y^2). + // To avoid over- and underflow, we use the stable formula for each hypotenuse + // l = (zmin == 0 ? zmax : zmax * sqrt(1 + (zmin/zmax)**2)), + // where zmax = max(|x|, |y|), zmin = min(|x|, |y|), + RealPacket a_abs = pabs(a.v); + RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; + RealPacket a_max = pmax(a_abs, a_abs_flip); + RealPacket a_min = pmin(a_abs, a_abs_flip); + RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min)); + RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max)); + RealPacket r = pdiv(a_min, a_max); + const RealPacket cst_one = pset1(RealScalar(1)); + RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r)))); // [l0, l0, l1, l1] + // Set l to a_max if a_min is zero, since the roundtrip sqrt(a_max^2) may be + // lossy. + l = pselect(a_min_zero_mask, a_max, l); + // Step 2 compute a / abs(a). + RealPacket sign_as_real = pandnot(pdiv(a.v, l), a_max_zero_mask); + Packet sign; + sign.v = sign_as_real; + return sign; + } +}; + +// TODO(rmlarsen): The following set of utilities for double word arithmetic +// should perhaps be refactored as a separate file, since it would be generally +// useful for special function implementation etc. Writing the algorithms in +// terms if a double word type would also make the code more readable. + +// This function splits x into the nearest integer n and fractional part r, +// such that x = n + r holds exactly. +template +EIGEN_STRONG_INLINE +void absolute_split(const Packet& x, Packet& n, Packet& r) { + n = pround(x); + r = psub(x, n); +} + +// This function computes the sum {s, r}, such that x + y = s_hi + s_lo +// holds exactly, and s_hi = fl(x+y), if |x| >= |y|. +template +EIGEN_STRONG_INLINE +void fast_twosum(const Packet& x, const Packet& y, Packet& s_hi, Packet& s_lo) { + s_hi = padd(x, y); + const Packet t = psub(s_hi, x); + s_lo = psub(y, t); +} + +#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +// This function implements the extended precision product of +// a pair of floating point numbers. Given {x, y}, it computes the pair +// {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and +// p_hi = fl(x * y). +template +EIGEN_STRONG_INLINE +void twoprod(const Packet& x, const Packet& y, + Packet& p_hi, Packet& p_lo) { + p_hi = pmul(x, y); + p_lo = pmsub(x, y, p_hi); +} + +#else + +// This function implements the Veltkamp splitting. Given a floating point +// number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds +// exactly and that half of the significant of x fits in x_hi. +// This is Algorithm 3 from Jean-Michel Muller, "Elementary Functions", +// 3rd edition, Birkh\"auser, 2016. +template +EIGEN_STRONG_INLINE +void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) { + typedef typename unpacket_traits::type Scalar; + EIGEN_CONSTEXPR int shift = (NumTraits::digits() + 1) / 2; + const Scalar shift_scale = Scalar(uint64_t(1) << shift); // Scalar constructor not necessarily constexpr. + const Packet gamma = pmul(pset1(shift_scale + Scalar(1)), x); + Packet rho = psub(x, gamma); + x_hi = padd(rho, gamma); + x_lo = psub(x, x_hi); +} + +// This function implements Dekker's algorithm for products x * y. +// Given floating point numbers {x, y} computes the pair +// {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and +// p_hi = fl(x * y). +template +EIGEN_STRONG_INLINE +void twoprod(const Packet& x, const Packet& y, + Packet& p_hi, Packet& p_lo) { + Packet x_hi, x_lo, y_hi, y_lo; + veltkamp_splitting(x, x_hi, x_lo); + veltkamp_splitting(y, y_hi, y_lo); + + p_hi = pmul(x, y); + p_lo = pmadd(x_hi, y_hi, pnegate(p_hi)); + p_lo = pmadd(x_hi, y_lo, p_lo); + p_lo = pmadd(x_lo, y_hi, p_lo); + p_lo = pmadd(x_lo, y_lo, p_lo); +} + +#endif // EIGEN_HAS_SINGLE_INSTRUCTION_MADD + + +// This function implements Dekker's algorithm for the addition +// of two double word numbers represented by {x_hi, x_lo} and {y_hi, y_lo}. +// It returns the result as a pair {s_hi, s_lo} such that +// x_hi + x_lo + y_hi + y_lo = s_hi + s_lo holds exactly. +// This is Algorithm 5 from Jean-Michel Muller, "Elementary Functions", +// 3rd edition, Birkh\"auser, 2016. +template +EIGEN_STRONG_INLINE + void twosum(const Packet& x_hi, const Packet& x_lo, + const Packet& y_hi, const Packet& y_lo, + Packet& s_hi, Packet& s_lo) { + const Packet x_greater_mask = pcmp_lt(pabs(y_hi), pabs(x_hi)); + Packet r_hi_1, r_lo_1; + fast_twosum(x_hi, y_hi,r_hi_1, r_lo_1); + Packet r_hi_2, r_lo_2; + fast_twosum(y_hi, x_hi,r_hi_2, r_lo_2); + const Packet r_hi = pselect(x_greater_mask, r_hi_1, r_hi_2); + + const Packet s1 = padd(padd(y_lo, r_lo_1), x_lo); + const Packet s2 = padd(padd(x_lo, r_lo_2), y_lo); + const Packet s = pselect(x_greater_mask, s1, s2); + + fast_twosum(r_hi, s, s_hi, s_lo); +} + +// This is a version of twosum for double word numbers, +// which assumes that |x_hi| >= |y_hi|. +template +EIGEN_STRONG_INLINE + void fast_twosum(const Packet& x_hi, const Packet& x_lo, + const Packet& y_hi, const Packet& y_lo, + Packet& s_hi, Packet& s_lo) { + Packet r_hi, r_lo; + fast_twosum(x_hi, y_hi, r_hi, r_lo); + const Packet s = padd(padd(y_lo, r_lo), x_lo); + fast_twosum(r_hi, s, s_hi, s_lo); +} + +// This is a version of twosum for adding a floating point number x to +// double word number {y_hi, y_lo} number, with the assumption +// that |x| >= |y_hi|. +template +EIGEN_STRONG_INLINE +void fast_twosum(const Packet& x, + const Packet& y_hi, const Packet& y_lo, + Packet& s_hi, Packet& s_lo) { + Packet r_hi, r_lo; + fast_twosum(x, y_hi, r_hi, r_lo); + const Packet s = padd(y_lo, r_lo); + fast_twosum(r_hi, s, s_hi, s_lo); +} + +// This function implements the multiplication of a double word +// number represented by {x_hi, x_lo} by a floating point number y. +// It returns the result as a pair {p_hi, p_lo} such that +// (x_hi + x_lo) * y = p_hi + p_lo hold with a relative error +// of less than 2*2^{-2p}, where p is the number of significand bit +// in the floating point type. +// This is Algorithm 7 from Jean-Michel Muller, "Elementary Functions", +// 3rd edition, Birkh\"auser, 2016. +template +EIGEN_STRONG_INLINE +void twoprod(const Packet& x_hi, const Packet& x_lo, const Packet& y, + Packet& p_hi, Packet& p_lo) { + Packet c_hi, c_lo1; + twoprod(x_hi, y, c_hi, c_lo1); + const Packet c_lo2 = pmul(x_lo, y); + Packet t_hi, t_lo1; + fast_twosum(c_hi, c_lo2, t_hi, t_lo1); + const Packet t_lo2 = padd(t_lo1, c_lo1); + fast_twosum(t_hi, t_lo2, p_hi, p_lo); +} + +// This function implements the multiplication of two double word +// numbers represented by {x_hi, x_lo} and {y_hi, y_lo}. +// It returns the result as a pair {p_hi, p_lo} such that +// (x_hi + x_lo) * (y_hi + y_lo) = p_hi + p_lo holds with a relative error +// of less than 2*2^{-2p}, where p is the number of significand bit +// in the floating point type. +template +EIGEN_STRONG_INLINE +void twoprod(const Packet& x_hi, const Packet& x_lo, + const Packet& y_hi, const Packet& y_lo, + Packet& p_hi, Packet& p_lo) { + Packet p_hi_hi, p_hi_lo; + twoprod(x_hi, x_lo, y_hi, p_hi_hi, p_hi_lo); + Packet p_lo_hi, p_lo_lo; + twoprod(x_hi, x_lo, y_lo, p_lo_hi, p_lo_lo); + fast_twosum(p_hi_hi, p_hi_lo, p_lo_hi, p_lo_lo, p_hi, p_lo); +} + +// This function implements the division of double word {x_hi, x_lo} +// by float y. This is Algorithm 15 from "Tight and rigourous error bounds +// for basic building blocks of double-word arithmetic", Joldes, Muller, & Popescu, +// 2017. https://hal.archives-ouvertes.fr/hal-01351529 +template +void doubleword_div_fp(const Packet& x_hi, const Packet& x_lo, const Packet& y, + Packet& z_hi, Packet& z_lo) { + const Packet t_hi = pdiv(x_hi, y); + Packet pi_hi, pi_lo; + twoprod(t_hi, y, pi_hi, pi_lo); + const Packet delta_hi = psub(x_hi, pi_hi); + const Packet delta_t = psub(delta_hi, pi_lo); + const Packet delta = padd(delta_t, x_lo); + const Packet t_lo = pdiv(delta, y); + fast_twosum(t_hi, t_lo, z_hi, z_lo); +} + +// This function computes log2(x) and returns the result as a double word. +template +struct accurate_log2 { + template + EIGEN_STRONG_INLINE + void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) { + log2_x_hi = plog2(x); + log2_x_lo = pzero(x); + } +}; + +// This specialization uses a more accurate algorithm to compute log2(x) for +// floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~6.42e-10. +// This additional accuracy is needed to counter the error-magnification +// inherent in multiplying by a potentially large exponent in pow(x,y). +// The minimax polynomial used was calculated using the Sollya tool. +// See sollya.org. +template <> +struct accurate_log2 { + template + EIGEN_STRONG_INLINE + void operator()(const Packet& z, Packet& log2_x_hi, Packet& log2_x_lo) { + // The function log(1+x)/x is approximated in the interval + // [1/sqrt(2)-1;sqrt(2)-1] by a degree 10 polynomial of the form + // Q(x) = (C0 + x * (C1 + x * (C2 + x * (C3 + x * P(x))))), + // where the degree 6 polynomial P(x) is evaluated in single precision, + // while the remaining 4 terms of Q(x), as well as the final multiplication by x + // to reconstruct log(1+x) are evaluated in extra precision using + // double word arithmetic. C0 through C3 are extra precise constants + // stored as double words. + // + // The polynomial coefficients were calculated using Sollya commands: + // > n = 10; + // > f = log2(1+x)/x; + // > interval = [sqrt(0.5)-1;sqrt(2)-1]; + // > p = fpminimax(f,n,[|double,double,double,double,single...|],interval,relative,floating); + + const Packet p6 = pset1( 9.703654795885e-2f); + const Packet p5 = pset1(-0.1690667718648f); + const Packet p4 = pset1( 0.1720575392246f); + const Packet p3 = pset1(-0.1789081543684f); + const Packet p2 = pset1( 0.2050433009862f); + const Packet p1 = pset1(-0.2404672354459f); + const Packet p0 = pset1( 0.2885761857032f); + + const Packet C3_hi = pset1(-0.360674142838f); + const Packet C3_lo = pset1(-6.13283912543e-09f); + const Packet C2_hi = pset1(0.480897903442f); + const Packet C2_lo = pset1(-1.44861207474e-08f); + const Packet C1_hi = pset1(-0.721347510815f); + const Packet C1_lo = pset1(-4.84483164698e-09f); + const Packet C0_hi = pset1(1.44269502163f); + const Packet C0_lo = pset1(2.01711713999e-08f); + const Packet one = pset1(1.0f); + + const Packet x = psub(z, one); + // Evaluate P(x) in working precision. + // We evaluate it in multiple parts to improve instruction level + // parallelism. + Packet x2 = pmul(x,x); + Packet p_even = pmadd(p6, x2, p4); + p_even = pmadd(p_even, x2, p2); + p_even = pmadd(p_even, x2, p0); + Packet p_odd = pmadd(p5, x2, p3); + p_odd = pmadd(p_odd, x2, p1); + Packet p = pmadd(p_odd, x, p_even); + + // Now evaluate the low-order tems of Q(x) in double word precision. + // In the following, due to the alternating signs and the fact that + // |x| < sqrt(2)-1, we can assume that |C*_hi| >= q_i, and use + // fast_twosum instead of the slower twosum. + Packet q_hi, q_lo; + Packet t_hi, t_lo; + // C3 + x * p(x) + twoprod(p, x, t_hi, t_lo); + fast_twosum(C3_hi, C3_lo, t_hi, t_lo, q_hi, q_lo); + // C2 + x * p(x) + twoprod(q_hi, q_lo, x, t_hi, t_lo); + fast_twosum(C2_hi, C2_lo, t_hi, t_lo, q_hi, q_lo); + // C1 + x * p(x) + twoprod(q_hi, q_lo, x, t_hi, t_lo); + fast_twosum(C1_hi, C1_lo, t_hi, t_lo, q_hi, q_lo); + // C0 + x * p(x) + twoprod(q_hi, q_lo, x, t_hi, t_lo); + fast_twosum(C0_hi, C0_lo, t_hi, t_lo, q_hi, q_lo); + + // log(z) ~= x * Q(x) + twoprod(q_hi, q_lo, x, log2_x_hi, log2_x_lo); + } +}; + +// This specialization uses a more accurate algorithm to compute log2(x) for +// floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~1.27e-18. +// This additional accuracy is needed to counter the error-magnification +// inherent in multiplying by a potentially large exponent in pow(x,y). +// The minimax polynomial used was calculated using the Sollya tool. +// See sollya.org. + +template <> +struct accurate_log2 { + template + EIGEN_STRONG_INLINE + void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) { + // We use a transformation of variables: + // r = c * (x-1) / (x+1), + // such that + // log2(x) = log2((1 + r/c) / (1 - r/c)) = f(r). + // The function f(r) can be approximated well using an odd polynomial + // of the form + // P(r) = ((Q(r^2) * r^2 + C) * r^2 + 1) * r, + // For the implementation of log2 here, Q is of degree 6 with + // coefficient represented in working precision (double), while C is a + // constant represented in extra precision as a double word to achieve + // full accuracy. + // + // The polynomial coefficients were computed by the Sollya script: + // + // c = 2 / log(2); + // trans = c * (x-1)/(x+1); + // itrans = (1+x/c)/(1-x/c); + // interval=[trans(sqrt(0.5)); trans(sqrt(2))]; + // print(interval); + // f = log2(itrans(x)); + // p=fpminimax(f,[|1,3,5,7,9,11,13,15,17|],[|1,DD,double...|],interval,relative,floating); + const Packet q12 = pset1(2.87074255468000586e-9); + const Packet q10 = pset1(2.38957980901884082e-8); + const Packet q8 = pset1(2.31032094540014656e-7); + const Packet q6 = pset1(2.27279857398537278e-6); + const Packet q4 = pset1(2.31271023278625638e-5); + const Packet q2 = pset1(2.47556738444535513e-4); + const Packet q0 = pset1(2.88543873228900172e-3); + const Packet C_hi = pset1(0.0400377511598501157); + const Packet C_lo = pset1(-4.77726582251425391e-19); + const Packet one = pset1(1.0); + + const Packet cst_2_log2e_hi = pset1(2.88539008177792677); + const Packet cst_2_log2e_lo = pset1(4.07660016854549667e-17); + // c * (x - 1) + Packet t_hi, t_lo; + // t = c * (x-1) + twoprod(cst_2_log2e_hi, cst_2_log2e_lo, psub(x, one), t_hi, t_lo); + // r = c * (x-1) / (x+1), + Packet r_hi, r_lo; + doubleword_div_fp(t_hi, t_lo, padd(x, one), r_hi, r_lo); + + // r2 = r * r + Packet r2_hi, r2_lo; + twoprod(r_hi, r_lo, r_hi, r_lo, r2_hi, r2_lo); + // r4 = r2 * r2 + Packet r4_hi, r4_lo; + twoprod(r2_hi, r2_lo, r2_hi, r2_lo, r4_hi, r4_lo); + + // Evaluate Q(r^2) in working precision. We evaluate it in two parts + // (even and odd in r^2) to improve instruction level parallelism. + Packet q_even = pmadd(q12, r4_hi, q8); + Packet q_odd = pmadd(q10, r4_hi, q6); + q_even = pmadd(q_even, r4_hi, q4); + q_odd = pmadd(q_odd, r4_hi, q2); + q_even = pmadd(q_even, r4_hi, q0); + Packet q = pmadd(q_odd, r2_hi, q_even); + + // Now evaluate the low order terms of P(x) in double word precision. + // In the following, due to the increasing magnitude of the coefficients + // and r being constrained to [-0.5, 0.5] we can use fast_twosum instead + // of the slower twosum. + // Q(r^2) * r^2 + Packet p_hi, p_lo; + twoprod(r2_hi, r2_lo, q, p_hi, p_lo); + // Q(r^2) * r^2 + C + Packet p1_hi, p1_lo; + fast_twosum(C_hi, C_lo, p_hi, p_lo, p1_hi, p1_lo); + // (Q(r^2) * r^2 + C) * r^2 + Packet p2_hi, p2_lo; + twoprod(r2_hi, r2_lo, p1_hi, p1_lo, p2_hi, p2_lo); + // ((Q(r^2) * r^2 + C) * r^2 + 1) + Packet p3_hi, p3_lo; + fast_twosum(one, p2_hi, p2_lo, p3_hi, p3_lo); + + // log(z) ~= ((Q(r^2) * r^2 + C) * r^2 + 1) * r + twoprod(p3_hi, p3_lo, r_hi, r_lo, log2_x_hi, log2_x_lo); + } +}; + +// This function computes exp2(x) (i.e. 2**x). +template +struct fast_accurate_exp2 { + template + EIGEN_STRONG_INLINE + Packet operator()(const Packet& x) { + // TODO(rmlarsen): Add a pexp2 packetop. + return pexp(pmul(pset1(Scalar(EIGEN_LN2)), x)); + } +}; + +// This specialization uses a faster algorithm to compute exp2(x) for floats +// in [-0.5;0.5] with a relative accuracy of 1 ulp. +// The minimax polynomial used was calculated using the Sollya tool. +// See sollya.org. +template <> +struct fast_accurate_exp2 { + template + EIGEN_STRONG_INLINE + Packet operator()(const Packet& x) { + // This function approximates exp2(x) by a degree 6 polynomial of the form + // Q(x) = 1 + x * (C + x * P(x)), where the degree 4 polynomial P(x) is evaluated in + // single precision, and the remaining steps are evaluated with extra precision using + // double word arithmetic. C is an extra precise constant stored as a double word. + // + // The polynomial coefficients were calculated using Sollya commands: + // > n = 6; + // > f = 2^x; + // > interval = [-0.5;0.5]; + // > p = fpminimax(f,n,[|1,double,single...|],interval,relative,floating); + + const Packet p4 = pset1(1.539513905e-4f); + const Packet p3 = pset1(1.340007293e-3f); + const Packet p2 = pset1(9.618283249e-3f); + const Packet p1 = pset1(5.550328270e-2f); + const Packet p0 = pset1(0.2402264923f); + + const Packet C_hi = pset1(0.6931471825f); + const Packet C_lo = pset1(2.36836577e-08f); + const Packet one = pset1(1.0f); + + // Evaluate P(x) in working precision. + // We evaluate even and odd parts of the polynomial separately + // to gain some instruction level parallelism. + Packet x2 = pmul(x,x); + Packet p_even = pmadd(p4, x2, p2); + Packet p_odd = pmadd(p3, x2, p1); + p_even = pmadd(p_even, x2, p0); + Packet p = pmadd(p_odd, x, p_even); + + // Evaluate the remaining terms of Q(x) with extra precision using + // double word arithmetic. + Packet p_hi, p_lo; + // x * p(x) + twoprod(p, x, p_hi, p_lo); + // C + x * p(x) + Packet q1_hi, q1_lo; + twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo); + // x * (C + x * p(x)) + Packet q2_hi, q2_lo; + twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo); + // 1 + x * (C + x * p(x)) + Packet q3_hi, q3_lo; + // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum + // for adding it to unity here. + fast_twosum(one, q2_hi, q3_hi, q3_lo); + return padd(q3_hi, padd(q2_lo, q3_lo)); + } +}; + +// in [-0.5;0.5] with a relative accuracy of 1 ulp. +// The minimax polynomial used was calculated using the Sollya tool. +// See sollya.org. +template <> +struct fast_accurate_exp2 { + template + EIGEN_STRONG_INLINE + Packet operator()(const Packet& x) { + // This function approximates exp2(x) by a degree 10 polynomial of the form + // Q(x) = 1 + x * (C + x * P(x)), where the degree 8 polynomial P(x) is evaluated in + // single precision, and the remaining steps are evaluated with extra precision using + // double word arithmetic. C is an extra precise constant stored as a double word. + // + // The polynomial coefficients were calculated using Sollya commands: + // > n = 11; + // > f = 2^x; + // > interval = [-0.5;0.5]; + // > p = fpminimax(f,n,[|1,DD,double...|],interval,relative,floating); + + const Packet p9 = pset1(4.431642109085495276e-10); + const Packet p8 = pset1(7.073829923303358410e-9); + const Packet p7 = pset1(1.017822306737031311e-7); + const Packet p6 = pset1(1.321543498017646657e-6); + const Packet p5 = pset1(1.525273342728892877e-5); + const Packet p4 = pset1(1.540353045780084423e-4); + const Packet p3 = pset1(1.333355814685869807e-3); + const Packet p2 = pset1(9.618129107593478832e-3); + const Packet p1 = pset1(5.550410866481961247e-2); + const Packet p0 = pset1(0.240226506959101332); + const Packet C_hi = pset1(0.693147180559945286); + const Packet C_lo = pset1(4.81927865669806721e-17); + const Packet one = pset1(1.0); + + // Evaluate P(x) in working precision. + // We evaluate even and odd parts of the polynomial separately + // to gain some instruction level parallelism. + Packet x2 = pmul(x,x); + Packet p_even = pmadd(p8, x2, p6); + Packet p_odd = pmadd(p9, x2, p7); + p_even = pmadd(p_even, x2, p4); + p_odd = pmadd(p_odd, x2, p5); + p_even = pmadd(p_even, x2, p2); + p_odd = pmadd(p_odd, x2, p3); + p_even = pmadd(p_even, x2, p0); + p_odd = pmadd(p_odd, x2, p1); + Packet p = pmadd(p_odd, x, p_even); + + // Evaluate the remaining terms of Q(x) with extra precision using + // double word arithmetic. + Packet p_hi, p_lo; + // x * p(x) + twoprod(p, x, p_hi, p_lo); + // C + x * p(x) + Packet q1_hi, q1_lo; + twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo); + // x * (C + x * p(x)) + Packet q2_hi, q2_lo; + twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo); + // 1 + x * (C + x * p(x)) + Packet q3_hi, q3_lo; + // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum + // for adding it to unity here. + fast_twosum(one, q2_hi, q3_hi, q3_lo); + return padd(q3_hi, padd(q2_lo, q3_lo)); + } +}; + +// This function implements the non-trivial case of pow(x,y) where x is +// positive and y is (possibly) non-integer. +// Formally, pow(x,y) = exp2(y * log2(x)), where exp2(x) is shorthand for 2^x. +// TODO(rmlarsen): We should probably add this as a packet up 'ppow', to make it +// easier to specialize or turn off for specific types and/or backends.x +template +EIGEN_STRONG_INLINE Packet generic_pow_impl(const Packet& x, const Packet& y) { + typedef typename unpacket_traits::type Scalar; + // Split x into exponent e_x and mantissa m_x. + Packet e_x; + Packet m_x = pfrexp(x, e_x); + + // Adjust m_x to lie in [1/sqrt(2):sqrt(2)] to minimize absolute error in log2(m_x). + EIGEN_CONSTEXPR Scalar sqrt_half = Scalar(0.70710678118654752440); + const Packet m_x_scale_mask = pcmp_lt(m_x, pset1(sqrt_half)); + m_x = pselect(m_x_scale_mask, pmul(pset1(Scalar(2)), m_x), m_x); + e_x = pselect(m_x_scale_mask, psub(e_x, pset1(Scalar(1))), e_x); + + // Compute log2(m_x) with 6 extra bits of accuracy. + Packet rx_hi, rx_lo; + accurate_log2()(m_x, rx_hi, rx_lo); + + // Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled + // precision using double word arithmetic. + Packet f1_hi, f1_lo, f2_hi, f2_lo; + twoprod(e_x, y, f1_hi, f1_lo); + twoprod(rx_hi, rx_lo, y, f2_hi, f2_lo); + // Sum the two terms in f using double word arithmetic. We know + // that |e_x| > |log2(m_x)|, except for the case where e_x==0. + // This means that we can use fast_twosum(f1,f2). + // In the case e_x == 0, e_x * y = f1 = 0, so we don't lose any + // accuracy by violating the assumption of fast_twosum, because + // it's a no-op. + Packet f_hi, f_lo; + fast_twosum(f1_hi, f1_lo, f2_hi, f2_lo, f_hi, f_lo); + + // Split f into integer and fractional parts. + Packet n_z, r_z; + absolute_split(f_hi, n_z, r_z); + r_z = padd(r_z, f_lo); + Packet n_r; + absolute_split(r_z, n_r, r_z); + n_z = padd(n_z, n_r); + + // We now have an accurate split of f = n_z + r_z and can compute + // x^y = 2**{n_z + r_z) = exp2(r_z) * 2**{n_z}. + // Since r_z is in [-0.5;0.5], we compute the first factor to high accuracy + // using a specialized algorithm. Multiplication by the second factor can + // be done exactly using pldexp(), since it is an integer power of 2. + const Packet e_r = fast_accurate_exp2()(r_z); + return pldexp(e_r, n_z); +} + +// Generic implementation of pow(x,y). +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet generic_pow(const Packet& x, const Packet& y) { + typedef typename unpacket_traits::type Scalar; + + const Packet cst_pos_inf = pset1(NumTraits::infinity()); + const Packet cst_neg_inf = pset1(-NumTraits::infinity()); + const Packet cst_zero = pset1(Scalar(0)); + const Packet cst_one = pset1(Scalar(1)); + const Packet cst_nan = pset1(NumTraits::quiet_NaN()); + + const Packet abs_x = pabs(x); + // Predicates for sign and magnitude of x. + const Packet abs_x_is_zero = pcmp_eq(abs_x, cst_zero); + const Packet x_has_signbit = psignbit(x); + const Packet x_is_neg = pandnot(x_has_signbit, abs_x_is_zero); + const Packet x_is_neg_zero = pand(x_has_signbit, abs_x_is_zero); + const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf); + const Packet abs_x_is_one = pcmp_eq(abs_x, cst_one); + const Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x); + const Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one); + const Packet x_is_one = pandnot(abs_x_is_one, x_is_neg); + const Packet x_is_neg_one = pand(abs_x_is_one, x_is_neg); + const Packet x_is_nan = pisnan(x); + + // Predicates for sign and magnitude of y. + const Packet abs_y = pabs(y); + const Packet y_is_one = pcmp_eq(y, cst_one); + const Packet abs_y_is_zero = pcmp_eq(abs_y, cst_zero); + const Packet y_is_neg = pcmp_lt(y, cst_zero); + const Packet y_is_pos = pandnot(ptrue(y), por(abs_y_is_zero, y_is_neg)); + const Packet y_is_nan = pisnan(y); + const Packet abs_y_is_inf = pcmp_eq(abs_y, cst_pos_inf); + EIGEN_CONSTEXPR Scalar huge_exponent = + (NumTraits::max_exponent() * Scalar(EIGEN_LN2)) / NumTraits::epsilon(); + const Packet abs_y_is_huge = pcmp_le(pset1(huge_exponent), pabs(y)); + + // Predicates for whether y is integer and/or even. + const Packet y_is_int = pcmp_eq(pfloor(y), y); + const Packet y_div_2 = pmul(y, pset1(Scalar(0.5))); + const Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2); + + // Predicates encoding special cases for the value of pow(x,y) + const Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf), y_is_int), abs_y_is_inf); + const Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan)); + const Packet pow_is_one = + por(por(x_is_one, abs_y_is_zero), pand(x_is_neg_one, por(abs_y_is_inf, pandnot(y_is_even, invalid_negative_x)))); + const Packet pow_is_zero = por(por(por(pand(abs_x_is_zero, y_is_pos), pand(abs_x_is_inf, y_is_neg)), + pand(pand(abs_x_is_lt_one, abs_y_is_huge), y_is_pos)), + pand(pand(abs_x_is_gt_one, abs_y_is_huge), y_is_neg)); + const Packet pow_is_inf = por(por(por(pand(abs_x_is_zero, y_is_neg), pand(abs_x_is_inf, y_is_pos)), + pand(pand(abs_x_is_lt_one, abs_y_is_huge), y_is_neg)), + pand(pand(abs_x_is_gt_one, abs_y_is_huge), y_is_pos)); + const Packet pow_is_neg_zero = pand(pandnot(y_is_int, y_is_even), + por(pand(y_is_neg, pand(abs_x_is_inf, x_is_neg)), pand(y_is_pos, x_is_neg_zero))); + const Packet inf_val = + pselect(pandnot(pand(por(pand(abs_x_is_inf, x_is_neg), pand(x_is_neg_zero, y_is_neg)), y_is_int), y_is_even), + cst_neg_inf, cst_pos_inf); + // General computation of pow(x,y) for positive x or negative x and integer y. + const Packet negate_pow_abs = pandnot(x_is_neg, y_is_even); + const Packet pow_abs = generic_pow_impl(abs_x, y); + return pselect(y_is_one, x, + pselect(pow_is_one, cst_one, + pselect(pow_is_nan, cst_nan, + pselect(pow_is_inf, inf_val, + pselect(pow_is_neg_zero, pnegate(cst_zero), + pselect(pow_is_zero, cst_zero, + pselect(negate_pow_abs, pnegate(pow_abs), pow_abs))))))); +} + +/* polevl (modified for Eigen) + * + * Evaluate polynomial + * + * + * + * SYNOPSIS: + * + * int N; + * Scalar x, y, coef[N+1]; + * + * y = polevl( x, coef); + * + * + * + * DESCRIPTION: + * + * Evaluates polynomial of degree N: + * + * 2 N + * y = C + C x + C x +...+ C x + * 0 1 2 N + * + * Coefficients are stored in reverse order: + * + * coef[0] = C , ..., coef[N] = C . + * N 0 + * + * The function p1evl() assumes that coef[N] = 1.0 and is + * omitted from the array. Its calling arguments are + * otherwise the same as polevl(). + * + * + * The Eigen implementation is templatized. For best speed, store + * coef as a const array (constexpr), e.g. + * + * const double coef[] = {1.0, 2.0, 3.0, ...}; + * + */ +template +struct ppolevl { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits::type coeff[]) { + EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + return pmadd(ppolevl::run(x, coeff), x, pset1(coeff[N])); + } +}; + +template +struct ppolevl { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits::type coeff[]) { + EIGEN_UNUSED_VARIABLE(x); + return pset1(coeff[0]); + } +}; + +/* chbevl (modified for Eigen) + * + * Evaluate Chebyshev series + * + * + * + * SYNOPSIS: + * + * int N; + * Scalar x, y, coef[N], chebevl(); + * + * y = chbevl( x, coef, N ); + * + * + * + * DESCRIPTION: + * + * Evaluates the series + * + * N-1 + * - ' + * y = > coef[i] T (x/2) + * - i + * i=0 + * + * of Chebyshev polynomials Ti at argument x/2. + * + * Coefficients are stored in reverse order, i.e. the zero + * order term is last in the array. Note N is the number of + * coefficients, not the order. + * + * If coefficients are for the interval a to b, x must + * have been transformed to x -> 2(2x - b - a)/(b-a) before + * entering the routine. This maps x from (a, b) to (-1, 1), + * over which the Chebyshev polynomials are defined. + * + * If the coefficients are for the inverted interval, in + * which (a, b) is mapped to (1/b, 1/a), the transformation + * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, + * this becomes x -> 4a/x - 1. + * + * + * + * SPEED: + * + * Taking advantage of the recurrence properties of the + * Chebyshev polynomials, the routine requires one more + * addition per loop than evaluating a nested polynomial of + * the same degree. + * + */ + +template +struct pchebevl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits::type coef[]) { + typedef typename unpacket_traits::type Scalar; + Packet b0 = pset1(coef[0]); + Packet b1 = pset1(static_cast(0.f)); + Packet b2; + + for (int i = 1; i < N; i++) { + b2 = b1; + b1 = b0; + b0 = psub(pmadd(x, b1, pset1(coef[i])), b2); + } + + return pmul(pset1(static_cast(0.5f)), psub(b0, b2)); + } +}; + +namespace unary_pow { + +template ::IsInteger> +struct exponent_helper { + using safe_abs_type = ScalarExponent; + static constexpr ScalarExponent one_half = ScalarExponent(0.5); + // these routines assume that exp is an integer stored as a floating point type + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarExponent safe_abs(const ScalarExponent& exp) { + return numext::abs(exp); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool is_odd(const ScalarExponent& exp) { + eigen_assert(((numext::isfinite)(exp) && exp == numext::floor(exp)) && "exp must be an integer"); + ScalarExponent exp_div_2 = exp * one_half; + ScalarExponent floor_exp_div_2 = numext::floor(exp_div_2); + return exp_div_2 != floor_exp_div_2; + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarExponent floor_div_two(const ScalarExponent& exp) { + ScalarExponent exp_div_2 = exp * one_half; + return numext::floor(exp_div_2); + } +}; + +template +struct exponent_helper { + // if `exp` is a signed integer type, cast it to its unsigned counterpart to safely store its absolute value + // consider the (rare) case where `exp` is an int32_t: abs(-2147483648) != 2147483648 + using safe_abs_type = typename numext::get_integer_by_size::unsigned_type; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE safe_abs_type safe_abs(const ScalarExponent& exp) { + ScalarExponent mask = numext::signbit(exp); + safe_abs_type result = safe_abs_type(exp ^ mask); + return result + safe_abs_type(ScalarExponent(1) & mask); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool is_odd(const safe_abs_type& exp) { + return exp % safe_abs_type(2) != safe_abs_type(0); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE safe_abs_type floor_div_two(const safe_abs_type& exp) { + return exp >> safe_abs_type(1); + } +}; + +template ::type>::IsInteger && NumTraits::IsSigned> +struct reciprocate { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const ScalarExponent& exponent) { + using Scalar = typename unpacket_traits::type; + const Packet cst_pos_one = pset1(Scalar(1)); + return exponent < 0 ? pdiv(cst_pos_one, x) : x; + } +}; + +template +struct reciprocate { + // pdiv not defined, nor necessary for integer base types + // if the exponent is unsigned, then the exponent cannot be negative + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const ScalarExponent&) { return x; } +}; + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet int_pow(const Packet& x, const ScalarExponent& exponent) { + using Scalar = typename unpacket_traits::type; + using ExponentHelper = exponent_helper; + using AbsExponentType = typename ExponentHelper::safe_abs_type; + const Packet cst_pos_one = pset1(Scalar(1)); + if (exponent == ScalarExponent(0)) return cst_pos_one; + + Packet result = reciprocate::run(x, exponent); + Packet y = cst_pos_one; + AbsExponentType m = ExponentHelper::safe_abs(exponent); + + while (m > 1) { + bool odd = ExponentHelper::is_odd(m); + if (odd) y = pmul(y, result); + result = pmul(result, result); + m = ExponentHelper::floor_div_two(m); + } + + return pmul(y, result); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet gen_pow(const Packet& x, + const typename unpacket_traits::type& exponent) { + const Packet exponent_packet = pset1(exponent); + return generic_pow_impl(x, exponent_packet); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet handle_nonint_nonint_errors(const Packet& x, const Packet& powx, + const ScalarExponent& exponent) { + using Scalar = typename unpacket_traits::type; + + // non-integer base and exponent case + + const Scalar pos_zero = Scalar(0); + const Scalar all_ones = ptrue(Scalar()); + const Scalar pos_one = Scalar(1); + const Scalar pos_inf = NumTraits::infinity(); + + const Packet cst_pos_zero = pzero(x); + const Packet cst_pos_one = pset1(pos_one); + const Packet cst_pos_inf = pset1(pos_inf); + + const bool exponent_is_not_fin = !(numext::isfinite)(exponent); + const bool exponent_is_neg = exponent < ScalarExponent(0); + const bool exponent_is_pos = exponent > ScalarExponent(0); + + const Packet exp_is_not_fin = pset1(exponent_is_not_fin ? all_ones : pos_zero); + const Packet exp_is_neg = pset1(exponent_is_neg ? all_ones : pos_zero); + const Packet exp_is_pos = pset1(exponent_is_pos ? all_ones : pos_zero); + const Packet exp_is_inf = pand(exp_is_not_fin, por(exp_is_neg, exp_is_pos)); + const Packet exp_is_nan = pandnot(exp_is_not_fin, por(exp_is_neg, exp_is_pos)); + + const Packet x_is_le_zero = pcmp_le(x, cst_pos_zero); + const Packet x_is_ge_zero = pcmp_le(cst_pos_zero, x); + const Packet x_is_zero = pand(x_is_le_zero, x_is_ge_zero); + + const Packet abs_x = pabs(x); + const Packet abs_x_is_le_one = pcmp_le(abs_x, cst_pos_one); + const Packet abs_x_is_ge_one = pcmp_le(cst_pos_one, abs_x); + const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf); + const Packet abs_x_is_one = pand(abs_x_is_le_one, abs_x_is_ge_one); + + Packet pow_is_inf_if_exp_is_neg = por(x_is_zero, pand(abs_x_is_le_one, exp_is_inf)); + Packet pow_is_inf_if_exp_is_pos = por(abs_x_is_inf, pand(abs_x_is_ge_one, exp_is_inf)); + Packet pow_is_one = pand(abs_x_is_one, por(exp_is_inf, x_is_ge_zero)); + + Packet result = powx; + result = por(x_is_le_zero, result); + result = pselect(pow_is_inf_if_exp_is_neg, pand(cst_pos_inf, exp_is_neg), result); + result = pselect(pow_is_inf_if_exp_is_pos, pand(cst_pos_inf, exp_is_pos), result); + result = por(exp_is_nan, result); + result = pselect(pow_is_one, cst_pos_one, result); + return result; +} + +template ::type>::IsSigned, bool> = true> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet handle_negative_exponent(const Packet& x, const ScalarExponent& exponent) { + using Scalar = typename unpacket_traits::type; + + // singed integer base, signed integer exponent case + + // This routine handles negative exponents. + // The return value is either 0, 1, or -1. + + const Scalar pos_zero = Scalar(0); + const Scalar all_ones = ptrue(Scalar()); + const Scalar pos_one = Scalar(1); + + const Packet cst_pos_one = pset1(pos_one); + + const bool exponent_is_odd = exponent % ScalarExponent(2) != ScalarExponent(0); + + const Packet exp_is_odd = pset1(exponent_is_odd ? all_ones : pos_zero); + + const Packet abs_x = pabs(x); + const Packet abs_x_is_one = pcmp_eq(abs_x, cst_pos_one); + + Packet result = pselect(exp_is_odd, x, abs_x); + result = pand(abs_x_is_one, result); + return result; +} + +template ::type>::IsSigned, bool> = true> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet handle_negative_exponent(const Packet& x, const ScalarExponent&) { + using Scalar = typename unpacket_traits::type; + + // unsigned integer base, signed integer exponent case + + // This routine handles negative exponents. + // The return value is either 0 or 1 + + const Scalar pos_one = Scalar(1); + + const Packet cst_pos_one = pset1(pos_one); + + const Packet x_is_one = pcmp_eq(x, cst_pos_one); + + return pand(x_is_one, x); +} + + +} // end namespace unary_pow + +template ::type>::IsInteger, + bool ExponentIsIntegerType = NumTraits::IsInteger, + bool ExponentIsSigned = NumTraits::IsSigned> +struct unary_pow_impl; + +template +struct unary_pow_impl { + typedef typename unpacket_traits::type Scalar; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const ScalarExponent& exponent) { + const bool exponent_is_integer = (numext::isfinite)(exponent) && numext::round(exponent) == exponent; + if (exponent_is_integer) { + return unary_pow::int_pow(x, exponent); + } else { + Packet result = unary_pow::gen_pow(x, exponent); + result = unary_pow::handle_nonint_nonint_errors(x, result, exponent); + return result; + } + } +}; + +template +struct unary_pow_impl { + typedef typename unpacket_traits::type Scalar; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const ScalarExponent& exponent) { + return unary_pow::int_pow(x, exponent); + } +}; + +template +struct unary_pow_impl { + typedef typename unpacket_traits::type Scalar; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const ScalarExponent& exponent) { + if (exponent < ScalarExponent(0)) { + return unary_pow::handle_negative_exponent(x, exponent); + } else { + return unary_pow::int_pow(x, exponent); + } + } +}; + +template +struct unary_pow_impl { + typedef typename unpacket_traits::type Scalar; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const ScalarExponent& exponent) { + return unary_pow::int_pow(x, exponent); + } +}; + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h new file mode 100644 index 0000000..dc08efa --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h @@ -0,0 +1,171 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2019 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_FWD_H +#define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_FWD_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +// Forward declarations of the generic math functions +// implemented in GenericPacketMathFunctions.h +// This is needed to workaround a circular dependency. + +/*************************************************************************** + * Some generic implementations to be used by implementors +***************************************************************************/ + +/** Default implementation of pfrexp. + * It is expected to be called by implementers of template<> pfrexp. + */ +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet pfrexp_generic(const Packet& a, Packet& exponent); + +// Extracts the biased exponent value from Packet p, and casts the results to +// a floating-point Packet type. Used by pfrexp_generic. Override this if +// there is no unpacket_traits::integer_packet. +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet pfrexp_generic_get_biased_exponent(const Packet& p); + +/** Default implementation of pldexp. + * It is expected to be called by implementers of template<> pldexp. + */ +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet pldexp_generic(const Packet& a, const Packet& exponent); + +/** \internal \returns log(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog_float(const Packet _x); + +/** \internal \returns log2(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog2_float(const Packet _x); + +/** \internal \returns log(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog_double(const Packet _x); + +/** \internal \returns log2(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plog2_double(const Packet _x); + +/** \internal \returns log(1 + x) */ +template +Packet generic_plog1p(const Packet& x); + +/** \internal \returns exp(x)-1 */ +template +Packet generic_expm1(const Packet& x); + +/** \internal \returns exp(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pexp_float(const Packet _x); + +/** \internal \returns exp(x) for double precision real numbers */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pexp_double(const Packet _x); + +/** \internal \returns sin(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psin_float(const Packet& x); + +/** \internal \returns cos(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pcos_float(const Packet& x); + +/** \internal \returns asin(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pasin_float(const Packet& x); + +/** \internal \returns acos(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pacos_float(const Packet& x); + +/** \internal \returns atan(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan_float(const Packet& x); + +/** \internal \returns atan(x) for double precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patan_double(const Packet& x); + +/** \internal \returns atanh(x) for single precision float */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet patanh_float(const Packet& x); + +/** \internal \returns sqrt(x) for complex types */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet psqrt_complex(const Packet& a); + +/** \internal \returns x / y for complex types */ +template +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pdiv_complex(const Packet& x, const Packet& y); + +template struct ppolevl; + +// Macros for instantiating these generic functions for different backends. +#define EIGEN_PACKET_FUNCTION(METHOD, SCALAR, PACKET) \ + template <> \ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED PACKET p##METHOD(const PACKET& _x) { \ + return p##METHOD##_##SCALAR(_x); \ + } + +#define EIGEN_FLOAT_PACKET_FUNCTION(METHOD, PACKET) EIGEN_PACKET_FUNCTION(METHOD, float, PACKET) +#define EIGEN_DOUBLE_PACKET_FUNCTION(METHOD, PACKET) EIGEN_PACKET_FUNCTION(METHOD, double, PACKET) + +#define EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(sin, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(cos, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(asin, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(acos, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(atan, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(atanh, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(log, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(log2, PACKET) \ + EIGEN_FLOAT_PACKET_FUNCTION(exp, PACKET) \ + template <> \ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED PACKET pexpm1(const PACKET& _x) { \ + return internal::generic_expm1(_x); \ + } \ + template <> \ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED PACKET plog1p(const PACKET& _x) { \ + return internal::generic_plog1p(_x); \ + } \ + template <> \ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED PACKET ptanh(const PACKET& _x) { \ + return internal::generic_fast_tanh_float(_x); \ + } + +#define EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_DOUBLE(PACKET) \ + EIGEN_DOUBLE_PACKET_FUNCTION(atan, PACKET) \ + EIGEN_DOUBLE_PACKET_FUNCTION(log, PACKET) \ + EIGEN_DOUBLE_PACKET_FUNCTION(log2, PACKET) \ + EIGEN_DOUBLE_PACKET_FUNCTION(exp, PACKET) + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_FWD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/Half.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/Half.h new file mode 100644 index 0000000..17ce135 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/Half.h @@ -0,0 +1,1062 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +// +// The conversion routines are Copyright (c) Fabian Giesen, 2016. +// The original license follows: +// +// Copyright (c) Fabian Giesen, 2016 +// All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted. +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +// Standard 16-bit float type, mostly useful for GPUs. Defines a new +// type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with +// operator overloads such that it behaves basically as an arithmetic +// type. It will be quite slow on CPUs (so it is recommended to stay +// in fp32 for CPUs, except for simple parameter conversions, I/O +// to disk and the likes), but fast on GPUs. + + +#ifndef EIGEN_HALF_H +#define EIGEN_HALF_H + +#include "../../InternalHeaderCheck.h" + +#if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) +// When compiling with GPU support, the "__half_raw" base class as well as +// some other routines are defined in the GPU compiler header files +// (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr +// As a consequence, we get compile failures when compiling Eigen with +// GPU support. Hence the need to disable EIGEN_CONSTEXPR when building +// Eigen with GPU support + #pragma push_macro("EIGEN_CONSTEXPR") + #undef EIGEN_CONSTEXPR + #define EIGEN_CONSTEXPR +#endif + +#define F16_PACKET_FUNCTION(PACKET_F, PACKET_F16, METHOD) \ + template <> \ + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED \ + PACKET_F16 METHOD(const PACKET_F16& _x) { \ + return float2half(METHOD(half2float(_x))); \ + } + +namespace Eigen { + +struct half; + +namespace half_impl { + +// We want to use the __half_raw struct from the HIP header file only during the device compile phase. +// This is required because of a quirk in the way TensorFlow GPU builds are done. +// When compiling TensorFlow source code with GPU support, files that +// * contain GPU kernels (i.e. *.cu.cc files) are compiled via hipcc +// * do not contain GPU kernels ( i.e. *.cc files) are compiled via gcc (typically) +// +// Tensorflow uses the Eigen::half type as its FP16 type, and there are functions that +// * are defined in a file that gets compiled via hipcc AND +// * have Eigen::half as a pass-by-value argument AND +// * are called in a file that gets compiled via gcc +// +// In the scenario described above the caller and callee will see different versions +// of the Eigen::half base class __half_raw, and they will be compiled by different compilers +// +// There appears to be an ABI mismatch between gcc and clang (which is called by hipcc) that results in +// the callee getting corrupted values for the Eigen::half argument. +// +// Making the host side compile phase of hipcc use the same Eigen::half impl, as the gcc compile, resolves +// this error, and hence the following convoluted #if condition +#if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) +// Make our own __half_raw definition that is similar to CUDA's. +struct __half_raw { +#if (defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE)) + // Eigen::half can be used as the datatype for shared memory declarations (in Eigen and TF) + // The element type for shared memory cannot have non-trivial constructors + // and hence the following special casing (which skips the zero-initilization). + // Note that this check gets done even in the host compilation phase, and + // hence the need for this + EIGEN_DEVICE_FUNC __half_raw() {} +#else + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw() : x(0) {} +#endif +#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) { + } + __fp16 x; +#else + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(raw) {} + numext::uint16_t x; +#endif +}; + +#elif defined(EIGEN_HAS_HIP_FP16) + // Nothing to do here + // HIP fp16 header file has a definition for __half_raw +#elif defined(EIGEN_HAS_CUDA_FP16) + #if EIGEN_CUDA_SDK_VER < 90000 + // In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw + typedef __half __half_raw; + #endif // defined(EIGEN_HAS_CUDA_FP16) +#elif defined(SYCL_DEVICE_ONLY) + typedef cl::sycl::half __half_raw; +#endif + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x); +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff); +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h); + +struct half_base : public __half_raw { + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base() {} + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {} + +#if defined(EIGEN_HAS_GPU_FP16) + #if defined(EIGEN_HAS_HIP_FP16) + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); } + #elif defined(EIGEN_HAS_CUDA_FP16) + #if EIGEN_CUDA_SDK_VER >= 90000 + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {} + #endif + #endif +#endif +}; + +} // namespace half_impl + +// Class definition. +struct half : public half_impl::half_base { + + // Writing this out as separate #if-else blocks to make the code easier to follow + // The same applies to most #if-else blocks in this file +#if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) + // Use the same base class for the following two scenarios + // * when compiling without GPU support enabled + // * during host compile phase when compiling with GPU support enabled + typedef half_impl::__half_raw __half_raw; +#elif defined(EIGEN_HAS_HIP_FP16) + // Nothing to do here + // HIP fp16 header file has a definition for __half_raw +#elif defined(EIGEN_HAS_CUDA_FP16) + // Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so + // (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP! So keeping this within + // #if defined(EIGEN_HAS_CUDA_FP16) is needed + #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 + typedef half_impl::__half_raw __half_raw; + #endif +#endif + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half() {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {} + +#if defined(EIGEN_HAS_GPU_FP16) + #if defined(EIGEN_HAS_HIP_FP16) + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} + #elif defined(EIGEN_HAS_CUDA_FP16) + #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} + #endif + #endif +#endif + + + explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(bool b) + : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {} + template + explicit EIGEN_DEVICE_FUNC half(T val) + : half_impl::half_base(half_impl::float_to_half_rtne(static_cast(val))) {} + explicit EIGEN_DEVICE_FUNC half(float f) + : half_impl::half_base(half_impl::float_to_half_rtne(f)) {} + + // Following the convention of numpy, converting between complex and + // float will lead to loss of imag value. + template + explicit EIGEN_DEVICE_FUNC half(std::complex c) + : half_impl::half_base(half_impl::float_to_half_rtne(static_cast(c.real()))) {} + + EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless. + return half_impl::half_to_float(*this); + } + +#if defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE) + EIGEN_DEVICE_FUNC operator __half() const { + ::__half_raw hr; + hr.x = x; + return __half(hr); + } +#endif +}; + +// TODO(majnemer): Get rid of this once we can rely on C++17 inline variables do +// solve the ODR issue. +namespace half_impl { +template +struct numeric_limits_half_impl { + static EIGEN_CONSTEXPR const bool is_specialized = true; + static EIGEN_CONSTEXPR const bool is_signed = true; + static EIGEN_CONSTEXPR const bool is_integer = false; + static EIGEN_CONSTEXPR const bool is_exact = false; + static EIGEN_CONSTEXPR const bool has_infinity = true; + static EIGEN_CONSTEXPR const bool has_quiet_NaN = true; + static EIGEN_CONSTEXPR const bool has_signaling_NaN = true; + static EIGEN_CONSTEXPR const std::float_denorm_style has_denorm = std::denorm_present; + static EIGEN_CONSTEXPR const bool has_denorm_loss = false; + static EIGEN_CONSTEXPR const std::float_round_style round_style = std::round_to_nearest; + static EIGEN_CONSTEXPR const bool is_iec559 = true; + // The C++ standard defines this as "true if the set of values representable + // by the type is finite." Half has finite precision. + static EIGEN_CONSTEXPR const bool is_bounded = true; + static EIGEN_CONSTEXPR const bool is_modulo = false; + static EIGEN_CONSTEXPR const int digits = 11; + static EIGEN_CONSTEXPR const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html + static EIGEN_CONSTEXPR const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html + static EIGEN_CONSTEXPR const int radix = std::numeric_limits::radix; + static EIGEN_CONSTEXPR const int min_exponent = -13; + static EIGEN_CONSTEXPR const int min_exponent10 = -4; + static EIGEN_CONSTEXPR const int max_exponent = 16; + static EIGEN_CONSTEXPR const int max_exponent10 = 4; + static EIGEN_CONSTEXPR const bool traps = std::numeric_limits::traps; + // IEEE754: "The implementer shall choose how tininess is detected, but shall + // detect tininess in the same way for all operations in radix two" + static EIGEN_CONSTEXPR const bool tinyness_before = std::numeric_limits::tinyness_before; + + static EIGEN_CONSTEXPR Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x0400); } + static EIGEN_CONSTEXPR Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); } + static EIGEN_CONSTEXPR Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); } + static EIGEN_CONSTEXPR Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x1400); } + static EIGEN_CONSTEXPR Eigen::half round_error() { return Eigen::half_impl::raw_uint16_to_half(0x3800); } + static EIGEN_CONSTEXPR Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); } + static EIGEN_CONSTEXPR Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } + static EIGEN_CONSTEXPR Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); } + static EIGEN_CONSTEXPR Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x0001); } +}; + +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_specialized; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_signed; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_integer; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_exact; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::has_infinity; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::has_quiet_NaN; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::has_signaling_NaN; +template +EIGEN_CONSTEXPR const std::float_denorm_style numeric_limits_half_impl::has_denorm; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::has_denorm_loss; +template +EIGEN_CONSTEXPR const std::float_round_style numeric_limits_half_impl::round_style; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_iec559; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_bounded; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::is_modulo; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::digits; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::digits10; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::max_digits10; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::radix; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::min_exponent; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::min_exponent10; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::max_exponent; +template +EIGEN_CONSTEXPR const int numeric_limits_half_impl::max_exponent10; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::traps; +template +EIGEN_CONSTEXPR const bool numeric_limits_half_impl::tinyness_before; +} // end namespace half_impl +} // end namespace Eigen + +namespace std { +// If std::numeric_limits is specialized, should also specialize +// std::numeric_limits, std::numeric_limits, and +// std::numeric_limits +// https://stackoverflow.com/a/16519653/ +template<> +class numeric_limits : public Eigen::half_impl::numeric_limits_half_impl<> {}; +template<> +class numeric_limits : public numeric_limits {}; +template<> +class numeric_limits : public numeric_limits {}; +template<> +class numeric_limits : public numeric_limits {}; +} // end namespace std + +namespace Eigen { + +namespace half_impl { + +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \ + EIGEN_CUDA_ARCH >= 530) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE)) +// Note: We deliberately do *not* define this to 1 even if we have Arm's native +// fp16 type since GPU halfs are rather different from native CPU halfs. +// TODO: Rename to something like EIGEN_HAS_NATIVE_GPU_FP16 +#define EIGEN_HAS_NATIVE_FP16 +#endif + +// Intrinsics for native fp16 support. Note that on current hardware, +// these are no faster than fp32 arithmetic (you need to use the half2 +// versions to get the ALU speed increased), but you do save the +// conversion steps back and forth. + +#if defined(EIGEN_HAS_NATIVE_FP16) +EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) { +#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 + return __hadd(::__half(a), ::__half(b)); +#else + return __hadd(a, b); +#endif +} +EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) { + return __hmul(a, b); +} +EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) { + return __hsub(a, b); +} +EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) { +#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 + return __hdiv(a, b); +#else + float num = __half2float(a); + float denom = __half2float(b); + return __float2half(num / denom); +#endif +} +EIGEN_STRONG_INLINE __device__ half operator - (const half& a) { + return __hneg(a); +} +EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) { + a = a + b; + return a; +} +EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) { + a = a * b; + return a; +} +EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) { + a = a - b; + return a; +} +EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) { + a = a / b; + return a; +} +EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) { + return __heq(a, b); +} +EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) { + return __hne(a, b); +} +EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) { + return __hlt(a, b); +} +EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) { + return __hle(a, b); +} +EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) { + return __hgt(a, b); +} +EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) { + return __hge(a, b); +} +#endif + +#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE) +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { + return half(vaddh_f16(a.x, b.x)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { + return half(vmulh_f16(a.x, b.x)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { + return half(vsubh_f16(a.x, b.x)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { + return half(vdivh_f16(a.x, b.x)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { + return half(vnegh_f16(a.x)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { + a = half(vaddh_f16(a.x, b.x)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { + a = half(vmulh_f16(a.x, b.x)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { + a = half(vsubh_f16(a.x, b.x)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { + a = half(vdivh_f16(a.x, b.x)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { + return vceqh_f16(a.x, b.x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { + return !vceqh_f16(a.x, b.x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { + return vclth_f16(a.x, b.x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { + return vcleh_f16(a.x, b.x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { + return vcgth_f16(a.x, b.x); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { + return vcgeh_f16(a.x, b.x); +} +// We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler, +// invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation +// of the functions, while the latter can only deal with one of them. +#elif !defined(EIGEN_HAS_NATIVE_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats + +#if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC) +// We need to provide emulated *host-side* FP16 operators for clang. +#pragma push_macro("EIGEN_DEVICE_FUNC") +#undef EIGEN_DEVICE_FUNC +#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_FP16) +#define EIGEN_DEVICE_FUNC __host__ +#else // both host and device need emulated ops. +#define EIGEN_DEVICE_FUNC __host__ __device__ +#endif +#endif + +// Definitions for CPUs and older HIP+CUDA, mostly working through conversion +// to/from fp32. +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { + return half(float(a) + float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { + return half(float(a) * float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { + return half(float(a) - float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { + return half(float(a) / float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { + half result; + result.x = a.x ^ 0x8000; + return result; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { + a = half(float(a) + float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { + a = half(float(a) * float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { + a = half(float(a) - float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { + a = half(float(a) / float(b)); + return a; +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { + return numext::equal_strict(float(a),float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { + return numext::not_equal_strict(float(a), float(b)); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { + return float(a) < float(b); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { + return float(a) <= float(b); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { + return float(a) > float(b); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { + return float(a) >= float(b); +} + +#if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC) +#pragma pop_macro("EIGEN_DEVICE_FUNC") +#endif +#endif // Emulate support for half floats + +// Division by an index. Do it in full float precision to avoid accuracy +// issues in converting the denominator to half. +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) { + return half(static_cast(a) / static_cast(b)); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a) { + a += half(1); + return a; +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a) { + a -= half(1); + return a; +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a, int) { + half original_value = a; + ++a; + return original_value; +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a, int) { + half original_value = a; + --a; + return original_value; +} + +// Conversion routines, including fallbacks for the host or older CUDA. +// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of +// these in hardware. If we need more performance on older/other CPUs, they are +// also possible to vectorize directly. + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) { + // We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type + // in the hip_fp16 header file, and that will trigger a compile error + // On the other hand, having anything but a return statement also triggers a compile error + // because this is constexpr function. + // Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out + // of this catch22 by having separate bodies for GPU / non GPU +#if defined(EIGEN_HAS_GPU_FP16) + __half_raw h; + h.x = x; + return h; +#else + return __half_raw(x); +#endif +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw& h) { + // HIP/CUDA/Default have a member 'x' of type uint16_t. + // For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast. + // For SYCL, cl::sycl::half is _Float16, so cast directly. +#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + return numext::bit_cast(h.x); +#elif defined(SYCL_DEVICE_ONLY) + return numext::bit_cast(h); +#else + return h.x; +#endif +} + +union float32_bits { + unsigned int u; + float f; +}; + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + __half tmp_ff = __float2half(ff); + return *(__half_raw*)&tmp_ff; + +#elif defined(EIGEN_HAS_FP16_C) + __half_raw h; + #if EIGEN_COMP_MSVC + // MSVC does not have scalar instructions. + h.x =_mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(ff), 0), 0); + #else + h.x = _cvtss_sh(ff, 0); + #endif + return h; + +#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + __half_raw h; + h.x = static_cast<__fp16>(ff); + return h; + +#else + float32_bits f; f.f = ff; + + const float32_bits f32infty = { 255 << 23 }; + const float32_bits f16max = { (127 + 16) << 23 }; + const float32_bits denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; + unsigned int sign_mask = 0x80000000u; + __half_raw o; + o.x = static_cast(0x0u); + + unsigned int sign = f.u & sign_mask; + f.u ^= sign; + + // NOTE all the integer compares in this function can be safely + // compiled into signed compares since all operands are below + // 0x80000000. Important if you want fast straight SSE2 code + // (since there's no unsigned PCMPGTD). + + if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) + o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf + } else { // (De)normalized number or zero + if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero + // use a magic value to align our 10 mantissa bits at the bottom of + // the float. as long as FP addition is round-to-nearest-even this + // just works. + f.f += denorm_magic.f; + + // and one integer subtract of the bias later, we have our final float! + o.x = static_cast(f.u - denorm_magic.u); + } else { + unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd + + // update exponent, rounding bias part 1 + // Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but + // without arithmetic overflow. + f.u += 0xc8000fffU; + // rounding bias part 2 + f.u += mant_odd; + // take the bits! + o.x = static_cast(f.u >> 13); + } + } + + o.x |= static_cast(sign >> 16); + return o; +#endif +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __half2float(h); +#elif defined(EIGEN_HAS_FP16_C) + #if EIGEN_COMP_MSVC + // MSVC does not have scalar instructions. + return _mm_cvtss_f32(_mm_cvtph_ps(_mm_set1_epi16(h.x))); + #else + return _cvtsh_ss(h.x); + #endif +#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + return static_cast(h.x); +#else + const float32_bits magic = { 113 << 23 }; + const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift + float32_bits o; + + o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits + unsigned int exp = shifted_exp & o.u; // just the exponent + o.u += (127 - 15) << 23; // exponent adjust + + // handle exponent special cases + if (exp == shifted_exp) { // Inf/NaN? + o.u += (128 - 16) << 23; // extra exp adjust + } else if (exp == 0) { // Zero/Denormal? + o.u += 1 << 23; // extra exp adjust + o.f -= magic.f; // renormalize + } + + o.u |= (h.x & 0x8000) << 16; // sign bit + return o.f; +#endif +} + +// --- standard functions --- + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) { +#ifdef EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC + return (numext::bit_cast(a.x) & 0x7fff) == 0x7c00; +#else + return (a.x & 0x7fff) == 0x7c00; +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __hisnan(a); +#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + return (numext::bit_cast(a.x) & 0x7fff) > 0x7c00; +#else + return (a.x & 0x7fff) > 0x7c00; +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) { + return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a)); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) { +#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + return half(vabsh_f16(a.x)); +#else + half result; + result.x = a.x & 0x7FFF; + return result; +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) { +#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ + defined(EIGEN_HIP_DEVICE_COMPILE) + return half(hexp(a)); +#else + return half(::expf(float(a))); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { + return half(numext::expm1(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) { +#if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return half(::hlog(a)); +#else + return half(::logf(float(a))); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { + return half(numext::log1p(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { + return half(::log10f(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log2(const half& a) { + return half(static_cast(EIGEN_LOG2E) * ::logf(float(a))); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) { +#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ + defined(EIGEN_HIP_DEVICE_COMPILE) + return half(hsqrt(a)); +#else + return half(::sqrtf(float(a))); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) { + return half(::powf(float(a), float(b))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan2(const half& a, const half& b) { + return half(::atan2f(float(a), float(b))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { + return half(::sinf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { + return half(::cosf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { + return half(::tanf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { + return half(::tanhf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) { + return half(::asinf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) { + return half(::acosf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan(const half& a) { + return half(::atanf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atanh(const half& a) { + return half(::atanhf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) { +#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ + defined(EIGEN_HIP_DEVICE_COMPILE) + return half(hfloor(a)); +#else + return half(::floorf(float(a))); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) { +#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ + defined(EIGEN_HIP_DEVICE_COMPILE) + return half(hceil(a)); +#else + return half(::ceilf(float(a))); +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) { + return half(::rintf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half round(const half& a) { + return half(::roundf(float(a))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half fmod(const half& a, const half& b) { + return half(::fmodf(float(a), float(b))); +} + +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __hlt(b, a) ? b : a; +#else + const float f1 = static_cast(a); + const float f2 = static_cast(b); + return f2 < f1 ? b : a; +#endif +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __hlt(a, b) ? b : a; +#else + const float f1 = static_cast(a); + const float f2 = static_cast(b); + return f1 < f2 ? b : a; +#endif +} + +#ifndef EIGEN_NO_IO +EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) { + os << static_cast(v); + return os; +} +#endif + +} // end namespace half_impl + +// import Eigen::half_impl::half into Eigen namespace +// using half_impl::half; + +namespace internal { + +template<> +struct random_default_impl +{ + static inline half run(const half& x, const half& y) + { + return x + (y-x) * half(float(std::rand()) / float(RAND_MAX)); + } + static inline half run() + { + return run(half(-1.f), half(1.f)); + } +}; + +template<> struct is_arithmetic { enum { value = true }; }; + +} // end namespace internal + +template<> struct NumTraits + : GenericNumTraits +{ + enum { + IsSigned = true, + IsInteger = false, + IsComplex = false, + RequireInitialization = false + }; + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() { + return half_impl::raw_uint16_to_half(0x0800); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { + return half_impl::raw_uint16_to_half(0x211f); // Eigen::half(1e-2f); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() { + return half_impl::raw_uint16_to_half(0x7bff); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() { + return half_impl::raw_uint16_to_half(0xfbff); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() { + return half_impl::raw_uint16_to_half(0x7c00); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { + return half_impl::raw_uint16_to_half(0x7e00); + } +}; + +} // end namespace Eigen + +#if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + #pragma pop_macro("EIGEN_CONSTEXPR") +#endif + +namespace Eigen { +namespace numext { + +#if defined(EIGEN_GPU_COMPILE_PHASE) + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) { + return (half_impl::isnan)(h); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) { + return (half_impl::isinf)(h); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) { + return (half_impl::isfinite)(h); +} + +#endif + +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast(const uint16_t& src) { + return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src)); +} + +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast(const Eigen::half& src) { + return Eigen::half_impl::raw_half_as_uint16(src); +} + +} // namespace numext +} // namespace Eigen + +// Add the missing shfl* intrinsics. +// The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300. +// CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__)) +// +// HIP and CUDA prior to SDK 9.0 define +// __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float +// CUDA since 9.0 deprecates those and instead defines +// __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync, +// with native support for __half and __nv_bfloat16 +// +// Note that the following are __device__ - only functions. +#if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 300)) \ + || defined(EIGEN_HIPCC) + +#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 90000 + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_sync(unsigned mask, Eigen::half var, int srcLane, int width=warpSize) { + const __half h = var; + return static_cast(__shfl_sync(mask, h, srcLane, width)); +} + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up_sync(unsigned mask, Eigen::half var, unsigned int delta, int width=warpSize) { + const __half h = var; + return static_cast(__shfl_up_sync(mask, h, delta, width)); +} + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down_sync(unsigned mask, Eigen::half var, unsigned int delta, int width=warpSize) { + const __half h = var; + return static_cast(__shfl_down_sync(mask, h, delta, width)); +} + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor_sync(unsigned mask, Eigen::half var, int laneMask, int width=warpSize) { + const __half h = var; + return static_cast(__shfl_xor_sync(mask, h, laneMask, width)); +} + +#else // HIP or CUDA SDK < 9.0 + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl(Eigen::half var, int srcLane, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl(ivar, srcLane, width))); +} + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up(Eigen::half var, unsigned int delta, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl_up(ivar, delta, width))); +} + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down(Eigen::half var, unsigned int delta, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl_down(ivar, delta, width))); +} + +__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) { + const int ivar = static_cast(Eigen::numext::bit_cast(var)); + return Eigen::numext::bit_cast(static_cast(__shfl_xor(ivar, laneMask, width))); +} + +#endif // HIP vs CUDA +#endif // __shfl* + +// ldg() has an overload for __half_raw, but we also need one for Eigen::half. +#if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 350)) \ + || defined(EIGEN_HIPCC) +EIGEN_STRONG_INLINE __device__ Eigen::half __ldg(const Eigen::half* ptr) { + return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast(ptr))); +} +#endif // __ldg + +#if EIGEN_HAS_STD_HASH +namespace std { +template <> +struct hash { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { + return static_cast(Eigen::numext::bit_cast(a)); + } +}; +} // end namespace std +#endif + +namespace Eigen { +namespace internal { + +template <> +struct cast_impl { + EIGEN_DEVICE_FUNC + static inline half run(const float& a) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __float2half(a); +#else + return half(a); +#endif + } +}; + +template <> +struct cast_impl { + EIGEN_DEVICE_FUNC + static inline half run(const int& a) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __float2half(static_cast(a)); +#else + return half(static_cast(a)); +#endif + } +}; + +template <> +struct cast_impl { + EIGEN_DEVICE_FUNC + static inline float run(const half& a) { +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + return __half2float(a); +#else + return static_cast(a); +#endif + } +}; + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_HALF_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/Settings.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/Settings.h new file mode 100644 index 0000000..a5c3ada --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/Default/Settings.h @@ -0,0 +1,49 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +/* All the parameters defined in this file can be specialized in the + * architecture specific files, and/or by the user. + * More to come... */ + +#ifndef EIGEN_DEFAULT_SETTINGS_H +#define EIGEN_DEFAULT_SETTINGS_H + +/** Defines the maximal loop size to enable meta unrolling of loops. + * Note that the value here is expressed in Eigen's own notion of "number of FLOPS", + * it does not correspond to the number of iterations or the number of instructions + */ +#ifndef EIGEN_UNROLLING_LIMIT +#define EIGEN_UNROLLING_LIMIT 110 +#endif + +/** Defines the threshold between a "small" and a "large" matrix. + * This threshold is mainly used to select the proper product implementation. + */ +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +/** Defines the maximal width of the blocks used in the triangular product and solver + * for vectors (level 2 blas xTRMV and xTRSV). The default is 8. + */ +#ifndef EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH +#define EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH 8 +#endif + + +/** Defines the default number of registers available for that architecture. + * Currently it must be 8 or 16. Other values will fail. + */ +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8 +#endif + +#endif // EIGEN_DEFAULT_SETTINGS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/Complex.h new file mode 100644 index 0000000..4e4cdd1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/Complex.h @@ -0,0 +1,271 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// Copyright (C) 2021 C. Antonio Sanchez +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_GPU_H +#define EIGEN_COMPLEX_GPU_H + +// Many std::complex methods such as operator+, operator-, operator* and +// operator/ are not constexpr. Due to this, GCC and older versions of clang do +// not treat them as device functions and thus Eigen functors making use of +// these operators fail to compile. Here, we manually specialize these +// operators and functors for complex types when building for CUDA to enable +// their use on-device. +// +// NOTES: +// - Compound assignment operators +=,-=,*=,/=(Scalar) will not work on device, +// since they are already specialized in the standard. Using them will result +// in silent kernel failures. +// - Compiling with MSVC and using +=,-=,*=,/=(std::complex) will lead +// to duplicate definition errors, since these are already specialized in +// Visual Studio's header (contrary to the standard). This is +// preferable to removing such definitions, which will lead to silent kernel +// failures. +// - Compiling with ICC requires defining _USE_COMPLEX_SPECIALIZATION_ prior +// to the first inclusion of . + +#if defined(EIGEN_GPUCC) && defined(EIGEN_GPU_COMPILE_PHASE) + +// ICC already specializes std::complex and std::complex +// operators, preventing us from making them device functions here. +// This will lead to silent runtime errors if the operators are used on device. +// +// To allow std::complex operator use on device, define _OVERRIDE_COMPLEX_SPECIALIZATION_ +// prior to first inclusion of . This prevents ICC from adding +// its own specializations, so our custom ones below can be used instead. +#if !(EIGEN_COMP_ICC && defined(_USE_COMPLEX_SPECIALIZATION_)) + +// Import Eigen's internal operator specializations. +#define EIGEN_USING_STD_COMPLEX_OPERATORS \ + using Eigen::complex_operator_detail::operator+; \ + using Eigen::complex_operator_detail::operator-; \ + using Eigen::complex_operator_detail::operator*; \ + using Eigen::complex_operator_detail::operator/; \ + using Eigen::complex_operator_detail::operator+=; \ + using Eigen::complex_operator_detail::operator-=; \ + using Eigen::complex_operator_detail::operator*=; \ + using Eigen::complex_operator_detail::operator/=; \ + using Eigen::complex_operator_detail::operator==; \ + using Eigen::complex_operator_detail::operator!=; + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +// Specialized std::complex overloads. +namespace complex_operator_detail { + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex complex_multiply(const std::complex& a, const std::complex& b) { + const T a_real = numext::real(a); + const T a_imag = numext::imag(a); + const T b_real = numext::real(b); + const T b_imag = numext::imag(b); + return std::complex( + a_real * b_real - a_imag * b_imag, + a_imag * b_real + a_real * b_imag); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex complex_divide_fast(const std::complex& a, const std::complex& b) { + const T a_real = numext::real(a); + const T a_imag = numext::imag(a); + const T b_real = numext::real(b); + const T b_imag = numext::imag(b); + const T norm = (b_real * b_real + b_imag * b_imag); + return std::complex((a_real * b_real + a_imag * b_imag) / norm, + (a_imag * b_real - a_real * b_imag) / norm); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex complex_divide_stable(const std::complex& a, const std::complex& b) { + const T a_real = numext::real(a); + const T a_imag = numext::imag(a); + const T b_real = numext::real(b); + const T b_imag = numext::imag(b); + // Smith's complex division (https://arxiv.org/pdf/1210.4539.pdf), + // guards against over/under-flow. + const bool scale_imag = numext::abs(b_imag) <= numext::abs(b_real); + const T rscale = scale_imag ? T(1) : b_real / b_imag; + const T iscale = scale_imag ? b_imag / b_real : T(1); + const T denominator = b_real * rscale + b_imag * iscale; + return std::complex((a_real * rscale + a_imag * iscale) / denominator, + (a_imag * rscale - a_real * iscale) / denominator); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex complex_divide(const std::complex& a, const std::complex& b) { +#if EIGEN_FAST_MATH + return complex_divide_fast(a, b); +#else + return complex_divide_stable(a, b); +#endif +} + +// NOTE: We cannot specialize compound assignment operators with Scalar T, +// (i.e. operator@=(const T&), for @=+,-,*,/) +// since they are already specialized for float/double/long double within +// the standard header. We also do not specialize the stream +// operators. +#define EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS(T) \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator+(const std::complex& a) { return a; } \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator-(const std::complex& a) { \ + return std::complex(-numext::real(a), -numext::imag(a)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator+(const std::complex& a, const std::complex& b) { \ + return std::complex(numext::real(a) + numext::real(b), numext::imag(a) + numext::imag(b)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator+(const std::complex& a, const T& b) { \ + return std::complex(numext::real(a) + b, numext::imag(a)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator+(const T& a, const std::complex& b) { \ + return std::complex(a + numext::real(b), numext::imag(b)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator-(const std::complex& a, const std::complex& b) { \ + return std::complex(numext::real(a) - numext::real(b), numext::imag(a) - numext::imag(b)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator-(const std::complex& a, const T& b) { \ + return std::complex(numext::real(a) - b, numext::imag(a)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator-(const T& a, const std::complex& b) { \ + return std::complex(a - numext::real(b), -numext::imag(b)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator*(const std::complex& a, const std::complex& b) { \ + return complex_multiply(a, b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator*(const std::complex& a, const T& b) { \ + return std::complex(numext::real(a) * b, numext::imag(a) * b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator*(const T& a, const std::complex& b) { \ + return std::complex(a * numext::real(b), a * numext::imag(b)); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator/(const std::complex& a, const std::complex& b) { \ + return complex_divide(a, b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator/(const std::complex& a, const T& b) { \ + return std::complex(numext::real(a) / b, numext::imag(a) / b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex operator/(const T& a, const std::complex& b) { \ + return complex_divide(std::complex(a, 0), b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex& operator+=(std::complex& a, const std::complex& b) { \ + numext::real_ref(a) += numext::real(b); \ + numext::imag_ref(a) += numext::imag(b); \ + return a; \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex& operator-=(std::complex& a, const std::complex& b) { \ + numext::real_ref(a) -= numext::real(b); \ + numext::imag_ref(a) -= numext::imag(b); \ + return a; \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex& operator*=(std::complex& a, const std::complex& b) { \ + a = complex_multiply(a, b); \ + return a; \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +std::complex& operator/=(std::complex& a, const std::complex& b) { \ + a = complex_divide(a, b); \ + return a; \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +bool operator==(const std::complex& a, const std::complex& b) { \ + return numext::real(a) == numext::real(b) && numext::imag(a) == numext::imag(b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +bool operator==(const std::complex& a, const T& b) { \ + return numext::real(a) == b && numext::imag(a) == 0; \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +bool operator==(const T& a, const std::complex& b) { \ + return a == numext::real(b) && 0 == numext::imag(b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +bool operator!=(const std::complex& a, const std::complex& b) { \ + return !(a == b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +bool operator!=(const std::complex& a, const T& b) { \ + return !(a == b); \ +} \ + \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +bool operator!=(const T& a, const std::complex& b) { \ + return !(a == b); \ +} + +// Do not specialize for long double, since that reduces to double on device. +EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS(float) +EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS(double) + +#undef EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS + + +} // namespace complex_operator_detail + +EIGEN_USING_STD_COMPLEX_OPERATORS + +namespace numext { +EIGEN_USING_STD_COMPLEX_OPERATORS +} // namespace numext + +namespace internal { +EIGEN_USING_STD_COMPLEX_OPERATORS + +} // namespace internal +} // namespace Eigen + +#endif // !(EIGEN_COMP_ICC && _USE_COMPLEX_SPECIALIZATION_) + +#endif // EIGEN_GPUCC && EIGEN_GPU_COMPILE_PHASE + +#endif // EIGEN_COMPLEX_GPU_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/MathFunctions.h new file mode 100644 index 0000000..ad61e95 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/MathFunctions.h @@ -0,0 +1,105 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATH_FUNCTIONS_GPU_H +#define EIGEN_MATH_FUNCTIONS_GPU_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// Make sure this is only available when targeting a GPU: we don't want to +// introduce conflicts between these packet_traits definitions and the ones +// we'll use on the host side (SSE, AVX, ...) +#if defined(EIGEN_GPUCC) && defined(EIGEN_USE_GPU) +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 plog(const float4& a) +{ + return make_float4(logf(a.x), logf(a.y), logf(a.z), logf(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 plog(const double2& a) +{ + using ::log; + return make_double2(log(a.x), log(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 plog1p(const float4& a) +{ + return make_float4(log1pf(a.x), log1pf(a.y), log1pf(a.z), log1pf(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 plog1p(const double2& a) +{ + return make_double2(log1p(a.x), log1p(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pexp(const float4& a) +{ + return make_float4(expf(a.x), expf(a.y), expf(a.z), expf(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pexp(const double2& a) +{ + using ::exp; + return make_double2(exp(a.x), exp(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pexpm1(const float4& a) +{ + return make_float4(expm1f(a.x), expm1f(a.y), expm1f(a.z), expm1f(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pexpm1(const double2& a) +{ + return make_double2(expm1(a.x), expm1(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 psqrt(const float4& a) +{ + return make_float4(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z), sqrtf(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 psqrt(const double2& a) +{ + using ::sqrt; + return make_double2(sqrt(a.x), sqrt(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 prsqrt(const float4& a) +{ + return make_float4(rsqrtf(a.x), rsqrtf(a.y), rsqrtf(a.z), rsqrtf(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 prsqrt(const double2& a) +{ + return make_double2(rsqrt(a.x), rsqrt(a.y)); +} + + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_GPU_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/PacketMath.h new file mode 100644 index 0000000..a04c563 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/PacketMath.h @@ -0,0 +1,1708 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_GPU_H +#define EIGEN_PACKET_MATH_GPU_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// Read-only data cached load available. +#if defined(EIGEN_HIP_DEVICE_COMPILE) || (defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350) +#define EIGEN_GPU_HAS_LDG 1 +#endif + +// FP16 math available. +#if (defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) +#define EIGEN_CUDA_HAS_FP16_ARITHMETIC 1 +#endif + +#if defined(EIGEN_HIP_DEVICE_COMPILE) || defined(EIGEN_CUDA_HAS_FP16_ARITHMETIC) +#define EIGEN_GPU_HAS_FP16_ARITHMETIC 1 +#endif + +// Make sure this is only available when targeting a GPU: we don't want to +// introduce conflicts between these packet_traits definitions and the ones +// we'll use on the host side (SSE, AVX, ...) +#if defined(EIGEN_GPUCC) && defined(EIGEN_USE_GPU) + +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; + +template<> struct packet_traits : default_packet_traits +{ + typedef float4 type; + typedef float4 half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=4, + + HasDiv = 1, + HasSin = 0, + HasCos = 0, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasLGamma = 1, + HasDiGamma = 1, + HasZeta = 1, + HasPolygamma = 1, + HasErf = 1, + HasErfc = 1, + HasNdtri = 1, + HasBessel = 1, + HasIGamma = 1, + HasIGammaDerA = 1, + HasGammaSampleDerAlpha = 1, + HasIGammac = 1, + HasBetaInc = 1, + + HasBlend = 0, + HasFloor = 1, + }; +}; + +template<> struct packet_traits : default_packet_traits +{ + typedef double2 type; + typedef double2 half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=2, + + HasDiv = 1, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasLGamma = 1, + HasDiGamma = 1, + HasZeta = 1, + HasPolygamma = 1, + HasErf = 1, + HasErfc = 1, + HasNdtri = 1, + HasBessel = 1, + HasIGamma = 1, + HasIGammaDerA = 1, + HasGammaSampleDerAlpha = 1, + HasIGammac = 1, + HasBetaInc = 1, + + HasBlend = 0, + HasFloor = 1, + }; +}; + + +template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef float4 half; }; +template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef double2 half; }; + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pset1(const float& from) { + return make_float4(from, from, from, from); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pset1(const double& from) { + return make_double2(from, from); +} + +// We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler, +// invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation +// of the functions, while the latter can only deal with one of them. +#if defined(EIGEN_CUDA_ARCH) || defined(EIGEN_HIPCC) || (defined(EIGEN_CUDACC) && EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float bitwise_and(const float& a, + const float& b) { + return __int_as_float(__float_as_int(a) & __float_as_int(b)); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bitwise_and(const double& a, + const double& b) { + return __longlong_as_double(__double_as_longlong(a) & + __double_as_longlong(b)); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float bitwise_or(const float& a, + const float& b) { + return __int_as_float(__float_as_int(a) | __float_as_int(b)); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bitwise_or(const double& a, + const double& b) { + return __longlong_as_double(__double_as_longlong(a) | + __double_as_longlong(b)); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float bitwise_xor(const float& a, + const float& b) { + return __int_as_float(__float_as_int(a) ^ __float_as_int(b)); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bitwise_xor(const double& a, + const double& b) { + return __longlong_as_double(__double_as_longlong(a) ^ + __double_as_longlong(b)); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float bitwise_andnot(const float& a, + const float& b) { + return __int_as_float(__float_as_int(a) & ~__float_as_int(b)); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bitwise_andnot(const double& a, + const double& b) { + return __longlong_as_double(__double_as_longlong(a) & + ~__double_as_longlong(b)); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float eq_mask(const float& a, + const float& b) { + return __int_as_float(a == b ? 0xffffffffu : 0u); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double eq_mask(const double& a, + const double& b) { + return __longlong_as_double(a == b ? 0xffffffffffffffffull : 0ull); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float lt_mask(const float& a, + const float& b) { + return __int_as_float(a < b ? 0xffffffffu : 0u); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double lt_mask(const double& a, + const double& b) { + return __longlong_as_double(a < b ? 0xffffffffffffffffull : 0ull); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float le_mask(const float& a, + const float& b) { + return __int_as_float(a <= b ? 0xffffffffu : 0u); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double le_mask(const double& a, + const double& b) { + return __longlong_as_double(a <= b ? 0xffffffffffffffffull : 0ull); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pand(const float4& a, + const float4& b) { + return make_float4(bitwise_and(a.x, b.x), bitwise_and(a.y, b.y), + bitwise_and(a.z, b.z), bitwise_and(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pand(const double2& a, + const double2& b) { + return make_double2(bitwise_and(a.x, b.x), bitwise_and(a.y, b.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 por(const float4& a, + const float4& b) { + return make_float4(bitwise_or(a.x, b.x), bitwise_or(a.y, b.y), + bitwise_or(a.z, b.z), bitwise_or(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 por(const double2& a, + const double2& b) { + return make_double2(bitwise_or(a.x, b.x), bitwise_or(a.y, b.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pxor(const float4& a, + const float4& b) { + return make_float4(bitwise_xor(a.x, b.x), bitwise_xor(a.y, b.y), + bitwise_xor(a.z, b.z), bitwise_xor(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pxor(const double2& a, + const double2& b) { + return make_double2(bitwise_xor(a.x, b.x), bitwise_xor(a.y, b.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pandnot(const float4& a, + const float4& b) { + return make_float4(bitwise_andnot(a.x, b.x), bitwise_andnot(a.y, b.y), + bitwise_andnot(a.z, b.z), bitwise_andnot(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pandnot(const double2& a, const double2& b) { + return make_double2(bitwise_andnot(a.x, b.x), bitwise_andnot(a.y, b.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcmp_eq(const float4& a, + const float4& b) { + return make_float4(eq_mask(a.x, b.x), eq_mask(a.y, b.y), eq_mask(a.z, b.z), + eq_mask(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcmp_lt(const float4& a, + const float4& b) { + return make_float4(lt_mask(a.x, b.x), lt_mask(a.y, b.y), lt_mask(a.z, b.z), + lt_mask(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcmp_le(const float4& a, + const float4& b) { + return make_float4(le_mask(a.x, b.x), le_mask(a.y, b.y), le_mask(a.z, b.z), + le_mask(a.w, b.w)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pcmp_eq(const double2& a, const double2& b) { + return make_double2(eq_mask(a.x, b.x), eq_mask(a.y, b.y)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pcmp_lt(const double2& a, const double2& b) { + return make_double2(lt_mask(a.x, b.x), lt_mask(a.y, b.y)); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pcmp_le(const double2& a, const double2& b) { + return make_double2(le_mask(a.x, b.x), le_mask(a.y, b.y)); +} +#endif // defined(EIGEN_CUDA_ARCH) || defined(EIGEN_HIPCC) || (defined(EIGEN_CUDACC) && EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 plset(const float& a) { + return make_float4(a, a+1, a+2, a+3); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 plset(const double& a) { + return make_double2(a, a+1); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 padd(const float4& a, const float4& b) { + return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 padd(const double2& a, const double2& b) { + return make_double2(a.x+b.x, a.y+b.y); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 psub(const float4& a, const float4& b) { + return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 psub(const double2& a, const double2& b) { + return make_double2(a.x-b.x, a.y-b.y); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pnegate(const float4& a) { + return make_float4(-a.x, -a.y, -a.z, -a.w); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pnegate(const double2& a) { + return make_double2(-a.x, -a.y); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pconj(const float4& a) { return a; } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pconj(const double2& a) { return a; } + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmul(const float4& a, const float4& b) { + return make_float4(a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmul(const double2& a, const double2& b) { + return make_double2(a.x*b.x, a.y*b.y); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pdiv(const float4& a, const float4& b) { + return make_float4(a.x/b.x, a.y/b.y, a.z/b.z, a.w/b.w); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pdiv(const double2& a, const double2& b) { + return make_double2(a.x/b.x, a.y/b.y); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmin(const float4& a, const float4& b) { + return make_float4(fminf(a.x, b.x), fminf(a.y, b.y), fminf(a.z, b.z), fminf(a.w, b.w)); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmin(const double2& a, const double2& b) { + return make_double2(fmin(a.x, b.x), fmin(a.y, b.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmax(const float4& a, const float4& b) { + return make_float4(fmaxf(a.x, b.x), fmaxf(a.y, b.y), fmaxf(a.z, b.z), fmaxf(a.w, b.w)); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmax(const double2& a, const double2& b) { + return make_double2(fmax(a.x, b.x), fmax(a.y, b.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pload(const float* from) { + return *reinterpret_cast(from); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pload(const double* from) { + return *reinterpret_cast(from); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 ploadu(const float* from) { + return make_float4(from[0], from[1], from[2], from[3]); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 ploadu(const double* from) { + return make_double2(from[0], from[1]); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 ploaddup(const float* from) { + return make_float4(from[0], from[0], from[1], from[1]); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 ploaddup(const double* from) { + return make_double2(from[0], from[0]); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore(float* to, const float4& from) { + *reinterpret_cast(to) = from; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore(double* to, const double2& from) { + *reinterpret_cast(to) = from; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu(float* to, const float4& from) { + to[0] = from.x; + to[1] = from.y; + to[2] = from.z; + to[3] = from.w; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu(double* to, const double2& from) { + to[0] = from.x; + to[1] = from.y; +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float4 ploadt_ro(const float* from) { +#if defined(EIGEN_GPU_HAS_LDG) + return __ldg(reinterpret_cast(from)); +#else + return make_float4(from[0], from[1], from[2], from[3]); +#endif +} +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double2 ploadt_ro(const double* from) { +#if defined(EIGEN_GPU_HAS_LDG) + return __ldg(reinterpret_cast(from)); +#else + return make_double2(from[0], from[1]); +#endif +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float4 ploadt_ro(const float* from) { +#if defined(EIGEN_GPU_HAS_LDG) + return make_float4(__ldg(from+0), __ldg(from+1), __ldg(from+2), __ldg(from+3)); +#else + return make_float4(from[0], from[1], from[2], from[3]); +#endif +} +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double2 ploadt_ro(const double* from) { +#if defined(EIGEN_GPU_HAS_LDG) + return make_double2(__ldg(from+0), __ldg(from+1)); +#else + return make_double2(from[0], from[1]); +#endif +} + +template<> EIGEN_DEVICE_FUNC inline float4 pgather(const float* from, Index stride) { + return make_float4(from[0*stride], from[1*stride], from[2*stride], from[3*stride]); +} + +template<> EIGEN_DEVICE_FUNC inline double2 pgather(const double* from, Index stride) { + return make_double2(from[0*stride], from[1*stride]); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const float4& from, Index stride) { + to[stride*0] = from.x; + to[stride*1] = from.y; + to[stride*2] = from.z; + to[stride*3] = from.w; +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const double2& from, Index stride) { + to[stride*0] = from.x; + to[stride*1] = from.y; +} + +template<> EIGEN_DEVICE_FUNC inline float pfirst(const float4& a) { + return a.x; +} +template<> EIGEN_DEVICE_FUNC inline double pfirst(const double2& a) { + return a.x; +} + +template<> EIGEN_DEVICE_FUNC inline float predux(const float4& a) { + return a.x + a.y + a.z + a.w; +} +template<> EIGEN_DEVICE_FUNC inline double predux(const double2& a) { + return a.x + a.y; +} + +template<> EIGEN_DEVICE_FUNC inline float predux_max(const float4& a) { + return fmaxf(fmaxf(a.x, a.y), fmaxf(a.z, a.w)); +} +template<> EIGEN_DEVICE_FUNC inline double predux_max(const double2& a) { + return fmax(a.x, a.y); +} + +template<> EIGEN_DEVICE_FUNC inline float predux_min(const float4& a) { + return fminf(fminf(a.x, a.y), fminf(a.z, a.w)); +} +template<> EIGEN_DEVICE_FUNC inline double predux_min(const double2& a) { + return fmin(a.x, a.y); +} + +template<> EIGEN_DEVICE_FUNC inline float predux_mul(const float4& a) { + return a.x * a.y * a.z * a.w; +} +template<> EIGEN_DEVICE_FUNC inline double predux_mul(const double2& a) { + return a.x * a.y; +} + +template<> EIGEN_DEVICE_FUNC inline float4 pabs(const float4& a) { + return make_float4(fabsf(a.x), fabsf(a.y), fabsf(a.z), fabsf(a.w)); +} +template<> EIGEN_DEVICE_FUNC inline double2 pabs(const double2& a) { + return make_double2(fabs(a.x), fabs(a.y)); +} + +template<> EIGEN_DEVICE_FUNC inline float4 pfloor(const float4& a) { + return make_float4(floorf(a.x), floorf(a.y), floorf(a.z), floorf(a.w)); +} +template<> EIGEN_DEVICE_FUNC inline double2 pfloor(const double2& a) { + return make_double2(floor(a.x), floor(a.y)); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + float tmp = kernel.packet[0].y; + kernel.packet[0].y = kernel.packet[1].x; + kernel.packet[1].x = tmp; + + tmp = kernel.packet[0].z; + kernel.packet[0].z = kernel.packet[2].x; + kernel.packet[2].x = tmp; + + tmp = kernel.packet[0].w; + kernel.packet[0].w = kernel.packet[3].x; + kernel.packet[3].x = tmp; + + tmp = kernel.packet[1].z; + kernel.packet[1].z = kernel.packet[2].y; + kernel.packet[2].y = tmp; + + tmp = kernel.packet[1].w; + kernel.packet[1].w = kernel.packet[3].y; + kernel.packet[3].y = tmp; + + tmp = kernel.packet[2].w; + kernel.packet[2].w = kernel.packet[3].z; + kernel.packet[3].z = tmp; +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + double tmp = kernel.packet[0].y; + kernel.packet[0].y = kernel.packet[1].x; + kernel.packet[1].x = tmp; +} + +#endif // defined(EIGEN_GPUCC) && defined(EIGEN_USE_GPU) + +// Half-packet functions are not available on the host for CUDA 9.0-9.2, only +// on device. There is no benefit to using them on the host anyways, since they are +// emulated. +#if (defined(EIGEN_HAS_CUDA_FP16) || defined(EIGEN_HAS_HIP_FP16)) && defined(EIGEN_GPU_COMPILE_PHASE) + +typedef ulonglong2 Packet4h2; +template<> struct unpacket_traits { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4h2 half; }; +template<> struct is_arithmetic { enum { value = true }; }; + +template<> struct unpacket_traits { typedef Eigen::half type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef half2 half; }; +template<> struct is_arithmetic { enum { value = true }; }; + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4h2 type; + typedef Packet4h2 half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=8, + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasExp = 1, + HasExpm1 = 1, + HasLog = 1, + HasLog1p = 1 + }; +}; + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pset1(const Eigen::half& from) { + return __half2half2(from); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pset1(const Eigen::half& from) { + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + p_alias[0] = pset1(from); + p_alias[1] = pset1(from); + p_alias[2] = pset1(from); + p_alias[3] = pset1(from); + return r; +} + +namespace { + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pload(const Eigen::half* from) { + return *reinterpret_cast(from); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 ploadu(const Eigen::half* from) { + return __halves2half2(from[0], from[1]); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 ploaddup(const Eigen::half* from) { + return __halves2half2(from[0], from[0]); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore(Eigen::half* to, + const half2& from) { + *reinterpret_cast(to) = from; +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, + const half2& from) { + to[0] = __low2half(from); + to[1] = __high2half(from); +} + + +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE half2 ploadt_ro_aligned( + const Eigen::half* from) { +#if defined(EIGEN_GPU_HAS_LDG) + // Input is guaranteed to be properly aligned. + return __ldg(reinterpret_cast(from)); +#else + return __halves2half2(*(from+0), *(from+1)); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE half2 ploadt_ro_unaligned( + const Eigen::half* from) { +#if defined(EIGEN_GPU_HAS_LDG) + return __halves2half2(__ldg(from+0), __ldg(from+1)); +#else + return __halves2half2(*(from+0), *(from+1)); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pgather(const Eigen::half* from, + Index stride) { + return __halves2half2(from[0*stride], from[1*stride]); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter( + Eigen::half* to, const half2& from, Index stride) { + to[stride*0] = __low2half(from); + to[stride*1] = __high2half(from); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half pfirst(const half2& a) { + return __low2half(a); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pabs(const half2& a) { + half a1 = __low2half(a); + half a2 = __high2half(a); + half result1 = half_impl::raw_uint16_to_half(a1.x & 0x7FFF); + half result2 = half_impl::raw_uint16_to_half(a2.x & 0x7FFF); + return __halves2half2(result1, result2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 ptrue(const half2& /*a*/) { + half true_half = half_impl::raw_uint16_to_half(0xffffu); + return pset1(true_half); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pzero(const half2& /*a*/) { + half false_half = half_impl::raw_uint16_to_half(0x0000u); + return pset1(false_half); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + __half a1 = __low2half(kernel.packet[0]); + __half a2 = __high2half(kernel.packet[0]); + __half b1 = __low2half(kernel.packet[1]); + __half b2 = __high2half(kernel.packet[1]); + kernel.packet[0] = __halves2half2(a1, b1); + kernel.packet[1] = __halves2half2(a2, b2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 plset(const Eigen::half& a) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __halves2half2(a, __hadd(a, __float2half(1.0f))); +#else + float f = __half2float(a) + 1.0f; + return __halves2half2(a, __float2half(f)); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pselect(const half2& mask, + const half2& a, + const half2& b) { + half mask_low = __low2half(mask); + half mask_high = __high2half(mask); + half result_low = mask_low == half(0) ? __low2half(b) : __low2half(a); + half result_high = mask_high == half(0) ? __high2half(b) : __high2half(a); + return __halves2half2(result_low, result_high); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pcmp_eq(const half2& a, + const half2& b) { + half true_half = half_impl::raw_uint16_to_half(0xffffu); + half false_half = half_impl::raw_uint16_to_half(0x0000u); + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half eq1 = __half2float(a1) == __half2float(b1) ? true_half : false_half; + half eq2 = __half2float(a2) == __half2float(b2) ? true_half : false_half; + return __halves2half2(eq1, eq2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pcmp_lt(const half2& a, + const half2& b) { + half true_half = half_impl::raw_uint16_to_half(0xffffu); + half false_half = half_impl::raw_uint16_to_half(0x0000u); + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half eq1 = __half2float(a1) < __half2float(b1) ? true_half : false_half; + half eq2 = __half2float(a2) < __half2float(b2) ? true_half : false_half; + return __halves2half2(eq1, eq2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pcmp_le(const half2& a, + const half2& b) { + half true_half = half_impl::raw_uint16_to_half(0xffffu); + half false_half = half_impl::raw_uint16_to_half(0x0000u); + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half eq1 = __half2float(a1) <= __half2float(b1) ? true_half : false_half; + half eq2 = __half2float(a2) <= __half2float(b2) ? true_half : false_half; + return __halves2half2(eq1, eq2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pand(const half2& a, + const half2& b) { + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half result1 = half_impl::raw_uint16_to_half(a1.x & b1.x); + half result2 = half_impl::raw_uint16_to_half(a2.x & b2.x); + return __halves2half2(result1, result2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 por(const half2& a, + const half2& b) { + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half result1 = half_impl::raw_uint16_to_half(a1.x | b1.x); + half result2 = half_impl::raw_uint16_to_half(a2.x | b2.x); + return __halves2half2(result1, result2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pxor(const half2& a, + const half2& b) { + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half result1 = half_impl::raw_uint16_to_half(a1.x ^ b1.x); + half result2 = half_impl::raw_uint16_to_half(a2.x ^ b2.x); + return __halves2half2(result1, result2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pandnot(const half2& a, + const half2& b) { + half a1 = __low2half(a); + half a2 = __high2half(a); + half b1 = __low2half(b); + half b2 = __high2half(b); + half result1 = half_impl::raw_uint16_to_half(a1.x & ~b1.x); + half result2 = half_impl::raw_uint16_to_half(a2.x & ~b2.x); + return __halves2half2(result1, result2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 padd(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hadd2(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 + b1; + float r2 = a2 + b2; + return __floats2half2_rn(r1, r2); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 psub(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hsub2(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 - b1; + float r2 = a2 - b2; + return __floats2half2_rn(r1, r2); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pnegate(const half2& a) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hneg2(a); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + return __floats2half2_rn(-a1, -a2); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pconj(const half2& a) { return a; } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmul(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hmul2(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 * b1; + float r2 = a2 * b2; + return __floats2half2_rn(r1, r2); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmadd(const half2& a, + const half2& b, + const half2& c) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hfma2(a, b, c); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float c1 = __low2float(c); + float c2 = __high2float(c); + float r1 = a1 * b1 + c1; + float r2 = a2 * b2 + c2; + return __floats2half2_rn(r1, r2); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pdiv(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __h2div(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 / b1; + float r2 = a2 / b2; + return __floats2half2_rn(r1, r2); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmin(const half2& a, + const half2& b) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + __half r1 = a1 < b1 ? __low2half(a) : __low2half(b); + __half r2 = a2 < b2 ? __high2half(a) : __high2half(b); + return __halves2half2(r1, r2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmax(const half2& a, + const half2& b) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + __half r1 = a1 > b1 ? __low2half(a) : __low2half(b); + __half r2 = a2 > b2 ? __high2half(a) : __high2half(b); + return __halves2half2(r1, r2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux(const half2& a) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hadd(__low2half(a), __high2half(a)); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + return Eigen::half(__float2half(a1 + a2)); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux_max(const half2& a) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + __half first = __low2half(a); + __half second = __high2half(a); + return __hgt(first, second) ? first : second; +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + return a1 > a2 ? __low2half(a) : __high2half(a); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux_min(const half2& a) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + __half first = __low2half(a); + __half second = __high2half(a); + return __hlt(first, second) ? first : second; +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + return a1 < a2 ? __low2half(a) : __high2half(a); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux_mul(const half2& a) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hmul(__low2half(a), __high2half(a)); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + return Eigen::half(__float2half(a1 * a2)); +#endif +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 plog1p(const half2& a) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float r1 = log1pf(a1); + float r2 = log1pf(a2); + return __floats2half2_rn(r1, r2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pexpm1(const half2& a) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float r1 = expm1f(a1); + float r2 = expm1f(a2); + return __floats2half2_rn(r1, r2); +} + +#if (EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_HAS_FP16_ARITHMETIC)) || \ + defined(EIGEN_HIP_DEVICE_COMPILE) + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +half2 plog(const half2& a) { + return h2log(a); +} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +half2 pexp(const half2& a) { + return h2exp(a); +} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +half2 psqrt(const half2& a) { + return h2sqrt(a); +} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +half2 prsqrt(const half2& a) { + return h2rsqrt(a); +} + +#else + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 plog(const half2& a) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float r1 = logf(a1); + float r2 = logf(a2); + return __floats2half2_rn(r1, r2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pexp(const half2& a) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float r1 = expf(a1); + float r2 = expf(a2); + return __floats2half2_rn(r1, r2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 psqrt(const half2& a) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float r1 = sqrtf(a1); + float r2 = sqrtf(a2); + return __floats2half2_rn(r1, r2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 prsqrt(const half2& a) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float r1 = rsqrtf(a1); + float r2 = rsqrtf(a2); + return __floats2half2_rn(r1, r2); +} +#endif +} // namespace + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pload(const Eigen::half* from) { + return *reinterpret_cast(from); +} + +// unaligned load; +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +ploadu(const Eigen::half* from) { + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + p_alias[0] = ploadu(from + 0); + p_alias[1] = ploadu(from + 2); + p_alias[2] = ploadu(from + 4); + p_alias[3] = ploadu(from + 6); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +ploaddup(const Eigen::half* from) { + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + p_alias[0] = ploaddup(from + 0); + p_alias[1] = ploaddup(from + 1); + p_alias[2] = ploaddup(from + 2); + p_alias[3] = ploaddup(from + 3); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore( + Eigen::half* to, const Packet4h2& from) { + *reinterpret_cast(to) = from; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu( + Eigen::half* to, const Packet4h2& from) { + const half2* from_alias = reinterpret_cast(&from); + pstoreu(to + 0,from_alias[0]); + pstoreu(to + 2,from_alias[1]); + pstoreu(to + 4,from_alias[2]); + pstoreu(to + 6,from_alias[3]); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet4h2 +ploadt_ro(const Eigen::half* from) { +#if defined(EIGEN_GPU_HAS_LDG) + Packet4h2 r; + r = __ldg(reinterpret_cast(from)); + return r; +#else + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + r_alias[0] = ploadt_ro_aligned(from + 0); + r_alias[1] = ploadt_ro_aligned(from + 2); + r_alias[2] = ploadt_ro_aligned(from + 4); + r_alias[3] = ploadt_ro_aligned(from + 6); + return r; +#endif +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet4h2 +ploadt_ro(const Eigen::half* from) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + r_alias[0] = ploadt_ro_unaligned(from + 0); + r_alias[1] = ploadt_ro_unaligned(from + 2); + r_alias[2] = ploadt_ro_unaligned(from + 4); + r_alias[3] = ploadt_ro_unaligned(from + 6); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pgather(const Eigen::half* from, Index stride) { + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + p_alias[0] = __halves2half2(from[0 * stride], from[1 * stride]); + p_alias[1] = __halves2half2(from[2 * stride], from[3 * stride]); + p_alias[2] = __halves2half2(from[4 * stride], from[5 * stride]); + p_alias[3] = __halves2half2(from[6 * stride], from[7 * stride]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter( + Eigen::half* to, const Packet4h2& from, Index stride) { + const half2* from_alias = reinterpret_cast(&from); + pscatter(to + stride * 0, from_alias[0], stride); + pscatter(to + stride * 2, from_alias[1], stride); + pscatter(to + stride * 4, from_alias[2], stride); + pscatter(to + stride * 6, from_alias[3], stride); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half pfirst( + const Packet4h2& a) { + return pfirst(*(reinterpret_cast(&a))); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pabs( + const Packet4h2& a) { + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + p_alias[0] = pabs(a_alias[0]); + p_alias[1] = pabs(a_alias[1]); + p_alias[2] = pabs(a_alias[2]); + p_alias[3] = pabs(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 ptrue( + const Packet4h2& /*a*/) { + half true_half = half_impl::raw_uint16_to_half(0xffffu); + return pset1(true_half); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pzero(const Packet4h2& /*a*/) { + half false_half = half_impl::raw_uint16_to_half(0x0000u); + return pset1(false_half); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose_double( + double* d_row0, double* d_row1, double* d_row2, double* d_row3, + double* d_row4, double* d_row5, double* d_row6, double* d_row7) { + double d_tmp; + d_tmp = d_row0[1]; + d_row0[1] = d_row4[0]; + d_row4[0] = d_tmp; + + d_tmp = d_row1[1]; + d_row1[1] = d_row5[0]; + d_row5[0] = d_tmp; + + d_tmp = d_row2[1]; + d_row2[1] = d_row6[0]; + d_row6[0] = d_tmp; + + d_tmp = d_row3[1]; + d_row3[1] = d_row7[0]; + d_row7[0] = d_tmp; +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose_half2( + half2* f_row0, half2* f_row1, half2* f_row2, half2* f_row3) { + half2 f_tmp; + f_tmp = f_row0[1]; + f_row0[1] = f_row2[0]; + f_row2[0] = f_tmp; + + f_tmp = f_row1[1]; + f_row1[1] = f_row3[0]; + f_row3[0] = f_tmp; +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void +ptranspose_half(half2& f0, half2& f1) { + __half a1 = __low2half(f0); + __half a2 = __high2half(f0); + __half b1 = __low2half(f1); + __half b2 = __high2half(f1); + f0 = __halves2half2(a1, b1); + f1 = __halves2half2(a2, b2); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + double* d_row0 = reinterpret_cast(&kernel.packet[0]); + double* d_row1 = reinterpret_cast(&kernel.packet[1]); + double* d_row2 = reinterpret_cast(&kernel.packet[2]); + double* d_row3 = reinterpret_cast(&kernel.packet[3]); + double* d_row4 = reinterpret_cast(&kernel.packet[4]); + double* d_row5 = reinterpret_cast(&kernel.packet[5]); + double* d_row6 = reinterpret_cast(&kernel.packet[6]); + double* d_row7 = reinterpret_cast(&kernel.packet[7]); + ptranspose_double(d_row0, d_row1, d_row2, d_row3, + d_row4, d_row5, d_row6, d_row7); + + + half2* f_row0 = reinterpret_cast(d_row0); + half2* f_row1 = reinterpret_cast(d_row1); + half2* f_row2 = reinterpret_cast(d_row2); + half2* f_row3 = reinterpret_cast(d_row3); + ptranspose_half2(f_row0, f_row1, f_row2, f_row3); + ptranspose_half(f_row0[0], f_row1[0]); + ptranspose_half(f_row0[1], f_row1[1]); + ptranspose_half(f_row2[0], f_row3[0]); + ptranspose_half(f_row2[1], f_row3[1]); + + f_row0 = reinterpret_cast(d_row0 + 1); + f_row1 = reinterpret_cast(d_row1 + 1); + f_row2 = reinterpret_cast(d_row2 + 1); + f_row3 = reinterpret_cast(d_row3 + 1); + ptranspose_half2(f_row0, f_row1, f_row2, f_row3); + ptranspose_half(f_row0[0], f_row1[0]); + ptranspose_half(f_row0[1], f_row1[1]); + ptranspose_half(f_row2[0], f_row3[0]); + ptranspose_half(f_row2[1], f_row3[1]); + + f_row0 = reinterpret_cast(d_row4); + f_row1 = reinterpret_cast(d_row5); + f_row2 = reinterpret_cast(d_row6); + f_row3 = reinterpret_cast(d_row7); + ptranspose_half2(f_row0, f_row1, f_row2, f_row3); + ptranspose_half(f_row0[0], f_row1[0]); + ptranspose_half(f_row0[1], f_row1[1]); + ptranspose_half(f_row2[0], f_row3[0]); + ptranspose_half(f_row2[1], f_row3[1]); + + f_row0 = reinterpret_cast(d_row4 + 1); + f_row1 = reinterpret_cast(d_row5 + 1); + f_row2 = reinterpret_cast(d_row6 + 1); + f_row3 = reinterpret_cast(d_row7 + 1); + ptranspose_half2(f_row0, f_row1, f_row2, f_row3); + ptranspose_half(f_row0[0], f_row1[0]); + ptranspose_half(f_row0[1], f_row1[1]); + ptranspose_half(f_row2[0], f_row3[0]); + ptranspose_half(f_row2[1], f_row3[1]); + +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +plset(const Eigen::half& a) { +#if defined(EIGEN_HIP_DEVICE_COMPILE) + + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + p_alias[0] = __halves2half2(a, __hadd(a, __float2half(1.0f))); + p_alias[1] = __halves2half2(__hadd(a, __float2half(2.0f)), + __hadd(a, __float2half(3.0f))); + p_alias[2] = __halves2half2(__hadd(a, __float2half(4.0f)), + __hadd(a, __float2half(5.0f))); + p_alias[3] = __halves2half2(__hadd(a, __float2half(6.0f)), + __hadd(a, __float2half(7.0f))); + return r; +#elif defined(EIGEN_CUDA_HAS_FP16_ARITHMETIC) + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + + half2 b = pset1(a); + half2 c; + half2 half_offset0 = __halves2half2(__float2half(0.0f),__float2half(2.0f)); + half2 half_offset1 = __halves2half2(__float2half(4.0f),__float2half(6.0f)); + + c = __hadd2(b, half_offset0); + r_alias[0] = plset(__low2half(c)); + r_alias[1] = plset(__high2half(c)); + + c = __hadd2(b, half_offset1); + r_alias[2] = plset(__low2half(c)); + r_alias[3] = plset(__high2half(c)); + + return r; + +#else + float f = __half2float(a); + Packet4h2 r; + half2* p_alias = reinterpret_cast(&r); + p_alias[0] = __halves2half2(a, __float2half(f + 1.0f)); + p_alias[1] = __halves2half2(__float2half(f + 2.0f), __float2half(f + 3.0f)); + p_alias[2] = __halves2half2(__float2half(f + 4.0f), __float2half(f + 5.0f)); + p_alias[3] = __halves2half2(__float2half(f + 6.0f), __float2half(f + 7.0f)); + return r; +#endif +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pselect(const Packet4h2& mask, const Packet4h2& a, + const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* mask_alias = reinterpret_cast(&mask); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pselect(mask_alias[0], a_alias[0], b_alias[0]); + r_alias[1] = pselect(mask_alias[1], a_alias[1], b_alias[1]); + r_alias[2] = pselect(mask_alias[2], a_alias[2], b_alias[2]); + r_alias[3] = pselect(mask_alias[3], a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pcmp_eq(const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pcmp_eq(a_alias[0], b_alias[0]); + r_alias[1] = pcmp_eq(a_alias[1], b_alias[1]); + r_alias[2] = pcmp_eq(a_alias[2], b_alias[2]); + r_alias[3] = pcmp_eq(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pcmp_lt(const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pcmp_lt(a_alias[0], b_alias[0]); + r_alias[1] = pcmp_lt(a_alias[1], b_alias[1]); + r_alias[2] = pcmp_lt(a_alias[2], b_alias[2]); + r_alias[3] = pcmp_lt(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pcmp_le(const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pcmp_le(a_alias[0], b_alias[0]); + r_alias[1] = pcmp_le(a_alias[1], b_alias[1]); + r_alias[2] = pcmp_le(a_alias[2], b_alias[2]); + r_alias[3] = pcmp_le(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pand( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pand(a_alias[0], b_alias[0]); + r_alias[1] = pand(a_alias[1], b_alias[1]); + r_alias[2] = pand(a_alias[2], b_alias[2]); + r_alias[3] = pand(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 por( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = por(a_alias[0], b_alias[0]); + r_alias[1] = por(a_alias[1], b_alias[1]); + r_alias[2] = por(a_alias[2], b_alias[2]); + r_alias[3] = por(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pxor( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pxor(a_alias[0], b_alias[0]); + r_alias[1] = pxor(a_alias[1], b_alias[1]); + r_alias[2] = pxor(a_alias[2], b_alias[2]); + r_alias[3] = pxor(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pandnot(const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pandnot(a_alias[0], b_alias[0]); + r_alias[1] = pandnot(a_alias[1], b_alias[1]); + r_alias[2] = pandnot(a_alias[2], b_alias[2]); + r_alias[3] = pandnot(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 padd( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = padd(a_alias[0], b_alias[0]); + r_alias[1] = padd(a_alias[1], b_alias[1]); + r_alias[2] = padd(a_alias[2], b_alias[2]); + r_alias[3] = padd(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 psub( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = psub(a_alias[0], b_alias[0]); + r_alias[1] = psub(a_alias[1], b_alias[1]); + r_alias[2] = psub(a_alias[2], b_alias[2]); + r_alias[3] = psub(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pnegate(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = pnegate(a_alias[0]); + r_alias[1] = pnegate(a_alias[1]); + r_alias[2] = pnegate(a_alias[2]); + r_alias[3] = pnegate(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pconj(const Packet4h2& a) { + return a; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pmul( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pmul(a_alias[0], b_alias[0]); + r_alias[1] = pmul(a_alias[1], b_alias[1]); + r_alias[2] = pmul(a_alias[2], b_alias[2]); + r_alias[3] = pmul(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pmadd( + const Packet4h2& a, const Packet4h2& b, const Packet4h2& c) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + const half2* c_alias = reinterpret_cast(&c); + r_alias[0] = pmadd(a_alias[0], b_alias[0], c_alias[0]); + r_alias[1] = pmadd(a_alias[1], b_alias[1], c_alias[1]); + r_alias[2] = pmadd(a_alias[2], b_alias[2], c_alias[2]); + r_alias[3] = pmadd(a_alias[3], b_alias[3], c_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pdiv( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pdiv(a_alias[0], b_alias[0]); + r_alias[1] = pdiv(a_alias[1], b_alias[1]); + r_alias[2] = pdiv(a_alias[2], b_alias[2]); + r_alias[3] = pdiv(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pmin( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pmin(a_alias[0], b_alias[0]); + r_alias[1] = pmin(a_alias[1], b_alias[1]); + r_alias[2] = pmin(a_alias[2], b_alias[2]); + r_alias[3] = pmin(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pmax( + const Packet4h2& a, const Packet4h2& b) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + const half2* b_alias = reinterpret_cast(&b); + r_alias[0] = pmax(a_alias[0], b_alias[0]); + r_alias[1] = pmax(a_alias[1], b_alias[1]); + r_alias[2] = pmax(a_alias[2], b_alias[2]); + r_alias[3] = pmax(a_alias[3], b_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux( + const Packet4h2& a) { + const half2* a_alias = reinterpret_cast(&a); + + return predux(a_alias[0]) + predux(a_alias[1]) + + predux(a_alias[2]) + predux(a_alias[3]); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux_max( + const Packet4h2& a) { + const half2* a_alias = reinterpret_cast(&a); + half2 m0 = __halves2half2(predux_max(a_alias[0]), + predux_max(a_alias[1])); + half2 m1 = __halves2half2(predux_max(a_alias[2]), + predux_max(a_alias[3])); + __half first = predux_max(m0); + __half second = predux_max(m1); +#if defined(EIGEN_CUDA_HAS_FP16_ARITHMETIC) + return (__hgt(first, second) ? first : second); +#else + float ffirst = __half2float(first); + float fsecond = __half2float(second); + return (ffirst > fsecond)? first: second; +#endif +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux_min( + const Packet4h2& a) { + const half2* a_alias = reinterpret_cast(&a); + half2 m0 = __halves2half2(predux_min(a_alias[0]), + predux_min(a_alias[1])); + half2 m1 = __halves2half2(predux_min(a_alias[2]), + predux_min(a_alias[3])); + __half first = predux_min(m0); + __half second = predux_min(m1); +#if defined(EIGEN_CUDA_HAS_FP16_ARITHMETIC) + return (__hlt(first, second) ? first : second); +#else + float ffirst = __half2float(first); + float fsecond = __half2float(second); + return (ffirst < fsecond)? first: second; +#endif +} + +// likely overflow/underflow +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half predux_mul( + const Packet4h2& a) { + const half2* a_alias = reinterpret_cast(&a); + return predux_mul(pmul(pmul(a_alias[0], a_alias[1]), + pmul(a_alias[2], a_alias[3]))); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +plog1p(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = plog1p(a_alias[0]); + r_alias[1] = plog1p(a_alias[1]); + r_alias[2] = plog1p(a_alias[2]); + r_alias[3] = plog1p(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +pexpm1(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = pexpm1(a_alias[0]); + r_alias[1] = pexpm1(a_alias[1]); + r_alias[2] = pexpm1(a_alias[2]); + r_alias[3] = pexpm1(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 plog(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = plog(a_alias[0]); + r_alias[1] = plog(a_alias[1]); + r_alias[2] = plog(a_alias[2]); + r_alias[3] = plog(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pexp(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = pexp(a_alias[0]); + r_alias[1] = pexp(a_alias[1]); + r_alias[2] = pexp(a_alias[2]); + r_alias[3] = pexp(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 psqrt(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = psqrt(a_alias[0]); + r_alias[1] = psqrt(a_alias[1]); + r_alias[2] = psqrt(a_alias[2]); + r_alias[3] = psqrt(a_alias[3]); + return r; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 +prsqrt(const Packet4h2& a) { + Packet4h2 r; + half2* r_alias = reinterpret_cast(&r); + const half2* a_alias = reinterpret_cast(&a); + r_alias[0] = prsqrt(a_alias[0]); + r_alias[1] = prsqrt(a_alias[1]); + r_alias[2] = prsqrt(a_alias[2]); + r_alias[3] = prsqrt(a_alias[3]); + return r; +} + +// The following specialized padd, pmul, pdiv, pmin, pmax, pset1 are needed for +// the implementation of GPU half reduction. +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 padd(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hadd2(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 + b1; + float r2 = a2 + b2; + return __floats2half2_rn(r1, r2); +#endif +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmul(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __hmul2(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 * b1; + float r2 = a2 * b2; + return __floats2half2_rn(r1, r2); +#endif +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pdiv(const half2& a, + const half2& b) { +#if defined(EIGEN_GPU_HAS_FP16_ARITHMETIC) + return __h2div(a, b); +#else + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + float r1 = a1 / b1; + float r2 = a2 / b2; + return __floats2half2_rn(r1, r2); +#endif +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmin(const half2& a, + const half2& b) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + __half r1 = a1 < b1 ? __low2half(a) : __low2half(b); + __half r2 = a2 < b2 ? __high2half(a) : __high2half(b); + return __halves2half2(r1, r2); +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmax(const half2& a, + const half2& b) { + float a1 = __low2float(a); + float a2 = __high2float(a); + float b1 = __low2float(b); + float b2 = __high2float(b); + __half r1 = a1 > b1 ? __low2half(a) : __low2half(b); + __half r2 = a2 > b2 ? __high2half(a) : __high2half(b); + return __halves2half2(r1, r2); +} + +#endif // (defined(EIGEN_HAS_CUDA_FP16) || defined(EIGEN_HAS_HIP_FP16)) && defined(EIGEN_GPU_COMPILE_PHASE) + +#undef EIGEN_GPU_HAS_LDG +#undef EIGEN_CUDA_HAS_FP16_ARITHMETIC +#undef EIGEN_GPU_HAS_FP16_ARITHMETIC + +} // end namespace internal + +} // end namespace Eigen + + +#endif // EIGEN_PACKET_MATH_GPU_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/Tuple.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/Tuple.h new file mode 100644 index 0000000..e223ca1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/Tuple.h @@ -0,0 +1,302 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2021 The Eigen Team +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TUPLE_GPU +#define EIGEN_TUPLE_GPU + +#include +#include + +// This is a replacement of std::tuple that can be used in device code. + +namespace Eigen { +namespace internal { +namespace tuple_impl { + +// Internal tuple implementation. +template +class TupleImpl; + +// Generic recursive tuple. +template +class TupleImpl { + public: + // Tuple may contain Eigen types. + EIGEN_MAKE_ALIGNED_OPERATOR_NEW + + // Default constructor, enable if all types are default-constructible. + template::value + && reduce_all::value...>::value + >> + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC + TupleImpl() : head_{}, tail_{} {} + + // Element constructor. + template 1 || std::is_convertible::value) + >> + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC + TupleImpl(U1&& arg1, Us&&... args) + : head_(std::forward(arg1)), tail_(std::forward(args)...) {} + + // The first stored value. + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + T1& head() { + return head_; + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + const T1& head() const { + return head_; + } + + // The tail values. + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + TupleImpl& tail() { + return tail_; + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + const TupleImpl& tail() const { + return tail_; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void swap(TupleImpl& other) { + using numext::swap; + swap(head_, other.head_); + swap(tail_, other.tail_); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TupleImpl& operator=(const TupleImpl& other) { + head_ = other.head_; + tail_ = other.tail_; + return *this; + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TupleImpl& operator=(TupleImpl&& other) { + head_ = std::move(other.head_); + tail_ = std::move(other.tail_); + return *this; + } + + private: + // Allow related tuples to reference head_/tail_. + template + friend class TupleImpl; + + T1 head_; + TupleImpl tail_; +}; + +// Empty tuple specialization. +template<> +class TupleImpl {}; + +template +struct is_tuple : std::false_type {}; + +template +struct is_tuple< TupleImpl > : std::true_type {}; + +// Gets an element from a tuple. +template +struct tuple_get_impl { + using TupleType = TupleImpl; + using ReturnType = typename tuple_get_impl::ReturnType; + + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + ReturnType& run(TupleType& tuple) { + return tuple_get_impl::run(tuple.tail()); + } + + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + const ReturnType& run(const TupleType& tuple) { + return tuple_get_impl::run(tuple.tail()); + } +}; + +// Base case, getting the head element. +template +struct tuple_get_impl<0, T1, Ts...> { + using TupleType = TupleImpl; + using ReturnType = T1; + + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + T1& run(TupleType& tuple) { + return tuple.head(); + } + + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + const T1& run(const TupleType& tuple) { + return tuple.head(); + } +}; + +// Concatenates N Tuples. +template +struct tuple_cat_impl; + +template +struct tuple_cat_impl, TupleImpl, Tuples...> { + using TupleType1 = TupleImpl; + using TupleType2 = TupleImpl; + using MergedTupleType = TupleImpl; + + using ReturnType = typename tuple_cat_impl::ReturnType; + + // Uses the index sequences to extract and merge elements from tuple1 and tuple2, + // then recursively calls again. + template + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ReturnType run(Tuple1&& tuple1, std::index_sequence, + Tuple2&& tuple2, std::index_sequence, + MoreTuples&&... tuples) { + return tuple_cat_impl::run( + MergedTupleType(tuple_get_impl::run(std::forward(tuple1))..., + tuple_get_impl::run(std::forward(tuple2))...), + std::forward(tuples)...); + } + + // Concatenates the first two tuples. + template + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ReturnType run(Tuple1&& tuple1, Tuple2&& tuple2, MoreTuples&&... tuples) { + return run(std::forward(tuple1), std::make_index_sequence{}, + std::forward(tuple2), std::make_index_sequence{}, + std::forward(tuples)...); + } +}; + +// Base case with a single tuple. +template +struct tuple_cat_impl<1, TupleImpl > { + using ReturnType = TupleImpl; + + template + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ReturnType run(Tuple1&& tuple1) { + return tuple1; + } +}; + +// Special case of no tuples. +template<> +struct tuple_cat_impl<0> { + using ReturnType = TupleImpl<0>; + static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ReturnType run() {return ReturnType{}; } +}; + +// For use in make_tuple, unwraps a reference_wrapper. +template +struct unwrap_reference_wrapper { using type = T; }; + +template +struct unwrap_reference_wrapper > { using type = T&; }; + +// For use in make_tuple, decays a type and unwraps a reference_wrapper. +template +struct unwrap_decay { + using type = typename unwrap_reference_wrapper::type>::type; +}; + +/** + * Utility for determining a tuple's size. + */ +template +struct tuple_size; + +template +struct tuple_size< TupleImpl > : std::integral_constant {}; + +/** + * Gets an element of a tuple. + * \tparam Idx index of the element. + * \tparam Types ... tuple element types. + * \param tuple the tuple. + * \return a reference to the desired element. + */ +template +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename tuple_get_impl::ReturnType& +get(const TupleImpl& tuple) { + return tuple_get_impl::run(tuple); +} + +template +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename tuple_get_impl::ReturnType& +get(TupleImpl& tuple) { + return tuple_get_impl::run(tuple); +} + +/** + * Concatenate multiple tuples. + * \param tuples ... list of tuples. + * \return concatenated tuple. + */ +template::type>::value...>::value>> +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename tuple_cat_impl::type...>::ReturnType +tuple_cat(Tuples&&... tuples) { + return tuple_cat_impl::type...>::run(std::forward(tuples)...); +} + +/** + * Tie arguments together into a tuple. + */ +template > +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ReturnType tie(Args&... args) EIGEN_NOEXCEPT { + return ReturnType{args...}; +} + +/** + * Create a tuple of l-values with the supplied arguments. + */ +template ::type...> > +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ReturnType make_tuple(Args&&... args) { + return ReturnType{std::forward(args)...}; +} + +/** + * Forward a set of arguments as a tuple. + */ +template +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +TupleImpl forward_as_tuple(Args&&... args) { + return TupleImpl(std::forward(args)...); +} + +/** + * Alternative to std::tuple that can be used on device. + */ +template +using tuple = TupleImpl; + +} // namespace tuple_impl +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_TUPLE_GPU diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/TypeCasting.h new file mode 100644 index 0000000..6e8ba27 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/GPU/TypeCasting.h @@ -0,0 +1,81 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_GPU_H +#define EIGEN_TYPE_CASTING_GPU_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ + (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 2 + }; +}; + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcast(const half2& a, const half2& b) { + float2 r1 = __half22float2(a); + float2 r2 = __half22float2(b); + return make_float4(r1.x, r1.y, r2.x, r2.y); +} + + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4h2 pcast(const float4& a, const float4& b) { + Packet4h2 r; + half2* r_alias=reinterpret_cast(&r); + r_alias[0]=__floats2half2_rn(a.x,a.y); + r_alias[1]=__floats2half2_rn(a.z,a.w); + r_alias[2]=__floats2half2_rn(b.x,b.y); + r_alias[3]=__floats2half2_rn(b.z,b.w); + return r; +} + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 2, + TgtCoeffRatio = 1 + }; +}; + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcast(const Packet4h2& a) { + // Simply discard the second half of the input + float4 r; + const half2* a_alias=reinterpret_cast(&a); + float2 r1 = __half22float2(a_alias[0]); + float2 r2 = __half22float2(a_alias[1]); + r.x=static_cast(r1.x); + r.y=static_cast(r1.y); + r.z=static_cast(r2.x); + r.w=static_cast(r2.y); + return r; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pcast(const float4& a) { + // Simply discard the second half of the input + return __floats2half2_rn(a.x, a.y); +} + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_GPU_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h new file mode 100644 index 0000000..25375a0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h @@ -0,0 +1,23 @@ +/* + * math_constants.h - + * HIP equivalent of the CUDA header of the same name + */ + +#ifndef __MATH_CONSTANTS_H__ +#define __MATH_CONSTANTS_H__ + +/* single precision constants */ + +#define HIPRT_INF_F __int_as_float(0x7f800000) +#define HIPRT_NAN_F __int_as_float(0x7fffffff) +#define HIPRT_MIN_DENORM_F __int_as_float(0x00000001) +#define HIPRT_MAX_NORMAL_F __int_as_float(0x7f7fffff) +#define HIPRT_NEG_ZERO_F __int_as_float(0x80000000) +#define HIPRT_ZERO_F 0.0f +#define HIPRT_ONE_F 1.0f + +/* double precision constants */ +#define HIPRT_INF __hiloint2double(0x7ff00000, 0x00000000) +#define HIPRT_NAN __hiloint2double(0xfff80000, 0x00000000) + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HVX/GeneralBlockPanelKernel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HVX/GeneralBlockPanelKernel.h new file mode 100644 index 0000000..51f37fa --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HVX/GeneralBlockPanelKernel.h @@ -0,0 +1,46 @@ +#ifndef EIGEN_HVX_GENERAL_BLOCK_KERNEL_H +#define EIGEN_HVX_GENERAL_BLOCK_KERNEL_H + +// Only support 128B HVX now. +// Floating-point operations are only supported since V68. +#if defined __HVX__ && (__HVX_LENGTH__ == 128) && __HVX_ARCH__ >= 68 + +namespace Eigen { +namespace internal { + +template +class gebp_traits + : public gebp_traits { + public: + typedef Packet32qf AccPacket; + + EIGEN_STRONG_INLINE void initAcc(Packet32qf& p) { p = pzero(p); } + + template + EIGEN_STRONG_INLINE void madd(const Packet32f& a, const Packet32f& b, + Packet32qf& c, Packet32f& /*tmp*/, + const LaneIdType&) const { + c = pmadd_f32_to_qf32(a, b, c); + } + + template + EIGEN_STRONG_INLINE void madd(const Packet32f& a, + const QuadPacket& b, Packet32qf& c, + Packet32f& tmp, const LaneIdType& lane) const { + madd(a, b.get(lane), c, tmp, lane); + } + + EIGEN_STRONG_INLINE void acc(const Packet32qf& c, const Packet32f& alpha, + Packet32f& r) const { + r = pmadd_qf32_to_f32(c, alpha, r); + } +}; + +} // end namespace internal +} // end namespace Eigen + +#endif // __HVX__ && (__HVX_LENGTH__ == 128) && __HVX_ARCH__ >= 68 + +#endif // EIGEN_HVX_GENERAL_BLOCK_KERNEL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HVX/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HVX/PacketMath.h new file mode 100644 index 0000000..cc8722f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/HVX/PacketMath.h @@ -0,0 +1,548 @@ + +#ifndef EIGEN_HVX_PACKET_MATH_H +#define EIGEN_HVX_PACKET_MATH_H + +// Only support 128B HVX now. +// Floating-point operations are supported only since V68. +#if defined __HVX__ && (__HVX_LENGTH__ == 128) && __HVX_ARCH__ >= 68 + +// All the floating-point operations do not support IEEE standard. +// From HVX document: +// There is no concept of infinity or NaN. QFloat saturates to maximum +// exponent with maximum positive or minimum negative significand. + +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 +#endif + +namespace Eigen { +namespace internal { + +EIGEN_STRONG_INLINE HVX_Vector HVX_load(const void* mem) { + return *((HVX_Vector*)mem); +} + +EIGEN_STRONG_INLINE HVX_Vector HVX_loadu(const void* mem) { + return *((HVX_UVector*)mem); +} + +EIGEN_STRONG_INLINE void HVX_store(void* mem, HVX_Vector v) { + *((HVX_Vector*)mem) = v; +} + +EIGEN_STRONG_INLINE void HVX_storeu(void* mem, HVX_Vector v) { + *((HVX_UVector*)mem) = v; +} + +// Hexagon compiler uses same HVX_Vector to represent all HVX vector types. +// Wrap different vector type (float32, int32, etc) to different class with +// explicit constructor and casting back-and-force to HVX_Vector. +template +class HVXPacket { + public: + HVXPacket() = default; + static HVXPacket Create(HVX_Vector v) { return HVXPacket(v); } + HVX_Vector Get() const { return m_val; } + + private: + explicit HVXPacket(HVX_Vector v) : m_val(v) {} + HVX_Vector m_val = Q6_V_vzero(); +}; + +typedef HVXPacket<0> Packet32f; // float32 +typedef HVXPacket<1> Packet32qf; // qfloat32 + +template <> +struct packet_traits : default_packet_traits { + typedef Packet32f type; + typedef Packet32f half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 32, + }; +}; + +template <> +struct unpacket_traits { + typedef float type; + typedef Packet32f half; + enum { + size = 32, + alignment = Aligned128, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +// float32 operations. +template <> +EIGEN_STRONG_INLINE Packet32f pset1(const float& from) { + union { + float f; + int32_t i; + } u; + u.f = from; + return Packet32f::Create(Q6_V_vsplat_R(u.i)); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pload(const float* from) { + return Packet32f::Create(HVX_load(from)); +} +template <> +EIGEN_STRONG_INLINE Packet32f ploadu(const float* from) { + return Packet32f::Create(HVX_loadu(from)); +} + +template <> +EIGEN_STRONG_INLINE void pstore(float* to, const Packet32f& from) { + HVX_store(to, from.Get()); +} +template <> +EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet32f& from) { + HVX_storeu(to, from.Get()); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pmul(const Packet32f& a, + const Packet32f& b) { + return Packet32f::Create( + Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(a.Get(), b.Get()))); +} + +template <> +EIGEN_STRONG_INLINE Packet32f padd(const Packet32f& a, + const Packet32f& b) { + return Packet32f::Create( + Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_VsfVsf(a.Get(), b.Get()))); +} + +template <> +EIGEN_STRONG_INLINE Packet32f psub(const Packet32f& a, + const Packet32f& b) { + return Packet32f::Create( + Q6_Vsf_equals_Vqf32(Q6_Vqf32_vsub_VsfVsf(a.Get(), b.Get()))); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pnegate(const Packet32f& a) { + return psub(Packet32f::Create(Q6_V_vzero()), a); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pcmp_le(const Packet32f& a, const Packet32f& b) { + HVX_Vector v_true = Q6_Vb_vsplat_R(0xff); + HVX_VectorPred pred = Q6_Q_vcmp_gt_VsfVsf(a.Get(), b.Get()); + return Packet32f::Create(Q6_V_vmux_QVV(pred, Q6_V_vzero(), v_true)); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pcmp_eq(const Packet32f& a, const Packet32f& b) { + HVX_Vector v_true = Q6_Vb_vsplat_R(0xff); + HVX_VectorPred pred = Q6_Q_vcmp_eq_VwVw(a.Get(), b.Get()); + return Packet32f::Create(Q6_V_vmux_QVV(pred, v_true, Q6_V_vzero())); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pcmp_lt(const Packet32f& a, const Packet32f& b) { + HVX_Vector v_true = Q6_Vb_vsplat_R(0xff); + HVX_VectorPred pred = Q6_Q_vcmp_gt_VsfVsf(b.Get(), a.Get()); + return Packet32f::Create(Q6_V_vmux_QVV(pred, v_true, Q6_V_vzero())); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pcmp_lt_or_nan(const Packet32f& a, + const Packet32f& b) { + HVX_Vector v_true = Q6_Vb_vsplat_R(0xff); + HVX_VectorPred pred = Q6_Q_vcmp_gt_VsfVsf(b.Get(), a.Get()); + return Packet32f::Create(Q6_V_vmux_QVV(pred, v_true, Q6_V_vzero())); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pabs(const Packet32f& a) { + HVX_VectorPred pred = Q6_Q_vcmp_gt_VsfVsf(a.Get(), Q6_V_vzero()); + return Packet32f::Create(Q6_V_vmux_QVV(pred, a.Get(), pnegate(a).Get())); +} + +template <> +EIGEN_STRONG_INLINE float pfirst(const Packet32f& a) { + float vsf[32] __attribute__((aligned(128))); + pstore(vsf, a); + return vsf[0]; +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + // Shuffle the 32-bit lanes. + HVX_VectorPair v_0_1_0 = + Q6_W_vshuff_VVR(kernel.packet[1].Get(), kernel.packet[0].Get(), -4); + HVX_VectorPair v_0_3_2 = + Q6_W_vshuff_VVR(kernel.packet[3].Get(), kernel.packet[2].Get(), -4); + + // Shuffle the 64-bit lanes. + HVX_VectorPair v_1_1_0 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_3_2), + HEXAGON_HVX_GET_V0(v_0_1_0), -8); + HVX_VectorPair v_1_3_2 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_3_2), + HEXAGON_HVX_GET_V1(v_0_1_0), -8); + + kernel.packet[0] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_1_1_0)); + kernel.packet[1] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_1_1_0)); + kernel.packet[2] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_1_3_2)); + kernel.packet[3] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_1_3_2)); +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + // Shuffle the 32-bit lanes. + HVX_VectorPair v_0_1_0 = + Q6_W_vshuff_VVR(kernel.packet[1].Get(), kernel.packet[0].Get(), -4); + HVX_VectorPair v_0_3_2 = + Q6_W_vshuff_VVR(kernel.packet[3].Get(), kernel.packet[2].Get(), -4); + HVX_VectorPair v_0_5_4 = + Q6_W_vshuff_VVR(kernel.packet[5].Get(), kernel.packet[4].Get(), -4); + HVX_VectorPair v_0_7_6 = + Q6_W_vshuff_VVR(kernel.packet[7].Get(), kernel.packet[6].Get(), -4); + HVX_VectorPair v_0_9_8 = + Q6_W_vshuff_VVR(kernel.packet[9].Get(), kernel.packet[8].Get(), -4); + HVX_VectorPair v_0_11_10 = + Q6_W_vshuff_VVR(kernel.packet[11].Get(), kernel.packet[10].Get(), -4); + HVX_VectorPair v_0_13_12 = + Q6_W_vshuff_VVR(kernel.packet[13].Get(), kernel.packet[12].Get(), -4); + HVX_VectorPair v_0_15_14 = + Q6_W_vshuff_VVR(kernel.packet[15].Get(), kernel.packet[14].Get(), -4); + HVX_VectorPair v_0_17_16 = + Q6_W_vshuff_VVR(kernel.packet[17].Get(), kernel.packet[16].Get(), -4); + HVX_VectorPair v_0_19_18 = + Q6_W_vshuff_VVR(kernel.packet[19].Get(), kernel.packet[18].Get(), -4); + HVX_VectorPair v_0_21_20 = + Q6_W_vshuff_VVR(kernel.packet[21].Get(), kernel.packet[20].Get(), -4); + HVX_VectorPair v_0_23_22 = + Q6_W_vshuff_VVR(kernel.packet[23].Get(), kernel.packet[22].Get(), -4); + HVX_VectorPair v_0_25_24 = + Q6_W_vshuff_VVR(kernel.packet[25].Get(), kernel.packet[24].Get(), -4); + HVX_VectorPair v_0_27_26 = + Q6_W_vshuff_VVR(kernel.packet[27].Get(), kernel.packet[26].Get(), -4); + HVX_VectorPair v_0_29_28 = + Q6_W_vshuff_VVR(kernel.packet[29].Get(), kernel.packet[28].Get(), -4); + HVX_VectorPair v_0_31_30 = + Q6_W_vshuff_VVR(kernel.packet[31].Get(), kernel.packet[30].Get(), -4); + + // Shuffle the 64-bit lanes. + HVX_VectorPair v_1_1_0 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_3_2), + HEXAGON_HVX_GET_V0(v_0_1_0), -8); + HVX_VectorPair v_1_3_2 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_3_2), + HEXAGON_HVX_GET_V1(v_0_1_0), -8); + HVX_VectorPair v_1_5_4 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_7_6), + HEXAGON_HVX_GET_V0(v_0_5_4), -8); + HVX_VectorPair v_1_7_6 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_7_6), + HEXAGON_HVX_GET_V1(v_0_5_4), -8); + HVX_VectorPair v_1_9_8 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_11_10), + HEXAGON_HVX_GET_V0(v_0_9_8), -8); + HVX_VectorPair v_1_11_10 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_11_10), + HEXAGON_HVX_GET_V1(v_0_9_8), -8); + HVX_VectorPair v_1_13_12 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_15_14), + HEXAGON_HVX_GET_V0(v_0_13_12), -8); + HVX_VectorPair v_1_15_14 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_15_14), + HEXAGON_HVX_GET_V1(v_0_13_12), -8); + HVX_VectorPair v_1_17_16 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_19_18), + HEXAGON_HVX_GET_V0(v_0_17_16), -8); + HVX_VectorPair v_1_19_18 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_19_18), + HEXAGON_HVX_GET_V1(v_0_17_16), -8); + HVX_VectorPair v_1_21_20 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_23_22), + HEXAGON_HVX_GET_V0(v_0_21_20), -8); + HVX_VectorPair v_1_23_22 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_23_22), + HEXAGON_HVX_GET_V1(v_0_21_20), -8); + HVX_VectorPair v_1_25_24 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_27_26), + HEXAGON_HVX_GET_V0(v_0_25_24), -8); + HVX_VectorPair v_1_27_26 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_27_26), + HEXAGON_HVX_GET_V1(v_0_25_24), -8); + HVX_VectorPair v_1_29_28 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_31_30), + HEXAGON_HVX_GET_V0(v_0_29_28), -8); + HVX_VectorPair v_1_31_30 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_31_30), + HEXAGON_HVX_GET_V1(v_0_29_28), -8); + + // Shuffle the 128-bit lanes. + v_0_1_0 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_5_4), + HEXAGON_HVX_GET_V0(v_1_1_0), -16); + v_0_3_2 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_5_4), + HEXAGON_HVX_GET_V1(v_1_1_0), -16); + v_0_5_4 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_7_6), + HEXAGON_HVX_GET_V0(v_1_3_2), -16); + v_0_7_6 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_7_6), + HEXAGON_HVX_GET_V1(v_1_3_2), -16); + v_0_9_8 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_13_12), + HEXAGON_HVX_GET_V0(v_1_9_8), -16); + v_0_11_10 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_13_12), + HEXAGON_HVX_GET_V1(v_1_9_8), -16); + v_0_13_12 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_15_14), + HEXAGON_HVX_GET_V0(v_1_11_10), -16); + v_0_15_14 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_15_14), + HEXAGON_HVX_GET_V1(v_1_11_10), -16); + v_0_17_16 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_21_20), + HEXAGON_HVX_GET_V0(v_1_17_16), -16); + v_0_19_18 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_21_20), + HEXAGON_HVX_GET_V1(v_1_17_16), -16); + v_0_21_20 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_23_22), + HEXAGON_HVX_GET_V0(v_1_19_18), -16); + v_0_23_22 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_23_22), + HEXAGON_HVX_GET_V1(v_1_19_18), -16); + v_0_25_24 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_29_28), + HEXAGON_HVX_GET_V0(v_1_25_24), -16); + v_0_27_26 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_29_28), + HEXAGON_HVX_GET_V1(v_1_25_24), -16); + v_0_29_28 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_31_30), + HEXAGON_HVX_GET_V0(v_1_27_26), -16); + v_0_31_30 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_31_30), + HEXAGON_HVX_GET_V1(v_1_27_26), -16); + + // Shuffle the 256-bit lanes. + v_1_1_0 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_9_8), + HEXAGON_HVX_GET_V0(v_0_1_0), -32); + v_1_3_2 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_9_8), + HEXAGON_HVX_GET_V1(v_0_1_0), -32); + v_1_5_4 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_11_10), + HEXAGON_HVX_GET_V0(v_0_3_2), -32); + v_1_7_6 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_11_10), + HEXAGON_HVX_GET_V1(v_0_3_2), -32); + v_1_9_8 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_13_12), + HEXAGON_HVX_GET_V0(v_0_5_4), -32); + v_1_11_10 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_13_12), + HEXAGON_HVX_GET_V1(v_0_5_4), -32); + v_1_13_12 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_15_14), + HEXAGON_HVX_GET_V0(v_0_7_6), -32); + v_1_15_14 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_15_14), + HEXAGON_HVX_GET_V1(v_0_7_6), -32); + v_1_17_16 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_25_24), + HEXAGON_HVX_GET_V0(v_0_17_16), -32); + v_1_19_18 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_25_24), + HEXAGON_HVX_GET_V1(v_0_17_16), -32); + v_1_21_20 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_27_26), + HEXAGON_HVX_GET_V0(v_0_19_18), -32); + v_1_23_22 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_27_26), + HEXAGON_HVX_GET_V1(v_0_19_18), -32); + v_1_25_24 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_29_28), + HEXAGON_HVX_GET_V0(v_0_21_20), -32); + v_1_27_26 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_29_28), + HEXAGON_HVX_GET_V1(v_0_21_20), -32); + v_1_29_28 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_0_31_30), + HEXAGON_HVX_GET_V0(v_0_23_22), -32); + v_1_31_30 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_0_31_30), + HEXAGON_HVX_GET_V1(v_0_23_22), -32); + + // Shuffle the 512-bit lanes. + v_0_1_0 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_17_16), + HEXAGON_HVX_GET_V0(v_1_1_0), -64); + v_0_3_2 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_17_16), + HEXAGON_HVX_GET_V1(v_1_1_0), -64); + v_0_5_4 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_19_18), + HEXAGON_HVX_GET_V0(v_1_3_2), -64); + v_0_7_6 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_19_18), + HEXAGON_HVX_GET_V1(v_1_3_2), -64); + v_0_9_8 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_21_20), + HEXAGON_HVX_GET_V0(v_1_5_4), -64); + v_0_11_10 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_21_20), + HEXAGON_HVX_GET_V1(v_1_5_4), -64); + v_0_13_12 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_23_22), + HEXAGON_HVX_GET_V0(v_1_7_6), -64); + v_0_15_14 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_23_22), + HEXAGON_HVX_GET_V1(v_1_7_6), -64); + v_0_17_16 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_25_24), + HEXAGON_HVX_GET_V0(v_1_9_8), -64); + v_0_19_18 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_25_24), + HEXAGON_HVX_GET_V1(v_1_9_8), -64); + v_0_21_20 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_27_26), + HEXAGON_HVX_GET_V0(v_1_11_10), -64); + v_0_23_22 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_27_26), + HEXAGON_HVX_GET_V1(v_1_11_10), -64); + v_0_25_24 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_29_28), + HEXAGON_HVX_GET_V0(v_1_13_12), -64); + v_0_27_26 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_29_28), + HEXAGON_HVX_GET_V1(v_1_13_12), -64); + v_0_29_28 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(v_1_31_30), + HEXAGON_HVX_GET_V0(v_1_15_14), -64); + v_0_31_30 = Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V1(v_1_31_30), + HEXAGON_HVX_GET_V1(v_1_15_14), -64); + + kernel.packet[0] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_1_0)); + kernel.packet[1] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_1_0)); + kernel.packet[2] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_3_2)); + kernel.packet[3] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_3_2)); + kernel.packet[4] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_5_4)); + kernel.packet[5] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_5_4)); + kernel.packet[6] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_7_6)); + kernel.packet[7] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_7_6)); + kernel.packet[8] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_9_8)); + kernel.packet[9] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_9_8)); + kernel.packet[10] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_11_10)); + kernel.packet[11] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_11_10)); + kernel.packet[12] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_13_12)); + kernel.packet[13] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_13_12)); + kernel.packet[14] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_15_14)); + kernel.packet[15] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_15_14)); + kernel.packet[16] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_17_16)); + kernel.packet[17] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_17_16)); + kernel.packet[18] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_19_18)); + kernel.packet[19] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_19_18)); + kernel.packet[20] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_21_20)); + kernel.packet[21] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_21_20)); + kernel.packet[22] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_23_22)); + kernel.packet[23] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_23_22)); + kernel.packet[24] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_25_24)); + kernel.packet[25] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_25_24)); + kernel.packet[26] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_27_26)); + kernel.packet[27] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_27_26)); + kernel.packet[28] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_29_28)); + kernel.packet[29] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_29_28)); + kernel.packet[30] = Packet32f::Create(HEXAGON_HVX_GET_V0(v_0_31_30)); + kernel.packet[31] = Packet32f::Create(HEXAGON_HVX_GET_V1(v_0_31_30)); +} + +template <> +EIGEN_STRONG_INLINE float predux(const Packet32f& a) { + HVX_Vector vsum_4 = Q6_Vqf32_vadd_VsfVsf(Q6_V_vror_VR(a.Get(), 4), a.Get()); + HVX_Vector vsum_8 = Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_vror_VR(vsum_4, 8), vsum_4); + HVX_Vector vsum_16 = + Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_vror_VR(vsum_8, 16), vsum_8); + HVX_Vector vsum_32 = + Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_vror_VR(vsum_16, 32), vsum_16); + HVX_Vector vsum_64 = + Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_vror_VR(vsum_32, 64), vsum_32); + return pfirst(Packet32f::Create(Q6_Vsf_equals_Vqf32(vsum_64))); +} + +template <> +EIGEN_STRONG_INLINE Packet32f ploaddup(const float* from) { + HVX_Vector load = HVX_loadu(from); + HVX_VectorPair dup = Q6_W_vshuff_VVR(load, load, -4); + return Packet32f::Create(HEXAGON_HVX_GET_V0(dup)); +} + +template <> +EIGEN_STRONG_INLINE Packet32f ploadquad(const float* from) { + HVX_Vector load = HVX_loadu(from); + HVX_VectorPair dup = Q6_W_vshuff_VVR(load, load, -4); + HVX_VectorPair quad = + Q6_W_vshuff_VVR(HEXAGON_HVX_GET_V0(dup), HEXAGON_HVX_GET_V0(dup), -8); + return Packet32f::Create(HEXAGON_HVX_GET_V0(quad)); +} + +template <> +EIGEN_STRONG_INLINE Packet32f preverse(const Packet32f& a) { + HVX_Vector delta = Q6_Vb_vsplat_R(0x7c); + return Packet32f::Create(Q6_V_vdelta_VV(a.Get(), delta)); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pmin(const Packet32f& a, const Packet32f& b) { + return Packet32f::Create(Q6_Vsf_vmin_VsfVsf(a.Get(), b.Get())); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pmax(const Packet32f& a, const Packet32f& b) { + return Packet32f::Create(Q6_Vsf_vmax_VsfVsf(a.Get(), b.Get())); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pand(const Packet32f& a, const Packet32f& b) { + return Packet32f::Create(a.Get() & b.Get()); +} + +template <> +EIGEN_STRONG_INLINE Packet32f por(const Packet32f& a, const Packet32f& b) { + return Packet32f::Create(a.Get() | b.Get()); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pxor(const Packet32f& a, const Packet32f& b) { + return Packet32f::Create(a.Get() ^ b.Get()); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pnot(const Packet32f& a) { + return Packet32f::Create(~a.Get()); +} + +template <> +EIGEN_STRONG_INLINE Packet32f pselect(const Packet32f& mask, const Packet32f& a, + const Packet32f& b) { + HVX_VectorPred pred = Q6_Q_vcmp_eq_VwVw(mask.Get(), Q6_V_vzero()); + return Packet32f::Create(Q6_V_vmux_QVV(pred, b.Get(), a.Get())); +} + +template +EIGEN_STRONG_INLINE float predux_generic(const Packet32f& a, Op op) { + Packet32f vredux_4 = op(Packet32f::Create(Q6_V_vror_VR(a.Get(), 4)), a); + Packet32f vredux_8 = + op(Packet32f::Create(Q6_V_vror_VR(vredux_4.Get(), 8)), vredux_4); + Packet32f vredux_16 = + op(Packet32f::Create(Q6_V_vror_VR(vredux_8.Get(), 16)), vredux_8); + Packet32f vredux_32 = + op(Packet32f::Create(Q6_V_vror_VR(vredux_16.Get(), 32)), vredux_16); + Packet32f vredux_64 = + op(Packet32f::Create(Q6_V_vror_VR(vredux_32.Get(), 64)), vredux_32); + return pfirst(vredux_64); +} + +template <> +EIGEN_STRONG_INLINE float predux_max(const Packet32f& a) { + return predux_generic(a, pmax); +} + +template <> +EIGEN_STRONG_INLINE float predux_min(const Packet32f& a) { + return predux_generic(a, pmin); +} + +template <> +EIGEN_STRONG_INLINE bool predux_any(const Packet32f& a) { + return predux_generic(a, por) != 0.0f; +} + +static const float index_vsf[32] __attribute__((aligned(128))) = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; + +template <> +EIGEN_STRONG_INLINE Packet32f plset(const float& a) { + return padd(pload(index_vsf), pset1(a)); +} + +// qfloat32 operations. +template <> +EIGEN_STRONG_INLINE Packet32qf pzero(const Packet32qf&) { + return Packet32qf::Create(Q6_V_vzero()); +} + +template <> +EIGEN_STRONG_INLINE Packet32qf pmul(const Packet32qf& a, + const Packet32qf& b) { + return Packet32qf::Create(Q6_Vqf32_vmpy_Vqf32Vqf32(a.Get(), b.Get())); +} + +template <> +EIGEN_STRONG_INLINE Packet32qf padd(const Packet32qf& a, + const Packet32qf& b) { + return Packet32qf::Create(Q6_Vqf32_vadd_Vqf32Vqf32(a.Get(), b.Get())); +} + +// Mixed float32 and qfloat32 operations. +EIGEN_STRONG_INLINE Packet32qf pmadd_f32_to_qf32(const Packet32f& a, + const Packet32f& b, + const Packet32qf& c) { + return Packet32qf::Create(Q6_Vqf32_vadd_Vqf32Vqf32( + Q6_Vqf32_vmpy_VsfVsf(a.Get(), b.Get()), c.Get())); +} + +EIGEN_STRONG_INLINE Packet32f pmadd_qf32_to_f32(const Packet32qf& a, + const Packet32f& b, + const Packet32f& c) { + return Packet32f::Create(Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf( + Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(a.Get()), b.Get()), c.Get()))); +} + +} // end namespace internal +} // end namespace Eigen + +#endif // __HVX__ && (__HVX_LENGTH__ == 128) && __HVX_ARCH__ >= 68 + +#endif // EIGEN_HVX_PACKET_MATH_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/Complex.h new file mode 100644 index 0000000..83239c0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/Complex.h @@ -0,0 +1,645 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Wave Computing, Inc. +// Written by: +// Chris Larsen +// Alexey Frunze (afrunze@wavecomp.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_MSA_H +#define EIGEN_COMPLEX_MSA_H + +#include + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +//---------- float ---------- +struct Packet2cf { + EIGEN_STRONG_INLINE Packet2cf() { + } + EIGEN_STRONG_INLINE explicit Packet2cf(const std::complex& a, + const std::complex& b) { + Packet4f t = { std::real(a), std::imag(a), std::real(b), std::imag(b) }; + v = t; + } + EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) { + } + EIGEN_STRONG_INLINE Packet2cf(const Packet2cf& a) : v(a.v) { + } + EIGEN_STRONG_INLINE Packet2cf& operator=(const Packet2cf& b) { + v = b.v; + return *this; + } + EIGEN_STRONG_INLINE Packet2cf conjugate(void) const { + return Packet2cf((Packet4f)__builtin_msa_bnegi_d((v2u64)v, 63)); + } + EIGEN_STRONG_INLINE Packet2cf& operator*=(const Packet2cf& b) { + Packet4f v1, v2; + + // Get the real values of a | a1_re | a1_re | a2_re | a2_re | + v1 = (Packet4f)__builtin_msa_ilvev_w((v4i32)v, (v4i32)v); + // Get the imag values of a | a1_im | a1_im | a2_im | a2_im | + v2 = (Packet4f)__builtin_msa_ilvod_w((v4i32)v, (v4i32)v); + // Multiply the real a with b + v1 = pmul(v1, b.v); + // Multiply the imag a with b + v2 = pmul(v2, b.v); + // Conjugate v2 + v2 = Packet2cf(v2).conjugate().v; + // Swap real/imag elements in v2. + v2 = (Packet4f)__builtin_msa_shf_w((v4i32)v2, EIGEN_MSA_SHF_I8(1, 0, 3, 2)); + // Add and return the result + v = padd(v1, v2); + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator*(const Packet2cf& b) const { + return Packet2cf(*this) *= b; + } + EIGEN_STRONG_INLINE Packet2cf& operator+=(const Packet2cf& b) { + v = padd(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator+(const Packet2cf& b) const { + return Packet2cf(*this) += b; + } + EIGEN_STRONG_INLINE Packet2cf& operator-=(const Packet2cf& b) { + v = psub(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator-(const Packet2cf& b) const { + return Packet2cf(*this) -= b; + } + EIGEN_STRONG_INLINE Packet2cf operator/(const Packet2cf& b) const { + return pdiv_complex(Packet2cf(*this), b); + } + EIGEN_STRONG_INLINE Packet2cf& operator/=(const Packet2cf& b) { + *this = Packet2cf(*this) / b; + return *this; + } + EIGEN_STRONG_INLINE Packet2cf operator-(void) const { + return Packet2cf(pnegate(v)); + } + + Packet4f v; +}; + +inline std::ostream& operator<<(std::ostream& os, const Packet2cf& value) { + os << "[ (" << value.v[0] << ", " << value.v[1] + << "i)," + " (" + << value.v[2] << ", " << value.v[3] << "i) ]"; + return os; +} + +template <> +struct packet_traits > : default_packet_traits { + typedef Packet2cf type; + typedef Packet2cf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0, + HasBlend = 1 + }; +}; + +template <> +struct unpacket_traits { + typedef std::complex type; + enum { size = 2, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false }; + typedef Packet2cf half; +}; + +template <> +EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) { + EIGEN_MSA_DEBUG; + + float f0 = from.real(), f1 = from.imag(); + Packet4f v0 = { f0, f0, f0, f0 }; + Packet4f v1 = { f1, f1, f1, f1 }; + return Packet2cf((Packet4f)__builtin_msa_ilvr_w((Packet4i)v1, (Packet4i)v0)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return a + b; +} + +template <> +EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return a - b; +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + return -a; +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + return a.conjugate(); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return a * b; +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pand(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return Packet2cf(pand(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf por(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return Packet2cf(por(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pxor(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return Packet2cf(pxor(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return Packet2cf(pandnot(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pload(const std::complex* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload((const float*)from)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu((const float*)from)); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { + EIGEN_MSA_DEBUG; + + return pset1(*from); +} + +template <> +EIGEN_STRONG_INLINE void pstore >(std::complex* to, + const Packet2cf& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu >(std::complex* to, + const Packet2cf& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>( + const std::complex* from, Index stride) { + EIGEN_MSA_DEBUG; + + return Packet2cf(from[0 * stride], from[1 * stride]); +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, + const Packet2cf& from, + Index stride) { + EIGEN_MSA_DEBUG; + + *to = std::complex(from.v[0], from.v[1]); + to += stride; + *to = std::complex(from.v[2], from.v[3]); +} + +template <> +EIGEN_STRONG_INLINE void prefetch >(const std::complex* addr) { + EIGEN_MSA_DEBUG; + + prefetch(reinterpret_cast(addr)); +} + +template <> +EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + return std::complex(a.v[0], a.v[1]); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + return Packet2cf((Packet4f)__builtin_msa_shf_w((v4i32)a.v, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + return Packet2cf((Packet4f)__builtin_msa_shf_w((v4i32)a.v, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); +} + +template <> +EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + Packet4f value = (Packet4f)preverse((Packet2d)a.v); + value += a.v; + return std::complex(value[0], value[1]); +} + +template <> +EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) { + EIGEN_MSA_DEBUG; + + return std::complex((a.v[0] * a.v[2]) - (a.v[1] * a.v[3]), + (a.v[0] * a.v[3]) + (a.v[1] * a.v[2])); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf, Packet4f) + +template <> +EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) { + EIGEN_MSA_DEBUG; + + return a / b; +} + +inline std::ostream& operator<<(std::ostream& os, const PacketBlock& value) { + os << "[ " << value.packet[0] << ", " << std::endl << " " << value.packet[1] << " ]"; + return os; +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + EIGEN_MSA_DEBUG; + + Packet4f tmp = + (Packet4f)__builtin_msa_ilvl_d((v2i64)kernel.packet[1].v, (v2i64)kernel.packet[0].v); + kernel.packet[0].v = + (Packet4f)__builtin_msa_ilvr_d((v2i64)kernel.packet[1].v, (v2i64)kernel.packet[0].v); + kernel.packet[1].v = tmp; +} + +template <> +EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, + const Packet2cf& elsePacket) { + return (Packet2cf)(Packet4f)pblend(ifPacket, (Packet2d)thenPacket.v, + (Packet2d)elsePacket.v); +} + +//---------- double ---------- + +struct Packet1cd { + EIGEN_STRONG_INLINE Packet1cd() { + } + EIGEN_STRONG_INLINE explicit Packet1cd(const std::complex& a) { + v[0] = std::real(a); + v[1] = std::imag(a); + } + EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) { + } + EIGEN_STRONG_INLINE Packet1cd(const Packet1cd& a) : v(a.v) { + } + EIGEN_STRONG_INLINE Packet1cd& operator=(const Packet1cd& b) { + v = b.v; + return *this; + } + EIGEN_STRONG_INLINE Packet1cd conjugate(void) const { + static const v2u64 p2ul_CONJ_XOR = { 0x0, 0x8000000000000000 }; + return (Packet1cd)pxor(v, (Packet2d)p2ul_CONJ_XOR); + } + EIGEN_STRONG_INLINE Packet1cd& operator*=(const Packet1cd& b) { + Packet2d v1, v2; + + // Get the real values of a | a1_re | a1_re + v1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)v, (v2i64)v); + // Get the imag values of a | a1_im | a1_im + v2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)v, (v2i64)v); + // Multiply the real a with b + v1 = pmul(v1, b.v); + // Multiply the imag a with b + v2 = pmul(v2, b.v); + // Conjugate v2 + v2 = Packet1cd(v2).conjugate().v; + // Swap real/imag elements in v2. + v2 = (Packet2d)__builtin_msa_shf_w((v4i32)v2, EIGEN_MSA_SHF_I8(2, 3, 0, 1)); + // Add and return the result + v = padd(v1, v2); + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator*(const Packet1cd& b) const { + return Packet1cd(*this) *= b; + } + EIGEN_STRONG_INLINE Packet1cd& operator+=(const Packet1cd& b) { + v = padd(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator+(const Packet1cd& b) const { + return Packet1cd(*this) += b; + } + EIGEN_STRONG_INLINE Packet1cd& operator-=(const Packet1cd& b) { + v = psub(v, b.v); + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator-(const Packet1cd& b) const { + return Packet1cd(*this) -= b; + } + EIGEN_STRONG_INLINE Packet1cd& operator/=(const Packet1cd& b) { + *this *= b.conjugate(); + Packet2d s = pmul(b.v, b.v); + s = padd(s, preverse(s)); + v = pdiv(v, s); + return *this; + } + EIGEN_STRONG_INLINE Packet1cd operator/(const Packet1cd& b) const { + return Packet1cd(*this) /= b; + } + EIGEN_STRONG_INLINE Packet1cd operator-(void) const { + return Packet1cd(pnegate(v)); + } + + Packet2d v; +}; + +inline std::ostream& operator<<(std::ostream& os, const Packet1cd& value) { + os << "[ (" << value.v[0] << ", " << value.v[1] << "i) ]"; + return os; +} + +template <> +struct packet_traits > : default_packet_traits { + typedef Packet1cd type; + typedef Packet1cd half; + enum { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 1, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template <> +struct unpacket_traits { + typedef std::complex type; + enum { size = 1, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false }; + typedef Packet1cd half; +}; + +template <> +EIGEN_STRONG_INLINE Packet1cd pload(const std::complex* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload((const double*)from)); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu((const double*)from)); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) { + EIGEN_MSA_DEBUG; + + return Packet1cd(from); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return a + b; +} + +template <> +EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return a - b; +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { + EIGEN_MSA_DEBUG; + + return -a; +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { + EIGEN_MSA_DEBUG; + + return a.conjugate(); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return a * b; +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pand(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return Packet1cd(pand(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd por(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return Packet1cd(por(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pxor(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return Packet1cd(pxor(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return Packet1cd(pandnot(a.v, b.v)); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { + EIGEN_MSA_DEBUG; + + return pset1(*from); +} + +template <> +EIGEN_STRONG_INLINE void pstore >(std::complex* to, + const Packet1cd& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu >(std::complex* to, + const Packet1cd& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); +} + +template <> +EIGEN_STRONG_INLINE void prefetch >(const std::complex* addr) { + EIGEN_MSA_DEBUG; + + prefetch(reinterpret_cast(addr)); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet1cd pgather, Packet1cd>( + const std::complex* from, Index stride __attribute__((unused))) { + EIGEN_MSA_DEBUG; + + Packet1cd res; + res.v[0] = std::real(from[0]); + res.v[1] = std::imag(from[0]); + return res; +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter, Packet1cd>(std::complex* to, + const Packet1cd& from, + Index stride + __attribute__((unused))) { + EIGEN_MSA_DEBUG; + + pstore(to, from); +} + +template <> +EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) { + EIGEN_MSA_DEBUG; + + return std::complex(a.v[0], a.v[1]); +} + +template <> +EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { + EIGEN_MSA_DEBUG; + + return a; +} + +template <> +EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) { + EIGEN_MSA_DEBUG; + + return pfirst(a); +} + +template <> +EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) { + EIGEN_MSA_DEBUG; + + return pfirst(a); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd, Packet2d) + +template <> +EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) { + EIGEN_MSA_DEBUG; + + return a / b; +} + +EIGEN_STRONG_INLINE Packet1cd pcplxflip /**/ (const Packet1cd& x) { + EIGEN_MSA_DEBUG; + + return Packet1cd(preverse(Packet2d(x.v))); +} + +inline std::ostream& operator<<(std::ostream& os, const PacketBlock& value) { + os << "[ " << value.packet[0] << ", " << std::endl << " " << value.packet[1] << " ]"; + return os; +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + EIGEN_MSA_DEBUG; + + Packet2d v1, v2; + + v1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)kernel.packet[0].v, (v2i64)kernel.packet[1].v); + // Get the imag values of a + v2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)kernel.packet[0].v, (v2i64)kernel.packet[1].v); + + kernel.packet[0].v = v1; + kernel.packet[1].v = v2; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_MSA_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/MathFunctions.h new file mode 100644 index 0000000..5932041 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/MathFunctions.h @@ -0,0 +1,389 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007 Julien Pommier +// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) +// Copyright (C) 2016 Gael Guennebaud +// +// Copyright (C) 2018 Wave Computing, Inc. +// Written by: +// Chris Larsen +// Alexey Frunze (afrunze@wavecomp.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* The sin, cos, exp, and log functions of this file come from + * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ + */ + +/* The tanh function of this file is an adaptation of + * template T generic_fast_tanh_float(const T&) + * from MathFunctionsImpl.h. + */ + +#ifndef EIGEN_MATH_FUNCTIONS_MSA_H +#define EIGEN_MATH_FUNCTIONS_MSA_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f +plog(const Packet4f& _x) { + static EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); + static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); + static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f); + + // Convert negative argument into NAN (quiet negative, to be specific). + Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0); + Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero); + Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero); + Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask); // Add 0.0 or NAN. + Packet4f x = non_neg_x_or_nan; + + // Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0. + // N.B. the exponent is one less of what frexpf() would return. + Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x)); + // Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf(). + x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0)); + + /* + if (x < SQRTHF) { + x = x + x - 1.0; + } else { + e += 1; + x = x - 1.0; + } + */ + Packet4f xx = padd(x, x); + Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x); + e_int = psub(e_int, ge_mask); + x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x); + x = psub(x, p4f_1); + Packet4f e = __builtin_msa_ffint_s_w(e_int); + + Packet4f x2 = pmul(x, x); + Packet4f x3 = pmul(x2, x); + + Packet4f y, y1, y2; + y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1); + y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4); + y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7); + y = pmadd(y, x, p4f_cephes_log_p2); + y1 = pmadd(y1, x, p4f_cephes_log_p5); + y2 = pmadd(y2, x, p4f_cephes_log_p8); + y = pmadd(y, x3, y1); + y = pmadd(y, x3, y2); + y = pmul(y, x3); + + y = pmadd(e, p4f_cephes_log_q1, y); + x = __builtin_msa_fmsub_w(x, x2, p4f_half); + x = padd(x, y); + x = pmadd(e, p4f_cephes_log_q2, x); + + // x is now the logarithm result candidate. We still need to handle the + // extreme arguments of zero and positive infinity, though. + // N.B. if the argument is +INFINITY, x is NAN because the polynomial terms + // contain infinities of both signs (see the coefficients and code above). + // INFINITY - INFINITY is NAN. + + // If the argument is +INFINITY, make it the new result candidate. + // To achieve that we choose the smaller of the result candidate and the + // argument. + // This is correct for all finite pairs of values (the logarithm is smaller + // than the argument). + // This is also correct in the special case when the argument is +INFINITY + // and the result candidate is NAN. This is because the fmin.df instruction + // prefers non-NANs to NANs. + x = __builtin_msa_fmin_w(x, non_neg_x_or_nan); + + // If the argument is zero (including -0.0), the result becomes -INFINITY. + Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23); + x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs); + + return x; +} + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f +pexp(const Packet4f& _x) { + // Limiting single-precision pexp's argument to [-128, +128] lets pexp + // reach 0 and INFINITY naturally. + static EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f); + static EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f); + static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); + static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f); + + Packet4f x = _x; + + // Clamp x. + x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x, + (v16u8)p4f_exp_lo); + x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x, + (v16u8)p4f_exp_hi); + + // Round to nearest integer by adding 0.5 (with x's sign) and truncating. + Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0); + Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add); + Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2); + Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int); + + x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1); + x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2); + + Packet4f z = pmul(x, x); + + Packet4f y = p4f_cephes_exp_p0; + y = pmadd(y, x, p4f_cephes_exp_p1); + y = pmadd(y, x, p4f_cephes_exp_p2); + y = pmadd(y, x, p4f_cephes_exp_p3); + y = pmadd(y, x, p4f_cephes_exp_p4); + y = pmadd(y, x, p4f_cephes_exp_p5); + y = pmadd(y, z, x); + y = padd(y, p4f_1); + + // y *= 2**exponent. + y = __builtin_msa_fexp2_w(y, x2_int); + + return y; +} + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f +ptanh(const Packet4f& _x) { + static EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f); + static EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f); + // The monomial coefficients of the numerator polynomial (odd). + static EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f); + static EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f); + static EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f); + static EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f); + static EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f); + static EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f); + static EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f); + // The monomial coefficients of the denominator polynomial (even). + static EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f); + static EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f); + static EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f); + static EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f); + + Packet4f x = pabs(_x); + Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny); + + // Clamp the inputs to the range [-9, 9] since anything outside + // this range is -/+1.0f in single-precision. + x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x, + (v16u8)p4f_tanh_hi); + + // Since the polynomials are odd/even, we need x**2. + Packet4f x2 = pmul(x, x); + + // Evaluate the numerator polynomial p. + Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11); + p = pmadd(x2, p, p4f_alpha_9); + p = pmadd(x2, p, p4f_alpha_7); + p = pmadd(x2, p, p4f_alpha_5); + p = pmadd(x2, p, p4f_alpha_3); + p = pmadd(x2, p, p4f_alpha_1); + p = pmul(x, p); + + // Evaluate the denominator polynomial q. + Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4); + q = pmadd(x2, q, p4f_beta_2); + q = pmadd(x2, q, p4f_beta_0); + + // Divide the numerator by the denominator. + p = pdiv(p, q); + + // Reinstate the sign. + p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0); + + // When the argument is very small in magnitude it's more accurate to just return it. + p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x); + + return p; +} + +template +Packet4f psincos_inner_msa_float(const Packet4f& _x) { + static EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f); // Approx. (2**24) / (4/Pi). + static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f); + static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); + static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); + static EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f); + static EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f); + static EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f); + static EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f); + static EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f); + static EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f); + static EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4/Pi. + static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); + static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f); + + Packet4f x = pabs(_x); + + // Translate infinite arguments into NANs. + Packet4f zero_or_nan_if_inf = psub(_x, _x); + x = padd(x, zero_or_nan_if_inf); + // Prevent sin/cos from generating values larger than 1.0 in magnitude + // for very large arguments by setting x to 0.0. + Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg); + x = pand(x, (Packet4f)small_or_nan_mask); + + // Scale x by 4/Pi to find x's octant. + Packet4f y = pmul(x, p4f_cephes_FOPI); + // Get the octant. We'll reduce x by this number of octants or by one more than it. + Packet4i y_int = __builtin_msa_ftrunc_s_w(y); + // x's from even-numbered octants will translate to octant 0: [0, +Pi/4]. + // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0]. + // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1). + Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1); + Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0); // bclri = bit-clear + y = __builtin_msa_ffint_s_w(y_int2); + + // Compute the sign to apply to the polynomial. + Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x) + : __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29); + + // Get the polynomial selection mask. + // We'll calculate both (sin and cos) polynomials and then select from the two. + Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0); + + // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4. + // The magic pass: "Extended precision modular arithmetic" + // x = ((x - y * DP1) - y * DP2) - y * DP3 + Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1); + Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2); + Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3); + x = padd(x, tmp1); + x = padd(x, tmp2); + x = padd(x, tmp3); + + // Evaluate the cos(x) polynomial. + y = p4f_coscof_p0; + Packet4f z = pmul(x, x); + y = pmadd(y, z, p4f_coscof_p1); + y = pmadd(y, z, p4f_coscof_p2); + y = pmul(y, z); + y = pmul(y, z); + y = __builtin_msa_fmsub_w(y, z, p4f_half); + y = padd(y, p4f_1); + + // Evaluate the sin(x) polynomial. + Packet4f y2 = p4f_sincof_p0; + y2 = pmadd(y2, z, p4f_sincof_p1); + y2 = pmadd(y2, z, p4f_sincof_p2); + y2 = pmul(y2, z); + y2 = pmadd(y2, x, x); + + // Select the correct result from the two polynomials. + y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2) + : (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y); + + // Update the sign. + sign_mask = pxor(sign_mask, (Packet4i)y); + y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0); // binsli = bit-insert-left + return y; +} + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f +psin(const Packet4f& x) { + return psincos_inner_msa_float(x); +} + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f +pcos(const Packet4f& x) { + return psincos_inner_msa_float(x); +} + +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet2d +pexp(const Packet2d& _x) { + // Limiting double-precision pexp's argument to [-1024, +1024] lets pexp + // reach 0 and INFINITY naturally. + static EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0); + static EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0); + static EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); + static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); + static EIGEN_DECLARE_CONST_Packet2d(half, 0.5); + static EIGEN_DECLARE_CONST_Packet2d(1, 1.0); + static EIGEN_DECLARE_CONST_Packet2d(2, 2.0); + + Packet2d x = _x; + + // Clamp x. + x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x, + (v16u8)p2d_exp_lo); + x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x, + (v16u8)p2d_exp_hi); + + // Round to nearest integer by adding 0.5 (with x's sign) and truncating. + Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0); + Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add); + Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2); + Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long); + + x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1); + x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2); + + x2 = pmul(x, x); + + Packet2d px = p2d_cephes_exp_p0; + px = pmadd(px, x2, p2d_cephes_exp_p1); + px = pmadd(px, x2, p2d_cephes_exp_p2); + px = pmul(px, x); + + Packet2d qx = p2d_cephes_exp_q0; + qx = pmadd(qx, x2, p2d_cephes_exp_q1); + qx = pmadd(qx, x2, p2d_cephes_exp_q2); + qx = pmadd(qx, x2, p2d_cephes_exp_q3); + + x = pdiv(px, psub(qx, px)); + x = pmadd(p2d_2, x, p2d_1); + + // x *= 2**exponent. + x = __builtin_msa_fexp2_d(x, x2_long); + + return x; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_MSA_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/PacketMath.h new file mode 100644 index 0000000..4e6bcdf --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/MSA/PacketMath.h @@ -0,0 +1,1232 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Wave Computing, Inc. +// Written by: +// Chris Larsen +// Alexey Frunze (afrunze@wavecomp.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_MSA_H +#define EIGEN_PACKET_MATH_MSA_H + +#include +#include + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif + +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 +#endif + +#if 0 +#define EIGEN_MSA_DEBUG \ + static bool firstTime = true; \ + do { \ + if (firstTime) { \ + std::cout << __FILE__ << ':' << __LINE__ << ':' << __FUNCTION__ << std::endl; \ + firstTime = false; \ + } \ + } while (0) +#else +#define EIGEN_MSA_DEBUG +#endif + +#define EIGEN_MSA_SHF_I8(a, b, c, d) (((d) << 6) | ((c) << 4) | ((b) << 2) | (a)) + +typedef v4f32 Packet4f; +typedef v4i32 Packet4i; +typedef v4u32 Packet4ui; + +#define EIGEN_DECLARE_CONST_Packet4f(NAME, X) const Packet4f p4f_##NAME = { X, X, X, X } +#define EIGEN_DECLARE_CONST_Packet4i(NAME, X) const Packet4i p4i_##NAME = { X, X, X, X } +#define EIGEN_DECLARE_CONST_Packet4ui(NAME, X) const Packet4ui p4ui_##NAME = { X, X, X, X } + +inline std::ostream& operator<<(std::ostream& os, const Packet4f& value) { + os << "[ " << value[0] << ", " << value[1] << ", " << value[2] << ", " << value[3] << " ]"; + return os; +} + +inline std::ostream& operator<<(std::ostream& os, const Packet4i& value) { + os << "[ " << value[0] << ", " << value[1] << ", " << value[2] << ", " << value[3] << " ]"; + return os; +} + +inline std::ostream& operator<<(std::ostream& os, const Packet4ui& value) { + os << "[ " << value[0] << ", " << value[1] << ", " << value[2] << ", " << value[3] << " ]"; + return os; +} + +template <> +struct packet_traits : default_packet_traits { + typedef Packet4f type; + typedef Packet4f half; // Packet2f intrinsics not implemented yet + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + // FIXME check the Has* + HasDiv = 1, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasBlend = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet4i type; + typedef Packet4i half; // Packet2i intrinsics not implemented yet + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + // FIXME check the Has* + HasDiv = 1, + HasBlend = 1 + }; +}; + +template <> +struct unpacket_traits { + typedef float type; + enum { size = 4, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false }; + typedef Packet4f half; +}; + +template <> +struct unpacket_traits { + typedef int32_t type; + enum { size = 4, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false }; + typedef Packet4i half; +}; + +template <> +EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { + EIGEN_MSA_DEBUG; + + Packet4f v = { from, from, from, from }; + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet4i pset1(const int32_t& from) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fill_w(from); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pload1(const float* from) { + EIGEN_MSA_DEBUG; + + float f = *from; + Packet4f v = { f, f, f, f }; + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet4i pload1(const int32_t* from) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fill_w(*from); +} + +template <> +EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fadd_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_addv_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f plset(const float& a) { + EIGEN_MSA_DEBUG; + + static const Packet4f countdown = { 0.0f, 1.0f, 2.0f, 3.0f }; + return padd(pset1(a), countdown); +} + +template <> +EIGEN_STRONG_INLINE Packet4i plset(const int32_t& a) { + EIGEN_MSA_DEBUG; + + static const Packet4i countdown = { 0, 1, 2, 3 }; + return padd(pset1(a), countdown); +} + +template <> +EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fsub_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_subv_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + return (Packet4f)__builtin_msa_bnegi_w((v4u32)a, 31); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_addvi_w((v4i32)__builtin_msa_nori_b((v16u8)a, 0), 1); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fmul_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_mulv_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fdiv_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_div_s_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fmadd_w(c, a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { + EIGEN_MSA_DEBUG; + + // Use "asm" construct to avoid __builtin_msa_maddv_w GNU C bug. + Packet4i value = c; + __asm__("maddv.w %w[value], %w[a], %w[b]\n" + // Outputs + : [value] "+f"(value) + // Inputs + : [a] "f"(a), [b] "f"(b)); + return value; +} + +template <> +EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return (Packet4f)__builtin_msa_and_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return (Packet4i)__builtin_msa_and_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return (Packet4f)__builtin_msa_or_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return (Packet4i)__builtin_msa_or_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return (Packet4f)__builtin_msa_xor_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return (Packet4i)__builtin_msa_xor_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + + return pand(a, (Packet4f)__builtin_msa_xori_b((v16u8)b, 255)); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return pand(a, (Packet4i)__builtin_msa_xori_b((v16u8)b, 255)); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + // This prefers numbers to NaNs. + return __builtin_msa_fmin_w(a, b); +#else + // This prefers NaNs to numbers. + Packet4i aNaN = __builtin_msa_fcun_w(a, a); + Packet4i aMinOrNaN = por(__builtin_msa_fclt_w(a, b), aNaN); + return (Packet4f)__builtin_msa_bsel_v((v16u8)aMinOrNaN, (v16u8)b, (v16u8)a); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_min_s_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + // This prefers numbers to NaNs. + return __builtin_msa_fmax_w(a, b); +#else + // This prefers NaNs to numbers. + Packet4i aNaN = __builtin_msa_fcun_w(a, a); + Packet4i aMaxOrNaN = por(__builtin_msa_fclt_w(b, a), aNaN); + return (Packet4f)__builtin_msa_bsel_v((v16u8)aMaxOrNaN, (v16u8)b, (v16u8)a); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_max_s_w(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pload(const float* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_LOAD return (Packet4f)__builtin_msa_ld_w(const_cast(from), 0); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pload(const int32_t* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_LOAD return __builtin_msa_ld_w(const_cast(from), 0); +} + +template <> +EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_LOAD return (Packet4f)__builtin_msa_ld_w(const_cast(from), 0); +} + +template <> +EIGEN_STRONG_INLINE Packet4i ploadu(const int32_t* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_LOAD return (Packet4i)__builtin_msa_ld_w(const_cast(from), 0); +} + +template <> +EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) { + EIGEN_MSA_DEBUG; + + float f0 = from[0], f1 = from[1]; + Packet4f v0 = { f0, f0, f0, f0 }; + Packet4f v1 = { f1, f1, f1, f1 }; + return (Packet4f)__builtin_msa_ilvr_d((v2i64)v1, (v2i64)v0); +} + +template <> +EIGEN_STRONG_INLINE Packet4i ploaddup(const int32_t* from) { + EIGEN_MSA_DEBUG; + + int32_t i0 = from[0], i1 = from[1]; + Packet4i v0 = { i0, i0, i0, i0 }; + Packet4i v1 = { i1, i1, i1, i1 }; + return (Packet4i)__builtin_msa_ilvr_d((v2i64)v1, (v2i64)v0); +} + +template <> +EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_STORE __builtin_msa_st_w((Packet4i)from, to, 0); +} + +template <> +EIGEN_STRONG_INLINE void pstore(int32_t* to, const Packet4i& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_STORE __builtin_msa_st_w(from, to, 0); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_STORE __builtin_msa_st_w((Packet4i)from, to, 0); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(int32_t* to, const Packet4i& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_STORE __builtin_msa_st_w(from, to, 0); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) { + EIGEN_MSA_DEBUG; + + float f = *from; + Packet4f v = { f, f, f, f }; + v[1] = from[stride]; + v[2] = from[2 * stride]; + v[3] = from[3 * stride]; + return v; +} + +template <> +EIGEN_DEVICE_FUNC inline Packet4i pgather(const int32_t* from, Index stride) { + EIGEN_MSA_DEBUG; + + int32_t i = *from; + Packet4i v = { i, i, i, i }; + v[1] = from[stride]; + v[2] = from[2 * stride]; + v[3] = from[3 * stride]; + return v; +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, + Index stride) { + EIGEN_MSA_DEBUG; + + *to = from[0]; + to += stride; + *to = from[1]; + to += stride; + *to = from[2]; + to += stride; + *to = from[3]; +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter(int32_t* to, const Packet4i& from, + Index stride) { + EIGEN_MSA_DEBUG; + + *to = from[0]; + to += stride; + *to = from[1]; + to += stride; + *to = from[2]; + to += stride; + *to = from[3]; +} + +template <> +EIGEN_STRONG_INLINE void prefetch(const float* addr) { + EIGEN_MSA_DEBUG; + + __builtin_prefetch(addr); +} + +template <> +EIGEN_STRONG_INLINE void prefetch(const int32_t* addr) { + EIGEN_MSA_DEBUG; + + __builtin_prefetch(addr); +} + +template <> +EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + return a[0]; +} + +template <> +EIGEN_STRONG_INLINE int32_t pfirst(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + return a[0]; +} + +template <> +EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + return (Packet4f)__builtin_msa_shf_w((v4i32)a, EIGEN_MSA_SHF_I8(3, 2, 1, 0)); +} + +template <> +EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_shf_w(a, EIGEN_MSA_SHF_I8(3, 2, 1, 0)); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + return (Packet4f)__builtin_msa_bclri_w((v4u32)a, 31); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + Packet4i zero = __builtin_msa_ldi_w(0); + return __builtin_msa_add_a_w(zero, a); +} + +template <> +EIGEN_STRONG_INLINE float predux(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + Packet4f s = padd(a, (Packet4f)__builtin_msa_shf_w((v4i32)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); + s = padd(s, (Packet4f)__builtin_msa_shf_w((v4i32)s, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); + return s[0]; +} + + +template <> +EIGEN_STRONG_INLINE int32_t predux(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + Packet4i s = padd(a, __builtin_msa_shf_w(a, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); + s = padd(s, __builtin_msa_shf_w(s, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); + return s[0]; +} + +// Other reduction functions: +// mul +template <> +EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + Packet4f p = pmul(a, (Packet4f)__builtin_msa_shf_w((v4i32)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); + p = pmul(p, (Packet4f)__builtin_msa_shf_w((v4i32)p, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); + return p[0]; +} + +template <> +EIGEN_STRONG_INLINE int32_t predux_mul(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + Packet4i p = pmul(a, __builtin_msa_shf_w(a, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); + p = pmul(p, __builtin_msa_shf_w(p, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); + return p[0]; +} + +// min +template <> +EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + // Swap 64-bit halves of a. + Packet4f swapped = (Packet4f)__builtin_msa_shf_w((Packet4i)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1)); +#if !EIGEN_FAST_MATH + // Detect presence of NaNs from pairs a[0]-a[2] and a[1]-a[3] as two 32-bit + // masks of all zeroes/ones in low 64 bits. + v16u8 unord = (v16u8)__builtin_msa_fcun_w(a, swapped); + // Combine the two masks into one: 64 ones if no NaNs, otherwise 64 zeroes. + unord = (v16u8)__builtin_msa_ceqi_d((v2i64)unord, 0); +#endif + // Continue with min computation. + Packet4f v = __builtin_msa_fmin_w(a, swapped); + v = __builtin_msa_fmin_w( + v, (Packet4f)__builtin_msa_shf_w((Packet4i)v, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); +#if !EIGEN_FAST_MATH + // Based on the mask select between v and 4 qNaNs. + v16u8 qnans = (v16u8)__builtin_msa_fill_w(0x7FC00000); + v = (Packet4f)__builtin_msa_bsel_v(unord, qnans, (v16u8)v); +#endif + return v[0]; +} + +template <> +EIGEN_STRONG_INLINE int32_t predux_min(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + Packet4i m = pmin(a, __builtin_msa_shf_w(a, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); + m = pmin(m, __builtin_msa_shf_w(m, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); + return m[0]; +} + +// max +template <> +EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + // Swap 64-bit halves of a. + Packet4f swapped = (Packet4f)__builtin_msa_shf_w((Packet4i)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1)); +#if !EIGEN_FAST_MATH + // Detect presence of NaNs from pairs a[0]-a[2] and a[1]-a[3] as two 32-bit + // masks of all zeroes/ones in low 64 bits. + v16u8 unord = (v16u8)__builtin_msa_fcun_w(a, swapped); + // Combine the two masks into one: 64 ones if no NaNs, otherwise 64 zeroes. + unord = (v16u8)__builtin_msa_ceqi_d((v2i64)unord, 0); +#endif + // Continue with max computation. + Packet4f v = __builtin_msa_fmax_w(a, swapped); + v = __builtin_msa_fmax_w( + v, (Packet4f)__builtin_msa_shf_w((Packet4i)v, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); +#if !EIGEN_FAST_MATH + // Based on the mask select between v and 4 qNaNs. + v16u8 qnans = (v16u8)__builtin_msa_fill_w(0x7FC00000); + v = (Packet4f)__builtin_msa_bsel_v(unord, qnans, (v16u8)v); +#endif + return v[0]; +} + +template <> +EIGEN_STRONG_INLINE int32_t predux_max(const Packet4i& a) { + EIGEN_MSA_DEBUG; + + Packet4i m = pmax(a, __builtin_msa_shf_w(a, EIGEN_MSA_SHF_I8(2, 3, 0, 1))); + m = pmax(m, __builtin_msa_shf_w(m, EIGEN_MSA_SHF_I8(1, 0, 3, 2))); + return m[0]; +} + +inline std::ostream& operator<<(std::ostream& os, const PacketBlock& value) { + os << "[ " << value.packet[0] << "," << std::endl + << " " << value.packet[1] << "," << std::endl + << " " << value.packet[2] << "," << std::endl + << " " << value.packet[3] << " ]"; + return os; +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + EIGEN_MSA_DEBUG; + + v4i32 tmp1, tmp2, tmp3, tmp4; + + tmp1 = __builtin_msa_ilvr_w((v4i32)kernel.packet[1], (v4i32)kernel.packet[0]); + tmp2 = __builtin_msa_ilvr_w((v4i32)kernel.packet[3], (v4i32)kernel.packet[2]); + tmp3 = __builtin_msa_ilvl_w((v4i32)kernel.packet[1], (v4i32)kernel.packet[0]); + tmp4 = __builtin_msa_ilvl_w((v4i32)kernel.packet[3], (v4i32)kernel.packet[2]); + + kernel.packet[0] = (Packet4f)__builtin_msa_ilvr_d((v2i64)tmp2, (v2i64)tmp1); + kernel.packet[1] = (Packet4f)__builtin_msa_ilvod_d((v2i64)tmp2, (v2i64)tmp1); + kernel.packet[2] = (Packet4f)__builtin_msa_ilvr_d((v2i64)tmp4, (v2i64)tmp3); + kernel.packet[3] = (Packet4f)__builtin_msa_ilvod_d((v2i64)tmp4, (v2i64)tmp3); +} + +inline std::ostream& operator<<(std::ostream& os, const PacketBlock& value) { + os << "[ " << value.packet[0] << "," << std::endl + << " " << value.packet[1] << "," << std::endl + << " " << value.packet[2] << "," << std::endl + << " " << value.packet[3] << " ]"; + return os; +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + EIGEN_MSA_DEBUG; + + v4i32 tmp1, tmp2, tmp3, tmp4; + + tmp1 = __builtin_msa_ilvr_w(kernel.packet[1], kernel.packet[0]); + tmp2 = __builtin_msa_ilvr_w(kernel.packet[3], kernel.packet[2]); + tmp3 = __builtin_msa_ilvl_w(kernel.packet[1], kernel.packet[0]); + tmp4 = __builtin_msa_ilvl_w(kernel.packet[3], kernel.packet[2]); + + kernel.packet[0] = (Packet4i)__builtin_msa_ilvr_d((v2i64)tmp2, (v2i64)tmp1); + kernel.packet[1] = (Packet4i)__builtin_msa_ilvod_d((v2i64)tmp2, (v2i64)tmp1); + kernel.packet[2] = (Packet4i)__builtin_msa_ilvr_d((v2i64)tmp4, (v2i64)tmp3); + kernel.packet[3] = (Packet4i)__builtin_msa_ilvod_d((v2i64)tmp4, (v2i64)tmp3); +} + +template <> +EIGEN_STRONG_INLINE Packet4f psqrt(const Packet4f& a) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fsqrt_w(a); +} + +template <> +EIGEN_STRONG_INLINE Packet4f prsqrt(const Packet4f& a) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + return __builtin_msa_frsqrt_w(a); +#else + Packet4f ones = __builtin_msa_ffint_s_w(__builtin_msa_ldi_w(1)); + return pdiv(ones, psqrt(a)); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) { + Packet4f v = a; + int32_t old_mode, new_mode; + asm volatile( + "cfcmsa %[old_mode], $1\n" + "ori %[new_mode], %[old_mode], 3\n" // 3 = round towards -INFINITY. + "ctcmsa $1, %[new_mode]\n" + "frint.w %w[v], %w[v]\n" + "ctcmsa $1, %[old_mode]\n" + : // outputs + [old_mode] "=r"(old_mode), [new_mode] "=r"(new_mode), + [v] "+f"(v) + : // inputs + : // clobbers + ); + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) { + Packet4f v = a; + int32_t old_mode, new_mode; + asm volatile( + "cfcmsa %[old_mode], $1\n" + "ori %[new_mode], %[old_mode], 3\n" + "xori %[new_mode], %[new_mode], 1\n" // 2 = round towards +INFINITY. + "ctcmsa $1, %[new_mode]\n" + "frint.w %w[v], %w[v]\n" + "ctcmsa $1, %[old_mode]\n" + : // outputs + [old_mode] "=r"(old_mode), [new_mode] "=r"(new_mode), + [v] "+f"(v) + : // inputs + : // clobbers + ); + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) { + Packet4f v = a; + int32_t old_mode, new_mode; + asm volatile( + "cfcmsa %[old_mode], $1\n" + "ori %[new_mode], %[old_mode], 3\n" + "xori %[new_mode], %[new_mode], 3\n" // 0 = round to nearest, ties to even. + "ctcmsa $1, %[new_mode]\n" + "frint.w %w[v], %w[v]\n" + "ctcmsa $1, %[old_mode]\n" + : // outputs + [old_mode] "=r"(old_mode), [new_mode] "=r"(new_mode), + [v] "+f"(v) + : // inputs + : // clobbers + ); + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, + const Packet4f& elsePacket) { + Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], + ifPacket.select[3] }; + Packet4i mask = __builtin_msa_ceqi_w((Packet4i)select, 0); + return (Packet4f)__builtin_msa_bsel_v((v16u8)mask, (v16u8)thenPacket, (v16u8)elsePacket); +} + +template <> +EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, + const Packet4i& elsePacket) { + Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], + ifPacket.select[3] }; + Packet4i mask = __builtin_msa_ceqi_w((Packet4i)select, 0); + return (Packet4i)__builtin_msa_bsel_v((v16u8)mask, (v16u8)thenPacket, (v16u8)elsePacket); +} + +//---------- double ---------- + +typedef v2f64 Packet2d; +typedef v2i64 Packet2l; +typedef v2u64 Packet2ul; + +#define EIGEN_DECLARE_CONST_Packet2d(NAME, X) const Packet2d p2d_##NAME = { X, X } +#define EIGEN_DECLARE_CONST_Packet2l(NAME, X) const Packet2l p2l_##NAME = { X, X } +#define EIGEN_DECLARE_CONST_Packet2ul(NAME, X) const Packet2ul p2ul_##NAME = { X, X } + +inline std::ostream& operator<<(std::ostream& os, const Packet2d& value) { + os << "[ " << value[0] << ", " << value[1] << " ]"; + return os; +} + +inline std::ostream& operator<<(std::ostream& os, const Packet2l& value) { + os << "[ " << value[0] << ", " << value[1] << " ]"; + return os; +} + +inline std::ostream& operator<<(std::ostream& os, const Packet2ul& value) { + os << "[ " << value[0] << ", " << value[1] << " ]"; + return os; +} + +template <> +struct packet_traits : default_packet_traits { + typedef Packet2d type; + typedef Packet2d half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + // FIXME check the Has* + HasDiv = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasBlend = 1 + }; +}; + +template <> +struct unpacket_traits { + typedef double type; + enum { size = 2, alignment = Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false }; + typedef Packet2d half; +}; + +template <> +EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { + EIGEN_MSA_DEBUG; + + Packet2d value = { from, from }; + return value; +} + +template <> +EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fadd_d(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d plset(const double& a) { + EIGEN_MSA_DEBUG; + + static const Packet2d countdown = { 0.0, 1.0 }; + return padd(pset1(a), countdown); +} + +template <> +EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fsub_d(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + return (Packet2d)__builtin_msa_bnegi_d((v2u64)a, 63); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fmul_d(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fdiv_d(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fmadd_d(c, a, b); +} + +// Logical Operations are not supported for float, so we have to reinterpret casts using MSA +// intrinsics +template <> +EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return (Packet2d)__builtin_msa_and_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return (Packet2d)__builtin_msa_or_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return (Packet2d)__builtin_msa_xor_v((v16u8)a, (v16u8)b); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + + return pand(a, (Packet2d)__builtin_msa_xori_b((v16u8)b, 255)); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pload(const double* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_LOAD return (Packet2d)__builtin_msa_ld_d(const_cast(from), 0); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + // This prefers numbers to NaNs. + return __builtin_msa_fmin_d(a, b); +#else + // This prefers NaNs to numbers. + v2i64 aNaN = __builtin_msa_fcun_d(a, a); + v2i64 aMinOrNaN = por(__builtin_msa_fclt_d(a, b), aNaN); + return (Packet2d)__builtin_msa_bsel_v((v16u8)aMinOrNaN, (v16u8)b, (v16u8)a); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + // This prefers numbers to NaNs. + return __builtin_msa_fmax_d(a, b); +#else + // This prefers NaNs to numbers. + v2i64 aNaN = __builtin_msa_fcun_d(a, a); + v2i64 aMaxOrNaN = por(__builtin_msa_fclt_d(b, a), aNaN); + return (Packet2d)__builtin_msa_bsel_v((v16u8)aMaxOrNaN, (v16u8)b, (v16u8)a); +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_LOAD return (Packet2d)__builtin_msa_ld_d(const_cast(from), 0); +} + +template <> +EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) { + EIGEN_MSA_DEBUG; + + Packet2d value = { *from, *from }; + return value; +} + +template <> +EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_ALIGNED_STORE __builtin_msa_st_d((v2i64)from, to, 0); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) { + EIGEN_MSA_DEBUG; + + EIGEN_DEBUG_UNALIGNED_STORE __builtin_msa_st_d((v2i64)from, to, 0); +} + +template <> +EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) { + EIGEN_MSA_DEBUG; + + Packet2d value; + value[0] = *from; + from += stride; + value[1] = *from; + return value; +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, + Index stride) { + EIGEN_MSA_DEBUG; + + *to = from[0]; + to += stride; + *to = from[1]; +} + +template <> +EIGEN_STRONG_INLINE void prefetch(const double* addr) { + EIGEN_MSA_DEBUG; + + __builtin_prefetch(addr); +} + +template <> +EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + return a[0]; +} + +template <> +EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + return (Packet2d)__builtin_msa_shf_w((v4i32)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1)); +} + +template <> +EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + return (Packet2d)__builtin_msa_bclri_d((v2u64)a, 63); +} + +template <> +EIGEN_STRONG_INLINE double predux(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + Packet2d s = padd(a, preverse(a)); + return s[0]; +} + +// Other reduction functions: +// mul +template <> +EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + Packet2d p = pmul(a, preverse(a)); + return p[0]; +} + +// min +template <> +EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + Packet2d swapped = (Packet2d)__builtin_msa_shf_w((Packet4i)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1)); + Packet2d v = __builtin_msa_fmin_d(a, swapped); + return v[0]; +#else + double a0 = a[0], a1 = a[1]; + return ((numext::isnan)(a0) || a0 < a1) ? a0 : a1; +#endif +} + +// max +template <> +EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + Packet2d swapped = (Packet2d)__builtin_msa_shf_w((Packet4i)a, EIGEN_MSA_SHF_I8(2, 3, 0, 1)); + Packet2d v = __builtin_msa_fmax_d(a, swapped); + return v[0]; +#else + double a0 = a[0], a1 = a[1]; + return ((numext::isnan)(a0) || a0 > a1) ? a0 : a1; +#endif +} + +template <> +EIGEN_STRONG_INLINE Packet2d psqrt(const Packet2d& a) { + EIGEN_MSA_DEBUG; + + return __builtin_msa_fsqrt_d(a); +} + +template <> +EIGEN_STRONG_INLINE Packet2d prsqrt(const Packet2d& a) { + EIGEN_MSA_DEBUG; + +#if EIGEN_FAST_MATH + return __builtin_msa_frsqrt_d(a); +#else + Packet2d ones = __builtin_msa_ffint_s_d(__builtin_msa_ldi_d(1)); + return pdiv(ones, psqrt(a)); +#endif +} + +inline std::ostream& operator<<(std::ostream& os, const PacketBlock& value) { + os << "[ " << value.packet[0] << "," << std::endl << " " << value.packet[1] << " ]"; + return os; +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + EIGEN_MSA_DEBUG; + + Packet2d trn1 = (Packet2d)__builtin_msa_ilvev_d((v2i64)kernel.packet[1], (v2i64)kernel.packet[0]); + Packet2d trn2 = (Packet2d)__builtin_msa_ilvod_d((v2i64)kernel.packet[1], (v2i64)kernel.packet[0]); + kernel.packet[0] = trn1; + kernel.packet[1] = trn2; +} + +template <> +EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { + Packet2d v = a; + int32_t old_mode, new_mode; + asm volatile( + "cfcmsa %[old_mode], $1\n" + "ori %[new_mode], %[old_mode], 3\n" // 3 = round towards -INFINITY. + "ctcmsa $1, %[new_mode]\n" + "frint.d %w[v], %w[v]\n" + "ctcmsa $1, %[old_mode]\n" + : // outputs + [old_mode] "=r"(old_mode), [new_mode] "=r"(new_mode), + [v] "+f"(v) + : // inputs + : // clobbers + ); + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { + Packet2d v = a; + int32_t old_mode, new_mode; + asm volatile( + "cfcmsa %[old_mode], $1\n" + "ori %[new_mode], %[old_mode], 3\n" + "xori %[new_mode], %[new_mode], 1\n" // 2 = round towards +INFINITY. + "ctcmsa $1, %[new_mode]\n" + "frint.d %w[v], %w[v]\n" + "ctcmsa $1, %[old_mode]\n" + : // outputs + [old_mode] "=r"(old_mode), [new_mode] "=r"(new_mode), + [v] "+f"(v) + : // inputs + : // clobbers + ); + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) { + Packet2d v = a; + int32_t old_mode, new_mode; + asm volatile( + "cfcmsa %[old_mode], $1\n" + "ori %[new_mode], %[old_mode], 3\n" + "xori %[new_mode], %[new_mode], 3\n" // 0 = round to nearest, ties to even. + "ctcmsa $1, %[new_mode]\n" + "frint.d %w[v], %w[v]\n" + "ctcmsa $1, %[old_mode]\n" + : // outputs + [old_mode] "=r"(old_mode), [new_mode] "=r"(new_mode), + [v] "+f"(v) + : // inputs + : // clobbers + ); + return v; +} + +template <> +EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, + const Packet2d& elsePacket) { + Packet2ul select = { ifPacket.select[0], ifPacket.select[1] }; + Packet2l mask = __builtin_msa_ceqi_d((Packet2l)select, 0); + return (Packet2d)__builtin_msa_bsel_v((v16u8)mask, (v16u8)thenPacket, (v16u8)elsePacket); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_MSA_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/Complex.h new file mode 100644 index 0000000..97f4116 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/Complex.h @@ -0,0 +1,565 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Gael Guennebaud +// Copyright (C) 2010 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_NEON_H +#define EIGEN_COMPLEX_NEON_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +inline uint32x4_t p4ui_CONJ_XOR() +{ +// See bug 1325, clang fails to call vld1q_u64. +#if EIGEN_COMP_CLANG || EIGEN_COMP_CASTXML + uint32x4_t ret = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; + return ret; +#else + static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; + return vld1q_u32( conj_XOR_DATA ); +#endif +} + +inline uint32x2_t p2ui_CONJ_XOR() +{ + static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000 }; + return vld1_u32( conj_XOR_DATA ); +} + +//---------- float ---------- + +struct Packet1cf +{ + EIGEN_STRONG_INLINE Packet1cf() {} + EIGEN_STRONG_INLINE explicit Packet1cf(const Packet2f& a) : v(a) {} + Packet2f v; +}; +struct Packet2cf +{ + EIGEN_STRONG_INLINE Packet2cf() {} + EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} + Packet4f v; +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet2cf type; + typedef Packet1cf half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits +{ + typedef std::complex type; + typedef Packet1cf half; + typedef Packet2f as_real; + enum + { + size = 1, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef std::complex type; + typedef Packet1cf half; + typedef Packet4f as_real; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet1cf pcast(const float& a) +{ return Packet1cf(vset_lane_f32(a, vdup_n_f32(0.f), 0)); } +template<> EIGEN_STRONG_INLINE Packet2cf pcast(const Packet2f& a) +{ return Packet2cf(vreinterpretq_f32_u64(vmovl_u32(vreinterpret_u32_f32(a)))); } + +template<> EIGEN_STRONG_INLINE Packet1cf pset1(const std::complex& from) +{ return Packet1cf(vld1_f32(reinterpret_cast(&from))); } +template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) +{ + const float32x2_t r64 = vld1_f32(reinterpret_cast(&from)); + return Packet2cf(vcombine_f32(r64, r64)); +} + +template<> EIGEN_STRONG_INLINE Packet1cf padd(const Packet1cf& a, const Packet1cf& b) +{ return Packet1cf(padd(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) +{ return Packet2cf(padd(a.v, b.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cf psub(const Packet1cf& a, const Packet1cf& b) +{ return Packet1cf(psub(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) +{ return Packet2cf(psub(a.v, b.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cf pnegate(const Packet1cf& a) { return Packet1cf(pnegate(a.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cf pconj(const Packet1cf& a) +{ + const Packet2ui b = Packet2ui(vreinterpret_u32_f32(a.v)); + return Packet1cf(vreinterpret_f32_u32(veor_u32(b, p2ui_CONJ_XOR()))); +} +template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) +{ + const Packet4ui b = Packet4ui(vreinterpretq_u32_f32(a.v)); + return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR()))); +} + +template<> EIGEN_STRONG_INLINE Packet1cf pmul(const Packet1cf& a, const Packet1cf& b) +{ + Packet2f v1, v2; + + // Get the real values of a | a1_re | a1_re | + v1 = vdup_lane_f32(a.v, 0); + // Get the imag values of a | a1_im | a1_im | + v2 = vdup_lane_f32(a.v, 1); + // Multiply the real a with b + v1 = vmul_f32(v1, b.v); + // Multiply the imag a with b + v2 = vmul_f32(v2, b.v); + // Conjugate v2 + v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR())); + // Swap real/imag elements in v2. + v2 = vrev64_f32(v2); + // Add and return the result + return Packet1cf(vadd_f32(v1, v2)); +} +template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) +{ + Packet4f v1, v2; + + // Get the real values of a | a1_re | a1_re | a2_re | a2_re | + v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0)); + // Get the imag values of a | a1_im | a1_im | a2_im | a2_im | + v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1)); + // Multiply the real a with b + v1 = vmulq_f32(v1, b.v); + // Multiply the imag a with b + v2 = vmulq_f32(v2, b.v); + // Conjugate v2 + v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR())); + // Swap real/imag elements in v2. + v2 = vrev64q_f32(v2); + // Add and return the result + return Packet2cf(vaddq_f32(v1, v2)); +} + +template<> EIGEN_STRONG_INLINE Packet1cf pcmp_eq(const Packet1cf& a, const Packet1cf& b) +{ + // Compare real and imaginary parts of a and b to get the mask vector: + // [re(a[0])==re(b[0]), im(a[0])==im(b[0])] + Packet2f eq = pcmp_eq(a.v, b.v); + // Swap real/imag elements in the mask in to get: + // [im(a[0])==im(b[0]), re(a[0])==re(b[0])] + Packet2f eq_swapped = vrev64_f32(eq); + // Return re(a)==re(b) && im(a)==im(b) by computing bitwise AND of eq and eq_swapped + return Packet1cf(pand(eq, eq_swapped)); +} +template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) +{ + // Compare real and imaginary parts of a and b to get the mask vector: + // [re(a[0])==re(b[0]), im(a[0])==im(b[0]), re(a[1])==re(b[1]), im(a[1])==im(b[1])] + Packet4f eq = pcmp_eq(a.v, b.v); + // Swap real/imag elements in the mask in to get: + // [im(a[0])==im(b[0]), re(a[0])==re(b[0]), im(a[1])==im(b[1]), re(a[1])==re(b[1])] + Packet4f eq_swapped = vrev64q_f32(eq); + // Return re(a)==re(b) && im(a)==im(b) by computing bitwise AND of eq and eq_swapped + return Packet2cf(pand(eq, eq_swapped)); +} + +template<> EIGEN_STRONG_INLINE Packet1cf pand(const Packet1cf& a, const Packet1cf& b) +{ return Packet1cf(vreinterpret_f32_u32(vand_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); } +template<> EIGEN_STRONG_INLINE Packet2cf pand(const Packet2cf& a, const Packet2cf& b) +{ return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cf por(const Packet1cf& a, const Packet1cf& b) +{ return Packet1cf(vreinterpret_f32_u32(vorr_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); } +template<> EIGEN_STRONG_INLINE Packet2cf por(const Packet2cf& a, const Packet2cf& b) +{ return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cf pxor(const Packet1cf& a, const Packet1cf& b) +{ return Packet1cf(vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); } +template<> EIGEN_STRONG_INLINE Packet2cf pxor(const Packet2cf& a, const Packet2cf& b) +{ return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cf pandnot(const Packet1cf& a, const Packet1cf& b) +{ return Packet1cf(vreinterpret_f32_u32(vbic_u32(vreinterpret_u32_f32(a.v), vreinterpret_u32_f32(b.v)))); } +template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) +{ return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v), vreinterpretq_u32_f32(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cf pload(const std::complex* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cf(pload((const float*)from)); } +template<> EIGEN_STRONG_INLINE Packet2cf pload(const std::complex* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload(reinterpret_cast(from))); } + +template<> EIGEN_STRONG_INLINE Packet1cf ploadu(const std::complex* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cf(ploadu((const float*)from)); } +template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu(reinterpret_cast(from))); } + +template<> EIGEN_STRONG_INLINE Packet1cf ploaddup(const std::complex* from) +{ return pset1(*from); } +template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) +{ return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex *to, const Packet1cf& from) +{ EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstore >(std::complex *to, const Packet2cf& from) +{ EIGEN_DEBUG_ALIGNED_STORE pstore(reinterpret_cast(to), from.v); } + +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex *to, const Packet1cf& from) +{ EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex *to, const Packet2cf& from) +{ EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast(to), from.v); } + +template<> EIGEN_DEVICE_FUNC inline Packet1cf pgather, Packet1cf>( + const std::complex* from, Index stride) +{ + const Packet2f tmp = vdup_n_f32(std::real(from[0*stride])); + return Packet1cf(vset_lane_f32(std::imag(from[0*stride]), tmp, 1)); +} +template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>( + const std::complex* from, Index stride) +{ + Packet4f res = vdupq_n_f32(std::real(from[0*stride])); + res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1); + res = vsetq_lane_f32(std::real(from[1*stride]), res, 2); + res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3); + return Packet2cf(res); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet1cf>( + std::complex* to, const Packet1cf& from, Index stride) +{ to[stride*0] = std::complex(vget_lane_f32(from.v, 0), vget_lane_f32(from.v, 1)); } +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>( + std::complex* to, const Packet2cf& from, Index stride) +{ + to[stride*0] = std::complex(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1)); + to[stride*1] = std::complex(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3)); +} + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex *addr) +{ EIGEN_ARM_PREFETCH(reinterpret_cast(addr)); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cf& a) +{ + EIGEN_ALIGN16 std::complex x; + vst1_f32(reinterpret_cast(&x), a.v); + return x; +} +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) +{ + EIGEN_ALIGN16 std::complex x[2]; + vst1q_f32(reinterpret_cast(x), a.v); + return x[0]; +} + +template<> EIGEN_STRONG_INLINE Packet1cf preverse(const Packet1cf& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) +{ return Packet2cf(vcombine_f32(vget_high_f32(a.v), vget_low_f32(a.v))); } + +template<> EIGEN_STRONG_INLINE Packet1cf pcplxflip(const Packet1cf& a) +{ return Packet1cf(vrev64_f32(a.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& a) +{ return Packet2cf(vrev64q_f32(a.v)); } + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cf& a) +{ + std::complex s; + vst1_f32((float *)&s, a.v); + return s; +} +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) +{ + std::complex s; + vst1_f32(reinterpret_cast(&s), vadd_f32(vget_low_f32(a.v), vget_high_f32(a.v))); + return s; +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cf& a) +{ + std::complex s; + vst1_f32((float *)&s, a.v); + return s; +} +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) +{ + float32x2_t a1, a2, v1, v2, prod; + std::complex s; + + a1 = vget_low_f32(a.v); + a2 = vget_high_f32(a.v); + // Get the real values of a | a1_re | a1_re | a2_re | a2_re | + v1 = vdup_lane_f32(a1, 0); + // Get the real values of a | a1_im | a1_im | a2_im | a2_im | + v2 = vdup_lane_f32(a1, 1); + // Multiply the real a with b + v1 = vmul_f32(v1, a2); + // Multiply the imag a with b + v2 = vmul_f32(v2, a2); + // Conjugate v2 + v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR())); + // Swap real/imag elements in v2. + v2 = vrev64_f32(v2); + // Add v1, v2 + prod = vadd_f32(v1, v2); + + vst1_f32(reinterpret_cast(&s), prod); + + return s; +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cf,Packet2f) +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) + +template<> EIGEN_STRONG_INLINE Packet1cf pdiv(const Packet1cf& a, const Packet1cf& b) +{ + return pdiv_complex(a, b); +} +template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) +{ + return pdiv_complex(a, b); +} + +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& /*kernel*/) {} +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) +{ + Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v)); + kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v)); + kernel.packet[1].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet1cf psqrt(const Packet1cf& a) { + return psqrt_complex(a); +} + +template<> EIGEN_STRONG_INLINE Packet2cf psqrt(const Packet2cf& a) { + return psqrt_complex(a); +} + +//---------- double ---------- +#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG + +// See bug 1325, clang fails to call vld1q_u64. +#if EIGEN_COMP_CLANG || EIGEN_COMP_CASTXML || EIGEN_COMP_CPE + static uint64x2_t p2ul_CONJ_XOR = {0x0, 0x8000000000000000}; +#else + const uint64_t p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 }; + static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA ); +#endif + +struct Packet1cd +{ + EIGEN_STRONG_INLINE Packet1cd() {} + EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} + Packet2d v; +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet1cd type; + typedef Packet1cd half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 1, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits +{ + typedef std::complex type; + typedef Packet1cd half; + typedef Packet2d as_real; + enum + { + size=1, + alignment=Aligned16, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet1cd pload(const std::complex* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload(reinterpret_cast(from))); } + +template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu(reinterpret_cast(from))); } + +template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) +{ + /* here we really have to use unaligned loads :( */ + return ploadu(&from); +} + +template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) +{ return Packet1cd(padd(a.v, b.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) +{ return Packet1cd(psub(a.v, b.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) +{ return Packet1cd(pnegate(a.v)); } + +template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) +{ return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); } + +template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) +{ + Packet2d v1, v2; + + // Get the real values of a + v1 = vdupq_lane_f64(vget_low_f64(a.v), 0); + // Get the imag values of a + v2 = vdupq_lane_f64(vget_high_f64(a.v), 0); + // Multiply the real a with b + v1 = vmulq_f64(v1, b.v); + // Multiply the imag a with b + v2 = vmulq_f64(v2, b.v); + // Conjugate v2 + v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR)); + // Swap real/imag elements in v2. + v2 = preverse(v2); + // Add and return the result + return Packet1cd(vaddq_f64(v1, v2)); +} + +template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) +{ + // Compare real and imaginary parts of a and b to get the mask vector: + // [re(a)==re(b), im(a)==im(b)] + Packet2d eq = pcmp_eq(a.v, b.v); + // Swap real/imag elements in the mask in to get: + // [im(a)==im(b), re(a)==re(b)] + Packet2d eq_swapped = vreinterpretq_f64_u32(vrev64q_u32(vreinterpretq_u32_f64(eq))); + // Return re(a)==re(b) & im(a)==im(b) by computing bitwise AND of eq and eq_swapped + return Packet1cd(pand(eq, eq_swapped)); +} + +template<> EIGEN_STRONG_INLINE Packet1cd pand(const Packet1cd& a, const Packet1cd& b) +{ return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cd por(const Packet1cd& a, const Packet1cd& b) +{ return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cd pxor(const Packet1cd& a, const Packet1cd& b) +{ return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) +{ return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); } + +template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) +{ return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex *to, const Packet1cd& from) +{ EIGEN_DEBUG_ALIGNED_STORE pstore(reinterpret_cast(to), from.v); } + +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex *to, const Packet1cd& from) +{ EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast(to), from.v); } + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex *addr) +{ EIGEN_ARM_PREFETCH(reinterpret_cast(addr)); } + +template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather, Packet1cd>( + const std::complex* from, Index stride) +{ + Packet2d res = pset1(0.0); + res = vsetq_lane_f64(std::real(from[0*stride]), res, 0); + res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1); + return Packet1cd(res); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet1cd>( + std::complex* to, const Packet1cd& from, Index stride) +{ to[stride*0] = std::complex(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1)); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) +{ + EIGEN_ALIGN16 std::complex res; + pstore >(&res, a); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) { return pfirst(a); } + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) { return pfirst(a); } + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) + +template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) +{ + return pdiv_complex(a, b); +} + +EIGEN_STRONG_INLINE Packet1cd pcplxflip/**/(const Packet1cd& x) +{ return Packet1cd(preverse(Packet2d(x.v))); } + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v)); + kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v)); + kernel.packet[1].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet1cd psqrt(const Packet1cd& a) { + return psqrt_complex(a); +} + +#endif // EIGEN_ARCH_ARM64 + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_NEON_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h new file mode 100644 index 0000000..ff1646d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h @@ -0,0 +1,256 @@ +#include "../../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +#if EIGEN_ARCH_ARM && EIGEN_COMP_CLANG + +// Clang seems to excessively spill registers in the GEBP kernel on 32-bit arm. +// Here we specialize gebp_traits to eliminate these register spills. +// See #2138. +template<> +struct gebp_traits + : gebp_traits +{ + EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const + { + // This volatile inline ASM both acts as a barrier to prevent reordering, + // as well as enforces strict register use. + asm volatile( + "vmla.f32 %q[r], %q[c], %q[alpha]" + : [r] "+w" (r) + : [c] "w" (c), + [alpha] "w" (alpha) + : ); + } + + template + EIGEN_STRONG_INLINE void madd(const Packet4f& a, const Packet4f& b, + Packet4f& c, Packet4f&, + const LaneIdType&) const { + acc(a, b, c); + } + + template + EIGEN_STRONG_INLINE void madd(const Packet4f& a, const QuadPacket& b, + Packet4f& c, Packet4f& tmp, + const LaneIdType& lane) const { + madd(a, b.get(lane), c, tmp, lane); + } +}; + +#endif // EIGEN_ARCH_ARM && EIGEN_COMP_CLANG + +#if EIGEN_ARCH_ARM64 + +#ifndef EIGEN_NEON_GEBP_NR +#define EIGEN_NEON_GEBP_NR 8 +#endif + +template<> +struct gebp_traits + : gebp_traits +{ + typedef float RhsPacket; + typedef float32x4_t RhsPacketx4; + enum { nr = EIGEN_NEON_GEBP_NR }; + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const { + dest = *b; + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + dest = vld1q_f32(b); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, RhsPacket& dest) const + { + dest = *b; + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const + {} + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const + { + loadRhs(b,dest); + } + + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { + c = vfmaq_n_f32(c, a, b); + } + // NOTE: Template parameter inference failed when compiled with Android NDK: + // "candidate template ignored: could not match 'FixedInt' against 'Eigen::internal::FixedInt<0>". + + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { madd_helper<0>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<1>&) const + { madd_helper<1>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<2>&) const + { madd_helper<2>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<3>&) const + { madd_helper<3>(a, b, c); } + + private: + template + EIGEN_STRONG_INLINE void madd_helper(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c) const + { + #if EIGEN_GNUC_STRICT_LESS_THAN(9,0,0) + // 1. workaround gcc issue https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89101 + // vfmaq_laneq_f32 is implemented through a costly dup, which was fixed in gcc9 + // 2. workaround the gcc register split problem on arm64-neon + if(LaneID==0) asm("fmla %0.4s, %1.4s, %2.s[0]\n" : "+w" (c) : "w" (a), "w" (b) : ); + else if(LaneID==1) asm("fmla %0.4s, %1.4s, %2.s[1]\n" : "+w" (c) : "w" (a), "w" (b) : ); + else if(LaneID==2) asm("fmla %0.4s, %1.4s, %2.s[2]\n" : "+w" (c) : "w" (a), "w" (b) : ); + else if(LaneID==3) asm("fmla %0.4s, %1.4s, %2.s[3]\n" : "+w" (c) : "w" (a), "w" (b) : ); + #else + c = vfmaq_laneq_f32(c, a, b, LaneID); + #endif + } +}; + + +template<> +struct gebp_traits + : gebp_traits +{ + typedef double RhsPacket; + enum { nr = EIGEN_NEON_GEBP_NR }; + struct RhsPacketx4 { + float64x2_t B_0, B_1; + }; + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const + { + dest = *b; + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + dest.B_0 = vld1q_f64(b); + dest.B_1 = vld1q_f64(b+2); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, RhsPacket& dest) const + { + loadRhs(b,dest); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const + {} + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const + { + loadRhs(b,dest); + } + + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { + c = vfmaq_n_f64(c, a, b); + } + + // NOTE: Template parameter inference failed when compiled with Android NDK: + // "candidate template ignored: could not match 'FixedInt' against 'Eigen::internal::FixedInt<0>". + + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { madd_helper<0>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<1>&) const + { madd_helper<1>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<2>&) const + { madd_helper<2>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<3>&) const + { madd_helper<3>(a, b, c); } + + private: + template + EIGEN_STRONG_INLINE void madd_helper(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c) const + { + #if EIGEN_GNUC_STRICT_LESS_THAN(9,0,0) + // 1. workaround gcc issue https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89101 + // vfmaq_laneq_f64 is implemented through a costly dup, which was fixed in gcc9 + // 2. workaround the gcc register split problem on arm64-neon + if(LaneID==0) asm("fmla %0.2d, %1.2d, %2.d[0]\n" : "+w" (c) : "w" (a), "w" (b.B_0) : ); + else if(LaneID==1) asm("fmla %0.2d, %1.2d, %2.d[1]\n" : "+w" (c) : "w" (a), "w" (b.B_0) : ); + else if(LaneID==2) asm("fmla %0.2d, %1.2d, %2.d[0]\n" : "+w" (c) : "w" (a), "w" (b.B_1) : ); + else if(LaneID==3) asm("fmla %0.2d, %1.2d, %2.d[1]\n" : "+w" (c) : "w" (a), "w" (b.B_1) : ); + #else + if(LaneID==0) c = vfmaq_laneq_f64(c, a, b.B_0, 0); + else if(LaneID==1) c = vfmaq_laneq_f64(c, a, b.B_0, 1); + else if(LaneID==2) c = vfmaq_laneq_f64(c, a, b.B_1, 0); + else if(LaneID==3) c = vfmaq_laneq_f64(c, a, b.B_1, 1); + #endif + } +}; + +// The register at operand 3 of fmla for data type half must be v0~v15, the compiler may not +// allocate a required register for the '%2' of inline asm 'fmla %0.8h, %1.8h, %2.h[id]', +// so inline assembly can't be used here to advoid the bug that vfmaq_lane_f16 is implemented +// through a costly dup in gcc compiler. +#if EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC && EIGEN_COMP_CLANG + +template<> +struct gebp_traits + : gebp_traits +{ + typedef half RhsPacket; + typedef float16x4_t RhsPacketx4; + typedef float16x4_t PacketHalf; + enum { nr = EIGEN_NEON_GEBP_NR }; + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const + { + dest = *b; + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + dest = vld1_f16((const __fp16 *)b); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, RhsPacket& dest) const + { + dest = *b; + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const + {} + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar*, RhsPacket&) const + { + // If LHS is a Packet8h, we cannot correctly mimic a ploadquad of the RHS + // using a single scalar value. + eigen_assert(false && "Cannot loadRhsQuad for a scalar RHS."); + } + + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { + c = vfmaq_n_f16(c, a, b); + } + EIGEN_STRONG_INLINE void madd(const PacketHalf& a, const RhsPacket& b, PacketHalf& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { + c = vfma_n_f16(c, a, b); + } + + // NOTE: Template parameter inference failed when compiled with Android NDK: + // "candidate template ignored: could not match 'FixedInt' against 'Eigen::internal::FixedInt<0>". + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<0>&) const + { madd_helper<0>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<1>&) const + { madd_helper<1>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<2>&) const + { madd_helper<2>(a, b, c); } + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c, RhsPacket& /*tmp*/, const FixedInt<3>&) const + { madd_helper<3>(a, b, c); } + private: + template + EIGEN_STRONG_INLINE void madd_helper(const LhsPacket& a, const RhsPacketx4& b, AccPacket& c) const + { + c = vfmaq_lane_f16(c, a, b, LaneID); + } +}; +#endif // EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC && EIGEN_COMP_CLANG +#endif // EIGEN_ARCH_ARM64 + +} // namespace internal +} // namespace Eigen diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/MathFunctions.h new file mode 100644 index 0000000..c2a8219 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/MathFunctions.h @@ -0,0 +1,69 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATH_FUNCTIONS_NEON_H +#define EIGEN_MATH_FUNCTIONS_NEON_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet2f) +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet4f) + +#if EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet4hf ptanh(const Packet4hf& x) { + // Convert to float, call the float ptanh, and then convert back. + return vcvt_f16_f32(ptanh(vcvt_f32_f16(x))); +} + +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +Packet8hf ptanh(const Packet8hf& x) { + // Convert each 4 halfs to float, call the float ptanh, and then convert back. + return vcombine_f16( + vcvt_f16_f32(ptanh(vcvt_f32_f16(vget_low_f16(x)))), + vcvt_f16_f32(ptanh(vcvt_high_f32_f16(x)))); +} +#endif // EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC + +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, psin) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pcos) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, plog) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pexp) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, ptanh) + +template <> +EIGEN_STRONG_INLINE Packet4bf pfrexp(const Packet4bf& a, Packet4bf& exponent) { + Packet4f fexponent; + const Packet4bf out = F32ToBf16(pfrexp(Bf16ToF32(a), fexponent)); + exponent = F32ToBf16(fexponent); + return out; +} + +template <> +EIGEN_STRONG_INLINE Packet4bf pldexp(const Packet4bf& a, const Packet4bf& exponent) { + return F32ToBf16(pldexp(Bf16ToF32(a), Bf16ToF32(exponent))); +} + +//---------- double ---------- + +#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG + +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_DOUBLE(Packet2d) + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_NEON_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/PacketMath.h new file mode 100644 index 0000000..638dea4 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/PacketMath.h @@ -0,0 +1,4660 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2010 Konstantinos Margaritis +// Heavily based on Gael's SSE version. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_NEON_H +#define EIGEN_PACKET_MATH_NEON_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif + +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#if EIGEN_ARCH_ARM64 +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 +#else +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16 +#endif +#endif + +#if EIGEN_COMP_MSVC_STRICT + +// In MSVC's arm_neon.h header file, all NEON vector types +// are aliases to the same underlying type __n128. +// We thus have to wrap them to make them different C++ types. +// (See also bug 1428) +typedef eigen_packet_wrapper Packet2f; +typedef eigen_packet_wrapper Packet4f; +typedef eigen_packet_wrapper Packet4c; +typedef eigen_packet_wrapper Packet8c; +typedef eigen_packet_wrapper Packet16c; +typedef eigen_packet_wrapper Packet4uc; +typedef eigen_packet_wrapper Packet8uc; +typedef eigen_packet_wrapper Packet16uc; +typedef eigen_packet_wrapper Packet4s; +typedef eigen_packet_wrapper Packet8s; +typedef eigen_packet_wrapper Packet4us; +typedef eigen_packet_wrapper Packet8us; +typedef eigen_packet_wrapper Packet2i; +typedef eigen_packet_wrapper Packet4i; +typedef eigen_packet_wrapper Packet2ui; +typedef eigen_packet_wrapper Packet4ui; +typedef eigen_packet_wrapper Packet2l; +typedef eigen_packet_wrapper Packet2ul; + +EIGEN_ALWAYS_INLINE Packet4f make_packet4f(float a, float b, float c, float d) { + float from[4] = {a, b, c, d}; + return vld1q_f32(from); +} + +EIGEN_ALWAYS_INLINE Packet2f make_packet2f(float a, float b) { + float from[2] = {a, b}; + return vld1_f32(from); +} + +#else + +typedef float32x2_t Packet2f; +typedef float32x4_t Packet4f; +typedef eigen_packet_wrapper Packet4c; +typedef int8x8_t Packet8c; +typedef int8x16_t Packet16c; +typedef eigen_packet_wrapper Packet4uc; +typedef uint8x8_t Packet8uc; +typedef uint8x16_t Packet16uc; +typedef int16x4_t Packet4s; +typedef int16x8_t Packet8s; +typedef uint16x4_t Packet4us; +typedef uint16x8_t Packet8us; +typedef int32x2_t Packet2i; +typedef int32x4_t Packet4i; +typedef uint32x2_t Packet2ui; +typedef uint32x4_t Packet4ui; +typedef int64x2_t Packet2l; +typedef uint64x2_t Packet2ul; + +EIGEN_ALWAYS_INLINE Packet4f make_packet4f(float a, float b, float c, float d) { return Packet4f{a, b, c, d}; } +EIGEN_ALWAYS_INLINE Packet2f make_packet2f(float a, float b) { return Packet2f{a, b}; } + +#endif // EIGEN_COMP_MSVC_STRICT + +EIGEN_STRONG_INLINE Packet4f shuffle1(const Packet4f& m, int mask){ + const float* a = reinterpret_cast(&m); + Packet4f res = make_packet4f(*(a + (mask & 3)), *(a + ((mask >> 2) & 3)), *(a + ((mask >> 4) & 3 )), *(a + ((mask >> 6) & 3))); + return res; +} + +// fuctionally equivalent to _mm_shuffle_ps in SSE when interleave +// == false (i.e. shuffle(m, n, mask) equals _mm_shuffle_ps(m, n, mask)), +// interleave m and n when interleave == true. Currently used in LU/arch/InverseSize4.h +// to enable a shared implementation for fast inversion of matrices of size 4. +template +EIGEN_STRONG_INLINE Packet4f shuffle2(const Packet4f &m, const Packet4f &n, int mask) +{ + const float* a = reinterpret_cast(&m); + const float* b = reinterpret_cast(&n); + Packet4f res = make_packet4f(*(a + (mask & 3)), *(a + ((mask >> 2) & 3)), *(b + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))); + return res; +} + +template<> +EIGEN_STRONG_INLINE Packet4f shuffle2(const Packet4f &m, const Packet4f &n, int mask) +{ + const float* a = reinterpret_cast(&m); + const float* b = reinterpret_cast(&n); + Packet4f res = make_packet4f(*(a + (mask & 3)), *(b + ((mask >> 2) & 3)), *(a + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))); + return res; +} + +EIGEN_STRONG_INLINE static int eigen_neon_shuffle_mask(int p, int q, int r, int s) {return ((s)<<6|(r)<<4|(q)<<2|(p));} + +EIGEN_STRONG_INLINE Packet4f vec4f_swizzle1(const Packet4f& a, int p, int q, int r, int s) +{ + return shuffle1(a, eigen_neon_shuffle_mask(p, q, r, s)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_swizzle2(const Packet4f& a, const Packet4f& b, int p, int q, int r, int s) +{ + return shuffle2(a,b,eigen_neon_shuffle_mask(p, q, r, s)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f& a, const Packet4f& b) +{ + return shuffle2(a,b,eigen_neon_shuffle_mask(0, 1, 0, 1)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f& a, const Packet4f& b) +{ + return shuffle2(b,a,eigen_neon_shuffle_mask(2, 3, 2, 3)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f& a, const Packet4f& b) +{ + return shuffle2(a,b,eigen_neon_shuffle_mask(0, 0, 1, 1)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f& a, const Packet4f& b) +{ + return shuffle2(a,b,eigen_neon_shuffle_mask(2, 2, 3, 3)); +} +#define vec4f_duplane(a, p) \ + Packet4f(vdupq_lane_f32(vget_low_f32(a), p)) + +#define EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ + const Packet4f p4f_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ + const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1(X)) + +#define EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ + const Packet4i p4i_##NAME = pset1(X) + +#if EIGEN_ARCH_ARM64 && EIGEN_COMP_GNUC + // __builtin_prefetch tends to do nothing on ARM64 compilers because the + // prefetch instructions there are too detailed for __builtin_prefetch to map + // meaningfully to them. + #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__("prfm pldl1keep, [%[addr]]\n" ::[addr] "r"(ADDR) : ); +#elif EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC + #define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR); +#elif defined __pld + #define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR) +#elif EIGEN_ARCH_ARM + #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ("pld [%[addr]]\n" :: [addr] "r" (ADDR) : ); +#else + // by default no explicit prefetching + #define EIGEN_ARM_PREFETCH(ADDR) +#endif + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet4f type; + typedef Packet2f half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + + HasDiv = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasACos = 1, + HasASin = 1, + HasATan = 1, + HasATanh = 1, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBessel = 0, // Issues with accuracy. + HasNdtri = 0 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet16c type; + typedef Packet8c half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasAbsDiff = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet16uc type; + typedef Packet8uc half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 16, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 0, + HasAbs = 1, + HasAbsDiff = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + + HasSqrt = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet8s type; + typedef Packet4s half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasAbsDiff = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet8us type; + typedef Packet4us half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 0, + HasAbs = 1, + HasAbsDiff = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + HasSqrt = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet4i type; + typedef Packet2i half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet4ui type; + typedef Packet2ui half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 0, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + + HasSqrt = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet2l type; + typedef Packet2l half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0 + }; +}; + +template <> +struct packet_traits : default_packet_traits +{ + typedef Packet2ul type; + typedef Packet2ul half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 0, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0 + }; +}; + +template<> struct unpacket_traits +{ + typedef float type; + typedef Packet2f half; + typedef Packet2i integer_packet; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef float type; + typedef Packet2f half; + typedef Packet4i integer_packet; + enum + { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int8_t type; + typedef Packet4c half; + enum + { + size = 4, + alignment = Unaligned, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int8_t type; + typedef Packet4c half; + enum + { + size = 8, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int8_t type; + typedef Packet8c half; + enum + { + size = 16, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint8_t type; + typedef Packet4uc half; + enum + { + size = 4, + alignment = Unaligned, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint8_t type; + typedef Packet4uc half; + enum + { + size = 8, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint8_t type; + typedef Packet8uc half; + enum + { + size = 16, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false}; +}; +template<> struct unpacket_traits +{ + typedef int16_t type; + typedef Packet4s half; + enum + { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int16_t type; + typedef Packet4s half; + enum + { + size = 8, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint16_t type; + typedef Packet4us half; + enum + { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint16_t type; + typedef Packet4us half; + enum + { + size = 8, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int32_t type; + typedef Packet2i half; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int32_t type; + typedef Packet2i half; + enum + { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint32_t type; + typedef Packet2ui half; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint32_t type; + typedef Packet2ui half; + enum + { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef int64_t type; + typedef Packet2l half; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; +template<> struct unpacket_traits +{ + typedef uint64_t type; + typedef Packet2ul half; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet2f pset1(const float& from) { return vdup_n_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { return vdupq_n_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4c pset1(const int8_t& from) +{ return vget_lane_s32(vreinterpret_s32_s8(vdup_n_s8(from)), 0); } +template<> EIGEN_STRONG_INLINE Packet8c pset1(const int8_t& from) { return vdup_n_s8(from); } +template<> EIGEN_STRONG_INLINE Packet16c pset1(const int8_t& from) { return vdupq_n_s8(from); } +template<> EIGEN_STRONG_INLINE Packet4uc pset1(const uint8_t& from) +{ return vget_lane_u32(vreinterpret_u32_u8(vdup_n_u8(from)), 0); } +template<> EIGEN_STRONG_INLINE Packet8uc pset1(const uint8_t& from) { return vdup_n_u8(from); } +template<> EIGEN_STRONG_INLINE Packet16uc pset1(const uint8_t& from) { return vdupq_n_u8(from); } +template<> EIGEN_STRONG_INLINE Packet4s pset1(const int16_t& from) { return vdup_n_s16(from); } +template<> EIGEN_STRONG_INLINE Packet8s pset1(const int16_t& from) { return vdupq_n_s16(from); } +template<> EIGEN_STRONG_INLINE Packet4us pset1(const uint16_t& from) { return vdup_n_u16(from); } +template<> EIGEN_STRONG_INLINE Packet8us pset1(const uint16_t& from) { return vdupq_n_u16(from); } +template<> EIGEN_STRONG_INLINE Packet2i pset1(const int32_t& from) { return vdup_n_s32(from); } +template<> EIGEN_STRONG_INLINE Packet4i pset1(const int32_t& from) { return vdupq_n_s32(from); } +template<> EIGEN_STRONG_INLINE Packet2ui pset1(const uint32_t& from) { return vdup_n_u32(from); } +template<> EIGEN_STRONG_INLINE Packet4ui pset1(const uint32_t& from) { return vdupq_n_u32(from); } +template<> EIGEN_STRONG_INLINE Packet2l pset1(const int64_t& from) { return vdupq_n_s64(from); } +template<> EIGEN_STRONG_INLINE Packet2ul pset1(const uint64_t& from) { return vdupq_n_u64(from); } + +template<> EIGEN_STRONG_INLINE Packet2f pset1frombits(uint32_t from) +{ return vreinterpret_f32_u32(vdup_n_u32(from)); } +template<> EIGEN_STRONG_INLINE Packet4f pset1frombits(uint32_t from) +{ return vreinterpretq_f32_u32(vdupq_n_u32(from)); } + +template<> EIGEN_STRONG_INLINE Packet2f plset(const float& a) +{ + const float c[] = {0.0f,1.0f}; + return vadd_f32(pset1(a), vld1_f32(c)); +} +template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) +{ + const float c[] = {0.0f,1.0f,2.0f,3.0f}; + return vaddq_f32(pset1(a), vld1q_f32(c)); +} +template<> EIGEN_STRONG_INLINE Packet4c plset(const int8_t& a) +{ return vget_lane_s32(vreinterpret_s32_s8(vadd_s8(vreinterpret_s8_u32(vdup_n_u32(0x03020100)), vdup_n_s8(a))), 0); } +template<> EIGEN_STRONG_INLINE Packet8c plset(const int8_t& a) +{ + const int8_t c[] = {0,1,2,3,4,5,6,7}; + return vadd_s8(pset1(a), vld1_s8(c)); +} +template<> EIGEN_STRONG_INLINE Packet16c plset(const int8_t& a) +{ + const int8_t c[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; + return vaddq_s8(pset1(a), vld1q_s8(c)); +} +template<> EIGEN_STRONG_INLINE Packet4uc plset(const uint8_t& a) +{ return vget_lane_u32(vreinterpret_u32_u8(vadd_u8(vreinterpret_u8_u32(vdup_n_u32(0x03020100)), vdup_n_u8(a))), 0); } +template<> EIGEN_STRONG_INLINE Packet8uc plset(const uint8_t& a) +{ + const uint8_t c[] = {0,1,2,3,4,5,6,7}; + return vadd_u8(pset1(a), vld1_u8(c)); +} +template<> EIGEN_STRONG_INLINE Packet16uc plset(const uint8_t& a) +{ + const uint8_t c[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; + return vaddq_u8(pset1(a), vld1q_u8(c)); +} +template<> EIGEN_STRONG_INLINE Packet4s plset(const int16_t& a) +{ + const int16_t c[] = {0,1,2,3}; + return vadd_s16(pset1(a), vld1_s16(c)); +} +template<> EIGEN_STRONG_INLINE Packet4us plset(const uint16_t& a) +{ + const uint16_t c[] = {0,1,2,3}; + return vadd_u16(pset1(a), vld1_u16(c)); +} +template<> EIGEN_STRONG_INLINE Packet8s plset(const int16_t& a) +{ + const int16_t c[] = {0,1,2,3,4,5,6,7}; + return vaddq_s16(pset1(a), vld1q_s16(c)); +} +template<> EIGEN_STRONG_INLINE Packet8us plset(const uint16_t& a) +{ + const uint16_t c[] = {0,1,2,3,4,5,6,7}; + return vaddq_u16(pset1(a), vld1q_u16(c)); +} +template<> EIGEN_STRONG_INLINE Packet2i plset(const int32_t& a) +{ + const int32_t c[] = {0,1}; + return vadd_s32(pset1(a), vld1_s32(c)); +} +template<> EIGEN_STRONG_INLINE Packet4i plset(const int32_t& a) +{ + const int32_t c[] = {0,1,2,3}; + return vaddq_s32(pset1(a), vld1q_s32(c)); +} +template<> EIGEN_STRONG_INLINE Packet2ui plset(const uint32_t& a) +{ + const uint32_t c[] = {0,1}; + return vadd_u32(pset1(a), vld1_u32(c)); +} +template<> EIGEN_STRONG_INLINE Packet4ui plset(const uint32_t& a) +{ + const uint32_t c[] = {0,1,2,3}; + return vaddq_u32(pset1(a), vld1q_u32(c)); +} +template<> EIGEN_STRONG_INLINE Packet2l plset(const int64_t& a) +{ + const int64_t c[] = {0,1}; + return vaddq_s64(pset1(a), vld1q_s64(c)); +} +template<> EIGEN_STRONG_INLINE Packet2ul plset(const uint64_t& a) +{ + const uint64_t c[] = {0,1}; + return vaddq_u64(pset1(a), vld1q_u64(c)); +} + +template<> EIGEN_STRONG_INLINE Packet2f padd(const Packet2f& a, const Packet2f& b) { return vadd_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4c padd(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_s8(vadd_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c padd(const Packet8c& a, const Packet8c& b) { return vadd_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c padd(const Packet16c& a, const Packet16c& b) { return vaddq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc padd(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vadd_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc padd(const Packet8uc& a, const Packet8uc& b) { return vadd_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc padd(const Packet16uc& a, const Packet16uc& b) { return vaddq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s padd(const Packet4s& a, const Packet4s& b) { return vadd_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s padd(const Packet8s& a, const Packet8s& b) { return vaddq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us padd(const Packet4us& a, const Packet4us& b) { return vadd_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us padd(const Packet8us& a, const Packet8us& b) { return vaddq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i padd(const Packet2i& a, const Packet2i& b) { return vadd_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui padd(const Packet2ui& a, const Packet2ui& b) { return vadd_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui padd(const Packet4ui& a, const Packet4ui& b) { return vaddq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l padd(const Packet2l& a, const Packet2l& b) { return vaddq_s64(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ul padd(const Packet2ul& a, const Packet2ul& b) { return vaddq_u64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f psub(const Packet2f& a, const Packet2f& b) { return vsub_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4c psub(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_s8(vsub_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c psub(const Packet8c& a, const Packet8c& b) { return vsub_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c psub(const Packet16c& a, const Packet16c& b) { return vsubq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc psub(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vsub_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc psub(const Packet8uc& a, const Packet8uc& b) { return vsub_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc psub(const Packet16uc& a, const Packet16uc& b) { return vsubq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s psub(const Packet4s& a, const Packet4s& b) { return vsub_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s psub(const Packet8s& a, const Packet8s& b) { return vsubq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us psub(const Packet4us& a, const Packet4us& b) { return vsub_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us psub(const Packet8us& a, const Packet8us& b) { return vsubq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i psub(const Packet2i& a, const Packet2i& b) { return vsub_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui psub(const Packet2ui& a, const Packet2ui& b) { return vsub_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui psub(const Packet4ui& a, const Packet4ui& b) { return vsubq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l psub(const Packet2l& a, const Packet2l& b) { return vsubq_s64(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ul psub(const Packet2ul& a, const Packet2ul& b) { return vsubq_u64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f pxor(const Packet2f& a, const Packet2f& b); +template<> EIGEN_STRONG_INLINE Packet2f paddsub(const Packet2f& a, const Packet2f & b) { + Packet2f mask = make_packet2f(numext::bit_cast(0x80000000u), 0.0f); + return padd(a, pxor(mask, b)); +} +template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b); +template<> EIGEN_STRONG_INLINE Packet4f paddsub(const Packet4f& a, const Packet4f& b) { + Packet4f mask = make_packet4f(numext::bit_cast(0x80000000u), 0.0f, numext::bit_cast(0x80000000u), 0.0f); + return padd(a, pxor(mask, b)); +} + +template<> EIGEN_STRONG_INLINE Packet2f pnegate(const Packet2f& a) { return vneg_f32(a); } +template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); } +template<> EIGEN_STRONG_INLINE Packet4c pnegate(const Packet4c& a) +{ return vget_lane_s32(vreinterpret_s32_s8(vneg_s8(vreinterpret_s8_s32(vdup_n_s32(a)))), 0); } +template<> EIGEN_STRONG_INLINE Packet8c pnegate(const Packet8c& a) { return vneg_s8(a); } +template<> EIGEN_STRONG_INLINE Packet16c pnegate(const Packet16c& a) { return vnegq_s8(a); } +template<> EIGEN_STRONG_INLINE Packet4s pnegate(const Packet4s& a) { return vneg_s16(a); } +template<> EIGEN_STRONG_INLINE Packet8s pnegate(const Packet8s& a) { return vnegq_s16(a); } +template<> EIGEN_STRONG_INLINE Packet2i pnegate(const Packet2i& a) { return vneg_s32(a); } +template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); } +template<> EIGEN_STRONG_INLINE Packet2l pnegate(const Packet2l& a) { +#if EIGEN_ARCH_ARM64 + return vnegq_s64(a); +#else + return vcombine_s64( + vdup_n_s64(-vgetq_lane_s64(a, 0)), + vdup_n_s64(-vgetq_lane_s64(a, 1))); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet2f pconj(const Packet2f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4c pconj(const Packet4c& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8c pconj(const Packet8c& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet16c pconj(const Packet16c& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4uc pconj(const Packet4uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8uc pconj(const Packet8uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet16uc pconj(const Packet16uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4s pconj(const Packet4s& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8s pconj(const Packet8s& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4us pconj(const Packet4us& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8us pconj(const Packet8us& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2i pconj(const Packet2i& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2ui pconj(const Packet2ui& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4ui pconj(const Packet4ui& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2l pconj(const Packet2l& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2ul pconj(const Packet2ul& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet2f pmul(const Packet2f& a, const Packet2f& b) { return vmul_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4c pmul(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_s8(vmul_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pmul(const Packet8c& a, const Packet8c& b) { return vmul_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pmul(const Packet16c& a, const Packet16c& b) { return vmulq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pmul(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vmul_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pmul(const Packet8uc& a, const Packet8uc& b) { return vmul_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmul(const Packet16uc& a, const Packet16uc& b) { return vmulq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pmul(const Packet4s& a, const Packet4s& b) { return vmul_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pmul(const Packet8s& a, const Packet8s& b) { return vmulq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pmul(const Packet4us& a, const Packet4us& b) { return vmul_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pmul(const Packet8us& a, const Packet8us& b) { return vmulq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pmul(const Packet2i& a, const Packet2i& b) { return vmul_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pmul(const Packet2ui& a, const Packet2ui& b) { return vmul_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pmul(const Packet4ui& a, const Packet4ui& b) { return vmulq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pmul(const Packet2l& a, const Packet2l& b) { + return vcombine_s64( + vdup_n_s64(vgetq_lane_s64(a, 0)*vgetq_lane_s64(b, 0)), + vdup_n_s64(vgetq_lane_s64(a, 1)*vgetq_lane_s64(b, 1))); +} +template<> EIGEN_STRONG_INLINE Packet2ul pmul(const Packet2ul& a, const Packet2ul& b) { + return vcombine_u64( + vdup_n_u64(vgetq_lane_u64(a, 0)*vgetq_lane_u64(b, 0)), + vdup_n_u64(vgetq_lane_u64(a, 1)*vgetq_lane_u64(b, 1))); +} + +template<> EIGEN_STRONG_INLINE Packet2f pdiv(const Packet2f& a, const Packet2f& b) +{ +#if EIGEN_ARCH_ARM64 + return vdiv_f32(a,b); +#else + Packet2f inv, restep, div; + + // NEON does not offer a divide instruction, we have to do a reciprocal approximation + // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers + // a reciprocal estimate AND a reciprocal step -which saves a few instructions + // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with + // Newton-Raphson and vrecpsq_f32() + inv = vrecpe_f32(b); + + // This returns a differential, by which we will have to multiply inv to get a better + // approximation of 1/b. + restep = vrecps_f32(b, inv); + inv = vmul_f32(restep, inv); + + // Finally, multiply a by 1/b and get the wanted result of the division. + div = vmul_f32(a, inv); + + return div; +#endif +} +template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) +{ +#if EIGEN_ARCH_ARM64 + return vdivq_f32(a,b); +#else + Packet4f inv, restep, div; + + // NEON does not offer a divide instruction, we have to do a reciprocal approximation + // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers + // a reciprocal estimate AND a reciprocal step -which saves a few instructions + // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with + // Newton-Raphson and vrecpsq_f32() + inv = vrecpeq_f32(b); + + // This returns a differential, by which we will have to multiply inv to get a better + // approximation of 1/b. + restep = vrecpsq_f32(b, inv); + inv = vmulq_f32(restep, inv); + + // Finally, multiply a by 1/b and get the wanted result of the division. + div = vmulq_f32(a, inv); + + return div; +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4c pdiv(const Packet4c& /*a*/, const Packet4c& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet8c pdiv(const Packet8c& /*a*/, const Packet8c& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet16c pdiv(const Packet16c& /*a*/, const Packet16c& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet4uc pdiv(const Packet4uc& /*a*/, const Packet4uc& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pdiv(const Packet8uc& /*a*/, const Packet8uc& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet16uc pdiv(const Packet16uc& /*a*/, const Packet16uc& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet4s pdiv(const Packet4s& /*a*/, const Packet4s& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet8s pdiv(const Packet8s& /*a*/, const Packet8s& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet4us pdiv(const Packet4us& /*a*/, const Packet4us& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet8us pdiv(const Packet8us& /*a*/, const Packet8us& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet2i pdiv(const Packet2i& /*a*/, const Packet2i& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& /*a*/, const Packet4i& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet2ui pdiv(const Packet2ui& /*a*/, const Packet2ui& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet4ui pdiv(const Packet4ui& /*a*/, const Packet4ui& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0); +} +template<> EIGEN_STRONG_INLINE Packet2l pdiv(const Packet2l& /*a*/, const Packet2l& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0LL); +} +template<> EIGEN_STRONG_INLINE Packet2ul pdiv(const Packet2ul& /*a*/, const Packet2ul& /*b*/) +{ + eigen_assert(false && "packet integer division are not supported by NEON"); + return pset1(0ULL); +} + + +#ifdef __ARM_FEATURE_FMA +template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) +{ return vfmaq_f32(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet2f pmadd(const Packet2f& a, const Packet2f& b, const Packet2f& c) +{ return vfma_f32(c,a,b); } +#else +template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) +{ + return vmlaq_f32(c,a,b); +} +template<> EIGEN_STRONG_INLINE Packet2f pmadd(const Packet2f& a, const Packet2f& b, const Packet2f& c) +{ + return vmla_f32(c,a,b); +} +#endif + +// No FMA instruction for int, so use MLA unconditionally. +template<> EIGEN_STRONG_INLINE Packet4c pmadd(const Packet4c& a, const Packet4c& b, const Packet4c& c) +{ + return vget_lane_s32(vreinterpret_s32_s8(vmla_s8( + vreinterpret_s8_s32(vdup_n_s32(c)), + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pmadd(const Packet8c& a, const Packet8c& b, const Packet8c& c) +{ return vmla_s8(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pmadd(const Packet16c& a, const Packet16c& b, const Packet16c& c) +{ return vmlaq_s8(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pmadd(const Packet4uc& a, const Packet4uc& b, const Packet4uc& c) +{ + return vget_lane_u32(vreinterpret_u32_u8(vmla_u8( + vreinterpret_u8_u32(vdup_n_u32(c)), + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pmadd(const Packet8uc& a, const Packet8uc& b, const Packet8uc& c) +{ return vmla_u8(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmadd(const Packet16uc& a, const Packet16uc& b, const Packet16uc& c) +{ return vmlaq_u8(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pmadd(const Packet4s& a, const Packet4s& b, const Packet4s& c) +{ return vmla_s16(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pmadd(const Packet8s& a, const Packet8s& b, const Packet8s& c) +{ return vmlaq_s16(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pmadd(const Packet4us& a, const Packet4us& b, const Packet4us& c) +{ return vmla_u16(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pmadd(const Packet8us& a, const Packet8us& b, const Packet8us& c) +{ return vmlaq_u16(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pmadd(const Packet2i& a, const Packet2i& b, const Packet2i& c) +{ return vmla_s32(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) +{ return vmlaq_s32(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pmadd(const Packet2ui& a, const Packet2ui& b, const Packet2ui& c) +{ return vmla_u32(c,a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pmadd(const Packet4ui& a, const Packet4ui& b, const Packet4ui& c) +{ return vmlaq_u32(c,a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f pabsdiff(const Packet2f& a, const Packet2f& b) +{ return vabd_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pabsdiff(const Packet4f& a, const Packet4f& b) +{ return vabdq_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4c pabsdiff(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_s8(vabd_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pabsdiff(const Packet8c& a, const Packet8c& b) +{ return vabd_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pabsdiff(const Packet16c& a, const Packet16c& b) +{ return vabdq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pabsdiff(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vabd_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pabsdiff(const Packet8uc& a, const Packet8uc& b) +{ return vabd_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pabsdiff(const Packet16uc& a, const Packet16uc& b) +{ return vabdq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pabsdiff(const Packet4s& a, const Packet4s& b) +{ return vabd_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pabsdiff(const Packet8s& a, const Packet8s& b) +{ return vabdq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pabsdiff(const Packet4us& a, const Packet4us& b) +{ return vabd_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pabsdiff(const Packet8us& a, const Packet8us& b) +{ return vabdq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pabsdiff(const Packet2i& a, const Packet2i& b) +{ return vabd_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pabsdiff(const Packet4i& a, const Packet4i& b) +{ return vabdq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pabsdiff(const Packet2ui& a, const Packet2ui& b) +{ return vabd_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pabsdiff(const Packet4ui& a, const Packet4ui& b) +{ return vabdq_u32(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f pmin(const Packet2f& a, const Packet2f& b) { return vmin_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); } + +#ifdef __ARM_FEATURE_NUMERIC_MAXMIN +// numeric max and min are only available if ARM_FEATURE_NUMERIC_MAXMIN is defined (which can only be the case for Armv8 systems). +template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { return vminnmq_f32(a, b); } +template<> EIGEN_STRONG_INLINE Packet2f pmin(const Packet2f& a, const Packet2f& b) { return vminnm_f32(a, b); } +#endif + +template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { return pmin(a, b); } + +template<> EIGEN_STRONG_INLINE Packet2f pmin(const Packet2f& a, const Packet2f& b) { return pmin(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4c pmin(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_s8(vmin_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pmin(const Packet8c& a, const Packet8c& b) { return vmin_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pmin(const Packet16c& a, const Packet16c& b) { return vminq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pmin(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vmin_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pmin(const Packet8uc& a, const Packet8uc& b) { return vmin_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmin(const Packet16uc& a, const Packet16uc& b) { return vminq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pmin(const Packet4s& a, const Packet4s& b) { return vmin_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pmin(const Packet8s& a, const Packet8s& b) { return vminq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pmin(const Packet4us& a, const Packet4us& b) { return vmin_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pmin(const Packet8us& a, const Packet8us& b) { return vminq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pmin(const Packet2i& a, const Packet2i& b) { return vmin_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pmin(const Packet2ui& a, const Packet2ui& b) { return vmin_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pmin(const Packet4ui& a, const Packet4ui& b) { return vminq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pmin(const Packet2l& a, const Packet2l& b) { + return vcombine_s64( + vdup_n_s64((std::min)(vgetq_lane_s64(a, 0), vgetq_lane_s64(b, 0))), + vdup_n_s64((std::min)(vgetq_lane_s64(a, 1), vgetq_lane_s64(b, 1)))); +} +template<> EIGEN_STRONG_INLINE Packet2ul pmin(const Packet2ul& a, const Packet2ul& b) { + return vcombine_u64( + vdup_n_u64((std::min)(vgetq_lane_u64(a, 0), vgetq_lane_u64(b, 0))), + vdup_n_u64((std::min)(vgetq_lane_u64(a, 1), vgetq_lane_u64(b, 1)))); +} + +template<> EIGEN_STRONG_INLINE Packet2f pmax(const Packet2f& a, const Packet2f& b) { return vmax_f32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); } + +#ifdef __ARM_FEATURE_NUMERIC_MAXMIN +// numeric max and min are only available if ARM_FEATURE_NUMERIC_MAXMIN is defined (which can only be the case for Armv8 systems). +template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { return vmaxnmq_f32(a, b); } +template<> EIGEN_STRONG_INLINE Packet2f pmax(const Packet2f& a, const Packet2f& b) { return vmaxnm_f32(a, b); } +#endif + +template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { return pmax(a, b); } + +template<> EIGEN_STRONG_INLINE Packet2f pmax(const Packet2f& a, const Packet2f& b) { return pmax(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4c pmax(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_s8(vmax_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pmax(const Packet8c& a, const Packet8c& b) { return vmax_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pmax(const Packet16c& a, const Packet16c& b) { return vmaxq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pmax(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vmax_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pmax(const Packet8uc& a, const Packet8uc& b) { return vmax_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pmax(const Packet16uc& a, const Packet16uc& b) { return vmaxq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pmax(const Packet4s& a, const Packet4s& b) { return vmax_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pmax(const Packet8s& a, const Packet8s& b) { return vmaxq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pmax(const Packet4us& a, const Packet4us& b) { return vmax_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pmax(const Packet8us& a, const Packet8us& b) { return vmaxq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pmax(const Packet2i& a, const Packet2i& b) { return vmax_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pmax(const Packet2ui& a, const Packet2ui& b) { return vmax_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pmax(const Packet4ui& a, const Packet4ui& b) { return vmaxq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pmax(const Packet2l& a, const Packet2l& b) { + return vcombine_s64( + vdup_n_s64((std::max)(vgetq_lane_s64(a, 0), vgetq_lane_s64(b, 0))), + vdup_n_s64((std::max)(vgetq_lane_s64(a, 1), vgetq_lane_s64(b, 1)))); +} +template<> EIGEN_STRONG_INLINE Packet2ul pmax(const Packet2ul& a, const Packet2ul& b) { + return vcombine_u64( + vdup_n_u64((std::max)(vgetq_lane_u64(a, 0), vgetq_lane_u64(b, 0))), + vdup_n_u64((std::max)(vgetq_lane_u64(a, 1), vgetq_lane_u64(b, 1)))); +} + +template<> EIGEN_STRONG_INLINE Packet2f pcmp_le(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vcle_f32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vcleq_f32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4c pcmp_le(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_u8(vcle_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pcmp_le(const Packet8c& a, const Packet8c& b) +{ return vreinterpret_s8_u8(vcle_s8(a,b)); } +template<> EIGEN_STRONG_INLINE Packet16c pcmp_le(const Packet16c& a, const Packet16c& b) +{ return vreinterpretq_s8_u8(vcleq_s8(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4uc pcmp_le(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vcle_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pcmp_le(const Packet8uc& a, const Packet8uc& b) +{ return vcle_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pcmp_le(const Packet16uc& a, const Packet16uc& b) +{ return vcleq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pcmp_le(const Packet4s& a, const Packet4s& b) +{ return vreinterpret_s16_u16(vcle_s16(a,b)); } +template<> EIGEN_STRONG_INLINE Packet8s pcmp_le(const Packet8s& a, const Packet8s& b) +{ return vreinterpretq_s16_u16(vcleq_s16(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4us pcmp_le(const Packet4us& a, const Packet4us& b) +{ return vcle_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pcmp_le(const Packet8us& a, const Packet8us& b) +{ return vcleq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pcmp_le(const Packet2i& a, const Packet2i& b) +{ return vreinterpret_s32_u32(vcle_s32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4i pcmp_le(const Packet4i& a, const Packet4i& b) +{ return vreinterpretq_s32_u32(vcleq_s32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet2ui pcmp_le(const Packet2ui& a, const Packet2ui& b) +{ return vcle_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pcmp_le(const Packet4ui& a, const Packet4ui& b) +{ return vcleq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pcmp_le(const Packet2l& a, const Packet2l& b) +{ +#if EIGEN_ARCH_ARM64 + return vreinterpretq_s64_u64(vcleq_s64(a,b)); +#else + return vcombine_s64( + vdup_n_s64(vgetq_lane_s64(a, 0) <= vgetq_lane_s64(b, 0) ? numext::int64_t(-1) : 0), + vdup_n_s64(vgetq_lane_s64(a, 1) <= vgetq_lane_s64(b, 1) ? numext::int64_t(-1) : 0)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2ul pcmp_le(const Packet2ul& a, const Packet2ul& b) +{ +#if EIGEN_ARCH_ARM64 + return vcleq_u64(a,b); +#else + return vcombine_u64( + vdup_n_u64(vgetq_lane_u64(a, 0) <= vgetq_lane_u64(b, 0) ? numext::uint64_t(-1) : 0), + vdup_n_u64(vgetq_lane_u64(a, 1) <= vgetq_lane_u64(b, 1) ? numext::uint64_t(-1) : 0)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet2f pcmp_lt(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vclt_f32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vcltq_f32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4c pcmp_lt(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_u8(vclt_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pcmp_lt(const Packet8c& a, const Packet8c& b) +{ return vreinterpret_s8_u8(vclt_s8(a,b)); } +template<> EIGEN_STRONG_INLINE Packet16c pcmp_lt(const Packet16c& a, const Packet16c& b) +{ return vreinterpretq_s8_u8(vcltq_s8(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4uc pcmp_lt(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vclt_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pcmp_lt(const Packet8uc& a, const Packet8uc& b) +{ return vclt_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pcmp_lt(const Packet16uc& a, const Packet16uc& b) +{ return vcltq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pcmp_lt(const Packet4s& a, const Packet4s& b) +{ return vreinterpret_s16_u16(vclt_s16(a,b)); } +template<> EIGEN_STRONG_INLINE Packet8s pcmp_lt(const Packet8s& a, const Packet8s& b) +{ return vreinterpretq_s16_u16(vcltq_s16(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4us pcmp_lt(const Packet4us& a, const Packet4us& b) +{ return vclt_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pcmp_lt(const Packet8us& a, const Packet8us& b) +{ return vcltq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pcmp_lt(const Packet2i& a, const Packet2i& b) +{ return vreinterpret_s32_u32(vclt_s32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4i pcmp_lt(const Packet4i& a, const Packet4i& b) +{ return vreinterpretq_s32_u32(vcltq_s32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet2ui pcmp_lt(const Packet2ui& a, const Packet2ui& b) +{ return vclt_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pcmp_lt(const Packet4ui& a, const Packet4ui& b) +{ return vcltq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pcmp_lt(const Packet2l& a, const Packet2l& b) +{ +#if EIGEN_ARCH_ARM64 + return vreinterpretq_s64_u64(vcltq_s64(a,b)); +#else + return vcombine_s64( + vdup_n_s64(vgetq_lane_s64(a, 0) < vgetq_lane_s64(b, 0) ? numext::int64_t(-1) : 0), + vdup_n_s64(vgetq_lane_s64(a, 1) < vgetq_lane_s64(b, 1) ? numext::int64_t(-1) : 0)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2ul pcmp_lt(const Packet2ul& a, const Packet2ul& b) +{ +#if EIGEN_ARCH_ARM64 + return vcltq_u64(a,b); +#else + return vcombine_u64( + vdup_n_u64(vgetq_lane_u64(a, 0) < vgetq_lane_u64(b, 0) ? numext::uint64_t(-1) : 0), + vdup_n_u64(vgetq_lane_u64(a, 1) < vgetq_lane_u64(b, 1) ? numext::uint64_t(-1) : 0)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet2f pcmp_eq(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vceq_f32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_eq(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vceqq_f32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4c pcmp_eq(const Packet4c& a, const Packet4c& b) +{ + return vget_lane_s32(vreinterpret_s32_u8(vceq_s8( + vreinterpret_s8_s32(vdup_n_s32(a)), + vreinterpret_s8_s32(vdup_n_s32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c pcmp_eq(const Packet8c& a, const Packet8c& b) +{ return vreinterpret_s8_u8(vceq_s8(a,b)); } +template<> EIGEN_STRONG_INLINE Packet16c pcmp_eq(const Packet16c& a, const Packet16c& b) +{ return vreinterpretq_s8_u8(vceqq_s8(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4uc pcmp_eq(const Packet4uc& a, const Packet4uc& b) +{ + return vget_lane_u32(vreinterpret_u32_u8(vceq_u8( + vreinterpret_u8_u32(vdup_n_u32(a)), + vreinterpret_u8_u32(vdup_n_u32(b)))), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc pcmp_eq(const Packet8uc& a, const Packet8uc& b) +{ return vceq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pcmp_eq(const Packet16uc& a, const Packet16uc& b) +{ return vceqq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pcmp_eq(const Packet4s& a, const Packet4s& b) +{ return vreinterpret_s16_u16(vceq_s16(a,b)); } +template<> EIGEN_STRONG_INLINE Packet8s pcmp_eq(const Packet8s& a, const Packet8s& b) +{ return vreinterpretq_s16_u16(vceqq_s16(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4us pcmp_eq(const Packet4us& a, const Packet4us& b) +{ return vceq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pcmp_eq(const Packet8us& a, const Packet8us& b) +{ return vceqq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pcmp_eq(const Packet2i& a, const Packet2i& b) +{ return vreinterpret_s32_u32(vceq_s32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet4i pcmp_eq(const Packet4i& a, const Packet4i& b) +{ return vreinterpretq_s32_u32(vceqq_s32(a,b)); } +template<> EIGEN_STRONG_INLINE Packet2ui pcmp_eq(const Packet2ui& a, const Packet2ui& b) +{ return vceq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pcmp_eq(const Packet4ui& a, const Packet4ui& b) +{ return vceqq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pcmp_eq(const Packet2l& a, const Packet2l& b) +{ +#if EIGEN_ARCH_ARM64 + return vreinterpretq_s64_u64(vceqq_s64(a,b)); +#else + return vcombine_s64( + vdup_n_s64(vgetq_lane_s64(a, 0) == vgetq_lane_s64(b, 0) ? numext::int64_t(-1) : 0), + vdup_n_s64(vgetq_lane_s64(a, 1) == vgetq_lane_s64(b, 1) ? numext::int64_t(-1) : 0)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2ul pcmp_eq(const Packet2ul& a, const Packet2ul& b) +{ +#if EIGEN_ARCH_ARM64 + return vceqq_u64(a,b); +#else + return vcombine_u64( + vdup_n_u64(vgetq_lane_u64(a, 0) == vgetq_lane_u64(b, 0) ? numext::uint64_t(-1) : 0), + vdup_n_u64(vgetq_lane_u64(a, 1) == vgetq_lane_u64(b, 1) ? numext::uint64_t(-1) : 0)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet2f pcmp_lt_or_nan(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vmvn_u32(vcge_f32(a,b))); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vmvnq_u32(vcgeq_f32(a,b))); } + +// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics +template<> EIGEN_STRONG_INLINE Packet2f pand(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vand_u32(vreinterpret_u32_f32(a),vreinterpret_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4c pand(const Packet4c& a, const Packet4c& b) +{ return a & b; } +template<> EIGEN_STRONG_INLINE Packet8c pand(const Packet8c& a, const Packet8c& b) +{ return vand_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pand(const Packet16c& a, const Packet16c& b) +{ return vandq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pand(const Packet4uc& a, const Packet4uc& b) +{ return a & b; } +template<> EIGEN_STRONG_INLINE Packet8uc pand(const Packet8uc& a, const Packet8uc& b) +{ return vand_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pand(const Packet16uc& a, const Packet16uc& b) +{ return vandq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pand(const Packet4s& a, const Packet4s& b) { return vand_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pand(const Packet8s& a, const Packet8s& b) { return vandq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pand(const Packet4us& a, const Packet4us& b) +{ return vand_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pand(const Packet8us& a, const Packet8us& b) +{ return vandq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pand(const Packet2i& a, const Packet2i& b) { return vand_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pand(const Packet2ui& a, const Packet2ui& b) +{ return vand_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pand(const Packet4ui& a, const Packet4ui& b) +{ return vandq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pand(const Packet2l& a, const Packet2l& b) { return vandq_s64(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ul pand(const Packet2ul& a, const Packet2ul& b) +{ return vandq_u64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f por(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vorr_u32(vreinterpret_u32_f32(a),vreinterpret_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4c por(const Packet4c& a, const Packet4c& b) +{ return a | b; } +template<> EIGEN_STRONG_INLINE Packet8c por(const Packet8c& a, const Packet8c& b) { return vorr_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c por(const Packet16c& a, const Packet16c& b) +{ return vorrq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc por(const Packet4uc& a, const Packet4uc& b) +{ return a | b; } +template<> EIGEN_STRONG_INLINE Packet8uc por(const Packet8uc& a, const Packet8uc& b) +{ return vorr_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc por(const Packet16uc& a, const Packet16uc& b) +{ return vorrq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s por(const Packet4s& a, const Packet4s& b) +{ return vorr_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s por(const Packet8s& a, const Packet8s& b) +{ return vorrq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us por(const Packet4us& a, const Packet4us& b) +{ return vorr_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us por(const Packet8us& a, const Packet8us& b) +{ return vorrq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i por(const Packet2i& a, const Packet2i& b) { return vorr_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui por(const Packet2ui& a, const Packet2ui& b) +{ return vorr_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui por(const Packet4ui& a, const Packet4ui& b) +{ return vorrq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l por(const Packet2l& a, const Packet2l& b) +{ return vorrq_s64(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ul por(const Packet2ul& a, const Packet2ul& b) +{ return vorrq_u64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f pxor(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(a),vreinterpret_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4c pxor(const Packet4c& a, const Packet4c& b) +{ return a ^ b; } +template<> EIGEN_STRONG_INLINE Packet8c pxor(const Packet8c& a, const Packet8c& b) +{ return veor_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pxor(const Packet16c& a, const Packet16c& b) +{ return veorq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pxor(const Packet4uc& a, const Packet4uc& b) +{ return a ^ b; } +template<> EIGEN_STRONG_INLINE Packet8uc pxor(const Packet8uc& a, const Packet8uc& b) +{ return veor_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pxor(const Packet16uc& a, const Packet16uc& b) +{ return veorq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pxor(const Packet4s& a, const Packet4s& b) { return veor_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pxor(const Packet8s& a, const Packet8s& b) { return veorq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pxor(const Packet4us& a, const Packet4us& b) +{ return veor_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pxor(const Packet8us& a, const Packet8us& b) +{ return veorq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pxor(const Packet2i& a, const Packet2i& b) { return veor_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pxor(const Packet2ui& a, const Packet2ui& b) +{ return veor_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pxor(const Packet4ui& a, const Packet4ui& b) +{ return veorq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pxor(const Packet2l& a, const Packet2l& b) +{ return veorq_s64(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ul pxor(const Packet2ul& a, const Packet2ul& b) +{ return veorq_u64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2f pandnot(const Packet2f& a, const Packet2f& b) +{ return vreinterpret_f32_u32(vbic_u32(vreinterpret_u32_f32(a),vreinterpret_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) +{ return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } +template<> EIGEN_STRONG_INLINE Packet4c pandnot(const Packet4c& a, const Packet4c& b) +{ return a & ~b; } +template<> EIGEN_STRONG_INLINE Packet8c pandnot(const Packet8c& a, const Packet8c& b) { return vbic_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16c pandnot(const Packet16c& a, const Packet16c& b) { return vbicq_s8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4uc pandnot(const Packet4uc& a, const Packet4uc& b) +{ return a & ~b; } +template<> EIGEN_STRONG_INLINE Packet8uc pandnot(const Packet8uc& a, const Packet8uc& b) +{ return vbic_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet16uc pandnot(const Packet16uc& a, const Packet16uc& b) +{ return vbicq_u8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4s pandnot(const Packet4s& a, const Packet4s& b) +{ return vbic_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8s pandnot(const Packet8s& a, const Packet8s& b) +{ return vbicq_s16(a,b); } +template<> EIGEN_STRONG_INLINE Packet4us pandnot(const Packet4us& a, const Packet4us& b) +{ return vbic_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet8us pandnot(const Packet8us& a, const Packet8us& b) +{ return vbicq_u16(a,b); } +template<> EIGEN_STRONG_INLINE Packet2i pandnot(const Packet2i& a, const Packet2i& b) +{ return vbic_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) +{ return vbicq_s32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ui pandnot(const Packet2ui& a, const Packet2ui& b) +{ return vbic_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pandnot(const Packet4ui& a, const Packet4ui& b) +{ return vbicq_u32(a,b); } +template<> EIGEN_STRONG_INLINE Packet2l pandnot(const Packet2l& a, const Packet2l& b) +{ return vbicq_s64(a,b); } +template<> EIGEN_STRONG_INLINE Packet2ul pandnot(const Packet2ul& a, const Packet2ul& b) +{ return vbicq_u64(a,b); } + + +template EIGEN_STRONG_INLINE Packet4c parithmetic_shift_right(Packet4c& a) +{ return vget_lane_s32(vreinterpret_s32_s8(vshr_n_s8(vreinterpret_s8_s32(vdup_n_s32(a)), N)), 0); } +template EIGEN_STRONG_INLINE Packet8c parithmetic_shift_right(Packet8c a) { return vshr_n_s8(a,N); } +template EIGEN_STRONG_INLINE Packet16c parithmetic_shift_right(Packet16c a) { return vshrq_n_s8(a,N); } +template EIGEN_STRONG_INLINE Packet4uc parithmetic_shift_right(Packet4uc& a) +{ return vget_lane_u32(vreinterpret_u32_u8(vshr_n_u8(vreinterpret_u8_u32(vdup_n_u32(a)), N)), 0); } +template EIGEN_STRONG_INLINE Packet8uc parithmetic_shift_right(Packet8uc a) { return vshr_n_u8(a,N); } +template EIGEN_STRONG_INLINE Packet16uc parithmetic_shift_right(Packet16uc a) { return vshrq_n_u8(a,N); } +template EIGEN_STRONG_INLINE Packet4s parithmetic_shift_right(Packet4s a) { return vshr_n_s16(a,N); } +template EIGEN_STRONG_INLINE Packet8s parithmetic_shift_right(Packet8s a) { return vshrq_n_s16(a,N); } +template EIGEN_STRONG_INLINE Packet4us parithmetic_shift_right(Packet4us a) { return vshr_n_u16(a,N); } +template EIGEN_STRONG_INLINE Packet8us parithmetic_shift_right(Packet8us a) { return vshrq_n_u16(a,N); } +template EIGEN_STRONG_INLINE Packet2i parithmetic_shift_right(Packet2i a) { return vshr_n_s32(a,N); } +template EIGEN_STRONG_INLINE Packet4i parithmetic_shift_right(Packet4i a) { return vshrq_n_s32(a,N); } +template EIGEN_STRONG_INLINE Packet2ui parithmetic_shift_right(Packet2ui a) { return vshr_n_u32(a,N); } +template EIGEN_STRONG_INLINE Packet4ui parithmetic_shift_right(Packet4ui a) { return vshrq_n_u32(a,N); } +template EIGEN_STRONG_INLINE Packet2l parithmetic_shift_right(Packet2l a) { return vshrq_n_s64(a,N); } +template EIGEN_STRONG_INLINE Packet2ul parithmetic_shift_right(Packet2ul a) { return vshrq_n_u64(a,N); } + +template EIGEN_STRONG_INLINE Packet4c plogical_shift_right(Packet4c& a) +{ return vget_lane_s32(vreinterpret_s32_u8(vshr_n_u8(vreinterpret_u8_s32(vdup_n_s32(a)), N)), 0); } +template EIGEN_STRONG_INLINE Packet8c plogical_shift_right(Packet8c a) +{ return vreinterpret_s8_u8(vshr_n_u8(vreinterpret_u8_s8(a),N)); } +template EIGEN_STRONG_INLINE Packet16c plogical_shift_right(Packet16c a) +{ return vreinterpretq_s8_u8(vshrq_n_u8(vreinterpretq_u8_s8(a),N)); } +template EIGEN_STRONG_INLINE Packet4uc plogical_shift_right(Packet4uc& a) +{ return vget_lane_u32(vreinterpret_u32_s8(vshr_n_s8(vreinterpret_s8_u32(vdup_n_u32(a)), N)), 0); } +template EIGEN_STRONG_INLINE Packet8uc plogical_shift_right(Packet8uc a) { return vshr_n_u8(a,N); } +template EIGEN_STRONG_INLINE Packet16uc plogical_shift_right(Packet16uc a) { return vshrq_n_u8(a,N); } +template EIGEN_STRONG_INLINE Packet4s plogical_shift_right(Packet4s a) +{ return vreinterpret_s16_u16(vshr_n_u16(vreinterpret_u16_s16(a),N)); } +template EIGEN_STRONG_INLINE Packet8s plogical_shift_right(Packet8s a) +{ return vreinterpretq_s16_u16(vshrq_n_u16(vreinterpretq_u16_s16(a),N)); } +template EIGEN_STRONG_INLINE Packet4us plogical_shift_right(Packet4us a) { return vshr_n_u16(a,N); } +template EIGEN_STRONG_INLINE Packet8us plogical_shift_right(Packet8us a) { return vshrq_n_u16(a,N); } +template EIGEN_STRONG_INLINE Packet2i plogical_shift_right(Packet2i a) +{ return vreinterpret_s32_u32(vshr_n_u32(vreinterpret_u32_s32(a),N)); } +template EIGEN_STRONG_INLINE Packet4i plogical_shift_right(Packet4i a) +{ return vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(a),N)); } +template EIGEN_STRONG_INLINE Packet2ui plogical_shift_right(Packet2ui a) { return vshr_n_u32(a,N); } +template EIGEN_STRONG_INLINE Packet4ui plogical_shift_right(Packet4ui a) { return vshrq_n_u32(a,N); } +template EIGEN_STRONG_INLINE Packet2l plogical_shift_right(Packet2l a) +{ return vreinterpretq_s64_u64(vshrq_n_u64(vreinterpretq_u64_s64(a),N)); } +template EIGEN_STRONG_INLINE Packet2ul plogical_shift_right(Packet2ul a) { return vshrq_n_u64(a,N); } + +template EIGEN_STRONG_INLINE Packet4c plogical_shift_left(Packet4c& a) +{ return vget_lane_s32(vreinterpret_s32_s8(vshl_n_s8(vreinterpret_s8_s32(vdup_n_s32(a)), N)), 0); } +template EIGEN_STRONG_INLINE Packet8c plogical_shift_left(Packet8c a) { return vshl_n_s8(a,N); } +template EIGEN_STRONG_INLINE Packet16c plogical_shift_left(Packet16c a) { return vshlq_n_s8(a,N); } +template EIGEN_STRONG_INLINE Packet4uc plogical_shift_left(Packet4uc& a) +{ return vget_lane_u32(vreinterpret_u32_u8(vshl_n_u8(vreinterpret_u8_u32(vdup_n_u32(a)), N)), 0); } +template EIGEN_STRONG_INLINE Packet8uc plogical_shift_left(Packet8uc a) { return vshl_n_u8(a,N); } +template EIGEN_STRONG_INLINE Packet16uc plogical_shift_left(Packet16uc a) { return vshlq_n_u8(a,N); } +template EIGEN_STRONG_INLINE Packet4s plogical_shift_left(Packet4s a) { return vshl_n_s16(a,N); } +template EIGEN_STRONG_INLINE Packet8s plogical_shift_left(Packet8s a) { return vshlq_n_s16(a,N); } +template EIGEN_STRONG_INLINE Packet4us plogical_shift_left(Packet4us a) { return vshl_n_u16(a,N); } +template EIGEN_STRONG_INLINE Packet8us plogical_shift_left(Packet8us a) { return vshlq_n_u16(a,N); } +template EIGEN_STRONG_INLINE Packet2i plogical_shift_left(Packet2i a) { return vshl_n_s32(a,N); } +template EIGEN_STRONG_INLINE Packet4i plogical_shift_left(Packet4i a) { return vshlq_n_s32(a,N); } +template EIGEN_STRONG_INLINE Packet2ui plogical_shift_left(Packet2ui a) { return vshl_n_u32(a,N); } +template EIGEN_STRONG_INLINE Packet4ui plogical_shift_left(Packet4ui a) { return vshlq_n_u32(a,N); } +template EIGEN_STRONG_INLINE Packet2l plogical_shift_left(Packet2l a) { return vshlq_n_s64(a,N); } +template EIGEN_STRONG_INLINE Packet2ul plogical_shift_left(Packet2ul a) { return vshlq_n_u64(a,N); } + +template<> EIGEN_STRONG_INLINE Packet2f pload(const float* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4c pload(const int8_t* from) +{ + Packet4c res; + memcpy(&res, from, sizeof(Packet4c)); + return res; +} +template<> EIGEN_STRONG_INLINE Packet8c pload(const int8_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_s8(from); } +template<> EIGEN_STRONG_INLINE Packet16c pload(const int8_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s8(from); } +template<> EIGEN_STRONG_INLINE Packet4uc pload(const uint8_t* from) +{ + Packet4uc res; + memcpy(&res, from, sizeof(Packet4uc)); + return res; +} +template<> EIGEN_STRONG_INLINE Packet8uc pload(const uint8_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_u8(from); } +template<> EIGEN_STRONG_INLINE Packet16uc pload(const uint8_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_u8(from); } +template<> EIGEN_STRONG_INLINE Packet4s pload(const int16_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_s16(from); } +template<> EIGEN_STRONG_INLINE Packet8s pload(const int16_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s16(from); } +template<> EIGEN_STRONG_INLINE Packet4us pload(const uint16_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_u16(from); } +template<> EIGEN_STRONG_INLINE Packet8us pload(const uint16_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_u16(from); } +template<> EIGEN_STRONG_INLINE Packet2i pload(const int32_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_s32(from); } +template<> EIGEN_STRONG_INLINE Packet4i pload(const int32_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); } +template<> EIGEN_STRONG_INLINE Packet2ui pload(const uint32_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1_u32(from); } +template<> EIGEN_STRONG_INLINE Packet4ui pload(const uint32_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_u32(from); } +template<> EIGEN_STRONG_INLINE Packet2l pload(const int64_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s64(from); } +template<> EIGEN_STRONG_INLINE Packet2ul pload(const uint64_t* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_u64(from); } + +template<> EIGEN_STRONG_INLINE Packet2f ploadu(const float* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4c ploadu(const int8_t* from) +{ + Packet4c res; + memcpy(&res, from, sizeof(Packet4c)); + return res; +} +template<> EIGEN_STRONG_INLINE Packet8c ploadu(const int8_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_s8(from); } +template<> EIGEN_STRONG_INLINE Packet16c ploadu(const int8_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s8(from); } +template<> EIGEN_STRONG_INLINE Packet4uc ploadu(const uint8_t* from) +{ + Packet4uc res; + memcpy(&res, from, sizeof(Packet4uc)); + return res; +} +template<> EIGEN_STRONG_INLINE Packet8uc ploadu(const uint8_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_u8(from); } +template<> EIGEN_STRONG_INLINE Packet16uc ploadu(const uint8_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_u8(from); } +template<> EIGEN_STRONG_INLINE Packet4s ploadu(const int16_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_s16(from); } +template<> EIGEN_STRONG_INLINE Packet8s ploadu(const int16_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s16(from); } +template<> EIGEN_STRONG_INLINE Packet4us ploadu(const uint16_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_u16(from); } +template<> EIGEN_STRONG_INLINE Packet8us ploadu(const uint16_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_u16(from); } +template<> EIGEN_STRONG_INLINE Packet2i ploadu(const int32_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_s32(from); } +template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int32_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); } +template<> EIGEN_STRONG_INLINE Packet2ui ploadu(const uint32_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1_u32(from); } +template<> EIGEN_STRONG_INLINE Packet4ui ploadu(const uint32_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_u32(from); } +template<> EIGEN_STRONG_INLINE Packet2l ploadu(const int64_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s64(from); } +template<> EIGEN_STRONG_INLINE Packet2ul ploadu(const uint64_t* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_u64(from); } + +template<> EIGEN_STRONG_INLINE Packet2f ploaddup(const float* from) +{ return vld1_dup_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) +{ return vcombine_f32(vld1_dup_f32(from), vld1_dup_f32(from+1)); } +template<> EIGEN_STRONG_INLINE Packet4c ploaddup(const int8_t* from) +{ + const int8x8_t a = vreinterpret_s8_s32(vdup_n_s32(pload(from))); + return vget_lane_s32(vreinterpret_s32_s8(vzip_s8(a,a).val[0]), 0); +} +template<> EIGEN_STRONG_INLINE Packet8c ploaddup(const int8_t* from) +{ + const int8x8_t a = vld1_s8(from); + return vzip_s8(a,a).val[0]; +} +template<> EIGEN_STRONG_INLINE Packet16c ploaddup(const int8_t* from) +{ + const int8x8_t a = vld1_s8(from); + const int8x8x2_t b = vzip_s8(a,a); + return vcombine_s8(b.val[0], b.val[1]); +} +template<> EIGEN_STRONG_INLINE Packet4uc ploaddup(const uint8_t* from) +{ + const uint8x8_t a = vreinterpret_u8_u32(vdup_n_u32(pload(from))); + return vget_lane_u32(vreinterpret_u32_u8(vzip_u8(a,a).val[0]), 0); +} +template<> EIGEN_STRONG_INLINE Packet8uc ploaddup(const uint8_t* from) +{ + const uint8x8_t a = vld1_u8(from); + return vzip_u8(a,a).val[0]; +} +template<> EIGEN_STRONG_INLINE Packet16uc ploaddup(const uint8_t* from) +{ + const uint8x8_t a = vld1_u8(from); + const uint8x8x2_t b = vzip_u8(a,a); + return vcombine_u8(b.val[0], b.val[1]); +} +template<> EIGEN_STRONG_INLINE Packet4s ploaddup(const int16_t* from) +{ + return vreinterpret_s16_u32(vzip_u32(vreinterpret_u32_s16(vld1_dup_s16(from)), + vreinterpret_u32_s16(vld1_dup_s16(from+1))).val[0]); +} +template<> EIGEN_STRONG_INLINE Packet8s ploaddup(const int16_t* from) +{ + const int16x4_t a = vld1_s16(from); + const int16x4x2_t b = vzip_s16(a,a); + return vcombine_s16(b.val[0], b.val[1]); +} +template<> EIGEN_STRONG_INLINE Packet4us ploaddup(const uint16_t* from) +{ + return vreinterpret_u16_u32(vzip_u32(vreinterpret_u32_u16(vld1_dup_u16(from)), + vreinterpret_u32_u16(vld1_dup_u16(from+1))).val[0]); +} +template<> EIGEN_STRONG_INLINE Packet8us ploaddup(const uint16_t* from) +{ + const uint16x4_t a = vld1_u16(from); + const uint16x4x2_t b = vzip_u16(a,a); + return vcombine_u16(b.val[0], b.val[1]); +} +template<> EIGEN_STRONG_INLINE Packet2i ploaddup(const int32_t* from) +{ return vld1_dup_s32(from); } +template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int32_t* from) +{ return vcombine_s32(vld1_dup_s32(from), vld1_dup_s32(from+1)); } +template<> EIGEN_STRONG_INLINE Packet2ui ploaddup(const uint32_t* from) +{ return vld1_dup_u32(from); } +template<> EIGEN_STRONG_INLINE Packet4ui ploaddup(const uint32_t* from) +{ return vcombine_u32(vld1_dup_u32(from), vld1_dup_u32(from+1)); } +template<> EIGEN_STRONG_INLINE Packet2l ploaddup(const int64_t* from) +{ return vld1q_dup_s64(from); } +template<> EIGEN_STRONG_INLINE Packet2ul ploaddup(const uint64_t* from) +{ return vld1q_dup_u64(from); } + +template<> EIGEN_STRONG_INLINE Packet4f ploadquad(const float* from) { return vld1q_dup_f32(from); } +template<> EIGEN_STRONG_INLINE Packet4c ploadquad(const int8_t* from) +{ return vget_lane_s32(vreinterpret_s32_s8(vld1_dup_s8(from)), 0); } +template<> EIGEN_STRONG_INLINE Packet8c ploadquad(const int8_t* from) +{ + return vreinterpret_s8_u32(vzip_u32( + vreinterpret_u32_s8(vld1_dup_s8(from)), + vreinterpret_u32_s8(vld1_dup_s8(from+1))).val[0]); +} +template<> EIGEN_STRONG_INLINE Packet16c ploadquad(const int8_t* from) +{ + const int8x8_t a = vreinterpret_s8_u32(vzip_u32( + vreinterpret_u32_s8(vld1_dup_s8(from)), + vreinterpret_u32_s8(vld1_dup_s8(from+1))).val[0]); + const int8x8_t b = vreinterpret_s8_u32(vzip_u32( + vreinterpret_u32_s8(vld1_dup_s8(from+2)), + vreinterpret_u32_s8(vld1_dup_s8(from+3))).val[0]); + return vcombine_s8(a,b); +} +template<> EIGEN_STRONG_INLINE Packet4uc ploadquad(const uint8_t* from) +{ return vget_lane_u32(vreinterpret_u32_u8(vld1_dup_u8(from)), 0); } +template<> EIGEN_STRONG_INLINE Packet8uc ploadquad(const uint8_t* from) +{ + return vreinterpret_u8_u32(vzip_u32( + vreinterpret_u32_u8(vld1_dup_u8(from)), + vreinterpret_u32_u8(vld1_dup_u8(from+1))).val[0]); +} +template<> EIGEN_STRONG_INLINE Packet16uc ploadquad(const uint8_t* from) +{ + const uint8x8_t a = vreinterpret_u8_u32(vzip_u32( + vreinterpret_u32_u8(vld1_dup_u8(from)), + vreinterpret_u32_u8(vld1_dup_u8(from+1))).val[0]); + const uint8x8_t b = vreinterpret_u8_u32(vzip_u32( + vreinterpret_u32_u8(vld1_dup_u8(from+2)), + vreinterpret_u32_u8(vld1_dup_u8(from+3))).val[0]); + return vcombine_u8(a,b); +} +template<> EIGEN_STRONG_INLINE Packet8s ploadquad(const int16_t* from) +{ return vcombine_s16(vld1_dup_s16(from), vld1_dup_s16(from+1)); } +template<> EIGEN_STRONG_INLINE Packet8us ploadquad(const uint16_t* from) +{ return vcombine_u16(vld1_dup_u16(from), vld1_dup_u16(from+1)); } +template<> EIGEN_STRONG_INLINE Packet4i ploadquad(const int32_t* from) { return vld1q_dup_s32(from); } +template<> EIGEN_STRONG_INLINE Packet4ui ploadquad(const uint32_t* from) { return vld1q_dup_u32(from); } + +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet2f& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_f32(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int8_t* to, const Packet4c& from) +{ memcpy(to, &from, sizeof(from)); } +template<> EIGEN_STRONG_INLINE void pstore(int8_t* to, const Packet8c& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_s8(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int8_t* to, const Packet16c& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_s8(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint8_t* to, const Packet4uc& from) +{ memcpy(to, &from, sizeof(from)); } +template<> EIGEN_STRONG_INLINE void pstore(uint8_t* to, const Packet8uc& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_u8(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint8_t* to, const Packet16uc& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_u8(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int16_t* to, const Packet4s& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_s16(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int16_t* to, const Packet8s& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_s16(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint16_t* to, const Packet4us& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_u16(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint16_t* to, const Packet8us& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_u16(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int32_t* to, const Packet2i& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_s32(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int32_t* to, const Packet4i& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint32_t* to, const Packet2ui& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1_u32(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint32_t* to, const Packet4ui& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_u32(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(int64_t* to, const Packet2l& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_s64(to,from); } +template<> EIGEN_STRONG_INLINE void pstore(uint64_t* to, const Packet2ul& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_u64(to,from); } + +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet2f& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_f32(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int8_t* to, const Packet4c& from) +{ memcpy(to, &from, sizeof(from)); } +template<> EIGEN_STRONG_INLINE void pstoreu(int8_t* to, const Packet8c& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_s8(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int8_t* to, const Packet16c& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_s8(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint8_t* to, const Packet4uc& from) +{ memcpy(to, &from, sizeof(from)); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint8_t* to, const Packet8uc& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_u8(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint8_t* to, const Packet16uc& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_u8(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int16_t* to, const Packet4s& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_s16(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int16_t* to, const Packet8s& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_s16(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint16_t* to, const Packet4us& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_u16(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint16_t* to, const Packet8us& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_u16(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int32_t* to, const Packet2i& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_s32(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int32_t* to, const Packet4i& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint32_t* to, const Packet2ui& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1_u32(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint32_t* to, const Packet4ui& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_u32(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int64_t* to, const Packet2l& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_s64(to,from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint64_t* to, const Packet2ul& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_u64(to,from); } + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2f pgather(const float* from, Index stride) +{ + Packet2f res = vld1_dup_f32(from); + res = vld1_lane_f32(from + 1*stride, res, 1); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4f pgather(const float* from, Index stride) +{ + Packet4f res = vld1q_dup_f32(from); + res = vld1q_lane_f32(from + 1*stride, res, 1); + res = vld1q_lane_f32(from + 2*stride, res, 2); + res = vld1q_lane_f32(from + 3*stride, res, 3); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4c pgather(const int8_t* from, Index stride) +{ + Packet4c res; + for (int i = 0; i != 4; i++) + reinterpret_cast(&res)[i] = *(from + i * stride); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8c pgather(const int8_t* from, Index stride) +{ + Packet8c res = vld1_dup_s8(from); + res = vld1_lane_s8(from + 1*stride, res, 1); + res = vld1_lane_s8(from + 2*stride, res, 2); + res = vld1_lane_s8(from + 3*stride, res, 3); + res = vld1_lane_s8(from + 4*stride, res, 4); + res = vld1_lane_s8(from + 5*stride, res, 5); + res = vld1_lane_s8(from + 6*stride, res, 6); + res = vld1_lane_s8(from + 7*stride, res, 7); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet16c pgather(const int8_t* from, Index stride) +{ + Packet16c res = vld1q_dup_s8(from); + res = vld1q_lane_s8(from + 1*stride, res, 1); + res = vld1q_lane_s8(from + 2*stride, res, 2); + res = vld1q_lane_s8(from + 3*stride, res, 3); + res = vld1q_lane_s8(from + 4*stride, res, 4); + res = vld1q_lane_s8(from + 5*stride, res, 5); + res = vld1q_lane_s8(from + 6*stride, res, 6); + res = vld1q_lane_s8(from + 7*stride, res, 7); + res = vld1q_lane_s8(from + 8*stride, res, 8); + res = vld1q_lane_s8(from + 9*stride, res, 9); + res = vld1q_lane_s8(from + 10*stride, res, 10); + res = vld1q_lane_s8(from + 11*stride, res, 11); + res = vld1q_lane_s8(from + 12*stride, res, 12); + res = vld1q_lane_s8(from + 13*stride, res, 13); + res = vld1q_lane_s8(from + 14*stride, res, 14); + res = vld1q_lane_s8(from + 15*stride, res, 15); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4uc pgather(const uint8_t* from, Index stride) +{ + Packet4uc res; + for (int i = 0; i != 4; i++) + reinterpret_cast(&res)[i] = *(from + i * stride); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8uc pgather(const uint8_t* from, Index stride) +{ + Packet8uc res = vld1_dup_u8(from); + res = vld1_lane_u8(from + 1*stride, res, 1); + res = vld1_lane_u8(from + 2*stride, res, 2); + res = vld1_lane_u8(from + 3*stride, res, 3); + res = vld1_lane_u8(from + 4*stride, res, 4); + res = vld1_lane_u8(from + 5*stride, res, 5); + res = vld1_lane_u8(from + 6*stride, res, 6); + res = vld1_lane_u8(from + 7*stride, res, 7); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet16uc pgather(const uint8_t* from, Index stride) +{ + Packet16uc res = vld1q_dup_u8(from); + res = vld1q_lane_u8(from + 1*stride, res, 1); + res = vld1q_lane_u8(from + 2*stride, res, 2); + res = vld1q_lane_u8(from + 3*stride, res, 3); + res = vld1q_lane_u8(from + 4*stride, res, 4); + res = vld1q_lane_u8(from + 5*stride, res, 5); + res = vld1q_lane_u8(from + 6*stride, res, 6); + res = vld1q_lane_u8(from + 7*stride, res, 7); + res = vld1q_lane_u8(from + 8*stride, res, 8); + res = vld1q_lane_u8(from + 9*stride, res, 9); + res = vld1q_lane_u8(from + 10*stride, res, 10); + res = vld1q_lane_u8(from + 11*stride, res, 11); + res = vld1q_lane_u8(from + 12*stride, res, 12); + res = vld1q_lane_u8(from + 13*stride, res, 13); + res = vld1q_lane_u8(from + 14*stride, res, 14); + res = vld1q_lane_u8(from + 15*stride, res, 15); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4s pgather(const int16_t* from, Index stride) +{ + Packet4s res = vld1_dup_s16(from); + res = vld1_lane_s16(from + 1*stride, res, 1); + res = vld1_lane_s16(from + 2*stride, res, 2); + res = vld1_lane_s16(from + 3*stride, res, 3); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8s pgather(const int16_t* from, Index stride) +{ + Packet8s res = vld1q_dup_s16(from); + res = vld1q_lane_s16(from + 1*stride, res, 1); + res = vld1q_lane_s16(from + 2*stride, res, 2); + res = vld1q_lane_s16(from + 3*stride, res, 3); + res = vld1q_lane_s16(from + 4*stride, res, 4); + res = vld1q_lane_s16(from + 5*stride, res, 5); + res = vld1q_lane_s16(from + 6*stride, res, 6); + res = vld1q_lane_s16(from + 7*stride, res, 7); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4us pgather(const uint16_t* from, Index stride) +{ + Packet4us res = vld1_dup_u16(from); + res = vld1_lane_u16(from + 1*stride, res, 1); + res = vld1_lane_u16(from + 2*stride, res, 2); + res = vld1_lane_u16(from + 3*stride, res, 3); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8us pgather(const uint16_t* from, Index stride) +{ + Packet8us res = vld1q_dup_u16(from); + res = vld1q_lane_u16(from + 1*stride, res, 1); + res = vld1q_lane_u16(from + 2*stride, res, 2); + res = vld1q_lane_u16(from + 3*stride, res, 3); + res = vld1q_lane_u16(from + 4*stride, res, 4); + res = vld1q_lane_u16(from + 5*stride, res, 5); + res = vld1q_lane_u16(from + 6*stride, res, 6); + res = vld1q_lane_u16(from + 7*stride, res, 7); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2i pgather(const int32_t* from, Index stride) +{ + Packet2i res = vld1_dup_s32(from); + res = vld1_lane_s32(from + 1*stride, res, 1); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4i pgather(const int32_t* from, Index stride) +{ + Packet4i res = vld1q_dup_s32(from); + res = vld1q_lane_s32(from + 1*stride, res, 1); + res = vld1q_lane_s32(from + 2*stride, res, 2); + res = vld1q_lane_s32(from + 3*stride, res, 3); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2ui pgather(const uint32_t* from, Index stride) +{ + Packet2ui res = vld1_dup_u32(from); + res = vld1_lane_u32(from + 1*stride, res, 1); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4ui pgather(const uint32_t* from, Index stride) +{ + Packet4ui res = vld1q_dup_u32(from); + res = vld1q_lane_u32(from + 1*stride, res, 1); + res = vld1q_lane_u32(from + 2*stride, res, 2); + res = vld1q_lane_u32(from + 3*stride, res, 3); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2l pgather(const int64_t* from, Index stride) +{ + Packet2l res = vld1q_dup_s64(from); + res = vld1q_lane_s64(from + 1*stride, res, 1); + return res; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2ul pgather(const uint64_t* from, Index stride) +{ + Packet2ul res = vld1q_dup_u64(from); + res = vld1q_lane_u64(from + 1*stride, res, 1); + return res; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(float* to, const Packet2f& from, Index stride) +{ + vst1_lane_f32(to + stride*0, from, 0); + vst1_lane_f32(to + stride*1, from, 1); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(float* to, const Packet4f& from, Index stride) +{ + vst1q_lane_f32(to + stride*0, from, 0); + vst1q_lane_f32(to + stride*1, from, 1); + vst1q_lane_f32(to + stride*2, from, 2); + vst1q_lane_f32(to + stride*3, from, 3); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int8_t* to, const Packet4c& from, Index stride) +{ + for (int i = 0; i != 4; i++) + *(to + i * stride) = reinterpret_cast(&from)[i]; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int8_t* to, const Packet8c& from, Index stride) +{ + vst1_lane_s8(to + stride*0, from, 0); + vst1_lane_s8(to + stride*1, from, 1); + vst1_lane_s8(to + stride*2, from, 2); + vst1_lane_s8(to + stride*3, from, 3); + vst1_lane_s8(to + stride*4, from, 4); + vst1_lane_s8(to + stride*5, from, 5); + vst1_lane_s8(to + stride*6, from, 6); + vst1_lane_s8(to + stride*7, from, 7); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int8_t* to, const Packet16c& from, Index stride) +{ + vst1q_lane_s8(to + stride*0, from, 0); + vst1q_lane_s8(to + stride*1, from, 1); + vst1q_lane_s8(to + stride*2, from, 2); + vst1q_lane_s8(to + stride*3, from, 3); + vst1q_lane_s8(to + stride*4, from, 4); + vst1q_lane_s8(to + stride*5, from, 5); + vst1q_lane_s8(to + stride*6, from, 6); + vst1q_lane_s8(to + stride*7, from, 7); + vst1q_lane_s8(to + stride*8, from, 8); + vst1q_lane_s8(to + stride*9, from, 9); + vst1q_lane_s8(to + stride*10, from, 10); + vst1q_lane_s8(to + stride*11, from, 11); + vst1q_lane_s8(to + stride*12, from, 12); + vst1q_lane_s8(to + stride*13, from, 13); + vst1q_lane_s8(to + stride*14, from, 14); + vst1q_lane_s8(to + stride*15, from, 15); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint8_t* to, const Packet4uc& from, Index stride) +{ + for (int i = 0; i != 4; i++) + *(to + i * stride) = reinterpret_cast(&from)[i]; +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint8_t* to, const Packet8uc& from, Index stride) +{ + vst1_lane_u8(to + stride*0, from, 0); + vst1_lane_u8(to + stride*1, from, 1); + vst1_lane_u8(to + stride*2, from, 2); + vst1_lane_u8(to + stride*3, from, 3); + vst1_lane_u8(to + stride*4, from, 4); + vst1_lane_u8(to + stride*5, from, 5); + vst1_lane_u8(to + stride*6, from, 6); + vst1_lane_u8(to + stride*7, from, 7); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint8_t* to, const Packet16uc& from, Index stride) +{ + vst1q_lane_u8(to + stride*0, from, 0); + vst1q_lane_u8(to + stride*1, from, 1); + vst1q_lane_u8(to + stride*2, from, 2); + vst1q_lane_u8(to + stride*3, from, 3); + vst1q_lane_u8(to + stride*4, from, 4); + vst1q_lane_u8(to + stride*5, from, 5); + vst1q_lane_u8(to + stride*6, from, 6); + vst1q_lane_u8(to + stride*7, from, 7); + vst1q_lane_u8(to + stride*8, from, 8); + vst1q_lane_u8(to + stride*9, from, 9); + vst1q_lane_u8(to + stride*10, from, 10); + vst1q_lane_u8(to + stride*11, from, 11); + vst1q_lane_u8(to + stride*12, from, 12); + vst1q_lane_u8(to + stride*13, from, 13); + vst1q_lane_u8(to + stride*14, from, 14); + vst1q_lane_u8(to + stride*15, from, 15); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int16_t* to, const Packet4s& from, Index stride) +{ + vst1_lane_s16(to + stride*0, from, 0); + vst1_lane_s16(to + stride*1, from, 1); + vst1_lane_s16(to + stride*2, from, 2); + vst1_lane_s16(to + stride*3, from, 3); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int16_t* to, const Packet8s& from, Index stride) +{ + vst1q_lane_s16(to + stride*0, from, 0); + vst1q_lane_s16(to + stride*1, from, 1); + vst1q_lane_s16(to + stride*2, from, 2); + vst1q_lane_s16(to + stride*3, from, 3); + vst1q_lane_s16(to + stride*4, from, 4); + vst1q_lane_s16(to + stride*5, from, 5); + vst1q_lane_s16(to + stride*6, from, 6); + vst1q_lane_s16(to + stride*7, from, 7); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint16_t* to, const Packet4us& from, Index stride) +{ + vst1_lane_u16(to + stride*0, from, 0); + vst1_lane_u16(to + stride*1, from, 1); + vst1_lane_u16(to + stride*2, from, 2); + vst1_lane_u16(to + stride*3, from, 3); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint16_t* to, const Packet8us& from, Index stride) +{ + vst1q_lane_u16(to + stride*0, from, 0); + vst1q_lane_u16(to + stride*1, from, 1); + vst1q_lane_u16(to + stride*2, from, 2); + vst1q_lane_u16(to + stride*3, from, 3); + vst1q_lane_u16(to + stride*4, from, 4); + vst1q_lane_u16(to + stride*5, from, 5); + vst1q_lane_u16(to + stride*6, from, 6); + vst1q_lane_u16(to + stride*7, from, 7); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int32_t* to, const Packet2i& from, Index stride) +{ + vst1_lane_s32(to + stride*0, from, 0); + vst1_lane_s32(to + stride*1, from, 1); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int32_t* to, const Packet4i& from, Index stride) +{ + vst1q_lane_s32(to + stride*0, from, 0); + vst1q_lane_s32(to + stride*1, from, 1); + vst1q_lane_s32(to + stride*2, from, 2); + vst1q_lane_s32(to + stride*3, from, 3); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint32_t* to, const Packet2ui& from, Index stride) +{ + vst1_lane_u32(to + stride*0, from, 0); + vst1_lane_u32(to + stride*1, from, 1); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint32_t* to, const Packet4ui& from, Index stride) +{ + vst1q_lane_u32(to + stride*0, from, 0); + vst1q_lane_u32(to + stride*1, from, 1); + vst1q_lane_u32(to + stride*2, from, 2); + vst1q_lane_u32(to + stride*3, from, 3); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(int64_t* to, const Packet2l& from, Index stride) +{ + vst1q_lane_s64(to + stride*0, from, 0); + vst1q_lane_s64(to + stride*1, from, 1); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(uint64_t* to, const Packet2ul& from, Index stride) +{ + vst1q_lane_u64(to + stride*0, from, 0); + vst1q_lane_u64(to + stride*1, from, 1); +} + +template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const int8_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const uint8_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const int16_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const uint16_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const int32_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const uint32_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const int64_t* addr) { EIGEN_ARM_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const uint64_t* addr) { EIGEN_ARM_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE float pfirst(const Packet2f& a) { return vget_lane_f32(a,0); } +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { return vgetq_lane_f32(a,0); } +template<> EIGEN_STRONG_INLINE int8_t pfirst(const Packet4c& a) { return static_cast(a & 0xff); } +template<> EIGEN_STRONG_INLINE int8_t pfirst(const Packet8c& a) { return vget_lane_s8(a,0); } +template<> EIGEN_STRONG_INLINE int8_t pfirst(const Packet16c& a) { return vgetq_lane_s8(a,0); } +template<> EIGEN_STRONG_INLINE uint8_t pfirst(const Packet4uc& a) { return static_cast(a & 0xff); } +template<> EIGEN_STRONG_INLINE uint8_t pfirst(const Packet8uc& a) { return vget_lane_u8(a,0); } +template<> EIGEN_STRONG_INLINE uint8_t pfirst(const Packet16uc& a) { return vgetq_lane_u8(a,0); } +template<> EIGEN_STRONG_INLINE int16_t pfirst(const Packet4s& a) { return vget_lane_s16(a,0); } +template<> EIGEN_STRONG_INLINE int16_t pfirst(const Packet8s& a) { return vgetq_lane_s16(a,0); } +template<> EIGEN_STRONG_INLINE uint16_t pfirst(const Packet4us& a) { return vget_lane_u16(a,0); } +template<> EIGEN_STRONG_INLINE uint16_t pfirst(const Packet8us& a) { return vgetq_lane_u16(a,0); } +template<> EIGEN_STRONG_INLINE int32_t pfirst(const Packet2i& a) { return vget_lane_s32(a,0); } +template<> EIGEN_STRONG_INLINE int32_t pfirst(const Packet4i& a) { return vgetq_lane_s32(a,0); } +template<> EIGEN_STRONG_INLINE uint32_t pfirst(const Packet2ui& a) { return vget_lane_u32(a,0); } +template<> EIGEN_STRONG_INLINE uint32_t pfirst(const Packet4ui& a) { return vgetq_lane_u32(a,0); } +template<> EIGEN_STRONG_INLINE int64_t pfirst(const Packet2l& a) { return vgetq_lane_s64(a,0); } +template<> EIGEN_STRONG_INLINE uint64_t pfirst(const Packet2ul& a) { return vgetq_lane_u64(a,0); } + +template<> EIGEN_STRONG_INLINE Packet2f preverse(const Packet2f& a) { return vrev64_f32(a); } +template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) +{ + const float32x4_t a_r64 = vrev64q_f32(a); + return vcombine_f32(vget_high_f32(a_r64), vget_low_f32(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet4c preverse(const Packet4c& a) +{ return vget_lane_s32(vreinterpret_s32_s8(vrev64_s8(vreinterpret_s8_s32(vdup_n_s32(a)))), 0); } +template<> EIGEN_STRONG_INLINE Packet8c preverse(const Packet8c& a) { return vrev64_s8(a); } +template<> EIGEN_STRONG_INLINE Packet16c preverse(const Packet16c& a) +{ + const int8x16_t a_r64 = vrev64q_s8(a); + return vcombine_s8(vget_high_s8(a_r64), vget_low_s8(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet4uc preverse(const Packet4uc& a) +{ return vget_lane_u32(vreinterpret_u32_u8(vrev64_u8(vreinterpret_u8_u32(vdup_n_u32(a)))), 0); } +template<> EIGEN_STRONG_INLINE Packet8uc preverse(const Packet8uc& a) { return vrev64_u8(a); } +template<> EIGEN_STRONG_INLINE Packet16uc preverse(const Packet16uc& a) +{ + const uint8x16_t a_r64 = vrev64q_u8(a); + return vcombine_u8(vget_high_u8(a_r64), vget_low_u8(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet4s preverse(const Packet4s& a) { return vrev64_s16(a); } +template<> EIGEN_STRONG_INLINE Packet8s preverse(const Packet8s& a) +{ + const int16x8_t a_r64 = vrev64q_s16(a); + return vcombine_s16(vget_high_s16(a_r64), vget_low_s16(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet4us preverse(const Packet4us& a) { return vrev64_u16(a); } +template<> EIGEN_STRONG_INLINE Packet8us preverse(const Packet8us& a) +{ + const uint16x8_t a_r64 = vrev64q_u16(a); + return vcombine_u16(vget_high_u16(a_r64), vget_low_u16(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet2i preverse(const Packet2i& a) { return vrev64_s32(a); } +template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) +{ + const int32x4_t a_r64 = vrev64q_s32(a); + return vcombine_s32(vget_high_s32(a_r64), vget_low_s32(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet2ui preverse(const Packet2ui& a) { return vrev64_u32(a); } +template<> EIGEN_STRONG_INLINE Packet4ui preverse(const Packet4ui& a) +{ + const uint32x4_t a_r64 = vrev64q_u32(a); + return vcombine_u32(vget_high_u32(a_r64), vget_low_u32(a_r64)); +} +template<> EIGEN_STRONG_INLINE Packet2l preverse(const Packet2l& a) +{ return vcombine_s64(vget_high_s64(a), vget_low_s64(a)); } +template<> EIGEN_STRONG_INLINE Packet2ul preverse(const Packet2ul& a) +{ return vcombine_u64(vget_high_u64(a), vget_low_u64(a)); } + +template<> EIGEN_STRONG_INLINE Packet2f pabs(const Packet2f& a) { return vabs_f32(a); } +template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); } +template<> EIGEN_STRONG_INLINE Packet4c pabs(const Packet4c& a) +{ return vget_lane_s32(vreinterpret_s32_s8(vabs_s8(vreinterpret_s8_s32(vdup_n_s32(a)))), 0); } +template<> EIGEN_STRONG_INLINE Packet8c pabs(const Packet8c& a) { return vabs_s8(a); } +template<> EIGEN_STRONG_INLINE Packet16c pabs(const Packet16c& a) { return vabsq_s8(a); } +template<> EIGEN_STRONG_INLINE Packet4uc pabs(const Packet4uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8uc pabs(const Packet8uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet16uc pabs(const Packet16uc& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4s pabs(const Packet4s& a) { return vabs_s16(a); } +template<> EIGEN_STRONG_INLINE Packet8s pabs(const Packet8s& a) { return vabsq_s16(a); } +template<> EIGEN_STRONG_INLINE Packet4us pabs(const Packet4us& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8us pabs(const Packet8us& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2i pabs(const Packet2i& a) { return vabs_s32(a); } +template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); } +template<> EIGEN_STRONG_INLINE Packet2ui pabs(const Packet2ui& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4ui pabs(const Packet4ui& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2l pabs(const Packet2l& a) { +#if EIGEN_ARCH_ARM64 + return vabsq_s64(a); +#else + return vcombine_s64( + vdup_n_s64((std::abs)(vgetq_lane_s64(a, 0))), + vdup_n_s64((std::abs)(vgetq_lane_s64(a, 1)))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2ul pabs(const Packet2ul& a) { return a; } + +template <> +EIGEN_STRONG_INLINE Packet2f psignbit(const Packet2f& a) { + return vreinterpret_f32_s32(vshr_n_s32(vreinterpret_s32_f32(a), 31)); +} +template <> +EIGEN_STRONG_INLINE Packet4f psignbit(const Packet4f& a) { + return vreinterpretq_f32_s32(vshrq_n_s32(vreinterpretq_s32_f32(a), 31)); +} + +template<> EIGEN_STRONG_INLINE Packet2f pfrexp(const Packet2f& a, Packet2f& exponent) +{ return pfrexp_generic(a,exponent); } +template<> EIGEN_STRONG_INLINE Packet4f pfrexp(const Packet4f& a, Packet4f& exponent) +{ return pfrexp_generic(a,exponent); } + +template<> EIGEN_STRONG_INLINE Packet2f pldexp(const Packet2f& a, const Packet2f& exponent) +{ return pldexp_generic(a,exponent); } +template<> EIGEN_STRONG_INLINE Packet4f pldexp(const Packet4f& a, const Packet4f& exponent) +{ return pldexp_generic(a,exponent); } + +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE float predux(const Packet2f& a) { return vaddv_f32(a); } +template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) { return vaddvq_f32(a); } +#else +template<> EIGEN_STRONG_INLINE float predux(const Packet2f& a) { return vget_lane_f32(vpadd_f32(a,a), 0); } +template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) +{ + const float32x2_t sum = vadd_f32(vget_low_f32(a), vget_high_f32(a)); + return vget_lane_f32(vpadd_f32(sum, sum), 0); +} +#endif +template<> EIGEN_STRONG_INLINE int8_t predux(const Packet4c& a) +{ + const int8x8_t a_dup = vreinterpret_s8_s32(vdup_n_s32(a)); + int8x8_t sum = vpadd_s8(a_dup, a_dup); + sum = vpadd_s8(sum, sum); + return vget_lane_s8(sum, 0); +} +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE int8_t predux(const Packet8c& a) { return vaddv_s8(a); } +template<> EIGEN_STRONG_INLINE int8_t predux(const Packet16c& a) { return vaddvq_s8(a); } +#else +template<> EIGEN_STRONG_INLINE int8_t predux(const Packet8c& a) +{ + int8x8_t sum = vpadd_s8(a,a); + sum = vpadd_s8(sum, sum); + sum = vpadd_s8(sum, sum); + return vget_lane_s8(sum, 0); +} +template<> EIGEN_STRONG_INLINE int8_t predux(const Packet16c& a) +{ + int8x8_t sum = vadd_s8(vget_low_s8(a), vget_high_s8(a)); + sum = vpadd_s8(sum, sum); + sum = vpadd_s8(sum, sum); + sum = vpadd_s8(sum, sum); + return vget_lane_s8(sum, 0); +} +#endif +template<> EIGEN_STRONG_INLINE uint8_t predux(const Packet4uc& a) +{ + const uint8x8_t a_dup = vreinterpret_u8_u32(vdup_n_u32(a)); + uint8x8_t sum = vpadd_u8(a_dup, a_dup); + sum = vpadd_u8(sum, sum); + return vget_lane_u8(sum, 0); +} +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE uint8_t predux(const Packet8uc& a) { return vaddv_u8(a); } +template<> EIGEN_STRONG_INLINE uint8_t predux(const Packet16uc& a) { return vaddvq_u8(a); } +template<> EIGEN_STRONG_INLINE int16_t predux(const Packet4s& a) { return vaddv_s16(a); } +template<> EIGEN_STRONG_INLINE int16_t predux(const Packet8s& a) { return vaddvq_s16(a); } +template<> EIGEN_STRONG_INLINE uint16_t predux(const Packet4us& a) { return vaddv_u16(a); } +template<> EIGEN_STRONG_INLINE uint16_t predux(const Packet8us& a) { return vaddvq_u16(a); } +template<> EIGEN_STRONG_INLINE int32_t predux(const Packet2i& a) { return vaddv_s32(a); } +template<> EIGEN_STRONG_INLINE int32_t predux(const Packet4i& a) { return vaddvq_s32(a); } +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet2ui& a) { return vaddv_u32(a); } +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet4ui& a) { return vaddvq_u32(a); } +template<> EIGEN_STRONG_INLINE int64_t predux(const Packet2l& a) { return vaddvq_s64(a); } +template<> EIGEN_STRONG_INLINE uint64_t predux(const Packet2ul& a) { return vaddvq_u64(a); } +#else +template<> EIGEN_STRONG_INLINE uint8_t predux(const Packet8uc& a) +{ + uint8x8_t sum = vpadd_u8(a,a); + sum = vpadd_u8(sum, sum); + sum = vpadd_u8(sum, sum); + return vget_lane_u8(sum, 0); +} +template<> EIGEN_STRONG_INLINE uint8_t predux(const Packet16uc& a) +{ + uint8x8_t sum = vadd_u8(vget_low_u8(a), vget_high_u8(a)); + sum = vpadd_u8(sum, sum); + sum = vpadd_u8(sum, sum); + sum = vpadd_u8(sum, sum); + return vget_lane_u8(sum, 0); +} +template<> EIGEN_STRONG_INLINE int16_t predux(const Packet4s& a) +{ + const int16x4_t sum = vpadd_s16(a,a); + return vget_lane_s16(vpadd_s16(sum, sum), 0); +} +template<> EIGEN_STRONG_INLINE int16_t predux(const Packet8s& a) +{ + int16x4_t sum = vadd_s16(vget_low_s16(a), vget_high_s16(a)); + sum = vpadd_s16(sum, sum); + sum = vpadd_s16(sum, sum); + return vget_lane_s16(sum, 0); +} +template<> EIGEN_STRONG_INLINE uint16_t predux(const Packet4us& a) +{ + const uint16x4_t sum = vpadd_u16(a,a); + return vget_lane_u16(vpadd_u16(sum, sum), 0); +} +template<> EIGEN_STRONG_INLINE uint16_t predux(const Packet8us& a) +{ + uint16x4_t sum = vadd_u16(vget_low_u16(a), vget_high_u16(a)); + sum = vpadd_u16(sum, sum); + sum = vpadd_u16(sum, sum); + return vget_lane_u16(sum, 0); +} +template<> EIGEN_STRONG_INLINE int32_t predux(const Packet2i& a) { return vget_lane_s32(vpadd_s32(a,a), 0); } +template<> EIGEN_STRONG_INLINE int32_t predux(const Packet4i& a) +{ + const int32x2_t sum = vadd_s32(vget_low_s32(a), vget_high_s32(a)); + return vget_lane_s32(vpadd_s32(sum, sum), 0); +} +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet2ui& a) { return vget_lane_u32(vpadd_u32(a,a), 0); } +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet4ui& a) +{ + const uint32x2_t sum = vadd_u32(vget_low_u32(a), vget_high_u32(a)); + return vget_lane_u32(vpadd_u32(sum, sum), 0); +} +template<> EIGEN_STRONG_INLINE int64_t predux(const Packet2l& a) +{ return vgetq_lane_s64(a, 0) + vgetq_lane_s64(a, 1); } +template<> EIGEN_STRONG_INLINE uint64_t predux(const Packet2ul& a) +{ return vgetq_lane_u64(a, 0) + vgetq_lane_u64(a, 1); } +#endif + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4c predux_half_dowto4(const Packet8c& a) +{ + return vget_lane_s32(vreinterpret_s32_s8(vadd_s8(a, + vreinterpret_s8_s32(vrev64_s32(vreinterpret_s32_s8(a))))), 0); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8c predux_half_dowto4(const Packet16c& a) +{ return vadd_s8(vget_high_s8(a), vget_low_s8(a)); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4uc predux_half_dowto4(const Packet8uc& a) +{ + return vget_lane_u32(vreinterpret_u32_u8(vadd_u8(a, + vreinterpret_u8_u32(vrev64_u32(vreinterpret_u32_u8(a))))), 0); +} +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8uc predux_half_dowto4(const Packet16uc& a) +{ return vadd_u8(vget_high_u8(a), vget_low_u8(a)); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4s predux_half_dowto4(const Packet8s& a) +{ return vadd_s16(vget_high_s16(a), vget_low_s16(a)); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4us predux_half_dowto4(const Packet8us& a) +{ return vadd_u16(vget_high_u16(a), vget_low_u16(a)); } + +// Other reduction functions: +// mul +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet2f& a) +{ return vget_lane_f32(a, 0) * vget_lane_f32(a, 1); } +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) +{ return predux_mul(vmul_f32(vget_low_f32(a), vget_high_f32(a))); } +template<> EIGEN_STRONG_INLINE int8_t predux_mul(const Packet4c& a) +{ + int8x8_t prod = vreinterpret_s8_s32(vdup_n_s32(a)); + prod = vmul_s8(prod, vrev16_s8(prod)); + return vget_lane_s8(prod, 0) * vget_lane_s8(prod, 2); +} +template<> EIGEN_STRONG_INLINE int8_t predux_mul(const Packet8c& a) +{ + int8x8_t prod = vmul_s8(a, vrev16_s8(a)); + prod = vmul_s8(prod, vrev32_s8(prod)); + return vget_lane_s8(prod, 0) * vget_lane_s8(prod, 4); +} +template<> EIGEN_STRONG_INLINE int8_t predux_mul(const Packet16c& a) +{ return predux_mul(vmul_s8(vget_low_s8(a), vget_high_s8(a))); } +template<> EIGEN_STRONG_INLINE uint8_t predux_mul(const Packet4uc& a) +{ + uint8x8_t prod = vreinterpret_u8_u32(vdup_n_u32(a)); + prod = vmul_u8(prod, vrev16_u8(prod)); + return vget_lane_u8(prod, 0) * vget_lane_u8(prod, 2); +} +template<> EIGEN_STRONG_INLINE uint8_t predux_mul(const Packet8uc& a) +{ + uint8x8_t prod = vmul_u8(a, vrev16_u8(a)); + prod = vmul_u8(prod, vrev32_u8(prod)); + return vget_lane_u8(prod, 0) * vget_lane_u8(prod, 4); +} +template<> EIGEN_STRONG_INLINE uint8_t predux_mul(const Packet16uc& a) +{ return predux_mul(vmul_u8(vget_low_u8(a), vget_high_u8(a))); } +template<> EIGEN_STRONG_INLINE int16_t predux_mul(const Packet4s& a) +{ + const int16x4_t prod = vmul_s16(a, vrev32_s16(a)); + return vget_lane_s16(prod, 0) * vget_lane_s16(prod, 2); +} +template<> EIGEN_STRONG_INLINE int16_t predux_mul(const Packet8s& a) +{ + int16x4_t prod; + + // Get the product of a_lo * a_hi -> |a1*a5|a2*a6|a3*a7|a4*a8| + prod = vmul_s16(vget_low_s16(a), vget_high_s16(a)); + // Swap and multiply |a1*a5*a2*a6|a3*a7*a4*a8| + prod = vmul_s16(prod, vrev32_s16(prod)); + // Multiply |a1*a5*a2*a6*a3*a7*a4*a8| + return vget_lane_s16(prod, 0) * vget_lane_s16(prod, 2); +} +template<> EIGEN_STRONG_INLINE uint16_t predux_mul(const Packet4us& a) +{ + const uint16x4_t prod = vmul_u16(a, vrev32_u16(a)); + return vget_lane_u16(prod, 0) * vget_lane_u16(prod, 2); +} +template<> EIGEN_STRONG_INLINE uint16_t predux_mul(const Packet8us& a) +{ + uint16x4_t prod; + + // Get the product of a_lo * a_hi -> |a1*a5|a2*a6|a3*a7|a4*a8| + prod = vmul_u16(vget_low_u16(a), vget_high_u16(a)); + // Swap and multiply |a1*a5*a2*a6|a3*a7*a4*a8| + prod = vmul_u16(prod, vrev32_u16(prod)); + // Multiply |a1*a5*a2*a6*a3*a7*a4*a8| + return vget_lane_u16(prod, 0) * vget_lane_u16(prod, 2); +} +template<> EIGEN_STRONG_INLINE int32_t predux_mul(const Packet2i& a) +{ return vget_lane_s32(a, 0) * vget_lane_s32(a, 1); } +template<> EIGEN_STRONG_INLINE int32_t predux_mul(const Packet4i& a) +{ return predux_mul(vmul_s32(vget_low_s32(a), vget_high_s32(a))); } +template<> EIGEN_STRONG_INLINE uint32_t predux_mul(const Packet2ui& a) +{ return vget_lane_u32(a, 0) * vget_lane_u32(a, 1); } +template<> EIGEN_STRONG_INLINE uint32_t predux_mul(const Packet4ui& a) +{ return predux_mul(vmul_u32(vget_low_u32(a), vget_high_u32(a))); } +template<> EIGEN_STRONG_INLINE int64_t predux_mul(const Packet2l& a) +{ return vgetq_lane_s64(a, 0) * vgetq_lane_s64(a, 1); } +template<> EIGEN_STRONG_INLINE uint64_t predux_mul(const Packet2ul& a) +{ return vgetq_lane_u64(a, 0) * vgetq_lane_u64(a, 1); } + +// min +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE float predux_min(const Packet2f& a) { return vminv_f32(a); } +template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) { return vminvq_f32(a); } +#else +template<> EIGEN_STRONG_INLINE float predux_min(const Packet2f& a) +{ return vget_lane_f32(vpmin_f32(a,a), 0); } +template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) +{ + const float32x2_t min = vmin_f32(vget_low_f32(a), vget_high_f32(a)); + return vget_lane_f32(vpmin_f32(min, min), 0); +} +#endif +template<> EIGEN_STRONG_INLINE int8_t predux_min(const Packet4c& a) +{ + const int8x8_t a_dup = vreinterpret_s8_s32(vdup_n_s32(a)); + int8x8_t min = vpmin_s8(a_dup, a_dup); + min = vpmin_s8(min, min); + return vget_lane_s8(min, 0); +} +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE int8_t predux_min(const Packet8c& a) { return vminv_s8(a); } +template<> EIGEN_STRONG_INLINE int8_t predux_min(const Packet16c& a) { return vminvq_s8(a); } +#else +template<> EIGEN_STRONG_INLINE int8_t predux_min(const Packet8c& a) +{ + int8x8_t min = vpmin_s8(a,a); + min = vpmin_s8(min, min); + min = vpmin_s8(min, min); + return vget_lane_s8(min, 0); +} +template<> EIGEN_STRONG_INLINE int8_t predux_min(const Packet16c& a) +{ + int8x8_t min = vmin_s8(vget_low_s8(a), vget_high_s8(a)); + min = vpmin_s8(min, min); + min = vpmin_s8(min, min); + min = vpmin_s8(min, min); + return vget_lane_s8(min, 0); +} +#endif +template<> EIGEN_STRONG_INLINE uint8_t predux_min(const Packet4uc& a) +{ + const uint8x8_t a_dup = vreinterpret_u8_u32(vdup_n_u32(a)); + uint8x8_t min = vpmin_u8(a_dup, a_dup); + min = vpmin_u8(min, min); + return vget_lane_u8(min, 0); +} +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE uint8_t predux_min(const Packet8uc& a) { return vminv_u8(a); } +template<> EIGEN_STRONG_INLINE uint8_t predux_min(const Packet16uc& a) { return vminvq_u8(a); } +template<> EIGEN_STRONG_INLINE int16_t predux_min(const Packet4s& a) { return vminv_s16(a); } +template<> EIGEN_STRONG_INLINE int16_t predux_min(const Packet8s& a) { return vminvq_s16(a); } +template<> EIGEN_STRONG_INLINE uint16_t predux_min(const Packet4us& a) { return vminv_u16(a); } +template<> EIGEN_STRONG_INLINE uint16_t predux_min(const Packet8us& a) { return vminvq_u16(a); } +template<> EIGEN_STRONG_INLINE int32_t predux_min(const Packet2i& a) { return vminv_s32(a); } +template<> EIGEN_STRONG_INLINE int32_t predux_min(const Packet4i& a) { return vminvq_s32(a); } +template<> EIGEN_STRONG_INLINE uint32_t predux_min(const Packet2ui& a) { return vminv_u32(a); } +template<> EIGEN_STRONG_INLINE uint32_t predux_min(const Packet4ui& a) { return vminvq_u32(a); } +#else +template<> EIGEN_STRONG_INLINE uint8_t predux_min(const Packet8uc& a) +{ + uint8x8_t min = vpmin_u8(a,a); + min = vpmin_u8(min, min); + min = vpmin_u8(min, min); + return vget_lane_u8(min, 0); +} +template<> EIGEN_STRONG_INLINE uint8_t predux_min(const Packet16uc& a) +{ + uint8x8_t min = vmin_u8(vget_low_u8(a), vget_high_u8(a)); + min = vpmin_u8(min, min); + min = vpmin_u8(min, min); + min = vpmin_u8(min, min); + return vget_lane_u8(min, 0); +} +template<> EIGEN_STRONG_INLINE int16_t predux_min(const Packet4s& a) +{ + const int16x4_t min = vpmin_s16(a,a); + return vget_lane_s16(vpmin_s16(min, min), 0); +} +template<> EIGEN_STRONG_INLINE int16_t predux_min(const Packet8s& a) +{ + int16x4_t min = vmin_s16(vget_low_s16(a), vget_high_s16(a)); + min = vpmin_s16(min, min); + min = vpmin_s16(min, min); + return vget_lane_s16(min, 0); +} +template<> EIGEN_STRONG_INLINE uint16_t predux_min(const Packet4us& a) +{ + const uint16x4_t min = vpmin_u16(a,a); + return vget_lane_u16(vpmin_u16(min, min), 0); +} +template<> EIGEN_STRONG_INLINE uint16_t predux_min(const Packet8us& a) +{ + uint16x4_t min = vmin_u16(vget_low_u16(a), vget_high_u16(a)); + min = vpmin_u16(min, min); + min = vpmin_u16(min, min); + return vget_lane_u16(min, 0); +} +template<> EIGEN_STRONG_INLINE int32_t predux_min(const Packet2i& a) +{ return vget_lane_s32(vpmin_s32(a,a), 0); } +template<> EIGEN_STRONG_INLINE int32_t predux_min(const Packet4i& a) +{ + const int32x2_t min = vmin_s32(vget_low_s32(a), vget_high_s32(a)); + return vget_lane_s32(vpmin_s32(min, min), 0); +} +template<> EIGEN_STRONG_INLINE uint32_t predux_min(const Packet2ui& a) +{ return vget_lane_u32(vpmin_u32(a,a), 0); } +template<> EIGEN_STRONG_INLINE uint32_t predux_min(const Packet4ui& a) +{ + const uint32x2_t min = vmin_u32(vget_low_u32(a), vget_high_u32(a)); + return vget_lane_u32(vpmin_u32(min, min), 0); +} +#endif +template<> EIGEN_STRONG_INLINE int64_t predux_min(const Packet2l& a) +{ return (std::min)(vgetq_lane_s64(a, 0), vgetq_lane_s64(a, 1)); } +template<> EIGEN_STRONG_INLINE uint64_t predux_min(const Packet2ul& a) +{ return (std::min)(vgetq_lane_u64(a, 0), vgetq_lane_u64(a, 1)); } + +// max +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE float predux_max(const Packet2f& a) { return vmaxv_f32(a); } +template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) { return vmaxvq_f32(a); } +#else +template<> EIGEN_STRONG_INLINE float predux_max(const Packet2f& a) +{ return vget_lane_f32(vpmax_f32(a,a), 0); } +template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) +{ + const float32x2_t max = vmax_f32(vget_low_f32(a), vget_high_f32(a)); + return vget_lane_f32(vpmax_f32(max, max), 0); +} +#endif +template<> EIGEN_STRONG_INLINE int8_t predux_max(const Packet4c& a) +{ + const int8x8_t a_dup = vreinterpret_s8_s32(vdup_n_s32(a)); + int8x8_t max = vpmax_s8(a_dup, a_dup); + max = vpmax_s8(max, max); + return vget_lane_s8(max, 0); +} +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE int8_t predux_max(const Packet8c& a) { return vmaxv_s8(a); } +template<> EIGEN_STRONG_INLINE int8_t predux_max(const Packet16c& a) { return vmaxvq_s8(a); } +#else +template<> EIGEN_STRONG_INLINE int8_t predux_max(const Packet8c& a) +{ + int8x8_t max = vpmax_s8(a,a); + max = vpmax_s8(max, max); + max = vpmax_s8(max, max); + return vget_lane_s8(max, 0); +} +template<> EIGEN_STRONG_INLINE int8_t predux_max(const Packet16c& a) +{ + int8x8_t max = vmax_s8(vget_low_s8(a), vget_high_s8(a)); + max = vpmax_s8(max, max); + max = vpmax_s8(max, max); + max = vpmax_s8(max, max); + return vget_lane_s8(max, 0); +} +#endif +template<> EIGEN_STRONG_INLINE uint8_t predux_max(const Packet4uc& a) +{ + const uint8x8_t a_dup = vreinterpret_u8_u32(vdup_n_u32(a)); + uint8x8_t max = vpmax_u8(a_dup, a_dup); + max = vpmax_u8(max, max); + return vget_lane_u8(max, 0); +} +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE uint8_t predux_max(const Packet8uc& a) { return vmaxv_u8(a); } +template<> EIGEN_STRONG_INLINE uint8_t predux_max(const Packet16uc& a) { return vmaxvq_u8(a); } +template<> EIGEN_STRONG_INLINE int16_t predux_max(const Packet4s& a) { return vmaxv_s16(a); } +template<> EIGEN_STRONG_INLINE int16_t predux_max(const Packet8s& a) { return vmaxvq_s16(a); } +template<> EIGEN_STRONG_INLINE uint16_t predux_max(const Packet4us& a) { return vmaxv_u16(a); } +template<> EIGEN_STRONG_INLINE uint16_t predux_max(const Packet8us& a) { return vmaxvq_u16(a); } +template<> EIGEN_STRONG_INLINE int32_t predux_max(const Packet2i& a) { return vmaxv_s32(a); } +template<> EIGEN_STRONG_INLINE int32_t predux_max(const Packet4i& a) { return vmaxvq_s32(a); } +template<> EIGEN_STRONG_INLINE uint32_t predux_max(const Packet2ui& a) { return vmaxv_u32(a); } +template<> EIGEN_STRONG_INLINE uint32_t predux_max(const Packet4ui& a) { return vmaxvq_u32(a); } +#else +template<> EIGEN_STRONG_INLINE uint8_t predux_max(const Packet8uc& a) +{ + uint8x8_t max = vpmax_u8(a,a); + max = vpmax_u8(max, max); + max = vpmax_u8(max, max); + return vget_lane_u8(max, 0); +} +template<> EIGEN_STRONG_INLINE uint8_t predux_max(const Packet16uc& a) +{ + uint8x8_t max = vmax_u8(vget_low_u8(a), vget_high_u8(a)); + max = vpmax_u8(max, max); + max = vpmax_u8(max, max); + max = vpmax_u8(max, max); + return vget_lane_u8(max, 0); +} +template<> EIGEN_STRONG_INLINE int16_t predux_max(const Packet4s& a) +{ + const int16x4_t max = vpmax_s16(a,a); + return vget_lane_s16(vpmax_s16(max, max), 0); +} +template<> EIGEN_STRONG_INLINE int16_t predux_max(const Packet8s& a) +{ + int16x4_t max = vmax_s16(vget_low_s16(a), vget_high_s16(a)); + max = vpmax_s16(max, max); + max = vpmax_s16(max, max); + return vget_lane_s16(max, 0); +} +template<> EIGEN_STRONG_INLINE uint16_t predux_max(const Packet4us& a) +{ + const uint16x4_t max = vpmax_u16(a,a); + return vget_lane_u16(vpmax_u16(max, max), 0); +} +template<> EIGEN_STRONG_INLINE uint16_t predux_max(const Packet8us& a) +{ + uint16x4_t max = vmax_u16(vget_low_u16(a), vget_high_u16(a)); + max = vpmax_u16(max, max); + max = vpmax_u16(max, max); + return vget_lane_u16(max, 0); +} +template<> EIGEN_STRONG_INLINE int32_t predux_max(const Packet2i& a) +{ return vget_lane_s32(vpmax_s32(a,a), 0); } +template<> EIGEN_STRONG_INLINE int32_t predux_max(const Packet4i& a) +{ + const int32x2_t max = vmax_s32(vget_low_s32(a), vget_high_s32(a)); + return vget_lane_s32(vpmax_s32(max, max), 0); +} +template<> EIGEN_STRONG_INLINE uint32_t predux_max(const Packet2ui& a) +{ return vget_lane_u32(vpmax_u32(a,a), 0); } +template<> EIGEN_STRONG_INLINE uint32_t predux_max(const Packet4ui& a) +{ + const uint32x2_t max = vmax_u32(vget_low_u32(a), vget_high_u32(a)); + return vget_lane_u32(vpmax_u32(max, max), 0); +} +#endif +template<> EIGEN_STRONG_INLINE int64_t predux_max(const Packet2l& a) +{ return (std::max)(vgetq_lane_s64(a, 0), vgetq_lane_s64(a, 1)); } +template<> EIGEN_STRONG_INLINE uint64_t predux_max(const Packet2ul& a) +{ return (std::max)(vgetq_lane_u64(a, 0), vgetq_lane_u64(a, 1)); } + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x) +{ + uint32x2_t tmp = vorr_u32(vget_low_u32( vreinterpretq_u32_f32(x)), + vget_high_u32(vreinterpretq_u32_f32(x))); + return vget_lane_u32(vpmax_u32(tmp, tmp), 0); +} + +// Helpers for ptranspose. +namespace detail { + +template +void zip_in_place(Packet& p1, Packet& p2); + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet2f& p1, Packet2f& p2) { + const float32x2x2_t tmp = vzip_f32(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet4f& p1, Packet4f& p2) { + const float32x4x2_t tmp = vzipq_f32(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet8c& p1, Packet8c& p2) { + const int8x8x2_t tmp = vzip_s8(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet16c& p1, Packet16c& p2) { + const int8x16x2_t tmp = vzipq_s8(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet8uc& p1, Packet8uc& p2) { + const uint8x8x2_t tmp = vzip_u8(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet16uc& p1, Packet16uc& p2) { + const uint8x16x2_t tmp = vzipq_u8(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet2i& p1, Packet2i& p2) { + const int32x2x2_t tmp = vzip_s32(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet4i& p1, Packet4i& p2) { + const int32x4x2_t tmp = vzipq_s32(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet2ui& p1, Packet2ui& p2) { + const uint32x2x2_t tmp = vzip_u32(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet4ui& p1, Packet4ui& p2) { + const uint32x4x2_t tmp = vzipq_u32(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet4s& p1, Packet4s& p2) { + const int16x4x2_t tmp = vzip_s16(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet8s& p1, Packet8s& p2) { + const int16x8x2_t tmp = vzipq_s16(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet4us& p1, Packet4us& p2) { + const uint16x4x2_t tmp = vzip_u16(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet8us& p1, Packet8us& p2) { + const uint16x8x2_t tmp = vzipq_u16(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} + +template +EIGEN_ALWAYS_INLINE void ptranspose_impl(PacketBlock& kernel) { + zip_in_place(kernel.packet[0], kernel.packet[1]); +} + +template +EIGEN_ALWAYS_INLINE void ptranspose_impl(PacketBlock& kernel) { + zip_in_place(kernel.packet[0], kernel.packet[2]); + zip_in_place(kernel.packet[1], kernel.packet[3]); + zip_in_place(kernel.packet[0], kernel.packet[1]); + zip_in_place(kernel.packet[2], kernel.packet[3]); +} + +template +EIGEN_ALWAYS_INLINE void ptranspose_impl(PacketBlock& kernel) { + zip_in_place(kernel.packet[0], kernel.packet[4]); + zip_in_place(kernel.packet[1], kernel.packet[5]); + zip_in_place(kernel.packet[2], kernel.packet[6]); + zip_in_place(kernel.packet[3], kernel.packet[7]); + + zip_in_place(kernel.packet[0], kernel.packet[2]); + zip_in_place(kernel.packet[1], kernel.packet[3]); + zip_in_place(kernel.packet[4], kernel.packet[6]); + zip_in_place(kernel.packet[5], kernel.packet[7]); + + zip_in_place(kernel.packet[0], kernel.packet[1]); + zip_in_place(kernel.packet[2], kernel.packet[3]); + zip_in_place(kernel.packet[4], kernel.packet[5]); + zip_in_place(kernel.packet[6], kernel.packet[7]); +} + +template +EIGEN_ALWAYS_INLINE void ptranspose_impl(PacketBlock& kernel) { + EIGEN_UNROLL_LOOP + for (int i=0; i<4; ++i) { + const int m = (1 << i); + EIGEN_UNROLL_LOOP + for (int j=0; j& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + const int8x8_t a = vreinterpret_s8_s32(vset_lane_s32(kernel.packet[2], vdup_n_s32(kernel.packet[0]), 1)); + const int8x8_t b = vreinterpret_s8_s32(vset_lane_s32(kernel.packet[3], vdup_n_s32(kernel.packet[1]), 1)); + + const int8x8x2_t zip8 = vzip_s8(a,b); + const int16x4x2_t zip16 = vzip_s16(vreinterpret_s16_s8(zip8.val[0]), vreinterpret_s16_s8(zip8.val[1])); + + kernel.packet[0] = vget_lane_s32(vreinterpret_s32_s16(zip16.val[0]), 0); + kernel.packet[1] = vget_lane_s32(vreinterpret_s32_s16(zip16.val[0]), 1); + kernel.packet[2] = vget_lane_s32(vreinterpret_s32_s16(zip16.val[1]), 0); + kernel.packet[3] = vget_lane_s32(vreinterpret_s32_s16(zip16.val[1]), 1); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + const uint8x8_t a = vreinterpret_u8_u32(vset_lane_u32(kernel.packet[2], vdup_n_u32(kernel.packet[0]), 1)); + const uint8x8_t b = vreinterpret_u8_u32(vset_lane_u32(kernel.packet[3], vdup_n_u32(kernel.packet[1]), 1)); + + const uint8x8x2_t zip8 = vzip_u8(a,b); + const uint16x4x2_t zip16 = vzip_u16(vreinterpret_u16_u8(zip8.val[0]), vreinterpret_u16_u8(zip8.val[1])); + + kernel.packet[0] = vget_lane_u32(vreinterpret_u32_u16(zip16.val[0]), 0); + kernel.packet[1] = vget_lane_u32(vreinterpret_u32_u16(zip16.val[0]), 1); + kernel.packet[2] = vget_lane_u32(vreinterpret_u32_u16(zip16.val[1]), 0); + kernel.packet[3] = vget_lane_u32(vreinterpret_u32_u16(zip16.val[1]), 1); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::zip_in_place(kernel.packet[0], kernel.packet[1]); +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + detail::ptranspose_impl(kernel); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) +{ +#if EIGEN_ARCH_ARM64 + const int64x2_t tmp1 = vzip1q_s64(kernel.packet[0], kernel.packet[1]); + kernel.packet[1] = vzip2q_s64(kernel.packet[0], kernel.packet[1]); + kernel.packet[0] = tmp1; +#else + const int64x1_t tmp[2][2] = { + { vget_low_s64(kernel.packet[0]), vget_high_s64(kernel.packet[0]) }, + { vget_low_s64(kernel.packet[1]), vget_high_s64(kernel.packet[1]) } + }; + + kernel.packet[0] = vcombine_s64(tmp[0][0], tmp[1][0]); + kernel.packet[1] = vcombine_s64(tmp[0][1], tmp[1][1]); +#endif +} +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) +{ +#if EIGEN_ARCH_ARM64 + const uint64x2_t tmp1 = vzip1q_u64(kernel.packet[0], kernel.packet[1]); + kernel.packet[1] = vzip2q_u64(kernel.packet[0], kernel.packet[1]); + kernel.packet[0] = tmp1; +#else + const uint64x1_t tmp[2][2] = { + { vget_low_u64(kernel.packet[0]), vget_high_u64(kernel.packet[0]) }, + { vget_low_u64(kernel.packet[1]), vget_high_u64(kernel.packet[1]) } + }; + + kernel.packet[0] = vcombine_u64(tmp[0][0], tmp[1][0]); + kernel.packet[1] = vcombine_u64(tmp[0][1], tmp[1][1]); +#endif +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2f pselect( const Packet2f& mask, const Packet2f& a, const Packet2f& b) +{ return vbsl_f32(vreinterpret_u32_f32(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4f pselect(const Packet4f& mask, const Packet4f& a, const Packet4f& b) +{ return vbslq_f32(vreinterpretq_u32_f32(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8c pselect(const Packet8c& mask, const Packet8c& a, const Packet8c& b) +{ return vbsl_s8(vreinterpret_u8_s8(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet16c pselect(const Packet16c& mask, const Packet16c& a, const Packet16c& b) +{ return vbslq_s8(vreinterpretq_u8_s8(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8uc pselect(const Packet8uc& mask, const Packet8uc& a, const Packet8uc& b) +{ return vbsl_u8(mask, a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet16uc pselect(const Packet16uc& mask, const Packet16uc& a, const Packet16uc& b) +{ return vbslq_u8(mask, a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4s pselect(const Packet4s& mask, const Packet4s& a, const Packet4s& b) +{ return vbsl_s16(vreinterpret_u16_s16(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8s pselect(const Packet8s& mask, const Packet8s& a, const Packet8s& b) +{ return vbslq_s16(vreinterpretq_u16_s16(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4us pselect(const Packet4us& mask, const Packet4us& a, const Packet4us& b) +{ return vbsl_u16(mask, a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8us pselect(const Packet8us& mask, const Packet8us& a, const Packet8us& b) +{ return vbslq_u16(mask, a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2i pselect(const Packet2i& mask, const Packet2i& a, const Packet2i& b) +{ return vbsl_s32(vreinterpret_u32_s32(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4i pselect(const Packet4i& mask, const Packet4i& a, const Packet4i& b) +{ return vbslq_s32(vreinterpretq_u32_s32(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2ui pselect(const Packet2ui& mask, const Packet2ui& a, const Packet2ui& b) +{ return vbsl_u32(mask, a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4ui pselect(const Packet4ui& mask, const Packet4ui& a, const Packet4ui& b) +{ return vbslq_u32(mask, a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2l pselect(const Packet2l& mask, const Packet2l& a, const Packet2l& b) +{ return vbslq_s64(vreinterpretq_u64_s64(mask), a, b); } +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2ul pselect(const Packet2ul& mask, const Packet2ul& a, const Packet2ul& b) +{ return vbslq_u64(mask, a, b); } + +// Use armv8 rounding intinsics if available. +#if EIGEN_ARCH_ARMV8 +template<> EIGEN_STRONG_INLINE Packet2f print(const Packet2f& a) +{ return vrndn_f32(a); } + +template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) +{ return vrndnq_f32(a); } + +template<> EIGEN_STRONG_INLINE Packet2f pfloor(const Packet2f& a) +{ return vrndm_f32(a); } + +template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) +{ return vrndmq_f32(a); } + +template<> EIGEN_STRONG_INLINE Packet2f pceil(const Packet2f& a) +{ return vrndp_f32(a); } + +template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) +{ return vrndpq_f32(a); } + +#else + +template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) { + // Adds and subtracts signum(a) * 2^23 to force rounding. + const Packet4f limit = pset1(static_cast(1<<23)); + const Packet4f abs_a = pabs(a); + Packet4f r = padd(abs_a, limit); + // Don't compile-away addition and subtraction. + EIGEN_OPTIMIZATION_BARRIER(r); + r = psub(r, limit); + // If greater than limit, simply return a. Otherwise, account for sign. + r = pselect(pcmp_lt(abs_a, limit), + pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a); + return r; +} + +template<> EIGEN_STRONG_INLINE Packet2f print(const Packet2f& a) { + // Adds and subtracts signum(a) * 2^23 to force rounding. + const Packet2f limit = pset1(static_cast(1<<23)); + const Packet2f abs_a = pabs(a); + Packet2f r = padd(abs_a, limit); + // Don't compile-away addition and subtraction. + EIGEN_OPTIMIZATION_BARRIER(r); + r = psub(r, limit); + // If greater than limit, simply return a. Otherwise, account for sign. + r = pselect(pcmp_lt(abs_a, limit), + pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a); + return r; +} + +template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) +{ + const Packet4f cst_1 = pset1(1.0f); + Packet4f tmp = print(a); + // If greater, subtract one. + Packet4f mask = pcmp_lt(a, tmp); + mask = pand(mask, cst_1); + return psub(tmp, mask); +} + +template<> EIGEN_STRONG_INLINE Packet2f pfloor(const Packet2f& a) +{ + const Packet2f cst_1 = pset1(1.0f); + Packet2f tmp = print(a); + // If greater, subtract one. + Packet2f mask = pcmp_lt(a, tmp); + mask = pand(mask, cst_1); + return psub(tmp, mask); +} + +template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) +{ + const Packet4f cst_1 = pset1(1.0f); + Packet4f tmp = print(a); + // If smaller, add one. + Packet4f mask = pcmp_lt(tmp, a); + mask = pand(mask, cst_1); + return padd(tmp, mask); +} + +template<> EIGEN_STRONG_INLINE Packet2f pceil(const Packet2f& a) +{ + const Packet2f cst_1 = pset1(1.0); + Packet2f tmp = print(a); + // If smaller, add one. + Packet2f mask = pcmp_lt(tmp, a); + mask = pand(mask, cst_1); + return padd(tmp, mask); +} + +#endif + +/** + * Computes the integer square root + * @remarks The calculation is performed using an algorithm which iterates through each binary digit of the result + * and tests whether setting that digit to 1 would cause the square of the value to be greater than the argument + * value. The algorithm is described in detail here: http://ww1.microchip.com/downloads/en/AppNotes/91040a.pdf . + */ +template<> EIGEN_STRONG_INLINE Packet4uc psqrt(const Packet4uc& a) { + uint8x8_t x = vreinterpret_u8_u32(vdup_n_u32(a)); + uint8x8_t res = vdup_n_u8(0); + uint8x8_t add = vdup_n_u8(0x8); + for (int i = 0; i < 4; i++) + { + const uint8x8_t temp = vorr_u8(res, add); + res = vbsl_u8(vcge_u8(x, vmul_u8(temp, temp)), temp, res); + add = vshr_n_u8(add, 1); + } + return vget_lane_u32(vreinterpret_u32_u8(res), 0); +} +/// @copydoc Eigen::internal::psqrt(const Packet4uc& a) +template<> EIGEN_STRONG_INLINE Packet8uc psqrt(const Packet8uc& a) { + uint8x8_t res = vdup_n_u8(0); + uint8x8_t add = vdup_n_u8(0x8); + for (int i = 0; i < 4; i++) + { + const uint8x8_t temp = vorr_u8(res, add); + res = vbsl_u8(vcge_u8(a, vmul_u8(temp, temp)), temp, res); + add = vshr_n_u8(add, 1); + } + return res; +} +/// @copydoc Eigen::internal::psqrt(const Packet4uc& a) +template<> EIGEN_STRONG_INLINE Packet16uc psqrt(const Packet16uc& a) { + uint8x16_t res = vdupq_n_u8(0); + uint8x16_t add = vdupq_n_u8(0x8); + for (int i = 0; i < 4; i++) + { + const uint8x16_t temp = vorrq_u8(res, add); + res = vbslq_u8(vcgeq_u8(a, vmulq_u8(temp, temp)), temp, res); + add = vshrq_n_u8(add, 1); + } + return res; +} +/// @copydoc Eigen::internal::psqrt(const Packet4uc& a) +template<> EIGEN_STRONG_INLINE Packet4us psqrt(const Packet4us& a) { + uint16x4_t res = vdup_n_u16(0); + uint16x4_t add = vdup_n_u16(0x80); + for (int i = 0; i < 8; i++) + { + const uint16x4_t temp = vorr_u16(res, add); + res = vbsl_u16(vcge_u16(a, vmul_u16(temp, temp)), temp, res); + add = vshr_n_u16(add, 1); + } + return res; +} +/// @copydoc Eigen::internal::psqrt(const Packet4uc& a) +template<> EIGEN_STRONG_INLINE Packet8us psqrt(const Packet8us& a) { + uint16x8_t res = vdupq_n_u16(0); + uint16x8_t add = vdupq_n_u16(0x80); + for (int i = 0; i < 8; i++) + { + const uint16x8_t temp = vorrq_u16(res, add); + res = vbslq_u16(vcgeq_u16(a, vmulq_u16(temp, temp)), temp, res); + add = vshrq_n_u16(add, 1); + } + return res; +} +/// @copydoc Eigen::internal::psqrt(const Packet4uc& a) +template<> EIGEN_STRONG_INLINE Packet2ui psqrt(const Packet2ui& a) { + uint32x2_t res = vdup_n_u32(0); + uint32x2_t add = vdup_n_u32(0x8000); + for (int i = 0; i < 16; i++) + { + const uint32x2_t temp = vorr_u32(res, add); + res = vbsl_u32(vcge_u32(a, vmul_u32(temp, temp)), temp, res); + add = vshr_n_u32(add, 1); + } + return res; +} +/// @copydoc Eigen::internal::psqrt(const Packet4uc& a) +template<> EIGEN_STRONG_INLINE Packet4ui psqrt(const Packet4ui& a) { + uint32x4_t res = vdupq_n_u32(0); + uint32x4_t add = vdupq_n_u32(0x8000); + for (int i = 0; i < 16; i++) + { + const uint32x4_t temp = vorrq_u32(res, add); + res = vbslq_u32(vcgeq_u32(a, vmulq_u32(temp, temp)), temp, res); + add = vshrq_n_u32(add, 1); + } + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f prsqrt(const Packet4f& a) { + // Do Newton iterations for 1/sqrt(x). + return generic_rsqrt_newton_step::run(a, vrsqrteq_f32(a)); +} + +template<> EIGEN_STRONG_INLINE Packet2f prsqrt(const Packet2f& a) { + // Compute approximate reciprocal sqrt. + return generic_rsqrt_newton_step::run(a, vrsqrte_f32(a)); +} + +// Unfortunately vsqrt_f32 is only available for A64. +#if EIGEN_ARCH_ARM64 +template<> EIGEN_STRONG_INLINE Packet4f psqrt(const Packet4f& _x){return vsqrtq_f32(_x);} +template<> EIGEN_STRONG_INLINE Packet2f psqrt(const Packet2f& _x){return vsqrt_f32(_x); } +#else +template<> EIGEN_STRONG_INLINE Packet4f psqrt(const Packet4f& a) { + return generic_sqrt_newton_step::run(a, prsqrt(a)); +} +template<> EIGEN_STRONG_INLINE Packet2f psqrt(const Packet2f& a) { + return generic_sqrt_newton_step::run(a, prsqrt(a)); +} +#endif + +//---------- bfloat16 ---------- +// TODO: Add support for native armv8.6-a bfloat16_t + +// TODO: Guard if we have native bfloat16 support +typedef eigen_packet_wrapper Packet4bf; + +template<> struct is_arithmetic { enum { value = true }; }; + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4bf type; + typedef Packet4bf half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + HasDiv = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasLog = 1, + HasExp = 1, + HasSqrt = 0, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBessel = 0, // Issues with accuracy. + HasNdtri = 0 + }; +}; + +template<> struct unpacket_traits +{ + typedef bfloat16 type; + typedef Packet4bf half; + enum + { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +namespace detail { +template<> +EIGEN_ALWAYS_INLINE void zip_in_place(Packet4bf& p1, Packet4bf& p2) { + const uint16x4x2_t tmp = vzip_u16(p1, p2); + p1 = tmp.val[0]; + p2 = tmp.val[1]; +} +} // namespace detail + +EIGEN_STRONG_INLINE Packet4bf F32ToBf16(const Packet4f& p) +{ + // See the scalar implementation in BFloat16.h for a comprehensible explanation + // of this fast rounding algorithm + Packet4ui input = Packet4ui(vreinterpretq_u32_f32(p)); + + // lsb = (input >> 16) & 1 + Packet4ui lsb = vandq_u32(vshrq_n_u32(input, 16), vdupq_n_u32(1)); + + // rounding_bias = 0x7fff + lsb + Packet4ui rounding_bias = vaddq_u32(lsb, vdupq_n_u32(0x7fff)); + + // input += rounding_bias + input = vaddq_u32(input, rounding_bias); + + // input = input >> 16 + input = vshrq_n_u32(input, 16); + + // Replace float-nans by bfloat16-nans, that is 0x7fc0 + const Packet4ui bf16_nan = vdupq_n_u32(0x7fc0); + const Packet4ui mask = vceqq_f32(p, p); + input = vbslq_u32(mask, input, bf16_nan); + + // output = static_cast(input) + return vmovn_u32(input); +} + +EIGEN_STRONG_INLINE Packet4f Bf16ToF32(const Packet4bf& p) +{ + return Packet4f(vreinterpretq_f32_u32(vshlq_n_u32(vmovl_u16(p), 16))); +} + +EIGEN_STRONG_INLINE Packet4bf F32MaskToBf16Mask(const Packet4f& p) { + return vmovn_u32(vreinterpretq_u32_f32(p)); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pset1(const bfloat16& from) { + return Packet4bf(pset1(from.value)); +} + +template<> EIGEN_STRONG_INLINE bfloat16 pfirst(const Packet4bf& from) { + return bfloat16_impl::raw_uint16_to_bfloat16(static_cast(pfirst(Packet4us(from)))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pload(const bfloat16* from) +{ + return Packet4bf(pload(reinterpret_cast(from))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf ploadu(const bfloat16* from) +{ + return Packet4bf(ploadu(reinterpret_cast(from))); +} + +template<> EIGEN_STRONG_INLINE void pstore(bfloat16* to, const Packet4bf& from) +{ + EIGEN_DEBUG_ALIGNED_STORE vst1_u16(reinterpret_cast(to), from); +} + +template<> EIGEN_STRONG_INLINE void pstoreu(bfloat16* to, const Packet4bf& from) +{ + EIGEN_DEBUG_UNALIGNED_STORE vst1_u16(reinterpret_cast(to), from); +} + +template<> EIGEN_STRONG_INLINE Packet4bf ploaddup(const bfloat16* from) +{ + return Packet4bf(ploaddup(reinterpret_cast(from))); +} + +template <> EIGEN_STRONG_INLINE Packet4bf pabs(const Packet4bf& a) { + return F32ToBf16(pabs(Bf16ToF32(a))); +} + +template <> EIGEN_STRONG_INLINE Packet4bf pmin(const Packet4bf &a, + const Packet4bf &b) +{ + return F32ToBf16(pmin(Bf16ToF32(a), Bf16ToF32(b))); +} +template <> EIGEN_STRONG_INLINE Packet4bf pmin(const Packet4bf &a, + const Packet4bf &b) +{ + return F32ToBf16(pmin(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> EIGEN_STRONG_INLINE Packet4bf pmin(const Packet4bf &a, + const Packet4bf &b) +{ + return F32ToBf16(pmin(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> EIGEN_STRONG_INLINE Packet4bf pmax(const Packet4bf &a, + const Packet4bf &b) +{ + return F32ToBf16(pmax(Bf16ToF32(a), Bf16ToF32(b))); +} +template <> EIGEN_STRONG_INLINE Packet4bf pmax(const Packet4bf &a, + const Packet4bf &b) +{ + return F32ToBf16(pmax(Bf16ToF32(a), Bf16ToF32(b))); +} + +template <> EIGEN_STRONG_INLINE Packet4bf pmax(const Packet4bf &a, + const Packet4bf &b) +{ + return F32ToBf16(pmax(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf plset(const bfloat16& a) +{ + return F32ToBf16(plset(static_cast(a))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf por(const Packet4bf& a,const Packet4bf& b) { + return Packet4bf(por(Packet4us(a), Packet4us(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pxor(const Packet4bf& a,const Packet4bf& b) { + return Packet4bf(pxor(Packet4us(a), Packet4us(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pand(const Packet4bf& a,const Packet4bf& b) { + return Packet4bf(pand(Packet4us(a), Packet4us(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pandnot(const Packet4bf& a,const Packet4bf& b) { + return Packet4bf(pandnot(Packet4us(a), Packet4us(b))); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4bf pselect(const Packet4bf& mask, const Packet4bf& a, + const Packet4bf& b) +{ + return Packet4bf(pselect(Packet4us(mask), Packet4us(a), Packet4us(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf print(const Packet4bf& a) +{ + return F32ToBf16(print(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pfloor(const Packet4bf& a) +{ + return F32ToBf16(pfloor(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pceil(const Packet4bf& a) +{ + return F32ToBf16(pceil(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pconj(const Packet4bf& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet4bf padd(const Packet4bf& a, const Packet4bf& b) { + return F32ToBf16(padd(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf psub(const Packet4bf& a, const Packet4bf& b) { + return F32ToBf16(psub(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pmul(const Packet4bf& a, const Packet4bf& b) { + return F32ToBf16(pmul(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pdiv(const Packet4bf& a, const Packet4bf& b) { + return F32ToBf16(pdiv(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> +EIGEN_STRONG_INLINE Packet4bf pgather(const bfloat16* from, Index stride) +{ + return Packet4bf(pgather(reinterpret_cast(from), stride)); +} + +template<> +EIGEN_STRONG_INLINE void pscatter(bfloat16* to, const Packet4bf& from, Index stride) +{ + pscatter(reinterpret_cast(to), Packet4us(from), stride); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux(const Packet4bf& a) +{ + return static_cast(predux(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_max(const Packet4bf& a) +{ + return static_cast(predux_max(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_min(const Packet4bf& a) +{ + return static_cast(predux_min(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE bfloat16 predux_mul(const Packet4bf& a) +{ + return static_cast(predux_mul(Bf16ToF32(a))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf preverse(const Packet4bf& a) +{ + return Packet4bf(preverse(Packet4us(a))); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + detail::ptranspose_impl(kernel); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pabsdiff(const Packet4bf& a, const Packet4bf& b) +{ + return F32ToBf16(pabsdiff(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pcmp_eq(const Packet4bf& a, const Packet4bf& b) +{ + return F32MaskToBf16Mask(pcmp_eq(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pcmp_lt(const Packet4bf& a, const Packet4bf& b) +{ + return F32MaskToBf16Mask(pcmp_lt(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pcmp_lt_or_nan(const Packet4bf& a, const Packet4bf& b) +{ + return F32MaskToBf16Mask(pcmp_lt_or_nan(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pcmp_le(const Packet4bf& a, const Packet4bf& b) +{ + return F32MaskToBf16Mask(pcmp_le(Bf16ToF32(a), Bf16ToF32(b))); +} + +template<> EIGEN_STRONG_INLINE Packet4bf pnegate(const Packet4bf& a) +{ + return Packet4bf(pxor(Packet4us(a), pset1(static_cast(0x8000)))); +} + +//---------- double ---------- + +// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double. +// Confirmed at least with __apple_build_version__ = 6000054. +#if EIGEN_COMP_CLANGAPPLE +// Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed. +// https://gist.github.com/yamaya/2924292 suggests that the 3 first digits are only updated with +// major toolchain updates. +#define EIGEN_APPLE_DOUBLE_NEON_BUG (EIGEN_COMP_CLANGAPPLE < 6010000) +#else +#define EIGEN_APPLE_DOUBLE_NEON_BUG 0 +#endif + +#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG + +#if EIGEN_COMP_GNUC +// Bug 907: workaround missing declarations of the following two functions in the ADK +// Defining these functions as templates ensures that if these intrinsics are +// already defined in arm_neon.h, then our workaround doesn't cause a conflict +// and has lower priority in overload resolution. +// This doesn't work with MSVC though, since the function names are macros. +template uint64x2_t vreinterpretq_u64_f64(T a) { return (uint64x2_t) a; } + +template float64x2_t vreinterpretq_f64_u64(T a) { return (float64x2_t) a; } +#endif + +#if EIGEN_COMP_MSVC_STRICT +typedef eigen_packet_wrapper Packet2d; +typedef eigen_packet_wrapper Packet1d; + +EIGEN_ALWAYS_INLINE Packet2d make_packet2d(double a, double b) { + double from[2] = {a, b}; + return vld1q_f64(from); +} + +#else +typedef float64x2_t Packet2d; +typedef float64x1_t Packet1d; + +EIGEN_ALWAYS_INLINE Packet2d make_packet2d(double a, double b) { return Packet2d{a, b}; } +#endif + + +// fuctionally equivalent to _mm_shuffle_pd in SSE (i.e. shuffle(m, n, mask) equals _mm_shuffle_pd(m,n,mask)) +// Currently used in LU/arch/InverseSize4.h to enable a shared implementation +// for fast inversion of matrices of size 4. +EIGEN_STRONG_INLINE Packet2d shuffle(const Packet2d& m, const Packet2d& n, int mask) +{ + const double* a = reinterpret_cast(&m); + const double* b = reinterpret_cast(&n); + Packet2d res = make_packet2d(*(a + (mask & 1)), *(b + ((mask >> 1) & 1))); + return res; +} + +EIGEN_STRONG_INLINE Packet2d vec2d_swizzle2(const Packet2d& a, const Packet2d& b, int mask) +{ + return shuffle(a, b, mask); +} +EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d& a,const Packet2d& b) +{ + return shuffle(a, b, 0); +} +EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d& a,const Packet2d& b) +{ + return shuffle(a, b, 3); +} +#define vec2d_duplane(a, p) \ + Packet2d(vdupq_laneq_f64(a, p)) + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet2d type; + typedef Packet2d half; + enum + { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasCmp = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + + HasDiv = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + +#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG + HasExp = 1, + HasLog = 1, + HasATan = 1, +#endif + HasSin = 0, + HasCos = 0, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = 0, + HasErf = 0 + }; +}; + +template<> struct unpacket_traits +{ + typedef double type; + typedef Packet2d half; + typedef Packet2l integer_packet; + enum + { + size = 2, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { return vdupq_n_f64(from); } + +template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) +{ + const double c[] = {0.0,1.0}; + return vaddq_f64(pset1(a), vld1q_f64(c)); +} + +template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& , const Packet2d& ); +template<> EIGEN_STRONG_INLINE Packet2d paddsub(const Packet2d& a, const Packet2d& b){ + const Packet2d mask = make_packet2d(numext::bit_cast(0x8000000000000000ull), 0.0); + return padd(a, pxor(mask, b)); +} + +template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); } + +template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); } + +#ifdef __ARM_FEATURE_FMA +// See bug 936. See above comment about FMA for float. +template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) +{ return vfmaq_f64(c,a,b); } +#else +template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) +{ return vmlaq_f64(c,a,b); } +#endif + +template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); } + +#ifdef __ARM_FEATURE_NUMERIC_MAXMIN +// numeric max and min are only available if ARM_FEATURE_NUMERIC_MAXMIN is defined (which can only be the case for Armv8 systems). +template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return vminnmq_f64(a, b); } +template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return vmaxnmq_f64(a, b); } + +#endif + +template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return pmin(a, b); } + +template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); } + + +template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return pmax(a, b); } + +// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics +template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); } + +template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); } + +template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); } + +template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); } + +template<> EIGEN_STRONG_INLINE Packet2d pcmp_le(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(vcleq_f64(a,b)); } + +template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(vcltq_f64(a,b)); } + +template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt_or_nan(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u32(vmvnq_u32(vreinterpretq_u32_u64(vcgeq_f64(a,b)))); } + +template<> EIGEN_STRONG_INLINE Packet2d pcmp_eq(const Packet2d& a, const Packet2d& b) +{ return vreinterpretq_f64_u64(vceqq_f64(a,b)); } + +template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); } + +template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); } + +template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) { return vld1q_dup_f64(from); } +template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) +{ EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to,from); } + +template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) +{ EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to,from); } + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2d pgather(const double* from, Index stride) +{ + Packet2d res = pset1(0.0); + res = vld1q_lane_f64(from + 0*stride, res, 0); + res = vld1q_lane_f64(from + 1*stride, res, 1); + return res; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(double* to, const Packet2d& from, Index stride) +{ + vst1q_lane_f64(to + stride*0, from, 0); + vst1q_lane_f64(to + stride*1, from, 1); +} + +template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { EIGEN_ARM_PREFETCH(addr); } + +// FIXME only store the 2 first elements ? +template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { return vgetq_lane_f64(a,0); } + +template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) +{ return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); } + +template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); } + +template <> +EIGEN_STRONG_INLINE Packet2d psignbit(const Packet2d& a) { + return vreinterpretq_f64_s64(vshrq_n_s64(vreinterpretq_s64_f64(a), 63)); +} + +template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) +{ return vaddvq_f64(a); } + +// Other reduction functions: +// mul +#if EIGEN_COMP_CLANGAPPLE +template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) +{ return (vget_low_f64(a) * vget_high_f64(a))[0]; } +#else +template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) +{ return vget_lane_f64(vmul_f64(vget_low_f64(a), vget_high_f64(a)), 0); } +#endif + +// min +template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) +{ return vminvq_f64(a); } + +// max +template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) +{ return vmaxvq_f64(a); } + + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) +{ + const float64x2_t tmp1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]); + const float64x2_t tmp2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]); + + kernel.packet[0] = tmp1; + kernel.packet[1] = tmp2; +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet2d pselect( const Packet2d& mask, const Packet2d& a, const Packet2d& b) +{ return vbslq_f64(vreinterpretq_u64_f64(mask), a, b); } + +template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) +{ return vrndnq_f64(a); } + +template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) +{ return vrndmq_f64(a); } + +template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) +{ return vrndpq_f64(a); } + +template<> EIGEN_STRONG_INLINE Packet2d pldexp(const Packet2d& a, const Packet2d& exponent) +{ return pldexp_generic(a, exponent); } + +template<> EIGEN_STRONG_INLINE Packet2d pfrexp(const Packet2d& a, Packet2d& exponent) +{ return pfrexp_generic(a,exponent); } + +template<> EIGEN_STRONG_INLINE Packet2d pset1frombits(uint64_t from) +{ return vreinterpretq_f64_u64(vdupq_n_u64(from)); } + +template<> EIGEN_STRONG_INLINE Packet2d prsqrt(const Packet2d& a) { + // Do Newton iterations for 1/sqrt(x). + return generic_rsqrt_newton_step::run(a, vrsqrteq_f64(a)); +} + +template<> EIGEN_STRONG_INLINE Packet2d psqrt(const Packet2d& _x){ return vsqrtq_f64(_x); } + +#endif // EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG + +// Do we have an fp16 types and supporting Neon intrinsics? +#if EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC +typedef float16x4_t Packet4hf; +typedef float16x8_t Packet8hf; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet8hf type; + typedef Packet4hf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 8, + + HasCmp = 1, + HasCast = 1, + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasAbsDiff = 0, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 1, + HasBlend = 0, + HasInsert = 1, + HasReduxp = 1, + HasDiv = 1, + HasFloor = 1, + HasCeil = 1, + HasRint = 1, + HasSin = 0, + HasCos = 0, + HasLog = 0, + HasExp = 0, + HasTanh = packet_traits::HasTanh, // tanh calls tanh + HasSqrt = 1, + HasRsqrt = 1, + HasErf = EIGEN_FAST_MATH, + HasBessel = 0, // Issues with accuracy. + HasNdtri = 0 + }; +}; + +template <> +struct unpacket_traits { + typedef Eigen::half type; + typedef Packet4hf half; + enum { + size = 4, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template <> +struct unpacket_traits { + typedef Eigen::half type; + typedef Packet4hf half; + enum { + size = 8, + alignment = Aligned16, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4hf predux_half_dowto4(const Packet8hf& a) { + return vadd_f16(vget_low_f16(a), vget_high_f16(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pset1(const Eigen::half& from) { + return vdupq_n_f16(from.x); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pset1(const Eigen::half& from) { + return vdup_n_f16(from.x); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf plset(const Eigen::half& a) { + const float16_t f[] = {0, 1, 2, 3, 4, 5, 6, 7}; + Packet8hf countdown = vld1q_f16(f); + return vaddq_f16(pset1(a), countdown); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf plset(const Eigen::half& a) { + const float16_t f[] = {0, 1, 2, 3}; + Packet4hf countdown = vld1_f16(f); + return vadd_f16(pset1(a), countdown); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf padd(const Packet8hf& a, const Packet8hf& b) { + return vaddq_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf padd(const Packet4hf& a, const Packet4hf& b) { + return vadd_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf psub(const Packet8hf& a, const Packet8hf& b) { + return vsubq_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf psub(const Packet4hf& a, const Packet4hf& b) { + return vsub_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pnegate(const Packet8hf& a) { + return vnegq_f16(a); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pnegate(const Packet4hf& a) { + return vneg_f16(a); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pconj(const Packet8hf& a) { + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pconj(const Packet4hf& a) { + return a; +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pmul(const Packet8hf& a, const Packet8hf& b) { + return vmulq_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pmul(const Packet4hf& a, const Packet4hf& b) { + return vmul_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pdiv(const Packet8hf& a, const Packet8hf& b) { + return vdivq_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pdiv(const Packet4hf& a, const Packet4hf& b) { + return vdiv_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pmadd(const Packet8hf& a, const Packet8hf& b, const Packet8hf& c) { + return vfmaq_f16(c, a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pmadd(const Packet4hf& a, const Packet4hf& b, const Packet4hf& c) { + return vfma_f16(c, a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pmin(const Packet8hf& a, const Packet8hf& b) { + return vminq_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pmin(const Packet4hf& a, const Packet4hf& b) { + return vmin_f16(a, b); +} + +#ifdef __ARM_FEATURE_NUMERIC_MAXMIN +// numeric max and min are only available if ARM_FEATURE_NUMERIC_MAXMIN is defined (which can only be the case for Armv8 systems). +template<> EIGEN_STRONG_INLINE Packet4hf pmin(const Packet4hf& a, const Packet4hf& b) { return vminnm_f16(a, b); } +template<> EIGEN_STRONG_INLINE Packet8hf pmin(const Packet8hf& a, const Packet8hf& b) { return vminnmq_f16(a, b); } +#endif + +template<> EIGEN_STRONG_INLINE Packet4hf pmin(const Packet4hf& a, const Packet4hf& b) { return pmin(a, b); } + +template<> EIGEN_STRONG_INLINE Packet8hf pmin(const Packet8hf& a, const Packet8hf& b) { return pmin(a, b); } + +template <> +EIGEN_STRONG_INLINE Packet8hf pmax(const Packet8hf& a, const Packet8hf& b) { + return vmaxq_f16(a, b); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pmax(const Packet4hf& a, const Packet4hf& b) { + return vmax_f16(a, b); +} + +#ifdef __ARM_FEATURE_NUMERIC_MAXMIN +// numeric max and min are only available if ARM_FEATURE_NUMERIC_MAXMIN is defined (which can only be the case for Armv8 systems). +template<> EIGEN_STRONG_INLINE Packet4hf pmax(const Packet4hf& a, const Packet4hf& b) { return vmaxnm_f16(a, b); } +template<> EIGEN_STRONG_INLINE Packet8hf pmax(const Packet8hf& a, const Packet8hf& b) { return vmaxnmq_f16(a, b); } +#endif + +template<> EIGEN_STRONG_INLINE Packet4hf pmax(const Packet4hf& a, const Packet4hf& b) { return pmax(a, b); } + +template<> EIGEN_STRONG_INLINE Packet8hf pmax(const Packet8hf& a, const Packet8hf& b) { return pmax(a, b); } + +#define EIGEN_MAKE_ARM_FP16_CMP_8(name) \ + template <> \ + EIGEN_STRONG_INLINE Packet8hf pcmp_##name(const Packet8hf& a, const Packet8hf& b) { \ + return vreinterpretq_f16_u16(vc##name##q_f16(a, b)); \ + } + +#define EIGEN_MAKE_ARM_FP16_CMP_4(name) \ + template <> \ + EIGEN_STRONG_INLINE Packet4hf pcmp_##name(const Packet4hf& a, const Packet4hf& b) { \ + return vreinterpret_f16_u16(vc##name##_f16(a, b)); \ + } + +EIGEN_MAKE_ARM_FP16_CMP_8(eq) +EIGEN_MAKE_ARM_FP16_CMP_8(lt) +EIGEN_MAKE_ARM_FP16_CMP_8(le) + +EIGEN_MAKE_ARM_FP16_CMP_4(eq) +EIGEN_MAKE_ARM_FP16_CMP_4(lt) +EIGEN_MAKE_ARM_FP16_CMP_4(le) + +#undef EIGEN_MAKE_ARM_FP16_CMP_8 +#undef EIGEN_MAKE_ARM_FP16_CMP_4 + +template <> +EIGEN_STRONG_INLINE Packet8hf pcmp_lt_or_nan(const Packet8hf& a, const Packet8hf& b) { + return vreinterpretq_f16_u16(vmvnq_u16(vcgeq_f16(a, b))); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pcmp_lt_or_nan(const Packet4hf& a, const Packet4hf& b) { + return vreinterpret_f16_u16(vmvn_u16(vcge_f16(a, b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf print(const Packet8hf& a) +{ return vrndnq_f16(a); } + +template <> +EIGEN_STRONG_INLINE Packet4hf print(const Packet4hf& a) +{ return vrndn_f16(a); } + +template <> +EIGEN_STRONG_INLINE Packet8hf pfloor(const Packet8hf& a) +{ return vrndmq_f16(a); } + +template <> +EIGEN_STRONG_INLINE Packet4hf pfloor(const Packet4hf& a) +{ return vrndm_f16(a); } + +template <> +EIGEN_STRONG_INLINE Packet8hf pceil(const Packet8hf& a) +{ return vrndpq_f16(a); } + +template <> +EIGEN_STRONG_INLINE Packet4hf pceil(const Packet4hf& a) +{ return vrndp_f16(a); } + +template <> +EIGEN_STRONG_INLINE Packet8hf psqrt(const Packet8hf& a) { + return vsqrtq_f16(a); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf psqrt(const Packet4hf& a) { + return vsqrt_f16(a); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pand(const Packet8hf& a, const Packet8hf& b) { + return vreinterpretq_f16_u16(vandq_u16(vreinterpretq_u16_f16(a), vreinterpretq_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pand(const Packet4hf& a, const Packet4hf& b) { + return vreinterpret_f16_u16(vand_u16(vreinterpret_u16_f16(a), vreinterpret_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf por(const Packet8hf& a, const Packet8hf& b) { + return vreinterpretq_f16_u16(vorrq_u16(vreinterpretq_u16_f16(a), vreinterpretq_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf por(const Packet4hf& a, const Packet4hf& b) { + return vreinterpret_f16_u16(vorr_u16(vreinterpret_u16_f16(a), vreinterpret_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pxor(const Packet8hf& a, const Packet8hf& b) { + return vreinterpretq_f16_u16(veorq_u16(vreinterpretq_u16_f16(a), vreinterpretq_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pxor(const Packet4hf& a, const Packet4hf& b) { + return vreinterpret_f16_u16(veor_u16(vreinterpret_u16_f16(a), vreinterpret_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pandnot(const Packet8hf& a, const Packet8hf& b) { + return vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(a), vreinterpretq_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pandnot(const Packet4hf& a, const Packet4hf& b) { + return vreinterpret_f16_u16(vbic_u16(vreinterpret_u16_f16(a), vreinterpret_u16_f16(b))); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pload(const Eigen::half* from) { + EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f16(reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pload(const Eigen::half* from) { + EIGEN_DEBUG_ALIGNED_LOAD return vld1_f16(reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf ploadu(const Eigen::half* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f16(reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf ploadu(const Eigen::half* from) { + EIGEN_DEBUG_UNALIGNED_LOAD return vld1_f16(reinterpret_cast(from)); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf ploaddup(const Eigen::half* from) { + Packet8hf packet; + packet[0] = from[0].x; + packet[1] = from[0].x; + packet[2] = from[1].x; + packet[3] = from[1].x; + packet[4] = from[2].x; + packet[5] = from[2].x; + packet[6] = from[3].x; + packet[7] = from[3].x; + return packet; +} + +template <> +EIGEN_STRONG_INLINE Packet4hf ploaddup(const Eigen::half* from) { + float16x4_t packet; + float16_t* tmp; + tmp = (float16_t*)&packet; + tmp[0] = from[0].x; + tmp[1] = from[0].x; + tmp[2] = from[1].x; + tmp[3] = from[1].x; + return packet; +} + +template <> +EIGEN_STRONG_INLINE Packet8hf ploadquad(const Eigen::half* from) { + Packet4hf lo, hi; + lo = vld1_dup_f16(reinterpret_cast(from)); + hi = vld1_dup_f16(reinterpret_cast(from+1)); + return vcombine_f16(lo, hi); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8hf pinsertfirst(const Packet8hf& a, Eigen::half b) { return vsetq_lane_f16(b.x, a, 0); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4hf pinsertfirst(const Packet4hf& a, Eigen::half b) { return vset_lane_f16(b.x, a, 0); } + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8hf pselect(const Packet8hf& mask, const Packet8hf& a, const Packet8hf& b) { + return vbslq_f16(vreinterpretq_u16_f16(mask), a, b); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4hf pselect(const Packet4hf& mask, const Packet4hf& a, const Packet4hf& b) { + return vbsl_f16(vreinterpret_u16_f16(mask), a, b); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8hf pinsertlast(const Packet8hf& a, Eigen::half b) { return vsetq_lane_f16(b.x, a, 7); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4hf pinsertlast(const Packet4hf& a, Eigen::half b) { return vset_lane_f16(b.x, a, 3); } + +template <> +EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet8hf& from) { + EIGEN_DEBUG_ALIGNED_STORE vst1q_f16(reinterpret_cast(to), from); +} + +template <> +EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet4hf& from) { + EIGEN_DEBUG_ALIGNED_STORE vst1_f16(reinterpret_cast(to), from); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet8hf& from) { + EIGEN_DEBUG_UNALIGNED_STORE vst1q_f16(reinterpret_cast(to), from); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet4hf& from) { + EIGEN_DEBUG_UNALIGNED_STORE vst1_f16(reinterpret_cast(to), from); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet8hf pgather(const Eigen::half* from, Index stride) { + Packet8hf res = pset1(Eigen::half(0.f)); + res = vsetq_lane_f16(from[0 * stride].x, res, 0); + res = vsetq_lane_f16(from[1 * stride].x, res, 1); + res = vsetq_lane_f16(from[2 * stride].x, res, 2); + res = vsetq_lane_f16(from[3 * stride].x, res, 3); + res = vsetq_lane_f16(from[4 * stride].x, res, 4); + res = vsetq_lane_f16(from[5 * stride].x, res, 5); + res = vsetq_lane_f16(from[6 * stride].x, res, 6); + res = vsetq_lane_f16(from[7 * stride].x, res, 7); + return res; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet4hf pgather(const Eigen::half* from, Index stride) { + Packet4hf res = pset1(Eigen::half(0.f)); + res = vset_lane_f16(from[0 * stride].x, res, 0); + res = vset_lane_f16(from[1 * stride].x, res, 1); + res = vset_lane_f16(from[2 * stride].x, res, 2); + res = vset_lane_f16(from[3 * stride].x, res, 3); + return res; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const Packet8hf& from, Index stride) { + to[stride * 0].x = vgetq_lane_f16(from, 0); + to[stride * 1].x = vgetq_lane_f16(from, 1); + to[stride * 2].x = vgetq_lane_f16(from, 2); + to[stride * 3].x = vgetq_lane_f16(from, 3); + to[stride * 4].x = vgetq_lane_f16(from, 4); + to[stride * 5].x = vgetq_lane_f16(from, 5); + to[stride * 6].x = vgetq_lane_f16(from, 6); + to[stride * 7].x = vgetq_lane_f16(from, 7); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const Packet4hf& from, Index stride) { + to[stride * 0].x = vget_lane_f16(from, 0); + to[stride * 1].x = vget_lane_f16(from, 1); + to[stride * 2].x = vget_lane_f16(from, 2); + to[stride * 3].x = vget_lane_f16(from, 3); +} + +template <> +EIGEN_STRONG_INLINE void prefetch(const Eigen::half* addr) { + EIGEN_ARM_PREFETCH(addr); +} + +template <> +EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet8hf& a) { + float16_t x[8]; + vst1q_f16(x, a); + Eigen::half h; + h.x = x[0]; + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet4hf& a) { + float16_t x[4]; + vst1_f16(x, a); + Eigen::half h; + h.x = x[0]; + return h; +} + +template<> EIGEN_STRONG_INLINE Packet8hf preverse(const Packet8hf& a) { + float16x4_t a_lo, a_hi; + Packet8hf a_r64; + + a_r64 = vrev64q_f16(a); + a_lo = vget_low_f16(a_r64); + a_hi = vget_high_f16(a_r64); + return vcombine_f16(a_hi, a_lo); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf preverse(const Packet4hf& a) { + return vrev64_f16(a); +} + +template <> +EIGEN_STRONG_INLINE Packet8hf pabs(const Packet8hf& a) { + return vabsq_f16(a); +} + +template<> +EIGEN_STRONG_INLINE Packet8hf psignbit(const Packet8hf& a) { + return vreinterpretq_f16_s16(vshrq_n_s16(vreinterpretq_s16_f16(a), 15)); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf pabs(const Packet4hf& a) { + return vabs_f16(a); +} + +template <> +EIGEN_STRONG_INLINE Packet4hf psignbit(const Packet4hf& a) { + return vreinterpret_f16_s16( vshr_n_s16( vreinterpret_s16_f16(a), 15)); +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux(const Packet8hf& a) { + float16x4_t a_lo, a_hi, sum; + + a_lo = vget_low_f16(a); + a_hi = vget_high_f16(a); + sum = vpadd_f16(a_lo, a_hi); + sum = vpadd_f16(sum, sum); + sum = vpadd_f16(sum, sum); + + Eigen::half h; + h.x = vget_lane_f16(sum, 0); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux(const Packet4hf& a) { + float16x4_t sum; + + sum = vpadd_f16(a, a); + sum = vpadd_f16(sum, sum); + Eigen::half h; + h.x = vget_lane_f16(sum, 0); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux_mul(const Packet8hf& a) { + float16x4_t a_lo, a_hi, prod; + + a_lo = vget_low_f16(a); + a_hi = vget_high_f16(a); + prod = vmul_f16(a_lo, a_hi); + prod = vmul_f16(prod, vrev64_f16(prod)); + + Eigen::half h; + h.x = vmulh_f16(vget_lane_f16(prod, 0), vget_lane_f16(prod, 1)); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux_mul(const Packet4hf& a) { + float16x4_t prod; + prod = vmul_f16(a, vrev64_f16(a)); + Eigen::half h; + h.x = vmulh_f16(vget_lane_f16(prod, 0), vget_lane_f16(prod, 1)); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux_min(const Packet8hf& a) { + Eigen::half h; + h.x = vminvq_f16(a); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux_min(const Packet4hf& a) { + Eigen::half h; + h.x = vminv_f16(a); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux_max(const Packet8hf& a) { + Eigen::half h; + h.x = vmaxvq_f16(a); + return h; +} + +template <> +EIGEN_STRONG_INLINE Eigen::half predux_max(const Packet4hf& a) { + Eigen::half h; + h.x = vmaxv_f16(a); + return h; +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + const float16x8x2_t zip16_1 = vzipq_f16(kernel.packet[0], kernel.packet[1]); + const float16x8x2_t zip16_2 = vzipq_f16(kernel.packet[2], kernel.packet[3]); + + const float32x4x2_t zip32_1 = vzipq_f32(vreinterpretq_f32_f16(zip16_1.val[0]), vreinterpretq_f32_f16(zip16_2.val[0])); + const float32x4x2_t zip32_2 = vzipq_f32(vreinterpretq_f32_f16(zip16_1.val[1]), vreinterpretq_f32_f16(zip16_2.val[1])); + + kernel.packet[0] = vreinterpretq_f16_f32(zip32_1.val[0]); + kernel.packet[1] = vreinterpretq_f16_f32(zip32_1.val[1]); + kernel.packet[2] = vreinterpretq_f16_f32(zip32_2.val[0]); + kernel.packet[3] = vreinterpretq_f16_f32(zip32_2.val[1]); +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + EIGEN_ALIGN16 float16x4x4_t tmp_x4; + float16_t* tmp = (float16_t*)&kernel; + tmp_x4 = vld4_f16(tmp); + + kernel.packet[0] = tmp_x4.val[0]; + kernel.packet[1] = tmp_x4.val[1]; + kernel.packet[2] = tmp_x4.val[2]; + kernel.packet[3] = tmp_x4.val[3]; +} + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) { + float16x8x2_t T_1[4]; + + T_1[0] = vuzpq_f16(kernel.packet[0], kernel.packet[1]); + T_1[1] = vuzpq_f16(kernel.packet[2], kernel.packet[3]); + T_1[2] = vuzpq_f16(kernel.packet[4], kernel.packet[5]); + T_1[3] = vuzpq_f16(kernel.packet[6], kernel.packet[7]); + + float16x8x2_t T_2[4]; + T_2[0] = vuzpq_f16(T_1[0].val[0], T_1[1].val[0]); + T_2[1] = vuzpq_f16(T_1[0].val[1], T_1[1].val[1]); + T_2[2] = vuzpq_f16(T_1[2].val[0], T_1[3].val[0]); + T_2[3] = vuzpq_f16(T_1[2].val[1], T_1[3].val[1]); + + float16x8x2_t T_3[4]; + T_3[0] = vuzpq_f16(T_2[0].val[0], T_2[2].val[0]); + T_3[1] = vuzpq_f16(T_2[0].val[1], T_2[2].val[1]); + T_3[2] = vuzpq_f16(T_2[1].val[0], T_2[3].val[0]); + T_3[3] = vuzpq_f16(T_2[1].val[1], T_2[3].val[1]); + + kernel.packet[0] = T_3[0].val[0]; + kernel.packet[1] = T_3[2].val[0]; + kernel.packet[2] = T_3[1].val[0]; + kernel.packet[3] = T_3[3].val[0]; + kernel.packet[4] = T_3[0].val[1]; + kernel.packet[5] = T_3[2].val[1]; + kernel.packet[6] = T_3[1].val[1]; + kernel.packet[7] = T_3[3].val[1]; +} +#endif // end EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_NEON_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/TypeCasting.h new file mode 100644 index 0000000..834fcf5 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/TypeCasting.h @@ -0,0 +1,1622 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Rasmus Munk Larsen +// Copyright (C) 2020 Antonio Sanchez +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_NEON_H +#define EIGEN_TYPE_CASTING_NEON_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + + +//============================================================================== +// preinterpret (truncation operations) +//============================================================================== + +template <> +EIGEN_STRONG_INLINE Packet8c preinterpret(const Packet16c& a) { + return Packet8c(vget_low_s8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4c preinterpret(const Packet8c& a) { + return Packet4c(vget_lane_s32(vreinterpret_s32_s8(a), 0)); +} +template <> +EIGEN_STRONG_INLINE Packet4c preinterpret(const Packet16c& a) { + return preinterpret(preinterpret(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet8uc preinterpret(const Packet16uc& a) { + return Packet8uc(vget_low_u8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc preinterpret(const Packet8uc& a) { + return Packet4uc(vget_lane_u32(vreinterpret_u32_u8(a), 0)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc preinterpret(const Packet16uc& a) { + return preinterpret(preinterpret(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet4s preinterpret(const Packet8s& a) { + return Packet4s(vget_low_s16(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet4us preinterpret(const Packet8us& a) { + return Packet4us(vget_low_u16(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet2i preinterpret(const Packet4i& a) { + return Packet2i(vget_low_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ui preinterpret(const Packet4ui& a) { + return Packet2ui(vget_low_u32(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet2f preinterpret(const Packet4f& a) { + return Packet2f(vget_low_f32(a)); +} + +//============================================================================== +// preinterpret +//============================================================================== +template <> +EIGEN_STRONG_INLINE Packet2f preinterpret(const Packet2i& a) { + return Packet2f(vreinterpret_f32_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2f preinterpret(const Packet2ui& a) { + return Packet2f(vreinterpret_f32_u32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet4i& a) { + return Packet4f(vreinterpretq_f32_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet4ui& a) { + return Packet4f(vreinterpretq_f32_u32(a)); +} + + +template <> +EIGEN_STRONG_INLINE Packet4c preinterpret(const Packet4uc& a) { + return static_cast(a); +} +template <> +EIGEN_STRONG_INLINE Packet8c preinterpret(const Packet8uc& a) { + return Packet8c(vreinterpret_s8_u8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet16c preinterpret(const Packet16uc& a) { + return Packet16c(vreinterpretq_s8_u8(a)); +} + + +template <> +EIGEN_STRONG_INLINE Packet4uc preinterpret(const Packet4c& a) { + return static_cast(a); +} +template <> +EIGEN_STRONG_INLINE Packet8uc preinterpret(const Packet8c& a) { + return Packet8uc(vreinterpret_u8_s8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet16uc preinterpret(const Packet16c& a) { + return Packet16uc(vreinterpretq_u8_s8(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet4s preinterpret(const Packet4us& a) { + return Packet4s(vreinterpret_s16_u16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8s preinterpret(const Packet8us& a) { + return Packet8s(vreinterpretq_s16_u16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4us preinterpret(const Packet4s& a) { + return Packet4us(vreinterpret_u16_s16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8us preinterpret(const Packet8s& a) { + return Packet8us(vreinterpretq_u16_s16(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet2i preinterpret(const Packet2f& a) { + return Packet2i(vreinterpret_s32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2i preinterpret(const Packet2ui& a) { + return Packet2i(vreinterpret_s32_u32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet4f& a) { + return Packet4i(vreinterpretq_s32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet4ui& a) { + return Packet4i(vreinterpretq_s32_u32(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet2ui preinterpret(const Packet2f& a) { + return Packet2ui(vreinterpret_u32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ui preinterpret(const Packet2i& a) { + return Packet2ui(vreinterpret_u32_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4ui preinterpret(const Packet4f& a) { + return Packet4ui(vreinterpretq_u32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4ui preinterpret(const Packet4i& a) { + return Packet4ui(vreinterpretq_u32_s32(a)); +} + +template <> +EIGEN_STRONG_INLINE Packet2l preinterpret(const Packet2ul& a) { + return Packet2l(vreinterpretq_s64_u64(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ul preinterpret(const Packet2l& a) { + return Packet2ul(vreinterpretq_u64_s64(a)); +} + +//============================================================================== +// pcast, SrcType = float +//============================================================================== + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +// If float64 exists, first convert to that to keep as much precision as possible. +#if EIGEN_ARCH_ARM64 +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet4f& a) { + // Discard second half of input. + return vcvtq_s64_f64(vcvt_f64_f32(vget_low_f32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet2f& a) { + return vcvtq_s64_f64(vcvt_f64_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet4f& a) { + // Discard second half of input. + return vcvtq_u64_f64(vcvt_f64_f32(vget_low_f32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet2f& a) { + return vcvtq_u64_f64(vcvt_f64_f32(a)); +} +#else +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet4f& a) { + // Discard second half of input. + return vmovl_s32(vget_low_s32(vcvtq_s32_f32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet2f& a) { + return vmovl_s32(vcvt_s32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet4f& a) { + // Discard second half of input. + return vmovl_u32(vget_low_u32(vcvtq_u32_f32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet2f& a) { + // Discard second half of input. + return vmovl_u32(vcvt_u32_f32(a)); +} +#endif // EIGEN_ARCH_ARM64 + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet4f& a) { + return vcvtq_s32_f32(a); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet2f& a) { + return vcvt_s32_f32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet4f& a) { + return vcvtq_u32_f32(a); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet2f& a) { + return vcvt_u32_f32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet4f& a, const Packet4f& b) { + return vcombine_s16(vmovn_s32(vcvtq_s32_f32(a)), vmovn_s32(vcvtq_s32_f32(b))); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet4f& a) { + return vmovn_s32(vcvtq_s32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet2f& a, const Packet2f& b) { + return vmovn_s32(vcombine_s32(vcvt_s32_f32(a), vcvt_s32_f32(b))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet4f& a, const Packet4f& b) { + return vcombine_u16(vmovn_u32(vcvtq_u32_f32(a)), vmovn_u32(vcvtq_u32_f32(b))); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet4f& a) { + return vmovn_u32(vcvtq_u32_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet2f& a, const Packet2f& b) { + return vmovn_u32(vcombine_u32(vcvt_u32_f32(a), vcvt_u32_f32(b))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet4f& a, const Packet4f& b, const Packet4f& c, + const Packet4f& d) { + const int16x8_t ab_s16 = pcast(a, b); + const int16x8_t cd_s16 = pcast(c, d); + return vcombine_s8(vmovn_s16(ab_s16), vmovn_s16(cd_s16)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet4f& a, const Packet4f& b) { + const int16x8_t ab_s16 = pcast(a, b); + return vmovn_s16(ab_s16); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet2f& a, const Packet2f& b, const Packet2f& c, + const Packet2f& d) { + const int16x4_t ab_s16 = pcast(a, b); + const int16x4_t cd_s16 = pcast(c, d); + return vmovn_s16(vcombine_s16(ab_s16, cd_s16)); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet4f& a) { + const int32x4_t a_s32x4 = vcvtq_s32_f32(a); + const int16x4_t a_s16x4 = vmovn_s32(a_s32x4); + const int16x8_t aa_s16x8 = vcombine_s16(a_s16x4, a_s16x4); + const int8x8_t aa_s8x8 = vmovn_s16(aa_s16x8); + return vget_lane_s32(vreinterpret_s32_s8(aa_s8x8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet4f& a, const Packet4f& b, const Packet4f& c, + const Packet4f& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet4f& a, const Packet4f& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet2f& a, const Packet2f& b, const Packet2f& c, + const Packet2f& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet4f& a) { + return static_cast(pcast(a)); +} + +//============================================================================== +// pcast, SrcType = int8_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet16c& a) { + // Discard all but first 4 bytes. + return vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(a))))); +} +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet4c& a) { + return vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_s32(vdup_n_s32(a)))))); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet8c& a) { + // Discard all but first 2 bytes. + return vcvt_f32_s32(vget_low_s32(vmovl_s16(vget_low_s16(vmovl_s8(a))))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 8 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet16c& a) { + // Discard all but first two bytes. + return vmovl_s32(vget_low_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(a)))))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 8 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet16c& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet16c& a) { + // Discard all but first 4 bytes. + return vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(a)))); +} +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet8c& a) { + return vmovl_s16(vget_low_s16(vmovl_s8(a))); +} +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet4c& a) { + return pcast(vreinterpret_s8_s32(vdup_n_s32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet8c& a) { + // Discard all but first 2 bytes. + return vget_low_s32(vmovl_s16(vget_low_s16(vmovl_s8(a)))); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet16c& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet8c& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet4c& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet16c& a) { + // Discard second half of input. + return vmovl_s8(vget_low_s8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet8c& a) { + return vmovl_s8(a); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet8c& a) { + // Discard second half of input. + return vget_low_s16(vmovl_s8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet4c& a) { + return pcast(vreinterpret_s8_s32(vdup_n_s32(a))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet16c& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet8c& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet8c& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet4c& a) { + return preinterpret(pcast(a)); +} + + +//============================================================================== +// pcast, SrcType = uint8_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet16uc& a) { + // Discard all but first 4 bytes. + return vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a))))); +} +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet4uc& a) { + return vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_u32(vdup_n_u32(a)))))); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet8uc& a) { + // Discard all but first 2 bytes. + return vcvt_f32_u32(vget_low_u32(vmovl_u16(vget_low_u16(vmovl_u8(a))))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 8 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet16uc& a) { + // Discard all but first two bytes. + return vmovl_u32(vget_low_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a)))))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 8 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet16uc& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet16uc& a) { + // Discard all but first 4 bytes. + return vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a)))); +} +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet8uc& a) { + return vmovl_u16(vget_low_u16(vmovl_u8(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet8uc& a) { + // Discard all but first 2 bytes. + return vget_low_u32(vmovl_u16(vget_low_u16(vmovl_u8(a)))); +} +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet4uc& a) { + return pcast(vreinterpret_u8_u32(vdup_n_u32(a))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet16uc& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet8uc& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet4uc& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet16uc& a) { + // Discard second half of input. + return vmovl_u8(vget_low_u8(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet8uc& a) { + return vmovl_u8(a); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet4uc& a) { + return vget_low_u16(vmovl_u8(vreinterpret_u8_u32(vdup_n_u32(a)))); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet16uc& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet8uc& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet4uc& a) { + return preinterpret(pcast(a)); +} + + +//============================================================================== +// pcast, SrcType = int16_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet8s& a) { + // Discard second half of input. + return vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))); +} +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet4s& a) { + return vcvtq_f32_s32(vmovl_s16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet4s& a) { + // Discard second half of input. + return vcvt_f32_s32(vget_low_s32(vmovl_s16(a))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet8s& a) { + // Discard all but first two values. + return vmovl_s32(vget_low_s32(vmovl_s16(vget_low_s16(a)))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet8s& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet8s& a) { + // Discard second half of input. + return vmovl_s16(vget_low_s16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet4s& a) { + return vmovl_s16(a); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet4s& a) { + // Discard second half of input. + return vget_low_s32(vmovl_s16(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet8s& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet4s& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet4s& a) { + return preinterpret(pcast(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet8s& a, const Packet8s& b) { + return vcombine_s8(vmovn_s16(a), vmovn_s16(b)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet8s& a) { + return vmovn_s16(a); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet4s& a, const Packet4s& b) { + return vmovn_s16(vcombine_s16(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet4s& a) { + const int8x8_t aa_s8x8 = pcast(a, a); + return vget_lane_s32(vreinterpret_s32_s8(aa_s8x8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet8s& a, const Packet8s& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet8s& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet4s& a, const Packet4s& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet4s& a) { + return static_cast(pcast(a)); +} + +//============================================================================== +// pcast, SrcType = uint16_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet8us& a) { + // Discard second half of input. + return vcvtq_f32_u32(vmovl_u16(vget_low_u16(a))); +} +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet4us& a) { + return vcvtq_f32_u32(vmovl_u16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet4us& a) { + // Discard second half of input. + return vcvt_f32_u32(vget_low_u32(vmovl_u16(a))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet8us& a) { + // Discard all but first two values. + return vmovl_u32(vget_low_u32(vmovl_u16(vget_low_u16(a)))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet8us& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet8us& a) { + // Discard second half of input. + return vmovl_u16(vget_low_u16(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet4us& a) { + return vmovl_u16(a); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet4us& a) { + // Discard second half of input. + return vget_low_u32(vmovl_u16(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet8us& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet4us& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet4us& a) { + return preinterpret(pcast(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet8us& a, const Packet8us& b) { + return vcombine_u8(vmovn_u16(a), vmovn_u16(b)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet8us& a) { + return vmovn_u16(a); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet4us& a, const Packet4us& b) { + return vmovn_u16(vcombine_u16(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet4us& a) { + uint8x8_t aa_u8x8 = pcast(a, a); + return vget_lane_u32(vreinterpret_u32_u8(aa_u8x8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet8us& a, const Packet8us& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet8us& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet4us& a, const Packet4us& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet4us& a) { + return static_cast(pcast(a)); +} + +//============================================================================== +// pcast, SrcType = int32_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet4i& a) { + return vcvtq_f32_s32(a); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet2i& a) { + return vcvt_f32_s32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet4i& a) { + // Discard second half of input. + return vmovl_s32(vget_low_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet2i& a) { + return vmovl_s32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet4i& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet2i& a) { + return preinterpret(pcast(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet4i& a, const Packet4i& b) { + return vcombine_s16(vmovn_s32(a), vmovn_s32(b)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet4i& a) { + return vmovn_s32(a); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet2i& a, const Packet2i& b) { + return vmovn_s32(vcombine_s32(a, b)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet4i& a, const Packet4i& b) { + return vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(a)), vmovn_u32(vreinterpretq_u32_s32(b))); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet4i& a) { + return vmovn_u32(vreinterpretq_u32_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet2i& a, const Packet2i& b) { + return vmovn_u32(vreinterpretq_u32_s32(vcombine_s32(a, b))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet4i& a, const Packet4i& b, const Packet4i& c, + const Packet4i& d) { + const int16x8_t ab_s16 = pcast(a, b); + const int16x8_t cd_s16 = pcast(c, d); + return vcombine_s8(vmovn_s16(ab_s16), vmovn_s16(cd_s16)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet4i& a, const Packet4i& b) { + const int16x8_t ab_s16 = pcast(a, b); + return vmovn_s16(ab_s16); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet2i& a, const Packet2i& b, const Packet2i& c, + const Packet2i& d) { + const int16x4_t ab_s16 = vmovn_s32(vcombine_s32(a, b)); + const int16x4_t cd_s16 = vmovn_s32(vcombine_s32(c, d)); + return vmovn_s16(vcombine_s16(ab_s16, cd_s16)); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet4i& a) { + const int16x4_t a_s16x4 = vmovn_s32(a); + const int16x8_t aa_s16x8 = vcombine_s16(a_s16x4, a_s16x4); + const int8x8_t aa_s8x8 = vmovn_s16(aa_s16x8); + return vget_lane_s32(vreinterpret_s32_s8(aa_s8x8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet4i& a, const Packet4i& b, const Packet4i& c, + const Packet4i& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet4i& a, const Packet4i& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet2i& a, const Packet2i& b, const Packet2i& c, + const Packet2i& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet4i& a) { + return static_cast(pcast(a)); +} + +//============================================================================== +// pcast, SrcType = uint32_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet4ui& a) { + return vcvtq_f32_u32(a); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet2ui& a) { + return vcvt_f32_u32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet4ui& a) { + // Discard second half of input. + return vmovl_u32(vget_low_u32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet2ui& a) { + return vmovl_u32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet4ui& a) { + return preinterpret(pcast(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet2ui& a) { + return preinterpret(pcast(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet4ui& a, const Packet4ui& b) { + return vcombine_u16(vmovn_u32(a), vmovn_u32(b)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet2ui& a, const Packet2ui& b) { + return vmovn_u32(vcombine_u32(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet4ui& a) { + return vmovn_u32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet4ui& a, const Packet4ui& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet2ui& a, const Packet2ui& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet4ui& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet4ui& a, const Packet4ui& b, const Packet4ui& c, + const Packet4ui& d) { + const uint16x8_t ab_u16 = vcombine_u16(vmovn_u32(a), vmovn_u32(b)); + const uint16x8_t cd_u16 = vcombine_u16(vmovn_u32(c), vmovn_u32(d)); + return vcombine_u8(vmovn_u16(ab_u16), vmovn_u16(cd_u16)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet4ui& a, const Packet4ui& b) { + const uint16x8_t ab_u16 = vcombine_u16(vmovn_u32(a), vmovn_u32(b)); + return vmovn_u16(ab_u16); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet2ui& a, const Packet2ui& b, const Packet2ui& c, + const Packet2ui& d) { + const uint16x4_t ab_u16 = vmovn_u32(vcombine_u32(a, b)); + const uint16x4_t cd_u16 = vmovn_u32(vcombine_u32(c, d)); + return vmovn_u16(vcombine_u16(ab_u16, cd_u16)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet4ui& a) { + const uint16x4_t a_u16x4 = vmovn_u32(a); + const uint16x8_t aa_u16x8 = vcombine_u16(a_u16x4, a_u16x4); + const uint8x8_t aa_u8x8 = vmovn_u16(aa_u16x8); + return vget_lane_u32(vreinterpret_u32_u8(aa_u8x8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet4ui& a, const Packet4ui& b, const Packet4ui& c, + const Packet4ui& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet4ui& a, const Packet4ui& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet2ui& a, const Packet2ui& b, const Packet2ui& c, + const Packet2ui& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet4ui& a) { + return static_cast(pcast(a)); +} + +//============================================================================== +// pcast, SrcType = int64_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet2l& a, const Packet2l& b) { + return vcvtq_f32_s32(vcombine_s32(vmovn_s64(a), vmovn_s64(b))); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet2l& a) { + return vcvt_f32_s32(vmovn_s64(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet2l& a, const Packet2l& b) { + return vcombine_s32(vmovn_s64(a), vmovn_s64(b)); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet2l& a) { + return vmovn_s64(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet2l& a, const Packet2l& b) { + return vcombine_u32(vmovn_u64(vreinterpretq_u64_s64(a)), vmovn_u64(vreinterpretq_u64_s64(b))); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet2l& a) { + return vmovn_u64(vreinterpretq_u64_s64(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet2l& a, const Packet2l& b, const Packet2l& c, + const Packet2l& d) { + const int32x4_t ab_s32 = pcast(a, b); + const int32x4_t cd_s32 = pcast(c, d); + return vcombine_s16(vmovn_s32(ab_s32), vmovn_s32(cd_s32)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet2l& a, const Packet2l& b) { + const int32x4_t ab_s32 = pcast(a, b); + return vmovn_s32(ab_s32); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet2l& a, const Packet2l& b, const Packet2l& c, + const Packet2l& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet2l& a, const Packet2l& b) { + return preinterpret(pcast(a, b)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 8, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet2l& a, const Packet2l& b, const Packet2l& c, + const Packet2l& d, const Packet2l& e, const Packet2l& f, + const Packet2l& g, const Packet2l& h) { + const int16x8_t abcd_s16 = pcast(a, b, c, d); + const int16x8_t efgh_s16 = pcast(e, f, g, h); + return vcombine_s8(vmovn_s16(abcd_s16), vmovn_s16(efgh_s16)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet2l& a, const Packet2l& b, const Packet2l& c, + const Packet2l& d) { + const int16x8_t abcd_s16 = pcast(a, b, c, d); + return vmovn_s16(abcd_s16); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet2l& a, const Packet2l& b) { + const int16x4_t ab_s16 = pcast(a, b); + const int16x8_t abab_s16 = vcombine_s16(ab_s16, ab_s16); + const int8x8_t abab_s8 = vmovn_s16(abab_s16); + return vget_lane_s32(vreinterpret_s32_s8(abab_s8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 8, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet2l& a, const Packet2l& b, const Packet2l& c, + const Packet2l& d, const Packet2l& e, const Packet2l& f, + const Packet2l& g, const Packet2l& h) { + const uint16x8_t abcd_u16 = pcast(a, b, c, d); + const uint16x8_t efgh_u16 = pcast(e, f, g, h); + return vcombine_u8(vmovn_u16(abcd_u16), vmovn_u16(efgh_u16)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet2l& a, const Packet2l& b, const Packet2l& c, + const Packet2l& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet2l& a, const Packet2l& b) { + return static_cast(pcast(a, b)); +} + +//============================================================================== +// pcast, SrcType = uint64_t +//============================================================================== +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet2ul& a, const Packet2ul& b) { + return vcvtq_f32_u32(vcombine_u32(vmovn_u64(a), vmovn_u64(b))); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet2ul& a) { + return vcvt_f32_u32(vmovn_u64(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet2ul& a, const Packet2ul& b) { + return vcombine_u32(vmovn_u64(a), vmovn_u64(b)); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet2ul& a) { + return vmovn_u64(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet2ul& a, const Packet2ul& b) { + return preinterpret(pcast(a, b)); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet2ul& a) { + return preinterpret(pcast(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet2ul& a, const Packet2ul& b, const Packet2ul& c, + const Packet2ul& d) { + const uint16x4_t ab_u16 = vmovn_u32(vcombine_u32(vmovn_u64(a), vmovn_u64(b))); + const uint16x4_t cd_u16 = vmovn_u32(vcombine_u32(vmovn_u64(c), vmovn_u64(d))); + return vcombine_u16(ab_u16, cd_u16); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet2ul& a, const Packet2ul& b) { + return vmovn_u32(vcombine_u32(vmovn_u64(a), vmovn_u64(b))); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet2ul& a, const Packet2ul& b, const Packet2ul& c, + const Packet2ul& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet2ul& a, const Packet2ul& b) { + return preinterpret(pcast(a, b)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 8, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet2ul& a, const Packet2ul& b, const Packet2ul& c, + const Packet2ul& d, const Packet2ul& e, const Packet2ul& f, + const Packet2ul& g, const Packet2ul& h) { + const uint16x8_t abcd_u16 = pcast(a, b, c, d); + const uint16x8_t efgh_u16 = pcast(e, f, g, h); + return vcombine_u8(vmovn_u16(abcd_u16), vmovn_u16(efgh_u16)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet2ul& a, const Packet2ul& b, const Packet2ul& c, + const Packet2ul& d) { + const uint16x8_t abcd_u16 = pcast(a, b, c, d); + return vmovn_u16(abcd_u16); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet2ul& a, const Packet2ul& b) { + const uint16x4_t ab_u16 = pcast(a, b); + const uint16x8_t abab_u16 = vcombine_u16(ab_u16, ab_u16); + const uint8x8_t abab_u8 = vmovn_u16(abab_u16); + return vget_lane_u32(vreinterpret_u32_u8(abab_u8), 0); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 8, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet2ul& a, const Packet2ul& b, const Packet2ul& c, + const Packet2ul& d, const Packet2ul& e, const Packet2ul& f, + const Packet2ul& g, const Packet2ul& h) { + return preinterpret(pcast(a, b, c, d, e, f, g, h)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet2ul& a, const Packet2ul& b, const Packet2ul& c, + const Packet2ul& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet2ul& a, const Packet2ul& b) { + return static_cast(pcast(a, b)); +} + +#if EIGEN_ARCH_ARM64 + +//============================================================================== +// pcast/preinterpret, Double +//============================================================================== + +template <> +EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet2l& a) { + return Packet2d(vreinterpretq_f64_s64(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet2ul& a) { + return Packet2d(vreinterpretq_f64_u64(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2l preinterpret(const Packet2d& a) { + return Packet2l(vreinterpretq_s64_f64(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2ul preinterpret(const Packet2d& a) { + return Packet2ul(vreinterpretq_u64_f64(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet4i& a) { + return Packet2d(vreinterpretq_f64_s32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet2d& a) { + return Packet4i(vreinterpretq_s32_f64(a)); +} + + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet2d& a, const Packet2d& b) { + return vcombine_f32(vcvt_f32_f64(a), vcvt_f32_f64(b)); +} +template <> +EIGEN_STRONG_INLINE Packet2f pcast(const Packet2d& a) { + return vcvt_f32_f64(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2l pcast(const Packet2d& a) { + return vcvtq_s64_f64(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2ul pcast(const Packet2d& a) { + return vcvtq_u64_f64(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4i pcast(const Packet2d& a, const Packet2d& b) { + return vcombine_s32(vmovn_s64(vcvtq_s64_f64(a)), vmovn_s64(vcvtq_s64_f64(b))); +} +template <> +EIGEN_STRONG_INLINE Packet2i pcast(const Packet2d& a) { + return vmovn_s64(vcvtq_s64_f64(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet4ui pcast(const Packet2d& a, const Packet2d& b) { + return vcombine_u32(vmovn_u64(vcvtq_u64_f64(a)), vmovn_u64(vcvtq_u64_f64(b))); +} +template <> +EIGEN_STRONG_INLINE Packet2ui pcast(const Packet2d& a) { + return vmovn_u64(vcvtq_u64_f64(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8s pcast(const Packet2d& a, const Packet2d& b, const Packet2d& c, + const Packet2d& d) { + const int32x4_t ab_s32 = pcast(a, b); + const int32x4_t cd_s32 = pcast(c, d); + return vcombine_s16(vmovn_s32(ab_s32), vmovn_s32(cd_s32)); +} +template <> +EIGEN_STRONG_INLINE Packet4s pcast(const Packet2d& a, const Packet2d& b) { + const int32x4_t ab_s32 = pcast(a, b); + return vmovn_s32(ab_s32); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 4, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet8us pcast(const Packet2d& a, const Packet2d& b, const Packet2d& c, + const Packet2d& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4us pcast(const Packet2d& a, const Packet2d& b) { + return preinterpret(pcast(a, b)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 8, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16c pcast(const Packet2d& a, const Packet2d& b, const Packet2d& c, + const Packet2d& d, const Packet2d& e, const Packet2d& f, + const Packet2d& g, const Packet2d& h) { + const int16x8_t abcd_s16 = pcast(a, b, c, d); + const int16x8_t efgh_s16 = pcast(e, f, g, h); + return vcombine_s8(vmovn_s16(abcd_s16), vmovn_s16(efgh_s16)); +} +template <> +EIGEN_STRONG_INLINE Packet8c pcast(const Packet2d& a, const Packet2d& b, const Packet2d& c, + const Packet2d& d) { + const int16x8_t abcd_s16 = pcast(a, b, c, d); + return vmovn_s16(abcd_s16); +} +template <> +EIGEN_STRONG_INLINE Packet4c pcast(const Packet2d& a, const Packet2d& b) { + const int32x4_t ab_s32 = pcast(a, b); + return pcast(ab_s32); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 8, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet16uc pcast(const Packet2d& a, const Packet2d& b, const Packet2d& c, + const Packet2d& d, const Packet2d& e, const Packet2d& f, + const Packet2d& g, const Packet2d& h) { + const uint16x8_t abcd_u16 = pcast(a, b, c, d); + const uint16x8_t efgh_u16 = pcast(e, f, g, h); + return vcombine_u8(vmovn_u16(abcd_u16), vmovn_u16(efgh_u16)); +} +template <> +EIGEN_STRONG_INLINE Packet8uc pcast(const Packet2d& a, const Packet2d& b, const Packet2d& c, + const Packet2d& d) { + return preinterpret(pcast(a, b, c, d)); +} +template <> +EIGEN_STRONG_INLINE Packet4uc pcast(const Packet2d& a, const Packet2d& b) { + return static_cast(pcast(a, b)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet4f& a) { + // Discard second-half of input. + return vcvt_f64_f32(vget_low_f32(a)); +} +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet2f& a) { + return vcvt_f64_f32(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 8 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet16c& a) { + // Discard all but first two values. + // MSVC defines most intrinsics as macros, so we need to do this in two lines for portability. + Packet2f tmp = pcast(vget_low_s8(a)); + return vcvt_f64_f32(tmp); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 8 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet16uc& a) { + // Discard all but first two values. + Packet2f tmp = pcast(vget_low_u8(a)); + return vcvt_f64_f32(tmp); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet8s& a) { + // Discard all but first two values. + Packet2f tmp = pcast(vget_low_s16(a)); + return vcvt_f64_f32(tmp); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 4 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet8us& a) { + // Discard all but first two values. + Packet2f tmp = pcast(vget_low_u16(a)); + return vcvt_f64_f32(tmp); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet4i& a) { + // Discard second half of input. + return vcvtq_f64_s64(vmovl_s32(vget_low_s32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet2i& a) { + return vcvtq_f64_s64(vmovl_s32(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet4ui& a) { + // Discard second half of input. + return vcvtq_f64_u64(vmovl_u32(vget_low_u32(a))); +} +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet2ui& a) { + return vcvtq_f64_u64(vmovl_u32(a)); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet2l& a) { + return vcvtq_f64_s64(a); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; +template <> +EIGEN_STRONG_INLINE Packet2d pcast(const Packet2ul& a) { + return vcvtq_f64_u64(a); +} + +#endif // EIGEN_ARCH_ARM64 + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_NEON_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/UnaryFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/UnaryFunctors.h new file mode 100644 index 0000000..67f9dcf --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/NEON/UnaryFunctors.h @@ -0,0 +1,63 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_NEON_UNARY_FUNCTORS_H +#define EIGEN_NEON_UNARY_FUNCTORS_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#if EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC +/** \internal + * \brief Template specialization of the logistic function for Eigen::half. + */ +template <> +struct scalar_logistic_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Eigen::half operator()(const Eigen::half& x) const { + // Convert to float and call scalar_logistic_op. + const scalar_logistic_op float_op; + return Eigen::half(float_op(float(x))); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Eigen::half packetOp(const Eigen::half& x) const { + return this->operator()(x); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Packet4hf packetOp(const Packet4hf& x) const { + const scalar_logistic_op float_op; + return vcvt_f16_f32(float_op.packetOp(vcvt_f32_f16(x))); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Packet8hf packetOp(const Packet8hf& x) const { + const scalar_logistic_op float_op; + return vcombine_f16( + vcvt_f16_f32(float_op.packetOp(vcvt_f32_f16(vget_low_f16(x)))), + vcvt_f16_f32(float_op.packetOp(vcvt_high_f32_f16(x)))); + } +}; + +template<> +struct functor_traits> { + enum { + Cost = functor_traits>::Cost, + PacketAccess = functor_traits>::PacketAccess, + }; +}; +#endif // EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_NEON_UNARY_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/Complex.h new file mode 100644 index 0000000..366daa7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/Complex.h @@ -0,0 +1,330 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_SSE_H +#define EIGEN_COMPLEX_SSE_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +//---------- float ---------- +struct Packet2cf +{ + EIGEN_STRONG_INLINE Packet2cf() {} + EIGEN_STRONG_INLINE explicit Packet2cf(const __m128& a) : v(a) {} + Packet4f v; +}; + +// Use the packet_traits defined in AVX/PacketMath.h instead if we're going +// to leverage AVX instructions. +#ifndef EIGEN_VECTORIZE_AVX +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet2cf type; + typedef Packet2cf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0, + HasBlend = 1 + }; +}; +#endif + +template<> struct unpacket_traits { + typedef std::complex type; + typedef Packet2cf half; + typedef Packet4f as_real; + enum { + size=2, + alignment=Aligned16, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); } + +template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) +{ + const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000)); + return Packet2cf(_mm_xor_ps(a.v,mask)); +} +template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) +{ + const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000)); + return Packet2cf(_mm_xor_ps(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) +{ + #ifdef EIGEN_VECTORIZE_SSE3 + return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v), + _mm_mul_ps(_mm_movehdup_ps(a.v), + vec4f_swizzle1(b.v, 1, 0, 3, 2)))); +// return Packet2cf(_mm_addsub_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), +// _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), +// vec4f_swizzle1(b.v, 1, 0, 3, 2)))); + #else + const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x00000000,0x80000000,0x00000000)); + return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), + _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), + vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask))); + #endif +} + +template<> EIGEN_STRONG_INLINE Packet2cf ptrue (const Packet2cf& a) { return Packet2cf(ptrue(Packet4f(a.v))); } +template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_and_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_or_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_xor_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_andnot_ps(b.v,a.v)); } + +template<> EIGEN_STRONG_INLINE Packet2cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload(&numext::real_ref(*from))); } +template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu(&numext::real_ref(*from))); } + +template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) +{ + const float re = std::real(from); + const float im = std::imag(from); + return Packet2cf(_mm_set_ps(im, re, im, re)); +} + +template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), Packet4f(from.v)); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), Packet4f(from.v)); } + + +template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) +{ + return Packet2cf(_mm_set_ps(std::imag(from[1*stride]), std::real(from[1*stride]), + std::imag(from[0*stride]), std::real(from[0*stride]))); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) +{ + to[stride*0] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 0)), + _mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 1))); + to[stride*1] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 2)), + _mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 3))); +} + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) +{ + alignas(alignof(__m64)) std::complex res; + _mm_storel_pi((__m64*)&res, a.v); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(Packet2d(_mm_castps_pd(a.v))))); } + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) +{ + return pfirst(Packet2cf(_mm_add_ps(a.v, _mm_movehl_ps(a.v,a.v)))); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) +{ + return pfirst(pmul(a, Packet2cf(_mm_movehl_ps(a.v,a.v)))); +} + +EIGEN_STRONG_INLINE Packet2cf pcplxflip/* */(const Packet2cf& x) +{ + return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2)); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) + +template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) +{ + return pdiv_complex(a, b); +} + +//---------- double ---------- +struct Packet1cd +{ + EIGEN_STRONG_INLINE Packet1cd() {} + EIGEN_STRONG_INLINE explicit Packet1cd(const __m128d& a) : v(a) {} + Packet2d v; +}; + +// Use the packet_traits defined in AVX/PacketMath.h instead if we're going +// to leverage AVX instructions. +#ifndef EIGEN_VECTORIZE_AVX +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet1cd type; + typedef Packet1cd half; + enum { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 1, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasSqrt = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; +#endif + +template<> struct unpacket_traits { + typedef std::complex type; + typedef Packet1cd half; + typedef Packet2d as_real; + enum { + size=1, + alignment=Aligned16, + vectorizable=true, + masked_load_available=false, + masked_store_available=false + }; +}; + +template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } +template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) +{ + const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); + return Packet1cd(_mm_xor_pd(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) +{ + #ifdef EIGEN_VECTORIZE_SSE3 + return Packet1cd(_mm_addsub_pd(_mm_mul_pd(_mm_movedup_pd(a.v), b.v), + _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), + vec2d_swizzle1(b.v, 1, 0)))); + #else + const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); + return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), + _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), + vec2d_swizzle1(b.v, 1, 0)), mask))); + #endif +} + +template<> EIGEN_STRONG_INLINE Packet1cd ptrue (const Packet1cd& a) { return Packet1cd(ptrue(Packet2d(a.v))); } +template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_and_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_or_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_xor_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_andnot_pd(b.v,a.v)); } + +// FIXME force unaligned load, this is a temporary fix +template<> EIGEN_STRONG_INLINE Packet1cd pload (const std::complex* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) +{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } + +template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } + +// FIXME force unaligned store, this is a temporary fix +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, Packet2d(from.v)); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, Packet2d(from.v)); } + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) +{ + EIGEN_ALIGN16 double res[2]; + _mm_store_pd(res, a.v); + return std::complex(res[0],res[1]); +} + +template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) +{ + return pfirst(a); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) +{ + return pfirst(a); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) + +template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) +{ + return pdiv_complex(a, b); +} + +EIGEN_STRONG_INLINE Packet1cd pcplxflip/* */(const Packet1cd& x) +{ + return Packet1cd(preverse(Packet2d(x.v))); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m128d w1 = _mm_castps_pd(kernel.packet[0].v); + __m128d w2 = _mm_castps_pd(kernel.packet[1].v); + + __m128 tmp = _mm_castpd_ps(_mm_unpackhi_pd(w1, w2)); + kernel.packet[0].v = _mm_castpd_ps(_mm_unpacklo_pd(w1, w2)); + kernel.packet[1].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) +{ + __m128 eq = _mm_cmpeq_ps(a.v, b.v); + return Packet2cf(pand(eq, vec4f_swizzle1(eq, 1, 0, 3, 2))); +} + +template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) +{ + __m128d eq = _mm_cmpeq_pd(a.v, b.v); + return Packet1cd(pand(eq, vec2d_swizzle1(eq, 1, 0))); +} + +template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { + __m128d result = pblend(ifPacket, _mm_castps_pd(thenPacket.v), _mm_castps_pd(elsePacket.v)); + return Packet2cf(_mm_castpd_ps(result)); +} + +template<> EIGEN_STRONG_INLINE Packet1cd psqrt(const Packet1cd& a) { + return psqrt_complex(a); +} + +template<> EIGEN_STRONG_INLINE Packet2cf psqrt(const Packet2cf& a) { + return psqrt_complex(a); +} + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_SSE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/MathFunctions.h new file mode 100644 index 0000000..f0ddbe6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/MathFunctions.h @@ -0,0 +1,84 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007 Julien Pommier +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* The sin and cos and functions of this file come from + * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ + */ + +#ifndef EIGEN_MATH_FUNCTIONS_SSE_H +#define EIGEN_MATH_FUNCTIONS_SSE_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_FLOAT(Packet4f) +EIGEN_INSTANTIATE_GENERIC_MATH_FUNCS_DOUBLE(Packet2d) + +// Notice that for newer processors, it is counterproductive to use Newton +// iteration for square root. In particular, Skylake and Zen2 processors +// have approximately doubled throughput of the _mm_sqrt_ps instruction +// compared to their predecessors. +template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f psqrt(const Packet4f& x) { return _mm_sqrt_ps(x); } +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet2d psqrt(const Packet2d& x) { return _mm_sqrt_pd(x); } +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet16b psqrt(const Packet16b& x) { return x; } + +#if EIGEN_FAST_MATH +// Even on Skylake, using Newton iteration is a win for reciprocal square root. +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED +Packet4f prsqrt(const Packet4f& x) { + return generic_rsqrt_newton_step::run(x, _mm_rsqrt_ps(x)); +} + +#ifdef EIGEN_VECTORIZE_FMA +// Trying to speed up reciprocal using Newton-Raphson is counterproductive +// unless FMA is available. Without FMA pdiv(pset1(Scalar(1),a)) is +// 30% faster. +template<> EIGEN_STRONG_INLINE Packet4f preciprocal(const Packet4f& x) { + return generic_reciprocal_newton_step::run(x, _mm_rcp_ps(x)); +} +#endif + +#endif + +} // end namespace internal + +namespace numext { + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sqrt(const float &x) +{ + return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x)))); +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sqrt(const double &x) +{ +#if EIGEN_COMP_GNUC_STRICT + // This works around a GCC bug generating poor code for _mm_sqrt_pd + // See https://gitlab.com/libeigen/eigen/commit/8dca9f97e38970 + return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x)))); +#else + return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x)))); +#endif +} + +} // end namespace numex + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_SSE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/PacketMath.h new file mode 100644 index 0000000..6240f38 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/PacketMath.h @@ -0,0 +1,1876 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_SSE_H +#define EIGEN_PACKET_MATH_SSE_H + +#include +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#if !defined(EIGEN_VECTORIZE_AVX) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS) +// 32 bits => 8 registers +// 64 bits => 16 registers +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) +#endif + +#ifdef EIGEN_VECTORIZE_FMA +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif +#endif + +#if ((defined EIGEN_VECTORIZE_AVX) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_MINGW || EIGEN_COMP_LCC) && (__GXX_ABI_VERSION < 1004)) || EIGEN_OS_QNX +// With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot +// have overloads for both types without linking error. +// One solution is to increase ABI version using -fabi-version=4 (or greater). +// Otherwise, we workaround this inconvenience by wrapping 128bit types into the following helper +// structure: +typedef eigen_packet_wrapper<__m128> Packet4f; +typedef eigen_packet_wrapper<__m128d> Packet2d; +#else +typedef __m128 Packet4f; +typedef __m128d Packet2d; +#endif + +typedef eigen_packet_wrapper<__m128i, 0> Packet4i; +typedef eigen_packet_wrapper<__m128i, 1> Packet16b; +typedef eigen_packet_wrapper<__m128i, 4> Packet4ui; + +template<> struct is_arithmetic<__m128> { enum { value = true }; }; +template<> struct is_arithmetic<__m128i> { enum { value = true }; }; +template<> struct is_arithmetic<__m128d> { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +// Note that `Packet4ui` uses the underlying type `__m128i`, which is +// interpreted as a vector of _signed_ `int32`s, which breaks some arithmetic +// operations used in `GenericPacketMath.h`. +template<> struct is_arithmetic { enum { value = false }; }; +template<> struct is_arithmetic { enum { value = true }; }; + +template +struct shuffle_mask{ + enum { mask = (s)<<6|(r)<<4|(q)<<2|(p) }; +}; + +// TODO: change the implementation of all swizzle* ops from macro to template, +#define vec4f_swizzle1(v,p,q,r,s) \ + Packet4f(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), (shuffle_mask::mask)))) + +#define vec4i_swizzle1(v,p,q,r,s) \ + Packet4i(_mm_shuffle_epi32( v, (shuffle_mask::mask))) + +#define vec4ui_swizzle1(v, p, q, r, s) \ + Packet4ui(vec4i_swizzle1(v,p,q,r,s)) + +#define vec2d_swizzle1(v,p,q) \ + Packet2d(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), (shuffle_mask<2*p,2*p+1,2*q,2*q+1>::mask)))) + +#define vec4f_swizzle2(a,b,p,q,r,s) \ + Packet4f(_mm_shuffle_ps( (a), (b), (shuffle_mask::mask))) + +#define vec4i_swizzle2(a,b,p,q,r,s) \ + Packet4i(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), (shuffle_mask::mask))))) + +#define vec4ui_swizzle2(a,b,p,q,r,s) \ + Packet4i(vec4i_swizzle2(a,b,p,q,r,s)) + +EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f& a, const Packet4f& b) +{ + return Packet4f(_mm_movelh_ps(a,b)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f& a, const Packet4f& b) +{ + return Packet4f(_mm_movehl_ps(a,b)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f& a, const Packet4f& b) +{ + return Packet4f(_mm_unpacklo_ps(a,b)); +} +EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f& a, const Packet4f& b) +{ + return Packet4f(_mm_unpackhi_ps(a,b)); +} +#define vec4f_duplane(a,p) \ + vec4f_swizzle2(a,a,p,p,p,p) + +#define vec2d_swizzle2(a,b,mask) \ + Packet2d(_mm_shuffle_pd(a,b,mask)) + +EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d& a, const Packet2d& b) +{ + return Packet2d(_mm_unpacklo_pd(a,b)); +} +EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d& a, const Packet2d& b) +{ + return Packet2d(_mm_unpackhi_pd(a,b)); +} +#define vec2d_duplane(a,p) \ + vec2d_swizzle2(a,a,(p<<1)|p) + +#define EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ + const Packet4f p4f_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ + const Packet2d p2d_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ + const Packet4f p4f_##NAME = pset1frombits(X) + +#define EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ + const Packet4i p4i_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet4ui(NAME, X) const Packet4ui p4ui_##NAME = pset1(X) + +// Use the packet_traits defined in AVX/PacketMath.h instead if we're going +// to leverage AVX instructions. +#ifndef EIGEN_VECTORIZE_AVX +template <> +struct packet_traits : default_packet_traits { + typedef Packet4f type; + typedef Packet4f half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasCmp = 1, + HasDiv = 1, + HasReciprocal = EIGEN_FAST_MATH, + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasACos = 1, + HasASin = 1, + HasATan = 1, + HasATanh = 1, + HasLog = 1, + HasLog1p = 1, + HasExpm1 = 1, + HasNdtri = 1, + HasExp = 1, + HasBessel = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH, + HasBlend = 1, + HasCeil = 1, + HasFloor = 1, +#ifdef EIGEN_VECTORIZE_SSE4_1 + HasRound = 1, +#endif + HasRint = 1, + HasSign = 0 // The manually vectorized version is slightly slower for SSE. + }; +}; +template <> +struct packet_traits : default_packet_traits { + typedef Packet2d type; + typedef Packet2d half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=2, + + HasCmp = 1, + HasDiv = 1, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasATan = 1, + HasBlend = 1, + HasFloor = 1, + HasCeil = 1, +#ifdef EIGEN_VECTORIZE_SSE4_1 + HasRound = 1, +#endif + HasRint = 1 + }; +}; +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4i type; + typedef Packet4i half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + HasCmp = 1, + HasDiv=1, + size=4, + + HasShift = 1, + HasBlend = 1 + }; +}; +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4ui type; + typedef Packet4ui half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasDiv = 0, + HasNegate = 0, + HasSqrt = 0, + HasCmp = 1, + HasMin = 1, + HasMax = 1, + HasShift = 1, + HasBlend = 1 + }; +}; +#endif +template<> struct packet_traits : default_packet_traits +{ + typedef Packet16b type; + typedef Packet16b half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=16, + + HasAdd = 1, + HasSub = 1, + HasCmp = 1, // note -- only pcmp_eq is defined + HasShift = 0, + HasMul = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasConj = 0, + HasSqrt = 1, + HasSign = 0 // Don't try to vectorize psign = identity. + }; +}; + +template<> struct unpacket_traits { + typedef float type; + typedef Packet4f half; + typedef Packet4i integer_packet; + enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits { + typedef double type; + typedef Packet2d half; + enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits { + typedef int type; + typedef Packet4i half; + enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; +template<> struct unpacket_traits { + typedef uint32_t type; + typedef Packet4ui half; + enum {size = 4, alignment = Aligned16, vectorizable = true, masked_load_available = false, masked_store_available = false}; +}; +template<> struct unpacket_traits { + typedef bool type; + typedef Packet16b half; + enum {size=16, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; +}; + +#ifndef EIGEN_VECTORIZE_AVX +template<> struct scalar_div_cost { enum { value = 7 }; }; +template<> struct scalar_div_cost { enum { value = 8 }; }; +#endif + +template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { return _mm_set_ps1(from); } +template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { return _mm_set1_pd(from); } +template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) { return _mm_set1_epi32(from); } +template<> EIGEN_STRONG_INLINE Packet4ui pset1(const uint32_t& from) { return _mm_set1_epi32(numext::bit_cast(from)); } +template<> EIGEN_STRONG_INLINE Packet16b pset1(const bool& from) { return _mm_set1_epi8(static_cast(from)); } + +template<> EIGEN_STRONG_INLINE Packet4f pset1frombits(unsigned int from) { return _mm_castsi128_ps(pset1(from)); } +template<> EIGEN_STRONG_INLINE Packet2d pset1frombits(uint64_t from) { return _mm_castsi128_pd(_mm_set1_epi64x(from)); } + +template<> EIGEN_STRONG_INLINE Packet4f peven_mask(const Packet4f& /*a*/) { return _mm_castsi128_ps(_mm_set_epi32(0, -1, 0, -1)); } +template<> EIGEN_STRONG_INLINE Packet4i peven_mask(const Packet4i& /*a*/) { return _mm_set_epi32(0, -1, 0, -1); } +template<> EIGEN_STRONG_INLINE Packet4ui peven_mask(const Packet4ui& /*a*/) { return _mm_set_epi32(0, -1, 0, -1); } +template<> EIGEN_STRONG_INLINE Packet2d peven_mask(const Packet2d& /*a*/) { return _mm_castsi128_pd(_mm_set_epi32(0, 0, -1, -1)); } + +template<> EIGEN_STRONG_INLINE Packet4f pzero(const Packet4f& /*a*/) { return _mm_setzero_ps(); } +template<> EIGEN_STRONG_INLINE Packet2d pzero(const Packet2d& /*a*/) { return _mm_setzero_pd(); } +template<> EIGEN_STRONG_INLINE Packet4i pzero(const Packet4i& /*a*/) { return _mm_setzero_si128(); } +template<> EIGEN_STRONG_INLINE Packet4ui pzero(const Packet4ui& /*a*/) { return _mm_setzero_si128(); } + +// GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction. +// However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203) +// Using inline assembly is also not an option because then gcc fails to reorder properly the instructions. +// Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply. +// Also note that with AVX, we want it to generate a vbroadcastss. +#if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__) +template<> EIGEN_STRONG_INLINE Packet4f pload1(const float *from) { + return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) { return _mm_add_ps(pset1(a), _mm_set_ps(3,2,1,0)); } +template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) { return _mm_add_pd(pset1(a),_mm_set_pd(1,0)); } +template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { return _mm_add_epi32(pset1(a),_mm_set_epi32(3,2,1,0)); } +template<> EIGEN_STRONG_INLINE Packet4ui plset(const uint32_t& a) { return _mm_add_epi32(pset1(a), _mm_set_epi32(3, 2, 1, 0)); } + +template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui padd(const Packet4ui& a, const Packet4ui& b) { return _mm_add_epi32(a, b); } + +template<> EIGEN_STRONG_INLINE Packet16b padd(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); } + +template EIGEN_STRONG_INLINE Packet padds(const Packet& a, const Packet& b); +template<> EIGEN_STRONG_INLINE Packet4f padds(const Packet4f& a, const Packet4f& b) { return _mm_add_ss(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d padds(const Packet2d& a, const Packet2d& b) { return _mm_add_sd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui psub(const Packet4ui& a, const Packet4ui& b) { return _mm_sub_epi32(a, b); } +template<> EIGEN_STRONG_INLINE Packet16b psub(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b); +template<> EIGEN_STRONG_INLINE Packet4f paddsub(const Packet4f& a, const Packet4f& b) +{ +#ifdef EIGEN_VECTORIZE_SSE3 + return _mm_addsub_ps(a,b); +#else + const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x0,0x80000000,0x0)); + return padd(a, pxor(mask, b)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& , const Packet2d& ); +template<> EIGEN_STRONG_INLINE Packet2d paddsub(const Packet2d& a, const Packet2d& b) +{ +#ifdef EIGEN_VECTORIZE_SSE3 + return _mm_addsub_pd(a,b); +#else + const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x0)); + return padd(a, pxor(mask, b)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) +{ + const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000)); + return _mm_xor_ps(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) +{ + const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000)); + return _mm_xor_pd(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) +{ + return psub(Packet4i(_mm_setr_epi32(0,0,0,0)), a); +} + +template<> EIGEN_STRONG_INLINE Packet16b pnegate(const Packet16b& a) +{ + return psub(pset1(false), a); +} + +template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_mullo_epi32(a,b); +#else + // this version is slightly faster than 4 scalar products + return vec4i_swizzle1( + vec4i_swizzle2( + _mm_mul_epu32(a,b), + _mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2), + vec4i_swizzle1(b,1,0,3,2)), + 0,2,0,2), + 0,2,1,3); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4ui pmul(const Packet4ui& a, const Packet4ui& b) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_mullo_epi32(a,b); +#else + // this version is slightly faster than 4 scalar products + return vec4ui_swizzle1( + vec4ui_swizzle2( + _mm_mul_epu32(a,b), + _mm_mul_epu32(vec4ui_swizzle1(a,1,0,3,2), + vec4ui_swizzle1(b,1,0,3,2)), + 0,2,0,2), + 0,2,1,3); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet16b pmul(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); } + +template <> +EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& a, + const Packet4i& b) { +#ifdef EIGEN_VECTORIZE_AVX + return _mm256_cvttpd_epi32( + _mm256_div_pd(_mm256_cvtepi32_pd(a), _mm256_cvtepi32_pd(b))); +#else + __m128i q_lo = _mm_cvttpd_epi32(_mm_div_pd(_mm_cvtepi32_pd(a), _mm_cvtepi32_pd(b))); + __m128i q_hi = + _mm_cvttpd_epi32(_mm_div_pd(_mm_cvtepi32_pd(vec4i_swizzle1(a, 2, 3, 0, 1)), + _mm_cvtepi32_pd(vec4i_swizzle1(b, 2, 3, 0, 1)))); + return vec4i_swizzle1(_mm_unpacklo_epi32(q_lo, q_hi), 0, 2, 1, 3); +#endif +} + + +// for some weird raisons, it has to be overloaded for packet of integers +template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); } +template<> EIGEN_STRONG_INLINE Packet4ui pmadd(const Packet4ui& a, const Packet4ui& b, const Packet4ui& c) { return padd(pmul(a, b), c); } +#ifdef EIGEN_VECTORIZE_FMA +template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ps(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_pd(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet4f pmsub(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmsub_ps(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pmsub(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmsub_pd(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet4f pnmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fnmadd_ps(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pnmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fnmadd_pd(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet4f pnmsub(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fnmsub_ps(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pnmsub(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fnmsub_pd(a,b,c); } + +template EIGEN_STRONG_INLINE Packet pmadds(const Packet& a, const Packet& b, const Packet& c); +template<> EIGEN_STRONG_INLINE Packet4f pmadds(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ss(a,b,c); } +template<> EIGEN_STRONG_INLINE Packet2d pmadds(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_sd(a,b,c); } +#endif + +#ifdef EIGEN_VECTORIZE_SSE4_1 +template<> EIGEN_DEVICE_FUNC inline Packet4f pselect(const Packet4f& mask, const Packet4f& a, const Packet4f& b) { + return _mm_blendv_ps(b,a,mask); +} + +template<> EIGEN_DEVICE_FUNC inline Packet4i pselect(const Packet4i& mask, const Packet4i& a, const Packet4i& b) { + return _mm_castps_si128(_mm_blendv_ps(_mm_castsi128_ps(b),_mm_castsi128_ps(a),_mm_castsi128_ps(mask))); +} + +template<> EIGEN_DEVICE_FUNC inline Packet4ui pselect(const Packet4ui& mask, const Packet4ui& a, const Packet4ui& b) { + return _mm_castps_si128(_mm_blendv_ps(_mm_castsi128_ps(b),_mm_castsi128_ps(a),_mm_castsi128_ps(mask))); +} + +template<> EIGEN_DEVICE_FUNC inline Packet2d pselect(const Packet2d& mask, const Packet2d& a, const Packet2d& b) { return _mm_blendv_pd(b,a,mask); } + +template<> EIGEN_DEVICE_FUNC inline Packet16b pselect(const Packet16b& mask, const Packet16b& a, const Packet16b& b) { + return _mm_blendv_epi8(b,a,mask); +} +#else +template<> EIGEN_DEVICE_FUNC inline Packet16b pselect(const Packet16b& mask, const Packet16b& a, const Packet16b& b) { + Packet16b a_part = _mm_and_si128(mask, a); + Packet16b b_part = _mm_andnot_si128(mask, b); + return _mm_or_si128(a_part, b_part); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet4i ptrue(const Packet4i& a) { return _mm_cmpeq_epi32(a, a); } +template<> EIGEN_STRONG_INLINE Packet16b ptrue(const Packet16b& a) { return _mm_cmpeq_epi8(a, a); } +template<> EIGEN_STRONG_INLINE Packet4f +ptrue(const Packet4f& a) { + Packet4i b = _mm_castps_si128(a); + return _mm_castsi128_ps(_mm_cmpeq_epi32(b, b)); +} +template<> EIGEN_STRONG_INLINE Packet2d +ptrue(const Packet2d& a) { + Packet4i b = _mm_castpd_si128(a); + return _mm_castsi128_pd(_mm_cmpeq_epi32(b, b)); +} + + +template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pand(const Packet4ui& a, const Packet4ui& b) { return _mm_and_si128(a, b); } +template<> EIGEN_STRONG_INLINE Packet16b pand(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui por(const Packet4ui& a, const Packet4ui& b) { return _mm_or_si128(a, b); } +template<> EIGEN_STRONG_INLINE Packet16b por(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pxor(const Packet4ui& a, const Packet4ui& b) { return _mm_xor_si128(a, b); } +template<> EIGEN_STRONG_INLINE Packet16b pxor(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(b,a); } +template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(b,a); } +template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(b,a); } +template<> EIGEN_STRONG_INLINE Packet4ui pandnot(const Packet4ui& a, const Packet4ui& b) { return _mm_andnot_si128(b, a); } + +template<> EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f& a, const Packet4f& b) { return _mm_cmple_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f& a, const Packet4f& b) { return _mm_cmplt_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f& a, const Packet4f& b) { return _mm_cmpnge_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4f pcmp_eq(const Packet4f& a, const Packet4f& b) { return _mm_cmpeq_ps(a,b); } + +template<> EIGEN_STRONG_INLINE Packet2d pcmp_le(const Packet2d& a, const Packet2d& b) { return _mm_cmple_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt(const Packet2d& a, const Packet2d& b) { return _mm_cmplt_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt_or_nan(const Packet2d& a, const Packet2d& b) { return _mm_cmpnge_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet2d pcmp_eq(const Packet2d& a, const Packet2d& b) { return _mm_cmpeq_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet4i pcmp_lt(const Packet4i& a, const Packet4i& b) { return _mm_cmplt_epi32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pcmp_eq(const Packet4i& a, const Packet4i& b) { return _mm_cmpeq_epi32(a,b); } +template<> EIGEN_STRONG_INLINE Packet4ui pcmp_eq(const Packet4ui& a, const Packet4ui& b) { return _mm_cmpeq_epi32(a, b); } +template<> EIGEN_STRONG_INLINE Packet16b pcmp_eq(const Packet16b& a, const Packet16b& b) { return _mm_cmpeq_epi8(a,b); } +template<> EIGEN_STRONG_INLINE Packet4i pcmp_le(const Packet4i& a, const Packet4i& b) { return por(pcmp_lt(a,b), pcmp_eq(a,b)); } + +template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) +// There appears to be a bug in GCC, by which the optimizer may +// flip the argument order in calls to _mm_min_ps, so we have to +// resort to inline ASM here. This is supposed to be fixed in gcc6.3, +// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 +#ifdef EIGEN_VECTORIZE_AVX + Packet4f res; + asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); +#else + Packet4f res = b; + asm("minps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); +#endif + return res; +#else + // Arguments are reversed to match NaN propagation behavior of std::min. + return _mm_min_ps(b, a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) +// There appears to be a bug in GCC, by which the optimizer may +// flip the argument order in calls to _mm_min_pd, so we have to +// resort to inline ASM here. This is supposed to be fixed in gcc6.3, +// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 +#ifdef EIGEN_VECTORIZE_AVX + Packet2d res; + asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); +#else + Packet2d res = b; + asm("minpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); +#endif + return res; +#else + // Arguments are reversed to match NaN propagation behavior of std::min. + return _mm_min_pd(b, a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_min_epi32(a,b); +#else + // after some bench, this version *is* faster than a scalar implementation + Packet4i mask = _mm_cmplt_epi32(a,b); + return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4ui pmin(const Packet4ui& a, const Packet4ui& b) { +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_min_epu32(a, b); +#else + return padd((Packet4ui)pmin((Packet4i)psub(a, pset1(0x80000000UL)), + (Packet4i)psub(b, pset1(0x80000000UL))), + pset1(0x80000000UL)); +#endif +} + + +template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) +// There appears to be a bug in GCC, by which the optimizer may +// flip the argument order in calls to _mm_max_ps, so we have to +// resort to inline ASM here. This is supposed to be fixed in gcc6.3, +// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 +#ifdef EIGEN_VECTORIZE_AVX + Packet4f res; + asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); +#else + Packet4f res = b; + asm("maxps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); +#endif + return res; +#else + // Arguments are reversed to match NaN propagation behavior of std::max. + return _mm_max_ps(b, a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { +#if EIGEN_GNUC_STRICT_LESS_THAN(6,3,0) +// There appears to be a bug in GCC, by which the optimizer may +// flip the argument order in calls to _mm_max_pd, so we have to +// resort to inline ASM here. This is supposed to be fixed in gcc6.3, +// see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 +#ifdef EIGEN_VECTORIZE_AVX + Packet2d res; + asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); +#else + Packet2d res = b; + asm("maxpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); +#endif + return res; +#else + // Arguments are reversed to match NaN propagation behavior of std::max. + return _mm_max_pd(b, a); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_max_epi32(a,b); +#else + // after some bench, this version *is* faster than a scalar implementation + Packet4i mask = _mm_cmpgt_epi32(a,b); + return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4ui pmax(const Packet4ui& a, const Packet4ui& b) { +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_max_epu32(a, b); +#else + return padd((Packet4ui)pmax((Packet4i)psub(a, pset1(0x80000000UL)), + (Packet4i)psub(b, pset1(0x80000000UL))), + pset1(0x80000000UL)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4ui pcmp_lt(const Packet4ui& a, const Packet4ui& b) { +#ifdef EIGEN_VECTORIZE_SSE4_1 + return pxor(pcmp_eq(a, pmax(a, b)), ptrue(a)); +#else + return (Packet4ui)pcmp_lt((Packet4i)psub(a, pset1(0x80000000UL)), + (Packet4i)psub(b, pset1(0x80000000UL))); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4ui pcmp_le(const Packet4ui& a, const Packet4ui& b) { +#ifdef EIGEN_VECTORIZE_SSE4_1 + return pcmp_eq(a, pmin(a, b)); +#else + return (Packet4ui)pcmp_le((Packet4i)psub(a, pset1(0x80000000UL)), + (Packet4i)psub(b, pset1(0x80000000UL))); +#endif +} + +template +EIGEN_STRONG_INLINE Packet pminmax_propagate_numbers(const Packet& a, const Packet& b, Op op) { + // In this implementation, we take advantage of the fact that pmin/pmax for SSE + // always return a if either a or b is NaN. + Packet not_nan_mask_a = pcmp_eq(a, a); + Packet m = op(a, b); + return pselect(not_nan_mask_a, m, b); +} + +template +EIGEN_STRONG_INLINE Packet pminmax_propagate_nan(const Packet& a, const Packet& b, Op op) { + // In this implementation, we take advantage of the fact that pmin/pmax for SSE + // always return a if either a or b is NaN. + Packet not_nan_mask_a = pcmp_eq(a, a); + Packet m = op(b, a); + return pselect(not_nan_mask_a, m, a); +} + +// Add specializations for min/max with prescribed NaN progation. +template<> +EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { + return pminmax_propagate_numbers(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { + return pminmax_propagate_numbers(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { + return pminmax_propagate_numbers(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { + return pminmax_propagate_numbers(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { + return pminmax_propagate_nan(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { + return pminmax_propagate_nan(a, b, pmin); +} +template<> +EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { + return pminmax_propagate_nan(a, b, pmax); +} +template<> +EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { + return pminmax_propagate_nan(a, b, pmax); +} + +template EIGEN_STRONG_INLINE Packet4i parithmetic_shift_right(const Packet4i& a) { return _mm_srai_epi32(a,N); } +template EIGEN_STRONG_INLINE Packet4i plogical_shift_right (const Packet4i& a) { return _mm_srli_epi32(a,N); } +template EIGEN_STRONG_INLINE Packet4i plogical_shift_left (const Packet4i& a) { return _mm_slli_epi32(a,N); } + +template EIGEN_STRONG_INLINE Packet4ui parithmetic_shift_right(const Packet4ui& a) { return _mm_srli_epi32(a,N); } +template EIGEN_STRONG_INLINE Packet4ui plogical_shift_right (const Packet4ui& a) { return _mm_srli_epi32(a,N); } +template EIGEN_STRONG_INLINE Packet4ui plogical_shift_left (const Packet4ui& a) { return _mm_slli_epi32(a,N); } + +template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) +{ + const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); + return _mm_and_ps(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) +{ + const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); + return _mm_and_pd(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) +{ +#ifdef EIGEN_VECTORIZE_SSSE3 + return _mm_abs_epi32(a); +#else + Packet4i aux = _mm_srai_epi32(a,31); + return _mm_sub_epi32(_mm_xor_si128(a,aux),aux); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4ui pabs(const Packet4ui& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet4f psignbit(const Packet4f& a) { return _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(a), 31)); } +template<> EIGEN_STRONG_INLINE Packet2d psignbit(const Packet2d& a) +{ + Packet4f tmp = psignbit(_mm_castpd_ps(a)); +#ifdef EIGEN_VECTORIZE_AVX + return _mm_castps_pd(_mm_permute_ps(tmp, (shuffle_mask<1, 1, 3, 3>::mask))); +#else + return _mm_castps_pd(_mm_shuffle_ps(tmp, tmp, (shuffle_mask<1, 1, 3, 3>::mask))); +#endif // EIGEN_VECTORIZE_AVX +} +template<> EIGEN_STRONG_INLINE Packet4ui psignbit(const Packet4ui& a) { return pzero(a); } + +#ifdef EIGEN_VECTORIZE_SSE4_1 +template<> EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) +{ + // Unfortunately _mm_round_ps doesn't have a rounding mode to implement numext::round. + const Packet4f mask = pset1frombits(0x80000000u); + const Packet4f prev0dot5 = pset1frombits(0x3EFFFFFFu); + return _mm_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} + +template<> EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) +{ + const Packet2d mask = _mm_castsi128_pd(_mm_set_epi64x(0x8000000000000000ull, 0x8000000000000000ull)); + const Packet2d prev0dot5 = _mm_castsi128_pd(_mm_set_epi64x(0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull)); + return _mm_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); +} + +template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) { return _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); } +template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) { return _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); } + +template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) { return _mm_ceil_ps(a); } +template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { return _mm_ceil_pd(a); } + +template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) { return _mm_floor_ps(a); } +template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { return _mm_floor_pd(a); } +#else +template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) { + // Adds and subtracts signum(a) * 2^23 to force rounding. + const Packet4f limit = pset1(static_cast(1<<23)); + const Packet4f abs_a = pabs(a); + Packet4f r = padd(abs_a, limit); + // Don't compile-away addition and subtraction. + EIGEN_OPTIMIZATION_BARRIER(r); + r = psub(r, limit); + // If greater than limit, simply return a. Otherwise, account for sign. + r = pselect(pcmp_lt(abs_a, limit), + pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a); + return r; +} + +template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) { + // Adds and subtracts signum(a) * 2^52 to force rounding. + const Packet2d limit = pset1(static_cast(1ull<<52)); + const Packet2d abs_a = pabs(a); + Packet2d r = padd(abs_a, limit); + // Don't compile-away addition and subtraction. + EIGEN_OPTIMIZATION_BARRIER(r); + r = psub(r, limit); + // If greater than limit, simply return a. Otherwise, account for sign. + r = pselect(pcmp_lt(abs_a, limit), + pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a); + return r; +} + +template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) +{ + const Packet4f cst_1 = pset1(1.0f); + Packet4f tmp = print(a); + // If greater, subtract one. + Packet4f mask = _mm_cmpgt_ps(tmp, a); + mask = pand(mask, cst_1); + return psub(tmp, mask); +} + +template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) +{ + const Packet2d cst_1 = pset1(1.0); + Packet2d tmp = print(a); + // If greater, subtract one. + Packet2d mask = _mm_cmpgt_pd(tmp, a); + mask = pand(mask, cst_1); + return psub(tmp, mask); +} + +template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) +{ + const Packet4f cst_1 = pset1(1.0f); + Packet4f tmp = print(a); + // If smaller, add one. + Packet4f mask = _mm_cmplt_ps(tmp, a); + mask = pand(mask, cst_1); + return padd(tmp, mask); +} + +template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) +{ + const Packet2d cst_1 = pset1(1.0); + Packet2d tmp = print(a); + // If smaller, add one. + Packet2d mask = _mm_cmplt_pd(tmp, a); + mask = pand(mask, cst_1); + return padd(tmp, mask); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); } +template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); } +template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast(from)); } +template<> EIGEN_STRONG_INLINE Packet4ui pload(const uint32_t* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast(from)); } +template<> EIGEN_STRONG_INLINE Packet16b pload(const bool* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast(from)); } + +#if EIGEN_COMP_MSVC + template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) { + EIGEN_DEBUG_UNALIGNED_LOAD + return _mm_loadu_ps(from); +} +#else +// NOTE: with the code below, MSVC's compiler crashes! + +template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD + return _mm_loadu_ps(from); +} +#endif + +template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD + return _mm_loadu_pd(from); +} +template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD + return _mm_loadu_si128(reinterpret_cast(from)); +} +template<> EIGEN_STRONG_INLINE Packet4ui ploadu(const uint32_t* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD + return _mm_loadu_si128(reinterpret_cast(from)); +} +template<> EIGEN_STRONG_INLINE Packet16b ploadu(const bool* from) { + EIGEN_DEBUG_UNALIGNED_LOAD + return _mm_loadu_si128(reinterpret_cast(from)); +} + +// Load lower part of packet zero extending. +template EIGEN_STRONG_INLINE Packet ploadl(const typename unpacket_traits::type* from); +template<> EIGEN_STRONG_INLINE Packet4f ploadl(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_castpd_ps(_mm_load_sd(reinterpret_cast(from))); } +template<> EIGEN_STRONG_INLINE Packet2d ploadl(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_load_sd(from); } + +// Load scalar +template EIGEN_STRONG_INLINE Packet ploads(const typename unpacket_traits::type* from); +template<> EIGEN_STRONG_INLINE Packet4f ploads(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_load_ss(from); } +template<> EIGEN_STRONG_INLINE Packet2d ploads(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_load_sd(from); } + +template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) +{ + return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast(from))), 0, 0, 1, 1); +} +template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) +{ return pset1(from[0]); } +template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) +{ + Packet4i tmp; + tmp = _mm_loadl_epi64(reinterpret_cast(from)); + return vec4i_swizzle1(tmp, 0, 0, 1, 1); +} +template<> EIGEN_STRONG_INLINE Packet4ui ploaddup(const uint32_t* from) +{ + Packet4ui tmp; + tmp = _mm_loadl_epi64(reinterpret_cast(from)); + return vec4ui_swizzle1(tmp, 0, 0, 1, 1); +} + +// Loads 8 bools from memory and returns the packet +// {b0, b0, b1, b1, b2, b2, b3, b3, b4, b4, b5, b5, b6, b6, b7, b7} +template<> EIGEN_STRONG_INLINE Packet16b ploaddup(const bool* from) +{ + __m128i tmp = _mm_castpd_si128(pload1(reinterpret_cast(from))); + return _mm_unpacklo_epi8(tmp, tmp); +} + +// Loads 4 bools from memory and returns the packet +// {b0, b0 b0, b0, b1, b1, b1, b1, b2, b2, b2, b2, b3, b3, b3, b3} +template<> EIGEN_STRONG_INLINE Packet16b +ploadquad(const bool* from) { + __m128i tmp = _mm_castps_si128(pload1(reinterpret_cast(from))); + tmp = _mm_unpacklo_epi8(tmp, tmp); + return _mm_unpacklo_epi16(tmp, tmp); +} + +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); } +template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); } +template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstore(uint32_t* to, const Packet4ui& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstore(bool* to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } + +template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_pd(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_ps(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstoreu(uint32_t* to, const Packet4ui& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstoreu(bool* to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } + +template EIGEN_STRONG_INLINE void pstorel(Scalar* to, const Packet& from); +template<> EIGEN_STRONG_INLINE void pstorel(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storel_pi(reinterpret_cast<__m64*>(to), from); } +template<> EIGEN_STRONG_INLINE void pstorel(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storel_pd(to, from); } + +template EIGEN_STRONG_INLINE void pstores(Scalar* to, const Packet& from); +template<> EIGEN_STRONG_INLINE void pstores(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_store_ss(to, from); } +template<> EIGEN_STRONG_INLINE void pstores(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_store_sd(to, from); } + +template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) +{ + return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); +} +template<> EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) +{ + return _mm_set_pd(from[1*stride], from[0*stride]); +} +template<> EIGEN_DEVICE_FUNC inline Packet4i pgather(const int* from, Index stride) +{ + return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); +} +template<> EIGEN_DEVICE_FUNC inline Packet4ui pgather(const uint32_t* from, Index stride) +{ + return _mm_set_epi32(numext::bit_cast(from[3 * stride]), numext::bit_cast(from[2 * stride]), + numext::bit_cast(from[1 * stride]), numext::bit_cast(from[0 * stride])); +} + +template<> EIGEN_DEVICE_FUNC inline Packet16b pgather(const bool* from, Index stride) +{ + return _mm_set_epi8(from[15*stride], from[14*stride], from[13*stride], from[12*stride], + from[11*stride], from[10*stride], from[9*stride], from[8*stride], + from[7*stride], from[6*stride], from[5*stride], from[4*stride], + from[3*stride], from[2*stride], from[1*stride], from[0*stride]); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) +{ + to[stride*0] = _mm_cvtss_f32(from); + to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1)); + to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2)); + to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3)); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, Index stride) +{ + to[stride*0] = _mm_cvtsd_f64(from); + to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1)); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(int* to, const Packet4i& from, Index stride) +{ + to[stride*0] = _mm_cvtsi128_si32(from); + to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1)); + to[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2)); + to[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3)); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(uint32_t* to, const Packet4ui& from, Index stride) +{ + to[stride * 0] = numext::bit_cast(_mm_cvtsi128_si32(from)); + to[stride * 1] = numext::bit_cast(_mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1))); + to[stride * 2] = numext::bit_cast(_mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2))); + to[stride * 3] = numext::bit_cast(_mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3))); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter(bool* to, const Packet16b& from, Index stride) +{ + to[4*stride*0] = _mm_cvtsi128_si32(from); + to[4*stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1)); + to[4*stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2)); + to[4*stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3)); +} + + +// some compilers might be tempted to perform multiple moves instead of using a vector path. +template<> EIGEN_STRONG_INLINE void pstore1(float* to, const float& a) +{ + Packet4f pa = _mm_set_ss(a); + pstore(to, Packet4f(vec4f_swizzle1(pa,0,0,0,0))); +} +// some compilers might be tempted to perform multiple moves instead of using a vector path. +template<> EIGEN_STRONG_INLINE void pstore1(double* to, const double& a) +{ + Packet2d pa = _mm_set_sd(a); + pstore(to, Packet2d(vec2d_swizzle1(pa,0,0))); +} + +#if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900 +typedef const void * SsePrefetchPtrType; +#else +typedef const char * SsePrefetchPtrType; +#endif + +#ifndef EIGEN_VECTORIZE_AVX +template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch(const uint32_t* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } +#endif + +#if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64 +// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 +// Direct of the struct members fixed bug #62. +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { return a.m128_f32[0]; } +template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { return a.m128d_f64[0]; } +template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } +template<> EIGEN_STRONG_INLINE uint32_t pfirst(const Packet4ui& a) { uint32_t x = numext::bit_cast(_mm_cvtsi128_si32(a)); return x; } +#elif EIGEN_COMP_MSVC_STRICT +// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; } +template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; } +template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } +template<> EIGEN_STRONG_INLINE uint32_t pfirst(const Packet4ui& a) { uint32_t x = numext::bit_cast(_mm_cvtsi128_si32(a)); return x; } +#else +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { return _mm_cvtss_f32(a); } +template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { return _mm_cvtsd_f64(a); } +template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { return _mm_cvtsi128_si32(a); } +template<> EIGEN_STRONG_INLINE uint32_t pfirst(const Packet4ui& a) { return numext::bit_cast(_mm_cvtsi128_si32(a)); } +#endif +template<> EIGEN_STRONG_INLINE bool pfirst(const Packet16b& a) { int x = _mm_cvtsi128_si32(a); return static_cast(x & 1); } + +template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return _mm_shuffle_ps(a,a,0x1B); } +template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return _mm_shuffle_pd(a,a,0x1); } +template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return _mm_shuffle_epi32(a,0x1B); } +template<> EIGEN_STRONG_INLINE Packet4ui preverse(const Packet4ui& a) { return _mm_shuffle_epi32(a, 0x1B); } +template<> EIGEN_STRONG_INLINE Packet16b preverse(const Packet16b& a) { +#ifdef EIGEN_VECTORIZE_SSSE3 + __m128i mask = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); + return _mm_shuffle_epi8(a, mask); +#else + Packet16b tmp = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 1, 2, 3)); + tmp = _mm_shufflehi_epi16(_mm_shufflelo_epi16(tmp, _MM_SHUFFLE(2, 3, 0, 1)), _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_or_si128(_mm_slli_epi16(tmp, 8), _mm_srli_epi16(tmp, 8)); +#endif +} + +template<> EIGEN_STRONG_INLINE Packet4f pfrexp(const Packet4f& a, Packet4f& exponent) { + return pfrexp_generic(a,exponent); +} + +// Extract exponent without existence of Packet2l. +template<> +EIGEN_STRONG_INLINE +Packet2d pfrexp_generic_get_biased_exponent(const Packet2d& a) { + const Packet2d cst_exp_mask = pset1frombits(static_cast(0x7ff0000000000000ull)); + __m128i a_expo = _mm_srli_epi64(_mm_castpd_si128(pand(a, cst_exp_mask)), 52); + return _mm_cvtepi32_pd(vec4i_swizzle1(a_expo, 0, 2, 1, 3)); +} + +template<> EIGEN_STRONG_INLINE Packet2d pfrexp(const Packet2d& a, Packet2d& exponent) { + return pfrexp_generic(a, exponent); +} + +template<> EIGEN_STRONG_INLINE Packet4f pldexp(const Packet4f& a, const Packet4f& exponent) { + return pldexp_generic(a,exponent); +} + +// We specialize pldexp here, since the generic implementation uses Packet2l, which is not well +// supported by SSE, and has more range than is needed for exponents. +template<> EIGEN_STRONG_INLINE Packet2d pldexp(const Packet2d& a, const Packet2d& exponent) { + // Clamp exponent to [-2099, 2099] + const Packet2d max_exponent = pset1(2099.0); + const Packet2d e = pmin(pmax(exponent, pnegate(max_exponent)), max_exponent); + + // Convert e to integer and swizzle to low-order bits. + const Packet4i ei = vec4i_swizzle1(_mm_cvtpd_epi32(e), 0, 3, 1, 3); + + // Split 2^e into four factors and multiply: + const Packet4i bias = _mm_set_epi32(0, 1023, 0, 1023); + Packet4i b = parithmetic_shift_right<2>(ei); // floor(e/4) + Packet2d c = _mm_castsi128_pd(_mm_slli_epi64(padd(b, bias), 52)); // 2^b + Packet2d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) + b = psub(psub(psub(ei, b), b), b); // e - 3b + c = _mm_castsi128_pd(_mm_slli_epi64(padd(b, bias), 52)); // 2^(e - 3b) + out = pmul(out, c); // a * 2^e + return out; +} + +// with AVX, the default implementations based on pload1 are faster +#ifndef __AVX__ +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const float *a, + Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) +{ + a3 = pload(a); + a0 = vec4f_swizzle1(a3, 0,0,0,0); + a1 = vec4f_swizzle1(a3, 1,1,1,1); + a2 = vec4f_swizzle1(a3, 2,2,2,2); + a3 = vec4f_swizzle1(a3, 3,3,3,3); +} +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const double *a, + Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) +{ +#ifdef EIGEN_VECTORIZE_SSE3 + a0 = _mm_loaddup_pd(a+0); + a1 = _mm_loaddup_pd(a+1); + a2 = _mm_loaddup_pd(a+2); + a3 = _mm_loaddup_pd(a+3); +#else + a1 = pload(a); + a0 = vec2d_swizzle1(a1, 0,0); + a1 = vec2d_swizzle1(a1, 1,1); + a3 = pload(a+2); + a2 = vec2d_swizzle1(a3, 0,0); + a3 = vec2d_swizzle1(a3, 1,1); +#endif +} +#endif + +EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs) +{ + vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55)); + vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA)); + vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF)); + vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00)); +} + +template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) +{ + // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures + // (from Nehalem to Haswell) + // #ifdef EIGEN_VECTORIZE_SSE3 + // Packet4f tmp = _mm_add_ps(a, vec4f_swizzle1(a,2,3,2,3)); + // return pfirst(_mm_hadd_ps(tmp, tmp)); + // #else + Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a)); + return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); + // #endif +} + +template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) +{ + // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures + // (from Nehalem to Haswell) + // #ifdef EIGEN_VECTORIZE_SSE3 + // return pfirst(_mm_hadd_pd(a, a)); + // #else + return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a))); + // #endif +} + +#ifdef EIGEN_VECTORIZE_SSSE3 +template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) +{ + Packet4i tmp0 = _mm_hadd_epi32(a,a); + return pfirst(_mm_hadd_epi32(tmp0,tmp0)); +} +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet4ui& a) +{ + Packet4ui tmp0 = _mm_hadd_epi32(a, a); + return pfirst(_mm_hadd_epi32(tmp0, tmp0)); +} + +#else +template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) +{ + Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a)); + return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1)); +} +template<> EIGEN_STRONG_INLINE uint32_t predux(const Packet4ui& a) { + Packet4ui tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a, a)); + return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1)); +} +#endif + +template<> EIGEN_STRONG_INLINE bool predux(const Packet16b& a) { + Packet4i tmp = _mm_or_si128(a, _mm_unpackhi_epi64(a,a)); + return (pfirst(tmp) != 0) || (pfirst(_mm_shuffle_epi32(tmp, 1)) != 0); +} + +// Other reduction functions: + + +// mul +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) +{ + Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a)); + return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); +} +template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) +{ + return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a))); +} +template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) +{ + // after some experiments, it is seems this is the fastest way to implement it + // for GCC (eg., reusing pmul is very slow !) + // TODO try to call _mm_mul_epu32 directly + EIGEN_ALIGN16 int aux[4]; + pstore(aux, a); + return (aux[0] * aux[1]) * (aux[2] * aux[3]); +} +template<> EIGEN_STRONG_INLINE uint32_t predux_mul(const Packet4ui& a) +{ + // after some experiments, it is seems this is the fastest way to implement it + // for GCC (eg., reusing pmul is very slow !) + // TODO try to call _mm_mul_epu32 directly + EIGEN_ALIGN16 uint32_t aux[4]; + pstore(aux, a); + return (aux[0] * aux[1]) * (aux[2] * aux[3]); +} + +template<> EIGEN_STRONG_INLINE bool predux_mul(const Packet16b& a) { + Packet4i tmp = _mm_and_si128(a, _mm_unpackhi_epi64(a,a)); + return ((pfirst(tmp) == 0x01010101) && + (pfirst(_mm_shuffle_epi32(tmp, 1)) == 0x01010101)); +} + +// min +template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) +{ + Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a)); + return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); +} +template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) +{ + return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a))); +} +template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + Packet4i tmp = _mm_min_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); + return pfirst(_mm_min_epi32(tmp,_mm_shuffle_epi32(tmp, 1))); +#else + // after some experiments, it is seems this is the fastest way to implement it + // for GCC (eg., it does not like using std::min after the pstore !!) + EIGEN_ALIGN16 int aux[4]; + pstore(aux, a); + int aux0 = aux[0] EIGEN_STRONG_INLINE uint32_t predux_min(const Packet4ui& a) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + Packet4ui tmp = _mm_min_epu32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); + return pfirst(_mm_min_epu32(tmp,_mm_shuffle_epi32(tmp, 1))); +#else + // after some experiments, it is seems this is the fastest way to implement it + // for GCC (eg., it does not like using std::min after the pstore !!) + EIGEN_ALIGN16 uint32_t aux[4]; + pstore(aux, a); + uint32_t aux0 = aux[0] EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) +{ + Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a)); + return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); +} +template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) +{ + return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a))); +} +template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + Packet4i tmp = _mm_max_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); + return pfirst(_mm_max_epi32(tmp,_mm_shuffle_epi32(tmp, 1))); +#else + // after some experiments, it is seems this is the fastest way to implement it + // for GCC (eg., it does not like using std::min after the pstore !!) + EIGEN_ALIGN16 int aux[4]; + pstore(aux, a); + int aux0 = aux[0]>aux[1] ? aux[0] : aux[1]; + int aux2 = aux[2]>aux[3] ? aux[2] : aux[3]; + return aux0>aux2 ? aux0 : aux2; +#endif // EIGEN_VECTORIZE_SSE4_1 +} +template<> EIGEN_STRONG_INLINE uint32_t predux_max(const Packet4ui& a) +{ +#ifdef EIGEN_VECTORIZE_SSE4_1 + Packet4ui tmp = _mm_max_epu32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); + return pfirst(_mm_max_epu32(tmp,_mm_shuffle_epi32(tmp, 1))); +#else + // after some experiments, it is seems this is the fastest way to implement it + // for GCC (eg., it does not like using std::min after the pstore !!) + EIGEN_ALIGN16 uint32_t aux[4]; + pstore(aux, a); + uint32_t aux0 = aux[0]>aux[1] ? aux[0] : aux[1]; + uint32_t aux2 = aux[2]>aux[3] ? aux[2] : aux[3]; + return aux0>aux2 ? aux0 : aux2; +#endif // EIGEN_VECTORIZE_SSE4_1 +} + +// not needed yet +// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet4f& x) +// { +// return _mm_movemask_ps(x) == 0xF; +// } + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x) +{ + return _mm_movemask_ps(x) != 0x0; +} + +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4i& x) +{ + return _mm_movemask_ps(_mm_castsi128_ps(x)) != 0x0; +} +template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4ui& x) +{ + return _mm_movemask_ps(_mm_castsi128_ps(x)) != 0x0; +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + _MM_TRANSPOSE4_PS(kernel.packet[0], kernel.packet[1], kernel.packet[2], kernel.packet[3]); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m128d tmp = _mm_unpackhi_pd(kernel.packet[0], kernel.packet[1]); + kernel.packet[0] = _mm_unpacklo_pd(kernel.packet[0], kernel.packet[1]); + kernel.packet[1] = tmp; +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m128i T0 = _mm_unpacklo_epi32(kernel.packet[0], kernel.packet[1]); + __m128i T1 = _mm_unpacklo_epi32(kernel.packet[2], kernel.packet[3]); + __m128i T2 = _mm_unpackhi_epi32(kernel.packet[0], kernel.packet[1]); + __m128i T3 = _mm_unpackhi_epi32(kernel.packet[2], kernel.packet[3]); + + kernel.packet[0] = _mm_unpacklo_epi64(T0, T1); + kernel.packet[1] = _mm_unpackhi_epi64(T0, T1); + kernel.packet[2] = _mm_unpacklo_epi64(T2, T3); + kernel.packet[3] = _mm_unpackhi_epi64(T2, T3); +} +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + ptranspose((PacketBlock&)kernel); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + __m128i T0 = _mm_unpacklo_epi8(kernel.packet[0], kernel.packet[1]); + __m128i T1 = _mm_unpackhi_epi8(kernel.packet[0], kernel.packet[1]); + __m128i T2 = _mm_unpacklo_epi8(kernel.packet[2], kernel.packet[3]); + __m128i T3 = _mm_unpackhi_epi8(kernel.packet[2], kernel.packet[3]); + kernel.packet[0] = _mm_unpacklo_epi16(T0, T2); + kernel.packet[1] = _mm_unpackhi_epi16(T0, T2); + kernel.packet[2] = _mm_unpacklo_epi16(T1, T3); + kernel.packet[3] = _mm_unpackhi_epi16(T1, T3); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + // If we number the elements in the input thus: + // kernel.packet[ 0] = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f} + // kernel.packet[ 1] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f} + // ... + // kernel.packet[15] = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, fa, fb, fc, fd, fe, ff}, + // + // the desired output is: + // kernel.packet[ 0] = {00, 10, 20, 30, 40, 50, 60, 70, 80, 90, a0, b0, c0, d0, e0, f0} + // kernel.packet[ 1] = {01, 11, 21, 31, 41, 51, 61, 71, 81, 91, a1, b1, c1, d1, e1, f1} + // ... + // kernel.packet[15] = {0f, 1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f, 9f, af, bf, cf, df, ef, ff}, + __m128i t0 = _mm_unpacklo_epi8(kernel.packet[0], kernel.packet[1]); // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + __m128i t1 = _mm_unpackhi_epi8(kernel.packet[0], kernel.packet[1]); // 08 18 09 19 0a 1a 0b 1b 0c 1c 0d 1d 0e 1e 0f 1f + __m128i t2 = _mm_unpacklo_epi8(kernel.packet[2], kernel.packet[3]); // 20 30 21 31 22 32 ... 27 37 + __m128i t3 = _mm_unpackhi_epi8(kernel.packet[2], kernel.packet[3]); // 28 38 29 39 2a 3a ... 2f 3f + __m128i t4 = _mm_unpacklo_epi8(kernel.packet[4], kernel.packet[5]); // 40 50 41 51 42 52 47 57 + __m128i t5 = _mm_unpackhi_epi8(kernel.packet[4], kernel.packet[5]); // 48 58 49 59 4a 5a + __m128i t6 = _mm_unpacklo_epi8(kernel.packet[6], kernel.packet[7]); + __m128i t7 = _mm_unpackhi_epi8(kernel.packet[6], kernel.packet[7]); + __m128i t8 = _mm_unpacklo_epi8(kernel.packet[8], kernel.packet[9]); + __m128i t9 = _mm_unpackhi_epi8(kernel.packet[8], kernel.packet[9]); + __m128i ta = _mm_unpacklo_epi8(kernel.packet[10], kernel.packet[11]); + __m128i tb = _mm_unpackhi_epi8(kernel.packet[10], kernel.packet[11]); + __m128i tc = _mm_unpacklo_epi8(kernel.packet[12], kernel.packet[13]); + __m128i td = _mm_unpackhi_epi8(kernel.packet[12], kernel.packet[13]); + __m128i te = _mm_unpacklo_epi8(kernel.packet[14], kernel.packet[15]); + __m128i tf = _mm_unpackhi_epi8(kernel.packet[14], kernel.packet[15]); + + __m128i s0 = _mm_unpacklo_epi16(t0, t2); // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 + __m128i s1 = _mm_unpackhi_epi16(t0, t2); // 04 14 24 34 + __m128i s2 = _mm_unpacklo_epi16(t1, t3); // 08 18 28 38 ... + __m128i s3 = _mm_unpackhi_epi16(t1, t3); // 0c 1c 2c 3c ... + __m128i s4 = _mm_unpacklo_epi16(t4, t6); // 40 50 60 70 41 51 61 71 42 52 62 72 43 53 63 73 + __m128i s5 = _mm_unpackhi_epi16(t4, t6); // 44 54 64 74 ... + __m128i s6 = _mm_unpacklo_epi16(t5, t7); + __m128i s7 = _mm_unpackhi_epi16(t5, t7); + __m128i s8 = _mm_unpacklo_epi16(t8, ta); + __m128i s9 = _mm_unpackhi_epi16(t8, ta); + __m128i sa = _mm_unpacklo_epi16(t9, tb); + __m128i sb = _mm_unpackhi_epi16(t9, tb); + __m128i sc = _mm_unpacklo_epi16(tc, te); + __m128i sd = _mm_unpackhi_epi16(tc, te); + __m128i se = _mm_unpacklo_epi16(td, tf); + __m128i sf = _mm_unpackhi_epi16(td, tf); + + __m128i u0 = _mm_unpacklo_epi32(s0, s4); // 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71 + __m128i u1 = _mm_unpackhi_epi32(s0, s4); // 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 + __m128i u2 = _mm_unpacklo_epi32(s1, s5); + __m128i u3 = _mm_unpackhi_epi32(s1, s5); + __m128i u4 = _mm_unpacklo_epi32(s2, s6); + __m128i u5 = _mm_unpackhi_epi32(s2, s6); + __m128i u6 = _mm_unpacklo_epi32(s3, s7); + __m128i u7 = _mm_unpackhi_epi32(s3, s7); + __m128i u8 = _mm_unpacklo_epi32(s8, sc); + __m128i u9 = _mm_unpackhi_epi32(s8, sc); + __m128i ua = _mm_unpacklo_epi32(s9, sd); + __m128i ub = _mm_unpackhi_epi32(s9, sd); + __m128i uc = _mm_unpacklo_epi32(sa, se); + __m128i ud = _mm_unpackhi_epi32(sa, se); + __m128i ue = _mm_unpacklo_epi32(sb, sf); + __m128i uf = _mm_unpackhi_epi32(sb, sf); + + kernel.packet[0] = _mm_unpacklo_epi64(u0, u8); + kernel.packet[1] = _mm_unpackhi_epi64(u0, u8); + kernel.packet[2] = _mm_unpacklo_epi64(u1, u9); + kernel.packet[3] = _mm_unpackhi_epi64(u1, u9); + kernel.packet[4] = _mm_unpacklo_epi64(u2, ua); + kernel.packet[5] = _mm_unpackhi_epi64(u2, ua); + kernel.packet[6] = _mm_unpacklo_epi64(u3, ub); + kernel.packet[7] = _mm_unpackhi_epi64(u3, ub); + kernel.packet[8] = _mm_unpacklo_epi64(u4, uc); + kernel.packet[9] = _mm_unpackhi_epi64(u4, uc); + kernel.packet[10] = _mm_unpacklo_epi64(u5, ud); + kernel.packet[11] = _mm_unpackhi_epi64(u5, ud); + kernel.packet[12] = _mm_unpacklo_epi64(u6, ue); + kernel.packet[13] = _mm_unpackhi_epi64(u6, ue); + kernel.packet[14] = _mm_unpacklo_epi64(u7, uf); + kernel.packet[15] = _mm_unpackhi_epi64(u7, uf); +} + +template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { + const __m128i zero = _mm_setzero_si128(); + const __m128i select = _mm_set_epi32(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); + __m128i false_mask = _mm_cmpeq_epi32(select, zero); +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_blendv_epi8(thenPacket, elsePacket, false_mask); +#else + return _mm_or_si128(_mm_andnot_si128(false_mask, thenPacket), _mm_and_si128(false_mask, elsePacket)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet4ui pblend(const Selector<4>& ifPacket, const Packet4ui& thenPacket, + const Packet4ui& elsePacket) { + return (Packet4ui)pblend(ifPacket, (Packet4i)thenPacket, (Packet4i)elsePacket); +} +template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { + const __m128 zero = _mm_setzero_ps(); + const __m128 select = _mm_set_ps(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); + __m128 false_mask = _mm_cmpeq_ps(select, zero); +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_blendv_ps(thenPacket, elsePacket, false_mask); +#else + return _mm_or_ps(_mm_andnot_ps(false_mask, thenPacket), _mm_and_ps(false_mask, elsePacket)); +#endif +} +template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { + const __m128d zero = _mm_setzero_pd(); + const __m128d select = _mm_set_pd(ifPacket.select[1], ifPacket.select[0]); + __m128d false_mask = _mm_cmpeq_pd(select, zero); +#ifdef EIGEN_VECTORIZE_SSE4_1 + return _mm_blendv_pd(thenPacket, elsePacket, false_mask); +#else + return _mm_or_pd(_mm_andnot_pd(false_mask, thenPacket), _mm_and_pd(false_mask, elsePacket)); +#endif +} + +// Scalar path for pmadd with FMA to ensure consistency with vectorized path. +#ifdef EIGEN_VECTORIZE_FMA +template<> EIGEN_STRONG_INLINE float pmadd(const float& a, const float& b, const float& c) { + return ::fmaf(a,b,c); +} +template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, const double& c) { + return ::fma(a,b,c); +} +template<> EIGEN_STRONG_INLINE float pmsub(const float& a, const float& b, const float& c) { + return ::fmaf(a,b,-c); +} +template<> EIGEN_STRONG_INLINE double pmsub(const double& a, const double& b, const double& c) { + return ::fma(a,b,-c); +} +template<> EIGEN_STRONG_INLINE float pnmadd(const float& a, const float& b, const float& c) { + return ::fmaf(-a,b,c); +} +template<> EIGEN_STRONG_INLINE double pnmadd(const double& a, const double& b, const double& c) { + return ::fma(-a,b,c); +} +template<> EIGEN_STRONG_INLINE float pnmsub(const float& a, const float& b, const float& c) { + return ::fmaf(-a,b,-c); +} +template<> EIGEN_STRONG_INLINE double pnmsub(const double& a, const double& b, const double& c) { + return ::fma(-a,b,-c); +} +#endif + +#ifdef EIGEN_VECTORIZE_SSE4_1 +// Helpers for half->float and float->half conversions. +// Currently only used by the AVX code. +EIGEN_STRONG_INLINE __m128i half2floatsse(__m128i h) { + __m128i input = _mm_cvtepu16_epi32(h); + + // Direct vectorization of half_to_float, C parts in the comments. + __m128i shifted_exp = _mm_set1_epi32(0x7c00 << 13); + // o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits + __m128i ou = _mm_slli_epi32(_mm_and_si128(input, _mm_set1_epi32(0x7fff)), 13); + // exp = shifted_exp & o.u; // just the exponent + __m128i exp = _mm_and_si128(ou, shifted_exp); + // o.u += (127 - 15) << 23; + ou = _mm_add_epi32(ou, _mm_set1_epi32((127 - 15) << 23)); + + // Inf/NaN? + __m128i naninf_mask = _mm_cmpeq_epi32(exp, shifted_exp); + // Inf/NaN adjust + __m128i naninf_adj = + _mm_and_si128(_mm_set1_epi32((128 - 16) << 23), naninf_mask); + // extra exp adjust for Inf/NaN + ou = _mm_add_epi32(ou, naninf_adj); + + // Zero/Denormal? + __m128i zeroden_mask = _mm_cmpeq_epi32(exp, _mm_setzero_si128()); + __m128i zeroden_adj = _mm_and_si128(zeroden_mask, _mm_set1_epi32(1 << 23)); + // o.u += 1 << 23; + ou = _mm_add_epi32(ou, zeroden_adj); + // magic.u = 113 << 23 + __m128i magic = _mm_and_si128(zeroden_mask, _mm_set1_epi32(113 << 23)); + // o.f -= magic.f + ou = _mm_castps_si128( + _mm_sub_ps(_mm_castsi128_ps(ou), _mm_castsi128_ps(magic))); + + __m128i sign = + _mm_slli_epi32(_mm_and_si128(input, _mm_set1_epi32(0x8000)), 16); + // o.u |= (h.x & 0x8000) << 16; // sign bit + ou = _mm_or_si128(ou, sign); + // return o.f; + // We are actually returning uint version, to make + // _mm256_insertf128_si256 work. + return ou; +} + +EIGEN_STRONG_INLINE __m128i float2half(__m128 f) { + __m128i o = _mm_setzero_si128(); + + // unsigned int sign_mask = 0x80000000u; + __m128i sign = _mm_set1_epi32(0x80000000u); + // unsigned int sign = f.u & sign_mask; + sign = _mm_and_si128(sign, _mm_castps_si128(f)); + // f.u ^= sign; + f = _mm_xor_ps(f, _mm_castsi128_ps(sign)); + + __m128i fu = _mm_castps_si128(f); + + __m128i f16max = _mm_set1_epi32((127 + 16) << 23); + __m128i f32infty = _mm_set1_epi32(255 << 23); + // if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set) + // there is no _mm_cmpge_epi32, so use lt and swap operands + __m128i infnan_mask = _mm_cmplt_epi32(f16max, _mm_castps_si128(f)); + __m128i inf_mask = _mm_cmpgt_epi32(_mm_castps_si128(f), f32infty); + __m128i nan_mask = _mm_andnot_si128(inf_mask, infnan_mask); + __m128i inf_value = _mm_and_si128(inf_mask, _mm_set1_epi32(0x7e00)); + __m128i nan_value = _mm_and_si128(nan_mask, _mm_set1_epi32(0x7c00)); + // o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf + __m128i naninf_value = _mm_or_si128(inf_value, nan_value); + + __m128i denorm_magic = _mm_set1_epi32(((127 - 15) + (23 - 10) + 1) << 23); + __m128i subnorm_mask = + _mm_cmplt_epi32(_mm_castps_si128(f), _mm_set1_epi32(113 << 23)); + // f.f += denorm_magic.f; + f = _mm_add_ps(f, _mm_castsi128_ps(denorm_magic)); + // f.u - denorm_magic.u + o = _mm_sub_epi32(_mm_castps_si128(f), denorm_magic); + o = _mm_and_si128(o, subnorm_mask); + // Correct result for inf/nan/zero/subnormal, 0 otherwise + o = _mm_or_si128(o, naninf_value); + + __m128i mask = _mm_or_si128(infnan_mask, subnorm_mask); + o = _mm_and_si128(o, mask); + + // mant_odd = (f.u >> 13) & 1; + __m128i mand_odd = _mm_and_si128(_mm_srli_epi32(fu, 13), _mm_set1_epi32(0x1)); + // f.u += 0xc8000fffU; + fu = _mm_add_epi32(fu, _mm_set1_epi32(0xc8000fffU)); + // f.u += mant_odd; + fu = _mm_add_epi32(fu, mand_odd); + fu = _mm_andnot_si128(mask, fu); + // f.u >> 13 + fu = _mm_srli_epi32(fu, 13); + o = _mm_or_si128(fu, o); + + // o.x |= static_cast(sign >> 16); + o = _mm_or_si128(o, _mm_srli_epi32(sign, 16)); + + // 16 bit values + return _mm_and_si128(o, _mm_set1_epi32(0xffff)); +} +#endif + +// Packet math for Eigen::half +// Disable the following code since it's broken on too many platforms / compilers. +//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC) +#if 0 + +typedef struct { + __m64 x; +} Packet4h; + + +template<> struct is_arithmetic { enum { value = true }; }; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet4h type; + // There is no half-size packet for Packet4h. + typedef Packet4h half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 0, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasConj = 0, + HasSetLinear = 0, + HasSqrt = 0, + HasRsqrt = 0, + HasExp = 0, + HasLog = 0, + HasBlend = 0 + }; +}; + + +template<> struct unpacket_traits { typedef Eigen::half type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4h half; }; + +template<> EIGEN_STRONG_INLINE Packet4h pset1(const Eigen::half& from) { + Packet4h result; + result.x = _mm_set1_pi16(from.x); + return result; +} + +template<> EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet4h& from) { + return half_impl::raw_uint16_to_half(static_cast(_mm_cvtsi64_si32(from.x))); +} + +template<> EIGEN_STRONG_INLINE Packet4h pconj(const Packet4h& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet4h padd(const Packet4h& a, const Packet4h& b) { + __int64_t a64 = _mm_cvtm64_si64(a.x); + __int64_t b64 = _mm_cvtm64_si64(b.x); + + Eigen::half h[4]; + + Eigen::half ha = half_impl::raw_uint16_to_half(static_cast(a64)); + Eigen::half hb = half_impl::raw_uint16_to_half(static_cast(b64)); + h[0] = ha + hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 16)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 16)); + h[1] = ha + hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 32)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 32)); + h[2] = ha + hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 48)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 48)); + h[3] = ha + hb; + Packet4h result; + result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet4h psub(const Packet4h& a, const Packet4h& b) { + __int64_t a64 = _mm_cvtm64_si64(a.x); + __int64_t b64 = _mm_cvtm64_si64(b.x); + + Eigen::half h[4]; + + Eigen::half ha = half_impl::raw_uint16_to_half(static_cast(a64)); + Eigen::half hb = half_impl::raw_uint16_to_half(static_cast(b64)); + h[0] = ha - hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 16)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 16)); + h[1] = ha - hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 32)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 32)); + h[2] = ha - hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 48)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 48)); + h[3] = ha - hb; + Packet4h result; + result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet4h pmul(const Packet4h& a, const Packet4h& b) { + __int64_t a64 = _mm_cvtm64_si64(a.x); + __int64_t b64 = _mm_cvtm64_si64(b.x); + + Eigen::half h[4]; + + Eigen::half ha = half_impl::raw_uint16_to_half(static_cast(a64)); + Eigen::half hb = half_impl::raw_uint16_to_half(static_cast(b64)); + h[0] = ha * hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 16)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 16)); + h[1] = ha * hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 32)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 32)); + h[2] = ha * hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 48)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 48)); + h[3] = ha * hb; + Packet4h result; + result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet4h pdiv(const Packet4h& a, const Packet4h& b) { + __int64_t a64 = _mm_cvtm64_si64(a.x); + __int64_t b64 = _mm_cvtm64_si64(b.x); + + Eigen::half h[4]; + + Eigen::half ha = half_impl::raw_uint16_to_half(static_cast(a64)); + Eigen::half hb = half_impl::raw_uint16_to_half(static_cast(b64)); + h[0] = ha / hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 16)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 16)); + h[1] = ha / hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 32)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 32)); + h[2] = ha / hb; + ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 48)); + hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 48)); + h[3] = ha / hb; + Packet4h result; + result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet4h pload(const Eigen::half* from) { + Packet4h result; + result.x = _mm_cvtsi64_m64(*reinterpret_cast(from)); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet4h ploadu(const Eigen::half* from) { + Packet4h result; + result.x = _mm_cvtsi64_m64(*reinterpret_cast(from)); + return result; +} + +template<> EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet4h& from) { + __int64_t r = _mm_cvtm64_si64(from.x); + *(reinterpret_cast<__int64_t*>(to)) = r; +} + +template<> EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet4h& from) { + __int64_t r = _mm_cvtm64_si64(from.x); + *(reinterpret_cast<__int64_t*>(to)) = r; +} + +template<> EIGEN_STRONG_INLINE Packet4h +ploadquad(const Eigen::half* from) { + return pset1(*from); +} + +template<> EIGEN_STRONG_INLINE Packet4h pgather(const Eigen::half* from, Index stride) +{ + Packet4h result; + result.x = _mm_set_pi16(from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x); + return result; +} + +template<> EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const Packet4h& from, Index stride) +{ + __int64_t a = _mm_cvtm64_si64(from.x); + to[stride*0].x = static_cast(a); + to[stride*1].x = static_cast(a >> 16); + to[stride*2].x = static_cast(a >> 32); + to[stride*3].x = static_cast(a >> 48); +} + +EIGEN_STRONG_INLINE void +ptranspose(PacketBlock& kernel) { + __m64 T0 = _mm_unpacklo_pi16(kernel.packet[0].x, kernel.packet[1].x); + __m64 T1 = _mm_unpacklo_pi16(kernel.packet[2].x, kernel.packet[3].x); + __m64 T2 = _mm_unpackhi_pi16(kernel.packet[0].x, kernel.packet[1].x); + __m64 T3 = _mm_unpackhi_pi16(kernel.packet[2].x, kernel.packet[3].x); + + kernel.packet[0].x = _mm_unpacklo_pi32(T0, T1); + kernel.packet[1].x = _mm_unpackhi_pi32(T0, T1); + kernel.packet[2].x = _mm_unpacklo_pi32(T2, T3); + kernel.packet[3].x = _mm_unpackhi_pi32(T2, T3); +} + +#endif + + +} // end namespace internal + +} // end namespace Eigen + +#if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900 +// PGI++ does not define the following intrinsics in C++ mode. +static inline __m128 _mm_castpd_ps (__m128d x) { return reinterpret_cast<__m128&>(x); } +static inline __m128i _mm_castpd_si128(__m128d x) { return reinterpret_cast<__m128i&>(x); } +static inline __m128d _mm_castps_pd (__m128 x) { return reinterpret_cast<__m128d&>(x); } +static inline __m128i _mm_castps_si128(__m128 x) { return reinterpret_cast<__m128i&>(x); } +static inline __m128 _mm_castsi128_ps(__m128i x) { return reinterpret_cast<__m128&>(x); } +static inline __m128d _mm_castsi128_pd(__m128i x) { return reinterpret_cast<__m128d&>(x); } +#endif + +#endif // EIGEN_PACKET_MATH_SSE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/TypeCasting.h new file mode 100644 index 0000000..bb28170 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SSE/TypeCasting.h @@ -0,0 +1,177 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_SSE_H +#define EIGEN_TYPE_CASTING_SSE_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_VECTORIZE_AVX +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; + +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +template<> struct type_casting_traits : vectorized_type_casting_traits {}; +#endif + +template <> +EIGEN_STRONG_INLINE Packet16b pcast(const Packet4f& a, + const Packet4f& b, + const Packet4f& c, + const Packet4f& d) { + __m128 zero = pzero(a); + __m128 nonzero_a = _mm_cmpneq_ps(a, zero); + __m128 nonzero_b = _mm_cmpneq_ps(b, zero); + __m128 nonzero_c = _mm_cmpneq_ps(c, zero); + __m128 nonzero_d = _mm_cmpneq_ps(d, zero); + __m128i ab_bytes = _mm_packs_epi32(_mm_castps_si128(nonzero_a), _mm_castps_si128(nonzero_b)); + __m128i cd_bytes = _mm_packs_epi32(_mm_castps_si128(nonzero_c), _mm_castps_si128(nonzero_d)); + __m128i merged = _mm_packs_epi16(ab_bytes, cd_bytes); + return _mm_and_si128(merged, _mm_set1_epi8(1)); +} + +template <> +EIGEN_STRONG_INLINE Packet4f pcast(const Packet16b& a) { + const __m128 cst_one = _mm_set_ps1(1.0f); + #ifdef EIGEN_VECTORIZE_SSE4_1 + __m128i a_extended = _mm_cvtepi8_epi32(a); + __m128i abcd = _mm_cmpeq_epi32(a_extended, _mm_setzero_si128()); + #else + __m128i abcd_efhg_ijkl_mnop = _mm_cmpeq_epi8(a, _mm_setzero_si128()); + __m128i aabb_ccdd_eeff_gghh = _mm_unpacklo_epi8(abcd_efhg_ijkl_mnop, abcd_efhg_ijkl_mnop); + __m128i abcd = _mm_unpacklo_epi8(aabb_ccdd_eeff_gghh, aabb_ccdd_eeff_gghh); + #endif + __m128 result = _mm_andnot_ps(_mm_castsi128_ps(abcd), cst_one); + return result; +} + +template<> EIGEN_STRONG_INLINE Packet4i pcast(const Packet4f& a) { + return _mm_cvttps_epi32(a); +} + +template<> EIGEN_STRONG_INLINE Packet4i pcast(const Packet2d& a, const Packet2d& b) { + return _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(_mm_cvttpd_epi32(a)), + _mm_castsi128_ps(_mm_cvttpd_epi32(b)), + (1 << 2) | (1 << 6))); +} + +template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4i& a) { + return _mm_cvtepi32_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet2d& a, const Packet2d& b) { + return _mm_shuffle_ps(_mm_cvtpd_ps(a), _mm_cvtpd_ps(b), (1 << 2) | (1 << 6)); +} + +template<> EIGEN_STRONG_INLINE Packet2d pcast(const Packet4i& a) { + // Simply discard the second half of the input + return _mm_cvtepi32_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet2d pcast(const Packet4f& a) { + // Simply discard the second half of the input + return _mm_cvtps_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet4f& a) { + return _mm_castps_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet2d& a) { + return _mm_castpd_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet4f& a) { + return _mm_castps_si128(a); +} + +template<> EIGEN_STRONG_INLINE Packet4f preinterpret(const Packet4i& a) { + return _mm_castsi128_ps(a); +} + +template<> EIGEN_STRONG_INLINE Packet2d preinterpret(const Packet4i& a) { + return _mm_castsi128_pd(a); +} + +template<> EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet2d& a) { + return _mm_castpd_si128(a); +} + +template<> EIGEN_STRONG_INLINE Packet4ui preinterpret(const Packet4i& a) { + return Packet4ui(a); +} + +template<> EIGEN_STRONG_INLINE Packet4i preinterpret(const Packet4ui& a) { + return Packet4i(a); +} +// Disable the following code since it's broken on too many platforms / compilers. +//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC) +#if 0 + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + +template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4h& a) { + __int64_t a64 = _mm_cvtm64_si64(a.x); + Eigen::half h = raw_uint16_to_half(static_cast(a64)); + float f1 = static_cast(h); + h = raw_uint16_to_half(static_cast(a64 >> 16)); + float f2 = static_cast(h); + h = raw_uint16_to_half(static_cast(a64 >> 32)); + float f3 = static_cast(h); + h = raw_uint16_to_half(static_cast(a64 >> 48)); + float f4 = static_cast(h); + return _mm_set_ps(f4, f3, f2, f1); +} + +template <> +struct type_casting_traits { + enum { + VectorizedCast = 1, + SrcCoeffRatio = 1, + TgtCoeffRatio = 1 + }; +}; + +template<> EIGEN_STRONG_INLINE Packet4h pcast(const Packet4f& a) { + EIGEN_ALIGN16 float aux[4]; + pstore(aux, a); + Eigen::half h0(aux[0]); + Eigen::half h1(aux[1]); + Eigen::half h2(aux[2]); + Eigen::half h3(aux[3]); + + Packet4h result; + result.x = _mm_set_pi16(h3.x, h2.x, h1.x, h0.x); + return result; +} + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_SSE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/MathFunctions.h new file mode 100644 index 0000000..8b588b1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/MathFunctions.h @@ -0,0 +1,46 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2020, Arm Limited and Contributors +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATH_FUNCTIONS_SVE_H +#define EIGEN_MATH_FUNCTIONS_SVE_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +template <> +EIGEN_STRONG_INLINE PacketXf pexp(const PacketXf& x) { + return pexp_float(x); +} + +template <> +EIGEN_STRONG_INLINE PacketXf plog(const PacketXf& x) { + return plog_float(x); +} + +template <> +EIGEN_STRONG_INLINE PacketXf psin(const PacketXf& x) { + return psin_float(x); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pcos(const PacketXf& x) { + return pcos_float(x); +} + +// Hyperbolic Tangent function. +template <> +EIGEN_STRONG_INLINE PacketXf ptanh(const PacketXf& x) { + return internal::generic_fast_tanh_float(x); +} +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_SVE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/PacketMath.h new file mode 100644 index 0000000..a2f292f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/PacketMath.h @@ -0,0 +1,752 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2020, Arm Limited and Contributors +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_SVE_H +#define EIGEN_PACKET_MATH_SVE_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen +{ +namespace internal +{ +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif + +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 + +template +struct sve_packet_size_selector { + enum { size = SVEVectorLength / (sizeof(Scalar) * CHAR_BIT) }; +}; + +/********************************* int32 **************************************/ +typedef svint32_t PacketXi __attribute__((arm_sve_vector_bits(EIGEN_ARM64_SVE_VL))); + +template <> +struct packet_traits : default_packet_traits { + typedef PacketXi type; + typedef PacketXi half; // Half not implemented yet + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = sve_packet_size_selector::size, + + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 0, + HasBlend = 0, + HasReduxp = 0 // Not implemented in SVE + }; +}; + +template <> +struct unpacket_traits { + typedef numext::int32_t type; + typedef PacketXi half; // Half not yet implemented + enum { + size = sve_packet_size_selector::size, + alignment = Aligned64, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template <> +EIGEN_STRONG_INLINE void prefetch(const numext::int32_t* addr) +{ + svprfw(svptrue_b32(), addr, SV_PLDL1KEEP); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pset1(const numext::int32_t& from) +{ + return svdup_n_s32(from); +} + +template <> +EIGEN_STRONG_INLINE PacketXi plset(const numext::int32_t& a) +{ + numext::int32_t c[packet_traits::size]; + for (int i = 0; i < packet_traits::size; i++) c[i] = i; + return svadd_s32_z(svptrue_b32(), pset1(a), svld1_s32(svptrue_b32(), c)); +} + +template <> +EIGEN_STRONG_INLINE PacketXi padd(const PacketXi& a, const PacketXi& b) +{ + return svadd_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi psub(const PacketXi& a, const PacketXi& b) +{ + return svsub_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pnegate(const PacketXi& a) +{ + return svneg_s32_z(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pconj(const PacketXi& a) +{ + return a; +} + +template <> +EIGEN_STRONG_INLINE PacketXi pmul(const PacketXi& a, const PacketXi& b) +{ + return svmul_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pdiv(const PacketXi& a, const PacketXi& b) +{ + return svdiv_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pmadd(const PacketXi& a, const PacketXi& b, const PacketXi& c) +{ + return svmla_s32_z(svptrue_b32(), c, a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pmin(const PacketXi& a, const PacketXi& b) +{ + return svmin_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pmax(const PacketXi& a, const PacketXi& b) +{ + return svmax_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pcmp_le(const PacketXi& a, const PacketXi& b) +{ + return svdup_n_s32_z(svcmple_s32(svptrue_b32(), a, b), 0xffffffffu); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pcmp_lt(const PacketXi& a, const PacketXi& b) +{ + return svdup_n_s32_z(svcmplt_s32(svptrue_b32(), a, b), 0xffffffffu); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pcmp_eq(const PacketXi& a, const PacketXi& b) +{ + return svdup_n_s32_z(svcmpeq_s32(svptrue_b32(), a, b), 0xffffffffu); +} + +template <> +EIGEN_STRONG_INLINE PacketXi ptrue(const PacketXi& /*a*/) +{ + return svdup_n_s32_z(svptrue_b32(), 0xffffffffu); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pzero(const PacketXi& /*a*/) +{ + return svdup_n_s32_z(svptrue_b32(), 0); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pand(const PacketXi& a, const PacketXi& b) +{ + return svand_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi por(const PacketXi& a, const PacketXi& b) +{ + return svorr_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pxor(const PacketXi& a, const PacketXi& b) +{ + return sveor_s32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pandnot(const PacketXi& a, const PacketXi& b) +{ + return svbic_s32_z(svptrue_b32(), a, b); +} + +template +EIGEN_STRONG_INLINE PacketXi parithmetic_shift_right(PacketXi a) +{ + return svasrd_n_s32_z(svptrue_b32(), a, N); +} + +template +EIGEN_STRONG_INLINE PacketXi plogical_shift_right(PacketXi a) +{ + return svreinterpret_s32_u32(svlsr_n_u32_z(svptrue_b32(), svreinterpret_u32_s32(a), N)); +} + +template +EIGEN_STRONG_INLINE PacketXi plogical_shift_left(PacketXi a) +{ + return svlsl_n_s32_z(svptrue_b32(), a, N); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pload(const numext::int32_t* from) +{ + EIGEN_DEBUG_ALIGNED_LOAD return svld1_s32(svptrue_b32(), from); +} + +template <> +EIGEN_STRONG_INLINE PacketXi ploadu(const numext::int32_t* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD return svld1_s32(svptrue_b32(), from); +} + +template <> +EIGEN_STRONG_INLINE PacketXi ploaddup(const numext::int32_t* from) +{ + svuint32_t indices = svindex_u32(0, 1); // index {base=0, base+step=1, base+step*2, ...} + indices = svzip1_u32(indices, indices); // index in the format {a0, a0, a1, a1, a2, a2, ...} + return svld1_gather_u32index_s32(svptrue_b32(), from, indices); +} + +template <> +EIGEN_STRONG_INLINE PacketXi ploadquad(const numext::int32_t* from) +{ + svuint32_t indices = svindex_u32(0, 1); // index {base=0, base+step=1, base+step*2, ...} + indices = svzip1_u32(indices, indices); // index in the format {a0, a0, a1, a1, a2, a2, ...} + indices = svzip1_u32(indices, indices); // index in the format {a0, a0, a0, a0, a1, a1, a1, a1, ...} + return svld1_gather_u32index_s32(svptrue_b32(), from, indices); +} + +template <> +EIGEN_STRONG_INLINE void pstore(numext::int32_t* to, const PacketXi& from) +{ + EIGEN_DEBUG_ALIGNED_STORE svst1_s32(svptrue_b32(), to, from); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(numext::int32_t* to, const PacketXi& from) +{ + EIGEN_DEBUG_UNALIGNED_STORE svst1_s32(svptrue_b32(), to, from); +} + +template <> +EIGEN_DEVICE_FUNC inline PacketXi pgather(const numext::int32_t* from, Index stride) +{ + // Indice format: {base=0, base+stride, base+stride*2, base+stride*3, ...} + svint32_t indices = svindex_s32(0, stride); + return svld1_gather_s32index_s32(svptrue_b32(), from, indices); +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter(numext::int32_t* to, const PacketXi& from, Index stride) +{ + // Indice format: {base=0, base+stride, base+stride*2, base+stride*3, ...} + svint32_t indices = svindex_s32(0, stride); + svst1_scatter_s32index_s32(svptrue_b32(), to, indices, from); +} + +template <> +EIGEN_STRONG_INLINE numext::int32_t pfirst(const PacketXi& a) +{ + // svlasta returns the first element if all predicate bits are 0 + return svlasta_s32(svpfalse_b(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXi preverse(const PacketXi& a) +{ + return svrev_s32(a); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pabs(const PacketXi& a) +{ + return svabs_s32_z(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE numext::int32_t predux(const PacketXi& a) +{ + return static_cast(svaddv_s32(svptrue_b32(), a)); +} + +template <> +EIGEN_STRONG_INLINE numext::int32_t predux_mul(const PacketXi& a) +{ + EIGEN_STATIC_ASSERT((EIGEN_ARM64_SVE_VL % 128 == 0), + EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT); + + // Multiply the vector by its reverse + svint32_t prod = svmul_s32_z(svptrue_b32(), a, svrev_s32(a)); + svint32_t half_prod; + + // Extract the high half of the vector. Depending on the VL more reductions need to be done + if (EIGEN_ARM64_SVE_VL >= 2048) { + half_prod = svtbl_s32(prod, svindex_u32(32, 1)); + prod = svmul_s32_z(svptrue_b32(), prod, half_prod); + } + if (EIGEN_ARM64_SVE_VL >= 1024) { + half_prod = svtbl_s32(prod, svindex_u32(16, 1)); + prod = svmul_s32_z(svptrue_b32(), prod, half_prod); + } + if (EIGEN_ARM64_SVE_VL >= 512) { + half_prod = svtbl_s32(prod, svindex_u32(8, 1)); + prod = svmul_s32_z(svptrue_b32(), prod, half_prod); + } + if (EIGEN_ARM64_SVE_VL >= 256) { + half_prod = svtbl_s32(prod, svindex_u32(4, 1)); + prod = svmul_s32_z(svptrue_b32(), prod, half_prod); + } + // Last reduction + half_prod = svtbl_s32(prod, svindex_u32(2, 1)); + prod = svmul_s32_z(svptrue_b32(), prod, half_prod); + + // The reduction is done to the first element. + return pfirst(prod); +} + +template <> +EIGEN_STRONG_INLINE numext::int32_t predux_min(const PacketXi& a) +{ + return svminv_s32(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE numext::int32_t predux_max(const PacketXi& a) +{ + return svmaxv_s32(svptrue_b32(), a); +} + +template +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { + int buffer[packet_traits::size * N] = {0}; + int i = 0; + + PacketXi stride_index = svindex_s32(0, N); + + for (i = 0; i < N; i++) { + svst1_scatter_s32index_s32(svptrue_b32(), buffer + i, stride_index, kernel.packet[i]); + } + for (i = 0; i < N; i++) { + kernel.packet[i] = svld1_s32(svptrue_b32(), buffer + i * packet_traits::size); + } +} + +/********************************* float32 ************************************/ + +typedef svfloat32_t PacketXf __attribute__((arm_sve_vector_bits(EIGEN_ARM64_SVE_VL))); + +template <> +struct packet_traits : default_packet_traits { + typedef PacketXf type; + typedef PacketXf half; + + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = sve_packet_size_selector::size, + + HasAdd = 1, + HasSub = 1, + HasShift = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 1, + HasMin = 1, + HasMax = 1, + HasConj = 1, + HasSetLinear = 0, + HasBlend = 0, + HasReduxp = 0, // Not implemented in SVE + + HasDiv = 1, + HasFloor = 1, + + HasSin = EIGEN_FAST_MATH, + HasCos = EIGEN_FAST_MATH, + HasLog = 1, + HasExp = 1, + HasSqrt = 0, + HasTanh = EIGEN_FAST_MATH, + HasErf = EIGEN_FAST_MATH + }; +}; + +template <> +struct unpacket_traits { + typedef float type; + typedef PacketXf half; // Half not yet implemented + typedef PacketXi integer_packet; + + enum { + size = sve_packet_size_selector::size, + alignment = Aligned64, + vectorizable = true, + masked_load_available = false, + masked_store_available = false + }; +}; + +template <> +EIGEN_STRONG_INLINE PacketXf pset1(const float& from) +{ + return svdup_n_f32(from); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pset1frombits(numext::uint32_t from) +{ + return svreinterpret_f32_u32(svdup_n_u32_z(svptrue_b32(), from)); +} + +template <> +EIGEN_STRONG_INLINE PacketXf plset(const float& a) +{ + float c[packet_traits::size]; + for (int i = 0; i < packet_traits::size; i++) c[i] = i; + return svadd_f32_z(svptrue_b32(), pset1(a), svld1_f32(svptrue_b32(), c)); +} + +template <> +EIGEN_STRONG_INLINE PacketXf padd(const PacketXf& a, const PacketXf& b) +{ + return svadd_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf psub(const PacketXf& a, const PacketXf& b) +{ + return svsub_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pnegate(const PacketXf& a) +{ + return svneg_f32_z(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pconj(const PacketXf& a) +{ + return a; +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmul(const PacketXf& a, const PacketXf& b) +{ + return svmul_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pdiv(const PacketXf& a, const PacketXf& b) +{ + return svdiv_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmadd(const PacketXf& a, const PacketXf& b, const PacketXf& c) +{ + return svmla_f32_z(svptrue_b32(), c, a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmin(const PacketXf& a, const PacketXf& b) +{ + return svmin_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmin(const PacketXf& a, const PacketXf& b) +{ + return pmin(a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmin(const PacketXf& a, const PacketXf& b) +{ + return svminnm_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmax(const PacketXf& a, const PacketXf& b) +{ + return svmax_f32_z(svptrue_b32(), a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmax(const PacketXf& a, const PacketXf& b) +{ + return pmax(a, b); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pmax(const PacketXf& a, const PacketXf& b) +{ + return svmaxnm_f32_z(svptrue_b32(), a, b); +} + +// Float comparisons in SVE return svbool (predicate). Use svdup to set active +// lanes to 1 (0xffffffffu) and inactive lanes to 0. +template <> +EIGEN_STRONG_INLINE PacketXf pcmp_le(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svdup_n_u32_z(svcmple_f32(svptrue_b32(), a, b), 0xffffffffu)); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pcmp_lt(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svdup_n_u32_z(svcmplt_f32(svptrue_b32(), a, b), 0xffffffffu)); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pcmp_eq(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svdup_n_u32_z(svcmpeq_f32(svptrue_b32(), a, b), 0xffffffffu)); +} + +// Do a predicate inverse (svnot_b_z) on the predicate resulted from the +// greater/equal comparison (svcmpge_f32). Then fill a float vector with the +// active elements. +template <> +EIGEN_STRONG_INLINE PacketXf pcmp_lt_or_nan(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svdup_n_u32_z(svnot_b_z(svptrue_b32(), svcmpge_f32(svptrue_b32(), a, b)), 0xffffffffu)); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pfloor(const PacketXf& a) +{ + return svrintm_f32_z(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXf ptrue(const PacketXf& /*a*/) +{ + return svreinterpret_f32_u32(svdup_n_u32_z(svptrue_b32(), 0xffffffffu)); +} + +// Logical Operations are not supported for float, so reinterpret casts +template <> +EIGEN_STRONG_INLINE PacketXf pand(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svand_u32_z(svptrue_b32(), svreinterpret_u32_f32(a), svreinterpret_u32_f32(b))); +} + +template <> +EIGEN_STRONG_INLINE PacketXf por(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svorr_u32_z(svptrue_b32(), svreinterpret_u32_f32(a), svreinterpret_u32_f32(b))); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pxor(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(sveor_u32_z(svptrue_b32(), svreinterpret_u32_f32(a), svreinterpret_u32_f32(b))); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pandnot(const PacketXf& a, const PacketXf& b) +{ + return svreinterpret_f32_u32(svbic_u32_z(svptrue_b32(), svreinterpret_u32_f32(a), svreinterpret_u32_f32(b))); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pload(const float* from) +{ + EIGEN_DEBUG_ALIGNED_LOAD return svld1_f32(svptrue_b32(), from); +} + +template <> +EIGEN_STRONG_INLINE PacketXf ploadu(const float* from) +{ + EIGEN_DEBUG_UNALIGNED_LOAD return svld1_f32(svptrue_b32(), from); +} + +template <> +EIGEN_STRONG_INLINE PacketXf ploaddup(const float* from) +{ + svuint32_t indices = svindex_u32(0, 1); // index {base=0, base+step=1, base+step*2, ...} + indices = svzip1_u32(indices, indices); // index in the format {a0, a0, a1, a1, a2, a2, ...} + return svld1_gather_u32index_f32(svptrue_b32(), from, indices); +} + +template <> +EIGEN_STRONG_INLINE PacketXf ploadquad(const float* from) +{ + svuint32_t indices = svindex_u32(0, 1); // index {base=0, base+step=1, base+step*2, ...} + indices = svzip1_u32(indices, indices); // index in the format {a0, a0, a1, a1, a2, a2, ...} + indices = svzip1_u32(indices, indices); // index in the format {a0, a0, a0, a0, a1, a1, a1, a1, ...} + return svld1_gather_u32index_f32(svptrue_b32(), from, indices); +} + +template <> +EIGEN_STRONG_INLINE void pstore(float* to, const PacketXf& from) +{ + EIGEN_DEBUG_ALIGNED_STORE svst1_f32(svptrue_b32(), to, from); +} + +template <> +EIGEN_STRONG_INLINE void pstoreu(float* to, const PacketXf& from) +{ + EIGEN_DEBUG_UNALIGNED_STORE svst1_f32(svptrue_b32(), to, from); +} + +template <> +EIGEN_DEVICE_FUNC inline PacketXf pgather(const float* from, Index stride) +{ + // Indice format: {base=0, base+stride, base+stride*2, base+stride*3, ...} + svint32_t indices = svindex_s32(0, stride); + return svld1_gather_s32index_f32(svptrue_b32(), from, indices); +} + +template <> +EIGEN_DEVICE_FUNC inline void pscatter(float* to, const PacketXf& from, Index stride) +{ + // Indice format: {base=0, base+stride, base+stride*2, base+stride*3, ...} + svint32_t indices = svindex_s32(0, stride); + svst1_scatter_s32index_f32(svptrue_b32(), to, indices, from); +} + +template <> +EIGEN_STRONG_INLINE float pfirst(const PacketXf& a) +{ + // svlasta returns the first element if all predicate bits are 0 + return svlasta_f32(svpfalse_b(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXf preverse(const PacketXf& a) +{ + return svrev_f32(a); +} + +template <> +EIGEN_STRONG_INLINE PacketXf pabs(const PacketXf& a) +{ + return svabs_f32_z(svptrue_b32(), a); +} + +// TODO(tellenbach): Should this go into MathFunctions.h? If so, change for +// all vector extensions and the generic version. +template <> +EIGEN_STRONG_INLINE PacketXf pfrexp(const PacketXf& a, PacketXf& exponent) +{ + return pfrexp_generic(a, exponent); +} + +template <> +EIGEN_STRONG_INLINE float predux(const PacketXf& a) +{ + return svaddv_f32(svptrue_b32(), a); +} + +// Other reduction functions: +// mul +// Only works for SVE Vls multiple of 128 +template <> +EIGEN_STRONG_INLINE float predux_mul(const PacketXf& a) +{ + EIGEN_STATIC_ASSERT((EIGEN_ARM64_SVE_VL % 128 == 0), + EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT); + // Multiply the vector by its reverse + svfloat32_t prod = svmul_f32_z(svptrue_b32(), a, svrev_f32(a)); + svfloat32_t half_prod; + + // Extract the high half of the vector. Depending on the VL more reductions need to be done + if (EIGEN_ARM64_SVE_VL >= 2048) { + half_prod = svtbl_f32(prod, svindex_u32(32, 1)); + prod = svmul_f32_z(svptrue_b32(), prod, half_prod); + } + if (EIGEN_ARM64_SVE_VL >= 1024) { + half_prod = svtbl_f32(prod, svindex_u32(16, 1)); + prod = svmul_f32_z(svptrue_b32(), prod, half_prod); + } + if (EIGEN_ARM64_SVE_VL >= 512) { + half_prod = svtbl_f32(prod, svindex_u32(8, 1)); + prod = svmul_f32_z(svptrue_b32(), prod, half_prod); + } + if (EIGEN_ARM64_SVE_VL >= 256) { + half_prod = svtbl_f32(prod, svindex_u32(4, 1)); + prod = svmul_f32_z(svptrue_b32(), prod, half_prod); + } + // Last reduction + half_prod = svtbl_f32(prod, svindex_u32(2, 1)); + prod = svmul_f32_z(svptrue_b32(), prod, half_prod); + + // The reduction is done to the first element. + return pfirst(prod); +} + +template <> +EIGEN_STRONG_INLINE float predux_min(const PacketXf& a) +{ + return svminv_f32(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE float predux_max(const PacketXf& a) +{ + return svmaxv_f32(svptrue_b32(), a); +} + +template +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) +{ + float buffer[packet_traits::size * N] = {0}; + int i = 0; + + PacketXi stride_index = svindex_s32(0, N); + + for (i = 0; i < N; i++) { + svst1_scatter_s32index_f32(svptrue_b32(), buffer + i, stride_index, kernel.packet[i]); + } + + for (i = 0; i < N; i++) { + kernel.packet[i] = svld1_f32(svptrue_b32(), buffer + i * packet_traits::size); + } +} + +template<> +EIGEN_STRONG_INLINE PacketXf pldexp(const PacketXf& a, const PacketXf& exponent) +{ + return pldexp_generic(a, exponent); +} + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_PACKET_MATH_SVE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/TypeCasting.h new file mode 100644 index 0000000..1067a41 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SVE/TypeCasting.h @@ -0,0 +1,51 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2020, Arm Limited and Contributors +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TYPE_CASTING_SVE_H +#define EIGEN_TYPE_CASTING_SVE_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; + +template <> +EIGEN_STRONG_INLINE PacketXf pcast(const PacketXi& a) { + return svcvt_f32_s32_z(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXi pcast(const PacketXf& a) { + return svcvt_s32_f32_z(svptrue_b32(), a); +} + +template <> +EIGEN_STRONG_INLINE PacketXf preinterpret(const PacketXi& a) { + return svreinterpret_f32_s32(a); +} + +template <> +EIGEN_STRONG_INLINE PacketXi preinterpret(const PacketXf& a) { + return svreinterpret_s32_f32(a); +} + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_TYPE_CASTING_SVE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h new file mode 100644 index 0000000..30c4980 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h @@ -0,0 +1,233 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * InteropHeaders.h + * + * \brief: + * InteropHeaders + * + *****************************************************************/ + +#ifndef EIGEN_INTEROP_HEADERS_SYCL_H +#define EIGEN_INTEROP_HEADERS_SYCL_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +#if !defined(EIGEN_DONT_VECTORIZE_SYCL) + +namespace internal { + +template +struct sycl_packet_traits : default_packet_traits { + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = lengths, + HasDiv = 1, + HasLog = 1, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasSin = 1, + HasCos = 1, + HasTan = 1, + HasASin = 1, + HasACos = 1, + HasATan = 1, + HasSinh = 1, + HasCosh = 1, + HasTanh = 1, + HasLGamma = 0, + HasDiGamma = 0, + HasZeta = 0, + HasPolygamma = 0, + HasErf = 0, + HasErfc = 0, + HasNdtri = 0, + HasIGamma = 0, + HasIGammac = 0, + HasBetaInc = 0, + HasBlend = has_blend, + // This flag is used to indicate whether packet comparison is supported. + // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true. + HasCmp = 1, + HasMax = 1, + HasMin = 1, + HasMul = 1, + HasAdd = 1, + HasFloor = 1, + HasRound = 1, + HasRint = 1, + HasLog1p = 1, + HasExpm1 = 1, + HasCeil = 1, + }; +}; + +#ifdef SYCL_DEVICE_ONLY +#define SYCL_PACKET_TRAITS(packet_type, has_blend, unpacket_type, lengths) \ + template <> \ + struct packet_traits \ + : sycl_packet_traits { \ + typedef packet_type type; \ + typedef packet_type half; \ + }; + +SYCL_PACKET_TRAITS(cl::sycl::cl_float4, 1, float, 4) +SYCL_PACKET_TRAITS(cl::sycl::cl_float4, 1, const float, 4) +SYCL_PACKET_TRAITS(cl::sycl::cl_double2, 0, double, 2) +SYCL_PACKET_TRAITS(cl::sycl::cl_double2, 0, const double, 2) +#undef SYCL_PACKET_TRAITS + +// Make sure this is only available when targeting a GPU: we don't want to +// introduce conflicts between these packet_traits definitions and the ones +// we'll use on the host side (SSE, AVX, ...) +#define SYCL_ARITHMETIC(packet_type) \ + template <> \ + struct is_arithmetic { \ + enum { value = true }; \ + }; +SYCL_ARITHMETIC(cl::sycl::cl_float4) +SYCL_ARITHMETIC(cl::sycl::cl_double2) +#undef SYCL_ARITHMETIC + +#define SYCL_UNPACKET_TRAITS(packet_type, unpacket_type, lengths) \ + template <> \ + struct unpacket_traits { \ + typedef unpacket_type type; \ + enum { size = lengths, vectorizable = true, alignment = Aligned16 }; \ + typedef packet_type half; \ + }; +SYCL_UNPACKET_TRAITS(cl::sycl::cl_float4, float, 4) +SYCL_UNPACKET_TRAITS(cl::sycl::cl_double2, double, 2) + +#undef SYCL_UNPACKET_TRAITS +#endif + +} // end namespace internal + +#endif + +namespace TensorSycl { +namespace internal { + +template +struct PacketWrapper; +// This function should never get called on the device +#ifndef SYCL_DEVICE_ONLY +template +struct PacketWrapper { + typedef typename ::Eigen::internal::unpacket_traits::type + Scalar; + template + EIGEN_DEVICE_FUNC static Scalar scalarize(Index, PacketReturnType &) { + eigen_assert(false && "THERE IS NO PACKETIZE VERSION FOR THE CHOSEN TYPE"); + abort(); + } + EIGEN_DEVICE_FUNC static PacketReturnType convert_to_packet_type(Scalar in, + Scalar) { + return ::Eigen::internal::template plset(in); + } + EIGEN_DEVICE_FUNC static void set_packet(PacketReturnType, Scalar *) { + eigen_assert(false && "THERE IS NO PACKETIZE VERSION FOR THE CHOSEN TYPE"); + abort(); + } +}; + +#elif defined(SYCL_DEVICE_ONLY) +template +struct PacketWrapper { + typedef typename ::Eigen::internal::unpacket_traits::type + Scalar; + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Scalar scalarize(Index index, PacketReturnType &in) { + switch (index) { + case 0: + return in.x(); + case 1: + return in.y(); + case 2: + return in.z(); + case 3: + return in.w(); + default: + //INDEX MUST BE BETWEEN 0 and 3.There is no abort function in SYCL kernel. so we cannot use abort here. + // The code will never reach here + __builtin_unreachable(); + } + __builtin_unreachable(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType convert_to_packet_type( + Scalar in, Scalar other) { + return PacketReturnType(in, other, other, other); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void set_packet(PacketReturnType &lhs, Scalar *rhs) { + lhs = PacketReturnType(rhs[0], rhs[1], rhs[2], rhs[3]); + } +}; + +template +struct PacketWrapper { + typedef typename ::Eigen::internal::unpacket_traits::type + Scalar; + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Scalar scalarize(Index, PacketReturnType &in) { + return in; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType convert_to_packet_type(Scalar in, + Scalar) { + return PacketReturnType(in); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void set_packet(PacketReturnType &lhs, Scalar *rhs) { + lhs = rhs[0]; + } +}; + +template +struct PacketWrapper { + typedef typename ::Eigen::internal::unpacket_traits::type + Scalar; + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Scalar scalarize(Index index, PacketReturnType &in) { + switch (index) { + case 0: + return in.x(); + case 1: + return in.y(); + default: + //INDEX MUST BE BETWEEN 0 and 1.There is no abort function in SYCL kernel. so we cannot use abort here. + // The code will never reach here + __builtin_unreachable(); + } + __builtin_unreachable(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType convert_to_packet_type( + Scalar in, Scalar other) { + return PacketReturnType(in, other); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void set_packet(PacketReturnType &lhs, Scalar *rhs) { + lhs = PacketReturnType(rhs[0], rhs[1]); + } +}; + +#endif + +} // end namespace internal +} // end namespace TensorSycl +} // end namespace Eigen + +#endif // EIGEN_INTEROP_HEADERS_SYCL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h new file mode 100644 index 0000000..9eb46bb --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h @@ -0,0 +1,303 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * MathFunctions.h + * + * \brief: + * MathFunctions + * + *****************************************************************/ + +#ifndef EIGEN_MATH_FUNCTIONS_SYCL_H +#define EIGEN_MATH_FUNCTIONS_SYCL_H +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// Make sure this is only available when targeting a GPU: we don't want to +// introduce conflicts between these packet_traits definitions and the ones +// we'll use on the host side (SSE, AVX, ...) +#if defined(SYCL_DEVICE_ONLY) +#define SYCL_PLOG(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type plog( \ + const packet_type& a) { \ + return cl::sycl::log(a); \ + } + +SYCL_PLOG(cl::sycl::cl_float4) +SYCL_PLOG(cl::sycl::cl_double2) +#undef SYCL_PLOG + +#define SYCL_PLOG1P(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type plog1p( \ + const packet_type& a) { \ + return cl::sycl::log1p(a); \ + } + +SYCL_PLOG1P(cl::sycl::cl_float4) +SYCL_PLOG1P(cl::sycl::cl_double2) +#undef SYCL_PLOG1P + +#define SYCL_PLOG10(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type plog10( \ + const packet_type& a) { \ + return cl::sycl::log10(a); \ + } + +SYCL_PLOG10(cl::sycl::cl_float4) +SYCL_PLOG10(cl::sycl::cl_double2) +#undef SYCL_PLOG10 + +#define SYCL_PEXP(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pexp( \ + const packet_type& a) { \ + return cl::sycl::exp(a); \ + } + +SYCL_PEXP(cl::sycl::cl_float4) +SYCL_PEXP(cl::sycl::cl_float) +SYCL_PEXP(cl::sycl::cl_double2) +#undef SYCL_PEXP + +#define SYCL_PEXPM1(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pexpm1( \ + const packet_type& a) { \ + return cl::sycl::expm1(a); \ + } + +SYCL_PEXPM1(cl::sycl::cl_float4) +SYCL_PEXPM1(cl::sycl::cl_double2) +#undef SYCL_PEXPM1 + +#define SYCL_PSQRT(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type psqrt( \ + const packet_type& a) { \ + return cl::sycl::sqrt(a); \ + } + +SYCL_PSQRT(cl::sycl::cl_float4) +SYCL_PSQRT(cl::sycl::cl_double2) +#undef SYCL_PSQRT + +#define SYCL_PRSQRT(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type prsqrt( \ + const packet_type& a) { \ + return cl::sycl::rsqrt(a); \ + } + +SYCL_PRSQRT(cl::sycl::cl_float4) +SYCL_PRSQRT(cl::sycl::cl_double2) +#undef SYCL_PRSQRT + +/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ +#define SYCL_PSIN(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type psin( \ + const packet_type& a) { \ + return cl::sycl::sin(a); \ + } + +SYCL_PSIN(cl::sycl::cl_float4) +SYCL_PSIN(cl::sycl::cl_double2) +#undef SYCL_PSIN + +/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ +#define SYCL_PCOS(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pcos( \ + const packet_type& a) { \ + return cl::sycl::cos(a); \ + } + +SYCL_PCOS(cl::sycl::cl_float4) +SYCL_PCOS(cl::sycl::cl_double2) +#undef SYCL_PCOS + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ +#define SYCL_PTAN(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type ptan( \ + const packet_type& a) { \ + return cl::sycl::tan(a); \ + } + +SYCL_PTAN(cl::sycl::cl_float4) +SYCL_PTAN(cl::sycl::cl_double2) +#undef SYCL_PTAN + +/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ +#define SYCL_PASIN(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pasin( \ + const packet_type& a) { \ + return cl::sycl::asin(a); \ + } + +SYCL_PASIN(cl::sycl::cl_float4) +SYCL_PASIN(cl::sycl::cl_double2) +#undef SYCL_PASIN + +/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ +#define SYCL_PACOS(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pacos( \ + const packet_type& a) { \ + return cl::sycl::acos(a); \ + } + +SYCL_PACOS(cl::sycl::cl_float4) +SYCL_PACOS(cl::sycl::cl_double2) +#undef SYCL_PACOS + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ +#define SYCL_PATAN(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type patan( \ + const packet_type& a) { \ + return cl::sycl::atan(a); \ + } + +SYCL_PATAN(cl::sycl::cl_float4) +SYCL_PATAN(cl::sycl::cl_double2) +#undef SYCL_PATAN + +/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ +#define SYCL_PSINH(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type psinh( \ + const packet_type& a) { \ + return cl::sycl::sinh(a); \ + } + +SYCL_PSINH(cl::sycl::cl_float4) +SYCL_PSINH(cl::sycl::cl_double2) +#undef SYCL_PSINH + +/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ +#define SYCL_PCOSH(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pcosh( \ + const packet_type& a) { \ + return cl::sycl::cosh(a); \ + } + +SYCL_PCOSH(cl::sycl::cl_float4) +SYCL_PCOSH(cl::sycl::cl_double2) +#undef SYCL_PCOSH + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ +#define SYCL_PTANH(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type ptanh( \ + const packet_type& a) { \ + return cl::sycl::tanh(a); \ + } + +SYCL_PTANH(cl::sycl::cl_float4) +SYCL_PTANH(cl::sycl::cl_double2) +#undef SYCL_PTANH + +#define SYCL_PCEIL(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pceil( \ + const packet_type& a) { \ + return cl::sycl::ceil(a); \ + } + +SYCL_PCEIL(cl::sycl::cl_float4) +SYCL_PCEIL(cl::sycl::cl_double2) +#undef SYCL_PCEIL + +#define SYCL_PROUND(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pround( \ + const packet_type& a) { \ + return cl::sycl::round(a); \ + } + +SYCL_PROUND(cl::sycl::cl_float4) +SYCL_PROUND(cl::sycl::cl_double2) +#undef SYCL_PROUND + +#define SYCL_PRINT(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type print( \ + const packet_type& a) { \ + return cl::sycl::rint(a); \ + } + +SYCL_PRINT(cl::sycl::cl_float4) +SYCL_PRINT(cl::sycl::cl_double2) +#undef SYCL_PRINT + +#define SYCL_FLOOR(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pfloor( \ + const packet_type& a) { \ + return cl::sycl::floor(a); \ + } + +SYCL_FLOOR(cl::sycl::cl_float4) +SYCL_FLOOR(cl::sycl::cl_double2) +#undef SYCL_FLOOR + +#define SYCL_PMIN(packet_type, expr) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pmin( \ + const packet_type& a, const packet_type& b) { \ + return expr; \ + } + +SYCL_PMIN(cl::sycl::cl_float4, cl::sycl::fmin(a, b)) +SYCL_PMIN(cl::sycl::cl_double2, cl::sycl::fmin(a, b)) +#undef SYCL_PMIN + +#define SYCL_PMAX(packet_type, expr) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pmax( \ + const packet_type& a, const packet_type& b) { \ + return expr; \ + } + +SYCL_PMAX(cl::sycl::cl_float4, cl::sycl::fmax(a, b)) +SYCL_PMAX(cl::sycl::cl_double2, cl::sycl::fmax(a, b)) +#undef SYCL_PMAX + +#define SYCL_PLDEXP(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type pldexp( \ + const packet_type& a, const packet_type& exponent) { \ + return cl::sycl::ldexp( \ + a, exponent.template convert()); \ + } + +SYCL_PLDEXP(cl::sycl::cl_float4) +SYCL_PLDEXP(cl::sycl::cl_double2) +#undef SYCL_PLDEXP + +#endif +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_SYCL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/PacketMath.h new file mode 100644 index 0000000..57495a1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/PacketMath.h @@ -0,0 +1,370 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * PacketMath.h + * + * \brief: + * PacketMath + * + *****************************************************************/ + +#ifndef EIGEN_PACKET_MATH_SYCL_H +#define EIGEN_PACKET_MATH_SYCL_H +#include + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +#ifdef SYCL_DEVICE_ONLY +#define SYCL_PLOAD(packet_type, AlignedType) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE packet_type \ + pload##AlignedType( \ + const typename unpacket_traits::type* from) { \ + auto ptr = cl::sycl::address_space_cast(from);\ + packet_type res{}; \ + res.load(0, ptr); \ + return res; \ + } + +SYCL_PLOAD(cl::sycl::cl_float4, u) +SYCL_PLOAD(cl::sycl::cl_float4, ) +SYCL_PLOAD(cl::sycl::cl_double2, u) +SYCL_PLOAD(cl::sycl::cl_double2, ) + +#undef SYCL_PLOAD + +#define SYCL_PSTORE(scalar, packet_type, alignment) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstore##alignment( \ + scalar* to, const packet_type& from) { \ + auto ptr = cl::sycl::address_space_cast(to);\ + from.store(0, ptr); \ + } + +SYCL_PSTORE(float, cl::sycl::cl_float4, ) +SYCL_PSTORE(float, cl::sycl::cl_float4, u) +SYCL_PSTORE(double, cl::sycl::cl_double2, ) +SYCL_PSTORE(double, cl::sycl::cl_double2, u) + +#undef SYCL_PSTORE + +#define SYCL_PSET1(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE packet_type pset1( \ + const typename unpacket_traits::type& from) { \ + return packet_type(from); \ + } + +// global space +SYCL_PSET1(cl::sycl::cl_float4) +SYCL_PSET1(cl::sycl::cl_double2) + +#undef SYCL_PSET1 + +template +struct get_base_packet { + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type + get_ploaddup(sycl_multi_pointer) {} + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type + get_pgather(sycl_multi_pointer, Index) {} +}; + +template <> +struct get_base_packet { + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE cl::sycl::cl_float4 get_ploaddup( + sycl_multi_pointer from) { + return cl::sycl::cl_float4(from[0], from[0], from[1], from[1]); + } + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE cl::sycl::cl_float4 get_pgather( + sycl_multi_pointer from, Index stride) { + return cl::sycl::cl_float4(from[0 * stride], from[1 * stride], + from[2 * stride], from[3 * stride]); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void set_pscatter( + sycl_multi_pointer to, const cl::sycl::cl_float4& from, Index stride) { + auto tmp = stride; + to[0] = from.x(); + to[tmp] = from.y(); + to[tmp += stride] = from.z(); + to[tmp += stride] = from.w(); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE cl::sycl::cl_float4 set_plset( + const float& a) { + return cl::sycl::cl_float4(static_cast(a), static_cast(a + 1), + static_cast(a + 2), + static_cast(a + 3)); + } +}; + +template <> +struct get_base_packet { + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE cl::sycl::cl_double2 + get_ploaddup(const sycl_multi_pointer from) { + return cl::sycl::cl_double2(from[0], from[0]); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE cl::sycl::cl_double2 get_pgather( + const sycl_multi_pointer from, Index stride) { + return cl::sycl::cl_double2(from[0 * stride], from[1 * stride]); + } + + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void set_pscatter( + sycl_multi_pointer to, const cl::sycl::cl_double2& from, Index stride) { + to[0] = from.x(); + to[stride] = from.y(); + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE cl::sycl::cl_double2 set_plset( + const double& a) { + return cl::sycl::cl_double2(static_cast(a), + static_cast(a + 1)); + } +}; + +#define SYCL_PLOAD_DUP_SPECILIZE(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type ploaddup( \ + const typename unpacket_traits::type* from) { \ + return get_base_packet::get_ploaddup(from); \ + } + +SYCL_PLOAD_DUP_SPECILIZE(cl::sycl::cl_float4) +SYCL_PLOAD_DUP_SPECILIZE(cl::sycl::cl_double2) + +#undef SYCL_PLOAD_DUP_SPECILIZE + +#define SYCL_PLSET(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE packet_type plset( \ + const typename unpacket_traits::type& a) { \ + return get_base_packet::set_plset(a); \ + } +SYCL_PLSET(cl::sycl::cl_float4) +SYCL_PLSET(cl::sycl::cl_double2) + +#undef SYCL_PLSET + +#define SYCL_PGATHER_SPECILIZE(scalar, packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE packet_type \ + pgather( \ + const typename unpacket_traits::type* from, Index stride) { \ + return get_base_packet::get_pgather(from, stride); \ + } + +SYCL_PGATHER_SPECILIZE(float, cl::sycl::cl_float4) +SYCL_PGATHER_SPECILIZE(double, cl::sycl::cl_double2) + +#undef SYCL_PGATHER_SPECILIZE + +#define SYCL_PSCATTER_SPECILIZE(scalar, packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pscatter( \ + typename unpacket_traits::type * to, \ + const packet_type& from, Index stride) { \ + get_base_packet::set_pscatter(to, from, stride); \ + } + +SYCL_PSCATTER_SPECILIZE(float, cl::sycl::cl_float4) +SYCL_PSCATTER_SPECILIZE(double, cl::sycl::cl_double2) + +#undef SYCL_PSCATTER_SPECILIZE + +#define SYCL_PMAD(packet_type) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE packet_type pmadd( \ + const packet_type& a, const packet_type& b, const packet_type& c) { \ + return cl::sycl::mad(a, b, c); \ + } + +SYCL_PMAD(cl::sycl::cl_float4) +SYCL_PMAD(cl::sycl::cl_double2) +#undef SYCL_PMAD + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float pfirst( + const cl::sycl::cl_float4& a) { + return a.x(); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double pfirst( + const cl::sycl::cl_double2& a) { + return a.x(); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float predux( + const cl::sycl::cl_float4& a) { + return a.x() + a.y() + a.z() + a.w(); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double predux( + const cl::sycl::cl_double2& a) { + return a.x() + a.y(); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float predux_max( + const cl::sycl::cl_float4& a) { + return cl::sycl::fmax(cl::sycl::fmax(a.x(), a.y()), + cl::sycl::fmax(a.z(), a.w())); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double predux_max( + const cl::sycl::cl_double2& a) { + return cl::sycl::fmax(a.x(), a.y()); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float predux_min( + const cl::sycl::cl_float4& a) { + return cl::sycl::fmin(cl::sycl::fmin(a.x(), a.y()), + cl::sycl::fmin(a.z(), a.w())); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double predux_min( + const cl::sycl::cl_double2& a) { + return cl::sycl::fmin(a.x(), a.y()); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float predux_mul( + const cl::sycl::cl_float4& a) { + return a.x() * a.y() * a.z() * a.w(); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double predux_mul( + const cl::sycl::cl_double2& a) { + return a.x() * a.y(); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_float4 +pabs(const cl::sycl::cl_float4& a) { + return cl::sycl::cl_float4(cl::sycl::fabs(a.x()), cl::sycl::fabs(a.y()), + cl::sycl::fabs(a.z()), cl::sycl::fabs(a.w())); +} +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_double2 +pabs(const cl::sycl::cl_double2& a) { + return cl::sycl::cl_double2(cl::sycl::fabs(a.x()), cl::sycl::fabs(a.y())); +} + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet sycl_pcmp_le(const Packet &a, + const Packet &b) { + return (a <= b).template as(); +} + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet sycl_pcmp_lt(const Packet &a, + const Packet &b) { + return (a < b).template as(); +} + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet sycl_pcmp_eq(const Packet &a, + const Packet &b) { + return (a == b).template as(); +} + +#define SYCL_PCMP(OP, TYPE) \ + template <> \ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE TYPE pcmp_##OP(const TYPE &a, \ + const TYPE &b) { \ + return sycl_pcmp_##OP(a, b); \ + } + +SYCL_PCMP(le, cl::sycl::cl_float4) +SYCL_PCMP(lt, cl::sycl::cl_float4) +SYCL_PCMP(eq, cl::sycl::cl_float4) +SYCL_PCMP(le, cl::sycl::cl_double2) +SYCL_PCMP(lt, cl::sycl::cl_double2) +SYCL_PCMP(eq, cl::sycl::cl_double2) +#undef SYCL_PCMP + +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void ptranspose( + PacketBlock& kernel) { + float tmp = kernel.packet[0].y(); + kernel.packet[0].y() = kernel.packet[1].x(); + kernel.packet[1].x() = tmp; + + tmp = kernel.packet[0].z(); + kernel.packet[0].z() = kernel.packet[2].x(); + kernel.packet[2].x() = tmp; + + tmp = kernel.packet[0].w(); + kernel.packet[0].w() = kernel.packet[3].x(); + kernel.packet[3].x() = tmp; + + tmp = kernel.packet[1].z(); + kernel.packet[1].z() = kernel.packet[2].y(); + kernel.packet[2].y() = tmp; + + tmp = kernel.packet[1].w(); + kernel.packet[1].w() = kernel.packet[3].y(); + kernel.packet[3].y() = tmp; + + tmp = kernel.packet[2].w(); + kernel.packet[2].w() = kernel.packet[3].z(); + kernel.packet[3].z() = tmp; +} + +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void ptranspose( + PacketBlock& kernel) { + double tmp = kernel.packet[0].y(); + kernel.packet[0].y() = kernel.packet[1].x(); + kernel.packet[1].x() = tmp; +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_float4 pblend( + const Selector::size>& ifPacket, + const cl::sycl::cl_float4& thenPacket, + const cl::sycl::cl_float4& elsePacket) { + cl::sycl::cl_int4 condition( + ifPacket.select[0] ? 0 : -1, ifPacket.select[1] ? 0 : -1, + ifPacket.select[2] ? 0 : -1, ifPacket.select[3] ? 0 : -1); + return cl::sycl::select(thenPacket, elsePacket, condition); +} + +template <> +inline cl::sycl::cl_double2 pblend( + const Selector::size>& ifPacket, + const cl::sycl::cl_double2& thenPacket, + const cl::sycl::cl_double2& elsePacket) { + cl::sycl::cl_long2 condition(ifPacket.select[0] ? 0 : -1, + ifPacket.select[1] ? 0 : -1); + return cl::sycl::select(thenPacket, elsePacket, condition); +} +#endif // SYCL_DEVICE_ONLY + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_SYCL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h new file mode 100644 index 0000000..f6f057b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h @@ -0,0 +1,87 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * TypeCasting.h + * + * \brief: + * TypeCasting + * + *****************************************************************/ + +#ifndef EIGEN_TYPE_CASTING_SYCL_H +#define EIGEN_TYPE_CASTING_SYCL_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +#ifdef SYCL_DEVICE_ONLY +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_int4 +pcast(const cl::sycl::cl_float4& a) { + return a + .template convert(); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; +}; + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_float4 +pcast(const cl::sycl::cl_int4& a) { + return a.template convert(); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 2, TgtCoeffRatio = 1 }; +}; + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_float4 +pcast( + const cl::sycl::cl_double2& a, const cl::sycl::cl_double2& b) { + auto a1 = a.template convert(); + auto b1 = b.template convert(); + return cl::sycl::cl_float4(a1.x(), a1.y(), b1.x(), b1.y()); +} + +template <> +struct type_casting_traits { + enum { VectorizedCast = 1, SrcCoeffRatio = 1, TgtCoeffRatio = 2 }; +}; + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE cl::sycl::cl_double2 +pcast(const cl::sycl::cl_float4& a) { + // Simply discard the second half of the input + return cl::sycl::cl_double2(a.x(), a.y()); +} + +#endif +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TYPE_CASTING_SYCL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/Complex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/Complex.h new file mode 100644 index 0000000..7f22e5c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/Complex.h @@ -0,0 +1,426 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Gael Guennebaud +// Copyright (C) 2016 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX32_ZVECTOR_H +#define EIGEN_COMPLEX32_ZVECTOR_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) +static Packet4ui p4ui_CONJ_XOR = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; //vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO); +#endif + +static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_ZERO_, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; +static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_ZERO_, 8);//{ 0x8000000000000000, 0x0000000000000000 }; + +struct Packet1cd +{ + EIGEN_STRONG_INLINE Packet1cd() {} + EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} + Packet2d v; +}; + +struct Packet2cf +{ + EIGEN_STRONG_INLINE Packet2cf() {} + EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12) + union { + Packet4f v; + Packet1cd cd[2]; + }; +#else + Packet4f v; +#endif +}; + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet2cf type; + typedef Packet2cf half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasBlend = 1, + HasSetLinear = 0 + }; +}; + + +template<> struct packet_traits > : default_packet_traits +{ + typedef Packet1cd type; + typedef Packet1cd half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 1, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits { + typedef std::complex type; + enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; + typedef Packet2cf half; + typedef Packet4f as_real; +}; +template<> struct unpacket_traits { + typedef std::complex type; + enum {size=1, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; + typedef Packet1cd half; + typedef Packet2d as_real; +}; + +/* Forward declaration */ +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel); + +/* complex first */ +template<> EIGEN_STRONG_INLINE Packet1cd pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu((const double*)from)); } +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } + +template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) +{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } + +template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather, Packet1cd>(const std::complex* from, Index stride EIGEN_UNUSED) +{ + return pload(from); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet1cd>(std::complex* to, const Packet1cd& from, Index stride EIGEN_UNUSED) +{ + pstore >(to, from); +} +template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); } +template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); } +template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } +template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd((Packet2d)vec_xor((Packet2d)a.v, (Packet2d)p2ul_CONJ_XOR2)); } +template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) +{ + Packet2d a_re, a_im, v1, v2; + + // Permute and multiply the real parts of a and b + a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI); + // Get the imaginary parts of a + a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO); + // multiply a_re * b + v1 = vec_madd(a_re, b.v, p2d_ZERO); + // multiply a_im * b and get the conjugate result + v2 = vec_madd(a_im, b.v, p2d_ZERO); + v2 = (Packet2d) vec_sld((Packet4ui)v2, (Packet4ui)v2, 8); + v2 = (Packet2d) vec_xor((Packet2d)v2, (Packet2d) p2ul_CONJ_XOR1); + + return Packet1cd(v1 + v2); +} +template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_or(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_xor(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet1cd pandnot (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v, vec_nor(b.v,b.v))); } +template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } +template<> EIGEN_STRONG_INLINE Packet1cd pcmp_eq(const Packet1cd& a, const Packet1cd& b) { + Packet2d eq = vec_cmpeq (a.v, b.v); + Packet2d tmp = { eq[1], eq[0] }; + return (Packet1cd)pand(eq, tmp); +} + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_ZVECTOR_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) +{ + EIGEN_ALIGN16 std::complex res; + pstore >(&res, a); + + return res; +} + +template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) +{ + return pfirst(a); +} +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) +{ + return pfirst(a); +} +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) + +template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) +{ + return pdiv_complex(a, b); +} + +EIGEN_STRONG_INLINE Packet1cd pcplxflip/**/(const Packet1cd& x) +{ + return Packet1cd(preverse(Packet2d(x.v))); +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); + kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); + kernel.packet[0].v = tmp; +} + +/* complex follows */ +template<> EIGEN_STRONG_INLINE Packet2cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload((const float*)from)); } +template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu((const float*)from)); } +template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } + +template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) +{ + EIGEN_ALIGN16 std::complex res[2]; + pstore >(res, a); + + return res[0]; +} + + +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12) +template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) +{ + Packet2cf res; + res.cd[0] = Packet1cd(vec_ld2f((const float *)&from)); + res.cd[1] = res.cd[0]; + return res; +} +#else +template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) +{ + Packet2cf res; + if((std::ptrdiff_t(&from) % 16) == 0) + res.v = pload((const float *)&from); + else + res.v = ploadu((const float *)&from); + res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI); + return res; +} +#endif + +template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) +{ + EIGEN_ALIGN16 std::complex af[2]; + af[0] = from[0*stride]; + af[1] = from[1*stride]; + return pload(af); +} +template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) +{ + EIGEN_ALIGN16 std::complex af[2]; + pstore >((std::complex *) af, from); + to[0*stride] = af[0]; + to[1*stride] = af[1]; +} + +template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub(a.v, b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(Packet4f(a.v))); } + +template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot(a.v,b.v)); } + +template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } + +template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_ZVECTOR_PREFETCH(addr); } + + +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12) + +template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) { + Packet4f eq = pcmp_eq (a.v, b.v); + Packet2cf res; + Packet2d tmp1 = { eq.v4f[0][1], eq.v4f[0][0] }; + Packet2d tmp2 = { eq.v4f[1][1], eq.v4f[1][0] }; + res.v.v4f[0] = pand(eq.v4f[0], tmp1); + res.v.v4f[1] = pand(eq.v4f[1], tmp2); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) +{ + Packet2cf res; + res.v.v4f[0] = pconj(Packet1cd(reinterpret_cast(a.v.v4f[0]))).v; + res.v.v4f[1] = pconj(Packet1cd(reinterpret_cast(a.v.v4f[1]))).v; + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) +{ + Packet2cf res; + res.v.v4f[0] = pmul(Packet1cd(reinterpret_cast(a.v.v4f[0])), Packet1cd(reinterpret_cast(b.v.v4f[0]))).v; + res.v.v4f[1] = pmul(Packet1cd(reinterpret_cast(a.v.v4f[1])), Packet1cd(reinterpret_cast(b.v.v4f[1]))).v; + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) +{ + Packet2cf res; + res.cd[0] = a.cd[1]; + res.cd[1] = a.cd[0]; + return res; +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) +{ + std::complex res; + Packet1cd b = padd(a.cd[0], a.cd[1]); + vec_st2f(b.v, (float*)&res); + return res; +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) +{ + std::complex res; + Packet1cd b = pmul(a.cd[0], a.cd[1]); + vec_st2f(b.v, (float*)&res); + return res; +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) + +template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) +{ + return pdiv_complex(a, b); +} + +EIGEN_STRONG_INLINE Packet2cf pcplxflip/**/(const Packet2cf& x) +{ + Packet2cf res; + res.cd[0] = pcplxflip(x.cd[0]); + res.cd[1] = pcplxflip(x.cd[1]); + return res; +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + Packet1cd tmp = kernel.packet[0].cd[1]; + kernel.packet[0].cd[1] = kernel.packet[1].cd[0]; + kernel.packet[1].cd[0] = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { + Packet2cf result; + const Selector<4> ifPacket4 = { ifPacket.select[0], ifPacket.select[0], ifPacket.select[1], ifPacket.select[1] }; + result.v = pblend(ifPacket4, thenPacket.v, elsePacket.v); + return result; +} +#else +template<> EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf& a, const Packet2cf& b) { + Packet4f eq = vec_cmpeq (a.v, b.v); + Packet4f tmp = { eq[1], eq[0], eq[3], eq[2] }; + return (Packet2cf)pand(eq, tmp); +} +template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf(pxor(a.v, reinterpret_cast(p4ui_CONJ_XOR))); } +template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) +{ + Packet4f a_re, a_im, prod, prod_im; + + // Permute and multiply the real parts of a and b + a_re = vec_perm(a.v, a.v, p16uc_PSET32_WODD); + + // Get the imaginary parts of a + a_im = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN); + + // multiply a_im * b and get the conjugate result + prod_im = a_im * b.v; + prod_im = pxor(prod_im, reinterpret_cast(p4ui_CONJ_XOR)); + // permute back to a proper order + prod_im = vec_perm(prod_im, prod_im, p16uc_COMPLEX32_REV); + + // multiply a_re * b, add prod_im + prod = pmadd(a_re, b.v, prod_im); + + return Packet2cf(prod); +} + +template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) +{ + Packet4f rev_a; + rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX32_REV2); + return Packet2cf(rev_a); +} + +template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) +{ + Packet4f b; + b = vec_sld(a.v, a.v, 8); + b = padd(a.v, b); + return pfirst(Packet2cf(b)); +} + +template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) +{ + Packet4f b; + Packet2cf prod; + b = vec_sld(a.v, a.v, 8); + prod = pmul(a, Packet2cf(b)); + + return pfirst(prod); +} + +EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) + +template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) +{ + return pdiv_complex(a, b); +} + +template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& x) +{ + return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV)); +} + +EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) +{ + Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); + kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); + kernel.packet[0].v = tmp; +} + +template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { + Packet2cf result; + result.v = reinterpret_cast(pblend(ifPacket, reinterpret_cast(thenPacket.v), reinterpret_cast(elsePacket.v))); + return result; +} +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX32_ZVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h new file mode 100644 index 0000000..1f2da26 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h @@ -0,0 +1,235 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007 Julien Pommier +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2016 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* The sin, cos, exp, and log functions of this file come from + * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ + */ + +#ifndef EIGEN_MATH_FUNCTIONS_ZVECTOR_H +#define EIGEN_MATH_FUNCTIONS_ZVECTOR_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) +static EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); +static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); +static EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); +static EIGEN_DECLARE_CONST_Packet4i(23, 23); + +static EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000); + +/* the smallest non denormalized float number */ +static EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000); +static EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000); // -1.f/0.f +static EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_nan, 0xffffffff); + +/* natural logarithm computed for 4 simultaneous float + return NaN for x <= 0 +*/ +static EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); + +static EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f); +static EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f); + +static EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); + +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f); +static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f); +#endif + +static EIGEN_DECLARE_CONST_Packet2d(1 , 1.0); +static EIGEN_DECLARE_CONST_Packet2d(2 , 2.0); +static EIGEN_DECLARE_CONST_Packet2d(half, 0.5); + +static EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437); +static EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303); + +static EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); + +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); + +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); + +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); +static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet2d pexp(const Packet2d& _x) +{ + Packet2d x = _x; + + Packet2d tmp, fx; + Packet2l emm0; + + // clamp x + x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo); + /* express exp(x) as exp(g + n*log(2)) */ + fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half); + + fx = vec_floor(fx); + + tmp = pmul(fx, p2d_cephes_exp_C1); + Packet2d z = pmul(fx, p2d_cephes_exp_C2); + x = psub(x, tmp); + x = psub(x, z); + + Packet2d x2 = pmul(x,x); + + Packet2d px = p2d_cephes_exp_p0; + px = pmadd(px, x2, p2d_cephes_exp_p1); + px = pmadd(px, x2, p2d_cephes_exp_p2); + px = pmul (px, x); + + Packet2d qx = p2d_cephes_exp_q0; + qx = pmadd(qx, x2, p2d_cephes_exp_q1); + qx = pmadd(qx, x2, p2d_cephes_exp_q2); + qx = pmadd(qx, x2, p2d_cephes_exp_q3); + + x = pdiv(px,psub(qx,px)); + x = pmadd(p2d_2,x,p2d_1); + + // build 2^n + emm0 = vec_ctsl(fx, 0); + + static const Packet2l p2l_1023 = { 1023, 1023 }; + static const Packet2ul p2ul_52 = { 52, 52 }; + + emm0 = emm0 + p2l_1023; + emm0 = emm0 << reinterpret_cast(p2ul_52); + + // Altivec's max & min operators just drop silent NaNs. Check NaNs in + // inputs and return them unmodified. + Packet2ul isnumber_mask = reinterpret_cast(vec_cmpeq(_x, _x)); + return vec_sel(_x, pmax(pmul(x, reinterpret_cast(emm0)), _x), + isnumber_mask); +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f pexp(const Packet4f& _x) +{ +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) + Packet4f x = _x; + + Packet4f tmp, fx; + Packet4i emm0; + + // clamp x + x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo); + + // express exp(x) as exp(g + n*log(2)) + fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half); + + fx = pfloor(fx); + + tmp = pmul(fx, p4f_cephes_exp_C1); + Packet4f z = pmul(fx, p4f_cephes_exp_C2); + x = psub(x, tmp); + x = psub(x, z); + + z = pmul(x,x); + + Packet4f y = p4f_cephes_exp_p0; + y = pmadd(y, x, p4f_cephes_exp_p1); + y = pmadd(y, x, p4f_cephes_exp_p2); + y = pmadd(y, x, p4f_cephes_exp_p3); + y = pmadd(y, x, p4f_cephes_exp_p4); + y = pmadd(y, x, p4f_cephes_exp_p5); + y = pmadd(y, z, x); + y = padd(y, p4f_1); + + // build 2^n + emm0 = (Packet4i){ (int)fx[0], (int)fx[1], (int)fx[2], (int)fx[3] }; + emm0 = emm0 + p4i_0x7f; + emm0 = emm0 << reinterpret_cast(p4i_23); + + return pmax(pmul(y, reinterpret_cast(emm0)), _x); +#else + Packet4f res; + res.v4f[0] = pexp(_x.v4f[0]); + res.v4f[1] = pexp(_x.v4f[1]); + return res; +#endif +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet2d psqrt(const Packet2d& x) +{ + return vec_sqrt(x); +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f psqrt(const Packet4f& x) +{ + Packet4f res; +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) + res = vec_sqrt(x); +#else + res.v4f[0] = psqrt(x.v4f[0]); + res.v4f[1] = psqrt(x.v4f[1]); +#endif + return res; +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet2d prsqrt(const Packet2d& x) { + return pset1(1.0) / psqrt(x); +} + +template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet4f prsqrt(const Packet4f& x) { + Packet4f res; +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) + res = pset1(1.0) / psqrt(x); +#else + res.v4f[0] = prsqrt(x.v4f[0]); + res.v4f[1] = prsqrt(x.v4f[1]); +#endif + return res; +} + +// Hyperbolic Tangent function. +template <> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f +ptanh(const Packet4f& x) { + return internal::generic_fast_tanh_float(x); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATH_FUNCTIONS_ZVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/PacketMath.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/PacketMath.h new file mode 100644 index 0000000..892e3a1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/arch/ZVector/PacketMath.h @@ -0,0 +1,1059 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Konstantinos Margaritis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_ZVECTOR_H +#define EIGEN_PACKET_MATH_ZVECTOR_H + +#include "../../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16 +#endif + +#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD +#endif + +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 +#endif + +typedef __vector int Packet4i; +typedef __vector unsigned int Packet4ui; +typedef __vector __bool int Packet4bi; +typedef __vector short int Packet8i; +typedef __vector unsigned char Packet16uc; +typedef __vector double Packet2d; +typedef __vector unsigned long long Packet2ul; +typedef __vector long long Packet2l; + +// Z14 has builtin support for float vectors +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) +typedef __vector float Packet4f; +#else +typedef struct { + Packet2d v4f[2]; +} Packet4f; +#endif + +typedef union { + numext::int32_t i[4]; + numext::uint32_t ui[4]; + numext::int64_t l[2]; + numext::uint64_t ul[2]; + double d[2]; + float f[4]; + Packet4i v4i; + Packet4ui v4ui; + Packet2l v2l; + Packet2ul v2ul; + Packet2d v2d; +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) + Packet4f v4f; +#endif +} Packet; + +// We don't want to write the same code all the time, but we need to reuse the constants +// and it doesn't really work to declare them global, so we define macros instead + +#define EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \ + Packet4i p4i_##NAME = reinterpret_cast(vec_splat_s32(X)) + +#define EIGEN_DECLARE_CONST_FAST_Packet2d(NAME,X) \ + Packet2d p2d_##NAME = reinterpret_cast(vec_splat_s64(X)) + +#define EIGEN_DECLARE_CONST_FAST_Packet2l(NAME,X) \ + Packet2l p2l_##NAME = reinterpret_cast(vec_splat_s64(X)) + +#define EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ + Packet4i p4i_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ + Packet2d p2d_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet2l(NAME,X) \ + Packet2l p2l_##NAME = pset1(X) + +// These constants are endian-agnostic +static EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,} +static EIGEN_DECLARE_CONST_FAST_Packet4i(ONE, 1); //{ 1, 1, 1, 1} + +static EIGEN_DECLARE_CONST_FAST_Packet2d(ZERO, 0); +static EIGEN_DECLARE_CONST_FAST_Packet2l(ZERO, 0); +static EIGEN_DECLARE_CONST_FAST_Packet2l(ONE, 1); + +static Packet2d p2d_ONE = { 1.0, 1.0 }; +static Packet2d p2d_ZERO_ = { numext::bit_cast(0x8000000000000000ull), + numext::bit_cast(0x8000000000000000ull) }; + +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) +#define EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \ + Packet4f p4f_##NAME = reinterpret_cast(vec_splat_s32(X)) + +#define EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ + Packet4f p4f_##NAME = pset1(X) + +#define EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ + const Packet4f p4f_##NAME = reinterpret_cast(pset1(X)) + +static EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0} +static EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1} +static Packet4f p4f_MZERO = { 0x80000000, 0x80000000, 0x80000000, 0x80000000}; +#endif + +static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 }; +static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 }; +static Packet2d p2d_COUNTDOWN = reinterpret_cast(vec_sld(reinterpret_cast(p2d_ZERO), reinterpret_cast(p2d_ONE), 8)); + +static Packet16uc p16uc_PSET64_HI = { 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 }; +static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 }; + +// Mask alignment +#define EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0 + +#define EIGEN_ALIGNED_PTR(x) ((std::ptrdiff_t)(x) & EIGEN_MASK_ALIGNMENT) + +// Handle endianness properly while loading constants +// Define global static constants: + +static Packet16uc p16uc_FORWARD = { 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15 }; +static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 }; +static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; + +static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; +static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; +/*static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16}; + +static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };*/ +static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 }; +/*static Packet16uc p16uc_TRANSPOSE64_HI = vec_add(p16uc_PSET64_HI, p16uc_HALF64_0_16); //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23}; +static Packet16uc p16uc_TRANSPOSE64_LO = vec_add(p16uc_PSET64_LO, p16uc_HALF64_0_16); //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};*/ +static Packet16uc p16uc_TRANSPOSE64_HI = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23}; +static Packet16uc p16uc_TRANSPOSE64_LO = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31}; + +static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; + +static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; + + +#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC + #define EIGEN_ZVECTOR_PREFETCH(ADDR) __builtin_prefetch(ADDR); +#else + #define EIGEN_ZVECTOR_PREFETCH(ADDR) asm( " pfd [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" ); +#endif + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet4i type; + typedef Packet4i half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasBlend = 1 + }; +}; + +template <> +struct packet_traits : default_packet_traits { + typedef Packet4f type; + typedef Packet4f half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasMin = 1, + HasMax = 1, + HasAbs = 1, + HasSin = 0, + HasCos = 0, + HasLog = 0, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasTanh = 1, + HasErf = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasNegate = 1, + HasBlend = 1 + }; +}; + +template<> struct packet_traits : default_packet_traits +{ + typedef Packet2d type; + typedef Packet2d half; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasMin = 1, + HasMax = 1, + HasAbs = 1, + HasSin = 0, + HasCos = 0, + HasLog = 0, + HasExp = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasRound = 1, + HasFloor = 1, + HasCeil = 1, + HasNegate = 1, + HasBlend = 1 + }; +}; + +template<> struct unpacket_traits { typedef int type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4i half; }; +template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4f half; }; +template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet2d half; }; + +/* Forward declaration */ +EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel); + +inline std::ostream & operator <<(std::ostream & s, const Packet4i & v) +{ + Packet vt; + vt.v4i = v; + s << vt.i[0] << ", " << vt.i[1] << ", " << vt.i[2] << ", " << vt.i[3]; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v) +{ + Packet vt; + vt.v4ui = v; + s << vt.ui[0] << ", " << vt.ui[1] << ", " << vt.ui[2] << ", " << vt.ui[3]; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet2l & v) +{ + Packet vt; + vt.v2l = v; + s << vt.l[0] << ", " << vt.l[1]; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet2ul & v) +{ + Packet vt; + vt.v2ul = v; + s << vt.ul[0] << ", " << vt.ul[1] ; + return s; +} + +inline std::ostream & operator <<(std::ostream & s, const Packet2d & v) +{ + Packet vt; + vt.v2d = v; + s << vt.d[0] << ", " << vt.d[1]; + return s; +} + +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ >= 12) +inline std::ostream & operator <<(std::ostream & s, const Packet4f & v) +{ + Packet vt; + vt.v4f = v; + s << vt.f[0] << ", " << vt.f[1] << ", " << vt.f[2] << ", " << vt.f[3]; + return s; +} +#endif + +template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_LOAD + Packet *vfrom; + vfrom = (Packet *) from; + return vfrom->v4i; +} + +template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_LOAD + Packet *vfrom; + vfrom = (Packet *) from; + return vfrom->v2d; +} + +template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_STORE + Packet *vto; + vto = (Packet *) to; + vto->v4i = from; +} + +template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_STORE + Packet *vto; + vto = (Packet *) to; + vto->v2d = from; +} + +template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) +{ + return vec_splats(from); +} +template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { + return vec_splats(from); +} + +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const int *a, + Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3) +{ + a3 = pload(a); + a0 = vec_splat(a3, 0); + a1 = vec_splat(a3, 1); + a2 = vec_splat(a3, 2); + a3 = vec_splat(a3, 3); +} + +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const double *a, + Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) +{ + a1 = pload(a); + a0 = vec_splat(a1, 0); + a1 = vec_splat(a1, 1); + a3 = pload(a+2); + a2 = vec_splat(a3, 0); + a3 = vec_splat(a3, 1); +} + +template<> EIGEN_DEVICE_FUNC inline Packet4i pgather(const int* from, Index stride) +{ + EIGEN_ALIGN16 int ai[4]; + ai[0] = from[0*stride]; + ai[1] = from[1*stride]; + ai[2] = from[2*stride]; + ai[3] = from[3*stride]; + return pload(ai); +} + +template<> EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) +{ + EIGEN_ALIGN16 double af[2]; + af[0] = from[0*stride]; + af[1] = from[1*stride]; + return pload(af); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(int* to, const Packet4i& from, Index stride) +{ + EIGEN_ALIGN16 int ai[4]; + pstore((int *)ai, from); + to[0*stride] = ai[0]; + to[1*stride] = ai[1]; + to[2*stride] = ai[2]; + to[3*stride] = ai[3]; +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, Index stride) +{ + EIGEN_ALIGN16 double af[2]; + pstore(af, from); + to[0*stride] = af[0]; + to[1*stride] = af[1]; +} + +template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return (a + b); } +template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return (a + b); } + +template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return (a - b); } +template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return (a - b); } + +template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { return (a * b); } +template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return (a * b); } + +template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& a, const Packet4i& b) { return (a / b); } +template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return (a / b); } + +template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return (-a); } +template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return (-a); } + +template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a, b), c); } +template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); } + +template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { return padd(pset1(a), p4i_COUNTDOWN); } +template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) { return padd(pset1(a), p2d_COUNTDOWN); } + +template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); } +template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); } +template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); } +template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); } +template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); } +template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); } + +template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return pand(a, vec_nor(b, b)); } +template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); } + +template<> EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) { return vec_round(a); } +template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { return vec_ceil(a); } +template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { return vec_floor(a); } + +template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) { return pload(from); } +template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) { return pload(from); } + + +template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) +{ + Packet4i p = pload(from); + return vec_perm(p, p, p16uc_DUPLICATE32_HI); +} + +template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) +{ + Packet2d p = pload(from); + return vec_perm(p, p, p16uc_PSET64_HI); +} + +template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) { pstore(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) { pstore(to, from); } + +template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { EIGEN_ZVECTOR_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { EIGEN_ZVECTOR_PREFETCH(addr); } + +template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { EIGEN_ALIGN16 int x[4]; pstore(x, a); return x[0]; } +template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { EIGEN_ALIGN16 double x[2]; pstore(x, a); return x[0]; } + +template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); +} + +template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE64)); +} + +template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); } +template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); } + +template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) +{ + Packet4i b, sum; + b = vec_sld(a, a, 8); + sum = padd(a, b); + b = vec_sld(sum, sum, 4); + sum = padd(sum, b); + return pfirst(sum); +} + +template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) +{ + Packet2d b, sum; + b = reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)); + sum = padd(a, b); + return pfirst(sum); +} + +// Other reduction functions: +// mul +template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) +{ + EIGEN_ALIGN16 int aux[4]; + pstore(aux, a); + return aux[0] * aux[1] * aux[2] * aux[3]; +} + +template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) +{ + return pfirst(pmul(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); +} + +// min +template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) +{ + Packet4i b, res; + b = pmin(a, vec_sld(a, a, 8)); + res = pmin(b, vec_sld(b, b, 4)); + return pfirst(res); +} + +template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) +{ + return pfirst(pmin(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); +} + +// max +template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) +{ + Packet4i b, res; + b = pmax(a, vec_sld(a, a, 8)); + res = pmax(b, vec_sld(b, b, 4)); + return pfirst(res); +} + +// max +template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) +{ + return pfirst(pmax(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet4i t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + Packet4i t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + Packet4i t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + Packet4i t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet2d t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI); + Packet2d t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO); + kernel.packet[0] = t0; + kernel.packet[1] = t1; +} + +template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { + Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] }; + Packet4ui mask = vec_cmpeq(select, reinterpret_cast(p4i_ONE)); + return vec_sel(elsePacket, thenPacket, mask); +} + + +template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { + Packet2ul select = { ifPacket.select[0], ifPacket.select[1] }; + Packet2ul mask = vec_cmpeq(select, reinterpret_cast(p2l_ONE)); + return vec_sel(elsePacket, thenPacket, mask); +} + +/* z13 has no vector float support so we emulate that with double + z14 has proper vector float support. +*/ +#if !defined(__ARCH__) || (defined(__ARCH__) && __ARCH__ < 12) +/* Helper function to simulate a vec_splat_packet4f + */ +template EIGEN_STRONG_INLINE Packet4f vec_splat_packet4f(const Packet4f& from) +{ + Packet4f splat; + switch (element) { + case 0: + splat.v4f[0] = vec_splat(from.v4f[0], 0); + splat.v4f[1] = splat.v4f[0]; + break; + case 1: + splat.v4f[0] = vec_splat(from.v4f[0], 1); + splat.v4f[1] = splat.v4f[0]; + break; + case 2: + splat.v4f[0] = vec_splat(from.v4f[1], 0); + splat.v4f[1] = splat.v4f[0]; + break; + case 3: + splat.v4f[0] = vec_splat(from.v4f[1], 1); + splat.v4f[1] = splat.v4f[0]; + break; + } + return splat; +} + +template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_LOAD + Packet4f vfrom; + vfrom.v4f[0] = vec_ld2f(&from[0]); + vfrom.v4f[1] = vec_ld2f(&from[2]); + return vfrom; +} + +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_STORE + vec_st2f(from.v4f[0], &to[0]); + vec_st2f(from.v4f[1], &to[2]); +} + +template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) +{ + Packet4f to; + to.v4f[0] = pset1(static_cast(from)); + to.v4f[1] = to.v4f[0]; + return to; +} + +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const float *a, + Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) +{ + a3 = pload(a); + a0 = vec_splat_packet4f<0>(a3); + a1 = vec_splat_packet4f<1>(a3); + a2 = vec_splat_packet4f<2>(a3); + a3 = vec_splat_packet4f<3>(a3); +} + +template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) +{ + EIGEN_ALIGN16 float ai[4]; + ai[0] = from[0*stride]; + ai[1] = from[1*stride]; + ai[2] = from[2*stride]; + ai[3] = from[3*stride]; + return pload(ai); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) +{ + EIGEN_ALIGN16 float ai[4]; + pstore((float *)ai, from); + to[0*stride] = ai[0]; + to[1*stride] = ai[1]; + to[2*stride] = ai[2]; + to[3*stride] = ai[3]; +} + +template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) +{ + Packet4f c; + c.v4f[0] = a.v4f[0] + b.v4f[0]; + c.v4f[1] = a.v4f[1] + b.v4f[1]; + return c; +} + +template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) +{ + Packet4f c; + c.v4f[0] = a.v4f[0] - b.v4f[0]; + c.v4f[1] = a.v4f[1] - b.v4f[1]; + return c; +} + +template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) +{ + Packet4f c; + c.v4f[0] = a.v4f[0] * b.v4f[0]; + c.v4f[1] = a.v4f[1] * b.v4f[1]; + return c; +} + +template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) +{ + Packet4f c; + c.v4f[0] = a.v4f[0] / b.v4f[0]; + c.v4f[1] = a.v4f[1] / b.v4f[1]; + return c; +} + +template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) +{ + Packet4f c; + c.v4f[0] = -a.v4f[0]; + c.v4f[1] = -a.v4f[1]; + return c; +} + +template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) +{ + Packet4f res; + res.v4f[0] = vec_madd(a.v4f[0], b.v4f[0], c.v4f[0]); + res.v4f[1] = vec_madd(a.v4f[1], b.v4f[1], c.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pmin(a.v4f[0], b.v4f[0]); + res.v4f[1] = pmin(a.v4f[1], b.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pmax(a.v4f[0], b.v4f[0]); + res.v4f[1] = pmax(a.v4f[1], b.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pand(a.v4f[0], b.v4f[0]); + res.v4f[1] = pand(a.v4f[1], b.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = por(a.v4f[0], b.v4f[0]); + res.v4f[1] = por(a.v4f[1], b.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pxor(a.v4f[0], b.v4f[0]); + res.v4f[1] = pxor(a.v4f[1], b.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pandnot(a.v4f[0], b.v4f[0]); + res.v4f[1] = pandnot(a.v4f[1], b.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) +{ + Packet4f res; + res.v4f[0] = vec_round(a.v4f[0]); + res.v4f[1] = vec_round(a.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) +{ + Packet4f res; + res.v4f[0] = vec_ceil(a.v4f[0]); + res.v4f[1] = vec_ceil(a.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) +{ + Packet4f res; + res.v4f[0] = vec_floor(a.v4f[0]); + res.v4f[1] = vec_floor(a.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) +{ + Packet4f p = pload(from); + p.v4f[1] = vec_splat(p.v4f[0], 1); + p.v4f[0] = vec_splat(p.v4f[0], 0); + return p; +} + +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { EIGEN_ALIGN16 float x[2]; vec_st2f(a.v4f[0], &x[0]); return x[0]; } + +template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) +{ + Packet4f rev; + rev.v4f[0] = preverse(a.v4f[1]); + rev.v4f[1] = preverse(a.v4f[0]); + return rev; +} + +template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) +{ + Packet4f res; + res.v4f[0] = pabs(a.v4f[0]); + res.v4f[1] = pabs(a.v4f[1]); + return res; +} + +template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) +{ + Packet2d sum; + sum = padd(a.v4f[0], a.v4f[1]); + double first = predux(sum); + return static_cast(first); +} + +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) +{ + // Return predux_mul of the subvectors product + return static_cast(pfirst(predux_mul(pmul(a.v4f[0], a.v4f[1])))); +} + +template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) +{ + Packet2d b, res; + b = pmin(a.v4f[0], a.v4f[1]); + res = pmin(b, reinterpret_cast(vec_sld(reinterpret_cast(b), reinterpret_cast(b), 8))); + return static_cast(pfirst(res)); +} + +template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) +{ + Packet2d b, res; + b = pmax(a.v4f[0], a.v4f[1]); + res = pmax(b, reinterpret_cast(vec_sld(reinterpret_cast(b), reinterpret_cast(b), 8))); + return static_cast(pfirst(res)); +} + +/* Split the Packet4f PacketBlock into 4 Packet2d PacketBlocks and transpose each one + */ +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + PacketBlock t0,t1,t2,t3; + // copy top-left 2x2 Packet2d block + t0.packet[0] = kernel.packet[0].v4f[0]; + t0.packet[1] = kernel.packet[1].v4f[0]; + + // copy top-right 2x2 Packet2d block + t1.packet[0] = kernel.packet[0].v4f[1]; + t1.packet[1] = kernel.packet[1].v4f[1]; + + // copy bottom-left 2x2 Packet2d block + t2.packet[0] = kernel.packet[2].v4f[0]; + t2.packet[1] = kernel.packet[3].v4f[0]; + + // copy bottom-right 2x2 Packet2d block + t3.packet[0] = kernel.packet[2].v4f[1]; + t3.packet[1] = kernel.packet[3].v4f[1]; + + // Transpose all 2x2 blocks + ptranspose(t0); + ptranspose(t1); + ptranspose(t2); + ptranspose(t3); + + // Copy back transposed blocks, but exchange t1 and t2 due to transposition + kernel.packet[0].v4f[0] = t0.packet[0]; + kernel.packet[0].v4f[1] = t2.packet[0]; + kernel.packet[1].v4f[0] = t0.packet[1]; + kernel.packet[1].v4f[1] = t2.packet[1]; + kernel.packet[2].v4f[0] = t1.packet[0]; + kernel.packet[2].v4f[1] = t3.packet[0]; + kernel.packet[3].v4f[0] = t1.packet[1]; + kernel.packet[3].v4f[1] = t3.packet[1]; +} + +template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { + Packet2ul select_hi = { ifPacket.select[0], ifPacket.select[1] }; + Packet2ul select_lo = { ifPacket.select[2], ifPacket.select[3] }; + Packet2ul mask_hi = vec_cmpeq(select_hi, reinterpret_cast(p2l_ONE)); + Packet2ul mask_lo = vec_cmpeq(select_lo, reinterpret_cast(p2l_ONE)); + Packet4f result; + result.v4f[0] = vec_sel(elsePacket.v4f[0], thenPacket.v4f[0], mask_hi); + result.v4f[1] = vec_sel(elsePacket.v4f[1], thenPacket.v4f[1], mask_lo); + return result; +} + +template<> Packet4f EIGEN_STRONG_INLINE pcmp_le(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pcmp_le(a.v4f[0], b.v4f[0]); + res.v4f[1] = pcmp_le(a.v4f[1], b.v4f[1]); + return res; +} + +template<> Packet4f EIGEN_STRONG_INLINE pcmp_lt(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pcmp_lt(a.v4f[0], b.v4f[0]); + res.v4f[1] = pcmp_lt(a.v4f[1], b.v4f[1]); + return res; +} + +template<> Packet4f EIGEN_STRONG_INLINE pcmp_eq(const Packet4f& a, const Packet4f& b) +{ + Packet4f res; + res.v4f[0] = pcmp_eq(a.v4f[0], b.v4f[0]); + res.v4f[1] = pcmp_eq(a.v4f[1], b.v4f[1]); + return res; +} + +#else +template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_LOAD + Packet *vfrom; + vfrom = (Packet *) from; + return vfrom->v4f; +} + +template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) +{ + // FIXME: No intrinsic yet + EIGEN_DEBUG_ALIGNED_STORE + Packet *vto; + vto = (Packet *) to; + vto->v4f = from; +} + +template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) +{ + return vec_splats(from); +} + +template<> EIGEN_STRONG_INLINE void +pbroadcast4(const float *a, + Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) +{ + a3 = pload(a); + a0 = vec_splat(a3, 0); + a1 = vec_splat(a3, 1); + a2 = vec_splat(a3, 2); + a3 = vec_splat(a3, 3); +} + +template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) +{ + EIGEN_ALIGN16 float af[4]; + af[0] = from[0*stride]; + af[1] = from[1*stride]; + af[2] = from[2*stride]; + af[3] = from[3*stride]; + return pload(af); +} + +template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) +{ + EIGEN_ALIGN16 float af[4]; + pstore((float*)af, from); + to[0*stride] = af[0]; + to[1*stride] = af[1]; + to[2*stride] = af[2]; + to[3*stride] = af[3]; +} + +template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return (a + b); } +template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return (a - b); } +template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return (a * b); } +template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) { return (a / b); } +template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return (-a); } +template<> EIGEN_STRONG_INLINE Packet4f pconj (const Packet4f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4f pmadd (const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a, b, c); } +template<> EIGEN_STRONG_INLINE Packet4f pmin (const Packet4f& a, const Packet4f& b) { return vec_min(a, b); } +template<> EIGEN_STRONG_INLINE Packet4f pmax (const Packet4f& a, const Packet4f& b) { return vec_max(a, b); } +template<> EIGEN_STRONG_INLINE Packet4f pand (const Packet4f& a, const Packet4f& b) { return vec_and(a, b); } +template<> EIGEN_STRONG_INLINE Packet4f por (const Packet4f& a, const Packet4f& b) { return vec_or(a, b); } +template<> EIGEN_STRONG_INLINE Packet4f pxor (const Packet4f& a, const Packet4f& b) { return vec_xor(a, b); } +template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); } +template<> EIGEN_STRONG_INLINE Packet4f pround (const Packet4f& a) { return vec_round(a); } +template<> EIGEN_STRONG_INLINE Packet4f pceil (const Packet4f& a) { return vec_ceil(a); } +template<> EIGEN_STRONG_INLINE Packet4f pfloor (const Packet4f& a) { return vec_floor(a); } +template<> EIGEN_STRONG_INLINE Packet4f pabs (const Packet4f& a) { return vec_abs(a); } +template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { EIGEN_ALIGN16 float x[4]; pstore(x, a); return x[0]; } + +template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) +{ + Packet4f p = pload(from); + return vec_perm(p, p, p16uc_DUPLICATE32_HI); +} + +template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) +{ + return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); +} + +template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) +{ + Packet4f b, sum; + b = vec_sld(a, a, 8); + sum = padd(a, b); + b = vec_sld(sum, sum, 4); + sum = padd(sum, b); + return pfirst(sum); +} + +// Other reduction functions: +// mul +template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) +{ + Packet4f prod; + prod = pmul(a, vec_sld(a, a, 8)); + return pfirst(pmul(prod, vec_sld(prod, prod, 4))); +} + +// min +template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) +{ + Packet4f b, res; + b = pmin(a, vec_sld(a, a, 8)); + res = pmin(b, vec_sld(b, b, 4)); + return pfirst(res); +} + +// max +template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) +{ + Packet4f b, res; + b = pmax(a, vec_sld(a, a, 8)); + res = pmax(b, vec_sld(b, b, 4)); + return pfirst(res); +} + +EIGEN_DEVICE_FUNC inline void +ptranspose(PacketBlock& kernel) { + Packet4f t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); + Packet4f t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); + Packet4f t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); + Packet4f t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); + kernel.packet[0] = vec_mergeh(t0, t2); + kernel.packet[1] = vec_mergel(t0, t2); + kernel.packet[2] = vec_mergeh(t1, t3); + kernel.packet[3] = vec_mergel(t1, t3); +} + +template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { + Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] }; + Packet4ui mask = vec_cmpeq(select, reinterpret_cast(p4i_ONE)); + return vec_sel(elsePacket, thenPacket, mask); +} + +#endif + +template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { EIGEN_ZVECTOR_PREFETCH(addr); } +template<> EIGEN_STRONG_INLINE Packet4f ploadu (const float* from) { return pload(from); } +template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) { pstore(to, from); } +template<> EIGEN_STRONG_INLINE Packet4f plset (const float& a) { return padd(pset1(a), p4f_COUNTDOWN); } + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_ZVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/AssignmentFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/AssignmentFunctors.h new file mode 100644 index 0000000..ca08991 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/AssignmentFunctors.h @@ -0,0 +1,173 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ASSIGNMENT_FUNCTORS_H +#define EIGEN_ASSIGNMENT_FUNCTORS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal + * \brief Template functor for scalar/packet assignment + * + */ +template struct assign_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a = b; } + + template + EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const + { internal::pstoret(a,b); } +}; + +// Empty overload for void type (used by PermutationMatrix) +template struct assign_op {}; + +template +struct functor_traits > { + enum { + Cost = NumTraits::ReadCost, + PacketAccess = is_same::value && packet_traits::Vectorizable && packet_traits::Vectorizable + }; +}; + +/** \internal + * \brief Template functor for scalar/packet assignment with addition + * + */ +template struct add_assign_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a += b; } + + template + EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const + { internal::pstoret(a,internal::padd(internal::ploadt(a),b)); } +}; +template +struct functor_traits > { + enum { + Cost = NumTraits::ReadCost + NumTraits::AddCost, + PacketAccess = is_same::value && packet_traits::HasAdd + }; +}; + +/** \internal + * \brief Template functor for scalar/packet assignment with subtraction + * + */ +template struct sub_assign_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a -= b; } + + template + EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const + { internal::pstoret(a,internal::psub(internal::ploadt(a),b)); } +}; +template +struct functor_traits > { + enum { + Cost = NumTraits::ReadCost + NumTraits::AddCost, + PacketAccess = is_same::value && packet_traits::HasSub + }; +}; + +/** \internal + * \brief Template functor for scalar/packet assignment with multiplication + * + */ +template +struct mul_assign_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; } + + template + EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const + { internal::pstoret(a,internal::pmul(internal::ploadt(a),b)); } +}; +template +struct functor_traits > { + enum { + Cost = NumTraits::ReadCost + NumTraits::MulCost, + PacketAccess = is_same::value && packet_traits::HasMul + }; +}; + +/** \internal + * \brief Template functor for scalar/packet assignment with diviving + * + */ +template struct div_assign_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a /= b; } + + template + EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const + { internal::pstoret(a,internal::pdiv(internal::ploadt(a),b)); } +}; +template +struct functor_traits > { + enum { + Cost = NumTraits::ReadCost + NumTraits::MulCost, + PacketAccess = is_same::value && packet_traits::HasDiv + }; +}; + +/** \internal + * \brief Template functor for scalar/packet assignment with swapping + * + * It works as follow. For a non-vectorized evaluation loop, we have: + * for(i) func(A.coeffRef(i), B.coeff(i)); + * where B is a SwapWrapper expression. The trick is to make SwapWrapper::coeff behaves like a non-const coeffRef. + * Actually, SwapWrapper might not even be needed since even if B is a plain expression, since it has to be writable + * B.coeff already returns a const reference to the underlying scalar value. + * + * The case of a vectorized loop is more tricky: + * for(i,j) func.assignPacket(&A.coeffRef(i,j), B.packet(i,j)); + * Here, B must be a SwapWrapper whose packet function actually returns a proxy object holding a Scalar*, + * the actual alignment and Packet type. + * + */ +template struct swap_assign_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const + { +#ifdef EIGEN_GPUCC + // FIXME is there some kind of cuda::swap? + Scalar t=b; const_cast(b)=a; a=t; +#else + using std::swap; + swap(a,const_cast(b)); +#endif + } +}; +template +struct functor_traits > { + enum { + Cost = 3 * NumTraits::ReadCost, + PacketAccess = + #if defined(EIGEN_VECTORIZE_AVX) && (EIGEN_CLANG_STRICT_LESS_THAN(8,0,0) || EIGEN_COMP_CLANGAPPLE) + // This is a partial workaround for a bug in clang generating bad code + // when mixing 256/512 bits loads and 128 bits moves. + // See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1684 + // https://bugs.llvm.org/show_bug.cgi?id=40815 + 0 + #else + packet_traits::Vectorizable + #endif + }; +}; + +} // namespace internal + +} // namespace Eigen + +#endif // EIGEN_ASSIGNMENT_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/BinaryFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/BinaryFunctors.h new file mode 100644 index 0000000..cd8ae9e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/BinaryFunctors.h @@ -0,0 +1,763 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BINARY_FUNCTORS_H +#define EIGEN_BINARY_FUNCTORS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +//---------- associative binary functors ---------- + +template +struct binary_op_base +{ + typedef Arg1 first_argument_type; + typedef Arg2 second_argument_type; +}; + +/** \internal + * \brief Template functor to compute the sum of two scalars + * + * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum() + */ +template +struct scalar_sum_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; +#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN + scalar_sum_op() { + EIGEN_SCALAR_BINARY_OP_PLUGIN + } +#endif + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const + { return internal::padd(a,b); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const + { return internal::predux(a); } +}; +template +struct functor_traits > { + enum { + Cost = (int(NumTraits::AddCost) + int(NumTraits::AddCost)) / 2, // rough estimate! + PacketAccess = is_same::value && packet_traits::HasAdd && packet_traits::HasAdd + // TODO vectorize mixed sum + }; +}; + + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool scalar_sum_op::operator() (const bool& a, const bool& b) const { return a || b; } + + +/** \internal + * \brief Template functor to compute the product of two scalars + * + * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() + */ +template +struct scalar_product_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; +#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN + scalar_product_op() { + EIGEN_SCALAR_BINARY_OP_PLUGIN + } +#endif + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const + { return internal::pmul(a,b); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const + { return internal::predux_mul(a); } +}; +template +struct functor_traits > { + enum { + Cost = (int(NumTraits::MulCost) + int(NumTraits::MulCost))/2, // rough estimate! + PacketAccess = is_same::value && packet_traits::HasMul && packet_traits::HasMul + // TODO vectorize mixed product + }; +}; + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool scalar_product_op::operator() (const bool& a, const bool& b) const { return a && b; } + + +/** \internal + * \brief Template functor to compute the conjugate product of two scalars + * + * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) + */ +template +struct scalar_conj_product_op : binary_op_base +{ + + enum { + Conj = NumTraits::IsComplex + }; + + typedef typename ScalarBinaryOpTraits::ReturnType result_type; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const + { return conj_helper().pmul(a,b); } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const + { return conj_helper().pmul(a,b); } +}; +template +struct functor_traits > { + enum { + Cost = NumTraits::MulCost, + PacketAccess = internal::is_same::value && packet_traits::HasMul + }; +}; + +/** \internal + * \brief Template functor to compute the min of two scalars + * + * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() + */ +template +struct scalar_min_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { + return internal::pmin(a, b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const + { + return internal::pmin(a,b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const + { + return internal::predux_min(a); + } +}; + +template +struct functor_traits > { + enum { + Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, + PacketAccess = internal::is_same::value && packet_traits::HasMin + }; +}; + +/** \internal + * \brief Template functor to compute the max of two scalars + * + * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() + */ +template +struct scalar_max_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { + return internal::pmax(a,b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const + { + return internal::pmax(a,b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const + { + return internal::predux_max(a); + } +}; + +template +struct functor_traits > { + enum { + Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, + PacketAccess = internal::is_same::value && packet_traits::HasMax + }; +}; + +/** \internal + * \brief Template functors for comparison of two scalars + * \todo Implement packet-comparisons + */ +template +struct scalar_cmp_op; + +template +struct functor_traits> { + enum { + Cost = (NumTraits::AddCost + NumTraits::AddCost) / 2, + PacketAccess = (UseTypedComparators || is_same::value) && is_same::value && + packet_traits::HasCmp + }; +}; + +template +struct typed_cmp_helper { + static constexpr bool SameType = is_same::value; + static constexpr bool IsNumeric = is_arithmetic::Real>::value; + static constexpr bool UseTyped = UseTypedComparators && SameType && IsNumeric; + using type = typename conditional::type; +}; + +template +using cmp_return_t = typename typed_cmp_helper::type; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return a == b ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pand(pcmp_eq(a, b), cst_one); + } +}; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return a < b ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pand(pcmp_lt(a, b), cst_one); + } +}; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return a <= b ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pand(cst_one, pcmp_le(a, b)); + } +}; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return a > b ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pand(cst_one, pcmp_lt(b, a)); + } +}; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return a >= b ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pand(cst_one, pcmp_le(b, a)); + } +}; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return !(a <= b || b <= a) ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pandnot(cst_one, por(pcmp_le(a, b), pcmp_le(b, a))); + } +}; + +template +struct scalar_cmp_op : binary_op_base { + using result_type = cmp_return_t; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const LhsScalar& a, const RhsScalar& b) const { + return a != b ? result_type(1) : result_type(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(result_type(1)); + return pandnot(cst_one, pcmp_eq(a, b)); + } +}; + +/** \internal + * \brief Template functor to compute the hypot of two \b positive \b and \b real scalars + * + * \sa MatrixBase::stableNorm(), class Redux + */ +template +struct scalar_hypot_op : binary_op_base +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar &x, const Scalar &y) const + { + // This functor is used by hypotNorm only for which it is faster to first apply abs + // on all coefficients prior to reduction through hypot. + // This way we avoid calling abs on positive and real entries, and this also permits + // to seamlessly handle complexes. Otherwise we would have to handle both real and complexes + // through the same functor... + return internal::positive_real_hypot(x,y); + } +}; +template +struct functor_traits > { + enum + { + Cost = 3 * NumTraits::AddCost + + 2 * NumTraits::MulCost + + 2 * scalar_div_cost::value, + PacketAccess = false + }; +}; + +/** \internal + * \brief Template functor to compute the pow of two scalars + * See the specification of pow in https://en.cppreference.com/w/cpp/numeric/math/pow + */ +template +struct scalar_pow_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; +#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN + scalar_pow_op() { + typedef Scalar LhsScalar; + typedef Exponent RhsScalar; + EIGEN_SCALAR_BINARY_OP_PLUGIN + } +#endif + + EIGEN_DEVICE_FUNC + inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const + { + return generic_pow(a,b); + } +}; + +template +struct functor_traits > { + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = (!NumTraits::IsComplex && !NumTraits::IsInteger && + packet_traits::HasExp && packet_traits::HasLog && + packet_traits::HasRound && packet_traits::HasCmp && + // Temporarily disable packet access for half/bfloat16 until + // accuracy is improved. + !is_same::value && !is_same::value + ) + }; +}; + +//---------- non associative binary functors ---------- + +/** \internal + * \brief Template functor to compute the difference of two scalars + * + * \sa class CwiseBinaryOp, MatrixBase::operator- + */ +template +struct scalar_difference_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; +#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN + scalar_difference_op() { + EIGEN_SCALAR_BINARY_OP_PLUGIN + } +#endif + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const + { return internal::psub(a,b); } +}; +template +struct functor_traits > { + enum { + Cost = (int(NumTraits::AddCost) + int(NumTraits::AddCost)) / 2, + PacketAccess = is_same::value && packet_traits::HasSub && packet_traits::HasSub + }; +}; + +template ::type>::IsInteger> +struct maybe_raise_div_by_zero { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Packet x) { + EIGEN_UNUSED_VARIABLE(x); + } +}; + +#ifndef EIGEN_GPU_COMPILE_PHASE +template +struct maybe_raise_div_by_zero { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Packet x) { + if (EIGEN_PREDICT_FALSE(predux_any(pcmp_eq(x, pzero(x))))) { + // Use volatile variables to force a division by zero, which will + // result in the default platform behaviour (usually SIGFPE). + volatile typename unpacket_traits::type zero = 0; + volatile typename unpacket_traits::type val = 1; + val = val / zero; + } + } +}; +#endif + +/** \internal + * \brief Template functor to compute the quotient of two scalars + * + * \sa class CwiseBinaryOp, Cwise::operator/() + */ +template +struct scalar_quotient_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; +#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN + scalar_quotient_op() { + EIGEN_SCALAR_BINARY_OP_PLUGIN + } +#endif + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { + maybe_raise_div_by_zero::run(b); + return internal::pdiv(a,b); + } +}; +template +struct functor_traits > { + typedef typename scalar_quotient_op::result_type result_type; + enum { + PacketAccess = is_same::value && packet_traits::HasDiv && packet_traits::HasDiv, + Cost = scalar_div_cost::value + }; +}; + +/** \internal + * \brief Template functor to compute the and of two scalars as if they were booleans + * + * \sa class CwiseBinaryOp, ArrayBase::operator&& + */ +template +struct scalar_boolean_and_op { + using result_type = Scalar; + // `false` any value `a` that satisfies `a == Scalar(0)` + // `true` is the complement of `false` + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { + return (a != Scalar(0)) && (b != Scalar(0)) ? Scalar(1) : Scalar(0); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(Scalar(1)); + // and(a,b) == !or(!a,!b) + Packet not_a = pcmp_eq(a, pzero(a)); + Packet not_b = pcmp_eq(b, pzero(b)); + Packet a_nand_b = por(not_a, not_b); + return pandnot(cst_one, a_nand_b); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasCmp }; +}; + +/** \internal + * \brief Template functor to compute the or of two scalars as if they were booleans + * + * \sa class CwiseBinaryOp, ArrayBase::operator|| + */ +template +struct scalar_boolean_or_op { + using result_type = Scalar; + // `false` any value `a` that satisfies `a == Scalar(0)` + // `true` is the complement of `false` + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { + return (a != Scalar(0)) || (b != Scalar(0)) ? Scalar(1) : Scalar(0); + } + template + EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(Scalar(1)); + // if or(a,b) == 0, then a == 0 and b == 0 + // or(a,b) == !nor(a,b) + Packet a_nor_b = pcmp_eq(por(a, b), pzero(a)); + return pandnot(cst_one, a_nor_b); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasCmp }; +}; + +/** \internal + * \brief Template functor to compute the xor of two scalars as if they were booleans + * + * \sa class CwiseBinaryOp, ArrayBase::operator^ + */ +template +struct scalar_boolean_xor_op { + using result_type = Scalar; + // `false` any value `a` that satisfies `a == Scalar(0)` + // `true` is the complement of `false` + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { + return (a != Scalar(0)) != (b != Scalar(0)) ? Scalar(1) : Scalar(0); + } + template + EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + const Packet cst_one = pset1(Scalar(1)); + // xor(a,b) == xor(!a,!b) + Packet not_a = pcmp_eq(a, pzero(a)); + Packet not_b = pcmp_eq(b, pzero(b)); + Packet a_xor_b = pxor(not_a, not_b); + return pand(cst_one, a_xor_b); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasCmp }; +}; + +template ::IsComplex> +struct bitwise_binary_impl { + static constexpr size_t Size = sizeof(Scalar); + using uint_t = typename numext::get_integer_by_size::unsigned_type; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_and(const Scalar& a, const Scalar& b) { + uint_t a_as_uint = numext::bit_cast(a); + uint_t b_as_uint = numext::bit_cast(b); + uint_t result = a_as_uint & b_as_uint; + return numext::bit_cast(result); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_or(const Scalar& a, const Scalar& b) { + uint_t a_as_uint = numext::bit_cast(a); + uint_t b_as_uint = numext::bit_cast(b); + uint_t result = a_as_uint | b_as_uint; + return numext::bit_cast(result); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_xor(const Scalar& a, const Scalar& b) { + uint_t a_as_uint = numext::bit_cast(a); + uint_t b_as_uint = numext::bit_cast(b); + uint_t result = a_as_uint ^ b_as_uint; + return numext::bit_cast(result); + } +}; + +template +struct bitwise_binary_impl { + using Real = typename NumTraits::Real; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_and(const Scalar& a, const Scalar& b) { + Real real_result = bitwise_binary_impl::run_and(numext::real(a), numext::real(b)); + Real imag_result = bitwise_binary_impl::run_and(numext::imag(a), numext::imag(b)); + return Scalar(real_result, imag_result); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_or(const Scalar& a, const Scalar& b) { + Real real_result = bitwise_binary_impl::run_or(numext::real(a), numext::real(b)); + Real imag_result = bitwise_binary_impl::run_or(numext::imag(a), numext::imag(b)); + return Scalar(real_result, imag_result); + } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_xor(const Scalar& a, const Scalar& b) { + Real real_result = bitwise_binary_impl::run_xor(numext::real(a), numext::real(b)); + Real imag_result = bitwise_binary_impl::run_xor(numext::imag(a), numext::imag(b)); + return Scalar(real_result, imag_result); + } +}; + +/** \internal + * \brief Template functor to compute the bitwise and of two scalars + * + * \sa class CwiseBinaryOp, ArrayBase::operator& + */ +template +struct scalar_bitwise_and_op { + EIGEN_STATIC_ASSERT(!NumTraits::RequireInitialization, + BITWISE OPERATIONS MAY ONLY BE PERFORMED ON PLAIN DATA TYPES) + EIGEN_STATIC_ASSERT((!internal::is_same::value), DONT USE BITWISE OPS ON BOOLEAN TYPES) + using result_type = Scalar; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { + return bitwise_binary_impl::run_and(a, b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + return pand(a, b); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = true }; +}; + +/** \internal + * \brief Template functor to compute the bitwise or of two scalars + * + * \sa class CwiseBinaryOp, ArrayBase::operator| + */ +template +struct scalar_bitwise_or_op { + EIGEN_STATIC_ASSERT(!NumTraits::RequireInitialization, + BITWISE OPERATIONS MAY ONLY BE PERFORMED ON PLAIN DATA TYPES) + EIGEN_STATIC_ASSERT((!internal::is_same::value), DONT USE BITWISE OPS ON BOOLEAN TYPES) + using result_type = Scalar; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { + return bitwise_binary_impl::run_or(a, b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + return por(a, b); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = true }; +}; + +/** \internal + * \brief Template functor to compute the bitwise xor of two scalars + * + * \sa class CwiseBinaryOp, ArrayBase::operator^ + */ +template +struct scalar_bitwise_xor_op { + EIGEN_STATIC_ASSERT(!NumTraits::RequireInitialization, + BITWISE OPERATIONS MAY ONLY BE PERFORMED ON PLAIN DATA TYPES) + EIGEN_STATIC_ASSERT((!internal::is_same::value), DONT USE BITWISE OPS ON BOOLEAN TYPES) + using result_type = Scalar; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a, const Scalar& b) const { + return bitwise_binary_impl::run_xor(a, b); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const { + return pxor(a, b); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = true }; +}; + +/** \internal + * \brief Template functor to compute the absolute difference of two scalars + * + * \sa class CwiseBinaryOp, MatrixBase::absolute_difference + */ +template +struct scalar_absolute_difference_op : binary_op_base +{ + typedef typename ScalarBinaryOpTraits::ReturnType result_type; +#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN + scalar_absolute_difference_op() { + EIGEN_SCALAR_BINARY_OP_PLUGIN + } +#endif + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const + { return numext::absdiff(a,b); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const + { return internal::pabsdiff(a,b); } +}; +template +struct functor_traits > { + enum { + Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, + PacketAccess = is_same::value && packet_traits::HasAbsDiff + }; +}; + + +template +struct scalar_atan2_op { + using Scalar = LhsScalar; + + static constexpr bool Enable = is_same::value && !NumTraits::IsInteger && !NumTraits::IsComplex; + EIGEN_STATIC_ASSERT(Enable, "LhsScalar and RhsScalar must be the same non-integer, non-complex type") + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& y, const Scalar& x) const { + return numext::atan2(y, x); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& y, const Packet& x) const { + return internal::patan2(y, x); + } +}; + +template + struct functor_traits> { + using Scalar = LhsScalar; + enum { + PacketAccess = is_same::value && packet_traits::HasATan && packet_traits::HasDiv && !NumTraits::IsInteger && !NumTraits::IsComplex, + Cost = int(scalar_div_cost::value) + int(functor_traits>::Cost) + }; +}; + +//---------- binary functors bound to a constant, thus appearing as a unary functor ---------- + +// The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value. +// They are analogues to std::binder1st/binder2nd but with the following differences: +// - they are compatible with packetOp +// - they are portable across C++ versions (the std::binder* are deprecated in C++11) +template struct bind1st_op : BinaryOp { + + typedef typename BinaryOp::first_argument_type first_argument_type; + typedef typename BinaryOp::second_argument_type second_argument_type; + typedef typename BinaryOp::result_type result_type; + + EIGEN_DEVICE_FUNC explicit bind1st_op(const first_argument_type &val) : m_value(val) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const + { return BinaryOp::packetOp(internal::pset1(m_value), b); } + + first_argument_type m_value; +}; +template struct functor_traits > : functor_traits {}; + + +template struct bind2nd_op : BinaryOp { + + typedef typename BinaryOp::first_argument_type first_argument_type; + typedef typename BinaryOp::second_argument_type second_argument_type; + typedef typename BinaryOp::result_type result_type; + + EIGEN_DEVICE_FUNC explicit bind2nd_op(const second_argument_type &val) : m_value(val) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return BinaryOp::packetOp(a,internal::pset1(m_value)); } + + second_argument_type m_value; +}; +template struct functor_traits > : functor_traits {}; + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BINARY_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/NullaryFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/NullaryFunctors.h new file mode 100644 index 0000000..4943d87 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/NullaryFunctors.h @@ -0,0 +1,223 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_NULLARY_FUNCTORS_H +#define EIGEN_NULLARY_FUNCTORS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct scalar_constant_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1(m_other); } + const Scalar m_other; +}; +template +struct functor_traits > +{ enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */, + PacketAccess = packet_traits::Vectorizable, IsRepeatable = true }; }; + +template struct scalar_identity_op { + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); } +}; +template +struct functor_traits > +{ enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; + +template struct linspaced_op_impl; + +template +struct linspaced_op_impl +{ + typedef typename NumTraits::Real RealScalar; + + EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) : + m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : Scalar((high-low)/RealScalar(num_steps-1))), + m_flip(numext::abs(high) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { + if(m_flip) + return (i==0)? m_low : Scalar(m_high - RealScalar(m_size1-i)*m_step); + else + return (i==m_size1)? m_high : Scalar(m_low + RealScalar(i)*m_step); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const + { + // Principle: + // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) + if(m_flip) + { + Packet pi = plset(Scalar(i-m_size1)); + Packet res = padd(pset1(m_high), pmul(pset1(m_step), pi)); + if (EIGEN_PREDICT_TRUE(i != 0)) return res; + Packet mask = pcmp_lt(pset1(0), plset(0)); + return pselect(mask, res, pset1(m_low)); + } + else + { + Packet pi = plset(Scalar(i)); + Packet res = padd(pset1(m_low), pmul(pset1(m_step), pi)); + if(EIGEN_PREDICT_TRUE(i != m_size1-unpacket_traits::size+1)) return res; + Packet mask = pcmp_lt(plset(0), pset1(unpacket_traits::size-1)); + return pselect(mask, res, pset1(m_high)); + } + } + + const Scalar m_low; + const Scalar m_high; + const Index m_size1; + const Scalar m_step; + const bool m_flip; +}; + +template +struct linspaced_op_impl +{ + EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) : + m_low(low), + m_multiplier((high-low)/convert_index(num_steps<=1 ? 1 : num_steps-1)), + m_divisor(convert_index((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))), + m_use_divisor(num_steps>1 && (numext::abs(high-low)+1) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Scalar operator() (IndexType i) const + { + if(m_use_divisor) return m_low + convert_index(i)/m_divisor; + else return m_low + convert_index(i)*m_multiplier; + } + + const Scalar m_low; + const Scalar m_multiplier; + const Scalar m_divisor; + const bool m_use_divisor; +}; + +// ----- Linspace functor ---------------------------------------------------------------- + +// Forward declaration (we default to random access which does not really give +// us a speed gain when using packet access but it allows to use the functor in +// nested expressions). +template struct linspaced_op; +template struct functor_traits< linspaced_op > +{ + enum + { + Cost = 1, + PacketAccess = (!NumTraits::IsInteger) && packet_traits::HasSetLinear && packet_traits::HasBlend, + /*&& ((!NumTraits::IsInteger) || packet_traits::HasDiv),*/ // <- vectorization for integer is currently disabled + IsRepeatable = true + }; +}; +template struct linspaced_op +{ + EIGEN_DEVICE_FUNC linspaced_op(const Scalar& low, const Scalar& high, Index num_steps) + : impl((num_steps==1 ? high : low),high,num_steps) + {} + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.template packetOp(i); } + + // This proxy object handles the actual required temporaries and the different + // implementations (integer vs. floating point). + const linspaced_op_impl::IsInteger> impl; +}; + +template +struct equalspaced_op { + typedef typename NumTraits::Real RealScalar; + + EIGEN_DEVICE_FUNC equalspaced_op(const Scalar& start, const Scalar& step) : m_start(start), m_step(step) {} + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType i) const { + return m_start + m_step * static_cast(i); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(IndexType i) const { + const Packet cst_start = pset1(m_start); + const Packet cst_step = pset1(m_step); + const Packet cst_lin0 = plset(Scalar(0)); + const Packet cst_offset = pmadd(cst_lin0, cst_step, cst_start); + + Packet i_packet = pset1(static_cast(i)); + return pmadd(i_packet, cst_step, cst_offset); + } + const Scalar m_start; + const Scalar m_step; +}; + +template +struct functor_traits > { + enum { + Cost = NumTraits::AddCost + NumTraits::MulCost, + PacketAccess = + packet_traits::HasSetLinear && packet_traits::HasMul && packet_traits::HasAdd, + IsRepeatable = true + }; +}; + +// Linear access is automatically determined from the operator() prototypes available for the given functor. +// If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently +// and linear access is not possible. In all other cases, linear access is enabled. +// Users should not have to deal with this structure. +template struct functor_has_linear_access { enum { ret = !has_binary_operator::value }; }; + +// For unreliable compilers, let's specialize the has_*ary_operator +// helpers so that at least built-in nullary functors work fine. +#if !( EIGEN_COMP_MSVC || EIGEN_COMP_GNUC || (EIGEN_COMP_ICC>=1600)) +template +struct has_nullary_operator,IndexType> { enum { value = 1}; }; +template +struct has_unary_operator,IndexType> { enum { value = 0}; }; +template +struct has_binary_operator,IndexType> { enum { value = 0}; }; + +template +struct has_nullary_operator,IndexType> { enum { value = 0}; }; +template +struct has_unary_operator,IndexType> { enum { value = 0}; }; +template +struct has_binary_operator,IndexType> { enum { value = 1}; }; + +template +struct has_nullary_operator,IndexType> { enum { value = 0}; }; +template +struct has_unary_operator,IndexType> { enum { value = 1}; }; +template +struct has_binary_operator,IndexType> { enum { value = 0}; }; + +template +struct has_nullary_operator,IndexType> { enum { value = 1}; }; +template +struct has_unary_operator,IndexType> { enum { value = 0}; }; +template +struct has_binary_operator,IndexType> { enum { value = 0}; }; +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_NULLARY_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/StlFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/StlFunctors.h new file mode 100644 index 0000000..b8b842b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/StlFunctors.h @@ -0,0 +1,126 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STL_FUNCTORS_H +#define EIGEN_STL_FUNCTORS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +// default functor traits for STL functors: + +template +struct functor_traits > +{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 1, PacketAccess = false }; }; + +#if (EIGEN_COMP_CXXVER < 17) +// std::unary_negate is deprecated since c++17 and will be removed in c++20 +template +struct functor_traits > +{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; + +// std::binary_negate is deprecated since c++17 and will be removed in c++20 +template +struct functor_traits > +{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; +#endif + +#ifdef EIGEN_STDEXT_SUPPORT + +template +struct functor_traits > +{ enum { Cost = 0, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = 0, PacketAccess = false }; }; + +template +struct functor_traits > > +{ enum { Cost = 0, PacketAccess = false }; }; + +template +struct functor_traits > > +{ enum { Cost = 0, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; + +template +struct functor_traits > +{ enum { Cost = functor_traits::Cost + functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; + +#endif // EIGEN_STDEXT_SUPPORT + +// allow to add new functors and specializations of functor_traits from outside Eigen. +// this macro is really needed because functor_traits must be specialized after it is declared but before it is used... +#ifdef EIGEN_FUNCTORS_PLUGIN +#include EIGEN_FUNCTORS_PLUGIN +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_STL_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/TernaryFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/TernaryFunctors.h new file mode 100644 index 0000000..8f9492b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/TernaryFunctors.h @@ -0,0 +1,49 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Eugene Brevdo +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TERNARY_FUNCTORS_H +#define EIGEN_TERNARY_FUNCTORS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +//---------- associative ternary functors ---------- + +template +struct scalar_boolean_select_op { + static constexpr bool ThenElseAreSame = is_same::value; + EIGEN_STATIC_ASSERT(ThenElseAreSame, THEN AND ELSE MUST BE SAME TYPE) + using Scalar = ThenScalar; + using result_type = Scalar; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const ThenScalar& a, const ElseScalar& b, const ConditionScalar& cond) const { + return cond == ConditionScalar(0) ? b : a; + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b, const Packet& cond) const { + return pselect(pcmp_eq(cond, pzero(cond)), b, a); + } +}; + +template + struct functor_traits> { + using Scalar = ThenScalar; + enum { + Cost = 1, + PacketAccess = is_same::value && is_same::value && packet_traits::HasCmp + }; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TERNARY_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/UnaryFunctors.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/UnaryFunctors.h new file mode 100644 index 0000000..fcd81c1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/functors/UnaryFunctors.h @@ -0,0 +1,1278 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_UNARY_FUNCTORS_H +#define EIGEN_UNARY_FUNCTORS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal + * \brief Template functor to compute the opposite of a scalar + * + * \sa class CwiseUnaryOp, MatrixBase::operator- + */ +template struct scalar_opposite_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return internal::pnegate(a); } +}; +template +struct functor_traits > +{ enum { + Cost = NumTraits::AddCost, + PacketAccess = packet_traits::HasNegate }; +}; + +/** \internal + * \brief Template functor to compute the absolute value of a scalar + * + * \sa class CwiseUnaryOp, Cwise::abs + */ +template struct scalar_abs_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return internal::pabs(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::AddCost, + PacketAccess = packet_traits::HasAbs + }; +}; + +/** \internal + * \brief Template functor to compute the score of a scalar, to chose a pivot + * + * \sa class CwiseUnaryOp + */ +template struct scalar_score_coeff_op : scalar_abs_op +{ + typedef void Score_is_abs; +}; +template +struct functor_traits > : functor_traits > {}; + +/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */ +template struct abs_knowing_score +{ + typedef typename NumTraits::Real result_type; + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); } +}; +template struct abs_knowing_score::Score_is_abs> +{ + typedef typename NumTraits::Real result_type; + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; } +}; + +/** \internal + * \brief Template functor to compute the squared absolute value of a scalar + * + * \sa class CwiseUnaryOp, Cwise::abs2 + */ +template struct scalar_abs2_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return internal::pmul(a,a); } +}; +template +struct functor_traits > +{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasAbs2 }; }; + +/** \internal + * \brief Template functor to compute the conjugate of a complex value + * + * \sa class CwiseUnaryOp, MatrixBase::conjugate() + */ +template struct scalar_conjugate_op { + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::conj(a); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 0, + // Yes the cost is zero even for complexes because in most cases for which + // the cost is used, conjugation turns to be a no-op. Some examples: + // cost(a*conj(b)) == cost(a*b) + // cost(a+conj(b)) == cost(a+b) + // ::HasConj + }; +}; + +/** \internal + * \brief Template functor to compute the phase angle of a complex + * + * \sa class CwiseUnaryOp, Cwise::arg + */ +template struct scalar_arg_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::arg(a); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return internal::parg(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::IsComplex ? 5 * NumTraits::MulCost : NumTraits::AddCost, + PacketAccess = packet_traits::HasArg + }; +}; + +/** \internal + * \brief Template functor to compute the complex argument, returned as a complex type + * + * \sa class CwiseUnaryOp, Cwise::carg + */ +template +struct scalar_carg_op { + using result_type = Scalar; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a) const { return Scalar(numext::arg(a)); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { + return pcarg(a); + } +}; +template +struct functor_traits> { + using RealScalar = typename NumTraits::Real; + enum { Cost = functor_traits>::Cost, PacketAccess = packet_traits::HasATan }; +}; + +/** \internal + * \brief Template functor to cast a scalar to another type + * + * \sa class CwiseUnaryOp, MatrixBase::cast() + */ +template +struct scalar_cast_op { + typedef NewType result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast(a); } +}; + +template +struct functor_traits > +{ enum { Cost = is_same::value ? 0 : NumTraits::AddCost, PacketAccess = false }; }; + +/** \internal + * `core_cast_op` serves to distinguish the vectorized implementation from that of the legacy `scalar_cast_op` for backwards + * compatibility. The manner in which packet ops are handled is defined by the specialized unary_evaluator: + * `unary_evaluator, ArgType>, IndexBased>` in CoreEvaluators.h + * Otherwise, the non-vectorized behavior is identical to that of `scalar_cast_op` + */ +template +struct core_cast_op : scalar_cast_op {}; + +template +struct functor_traits> { + using CastingTraits = type_casting_traits; + enum { + Cost = is_same::value ? 0 : NumTraits::AddCost, + PacketAccess = CastingTraits::VectorizedCast && (CastingTraits::SrcCoeffRatio <= 8) + }; +}; + +/** \internal + * \brief Template functor to arithmetically shift a scalar right by a number of bits + * + * \sa class CwiseUnaryOp, MatrixBase::shift_right() + */ +template +struct scalar_shift_right_op { + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const + { return a >> N; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return internal::parithmetic_shift_right(a); } +}; +template +struct functor_traits > +{ enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasShift }; }; + +/** \internal + * \brief Template functor to logically shift a scalar left by a number of bits + * + * \sa class CwiseUnaryOp, MatrixBase::shift_left() + */ +template +struct scalar_shift_left_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const + { return a << N; } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const + { return internal::plogical_shift_left(a); } +}; +template +struct functor_traits > +{ enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasShift }; }; + +/** \internal + * \brief Template functor to extract the real part of a complex + * + * \sa class CwiseUnaryOp, MatrixBase::real() + */ +template +struct scalar_real_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } +}; +template +struct functor_traits > +{ enum { Cost = 0, PacketAccess = false }; }; + +/** \internal + * \brief Template functor to extract the imaginary part of a complex + * + * \sa class CwiseUnaryOp, MatrixBase::imag() + */ +template +struct scalar_imag_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } +}; +template +struct functor_traits > +{ enum { Cost = 0, PacketAccess = false }; }; + +/** \internal + * \brief Template functor to extract the real part of a complex as a reference + * + * \sa class CwiseUnaryOp, MatrixBase::real() + */ +template +struct scalar_real_ref_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast(&a)); } +}; +template +struct functor_traits > +{ enum { Cost = 0, PacketAccess = false }; }; + +/** \internal + * \brief Template functor to extract the imaginary part of a complex as a reference + * + * \sa class CwiseUnaryOp, MatrixBase::imag() + */ +template +struct scalar_imag_ref_op { + typedef typename NumTraits::Real result_type; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast(&a)); } +}; +template +struct functor_traits > +{ enum { Cost = 0, PacketAccess = false }; }; + +/** \internal + * + * \brief Template functor to compute the exponential of a scalar + * + * \sa class CwiseUnaryOp, Cwise::exp() + */ +template struct scalar_exp_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return internal::pexp(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } +}; +template +struct functor_traits > { + enum { + PacketAccess = packet_traits::HasExp, + // The following numbers are based on the AVX implementation. +#ifdef EIGEN_VECTORIZE_FMA + // Haswell can issue 2 add/mul/madd per cycle. + Cost = + (sizeof(Scalar) == 4 + // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other + ? (8 * NumTraits::AddCost + 6 * NumTraits::MulCost) + // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other + : (14 * NumTraits::AddCost + + 6 * NumTraits::MulCost + + scalar_div_cost::HasDiv>::value)) +#else + Cost = + (sizeof(Scalar) == 4 + // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other + ? (21 * NumTraits::AddCost + 13 * NumTraits::MulCost) + // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other + : (23 * NumTraits::AddCost + + 12 * NumTraits::MulCost + + scalar_div_cost::HasDiv>::value)) +#endif + }; +}; + +/** \internal + * + * \brief Template functor to compute the exponential of a scalar - 1. + * + * \sa class CwiseUnaryOp, ArrayBase::expm1() + */ +template struct scalar_expm1_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::expm1(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexpm1(a); } +}; +template +struct functor_traits > { + enum { + PacketAccess = packet_traits::HasExpm1, + Cost = functor_traits >::Cost // TODO measure cost of expm1 + }; +}; + +/** \internal + * + * \brief Template functor to compute the logarithm of a scalar + * + * \sa class CwiseUnaryOp, ArrayBase::log() + */ +template struct scalar_log_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); } +}; +template +struct functor_traits > { + enum { + PacketAccess = packet_traits::HasLog, + Cost = + (PacketAccess + // The following numbers are based on the AVX implementation. +#ifdef EIGEN_VECTORIZE_FMA + // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle. + ? (20 * NumTraits::AddCost + 7 * NumTraits::MulCost) +#else + // 8 pmadd, 6 pmul, 8 padd/psub, 20 other + ? (36 * NumTraits::AddCost + 14 * NumTraits::MulCost) +#endif + // Measured cost of std::log. + : sizeof(Scalar)==4 ? 40 : 85) + }; +}; + +/** \internal + * + * \brief Template functor to compute the logarithm of 1 plus a scalar value + * + * \sa class CwiseUnaryOp, ArrayBase::log1p() + */ +template struct scalar_log1p_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); } +}; +template +struct functor_traits > { + enum { + PacketAccess = packet_traits::HasLog1p, + Cost = functor_traits >::Cost // TODO measure cost of log1p + }; +}; + +/** \internal + * + * \brief Template functor to compute the base-10 logarithm of a scalar + * + * \sa class CwiseUnaryOp, Cwise::log10() + */ +template struct scalar_log10_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD(log10) return log10(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); } +}; +template +struct functor_traits > +{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog10 }; }; + +/** \internal + * + * \brief Template functor to compute the base-2 logarithm of a scalar + * + * \sa class CwiseUnaryOp, Cwise::log2() + */ +template struct scalar_log2_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(EIGEN_LOG2E) * numext::log(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog2(a); } +}; +template +struct functor_traits > +{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog }; }; + +/** \internal + * \brief Template functor to compute the square root of a scalar + * \sa class CwiseUnaryOp, Cwise::sqrt() + */ +template struct scalar_sqrt_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } +}; +template +struct functor_traits > { + enum { +#if EIGEN_FAST_MATH + // The following numbers are based on the AVX implementation. + Cost = (sizeof(Scalar) == 8 ? 28 + // 4 pmul, 1 pmadd, 3 other + : (3 * NumTraits::AddCost + + 5 * NumTraits::MulCost)), +#else + // The following numbers are based on min VSQRT throughput on Haswell. + Cost = (sizeof(Scalar) == 8 ? 28 : 14), +#endif + PacketAccess = packet_traits::HasSqrt + }; +}; + +// Boolean specialization to eliminate -Wimplicit-conversion-floating-point-to-bool warnings. +template<> struct scalar_sqrt_op { + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator() (const bool& a) const { return a; } + template + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return a; } +}; +template <> +struct functor_traits > { + enum { Cost = 1, PacketAccess = packet_traits::Vectorizable }; +}; + +/** \internal + * \brief Template functor to compute the reciprocal square root of a scalar + * \sa class CwiseUnaryOp, Cwise::rsqrt() + */ +template struct scalar_rsqrt_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::rsqrt(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); } +}; + +template +struct functor_traits > +{ enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasRsqrt + }; +}; + +/** \internal + * \brief Template functor to compute the cosine of a scalar + * \sa class CwiseUnaryOp, ArrayBase::cos() + */ +template struct scalar_cos_op { + EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasCos + }; +}; + +/** \internal + * \brief Template functor to compute the sine of a scalar + * \sa class CwiseUnaryOp, ArrayBase::sin() + */ +template struct scalar_sin_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasSin + }; +}; + + +/** \internal + * \brief Template functor to compute the tan of a scalar + * \sa class CwiseUnaryOp, ArrayBase::tan() + */ +template struct scalar_tan_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasTan + }; +}; + +/** \internal + * \brief Template functor to compute the arc cosine of a scalar + * \sa class CwiseUnaryOp, ArrayBase::acos() + */ +template struct scalar_acos_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasACos + }; +}; + +/** \internal + * \brief Template functor to compute the arc sine of a scalar + * \sa class CwiseUnaryOp, ArrayBase::asin() + */ +template struct scalar_asin_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasASin + }; +}; + + +/** \internal + * \brief Template functor to compute the atan of a scalar + * \sa class CwiseUnaryOp, ArrayBase::atan() + */ +template struct scalar_atan_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasATan + }; +}; + +/** \internal + * \brief Template functor to compute the tanh of a scalar + * \sa class CwiseUnaryOp, ArrayBase::tanh() + */ +template +struct scalar_tanh_op { + EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); } +}; + +template +struct functor_traits > { + enum { + PacketAccess = packet_traits::HasTanh, + Cost = ( (EIGEN_FAST_MATH && is_same::value) +// The following numbers are based on the AVX implementation, +#ifdef EIGEN_VECTORIZE_FMA + // Haswell can issue 2 add/mul/madd per cycle. + // 9 pmadd, 2 pmul, 1 div, 2 other + ? (2 * NumTraits::AddCost + + 6 * NumTraits::MulCost + + scalar_div_cost::HasDiv>::value) +#else + ? (11 * NumTraits::AddCost + + 11 * NumTraits::MulCost + + scalar_div_cost::HasDiv>::value) +#endif + // This number assumes a naive implementation of tanh + : (6 * NumTraits::AddCost + + 3 * NumTraits::MulCost + + 2 * scalar_div_cost::HasDiv>::value + + functor_traits >::Cost)) + }; +}; + +/** \internal + * \brief Template functor to compute the atanh of a scalar + * \sa class CwiseUnaryOp, ArrayBase::atanh() + */ +template +struct scalar_atanh_op { + EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::atanh(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return patanh(x); } +}; + +template +struct functor_traits > { + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasATanh + }; +}; + +/** \internal + * \brief Template functor to compute the sinh of a scalar + * \sa class CwiseUnaryOp, ArrayBase::sinh() + */ +template struct scalar_sinh_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasSinh + }; +}; + +/** \internal + * \brief Template functor to compute the asinh of a scalar + * \sa class CwiseUnaryOp, ArrayBase::asinh() + */ +template +struct scalar_asinh_op { + EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::asinh(a); } +}; + +template +struct functor_traits > { + enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; +}; + +/** \internal + * \brief Template functor to compute the cosh of a scalar + * \sa class CwiseUnaryOp, ArrayBase::cosh() + */ +template struct scalar_cosh_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = 5 * NumTraits::MulCost, + PacketAccess = packet_traits::HasCosh + }; +}; + +/** \internal + * \brief Template functor to compute the acosh of a scalar + * \sa class CwiseUnaryOp, ArrayBase::acosh() + */ +template +struct scalar_acosh_op { + EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::acosh(a); } +}; + +template +struct functor_traits > { + enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; +}; + +/** \internal + * \brief Template functor to compute the inverse of a scalar + * \sa class CwiseUnaryOp, Cwise::inverse() + */ +template +struct scalar_inverse_op { + EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } + template + EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const + { return internal::preciprocal(a); } +}; +template +struct functor_traits > { + enum { + PacketAccess = packet_traits::HasDiv, + // If packet_traits::HasReciprocal then the Estimated cost is that + // of computing an approximation plus a single Newton-Raphson step, which + // consists of 1 pmul + 1 pmadd. + Cost = (packet_traits::HasReciprocal + ? 4 * NumTraits::MulCost + : scalar_div_cost::value) + }; +}; + +/** \internal + * \brief Template functor to compute the square of a scalar + * \sa class CwiseUnaryOp, Cwise::square() + */ +template +struct scalar_square_op { + EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; } + template + EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const + { return internal::pmul(a,a); } +}; +template +struct functor_traits > +{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; + +// Boolean specialization to avoid -Wint-in-bool-context warnings on GCC. +template<> +struct scalar_square_op { + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator() (const bool& a) const { return a; } + template + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const + { return a; } +}; +template<> +struct functor_traits > +{ enum { Cost = 0, PacketAccess = packet_traits::Vectorizable }; }; + +/** \internal + * \brief Template functor to compute the cube of a scalar + * \sa class CwiseUnaryOp, Cwise::cube() + */ +template +struct scalar_cube_op { + EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; } + template + EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const + { return internal::pmul(a,pmul(a,a)); } +}; +template +struct functor_traits > +{ enum { Cost = 2*NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; + +// Boolean specialization to avoid -Wint-in-bool-context warnings on GCC. +template<> +struct scalar_cube_op { + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline bool operator() (const bool& a) const { return a; } + template + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const + { return a; } +}; +template<> +struct functor_traits > +{ enum { Cost = 0, PacketAccess = packet_traits::Vectorizable }; }; + +/** \internal + * \brief Template functor to compute the rounded value of a scalar + * \sa class CwiseUnaryOp, ArrayBase::round() + */ +template struct scalar_round_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = packet_traits::HasRound || NumTraits::IsInteger + }; +}; + +/** \internal + * \brief Template functor to compute the floor of a scalar + * \sa class CwiseUnaryOp, ArrayBase::floor() + */ +template struct scalar_floor_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = packet_traits::HasFloor || NumTraits::IsInteger + }; +}; + +/** \internal + * \brief Template functor to compute the rounded (with current rounding mode) value of a scalar + * \sa class CwiseUnaryOp, ArrayBase::rint() + */ +template struct scalar_rint_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::rint(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::print(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = packet_traits::HasRint || NumTraits::IsInteger + }; +}; + +/** \internal + * \brief Template functor to compute the ceil of a scalar + * \sa class CwiseUnaryOp, ArrayBase::ceil() + */ +template struct scalar_ceil_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = packet_traits::HasCeil || NumTraits::IsInteger + }; +}; + +/** \internal + * \brief Template functor to compute whether a scalar is NaN + * \sa class CwiseUnaryOp, ArrayBase::isnan() + */ +template +struct scalar_isnan_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const Scalar& a) const { +#if defined(SYCL_DEVICE_ONLY) + return numext::isnan(a); +#else + return numext::isnan EIGEN_NOT_A_MACRO (a); +#endif + } +}; + + +template +struct scalar_isnan_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { +#if defined(SYCL_DEVICE_ONLY) + return (numext::isnan(a) ? ptrue(a) : pzero(a)); +#else + return (numext::isnan EIGEN_NOT_A_MACRO (a) ? ptrue(a) : pzero(a)); +#endif + } + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { + return pisnan(a); + } +}; + +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = packet_traits::HasCmp && UseTypedPredicate + }; +}; + +/** \internal + * \brief Template functor to check whether a scalar is +/-inf + * \sa class CwiseUnaryOp, ArrayBase::isinf() + */ +template struct scalar_isinf_op { + typedef bool result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { +#if defined(SYCL_DEVICE_ONLY) + return numext::isinf(a); +#else + return (numext::isinf)(a); +#endif + } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = false + }; +}; + +/** \internal + * \brief Template functor to check whether a scalar has a finite value + * \sa class CwiseUnaryOp, ArrayBase::isfinite() + */ +template struct scalar_isfinite_op { + typedef bool result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { +#if defined(SYCL_DEVICE_ONLY) + return numext::isfinite(a); +#else + return (numext::isfinite)(a); +#endif + } +}; +template +struct functor_traits > +{ + enum { + Cost = NumTraits::MulCost, + PacketAccess = false + }; +}; + +/** \internal + * \brief Template functor to compute the logical not of a scalar as if it were a boolean + * + * \sa class CwiseUnaryOp, ArrayBase::operator! + */ +template +struct scalar_boolean_not_op { + using result_type = Scalar; + // `false` any value `a` that satisfies `a == Scalar(0)` + // `true` is the complement of `false` + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { + return a == Scalar(0) ? Scalar(1) : Scalar(0); + } + template + EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { + const Packet cst_one = pset1(Scalar(1)); + Packet not_a = pcmp_eq(a, pzero(a)); + return pand(not_a, cst_one); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasCmp }; +}; + +template ::IsComplex> +struct bitwise_unary_impl { + static constexpr size_t Size = sizeof(Scalar); + using uint_t = typename numext::get_integer_by_size::unsigned_type; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_not(const Scalar& a) { + uint_t a_as_uint = numext::bit_cast(a); + uint_t result = ~a_as_uint; + return numext::bit_cast(result); + } +}; + +template +struct bitwise_unary_impl { + using Real = typename NumTraits::Real; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_not(const Scalar& a) { + Real real_result = bitwise_unary_impl::run_not(numext::real(a)); + Real imag_result = bitwise_unary_impl::run_not(numext::imag(a)); + return Scalar(real_result, imag_result); + } +}; + +/** \internal + * \brief Template functor to compute the bitwise not of a scalar + * + * \sa class CwiseUnaryOp, ArrayBase::operator~ + */ +template +struct scalar_bitwise_not_op { + EIGEN_STATIC_ASSERT(!NumTraits::RequireInitialization, BITWISE OPERATIONS MAY ONLY BE PERFORMED ON PLAIN DATA TYPES) + EIGEN_STATIC_ASSERT((!internal::is_same::value), DONT USE BITWISE OPS ON BOOLEAN TYPES) + using result_type = Scalar; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { + return bitwise_unary_impl::run_not(a); + } + template + EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { + return pandnot(ptrue(a), a); + } +}; +template +struct functor_traits> { + enum { Cost = NumTraits::AddCost, PacketAccess = true }; +}; + +/** \internal + * \brief Template functor to compute the signum of a scalar + * \sa class CwiseUnaryOp, Cwise::sign() + */ +template +struct scalar_sign_op { + EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const + { + return numext::sign(a); + } + + template + EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { + return internal::psign(a); + } +}; + +template +struct functor_traits > +{ enum { + Cost = + NumTraits::IsComplex + ? ( 8*NumTraits::MulCost ) // roughly + : ( 3*NumTraits::AddCost), + PacketAccess = packet_traits::HasSign && packet_traits::Vectorizable + }; +}; + +/** \internal + * \brief Template functor to compute the logistic function of a scalar + * \sa class CwiseUnaryOp, ArrayBase::logistic() + */ +template +struct scalar_logistic_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const { + return packetOp(x); + } + + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Packet packetOp(const Packet& x) const { + const Packet one = pset1(T(1)); + const Packet inf = pset1(NumTraits::infinity()); + const Packet e = pexp(x); + const Packet inf_mask = pcmp_eq(e, inf); + return pselect(inf_mask, one, pdiv(e, padd(one, e))); + } +}; + +// TODO(rmlarsen): Enable the following on host when integer_packet is defined +// for the relevant packet types. +#ifdef EIGEN_GPU_CC + +/** \internal + * \brief Template specialization of the logistic function for float. + * Computes S(x) = exp(x) / (1 + exp(x)), where exp(x) is implemented + * using an algorithm partly adopted from the implementation of + * pexp_float. See the individual steps described in the code below. + * Note that compared to pexp, we use an additional outer multiplicative + * range reduction step using the identity exp(x) = exp(x/2)^2. + * This prevert us from having to call ldexp on values that could produce + * a denormal result, which allows us to call the faster implementation in + * pldexp_fast_impl::run(p, m). + * The final squaring, however, doubles the error bound on the final + * approximation. Exhaustive testing shows that we have a worst case error + * of 4.5 ulps (compared to computing S(x) in double precision), which is + * acceptable. + */ +template <> +struct scalar_logistic_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator()(const float& x) const { + // Truncate at the first point where the interpolant is exactly one. + const float cst_exp_hi = 16.6355324f; + const float e = numext::exp(numext::mini(x, cst_exp_hi)); + return e / (1.0f + e); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet + packetOp(const Packet& _x) const { + const Packet cst_zero = pset1(0.0f); + const Packet cst_one = pset1(1.0f); + const Packet cst_half = pset1(0.5f); + // Truncate at the first point where the interpolant is exactly one. + const Packet cst_exp_hi = pset1(16.6355324f); + const Packet cst_exp_lo = pset1(-104.f); + + // Clamp x to the non-trivial range where S(x). Outside this + // interval the correctly rounded value of S(x) is either zero + // or one. + Packet zero_mask = pcmp_lt(_x, cst_exp_lo); + Packet x = pmin(_x, cst_exp_hi); + + // 1. Multiplicative range reduction: + // Reduce the range of x by a factor of 2. This avoids having + // to compute exp(x) accurately where the result is a denormalized + // value. + x = pmul(x, cst_half); + + // 2. Subtractive range reduction: + // Express exp(x) as exp(m*ln(2) + r) = 2^m*exp(r), start by extracting + // m = floor(x/ln(2) + 0.5), such that x = m*ln(2) + r. + const Packet cst_cephes_LOG2EF = pset1(1.44269504088896341f); + Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); + // Get r = x - m*ln(2). We use a trick from Cephes where the term + // m*ln(2) is subtracted out in two parts, m*C1+m*C2 = m*ln(2), + // to avoid accumulating truncation errors. + const Packet cst_cephes_exp_C1 = pset1(-0.693359375f); + const Packet cst_cephes_exp_C2 = pset1(2.12194440e-4f); + Packet r = pmadd(m, cst_cephes_exp_C1, x); + r = pmadd(m, cst_cephes_exp_C2, r); + + // 3. Compute an approximation to exp(r) using a degree 5 minimax polynomial. + // We compute even and odd terms separately to increase instruction level + // parallelism. + Packet r2 = pmul(r, r); + const Packet cst_p2 = pset1(0.49999141693115234375f); + const Packet cst_p3 = pset1(0.16666877269744873046875f); + const Packet cst_p4 = pset1(4.1898667812347412109375e-2f); + const Packet cst_p5 = pset1(8.33471305668354034423828125e-3f); + + const Packet p_even = pmadd(r2, cst_p4, cst_p2); + const Packet p_odd = pmadd(r2, cst_p5, cst_p3); + const Packet p_low = padd(r, cst_one); + Packet p = pmadd(r, p_odd, p_even); + p = pmadd(r2, p, p_low); + + // 4. Undo subtractive range reduction exp(m*ln(2) + r) = 2^m * exp(r). + Packet e = pldexp_fast_impl::run(p, m); + + // 5. Undo multiplicative range reduction by using exp(r) = exp(r/2)^2. + e = pmul(e, e); + + // Return exp(x) / (1 + exp(x)) + return pselect(zero_mask, cst_zero, pdiv(e, padd(cst_one, e))); + } +}; +#endif // #ifndef EIGEN_GPU_COMPILE_PHASE + + +template +struct functor_traits > { + enum { + // The cost estimate for float here here is for the common(?) case where + // all arguments are greater than -9. + Cost = scalar_div_cost::HasDiv>::value + + (internal::is_same::value + ? NumTraits::AddCost * 15 + NumTraits::MulCost * 11 + : NumTraits::AddCost * 2 + + functor_traits >::Cost), + PacketAccess = + packet_traits::HasAdd && packet_traits::HasDiv && + (internal::is_same::value + ? packet_traits::HasMul && packet_traits::HasMax && + packet_traits::HasMin + : packet_traits::HasNegate && packet_traits::HasExp) + }; +}; + +template ::IsInteger, + bool IsExponentInteger = NumTraits::IsInteger, + bool IsBaseComplex = NumTraits::IsComplex, + bool IsExponentComplex = NumTraits::IsComplex> +struct scalar_unary_pow_op { + typedef typename internal::promote_scalar_arg< + Scalar, ExponentScalar, + internal::has_ReturnType >::value>::type PromotedExponent; + typedef typename ScalarBinaryOpTraits::ReturnType result_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_unary_pow_op(const ExponentScalar& exponent) : m_exponent(exponent) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator()(const Scalar& a) const { + EIGEN_USING_STD(pow); + return static_cast(pow(a, m_exponent)); + } + + private: + const ExponentScalar m_exponent; + scalar_unary_pow_op() {} +}; + +template +constexpr int exponent_digits() { + return CHAR_BIT * sizeof(T) - NumTraits::digits() - NumTraits::IsSigned; +} + +template +struct is_floating_exactly_representable { + // TODO(rmlarsen): Add radix to NumTraits and enable this check. + // (NumTraits::radix == NumTraits::radix) && + static constexpr bool value = (exponent_digits() >= exponent_digits() && + NumTraits::digits() >= NumTraits::digits()); +}; + + +// Specialization for real, non-integer types, non-complex types. +template +struct scalar_unary_pow_op { + template ::value> + std::enable_if_t check_is_representable() const {} + + // Issue a deprecation warning if we do a narrowing conversion on the exponent. + template ::value> + EIGEN_DEPRECATED std::enable_if_t check_is_representable() const {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + scalar_unary_pow_op(const ExponentScalar& exponent) : m_exponent(static_cast(exponent)) { + check_is_representable(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { + EIGEN_USING_STD(pow); + return static_cast(pow(a, m_exponent)); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { + return unary_pow_impl::run(a, m_exponent); + } + + private: + const Scalar m_exponent; + scalar_unary_pow_op() {} +}; + +template +struct scalar_unary_pow_op { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_unary_pow_op(const ExponentScalar& exponent) : m_exponent(exponent) {} + // TODO: error handling logic for complex^real_integer + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& a) const { + return unary_pow_impl::run(a, m_exponent); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { + return unary_pow_impl::run(a, m_exponent); + } + + private: + const ExponentScalar m_exponent; + scalar_unary_pow_op() {} +}; + +template +struct functor_traits> { + enum { + GenPacketAccess = functor_traits>::PacketAccess, + IntPacketAccess = !NumTraits::IsComplex && packet_traits::HasMul && (packet_traits::HasDiv || NumTraits::IsInteger) && packet_traits::HasCmp, + PacketAccess = NumTraits::IsInteger ? IntPacketAccess : (IntPacketAccess && GenPacketAccess), + Cost = functor_traits>::Cost + }; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_FUNCTORS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h new file mode 100644 index 0000000..862efc6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h @@ -0,0 +1,3302 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERAL_BLOCK_PANEL_H +#define EIGEN_GENERAL_BLOCK_PANEL_H + + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +enum GEBPPacketSizeType { + GEBPPacketFull = 0, + GEBPPacketHalf, + GEBPPacketQuarter +}; + +template +class gebp_traits; + + +/** \internal \returns b if a<=0, and returns a otherwise. */ +inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b) +{ + return a<=0 ? b : a; +} + +#if defined(EIGEN_DEFAULT_L1_CACHE_SIZE) +#define EIGEN_SET_DEFAULT_L1_CACHE_SIZE(val) EIGEN_DEFAULT_L1_CACHE_SIZE +#else +#define EIGEN_SET_DEFAULT_L1_CACHE_SIZE(val) val +#endif // defined(EIGEN_DEFAULT_L1_CACHE_SIZE) + +#if defined(EIGEN_DEFAULT_L2_CACHE_SIZE) +#define EIGEN_SET_DEFAULT_L2_CACHE_SIZE(val) EIGEN_DEFAULT_L2_CACHE_SIZE +#else +#define EIGEN_SET_DEFAULT_L2_CACHE_SIZE(val) val +#endif // defined(EIGEN_DEFAULT_L2_CACHE_SIZE) + +#if defined(EIGEN_DEFAULT_L3_CACHE_SIZE) +#define EIGEN_SET_DEFAULT_L3_CACHE_SIZE(val) EIGEN_DEFAULT_L3_CACHE_SIZE +#else +#define EIGEN_SET_DEFAULT_L3_CACHE_SIZE(val) val +#endif // defined(EIGEN_DEFAULT_L3_CACHE_SIZE) + +#if EIGEN_ARCH_i386_OR_x86_64 +const std::ptrdiff_t defaultL1CacheSize = EIGEN_SET_DEFAULT_L1_CACHE_SIZE(32*1024); +const std::ptrdiff_t defaultL2CacheSize = EIGEN_SET_DEFAULT_L2_CACHE_SIZE(256*1024); +const std::ptrdiff_t defaultL3CacheSize = EIGEN_SET_DEFAULT_L3_CACHE_SIZE(2*1024*1024); +#elif EIGEN_ARCH_PPC +const std::ptrdiff_t defaultL1CacheSize = EIGEN_SET_DEFAULT_L1_CACHE_SIZE(64*1024); +#ifdef _ARCH_PWR10 +const std::ptrdiff_t defaultL2CacheSize = EIGEN_SET_DEFAULT_L2_CACHE_SIZE(2*1024*1024); +const std::ptrdiff_t defaultL3CacheSize = EIGEN_SET_DEFAULT_L3_CACHE_SIZE(8*1024*1024); +#else +const std::ptrdiff_t defaultL2CacheSize = EIGEN_SET_DEFAULT_L2_CACHE_SIZE(512*1024); +const std::ptrdiff_t defaultL3CacheSize = EIGEN_SET_DEFAULT_L3_CACHE_SIZE(4*1024*1024); +#endif +#else +const std::ptrdiff_t defaultL1CacheSize = EIGEN_SET_DEFAULT_L1_CACHE_SIZE(16*1024); +const std::ptrdiff_t defaultL2CacheSize = EIGEN_SET_DEFAULT_L2_CACHE_SIZE(512*1024); +const std::ptrdiff_t defaultL3CacheSize = EIGEN_SET_DEFAULT_L3_CACHE_SIZE(512*1024); +#endif + +#undef EIGEN_SET_DEFAULT_L1_CACHE_SIZE +#undef EIGEN_SET_DEFAULT_L2_CACHE_SIZE +#undef EIGEN_SET_DEFAULT_L3_CACHE_SIZE + +/** \internal */ +struct CacheSizes { + CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) { + int l1CacheSize, l2CacheSize, l3CacheSize; + queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize); + m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize); + m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize); + m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize); + } + + std::ptrdiff_t m_l1; + std::ptrdiff_t m_l2; + std::ptrdiff_t m_l3; +}; + +/** \internal */ +inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3) +{ + static CacheSizes m_cacheSizes; + + if(action==SetAction) + { + // set the cpu cache size and cache all block sizes from a global cache size in byte + eigen_internal_assert(l1!=0 && l2!=0); + m_cacheSizes.m_l1 = *l1; + m_cacheSizes.m_l2 = *l2; + m_cacheSizes.m_l3 = *l3; + } + else if(action==GetAction) + { + eigen_internal_assert(l1!=0 && l2!=0); + *l1 = m_cacheSizes.m_l1; + *l2 = m_cacheSizes.m_l2; + *l3 = m_cacheSizes.m_l3; + } + else + { + eigen_internal_assert(false); + } +} + +/* Helper for computeProductBlockingSizes. + * + * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar, + * this function computes the blocking size parameters along the respective dimensions + * for matrix products and related algorithms. The blocking sizes depends on various + * parameters: + * - the L1 and L2 cache sizes, + * - the register level blocking sizes defined by gebp_traits, + * - the number of scalars that fit into a packet (when vectorization is enabled). + * + * \sa setCpuCacheSizes */ + +template +void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1) +{ + typedef gebp_traits Traits; + + // Explanations: + // Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and + // kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed + // per mr x kc horizontal small panels where mr is the blocking size along the m dimension + // at the register level. This small horizontal panel has to stay within L1 cache. + std::ptrdiff_t l1, l2, l3; + manage_caching_sizes(GetAction, &l1, &l2, &l3); + #ifdef EIGEN_VECTORIZE_AVX512 + // We need to find a rationale for that, but without this adjustment, + // performance with AVX512 is pretty bad, like -20% slower. + // One reason is that with increasing packet-size, the blocking size k + // has to become pretty small if we want that 1 lhs panel fit within L1. + // For instance, with the 3pX4 kernel and double, the size of the lhs+rhs panels are: + // k*(3*64 + 4*8) Bytes, with l1=32kBytes, and k%8=0, we have k=144. + // This is quite small for a good reuse of the accumulation registers. + l1 *= 4; + #endif + + if (num_threads > 1) { + typedef typename Traits::ResScalar ResScalar; + enum { + kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)), + ksub = Traits::mr * Traits::nr * sizeof(ResScalar), + kr = 8, + mr = Traits::mr, + nr = Traits::nr + }; + // Increasing k gives us more time to prefetch the content of the "C" + // registers. However once the latency is hidden there is no point in + // increasing the value of k, so we'll cap it at 320 (value determined + // experimentally). + // To avoid that k vanishes, we make k_cache at least as big as kr + const Index k_cache = numext::maxi(kr, (numext::mini)((l1-ksub)/kdiv, 320)); + if (k_cache < k) { + k = k_cache - (k_cache % kr); + eigen_internal_assert(k > 0); + } + + const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k); + const Index n_per_thread = numext::div_ceil(n, num_threads); + if (n_cache <= n_per_thread) { + // Don't exceed the capacity of the l2 cache. + eigen_internal_assert(n_cache >= static_cast(nr)); + n = n_cache - (n_cache % nr); + eigen_internal_assert(n > 0); + } else { + n = (numext::mini)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr)); + } + + if (l3 > l2) { + // l3 is shared between all cores, so we'll give each thread its own chunk of l3. + const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads); + const Index m_per_thread = numext::div_ceil(m, num_threads); + if(m_cache < m_per_thread && m_cache >= static_cast(mr)) { + m = m_cache - (m_cache % mr); + eigen_internal_assert(m > 0); + } else { + m = (numext::mini)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr)); + } + } + } + else { + // In unit tests we do not want to use extra large matrices, + // so we reduce the cache size to check the blocking strategy is not flawed +#ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS + l1 = 9*1024; + l2 = 32*1024; + l3 = 512*1024; +#endif + + // Early return for small problems because the computation below are time consuming for small problems. + // Perhaps it would make more sense to consider k*n*m?? + // Note that for very tiny problem, this function should be bypassed anyway + // because we use the coefficient-based implementation for them. + if((numext::maxi)(k,(numext::maxi)(m,n))<48) + return; + + typedef typename Traits::ResScalar ResScalar; + enum { + k_peeling = 8, + k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)), + k_sub = Traits::mr * Traits::nr * sizeof(ResScalar) + }; + + // ---- 1st level of blocking on L1, yields kc ---- + + // Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel + // of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache. + // We also include a register-level block of the result (mx x nr). + // (In an ideal world only the lhs panel would stay in L1) + // Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of: + const Index max_kc = numext::maxi(((l1-k_sub)/k_div) & (~(k_peeling-1)),1); + const Index old_k = k; + if(k>max_kc) + { + // We are really blocking on the third dimension: + // -> reduce blocking size to make sure the last block is as large as possible + // while keeping the same number of sweeps over the result. + k = (k%max_kc)==0 ? max_kc + : max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1))); + + eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same"); + } + + // ---- 2nd level of blocking on max(L2,L3), yields nc ---- + + // TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is: + // actual_l2 = max(l2, l3/nb_core_sharing_l3) + // The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it) + // For instance, it corresponds to 6MB of L3 shared among 4 cores. + #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS + const Index actual_l2 = l3; + #else + const Index actual_l2 = 1572864; // == 1.5 MB + #endif + + // Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2. + // The second half is implicitly reserved to access the result and lhs coefficients. + // When k= Index(Traits::nr*sizeof(RhsScalar))*k) + { + // L1 blocking + max_nc = remaining_l1 / (k*sizeof(RhsScalar)); + } + else + { + // L2 blocking + max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar)); + } + // WARNING Below, we assume that Traits::nr is a power of two. + Index nc = numext::mini(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1)); + if(n>nc) + { + // We are really blocking over the columns: + // -> reduce blocking size to make sure the last block is as large as possible + // while keeping the same number of sweeps over the packed lhs. + // Here we allow one more sweep if this gives us a perfect match, thus the commented "-1" + n = (n%nc)==0 ? nc + : (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1)))); + } + else if(old_k==k) + { + // So far, no blocking at all, i.e., kc==k, and nc==n. + // In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2 + // TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete. + Index problem_size = k*n*sizeof(LhsScalar); + Index actual_lm = actual_l2; + Index max_mc = m; + if(problem_size<=1024) + { + // problem is small enough to keep in L1 + // Let's choose m such that lhs's block fit in 1/3 of L1 + actual_lm = l1; + } + else if(l3!=0 && problem_size<=32768) + { + // we have both L2 and L3, and problem is small enough to be kept in L2 + // Let's choose m such that lhs's block fit in 1/3 of L2 + actual_lm = l2; + max_mc = (numext::mini)(576,max_mc); + } + Index mc = (numext::mini)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc); + if (mc > Traits::mr) mc -= mc % Traits::mr; + else if (mc==0) return; + m = (m%mc)==0 ? mc + : (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1)))); + } + } +} + +template +inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n) +{ +#ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES + if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) { + k = numext::mini(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K); + m = numext::mini(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M); + n = numext::mini(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N); + return true; + } +#else + EIGEN_UNUSED_VARIABLE(k) + EIGEN_UNUSED_VARIABLE(m) + EIGEN_UNUSED_VARIABLE(n) +#endif + return false; +} + +/** \brief Computes the blocking parameters for a m x k times k x n matrix product + * + * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension. + * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension. + * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension. + * + * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar, + * this function computes the blocking size parameters along the respective dimensions + * for matrix products and related algorithms. + * + * The blocking size parameters may be evaluated: + * - either by a heuristic based on cache sizes; + * - or using fixed prescribed values (for testing purposes). + * + * \sa setCpuCacheSizes */ + +template +void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1) +{ + if (!useSpecificBlockingSizes(k, m, n)) { + evaluateProductBlockingSizesHeuristic(k, m, n, num_threads); + } +} + +template +inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1) +{ + computeProductBlockingSizes(k, m, n, num_threads); +} + +template +struct RhsPanelHelper { + private: + static constexpr int remaining_registers = (std::max)(int(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS) - registers_taken, 0); + public: + typedef std::conditional_t=4, RhsPacketx4, RhsPacket> type; +}; + +template +struct QuadPacket +{ + Packet B_0, B1, B2, B3; + const Packet& get(const FixedInt<0>&) const { return B_0; } + const Packet& get(const FixedInt<1>&) const { return B1; } + const Packet& get(const FixedInt<2>&) const { return B2; } + const Packet& get(const FixedInt<3>&) const { return B3; } +}; + +template +struct packet_conditional { typedef T3 type; }; + +template +struct packet_conditional { typedef T1 type; }; + +template +struct packet_conditional { typedef T2 type; }; + +#define PACKET_DECL_COND_POSTFIX(postfix, name, packet_size) \ + typedef typename packet_conditional::type, \ + typename packet_traits::half, \ + typename unpacket_traits::half>::half>::type \ + name ## Packet ## postfix + +#define PACKET_DECL_COND(name, packet_size) \ + typedef typename packet_conditional::type, \ + typename packet_traits::half, \ + typename unpacket_traits::half>::half>::type \ + name ## Packet + +#define PACKET_DECL_COND_SCALAR_POSTFIX(postfix, packet_size) \ + typedef typename packet_conditional::type, \ + typename packet_traits::half, \ + typename unpacket_traits::half>::half>::type \ + ScalarPacket ## postfix + +#define PACKET_DECL_COND_SCALAR(packet_size) \ + typedef typename packet_conditional::type, \ + typename packet_traits::half, \ + typename unpacket_traits::half>::half>::type \ + ScalarPacket + +/* Vectorization logic + * real*real: unpack rhs to constant packets, ... + * + * cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i), + * storing each res packet into two packets (2x2), + * at the end combine them: swap the second and addsub them + * cf*cf : same but with 2x4 blocks + * cplx*real : unpack rhs to constant packets, ... + * real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual + */ +template +class gebp_traits +{ +public: + typedef LhsScalar_ LhsScalar; + typedef RhsScalar_ RhsScalar; + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + + PACKET_DECL_COND_POSTFIX(_, Lhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Rhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Res, PacketSize_); + + enum { + ConjLhs = ConjLhs_, + ConjRhs = ConjRhs_, + Vectorizable = unpacket_traits::vectorizable && unpacket_traits::vectorizable, + LhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + RhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + ResPacketSize = Vectorizable ? unpacket_traits::size : 1, + + NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, + + // register block size along the N direction must be 1 or 4 + nr = 4, + + // register block size along the M direction (currently, this one cannot be modified) + default_mr = (plain_enum_min(16, NumberOfRegisters)/2/nr)*LhsPacketSize, +#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX) \ + && ((!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1914)) + // we assume 16 registers or more + // See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined, + // then using 3*LhsPacketSize triggers non-implemented paths in syrk. + // Bug 1515: MSVC prior to v19.14 yields to register spilling. + mr = Vectorizable ? 3*LhsPacketSize : default_mr, +#else + mr = default_mr, +#endif + + LhsProgress = LhsPacketSize, + RhsProgress = 1 + }; + + + typedef std::conditional_t LhsPacket; + typedef std::conditional_t RhsPacket; + typedef std::conditional_t ResPacket; + typedef LhsPacket LhsPacket4Packing; + + typedef QuadPacket RhsPacketx4; + typedef ResPacket AccPacket; + + EIGEN_STRONG_INLINE void initAcc(AccPacket& p) + { + p = pset1(ResScalar(0)); + } + + template + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const + { + dest = pset1(*b); + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + pbroadcast4(b, dest.B_0, dest.B1, dest.B2, dest.B3); + } + + template + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, RhsPacketType& dest) const + { + loadRhs(b, dest); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const + { + } + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const + { + dest = ploadquad(b); + } + + template + EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const + { + dest = pload(a); + } + + template + EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const + { + dest = ploadu(a); + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, RhsPacketType& tmp, const LaneIdType&) const + { + conj_helper cj; + // It would be a lot cleaner to call pmadd all the time. Unfortunately if we + // let gcc allocate the register in which to store the result of the pmul + // (in the case where there is no FMA) gcc fails to figure out how to avoid + // spilling register. +#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD + EIGEN_UNUSED_VARIABLE(tmp); + c = cj.pmadd(a,b,c); +#else + tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp); +#endif + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketx4& b, AccPacketType& c, RhsPacket& tmp, const LaneIdType& lane) const + { + madd(a, b.get(lane), c, tmp, lane); + } + + EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const + { + r = pmadd(c,alpha,r); + } + + template + EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const + { + r = pmadd(c,alpha,r); + } + +}; + +template +class gebp_traits, RealScalar, ConjLhs_, false, Arch, PacketSize_> +{ +public: + typedef std::complex LhsScalar; + typedef RealScalar RhsScalar; + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + + PACKET_DECL_COND_POSTFIX(_, Lhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Rhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Res, PacketSize_); + + enum { + ConjLhs = ConjLhs_, + ConjRhs = false, + Vectorizable = unpacket_traits::vectorizable && unpacket_traits::vectorizable, + LhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + RhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + ResPacketSize = Vectorizable ? unpacket_traits::size : 1, + + NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, + nr = 4, +#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX) + // we assume 16 registers + mr = 3*LhsPacketSize, +#else + mr = (plain_enum_min(16, NumberOfRegisters)/2/nr)*LhsPacketSize, +#endif + + LhsProgress = LhsPacketSize, + RhsProgress = 1 + }; + + typedef std::conditional_t LhsPacket; + typedef std::conditional_t RhsPacket; + typedef std::conditional_t ResPacket; + typedef LhsPacket LhsPacket4Packing; + + typedef QuadPacket RhsPacketx4; + + typedef ResPacket AccPacket; + + EIGEN_STRONG_INLINE void initAcc(AccPacket& p) + { + p = pset1(ResScalar(0)); + } + + template + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const + { + dest = pset1(*b); + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + pbroadcast4(b, dest.B_0, dest.B1, dest.B2, dest.B3); + } + + template + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, RhsPacketType& dest) const + { + loadRhs(b, dest); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const + {} + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const + { + loadRhsQuad_impl(b,dest, std::conditional_t()); + } + + EIGEN_STRONG_INLINE void loadRhsQuad_impl(const RhsScalar* b, RhsPacket& dest, const true_type&) const + { + // FIXME we can do better! + // what we want here is a ploadheight + RhsScalar tmp[4] = {b[0],b[0],b[1],b[1]}; + dest = ploadquad(tmp); + } + + EIGEN_STRONG_INLINE void loadRhsQuad_impl(const RhsScalar* b, RhsPacket& dest, const false_type&) const + { + eigen_internal_assert(RhsPacketSize<=8); + dest = pset1(*b); + } + + EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const + { + dest = pload(a); + } + + template + EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const + { + dest = ploadu(a); + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, RhsPacketType& tmp, const LaneIdType&) const + { + madd_impl(a, b, c, tmp, std::conditional_t()); + } + + template + EIGEN_STRONG_INLINE void madd_impl(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, RhsPacketType& tmp, const true_type&) const + { +#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD + EIGEN_UNUSED_VARIABLE(tmp); + c.v = pmadd(a.v,b,c.v); +#else + tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp); +#endif + } + + EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const + { + c += a * b; + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketx4& b, AccPacketType& c, RhsPacket& tmp, const LaneIdType& lane) const + { + madd(a, b.get(lane), c, tmp, lane); + } + + template + EIGEN_STRONG_INLINE void acc(const AccPacketType& c, const ResPacketType& alpha, ResPacketType& r) const + { + conj_helper cj; + r = cj.pmadd(c,alpha,r); + } + +protected: +}; + +template +struct DoublePacket +{ + Packet first; + Packet second; +}; + +template +DoublePacket padd(const DoublePacket &a, const DoublePacket &b) +{ + DoublePacket res; + res.first = padd(a.first, b.first); + res.second = padd(a.second,b.second); + return res; +} + +// note that for DoublePacket the "4" in "downto4" +// corresponds to the number of complexes, so it means "8" +// it terms of real coefficients. + +template +const DoublePacket& +predux_half_dowto4(const DoublePacket &a, + std::enable_if_t::size<=8>* = 0) +{ + return a; +} + +template +DoublePacket::half> +predux_half_dowto4(const DoublePacket &a, + std::enable_if_t::size==16>* = 0) +{ + // yes, that's pretty hackish :( + DoublePacket::half> res; + typedef std::complex::type> Cplx; + typedef typename packet_traits::type CplxPacket; + res.first = predux_half_dowto4(CplxPacket(a.first)).v; + res.second = predux_half_dowto4(CplxPacket(a.second)).v; + return res; +} + +// same here, "quad" actually means "8" in terms of real coefficients +template +void loadQuadToDoublePacket(const Scalar* b, DoublePacket& dest, + std::enable_if_t::size<=8>* = 0) +{ + dest.first = pset1(numext::real(*b)); + dest.second = pset1(numext::imag(*b)); +} + +template +void loadQuadToDoublePacket(const Scalar* b, DoublePacket& dest, + std::enable_if_t::size==16>* = 0) +{ + // yes, that's pretty hackish too :( + typedef typename NumTraits::Real RealScalar; + RealScalar r[4] = {numext::real(b[0]), numext::real(b[0]), numext::real(b[1]), numext::real(b[1])}; + RealScalar i[4] = {numext::imag(b[0]), numext::imag(b[0]), numext::imag(b[1]), numext::imag(b[1])}; + dest.first = ploadquad(r); + dest.second = ploadquad(i); +} + + +template struct unpacket_traits > { + typedef DoublePacket::half> half; + enum{ + size = 2 * unpacket_traits::size + }; +}; +// template +// DoublePacket pmadd(const DoublePacket &a, const DoublePacket &b) +// { +// DoublePacket res; +// res.first = padd(a.first, b.first); +// res.second = padd(a.second,b.second); +// return res; +// } + +template +class gebp_traits, std::complex, ConjLhs_, ConjRhs_, Arch, PacketSize_ > +{ +public: + typedef std::complex Scalar; + typedef std::complex LhsScalar; + typedef std::complex RhsScalar; + typedef std::complex ResScalar; + + PACKET_DECL_COND_POSTFIX(_, Lhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Rhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Res, PacketSize_); + PACKET_DECL_COND(Real, PacketSize_); + PACKET_DECL_COND_SCALAR(PacketSize_); + + enum { + ConjLhs = ConjLhs_, + ConjRhs = ConjRhs_, + Vectorizable = unpacket_traits::vectorizable + && unpacket_traits::vectorizable, + ResPacketSize = Vectorizable ? unpacket_traits::size : 1, + LhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + RhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + RealPacketSize = Vectorizable ? unpacket_traits::size : 1, + + // FIXME: should depend on NumberOfRegisters + nr = 4, + mr = ResPacketSize, + + LhsProgress = ResPacketSize, + RhsProgress = 1 + }; + + typedef DoublePacket DoublePacketType; + + typedef std::conditional_t LhsPacket4Packing; + typedef std::conditional_t LhsPacket; + typedef std::conditional_t RhsPacket; + typedef std::conditional_t ResPacket; + typedef std::conditional_t AccPacket; + + // this actually holds 8 packets! + typedef QuadPacket RhsPacketx4; + + EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); } + + EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p) + { + p.first = pset1(RealScalar(0)); + p.second = pset1(RealScalar(0)); + } + + // Scalar path + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ScalarPacket& dest) const + { + dest = pset1(*b); + } + + // Vectorized path + template + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacket& dest) const + { + dest.first = pset1(numext::real(*b)); + dest.second = pset1(numext::imag(*b)); + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + loadRhs(b, dest.B_0); + loadRhs(b + 1, dest.B1); + loadRhs(b + 2, dest.B2); + loadRhs(b + 3, dest.B3); + } + + // Scalar path + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, ScalarPacket& dest) const + { + loadRhs(b, dest); + } + + // Vectorized path + template + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, DoublePacket& dest) const + { + loadRhs(b, dest); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const {} + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const + { + loadRhs(b,dest); + } + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const + { + loadQuadToDoublePacket(b,dest); + } + + // nothing special here + EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const + { + dest = pload((const typename unpacket_traits::type*)(a)); + } + + template + EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const + { + dest = ploadu((const typename unpacket_traits::type*)(a)); + } + + template + EIGEN_STRONG_INLINE + std::enable_if_t::value> + madd(const LhsPacketType& a, const RhsPacketType& b, DoublePacket& c, TmpType& /*tmp*/, const LaneIdType&) const + { + c.first = padd(pmul(a,b.first), c.first); + c.second = padd(pmul(a,b.second),c.second); + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/, const LaneIdType&) const + { + c = cj.pmadd(a,b,c); + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketx4& b, AccPacketType& c, RhsPacket& tmp, const LaneIdType& lane) const + { + madd(a, b.get(lane), c, tmp, lane); + } + + EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; } + + template + EIGEN_STRONG_INLINE void acc(const DoublePacket& c, const ResPacketType& alpha, ResPacketType& r) const + { + // assemble c + ResPacketType tmp; + if((!ConjLhs)&&(!ConjRhs)) + { + tmp = pcplxflip(pconj(ResPacketType(c.second))); + tmp = padd(ResPacketType(c.first),tmp); + } + else if((!ConjLhs)&&(ConjRhs)) + { + tmp = pconj(pcplxflip(ResPacketType(c.second))); + tmp = padd(ResPacketType(c.first),tmp); + } + else if((ConjLhs)&&(!ConjRhs)) + { + tmp = pcplxflip(ResPacketType(c.second)); + tmp = padd(pconj(ResPacketType(c.first)),tmp); + } + else if((ConjLhs)&&(ConjRhs)) + { + tmp = pcplxflip(ResPacketType(c.second)); + tmp = psub(pconj(ResPacketType(c.first)),tmp); + } + + r = pmadd(tmp,alpha,r); + } + +protected: + conj_helper cj; +}; + +template +class gebp_traits, false, ConjRhs_, Arch, PacketSize_ > +{ +public: + typedef std::complex Scalar; + typedef RealScalar LhsScalar; + typedef Scalar RhsScalar; + typedef Scalar ResScalar; + + PACKET_DECL_COND_POSTFIX(_, Lhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Rhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Res, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Real, PacketSize_); + PACKET_DECL_COND_SCALAR_POSTFIX(_, PacketSize_); + +#undef PACKET_DECL_COND_SCALAR_POSTFIX +#undef PACKET_DECL_COND_POSTFIX +#undef PACKET_DECL_COND_SCALAR +#undef PACKET_DECL_COND + + enum { + ConjLhs = false, + ConjRhs = ConjRhs_, + Vectorizable = unpacket_traits::vectorizable + && unpacket_traits::vectorizable, + LhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + RhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + ResPacketSize = Vectorizable ? unpacket_traits::size : 1, + + NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, + // FIXME: should depend on NumberOfRegisters + nr = 4, + mr = (plain_enum_min(16, NumberOfRegisters)/2/nr)*ResPacketSize, + + LhsProgress = ResPacketSize, + RhsProgress = 1 + }; + + typedef std::conditional_t LhsPacket; + typedef std::conditional_t RhsPacket; + typedef std::conditional_t ResPacket; + typedef LhsPacket LhsPacket4Packing; + typedef QuadPacket RhsPacketx4; + typedef ResPacket AccPacket; + + EIGEN_STRONG_INLINE void initAcc(AccPacket& p) + { + p = pset1(ResScalar(0)); + } + + template + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const + { + dest = pset1(*b); + } + + EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketx4& dest) const + { + pbroadcast4(b, dest.B_0, dest.B1, dest.B2, dest.B3); + } + + template + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar* b, RhsPacketType& dest) const + { + loadRhs(b, dest); + } + + EIGEN_STRONG_INLINE void updateRhs(const RhsScalar*, RhsPacketx4&) const + {} + + EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const + { + dest = ploaddup(a); + } + + EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const + { + dest = ploadquad(b); + } + + template + EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const + { + dest = ploaddup(a); + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, RhsPacketType& tmp, const LaneIdType&) const + { + madd_impl(a, b, c, tmp, std::conditional_t()); + } + + template + EIGEN_STRONG_INLINE void madd_impl(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, RhsPacketType& tmp, const true_type&) const + { +#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD + EIGEN_UNUSED_VARIABLE(tmp); + c.v = pmadd(a,b.v,c.v); +#else + tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp); +#endif + + } + + EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const + { + c += a * b; + } + + template + EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketx4& b, AccPacketType& c, RhsPacket& tmp, const LaneIdType& lane) const + { + madd(a, b.get(lane), c, tmp, lane); + } + + template + EIGEN_STRONG_INLINE void acc(const AccPacketType& c, const ResPacketType& alpha, ResPacketType& r) const + { + conj_helper cj; + r = cj.pmadd(alpha,c,r); + } + +protected: + +}; + +/* optimized General packed Block * packed Panel product kernel + * + * Mixing type logic: C += A * B + * | A | B | comments + * |real |cplx | no vectorization yet, would require to pack A with duplication + * |cplx |real | easy vectorization + */ +template +struct gebp_kernel +{ + typedef gebp_traits Traits; + typedef gebp_traits HalfTraits; + typedef gebp_traits QuarterTraits; + + typedef typename Traits::ResScalar ResScalar; + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + typedef typename Traits::AccPacket AccPacket; + typedef typename Traits::RhsPacketx4 RhsPacketx4; + + typedef typename RhsPanelHelper::type RhsPanel15; + typedef typename RhsPanelHelper::type RhsPanel27; + + typedef gebp_traits SwappedTraits; + + typedef typename SwappedTraits::ResScalar SResScalar; + typedef typename SwappedTraits::LhsPacket SLhsPacket; + typedef typename SwappedTraits::RhsPacket SRhsPacket; + typedef typename SwappedTraits::ResPacket SResPacket; + typedef typename SwappedTraits::AccPacket SAccPacket; + + typedef typename HalfTraits::LhsPacket LhsPacketHalf; + typedef typename HalfTraits::RhsPacket RhsPacketHalf; + typedef typename HalfTraits::ResPacket ResPacketHalf; + typedef typename HalfTraits::AccPacket AccPacketHalf; + + typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; + typedef typename QuarterTraits::RhsPacket RhsPacketQuarter; + typedef typename QuarterTraits::ResPacket ResPacketQuarter; + typedef typename QuarterTraits::AccPacket AccPacketQuarter; + + typedef typename DataMapper::LinearMapper LinearMapper; + + enum { + Vectorizable = Traits::Vectorizable, + LhsProgress = Traits::LhsProgress, + LhsProgressHalf = HalfTraits::LhsProgress, + LhsProgressQuarter = QuarterTraits::LhsProgress, + RhsProgress = Traits::RhsProgress, + RhsProgressHalf = HalfTraits::RhsProgress, + RhsProgressQuarter = QuarterTraits::RhsProgress, + ResPacketSize = Traits::ResPacketSize + }; + + EIGEN_DONT_INLINE + void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, + Index rows, Index depth, Index cols, ResScalar alpha, + Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); +}; + +template::LhsProgress> +struct last_row_process_16_packets +{ + typedef gebp_traits Traits; + typedef gebp_traits SwappedTraits; + + typedef typename Traits::ResScalar ResScalar; + typedef typename SwappedTraits::LhsPacket SLhsPacket; + typedef typename SwappedTraits::RhsPacket SRhsPacket; + typedef typename SwappedTraits::ResPacket SResPacket; + typedef typename SwappedTraits::AccPacket SAccPacket; + + EIGEN_STRONG_INLINE void operator()(const DataMapper& res, SwappedTraits &straits, const LhsScalar* blA, + const RhsScalar* blB, Index depth, const Index endk, Index i, Index j2, + ResScalar alpha, SAccPacket &C0) + { + EIGEN_UNUSED_VARIABLE(res); + EIGEN_UNUSED_VARIABLE(straits); + EIGEN_UNUSED_VARIABLE(blA); + EIGEN_UNUSED_VARIABLE(blB); + EIGEN_UNUSED_VARIABLE(depth); + EIGEN_UNUSED_VARIABLE(endk); + EIGEN_UNUSED_VARIABLE(i); + EIGEN_UNUSED_VARIABLE(j2); + EIGEN_UNUSED_VARIABLE(alpha); + EIGEN_UNUSED_VARIABLE(C0); + } +}; + + +template +struct last_row_process_16_packets { + typedef gebp_traits Traits; + typedef gebp_traits SwappedTraits; + + typedef typename Traits::ResScalar ResScalar; + typedef typename SwappedTraits::LhsPacket SLhsPacket; + typedef typename SwappedTraits::RhsPacket SRhsPacket; + typedef typename SwappedTraits::ResPacket SResPacket; + typedef typename SwappedTraits::AccPacket SAccPacket; + + EIGEN_STRONG_INLINE void operator()(const DataMapper& res, SwappedTraits &straits, const LhsScalar* blA, + const RhsScalar* blB, Index depth, const Index endk, Index i, Index j2, + ResScalar alpha, SAccPacket &C0) + { + typedef typename unpacket_traits::half>::half SResPacketQuarter; + typedef typename unpacket_traits::half>::half SLhsPacketQuarter; + typedef typename unpacket_traits::half>::half SRhsPacketQuarter; + typedef typename unpacket_traits::half>::half SAccPacketQuarter; + + SResPacketQuarter R = res.template gatherPacket(i, j2); + SResPacketQuarter alphav = pset1(alpha); + + if (depth - endk > 0) + { + // We have to handle the last row(s) of the rhs, which + // correspond to a half-packet + SAccPacketQuarter c0 = predux_half_dowto4(predux_half_dowto4(C0)); + + for (Index kk = endk; kk < depth; kk++) + { + SLhsPacketQuarter a0; + SRhsPacketQuarter b0; + straits.loadLhsUnaligned(blB, a0); + straits.loadRhs(blA, b0); + straits.madd(a0,b0,c0,b0, fix<0>); + blB += SwappedTraits::LhsProgress/4; + blA += 1; + } + straits.acc(c0, alphav, R); + } + else + { + straits.acc(predux_half_dowto4(predux_half_dowto4(C0)), alphav, R); + } + res.scatterPacket(i, j2, R); + } +}; + +template +struct lhs_process_one_packet +{ + typedef typename GEBPTraits::RhsPacketx4 RhsPacketx4; + + EIGEN_STRONG_INLINE void peeled_kc_onestep(Index K, const LhsScalar* blA, const RhsScalar* blB, GEBPTraits traits, LhsPacket *A0, RhsPacketx4 *rhs_panel, RhsPacket *T0, AccPacket *C0, AccPacket *C1, AccPacket *C2, AccPacket *C3) + { + EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1X4"); + EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); + traits.loadLhs(&blA[(0+1*K)*LhsProgress], *A0); + traits.loadRhs(&blB[(0+4*K)*RhsProgress], *rhs_panel); + traits.madd(*A0, *rhs_panel, *C0, *T0, fix<0>); + traits.madd(*A0, *rhs_panel, *C1, *T0, fix<1>); + traits.madd(*A0, *rhs_panel, *C2, *T0, fix<2>); + traits.madd(*A0, *rhs_panel, *C3, *T0, fix<3>); + #if EIGEN_GNUC_STRICT_AT_LEAST(6,0,0) && defined(EIGEN_VECTORIZE_SSE) && !(EIGEN_COMP_LCC) + __asm__ ("" : "+x,m" (*A0)); + #endif + EIGEN_ASM_COMMENT("end step of gebp micro kernel 1X4"); + } + + EIGEN_STRONG_INLINE void operator()( + const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, ResScalar alpha, + Index peelStart, Index peelEnd, Index strideA, Index strideB, Index offsetA, Index offsetB, + int prefetch_res_offset, Index peeled_kc, Index pk, Index cols, Index depth, Index packet_cols4) + { + GEBPTraits traits; + Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; + // loops on each largest micro horizontal panel of lhs + // (LhsProgress x depth) + for(Index i=peelStart; i=8) { + for(Index j2=0; j2); \ + traits.updateRhs(&blB[(1 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C1, T0, fix<1>); \ + traits.updateRhs(&blB[(2 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C2, T0, fix<2>); \ + traits.updateRhs(&blB[(3 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C3, T0, fix<3>); \ + traits.loadRhs(&blB[(4 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C4, T0, fix<0>); \ + traits.updateRhs(&blB[(5 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C5, T0, fix<1>); \ + traits.updateRhs(&blB[(6 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C6, T0, fix<2>); \ + traits.updateRhs(&blB[(7 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C7, T0, fix<3>); \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX8"); \ + } while (false) + + EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX8"); + + EIGEN_GEBGP_ONESTEP(0); + EIGEN_GEBGP_ONESTEP(1); + EIGEN_GEBGP_ONESTEP(2); + EIGEN_GEBGP_ONESTEP(3); + EIGEN_GEBGP_ONESTEP(4); + EIGEN_GEBGP_ONESTEP(5); + EIGEN_GEBGP_ONESTEP(6); + EIGEN_GEBGP_ONESTEP(7); + + blB += pk*8*RhsProgress; + blA += pk*(1*LhsProgress); + + EIGEN_ASM_COMMENT("end gebp micro kernel 1pX8"); + } + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + + R0 = r0.template loadPacket(0); + R1 = r1.template loadPacket(0); + traits.acc(C0, alphav, R0); + traits.acc(C1, alphav, R1); + r0.storePacket(0, R0); + r1.storePacket(0, R1); + + R0 = r2.template loadPacket(0); + R1 = r3.template loadPacket(0); + traits.acc(C2, alphav, R0); + traits.acc(C3, alphav, R1); + r2.storePacket(0, R0); + r3.storePacket(0, R1); + + R0 = r4.template loadPacket(0); + R1 = r5.template loadPacket(0); + traits.acc(C4, alphav, R0); + traits.acc(C5, alphav, R1); + r4.storePacket(0, R0); + r5.storePacket(0, R1); + + R0 = r6.template loadPacket(0); + R1 = r7.template loadPacket(0); + traits.acc(C6, alphav, R0); + traits.acc(C7, alphav, R1); + r6.storePacket(0, R0); + r7.storePacket(0, R1); + } + } +#endif + + // loops on each largest micro vertical panel of rhs (depth * nr) + for(Index j2=packet_cols8; j2(alpha); + + R0 = r0.template loadPacket(0); + R1 = r1.template loadPacket(0); + traits.acc(C0, alphav, R0); + traits.acc(C1, alphav, R1); + r0.storePacket(0, R0); + r1.storePacket(0, R1); + + R0 = r2.template loadPacket(0); + R1 = r3.template loadPacket(0); + traits.acc(C2, alphav, R0); + traits.acc(C3, alphav, R1); + r2.storePacket(0, R0); + r3.storePacket(0, R1); + } + + // Deal with remaining columns of the rhs + for(Index j2=packet_cols4; j2); \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 1/half/quarterX1"); \ + } while(false); + + EIGEN_GEBGP_ONESTEP(0); + EIGEN_GEBGP_ONESTEP(1); + EIGEN_GEBGP_ONESTEP(2); + EIGEN_GEBGP_ONESTEP(3); + EIGEN_GEBGP_ONESTEP(4); + EIGEN_GEBGP_ONESTEP(5); + EIGEN_GEBGP_ONESTEP(6); + EIGEN_GEBGP_ONESTEP(7); + + blB += pk*RhsProgress; + blA += pk*LhsProgress; + + EIGEN_ASM_COMMENT("end gebp micro kernel 1/half/quarterX1"); + } + + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + R0 = r0.template loadPacket(0); + traits.acc(C0, alphav, R0); + r0.storePacket(0, R0); + } + } + } +}; + +template +struct lhs_process_fraction_of_packet : lhs_process_one_packet +{ + +EIGEN_STRONG_INLINE void peeled_kc_onestep(Index K, const LhsScalar* blA, const RhsScalar* blB, GEBPTraits traits, LhsPacket *A0, RhsPacket *B_0, RhsPacket *B1, RhsPacket *B2, RhsPacket *B3, AccPacket *C0, AccPacket *C1, AccPacket *C2, AccPacket *C3) + { + EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1X4"); + EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); + traits.loadLhsUnaligned(&blA[(0+1*K)*(LhsProgress)], *A0); + traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], *B_0, *B1, *B2, *B3); + traits.madd(*A0, *B_0, *C0, *B_0); + traits.madd(*A0, *B1, *C1, *B1); + traits.madd(*A0, *B2, *C2, *B2); + traits.madd(*A0, *B3, *C3, *B3); + EIGEN_ASM_COMMENT("end step of gebp micro kernel 1X4"); + } +}; + +template +EIGEN_DONT_INLINE +void gebp_kernel + ::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, + Index rows, Index depth, Index cols, ResScalar alpha, + Index strideA, Index strideB, Index offsetA, Index offsetB) + { + Traits traits; + SwappedTraits straits; + + if(strideA==-1) strideA = depth; + if(strideB==-1) strideB = depth; + conj_helper cj; + Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; + Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; + const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0; + const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0; + const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? peeled_mc2+((rows-peeled_mc2)/(1*LhsProgress))*(1*LhsProgress) : 0; + const Index peeled_mc_half = mr>=LhsProgressHalf ? peeled_mc1+((rows-peeled_mc1)/(LhsProgressHalf))*(LhsProgressHalf) : 0; + const Index peeled_mc_quarter = mr>=LhsProgressQuarter ? peeled_mc_half+((rows-peeled_mc_half)/(LhsProgressQuarter))*(LhsProgressQuarter) : 0; + enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell) + const Index peeled_kc = depth & ~(pk-1); + const int prefetch_res_offset = 32/sizeof(ResScalar); +// const Index depth2 = depth & ~1; + + //---------- Process 3 * LhsProgress rows at once ---------- + // This corresponds to 3*LhsProgress x nr register blocks. + // Usually, make sense only with FMA + if(mr>=3*Traits::LhsProgress) + { + // Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth) + // and on each largest micro vertical panel of the rhs (depth * nr). + // Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1. + // However, if depth is too small, we can extend the number of rows of these horizontal panels. + // This actual number of rows is computed as follow: + const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function. + // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size + // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess), + // or because we are testing specific blocking sizes. + const Index actual_panel_rows = (3*LhsProgress) * std::max(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) )); + for(Index i1=0; i1=8) { + for(Index j2=0; j2); \ + traits.madd(A1, rhs_panel, C8, T0, fix<0>); \ + traits.madd(A2, rhs_panel, C16, T0, fix<0>); \ + traits.updateRhs(blB + (1 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C1, T0, fix<1>); \ + traits.madd(A1, rhs_panel, C9, T0, fix<1>); \ + traits.madd(A2, rhs_panel, C17, T0, fix<1>); \ + traits.updateRhs(blB + (2 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C2, T0, fix<2>); \ + traits.madd(A1, rhs_panel, C10, T0, fix<2>); \ + traits.madd(A2, rhs_panel, C18, T0, fix<2>); \ + traits.updateRhs(blB + (3 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C3, T0, fix<3>); \ + traits.madd(A1, rhs_panel, C11, T0, fix<3>); \ + traits.madd(A2, rhs_panel, C19, T0, fix<3>); \ + traits.loadRhs(blB + (4 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C4, T0, fix<0>); \ + traits.madd(A1, rhs_panel, C12, T0, fix<0>); \ + traits.madd(A2, rhs_panel, C20, T0, fix<0>); \ + traits.updateRhs(blB + (5 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C5, T0, fix<1>); \ + traits.madd(A1, rhs_panel, C13, T0, fix<1>); \ + traits.madd(A2, rhs_panel, C21, T0, fix<1>); \ + traits.updateRhs(blB + (6 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C6, T0, fix<2>); \ + traits.madd(A1, rhs_panel, C14, T0, fix<2>); \ + traits.madd(A2, rhs_panel, C22, T0, fix<2>); \ + traits.updateRhs(blB + (7 + 8 * K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C7, T0, fix<3>); \ + traits.madd(A1, rhs_panel, C15, T0, fix<3>); \ + traits.madd(A2, rhs_panel, C23, T0, fix<3>); \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX8"); \ + } while (false) + + EIGEN_GEBP_ONESTEP(0); + EIGEN_GEBP_ONESTEP(1); + EIGEN_GEBP_ONESTEP(2); + EIGEN_GEBP_ONESTEP(3); + EIGEN_GEBP_ONESTEP(4); + EIGEN_GEBP_ONESTEP(5); + EIGEN_GEBP_ONESTEP(6); + EIGEN_GEBP_ONESTEP(7); + + blB += pk * 8 * RhsProgress; + blA += pk * 3 * Traits::LhsProgress; + EIGEN_ASM_COMMENT("end gebp micro kernel 3pX8"); + } + + // process remaining peeled loop + for (Index k = peeled_kc; k < depth; k++) + { + + RhsPanel27 rhs_panel; + RhsPacket T0; + LhsPacket A2; + EIGEN_GEBP_ONESTEP(0); + blB += 8 * RhsProgress; + blA += 3 * Traits::LhsProgress; + } + + #undef EIGEN_GEBP_ONESTEP + + ResPacket R0, R1, R2; + ResPacket alphav = pset1(alpha); + + R0 = r0.template loadPacket(0 * Traits::ResPacketSize); + R1 = r0.template loadPacket(1 * Traits::ResPacketSize); + R2 = r0.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C0, alphav, R0); + traits.acc(C8, alphav, R1); + traits.acc(C16, alphav, R2); + r0.storePacket(0 * Traits::ResPacketSize, R0); + r0.storePacket(1 * Traits::ResPacketSize, R1); + r0.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r1.template loadPacket(0 * Traits::ResPacketSize); + R1 = r1.template loadPacket(1 * Traits::ResPacketSize); + R2 = r1.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C1, alphav, R0); + traits.acc(C9, alphav, R1); + traits.acc(C17, alphav, R2); + r1.storePacket(0 * Traits::ResPacketSize, R0); + r1.storePacket(1 * Traits::ResPacketSize, R1); + r1.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r2.template loadPacket(0 * Traits::ResPacketSize); + R1 = r2.template loadPacket(1 * Traits::ResPacketSize); + R2 = r2.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C2, alphav, R0); + traits.acc(C10, alphav, R1); + traits.acc(C18, alphav, R2); + r2.storePacket(0 * Traits::ResPacketSize, R0); + r2.storePacket(1 * Traits::ResPacketSize, R1); + r2.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r3.template loadPacket(0 * Traits::ResPacketSize); + R1 = r3.template loadPacket(1 * Traits::ResPacketSize); + R2 = r3.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C3, alphav, R0); + traits.acc(C11, alphav, R1); + traits.acc(C19, alphav, R2); + r3.storePacket(0 * Traits::ResPacketSize, R0); + r3.storePacket(1 * Traits::ResPacketSize, R1); + r3.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r4.template loadPacket(0 * Traits::ResPacketSize); + R1 = r4.template loadPacket(1 * Traits::ResPacketSize); + R2 = r4.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C4, alphav, R0); + traits.acc(C12, alphav, R1); + traits.acc(C20, alphav, R2); + r4.storePacket(0 * Traits::ResPacketSize, R0); + r4.storePacket(1 * Traits::ResPacketSize, R1); + r4.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r5.template loadPacket(0 * Traits::ResPacketSize); + R1 = r5.template loadPacket(1 * Traits::ResPacketSize); + R2 = r5.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C5, alphav, R0); + traits.acc(C13, alphav, R1); + traits.acc(C21, alphav, R2); + r5.storePacket(0 * Traits::ResPacketSize, R0); + r5.storePacket(1 * Traits::ResPacketSize, R1); + r5.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r6.template loadPacket(0 * Traits::ResPacketSize); + R1 = r6.template loadPacket(1 * Traits::ResPacketSize); + R2 = r6.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C6, alphav, R0); + traits.acc(C14, alphav, R1); + traits.acc(C22, alphav, R2); + r6.storePacket(0 * Traits::ResPacketSize, R0); + r6.storePacket(1 * Traits::ResPacketSize, R1); + r6.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r7.template loadPacket(0 * Traits::ResPacketSize); + R1 = r7.template loadPacket(1 * Traits::ResPacketSize); + R2 = r7.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C7, alphav, R0); + traits.acc(C15, alphav, R1); + traits.acc(C23, alphav, R2); + r7.storePacket(0 * Traits::ResPacketSize, R0); + r7.storePacket(1 * Traits::ResPacketSize, R1); + r7.storePacket(2 * Traits::ResPacketSize, R2); + } + } + } +#endif + for(Index j2=packet_cols8; j2); \ + traits.madd(A1, rhs_panel, C4, T0, fix<0>); \ + traits.madd(A2, rhs_panel, C8, T0, fix<0>); \ + traits.updateRhs(blB + (1+4*K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C1, T0, fix<1>); \ + traits.madd(A1, rhs_panel, C5, T0, fix<1>); \ + traits.madd(A2, rhs_panel, C9, T0, fix<1>); \ + traits.updateRhs(blB + (2+4*K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C2, T0, fix<2>); \ + traits.madd(A1, rhs_panel, C6, T0, fix<2>); \ + traits.madd(A2, rhs_panel, C10, T0, fix<2>); \ + traits.updateRhs(blB + (3+4*K) * Traits::RhsProgress, rhs_panel); \ + traits.madd(A0, rhs_panel, C3, T0, fix<3>); \ + traits.madd(A1, rhs_panel, C7, T0, fix<3>); \ + traits.madd(A2, rhs_panel, C11, T0, fix<3>); \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \ + } while (false) + + internal::prefetch(blB); + EIGEN_GEBP_ONESTEP(0); + EIGEN_GEBP_ONESTEP(1); + EIGEN_GEBP_ONESTEP(2); + EIGEN_GEBP_ONESTEP(3); + EIGEN_GEBP_ONESTEP(4); + EIGEN_GEBP_ONESTEP(5); + EIGEN_GEBP_ONESTEP(6); + EIGEN_GEBP_ONESTEP(7); + + blB += pk*4*RhsProgress; + blA += pk*3*Traits::LhsProgress; + + EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4"); + } + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + + R0 = r0.template loadPacket(0 * Traits::ResPacketSize); + R1 = r0.template loadPacket(1 * Traits::ResPacketSize); + R2 = r0.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C0, alphav, R0); + traits.acc(C4, alphav, R1); + traits.acc(C8, alphav, R2); + r0.storePacket(0 * Traits::ResPacketSize, R0); + r0.storePacket(1 * Traits::ResPacketSize, R1); + r0.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r1.template loadPacket(0 * Traits::ResPacketSize); + R1 = r1.template loadPacket(1 * Traits::ResPacketSize); + R2 = r1.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C1, alphav, R0); + traits.acc(C5, alphav, R1); + traits.acc(C9, alphav, R2); + r1.storePacket(0 * Traits::ResPacketSize, R0); + r1.storePacket(1 * Traits::ResPacketSize, R1); + r1.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r2.template loadPacket(0 * Traits::ResPacketSize); + R1 = r2.template loadPacket(1 * Traits::ResPacketSize); + R2 = r2.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C2, alphav, R0); + traits.acc(C6, alphav, R1); + traits.acc(C10, alphav, R2); + r2.storePacket(0 * Traits::ResPacketSize, R0); + r2.storePacket(1 * Traits::ResPacketSize, R1); + r2.storePacket(2 * Traits::ResPacketSize, R2); + + R0 = r3.template loadPacket(0 * Traits::ResPacketSize); + R1 = r3.template loadPacket(1 * Traits::ResPacketSize); + R2 = r3.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C3, alphav, R0); + traits.acc(C7, alphav, R1); + traits.acc(C11, alphav, R2); + r3.storePacket(0 * Traits::ResPacketSize, R0); + r3.storePacket(1 * Traits::ResPacketSize, R1); + r3.storePacket(2 * Traits::ResPacketSize, R2); + } + } + + // Deal with remaining columns of the rhs + for(Index j2=packet_cols4; j2); \ + traits.madd(A1, B_0, C4, B_0, fix<0>); \ + traits.madd(A2, B_0, C8, B_0, fix<0>); \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \ + } while (false) + + EIGEN_GEBGP_ONESTEP(0); + EIGEN_GEBGP_ONESTEP(1); + EIGEN_GEBGP_ONESTEP(2); + EIGEN_GEBGP_ONESTEP(3); + EIGEN_GEBGP_ONESTEP(4); + EIGEN_GEBGP_ONESTEP(5); + EIGEN_GEBGP_ONESTEP(6); + EIGEN_GEBGP_ONESTEP(7); + + blB += int(pk) * int(RhsProgress); + blA += int(pk) * 3 * int(Traits::LhsProgress); + + EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1"); + } + + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + + R0 = r0.template loadPacket(0 * Traits::ResPacketSize); + R1 = r0.template loadPacket(1 * Traits::ResPacketSize); + R2 = r0.template loadPacket(2 * Traits::ResPacketSize); + traits.acc(C0, alphav, R0); + traits.acc(C4, alphav, R1); + traits.acc(C8, alphav, R2); + r0.storePacket(0 * Traits::ResPacketSize, R0); + r0.storePacket(1 * Traits::ResPacketSize, R1); + r0.storePacket(2 * Traits::ResPacketSize, R2); + } + } + } + } + + //---------- Process 2 * LhsProgress rows at once ---------- + if(mr>=2*Traits::LhsProgress) + { + const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function. + // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size + // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess), + // or because we are testing specific blocking sizes. + Index actual_panel_rows = (2*LhsProgress) * std::max(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) )); + + for(Index i1=peeled_mc3; i1=8) { + for(Index j2=0; j2=6 without FMA (bug 1637) + #if EIGEN_GNUC_STRICT_AT_LEAST(6,0,0) && defined(EIGEN_VECTORIZE_SSE) + #define EIGEN_GEBP_2Px8_SPILLING_WORKAROUND __asm__ ("" : [a0] "+x,m" (A0),[a1] "+x,m" (A1)); + #else + #define EIGEN_GEBP_2Px8_SPILLING_WORKAROUND + #endif +#define EIGEN_GEBGP_ONESTEP(K) \ + do { \ + EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX8"); \ + traits.loadLhs(&blA[(0 + 2 * K) * LhsProgress], A0); \ + traits.loadLhs(&blA[(1 + 2 * K) * LhsProgress], A1); \ + traits.loadRhs(&blB[(0 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C0, T0, fix<0>); \ + traits.madd(A1, rhs_panel, C8, T0, fix<0>); \ + traits.updateRhs(&blB[(1 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C1, T0, fix<1>); \ + traits.madd(A1, rhs_panel, C9, T0, fix<1>); \ + traits.updateRhs(&blB[(2 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C2, T0, fix<2>); \ + traits.madd(A1, rhs_panel, C10, T0, fix<2>); \ + traits.updateRhs(&blB[(3 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C3, T0, fix<3>); \ + traits.madd(A1, rhs_panel, C11, T0, fix<3>); \ + traits.loadRhs(&blB[(4 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C4, T0, fix<0>); \ + traits.madd(A1, rhs_panel, C12, T0, fix<0>); \ + traits.updateRhs(&blB[(5 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C5, T0, fix<1>); \ + traits.madd(A1, rhs_panel, C13, T0, fix<1>); \ + traits.updateRhs(&blB[(6 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C6, T0, fix<2>); \ + traits.madd(A1, rhs_panel, C14, T0, fix<2>); \ + traits.updateRhs(&blB[(7 + 8 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C7, T0, fix<3>); \ + traits.madd(A1, rhs_panel, C15, T0, fix<3>); \ + EIGEN_GEBP_2Px8_SPILLING_WORKAROUND \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX8"); \ + } while (false) + + EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX8"); + + EIGEN_GEBGP_ONESTEP(0); + EIGEN_GEBGP_ONESTEP(1); + EIGEN_GEBGP_ONESTEP(2); + EIGEN_GEBGP_ONESTEP(3); + EIGEN_GEBGP_ONESTEP(4); + EIGEN_GEBGP_ONESTEP(5); + EIGEN_GEBGP_ONESTEP(6); + EIGEN_GEBGP_ONESTEP(7); + + blB += pk*8*RhsProgress; + blA += pk*(2*Traits::LhsProgress); + + EIGEN_ASM_COMMENT("end gebp micro kernel 2pX8"); + } + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + + R0 = r0.template loadPacket(0 * Traits::ResPacketSize); + R1 = r0.template loadPacket(1 * Traits::ResPacketSize); + R2 = r1.template loadPacket(0 * Traits::ResPacketSize); + R3 = r1.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C0, alphav, R0); + traits.acc(C8, alphav, R1); + traits.acc(C1, alphav, R2); + traits.acc(C9, alphav, R3); + r0.storePacket(0 * Traits::ResPacketSize, R0); + r0.storePacket(1 * Traits::ResPacketSize, R1); + r1.storePacket(0 * Traits::ResPacketSize, R2); + r1.storePacket(1 * Traits::ResPacketSize, R3); + + R0 = r2.template loadPacket(0 * Traits::ResPacketSize); + R1 = r2.template loadPacket(1 * Traits::ResPacketSize); + R2 = r3.template loadPacket(0 * Traits::ResPacketSize); + R3 = r3.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C2, alphav, R0); + traits.acc(C10, alphav, R1); + traits.acc(C3, alphav, R2); + traits.acc(C11, alphav, R3); + r2.storePacket(0 * Traits::ResPacketSize, R0); + r2.storePacket(1 * Traits::ResPacketSize, R1); + r3.storePacket(0 * Traits::ResPacketSize, R2); + r3.storePacket(1 * Traits::ResPacketSize, R3); + + R0 = r4.template loadPacket(0 * Traits::ResPacketSize); + R1 = r4.template loadPacket(1 * Traits::ResPacketSize); + R2 = r5.template loadPacket(0 * Traits::ResPacketSize); + R3 = r5.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C4, alphav, R0); + traits.acc(C12, alphav, R1); + traits.acc(C5, alphav, R2); + traits.acc(C13, alphav, R3); + r4.storePacket(0 * Traits::ResPacketSize, R0); + r4.storePacket(1 * Traits::ResPacketSize, R1); + r5.storePacket(0 * Traits::ResPacketSize, R2); + r5.storePacket(1 * Traits::ResPacketSize, R3); + + R0 = r6.template loadPacket(0 * Traits::ResPacketSize); + R1 = r6.template loadPacket(1 * Traits::ResPacketSize); + R2 = r7.template loadPacket(0 * Traits::ResPacketSize); + R3 = r7.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C6, alphav, R0); + traits.acc(C14, alphav, R1); + traits.acc(C7, alphav, R2); + traits.acc(C15, alphav, R3); + r6.storePacket(0 * Traits::ResPacketSize, R0); + r6.storePacket(1 * Traits::ResPacketSize, R1); + r7.storePacket(0 * Traits::ResPacketSize, R2); + r7.storePacket(1 * Traits::ResPacketSize, R3); + } + } + } +#endif + for(Index j2=packet_cols8; j2=6 without FMA (bug 1637) + #if EIGEN_GNUC_STRICT_AT_LEAST(6,0,0) && defined(EIGEN_VECTORIZE_SSE) && !(EIGEN_COMP_LCC) + #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND __asm__ ("" : [a0] "+x,m" (A0),[a1] "+x,m" (A1)); + #else + #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND + #endif +#define EIGEN_GEBGP_ONESTEP(K) \ + do { \ + EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \ + traits.loadLhs(&blA[(0 + 2 * K) * LhsProgress], A0); \ + traits.loadLhs(&blA[(1 + 2 * K) * LhsProgress], A1); \ + traits.loadRhs(&blB[(0 + 4 * K) * RhsProgress], rhs_panel); \ + traits.madd(A0, rhs_panel, C0, T0, fix<0>); \ + traits.madd(A1, rhs_panel, C4, T0, fix<0>); \ + traits.madd(A0, rhs_panel, C1, T0, fix<1>); \ + traits.madd(A1, rhs_panel, C5, T0, fix<1>); \ + traits.madd(A0, rhs_panel, C2, T0, fix<2>); \ + traits.madd(A1, rhs_panel, C6, T0, fix<2>); \ + traits.madd(A0, rhs_panel, C3, T0, fix<3>); \ + traits.madd(A1, rhs_panel, C7, T0, fix<3>); \ + EIGEN_GEBP_2PX4_SPILLING_WORKAROUND \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \ + } while (false) + + internal::prefetch(blB+(48+0)); + EIGEN_GEBGP_ONESTEP(0); + EIGEN_GEBGP_ONESTEP(1); + EIGEN_GEBGP_ONESTEP(2); + EIGEN_GEBGP_ONESTEP(3); + internal::prefetch(blB+(48+16)); + EIGEN_GEBGP_ONESTEP(4); + EIGEN_GEBGP_ONESTEP(5); + EIGEN_GEBGP_ONESTEP(6); + EIGEN_GEBGP_ONESTEP(7); + + blB += pk*4*RhsProgress; + blA += pk*(2*Traits::LhsProgress); + + EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4"); + } + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + + R0 = r0.template loadPacket(0 * Traits::ResPacketSize); + R1 = r0.template loadPacket(1 * Traits::ResPacketSize); + R2 = r1.template loadPacket(0 * Traits::ResPacketSize); + R3 = r1.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C0, alphav, R0); + traits.acc(C4, alphav, R1); + traits.acc(C1, alphav, R2); + traits.acc(C5, alphav, R3); + r0.storePacket(0 * Traits::ResPacketSize, R0); + r0.storePacket(1 * Traits::ResPacketSize, R1); + r1.storePacket(0 * Traits::ResPacketSize, R2); + r1.storePacket(1 * Traits::ResPacketSize, R3); + + R0 = r2.template loadPacket(0 * Traits::ResPacketSize); + R1 = r2.template loadPacket(1 * Traits::ResPacketSize); + R2 = r3.template loadPacket(0 * Traits::ResPacketSize); + R3 = r3.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C2, alphav, R0); + traits.acc(C6, alphav, R1); + traits.acc(C3, alphav, R2); + traits.acc(C7, alphav, R3); + r2.storePacket(0 * Traits::ResPacketSize, R0); + r2.storePacket(1 * Traits::ResPacketSize, R1); + r3.storePacket(0 * Traits::ResPacketSize, R2); + r3.storePacket(1 * Traits::ResPacketSize, R3); + } + } + + // Deal with remaining columns of the rhs + for(Index j2=packet_cols4; j2); \ + traits.madd(A1, B_0, C4, B_0, fix<0>); \ + EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \ + } while(false) + + EIGEN_GEBGP_ONESTEP(0); + EIGEN_GEBGP_ONESTEP(1); + EIGEN_GEBGP_ONESTEP(2); + EIGEN_GEBGP_ONESTEP(3); + EIGEN_GEBGP_ONESTEP(4); + EIGEN_GEBGP_ONESTEP(5); + EIGEN_GEBGP_ONESTEP(6); + EIGEN_GEBGP_ONESTEP(7); + + blB += int(pk) * int(RhsProgress); + blA += int(pk) * 2 * int(Traits::LhsProgress); + + EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1"); + } + + // process remaining peeled loop + for(Index k=peeled_kc; k(alpha); + + R0 = r0.template loadPacket(0 * Traits::ResPacketSize); + R1 = r0.template loadPacket(1 * Traits::ResPacketSize); + traits.acc(C0, alphav, R0); + traits.acc(C4, alphav, R1); + r0.storePacket(0 * Traits::ResPacketSize, R0); + r0.storePacket(1 * Traits::ResPacketSize, R1); + } + } + } + } + //---------- Process 1 * LhsProgress rows at once ---------- + if(mr>=1*Traits::LhsProgress) + { + lhs_process_one_packet p; + p(res, blockA, blockB, alpha, peeled_mc2, peeled_mc1, strideA, strideB, offsetA, offsetB, prefetch_res_offset, peeled_kc, pk, cols, depth, packet_cols4); + } + //---------- Process LhsProgressHalf rows at once ---------- + if((LhsProgressHalf < LhsProgress) && mr>=LhsProgressHalf) + { + lhs_process_fraction_of_packet p; + p(res, blockA, blockB, alpha, peeled_mc1, peeled_mc_half, strideA, strideB, offsetA, offsetB, prefetch_res_offset, peeled_kc, pk, cols, depth, packet_cols4); + } + //---------- Process LhsProgressQuarter rows at once ---------- + if((LhsProgressQuarter < LhsProgressHalf) && mr>=LhsProgressQuarter) + { + lhs_process_fraction_of_packet p; + p(res, blockA, blockB, alpha, peeled_mc_half, peeled_mc_quarter, strideA, strideB, offsetA, offsetB, prefetch_res_offset, peeled_kc, pk, cols, depth, packet_cols4); + } + //---------- Process remaining rows, 1 at once ---------- + if(peeled_mc_quarter=8) { + // loop on each panel of the rhs + for(Index j2=0; j2::half>::size; + const int SResPacketQuarterSize = unpacket_traits::half>::half>::size; + // The following code assumes we can load SRhsPacket in such a way that + // it multiplies blocks of 4 elements in SLhsPacket. This is not the + // case for some customized kernels (i.e. NEON fp16). If the assumption + // fails, drop down to the scalar path. + constexpr bool kCanLoadSRhsQuad = (unpacket_traits::size < 4) || (unpacket_traits::size % (unpacket_traits::size / 4)) == 0; + if (kCanLoadSRhsQuad && + (SwappedTraits::LhsProgress % 4) == 0 && + (SwappedTraits::LhsProgress<=16) && + (SwappedTraits::LhsProgress!=8 || SResPacketHalfSize==nr) && + (SwappedTraits::LhsProgress!=16 || SResPacketQuarterSize==nr)) + { + SAccPacket C0, C1, C2, C3; + straits.initAcc(C0); + straits.initAcc(C1); + straits.initAcc(C2); + straits.initAcc(C3); + + const Index spk = (std::max)(1,SwappedTraits::LhsProgress/4); + const Index endk = (depth/spk)*spk; + const Index endk4 = (depth/(spk*4))*(spk*4); + + Index k=0; + for(; k); + straits.madd(A1,B_1,C1,B_1, fix<0>); + + straits.loadLhsUnaligned(blB+2*SwappedTraits::LhsProgress, A0); + straits.loadLhsUnaligned(blB+3*SwappedTraits::LhsProgress, A1); + straits.loadRhsQuad(blA+2*spk, B_0); + straits.loadRhsQuad(blA+3*spk, B_1); + straits.madd(A0,B_0,C2,B_0, fix<0>); + straits.madd(A1,B_1,C3,B_1, fix<0>); + + blB += 4*SwappedTraits::LhsProgress; + blA += 4*spk; + } + C0 = padd(padd(C0,C1),padd(C2,C3)); + for(; k); + + blB += SwappedTraits::LhsProgress; + blA += spk; + } + if(SwappedTraits::LhsProgress==8) + { + // Special case where we have to first reduce the accumulation register C0 + typedef std::conditional_t=8,typename unpacket_traits::half,SResPacket> SResPacketHalf; + typedef std::conditional_t=8,typename unpacket_traits::half,SLhsPacket> SLhsPacketHalf; + typedef std::conditional_t=8,typename unpacket_traits::half,SRhsPacket> SRhsPacketHalf; + typedef std::conditional_t=8,typename unpacket_traits::half,SAccPacket> SAccPacketHalf; + + SResPacketHalf R = res.template gatherPacket(i, j2); + SResPacketHalf alphav = pset1(alpha); + + if(depth-endk>0) + { + // We have to handle the last row of the rhs which corresponds to a half-packet + SLhsPacketHalf a0; + SRhsPacketHalf b0; + straits.loadLhsUnaligned(blB, a0); + straits.loadRhs(blA, b0); + SAccPacketHalf c0 = predux_half_dowto4(C0); + straits.madd(a0,b0,c0,b0, fix<0>); + straits.acc(c0, alphav, R); + } + else + { + straits.acc(predux_half_dowto4(C0), alphav, R); + } + res.scatterPacket(i, j2, R); + } + else if (SwappedTraits::LhsProgress==16) + { + // Special case where we have to first reduce the + // accumulation register C0. We specialize the block in + // template form, so that LhsProgress < 16 paths don't + // fail to compile + last_row_process_16_packets p; + p(res, straits, blA, blB, depth, endk, i, j2,alpha, C0); + } + else + { + SResPacket R = res.template gatherPacket(i, j2); + SResPacket alphav = pset1(alpha); + straits.acc(C0, alphav, R); + res.scatterPacket(i, j2, R); + } + } + else // scalar path + { + // get a 1 x 4 res block as registers + ResScalar C0(0), C1(0), C2(0), C3(0); + + for(Index k=0; k +struct gemm_pack_lhs +{ + typedef typename DataMapper::LinearMapper LinearMapper; + EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +EIGEN_DONT_INLINE void gemm_pack_lhs + ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + typedef typename unpacket_traits::half HalfPacket; + typedef typename unpacket_traits::half>::half QuarterPacket; + enum { PacketSize = unpacket_traits::size, + HalfPacketSize = unpacket_traits::size, + QuarterPacketSize = unpacket_traits::size, + HasHalf = (int)HalfPacketSize < (int)PacketSize, + HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize}; + + EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS"); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(offset); + eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); + eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) ); + conj_if::IsComplex && Conjugate> cj; + Index count = 0; + + const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; + const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; + const Index peeled_mc1 = Pack1>=1*PacketSize ? peeled_mc2+((rows-peeled_mc2)/(1*PacketSize))*(1*PacketSize) : 0; + const Index peeled_mc_half = Pack1>=HalfPacketSize ? peeled_mc1+((rows-peeled_mc1)/(HalfPacketSize))*(HalfPacketSize) : 0; + const Index peeled_mc_quarter = Pack1>=QuarterPacketSize ? (rows/(QuarterPacketSize))*(QuarterPacketSize) : 0; + const Index last_lhs_progress = rows > peeled_mc_quarter ? (rows - peeled_mc_quarter) & ~1 : 0; + const Index peeled_mc0 = Pack2>=PacketSize ? peeled_mc_quarter + : Pack2>1 && last_lhs_progress ? (rows/last_lhs_progress)*last_lhs_progress : 0; + + Index i=0; + + // Pack 3 packets + if(Pack1>=3*PacketSize) + { + for(; i(i+0*PacketSize, k); + B = lhs.template loadPacket(i+1*PacketSize, k); + C = lhs.template loadPacket(i+2*PacketSize, k); + pstore(blockA+count, cj.pconj(A)); count+=PacketSize; + pstore(blockA+count, cj.pconj(B)); count+=PacketSize; + pstore(blockA+count, cj.pconj(C)); count+=PacketSize; + } + if(PanelMode) count += (3*PacketSize) * (stride-offset-depth); + } + } + // Pack 2 packets + if(Pack1>=2*PacketSize) + { + for(; i(i+0*PacketSize, k); + B = lhs.template loadPacket(i+1*PacketSize, k); + pstore(blockA+count, cj.pconj(A)); count+=PacketSize; + pstore(blockA+count, cj.pconj(B)); count+=PacketSize; + } + if(PanelMode) count += (2*PacketSize) * (stride-offset-depth); + } + } + // Pack 1 packets + if(Pack1>=1*PacketSize) + { + for(; i(i+0*PacketSize, k); + pstore(blockA+count, cj.pconj(A)); + count+=PacketSize; + } + if(PanelMode) count += (1*PacketSize) * (stride-offset-depth); + } + } + // Pack half packets + if(HasHalf && Pack1>=HalfPacketSize) + { + for(; i(i+0*(HalfPacketSize), k); + pstoreu(blockA+count, cj.pconj(A)); + count+=HalfPacketSize; + } + if(PanelMode) count += (HalfPacketSize) * (stride-offset-depth); + } + } + // Pack quarter packets + if(HasQuarter && Pack1>=QuarterPacketSize) + { + for(; i(i+0*(QuarterPacketSize), k); + pstoreu(blockA+count, cj.pconj(A)); + count+=QuarterPacketSize; + } + if(PanelMode) count += (QuarterPacketSize) * (stride-offset-depth); + } + } + // Pack2 may be *smaller* than PacketSize—that happens for + // products like real * complex, where we have to go half the + // progress on the lhs in order to duplicate those operands to + // address both real & imaginary parts on the rhs. This portion will + // pack those half ones until they match the number expected on the + // last peeling loop at this point (for the rhs). + if(Pack21) + { + for(; i +struct gemm_pack_lhs +{ + typedef typename DataMapper::LinearMapper LinearMapper; + EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); +}; + +template +EIGEN_DONT_INLINE void gemm_pack_lhs + ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) +{ + typedef typename unpacket_traits::half HalfPacket; + typedef typename unpacket_traits::half>::half QuarterPacket; + enum { PacketSize = unpacket_traits::size, + HalfPacketSize = unpacket_traits::size, + QuarterPacketSize = unpacket_traits::size, + HasHalf = (int)HalfPacketSize < (int)PacketSize, + HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize}; + + EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS"); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(offset); + eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); + conj_if::IsComplex && Conjugate> cj; + Index count = 0; + bool gone_half = false, gone_quarter = false, gone_last = false; + + Index i = 0; + Index pack = Pack1; + Index psize = PacketSize; + while(pack>0) + { + Index remaining_rows = rows-i; + Index peeled_mc = gone_last ? Pack2>1 ? (rows/pack)*pack : 0 : i+(remaining_rows/pack)*pack; + Index starting_pos = i; + for(; i=psize && psize >= QuarterPacketSize) + { + const Index peeled_k = (depth/psize)*psize; + for(; k kernel; + for (Index p = 0; p < psize; ++p) kernel.packet[p] = lhs.template loadPacket(i+p+m, k); + ptranspose(kernel); + for (Index p = 0; p < psize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p])); + } else if (HasHalf && psize == HalfPacketSize) { + gone_half = true; + PacketBlock kernel_half; + for (Index p = 0; p < psize; ++p) kernel_half.packet[p] = lhs.template loadPacket(i+p+m, k); + ptranspose(kernel_half); + for (Index p = 0; p < psize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel_half.packet[p])); + } else if (HasQuarter && psize == QuarterPacketSize) { + gone_quarter = true; + PacketBlock kernel_quarter; + for (Index p = 0; p < psize; ++p) kernel_quarter.packet[p] = lhs.template loadPacket(i+p+m, k); + ptranspose(kernel_quarter); + for (Index p = 0; p < psize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel_quarter.packet[p])); + } + } + count += psize*pack; + } + } + + for(; k= psize/2 || left >= psize/4) && + ((psize/2 == HalfPacketSize && HasHalf && !gone_half) || + (psize/2 == QuarterPacketSize && HasQuarter && !gone_quarter))) { + psize /= 2; + pack = psize; + continue; + } + // Pack2 may be *smaller* than PacketSize—that happens for + // products like real * complex, where we have to go half the + // progress on the lhs in order to duplicate those operands to + // address both real & imaginary parts on the rhs. This portion will + // pack those half ones until they match the number expected on the + // last peeling loop at this point (for the rhs). + if (Pack2 < PacketSize && !gone_last) { + gone_last = true; + psize = pack = left & ~1; + } + } + } + + for(; i +struct gemm_pack_rhs +{ + typedef typename packet_traits::type Packet; + typedef typename DataMapper::LinearMapper LinearMapper; + enum { PacketSize = packet_traits::size }; + EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); +}; + +template +EIGEN_DONT_INLINE void gemm_pack_rhs + ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) +{ + EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR"); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(offset); + eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); + conj_if::IsComplex && Conjugate> cj; + Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; + Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; + Index count = 0; + const Index peeled_k = (depth/PacketSize)*PacketSize; + +#if EIGEN_ARCH_ARM64 + EIGEN_IF_CONSTEXPR(nr>=8) + { + for(Index j2=0; j2 kernel0, kernel1, kernel2, kernel3; + kernel0.packet[0%PacketSize] = dm0.template loadPacket(k); + kernel0.packet[1%PacketSize] = dm1.template loadPacket(k); + kernel1.packet[0%PacketSize] = dm2.template loadPacket(k); + kernel1.packet[1%PacketSize] = dm3.template loadPacket(k); + kernel2.packet[0%PacketSize] = dm4.template loadPacket(k); + kernel2.packet[1%PacketSize] = dm5.template loadPacket(k); + kernel3.packet[0%PacketSize] = dm6.template loadPacket(k); + kernel3.packet[1%PacketSize] = dm7.template loadPacket(k); + ptranspose(kernel0); + ptranspose(kernel1); + ptranspose(kernel2); + ptranspose(kernel3); + + pstoreu(blockB + count + 0 * PacketSize, cj.pconj(kernel0.packet[0 % PacketSize])); + pstoreu(blockB + count + 1 * PacketSize, cj.pconj(kernel1.packet[0 % PacketSize])); + pstoreu(blockB + count + 2 * PacketSize, cj.pconj(kernel2.packet[0 % PacketSize])); + pstoreu(blockB + count + 3 * PacketSize, cj.pconj(kernel3.packet[0 % PacketSize])); + + pstoreu(blockB + count + 4 * PacketSize, cj.pconj(kernel0.packet[1 % PacketSize])); + pstoreu(blockB + count + 5 * PacketSize, cj.pconj(kernel1.packet[1 % PacketSize])); + pstoreu(blockB + count + 6 * PacketSize, cj.pconj(kernel2.packet[1 % PacketSize])); + pstoreu(blockB + count + 7 * PacketSize, cj.pconj(kernel3.packet[1 % PacketSize])); + count+=8*PacketSize; + } + else if (PacketSize == 4) + { + PacketBlock kernel0, kernel1; + + kernel0.packet[0%PacketSize] = dm0.template loadPacket(k); + kernel0.packet[1%PacketSize] = dm1.template loadPacket(k); + kernel0.packet[2%PacketSize] = dm2.template loadPacket(k); + kernel0.packet[3%PacketSize] = dm3.template loadPacket(k); + kernel1.packet[0%PacketSize] = dm4.template loadPacket(k); + kernel1.packet[1%PacketSize] = dm5.template loadPacket(k); + kernel1.packet[2%PacketSize] = dm6.template loadPacket(k); + kernel1.packet[3%PacketSize] = dm7.template loadPacket(k); + ptranspose(kernel0); + ptranspose(kernel1); + + pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel0.packet[0%PacketSize])); + pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel1.packet[0%PacketSize])); + pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel0.packet[1%PacketSize])); + pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel1.packet[1%PacketSize])); + pstoreu(blockB+count+4*PacketSize, cj.pconj(kernel0.packet[2%PacketSize])); + pstoreu(blockB+count+5*PacketSize, cj.pconj(kernel1.packet[2%PacketSize])); + pstoreu(blockB+count+6*PacketSize, cj.pconj(kernel0.packet[3%PacketSize])); + pstoreu(blockB+count+7*PacketSize, cj.pconj(kernel1.packet[3%PacketSize])); + count+=8*PacketSize; + } + else if (PacketSize == 8) + { + PacketBlock kernel0; + + kernel0.packet[0%PacketSize] = dm0.template loadPacket(k); + kernel0.packet[1%PacketSize] = dm1.template loadPacket(k); + kernel0.packet[2%PacketSize] = dm2.template loadPacket(k); + kernel0.packet[3%PacketSize] = dm3.template loadPacket(k); + kernel0.packet[4%PacketSize] = dm4.template loadPacket(k); + kernel0.packet[5%PacketSize] = dm5.template loadPacket(k); + kernel0.packet[6%PacketSize] = dm6.template loadPacket(k); + kernel0.packet[7%PacketSize] = dm7.template loadPacket(k); + ptranspose(kernel0); + + pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel0.packet[0%PacketSize])); + pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel0.packet[1%PacketSize])); + pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel0.packet[2%PacketSize])); + pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel0.packet[3%PacketSize])); + pstoreu(blockB+count+4*PacketSize, cj.pconj(kernel0.packet[4%PacketSize])); + pstoreu(blockB+count+5*PacketSize, cj.pconj(kernel0.packet[5%PacketSize])); + pstoreu(blockB+count+6*PacketSize, cj.pconj(kernel0.packet[6%PacketSize])); + pstoreu(blockB+count+7*PacketSize, cj.pconj(kernel0.packet[7%PacketSize])); + count+=8*PacketSize; + } + } + } + + for(; k=4) + { + for(Index j2=packet_cols8; j2 kernel; + kernel.packet[0 ] = dm0.template loadPacket(k); + kernel.packet[1%PacketSize] = dm1.template loadPacket(k); + kernel.packet[2%PacketSize] = dm2.template loadPacket(k); + kernel.packet[3%PacketSize] = dm3.template loadPacket(k); + ptranspose(kernel); + pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0])); + pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize])); + pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize])); + pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize])); + count+=4*PacketSize; + } + } + for(; k +struct gemm_pack_rhs +{ + typedef typename packet_traits::type Packet; + typedef typename unpacket_traits::half HalfPacket; + typedef typename unpacket_traits::half>::half QuarterPacket; + typedef typename DataMapper::LinearMapper LinearMapper; + enum { PacketSize = packet_traits::size, + HalfPacketSize = unpacket_traits::size, + QuarterPacketSize = unpacket_traits::size}; + EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0) + { + EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR"); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(offset); + eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); + const bool HasHalf = (int)HalfPacketSize < (int)PacketSize; + const bool HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize; + conj_if::IsComplex && Conjugate> cj; + Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; + Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; + Index count = 0; + +#if EIGEN_ARCH_ARM64 + EIGEN_IF_CONSTEXPR(nr>=8) + { + for(Index j2=0; j2(k, j2); + pstoreu(blockB+count, cj.pconj(A)); + count += PacketSize; + } else if (PacketSize==4) { + Packet A = rhs.template loadPacket(k, j2); + Packet B = rhs.template loadPacket(k, j2 + 4); + pstoreu(blockB+count, cj.pconj(A)); + pstoreu(blockB+count+PacketSize, cj.pconj(B)); + count += 2*PacketSize; + } else { + const LinearMapper dm0 = rhs.getLinearMapper(k, j2); + blockB[count+0] = cj(dm0(0)); + blockB[count+1] = cj(dm0(1)); + blockB[count+2] = cj(dm0(2)); + blockB[count+3] = cj(dm0(3)); + blockB[count+4] = cj(dm0(4)); + blockB[count+5] = cj(dm0(5)); + blockB[count+6] = cj(dm0(6)); + blockB[count+7] = cj(dm0(7)); + count += 8; + } + } + // skip what we have after + if(PanelMode) count += 8 * (stride-offset-depth); + } + } +#endif + + if(nr>=4) + { + for(Index j2=packet_cols8; j2(k, j2); + pstoreu(blockB+count, cj.pconj(A)); + count += PacketSize; + } else if (HasHalf && HalfPacketSize==4) { + HalfPacket A = rhs.template loadPacket(k, j2); + pstoreu(blockB+count, cj.pconj(A)); + count += HalfPacketSize; + } else if (HasQuarter && QuarterPacketSize==4) { + QuarterPacket A = rhs.template loadPacket(k, j2); + pstoreu(blockB+count, cj.pconj(A)); + count += QuarterPacketSize; + } else { + const LinearMapper dm0 = rhs.getLinearMapper(k, j2); + blockB[count+0] = cj(dm0(0)); + blockB[count+1] = cj(dm0(1)); + blockB[count+2] = cj(dm0(2)); + blockB[count+3] = cj(dm0(3)); + count += 4; + } + } + // skip what we have after + if(PanelMode) count += 4 * (stride-offset-depth); + } + } + // copy the remaining columns one at a time (nr==1) + for(Index j2=packet_cols4; j2 +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H +#define EIGEN_GENERAL_MATRIX_MATRIX_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template class level3_blocking; + +/* Specialization for a row-major destination matrix => simple transposition of the product */ +template< + typename Index, + typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, + typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, + int ResInnerStride> +struct general_matrix_matrix_product +{ + typedef gebp_traits Traits; + + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + static EIGEN_STRONG_INLINE void run( + Index rows, Index cols, Index depth, + const LhsScalar* lhs, Index lhsStride, + const RhsScalar* rhs, Index rhsStride, + ResScalar* res, Index resIncr, Index resStride, + ResScalar alpha, + level3_blocking& blocking, + GemmParallelInfo* info = 0) + { + // transpose the product such that the result is column major + general_matrix_matrix_product + ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resIncr,resStride,alpha,blocking,info); + } +}; + +/* Specialization for a col-major destination matrix + * => Blocking algorithm following Goto's paper */ +template< + typename Index, + typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, + typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, + int ResInnerStride> +struct general_matrix_matrix_product +{ + +typedef gebp_traits Traits; + +typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; +static void run(Index rows, Index cols, Index depth, + const LhsScalar* _lhs, Index lhsStride, + const RhsScalar* _rhs, Index rhsStride, + ResScalar* _res, Index resIncr, Index resStride, + ResScalar alpha, + level3_blocking& blocking, + GemmParallelInfo* info = 0) +{ + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + typedef blas_data_mapper ResMapper; + LhsMapper lhs(_lhs, lhsStride); + RhsMapper rhs(_rhs, rhsStride); + ResMapper res(_res, resStride, resIncr); + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction + Index nc = (std::min)(cols,blocking.nc()); // cache block size along the N direction + + gemm_pack_lhs pack_lhs; + gemm_pack_rhs pack_rhs; + gebp_kernel gebp; + +#ifdef EIGEN_HAS_OPENMP + if(info) + { + // this is the parallel version! + int tid = omp_get_thread_num(); + int threads = omp_get_num_threads(); + + LhsScalar* blockA = blocking.blockA(); + eigen_internal_assert(blockA!=0); + + std::size_t sizeB = kc*nc; + ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0); + + // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs... + for(Index k=0; k rows of B', and cols of the A' + + // In order to reduce the chance that a thread has to wait for the other, + // let's start by packing B'. + pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc); + + // Pack A_k to A' in a parallel fashion: + // each thread packs the sub block A_k,i to A'_i where i is the thread id. + + // However, before copying to A'_i, we have to make sure that no other thread is still using it, + // i.e., we test that info[tid].users equals 0. + // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it. + while(info[tid].users!=0) {} + info[tid].users = threads; + + pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length); + + // Notify the other threads that the part A'_i is ready to go. + info[tid].sync = k; + + // Computes C_i += A' * B' per A'_i + for(int shift=0; shift0) { + while(info[i].sync!=k) { + } + } + + gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha); + } + + // Then keep going as usual with the remaining B' + for(Index j=nc; j Pack lhs's panel into a sequential chunk of memory (L2/L3 caching) + // Note that this panel will be read as many times as the number of blocks in the rhs's + // horizontal panel which is, in practice, a very low number. + pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc); + + // For each kc x nc block of the rhs's horizontal panel... + for(Index j2=0; j2 +struct gemm_functor +{ + gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking) + : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking) + {} + + void initParallelSession(Index num_threads) const + { + m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads); + m_blocking.allocateA(); + } + + void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo* info=0) const + { + if(cols==-1) + cols = m_rhs.cols(); + + Gemm::run(rows, cols, m_lhs.cols(), + &m_lhs.coeffRef(row,0), m_lhs.outerStride(), + &m_rhs.coeffRef(0,col), m_rhs.outerStride(), + (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.innerStride(), m_dest.outerStride(), + m_actualAlpha, m_blocking, info); + } + + typedef typename Gemm::Traits Traits; + + protected: + const Lhs& m_lhs; + const Rhs& m_rhs; + Dest& m_dest; + Scalar m_actualAlpha; + BlockingType& m_blocking; +}; + +template class gemm_blocking_space; + +template +class level3_blocking +{ + typedef LhsScalar_ LhsScalar; + typedef RhsScalar_ RhsScalar; + + protected: + LhsScalar* m_blockA; + RhsScalar* m_blockB; + + Index m_mc; + Index m_nc; + Index m_kc; + + public: + + level3_blocking() + : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0) + {} + + inline Index mc() const { return m_mc; } + inline Index nc() const { return m_nc; } + inline Index kc() const { return m_kc; } + + inline LhsScalar* blockA() { return m_blockA; } + inline RhsScalar* blockB() { return m_blockB; } +}; + +template +class gemm_blocking_space + : public level3_blocking< + std::conditional_t, + std::conditional_t> +{ + enum { + Transpose = StorageOrder==RowMajor, + ActualRows = Transpose ? MaxCols : MaxRows, + ActualCols = Transpose ? MaxRows : MaxCols + }; + typedef std::conditional_t LhsScalar; + typedef std::conditional_t RhsScalar; + enum { + SizeA = ActualRows * MaxDepth, + SizeB = ActualCols * MaxDepth + }; + +#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES + EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA]; + EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB]; +#else + EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; + EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; +#endif + + public: + + gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/) + { + this->m_mc = ActualRows; + this->m_nc = ActualCols; + this->m_kc = MaxDepth; +#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES + this->m_blockA = m_staticA; + this->m_blockB = m_staticB; +#else + this->m_blockA = reinterpret_cast((std::uintptr_t(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); + this->m_blockB = reinterpret_cast((std::uintptr_t(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); +#endif + } + + void initParallel(Index, Index, Index, Index) + {} + + inline void allocateA() {} + inline void allocateB() {} + inline void allocateAll() {} +}; + +template +class gemm_blocking_space + : public level3_blocking< + std::conditional_t, + std::conditional_t> +{ + enum { + Transpose = StorageOrder==RowMajor + }; + typedef std::conditional_t LhsScalar; + typedef std::conditional_t RhsScalar; + + Index m_sizeA; + Index m_sizeB; + + public: + + gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking) + { + this->m_mc = Transpose ? cols : rows; + this->m_nc = Transpose ? rows : cols; + this->m_kc = depth; + + if(l3_blocking) + { + computeProductBlockingSizes(this->m_kc, this->m_mc, this->m_nc, num_threads); + } + else // no l3 blocking + { + Index n = this->m_nc; + computeProductBlockingSizes(this->m_kc, this->m_mc, n, num_threads); + } + + m_sizeA = this->m_mc * this->m_kc; + m_sizeB = this->m_kc * this->m_nc; + } + + void initParallel(Index rows, Index cols, Index depth, Index num_threads) + { + this->m_mc = Transpose ? cols : rows; + this->m_nc = Transpose ? rows : cols; + this->m_kc = depth; + + eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0); + Index m = this->m_mc; + computeProductBlockingSizes(this->m_kc, m, this->m_nc, num_threads); + m_sizeA = this->m_mc * this->m_kc; + m_sizeB = this->m_kc * this->m_nc; + } + + void allocateA() + { + if(this->m_blockA==0) + this->m_blockA = aligned_new(m_sizeA); + } + + void allocateB() + { + if(this->m_blockB==0) + this->m_blockB = aligned_new(m_sizeB); + } + + void allocateAll() + { + allocateA(); + allocateB(); + } + + ~gemm_blocking_space() + { + aligned_delete(this->m_blockA, m_sizeA); + aligned_delete(this->m_blockB, m_sizeB); + } +}; + +} // end namespace internal + +namespace internal { + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::remove_all_t ActualLhsTypeCleaned; + + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + typedef internal::remove_all_t ActualRhsTypeCleaned; + + enum { + MaxDepthAtCompileTime = min_size_prefer_fixed(Lhs::MaxColsAtCompileTime, Rhs::MaxRowsAtCompileTime) + }; + + typedef generic_product_impl lazyproduct; + + template + static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + // See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=404 for a discussion and helper program + // to determine the following heuristic. + // EIGEN_GEMM_TO_COEFFBASED_THRESHOLD is typically defined to 20 in GeneralProduct.h, + // unless it has been specialized by the user or for a given architecture. + // Note that the condition rhs.rows()>0 was required because lazy product is (was?) not happy with empty inputs. + // I'm not sure it is still required. + if((rhs.rows()+dst.rows()+dst.cols())0) + lazyproduct::eval_dynamic(dst, lhs, rhs, internal::assign_op()); + else + { + dst.setZero(); + scaleAndAddTo(dst, lhs, rhs, Scalar(1)); + } + } + + template + static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + if((rhs.rows()+dst.rows()+dst.cols())0) + lazyproduct::eval_dynamic(dst, lhs, rhs, internal::add_assign_op()); + else + scaleAndAddTo(dst,lhs, rhs, Scalar(1)); + } + + template + static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) + { + if((rhs.rows()+dst.rows()+dst.cols())0) + lazyproduct::eval_dynamic(dst, lhs, rhs, internal::sub_assign_op()); + else + scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); + } + + template + static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha) + { + eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols()); + if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0) + return; + + if (dst.cols() == 1) + { + // Fallback to GEMV if either the lhs or rhs is a runtime vector + typename Dest::ColXpr dst_vec(dst.col(0)); + return internal::generic_product_impl + ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); + } + else if (dst.rows() == 1) + { + // Fallback to GEMV if either the lhs or rhs is a runtime vector + typename Dest::RowXpr dst_vec(dst.row(0)); + return internal::generic_product_impl + ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); + } + + add_const_on_value_type_t lhs = LhsBlasTraits::extract(a_lhs); + add_const_on_value_type_t rhs = RhsBlasTraits::extract(a_rhs); + + Scalar actualAlpha = combine_scalar_factors(alpha, a_lhs, a_rhs); + + typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar, + Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType; + + typedef internal::gemm_functor< + Scalar, Index, + internal::general_matrix_matrix_product< + Index, + LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate), + RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate), + (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor, + Dest::InnerStrideAtCompileTime>, + ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor; + + BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true); + internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)> + (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GENERAL_MATRIX_MATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h new file mode 100644 index 0000000..716f2ca --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h @@ -0,0 +1,319 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H +#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +template +struct selfadjoint_rank1_update; + +namespace internal { + +/********************************************************************** +* This file implements a general A * B product while +* evaluating only one triangular part of the product. +* This is a more general version of self adjoint product (C += A A^T) +* as the level 3 SYRK Blas routine. +**********************************************************************/ + +// forward declarations (defined at the end of this file) +template +struct tribb_kernel; + +/* Optimized matrix-matrix product evaluating only one triangular half */ +template +struct general_matrix_matrix_triangular_product; + +// as usual if the result is row major => we transpose the product +template +struct general_matrix_matrix_triangular_product +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride, + const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resIncr, Index resStride, + const ResScalar& alpha, level3_blocking& blocking) + { + general_matrix_matrix_triangular_product + ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resIncr,resStride,alpha,blocking); + } +}; + +template +struct general_matrix_matrix_triangular_product +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride, + const RhsScalar* _rhs, Index rhsStride, + ResScalar* _res, Index resIncr, Index resStride, + const ResScalar& alpha, level3_blocking& blocking) + { + typedef gebp_traits Traits; + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + typedef blas_data_mapper ResMapper; + LhsMapper lhs(_lhs,lhsStride); + RhsMapper rhs(_rhs,rhsStride); + ResMapper res(_res, resStride, resIncr); + + Index kc = blocking.kc(); + Index mc = (std::min)(size,blocking.mc()); + + // !!! mc must be a multiple of nr: + if(mc > Traits::nr) + mc = (mc/Traits::nr)*Traits::nr; + + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*size; + + ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB()); + + gemm_pack_lhs pack_lhs; + gemm_pack_rhs pack_rhs; + gebp_kernel gebp; + tribb_kernel sybb; + + for(Index k2=0; k2 processed with gebp or skipped + // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel + // 3 - after the diagonal => processed with gebp or skipped + if (UpLo==Lower) + gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, + (std::min)(size,i2), alpha, -1, -1, 0, 0); + + sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); + + if (UpLo==Upper) + { + Index j2 = i2+actual_mc; + gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc, + actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0); + } + } + } + } +}; + +// Optimized packed Block * packed Block product kernel evaluating only one given triangular part +// This kernel is built on top of the gebp kernel: +// - the current destination block is processed per panel of actual_mc x BlockSize +// where BlockSize is set to the minimal value allowing gebp to be as fast as possible +// - then, as usual, each panel is split into three parts along the diagonal, +// the sub blocks above and below the diagonal are processed as usual, +// while the triangular block overlapping the diagonal is evaluated into a +// small temporary buffer which is then accumulated into the result using a +// triangular traversal. +template +struct tribb_kernel +{ + typedef gebp_traits Traits; + typedef typename Traits::ResScalar ResScalar; + + enum { + BlockSize = meta_least_common_multiple::ret + }; + void operator()(ResScalar* _res, Index resIncr, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha) + { + typedef blas_data_mapper ResMapper; + typedef blas_data_mapper BufferMapper; + ResMapper res(_res, resStride, resIncr); + gebp_kernel gebp_kernel1; + gebp_kernel gebp_kernel2; + + Matrix buffer((internal::constructor_without_unaligned_array_assert())); + + // let's process the block per panel of actual_mc x BlockSize, + // again, each is split into three parts, etc. + for (Index j=0; j(BlockSize,size - j); + const RhsScalar* actual_b = blockB+j*depth; + + if(UpLo==Upper) + gebp_kernel1(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha, + -1, -1, 0, 0); + + // selfadjoint micro block + { + Index i = j; + buffer.setZero(); + // 1 - apply the kernel on the temporary buffer + gebp_kernel2(BufferMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha, + -1, -1, 0, 0); + + // 2 - triangular accumulation + for(Index j1=0; j1 +struct general_product_to_triangular_selector; + + +template +struct general_product_to_triangular_selector +{ + static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta) + { + typedef typename MatrixType::Scalar Scalar; + + typedef internal::remove_all_t Lhs; + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs; + typedef internal::remove_all_t ActualLhs_; + internal::add_const_on_value_type_t actualLhs = LhsBlasTraits::extract(prod.lhs()); + + typedef internal::remove_all_t Rhs; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs; + typedef internal::remove_all_t ActualRhs_; + internal::add_const_on_value_type_t actualRhs = RhsBlasTraits::extract(prod.rhs()); + + Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived()); + + if(!beta) + mat.template triangularView().setZero(); + + enum { + StorageOrder = (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, + UseLhsDirectly = ActualLhs_::InnerStrideAtCompileTime==1, + UseRhsDirectly = ActualRhs_::InnerStrideAtCompileTime==1 + }; + + internal::gemv_static_vector_if static_lhs; + ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(), + (UseLhsDirectly ? const_cast(actualLhs.data()) : static_lhs.data())); + if(!UseLhsDirectly) Map(actualLhsPtr, actualLhs.size()) = actualLhs; + + internal::gemv_static_vector_if static_rhs; + ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(), + (UseRhsDirectly ? const_cast(actualRhs.data()) : static_rhs.data())); + if(!UseRhsDirectly) Map(actualRhsPtr, actualRhs.size()) = actualRhs; + + + selfadjoint_rank1_update::IsComplex, + RhsBlasTraits::NeedToConjugate && NumTraits::IsComplex> + ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha); + } +}; + +template +struct general_product_to_triangular_selector +{ + static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta) + { + typedef internal::remove_all_t Lhs; + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs; + typedef internal::remove_all_t ActualLhs_; + internal::add_const_on_value_type_t actualLhs = LhsBlasTraits::extract(prod.lhs()); + + typedef internal::remove_all_t Rhs; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs; + typedef internal::remove_all_t ActualRhs_; + internal::add_const_on_value_type_t actualRhs = RhsBlasTraits::extract(prod.rhs()); + + typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived()); + + if(!beta) + mat.template triangularView().setZero(); + + enum { + IsRowMajor = (internal::traits::Flags&RowMajorBit) ? 1 : 0, + LhsIsRowMajor = ActualLhs_::Flags&RowMajorBit ? 1 : 0, + RhsIsRowMajor = ActualRhs_::Flags&RowMajorBit ? 1 : 0, + SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0 + }; + + Index size = mat.cols(); + if(SkipDiag) + size--; + Index depth = actualLhs.cols(); + + typedef internal::gemm_blocking_space BlockingType; + + BlockingType blocking(size, size, depth, 1, false); + + internal::general_matrix_matrix_triangular_product + ::run(size, depth, + &actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(), + &actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(), + mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? mat.innerStride() : mat.outerStride() ) : 0), + mat.innerStride(), mat.outerStride(), actualAlpha, blocking); + } +}; + +template +template +EIGEN_DEVICE_FUNC TriangularView& TriangularViewImpl::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta) +{ + EIGEN_STATIC_ASSERT((UpLo&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED); + eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols()); + + general_product_to_triangular_selector::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta); + + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h new file mode 100644 index 0000000..45ad5da --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h @@ -0,0 +1,147 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * Level 3 BLAS SYRK/HERK implementation. + ******************************************************************************** +*/ + +#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_BLAS_H +#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct general_matrix_matrix_rankupdate : + general_matrix_matrix_triangular_product< + Index,Scalar,AStorageOrder,ConjugateA,Scalar,AStorageOrder,ConjugateA,ResStorageOrder,1,UpLo,BuiltIn> {}; + + +// try to go to BLAS specialization +#define EIGEN_BLAS_RANKUPDATE_SPECIALIZE(Scalar) \ +template \ +struct general_matrix_matrix_triangular_product { \ + static EIGEN_STRONG_INLINE void run(Index size, Index depth,const Scalar* lhs, Index lhsStride, \ + const Scalar* rhs, Index rhsStride, Scalar* res, Index resIncr, Index resStride, Scalar alpha, level3_blocking& blocking) \ + { \ + if ( lhs==rhs && ((UpLo&(Lower|Upper))==UpLo) ) { \ + general_matrix_matrix_rankupdate \ + ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha,blocking); \ + } else { \ + general_matrix_matrix_triangular_product \ + ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resIncr,resStride,alpha,blocking); \ + } \ + } \ +}; + +EIGEN_BLAS_RANKUPDATE_SPECIALIZE(double) +EIGEN_BLAS_RANKUPDATE_SPECIALIZE(float) +// TODO handle complex cases +// EIGEN_BLAS_RANKUPDATE_SPECIALIZE(dcomplex) +// EIGEN_BLAS_RANKUPDATE_SPECIALIZE(scomplex) + +// SYRK for float/double +#define EIGEN_BLAS_RANKUPDATE_R(EIGTYPE, BLASTYPE, BLASFUNC) \ +template \ +struct general_matrix_matrix_rankupdate { \ + enum { \ + IsLower = (UpLo&Lower) == Lower, \ + LowUp = IsLower ? Lower : Upper, \ + conjA = ((AStorageOrder==ColMajor) && ConjugateA) ? 1 : 0 \ + }; \ + static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \ + const EIGTYPE* /*rhs*/, Index /*rhsStride*/, EIGTYPE* res, Index resStride, EIGTYPE alpha, level3_blocking& /*blocking*/) \ + { \ + /* typedef Matrix MatrixRhs;*/ \ +\ + BlasIndex lda=convert_index(lhsStride), ldc=convert_index(resStride), n=convert_index(size), k=convert_index(depth); \ + char uplo=((IsLower) ? 'L' : 'U'), trans=((AStorageOrder==RowMajor) ? 'T':'N'); \ + EIGTYPE beta(1); \ + BLASFUNC(&uplo, &trans, &n, &k, (const BLASTYPE*)&numext::real_ref(alpha), lhs, &lda, (const BLASTYPE*)&numext::real_ref(beta), res, &ldc); \ + } \ +}; + +// HERK for complex data +#define EIGEN_BLAS_RANKUPDATE_C(EIGTYPE, BLASTYPE, RTYPE, BLASFUNC) \ +template \ +struct general_matrix_matrix_rankupdate { \ + enum { \ + IsLower = (UpLo&Lower) == Lower, \ + LowUp = IsLower ? Lower : Upper, \ + conjA = (((AStorageOrder==ColMajor) && ConjugateA) || ((AStorageOrder==RowMajor) && !ConjugateA)) ? 1 : 0 \ + }; \ + static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \ + const EIGTYPE* /*rhs*/, Index /*rhsStride*/, EIGTYPE* res, Index resStride, EIGTYPE alpha, level3_blocking& /*blocking*/) \ + { \ + typedef Matrix MatrixType; \ +\ + BlasIndex lda=convert_index(lhsStride), ldc=convert_index(resStride), n=convert_index(size), k=convert_index(depth); \ + char uplo=((IsLower) ? 'L' : 'U'), trans=((AStorageOrder==RowMajor) ? 'C':'N'); \ + RTYPE alpha_, beta_; \ + const EIGTYPE* a_ptr; \ +\ + alpha_ = alpha.real(); \ + beta_ = 1.0; \ +/* Copy with conjugation in some cases*/ \ + MatrixType a; \ + if (conjA) { \ + Map > mapA(lhs,n,k,OuterStride<>(lhsStride)); \ + a = mapA.conjugate(); \ + lda = a.outerStride(); \ + a_ptr = a.data(); \ + } else a_ptr=lhs; \ + BLASFUNC(&uplo, &trans, &n, &k, &alpha_, (BLASTYPE*)a_ptr, &lda, &beta_, (BLASTYPE*)res, &ldc); \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk) +EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk) +#else +EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk_) +EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk_) +#endif + +// TODO hanlde complex cases +// EIGEN_BLAS_RANKUPDATE_C(dcomplex, double, double, zherk_) +// EIGEN_BLAS_RANKUPDATE_C(scomplex, float, float, cherk_) + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h new file mode 100644 index 0000000..490fe67 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h @@ -0,0 +1,126 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * General matrix-matrix product functionality based on ?GEMM. + ******************************************************************************** +*/ + +#ifndef EIGEN_GENERAL_MATRIX_MATRIX_BLAS_H +#define EIGEN_GENERAL_MATRIX_MATRIX_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/********************************************************************** +* This file implements general matrix-matrix multiplication using BLAS +* gemm function via partial specialization of +* general_matrix_matrix_product::run(..) method for float, double, +* std::complex and std::complex types +**********************************************************************/ + +// gemm specialization + +#define GEMM_SPECIALIZATION(EIGTYPE, EIGPREFIX, BLASTYPE, BLASFUNC) \ +template< \ + typename Index, \ + int LhsStorageOrder, bool ConjugateLhs, \ + int RhsStorageOrder, bool ConjugateRhs> \ +struct general_matrix_matrix_product \ +{ \ +typedef gebp_traits Traits; \ +\ +static void run(Index rows, Index cols, Index depth, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resIncr, Index resStride, \ + EIGTYPE alpha, \ + level3_blocking& /*blocking*/, \ + GemmParallelInfo* /*info = 0*/) \ +{ \ + using std::conj; \ +\ + EIGEN_ONLY_USED_FOR_DEBUG(resIncr); \ + eigen_assert(resIncr == 1); \ + char transa, transb; \ + BlasIndex m, n, k, lda, ldb, ldc; \ + const EIGTYPE *a, *b; \ + EIGTYPE beta(1); \ + MatrixX##EIGPREFIX a_tmp, b_tmp; \ +\ +/* Set transpose options */ \ + transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \ + transb = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \ +\ +/* Set m, n, k */ \ + m = convert_index(rows); \ + n = convert_index(cols); \ + k = convert_index(depth); \ +\ +/* Set lda, ldb, ldc */ \ + lda = convert_index(lhsStride); \ + ldb = convert_index(rhsStride); \ + ldc = convert_index(resStride); \ +\ +/* Set a, b, c */ \ + if ((LhsStorageOrder==ColMajor) && (ConjugateLhs)) { \ + Map > lhs(_lhs,m,k,OuterStride<>(lhsStride)); \ + a_tmp = lhs.conjugate(); \ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else a = _lhs; \ +\ + if ((RhsStorageOrder==ColMajor) && (ConjugateRhs)) { \ + Map > rhs(_rhs,k,n,OuterStride<>(rhsStride)); \ + b_tmp = rhs.conjugate(); \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ + } else b = _rhs; \ +\ + BLASFUNC(&transa, &transb, &m, &n, &k, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ +}}; + +#ifdef EIGEN_USE_MKL +GEMM_SPECIALIZATION(double, d, double, dgemm) +GEMM_SPECIALIZATION(float, f, float, sgemm) +GEMM_SPECIALIZATION(dcomplex, cd, MKL_Complex16, zgemm) +GEMM_SPECIALIZATION(scomplex, cf, MKL_Complex8, cgemm) +#else +GEMM_SPECIALIZATION(double, d, double, dgemm_) +GEMM_SPECIALIZATION(float, f, float, sgemm_) +GEMM_SPECIALIZATION(dcomplex, cd, double, zgemm_) +GEMM_SPECIALIZATION(scomplex, cf, float, cgemm_) +#endif + +} // end namespase internal + +} // end namespace Eigen + +#endif // EIGEN_GENERAL_MATRIX_MATRIX_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixVector.h new file mode 100644 index 0000000..e4c6f23 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixVector.h @@ -0,0 +1,524 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H +#define EIGEN_GENERAL_MATRIX_VECTOR_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +enum GEMVPacketSizeType { + GEMVPacketFull = 0, + GEMVPacketHalf, + GEMVPacketQuarter +}; + +template +struct gemv_packet_cond { typedef T3 type; }; + +template +struct gemv_packet_cond { typedef T1 type; }; + +template +struct gemv_packet_cond { typedef T2 type; }; + +template +class gemv_traits +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + +#define PACKET_DECL_COND_POSTFIX(postfix, name, packet_size) \ + typedef typename gemv_packet_cond::type, \ + typename packet_traits::half, \ + typename unpacket_traits::half>::half>::type \ + name ## Packet ## postfix + + PACKET_DECL_COND_POSTFIX(_, Lhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Rhs, PacketSize_); + PACKET_DECL_COND_POSTFIX(_, Res, PacketSize_); +#undef PACKET_DECL_COND_POSTFIX + +public: + enum { + Vectorizable = unpacket_traits::vectorizable && + unpacket_traits::vectorizable && + int(unpacket_traits::size)==int(unpacket_traits::size), + LhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + RhsPacketSize = Vectorizable ? unpacket_traits::size : 1, + ResPacketSize = Vectorizable ? unpacket_traits::size : 1 + }; + + typedef std::conditional_t LhsPacket; + typedef std::conditional_t RhsPacket; + typedef std::conditional_t ResPacket; +}; + + +/* Optimized col-major matrix * vector product: + * This algorithm processes the matrix per vertical panels, + * which are then processed horizontally per chunck of 8*PacketSize x 1 vertical segments. + * + * Mixing type logic: C += alpha * A * B + * | A | B |alpha| comments + * |real |cplx |cplx | no vectorization + * |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization + * |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp + * |cplx |real |real | optimal case, vectorization possible via real-cplx mul + * + * The same reasoning apply for the transposed case. + */ +template +struct general_matrix_vector_product +{ + typedef gemv_traits Traits; + typedef gemv_traits HalfTraits; + typedef gemv_traits QuarterTraits; + + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + + typedef typename HalfTraits::LhsPacket LhsPacketHalf; + typedef typename HalfTraits::RhsPacket RhsPacketHalf; + typedef typename HalfTraits::ResPacket ResPacketHalf; + + typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; + typedef typename QuarterTraits::RhsPacket RhsPacketQuarter; + typedef typename QuarterTraits::ResPacket ResPacketQuarter; + +EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( + Index rows, Index cols, + const LhsMapper& lhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + RhsScalar alpha); +}; + +template +EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void general_matrix_vector_product::run( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + RhsScalar alpha) +{ + EIGEN_UNUSED_VARIABLE(resIncr); + eigen_internal_assert(resIncr==1); + + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate propoer code. + LhsMapper lhs(alhs); + + conj_helper cj; + conj_helper pcj; + conj_helper pcj_half; + conj_helper pcj_quarter; + + const Index lhsStride = lhs.stride(); + // TODO: for padded aligned inputs, we could enable aligned reads + enum { LhsAlignment = Unaligned, + ResPacketSize = Traits::ResPacketSize, + ResPacketSizeHalf = HalfTraits::ResPacketSize, + ResPacketSizeQuarter = QuarterTraits::ResPacketSize, + LhsPacketSize = Traits::LhsPacketSize, + HasHalf = (int)ResPacketSizeHalf < (int)ResPacketSize, + HasQuarter = (int)ResPacketSizeQuarter < (int)ResPacketSizeHalf + }; + + const Index n8 = rows-8*ResPacketSize+1; + const Index n4 = rows-4*ResPacketSize+1; + const Index n3 = rows-3*ResPacketSize+1; + const Index n2 = rows-2*ResPacketSize+1; + const Index n1 = rows-1*ResPacketSize+1; + const Index n_half = rows-1*ResPacketSizeHalf+1; + const Index n_quarter = rows-1*ResPacketSizeQuarter+1; + + // TODO: improve the following heuristic: + const Index block_cols = cols<128 ? cols : (lhsStride*sizeof(LhsScalar)<32000?16:4); + ResPacket palpha = pset1(alpha); + ResPacketHalf palpha_half = pset1(alpha); + ResPacketQuarter palpha_quarter = pset1(alpha); + + for(Index j2=0; j2(ResScalar(0)), + c1 = pset1(ResScalar(0)), + c2 = pset1(ResScalar(0)), + c3 = pset1(ResScalar(0)), + c4 = pset1(ResScalar(0)), + c5 = pset1(ResScalar(0)), + c6 = pset1(ResScalar(0)), + c7 = pset1(ResScalar(0)); + + for(Index j=j2; j(rhs(j,0)); + c0 = pcj.pmadd(lhs.template load(i+LhsPacketSize*0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+LhsPacketSize*1,j),b0,c1); + c2 = pcj.pmadd(lhs.template load(i+LhsPacketSize*2,j),b0,c2); + c3 = pcj.pmadd(lhs.template load(i+LhsPacketSize*3,j),b0,c3); + c4 = pcj.pmadd(lhs.template load(i+LhsPacketSize*4,j),b0,c4); + c5 = pcj.pmadd(lhs.template load(i+LhsPacketSize*5,j),b0,c5); + c6 = pcj.pmadd(lhs.template load(i+LhsPacketSize*6,j),b0,c6); + c7 = pcj.pmadd(lhs.template load(i+LhsPacketSize*7,j),b0,c7); + } + pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu(res+i+ResPacketSize*0))); + pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu(res+i+ResPacketSize*1))); + pstoreu(res+i+ResPacketSize*2, pmadd(c2,palpha,ploadu(res+i+ResPacketSize*2))); + pstoreu(res+i+ResPacketSize*3, pmadd(c3,palpha,ploadu(res+i+ResPacketSize*3))); + pstoreu(res+i+ResPacketSize*4, pmadd(c4,palpha,ploadu(res+i+ResPacketSize*4))); + pstoreu(res+i+ResPacketSize*5, pmadd(c5,palpha,ploadu(res+i+ResPacketSize*5))); + pstoreu(res+i+ResPacketSize*6, pmadd(c6,palpha,ploadu(res+i+ResPacketSize*6))); + pstoreu(res+i+ResPacketSize*7, pmadd(c7,palpha,ploadu(res+i+ResPacketSize*7))); + } + if(i(ResScalar(0)), + c1 = pset1(ResScalar(0)), + c2 = pset1(ResScalar(0)), + c3 = pset1(ResScalar(0)); + + for(Index j=j2; j(rhs(j,0)); + c0 = pcj.pmadd(lhs.template load(i+LhsPacketSize*0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+LhsPacketSize*1,j),b0,c1); + c2 = pcj.pmadd(lhs.template load(i+LhsPacketSize*2,j),b0,c2); + c3 = pcj.pmadd(lhs.template load(i+LhsPacketSize*3,j),b0,c3); + } + pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu(res+i+ResPacketSize*0))); + pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu(res+i+ResPacketSize*1))); + pstoreu(res+i+ResPacketSize*2, pmadd(c2,palpha,ploadu(res+i+ResPacketSize*2))); + pstoreu(res+i+ResPacketSize*3, pmadd(c3,palpha,ploadu(res+i+ResPacketSize*3))); + + i+=ResPacketSize*4; + } + if(i(ResScalar(0)), + c1 = pset1(ResScalar(0)), + c2 = pset1(ResScalar(0)); + + for(Index j=j2; j(rhs(j,0)); + c0 = pcj.pmadd(lhs.template load(i+LhsPacketSize*0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+LhsPacketSize*1,j),b0,c1); + c2 = pcj.pmadd(lhs.template load(i+LhsPacketSize*2,j),b0,c2); + } + pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu(res+i+ResPacketSize*0))); + pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu(res+i+ResPacketSize*1))); + pstoreu(res+i+ResPacketSize*2, pmadd(c2,palpha,ploadu(res+i+ResPacketSize*2))); + + i+=ResPacketSize*3; + } + if(i(ResScalar(0)), + c1 = pset1(ResScalar(0)); + + for(Index j=j2; j(rhs(j,0)); + c0 = pcj.pmadd(lhs.template load(i+LhsPacketSize*0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+LhsPacketSize*1,j),b0,c1); + } + pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu(res+i+ResPacketSize*0))); + pstoreu(res+i+ResPacketSize*1, pmadd(c1,palpha,ploadu(res+i+ResPacketSize*1))); + i+=ResPacketSize*2; + } + if(i(ResScalar(0)); + for(Index j=j2; j(rhs(j,0)); + c0 = pcj.pmadd(lhs.template load(i+0,j),b0,c0); + } + pstoreu(res+i+ResPacketSize*0, pmadd(c0,palpha,ploadu(res+i+ResPacketSize*0))); + i+=ResPacketSize; + } + if(HasHalf && i(ResScalar(0)); + for(Index j=j2; j(rhs(j,0)); + c0 = pcj_half.pmadd(lhs.template load(i+0,j),b0,c0); + } + pstoreu(res+i+ResPacketSizeHalf*0, pmadd(c0,palpha_half,ploadu(res+i+ResPacketSizeHalf*0))); + i+=ResPacketSizeHalf; + } + if(HasQuarter && i(ResScalar(0)); + for(Index j=j2; j(rhs(j,0)); + c0 = pcj_quarter.pmadd(lhs.template load(i+0,j),b0,c0); + } + pstoreu(res+i+ResPacketSizeQuarter*0, pmadd(c0,palpha_quarter,ploadu(res+i+ResPacketSizeQuarter*0))); + i+=ResPacketSizeQuarter; + } + for(;i +struct general_matrix_vector_product +{ + typedef gemv_traits Traits; + typedef gemv_traits HalfTraits; + typedef gemv_traits QuarterTraits; + + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + + typedef typename Traits::LhsPacket LhsPacket; + typedef typename Traits::RhsPacket RhsPacket; + typedef typename Traits::ResPacket ResPacket; + + typedef typename HalfTraits::LhsPacket LhsPacketHalf; + typedef typename HalfTraits::RhsPacket RhsPacketHalf; + typedef typename HalfTraits::ResPacket ResPacketHalf; + + typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; + typedef typename QuarterTraits::RhsPacket RhsPacketQuarter; + typedef typename QuarterTraits::ResPacket ResPacketQuarter; + +EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE static void run( + Index rows, Index cols, + const LhsMapper& lhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + ResScalar alpha); +}; + +template +EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void general_matrix_vector_product::run( + Index rows, Index cols, + const LhsMapper& alhs, + const RhsMapper& rhs, + ResScalar* res, Index resIncr, + ResScalar alpha) +{ + // The following copy tells the compiler that lhs's attributes are not modified outside this function + // This helps GCC to generate propoer code. + LhsMapper lhs(alhs); + + eigen_internal_assert(rhs.stride()==1); + conj_helper cj; + conj_helper pcj; + conj_helper pcj_half; + conj_helper pcj_quarter; + + // TODO: fine tune the following heuristic. The rationale is that if the matrix is very large, + // processing 8 rows at once might be counter productive wrt cache. + const Index n8 = lhs.stride()*sizeof(LhsScalar)>32000 ? 0 : rows-7; + const Index n4 = rows-3; + const Index n2 = rows-1; + + // TODO: for padded aligned inputs, we could enable aligned reads + enum { LhsAlignment = Unaligned, + ResPacketSize = Traits::ResPacketSize, + ResPacketSizeHalf = HalfTraits::ResPacketSize, + ResPacketSizeQuarter = QuarterTraits::ResPacketSize, + LhsPacketSize = Traits::LhsPacketSize, + LhsPacketSizeHalf = HalfTraits::LhsPacketSize, + LhsPacketSizeQuarter = QuarterTraits::LhsPacketSize, + HasHalf = (int)ResPacketSizeHalf < (int)ResPacketSize, + HasQuarter = (int)ResPacketSizeQuarter < (int)ResPacketSizeHalf + }; + + const Index fullColBlockEnd = LhsPacketSize * (cols / LhsPacketSize); + const Index halfColBlockEnd = LhsPacketSizeHalf * (cols / LhsPacketSizeHalf); + const Index quarterColBlockEnd = LhsPacketSizeQuarter * (cols / LhsPacketSizeQuarter); + + Index i=0; + for(; i(ResScalar(0)), + c1 = pset1(ResScalar(0)), + c2 = pset1(ResScalar(0)), + c3 = pset1(ResScalar(0)), + c4 = pset1(ResScalar(0)), + c5 = pset1(ResScalar(0)), + c6 = pset1(ResScalar(0)), + c7 = pset1(ResScalar(0)); + + for (Index j = 0; j < fullColBlockEnd; j += LhsPacketSize) + { + RhsPacket b0 = rhs.template load(j,0); + + c0 = pcj.pmadd(lhs.template load(i+0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+1,j),b0,c1); + c2 = pcj.pmadd(lhs.template load(i+2,j),b0,c2); + c3 = pcj.pmadd(lhs.template load(i+3,j),b0,c3); + c4 = pcj.pmadd(lhs.template load(i+4,j),b0,c4); + c5 = pcj.pmadd(lhs.template load(i+5,j),b0,c5); + c6 = pcj.pmadd(lhs.template load(i+6,j),b0,c6); + c7 = pcj.pmadd(lhs.template load(i+7,j),b0,c7); + } + ResScalar cc0 = predux(c0); + ResScalar cc1 = predux(c1); + ResScalar cc2 = predux(c2); + ResScalar cc3 = predux(c3); + ResScalar cc4 = predux(c4); + ResScalar cc5 = predux(c5); + ResScalar cc6 = predux(c6); + ResScalar cc7 = predux(c7); + + for (Index j = fullColBlockEnd; j < cols; ++j) + { + RhsScalar b0 = rhs(j,0); + + cc0 += cj.pmul(lhs(i+0,j), b0); + cc1 += cj.pmul(lhs(i+1,j), b0); + cc2 += cj.pmul(lhs(i+2,j), b0); + cc3 += cj.pmul(lhs(i+3,j), b0); + cc4 += cj.pmul(lhs(i+4,j), b0); + cc5 += cj.pmul(lhs(i+5,j), b0); + cc6 += cj.pmul(lhs(i+6,j), b0); + cc7 += cj.pmul(lhs(i+7,j), b0); + } + res[(i+0)*resIncr] += alpha*cc0; + res[(i+1)*resIncr] += alpha*cc1; + res[(i+2)*resIncr] += alpha*cc2; + res[(i+3)*resIncr] += alpha*cc3; + res[(i+4)*resIncr] += alpha*cc4; + res[(i+5)*resIncr] += alpha*cc5; + res[(i+6)*resIncr] += alpha*cc6; + res[(i+7)*resIncr] += alpha*cc7; + } + for(; i(ResScalar(0)), + c1 = pset1(ResScalar(0)), + c2 = pset1(ResScalar(0)), + c3 = pset1(ResScalar(0)); + + for (Index j = 0; j < fullColBlockEnd; j += LhsPacketSize) + { + RhsPacket b0 = rhs.template load(j,0); + + c0 = pcj.pmadd(lhs.template load(i+0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+1,j),b0,c1); + c2 = pcj.pmadd(lhs.template load(i+2,j),b0,c2); + c3 = pcj.pmadd(lhs.template load(i+3,j),b0,c3); + } + ResScalar cc0 = predux(c0); + ResScalar cc1 = predux(c1); + ResScalar cc2 = predux(c2); + ResScalar cc3 = predux(c3); + + for(Index j = fullColBlockEnd; j < cols; ++j) + { + RhsScalar b0 = rhs(j,0); + + cc0 += cj.pmul(lhs(i+0,j), b0); + cc1 += cj.pmul(lhs(i+1,j), b0); + cc2 += cj.pmul(lhs(i+2,j), b0); + cc3 += cj.pmul(lhs(i+3,j), b0); + } + res[(i+0)*resIncr] += alpha*cc0; + res[(i+1)*resIncr] += alpha*cc1; + res[(i+2)*resIncr] += alpha*cc2; + res[(i+3)*resIncr] += alpha*cc3; + } + for(; i(ResScalar(0)), + c1 = pset1(ResScalar(0)); + + for (Index j = 0; j < fullColBlockEnd; j += LhsPacketSize) + { + RhsPacket b0 = rhs.template load(j,0); + + c0 = pcj.pmadd(lhs.template load(i+0,j),b0,c0); + c1 = pcj.pmadd(lhs.template load(i+1,j),b0,c1); + } + ResScalar cc0 = predux(c0); + ResScalar cc1 = predux(c1); + + for(Index j = fullColBlockEnd; j < cols; ++j) + { + RhsScalar b0 = rhs(j,0); + + cc0 += cj.pmul(lhs(i+0,j), b0); + cc1 += cj.pmul(lhs(i+1,j), b0); + } + res[(i+0)*resIncr] += alpha*cc0; + res[(i+1)*resIncr] += alpha*cc1; + } + for(; i(ResScalar(0)); + ResPacketHalf c0_h = pset1(ResScalar(0)); + ResPacketQuarter c0_q = pset1(ResScalar(0)); + + for (Index j = 0; j < fullColBlockEnd; j += LhsPacketSize) + { + RhsPacket b0 = rhs.template load(j,0); + c0 = pcj.pmadd(lhs.template load(i,j),b0,c0); + } + ResScalar cc0 = predux(c0); + if (HasHalf) { + for (Index j = fullColBlockEnd; j < halfColBlockEnd; j += LhsPacketSizeHalf) + { + RhsPacketHalf b0 = rhs.template load(j,0); + c0_h = pcj_half.pmadd(lhs.template load(i,j),b0,c0_h); + } + cc0 += predux(c0_h); + } + if (HasQuarter) { + for (Index j = halfColBlockEnd; j < quarterColBlockEnd; j += LhsPacketSizeQuarter) + { + RhsPacketQuarter b0 = rhs.template load(j,0); + c0_q = pcj_quarter.pmadd(lhs.template load(i,j),b0,c0_q); + } + cc0 += predux(c0_q); + } + for (Index j = quarterColBlockEnd; j < cols; ++j) + { + cc0 += cj.pmul(lhs(i,j), rhs(j,0)); + } + res[i*resIncr] += alpha*cc0; + } +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GENERAL_MATRIX_VECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h new file mode 100644 index 0000000..f77e2e4 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h @@ -0,0 +1,138 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * General matrix-vector product functionality based on ?GEMV. + ******************************************************************************** +*/ + +#ifndef EIGEN_GENERAL_MATRIX_VECTOR_BLAS_H +#define EIGEN_GENERAL_MATRIX_VECTOR_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/********************************************************************** +* This file implements general matrix-vector multiplication using BLAS +* gemv function via partial specialization of +* general_matrix_vector_product::run(..) method for float, double, +* std::complex and std::complex types +**********************************************************************/ + +// gemv specialization + +template +struct general_matrix_vector_product_gemv; + +#define EIGEN_BLAS_GEMV_SPECIALIZE(Scalar) \ +template \ +struct general_matrix_vector_product,ColMajor,ConjugateLhs,Scalar,const_blas_data_mapper,ConjugateRhs,Specialized> { \ +static void run( \ + Index rows, Index cols, \ + const const_blas_data_mapper &lhs, \ + const const_blas_data_mapper &rhs, \ + Scalar* res, Index resIncr, Scalar alpha) \ +{ \ + if (ConjugateLhs) { \ + general_matrix_vector_product,ColMajor,ConjugateLhs,Scalar,const_blas_data_mapper,ConjugateRhs,BuiltIn>::run( \ + rows, cols, lhs, rhs, res, resIncr, alpha); \ + } else { \ + general_matrix_vector_product_gemv::run( \ + rows, cols, lhs.data(), lhs.stride(), rhs.data(), rhs.stride(), res, resIncr, alpha); \ + } \ +} \ +}; \ +template \ +struct general_matrix_vector_product,RowMajor,ConjugateLhs,Scalar,const_blas_data_mapper,ConjugateRhs,Specialized> { \ +static void run( \ + Index rows, Index cols, \ + const const_blas_data_mapper &lhs, \ + const const_blas_data_mapper &rhs, \ + Scalar* res, Index resIncr, Scalar alpha) \ +{ \ + general_matrix_vector_product_gemv::run( \ + rows, cols, lhs.data(), lhs.stride(), rhs.data(), rhs.stride(), res, resIncr, alpha); \ +} \ +}; \ + +EIGEN_BLAS_GEMV_SPECIALIZE(double) +EIGEN_BLAS_GEMV_SPECIALIZE(float) +EIGEN_BLAS_GEMV_SPECIALIZE(dcomplex) +EIGEN_BLAS_GEMV_SPECIALIZE(scomplex) + +#define EIGEN_BLAS_GEMV_SPECIALIZATION(EIGTYPE,BLASTYPE,BLASFUNC) \ +template \ +struct general_matrix_vector_product_gemv \ +{ \ +typedef Matrix GEMVVector;\ +\ +static void run( \ + Index rows, Index cols, \ + const EIGTYPE* lhs, Index lhsStride, \ + const EIGTYPE* rhs, Index rhsIncr, \ + EIGTYPE* res, Index resIncr, EIGTYPE alpha) \ +{ \ + BlasIndex m=convert_index(rows), n=convert_index(cols), \ + lda=convert_index(lhsStride), incx=convert_index(rhsIncr), incy=convert_index(resIncr); \ + const EIGTYPE beta(1); \ + const EIGTYPE *x_ptr; \ + char trans=(LhsStorageOrder==ColMajor) ? 'N' : (ConjugateLhs) ? 'C' : 'T'; \ + if (LhsStorageOrder==RowMajor) { \ + m = convert_index(cols); \ + n = convert_index(rows); \ + }\ + GEMVVector x_tmp; \ + if (ConjugateRhs) { \ + Map > map_x(rhs,cols,1,InnerStride<>(incx)); \ + x_tmp=map_x.conjugate(); \ + x_ptr=x_tmp.data(); \ + incx=1; \ + } else x_ptr=rhs; \ + BLASFUNC(&trans, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &incy); \ +}\ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, dgemv) +EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, sgemv) +EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, MKL_Complex16, zgemv) +EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, MKL_Complex8 , cgemv) +#else +EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, dgemv_) +EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, sgemv_) +EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, double, zgemv_) +EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, float, cgemv_) +#endif + +} // end namespase internal + +} // end namespace Eigen + +#endif // EIGEN_GENERAL_MATRIX_VECTOR_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/Parallelizer.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/Parallelizer.h new file mode 100644 index 0000000..da4affb --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/Parallelizer.h @@ -0,0 +1,173 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARALLELIZER_H +#define EIGEN_PARALLELIZER_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal */ +inline void manage_multi_threading(Action action, int* v) +{ + static int m_maxThreads = -1; + EIGEN_UNUSED_VARIABLE(m_maxThreads) + + if(action==SetAction) + { + eigen_internal_assert(v!=0); + m_maxThreads = *v; + } + else if(action==GetAction) + { + eigen_internal_assert(v!=0); + #ifdef EIGEN_HAS_OPENMP + if(m_maxThreads>0) + *v = m_maxThreads; + else + *v = omp_get_max_threads(); + #else + *v = 1; + #endif + } + else + { + eigen_internal_assert(false); + } +} + +} + +/** Must be call first when calling Eigen from multiple threads */ +inline void initParallel() +{ + int nbt; + internal::manage_multi_threading(GetAction, &nbt); + std::ptrdiff_t l1, l2, l3; + internal::manage_caching_sizes(GetAction, &l1, &l2, &l3); +} + +/** \returns the max number of threads reserved for Eigen + * \sa setNbThreads */ +inline int nbThreads() +{ + int ret; + internal::manage_multi_threading(GetAction, &ret); + return ret; +} + +/** Sets the max number of threads reserved for Eigen + * \sa nbThreads */ +inline void setNbThreads(int v) +{ + internal::manage_multi_threading(SetAction, &v); +} + +namespace internal { + +template struct GemmParallelInfo +{ + +#ifdef EIGEN_HAS_OPENMP + GemmParallelInfo() : sync(-1), users(0), lhs_start(0), lhs_length(0) {} + std::atomic sync; + std::atomic users; +#else + GemmParallelInfo() : lhs_start(0), lhs_length(0) {} +#endif + + Index lhs_start; + Index lhs_length; +}; + +template +void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth, bool transpose) +{ + // TODO when EIGEN_USE_BLAS is defined, + // we should still enable OMP for other scalar types + // Without C++11, we have to disable GEMM's parallelization on + // non x86 architectures because there volatile is not enough for our purpose. + // See bug 1572. +#if (! defined(EIGEN_HAS_OPENMP)) || defined(EIGEN_USE_BLAS) + // FIXME the transpose variable is only needed to properly split + // the matrix product when multithreading is enabled. This is a temporary + // fix to support row-major destination matrices. This whole + // parallelizer mechanism has to be redesigned anyway. + EIGEN_UNUSED_VARIABLE(depth); + EIGEN_UNUSED_VARIABLE(transpose); + func(0,rows, 0,cols); +#else + + // Dynamically check whether we should enable or disable OpenMP. + // The conditions are: + // - the max number of threads we can create is greater than 1 + // - we are not already in a parallel code + // - the sizes are large enough + + // compute the maximal number of threads from the size of the product: + // This first heuristic takes into account that the product kernel is fully optimized when working with nr columns at once. + Index size = transpose ? rows : cols; + Index pb_max_threads = std::max(1,size / Functor::Traits::nr); + + // compute the maximal number of threads from the total amount of work: + double work = static_cast(rows) * static_cast(cols) * + static_cast(depth); + double kMinTaskSize = 50000; // FIXME improve this heuristic. + pb_max_threads = std::max(1, std::min(pb_max_threads, static_cast( work / kMinTaskSize ) )); + + // compute the number of threads we are going to use + Index threads = std::min(nbThreads(), pb_max_threads); + + // if multi-threading is explicitly disabled, not useful, or if we already are in a parallel session, + // then abort multi-threading + // FIXME omp_get_num_threads()>1 only works for openmp, what if the user does not use openmp? + if((!Condition) || (threads==1) || (omp_get_num_threads()>1)) + return func(0,rows, 0,cols); + + Eigen::initParallel(); + func.initParallelSession(threads); + + if(transpose) + std::swap(rows,cols); + + ei_declare_aligned_stack_constructed_variable(GemmParallelInfo,info,threads,0); + + #pragma omp parallel num_threads(threads) + { + Index i = omp_get_thread_num(); + // Note that the actual number of threads might be lower than the number of request ones. + Index actual_threads = omp_get_num_threads(); + + Index blockCols = (cols / actual_threads) & ~Index(0x3); + Index blockRows = (rows / actual_threads); + blockRows = (blockRows/Functor::Traits::mr)*Functor::Traits::mr; + + Index r0 = i*blockRows; + Index actualBlockRows = (i+1==actual_threads) ? rows-r0 : blockRows; + + Index c0 = i*blockCols; + Index actualBlockCols = (i+1==actual_threads) ? cols-c0 : blockCols; + + info[i].lhs_start = r0; + info[i].lhs_length = actualBlockRows; + + if(transpose) func(c0, actualBlockCols, 0, rows, info); + else func(0, rows, c0, actualBlockCols, info); + } +#endif +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PARALLELIZER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h new file mode 100644 index 0000000..c7bb445 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h @@ -0,0 +1,546 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H +#define EIGEN_SELFADJOINT_MATRIX_MATRIX_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// pack a selfadjoint block diagonal for use with the gebp_kernel +template +struct symm_pack_lhs +{ + template inline + void pack(Scalar* blockA, const const_blas_data_mapper& lhs, Index cols, Index i, Index& count) + { + // normal copy + for(Index k=0; k::type>::half HalfPacket; + typedef typename unpacket_traits::type>::half>::half QuarterPacket; + enum { PacketSize = packet_traits::size, + HalfPacketSize = unpacket_traits::size, + QuarterPacketSize = unpacket_traits::size, + HasHalf = (int)HalfPacketSize < (int)PacketSize, + HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize}; + + const_blas_data_mapper lhs(_lhs,lhsStride); + Index count = 0; + //Index peeled_mc3 = (rows/Pack1)*Pack1; + + const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; + const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; + const Index peeled_mc1 = Pack1>=1*PacketSize ? peeled_mc2+((rows-peeled_mc2)/(1*PacketSize))*(1*PacketSize) : 0; + const Index peeled_mc_half = Pack1>=HalfPacketSize ? peeled_mc1+((rows-peeled_mc1)/(HalfPacketSize))*(HalfPacketSize) : 0; + const Index peeled_mc_quarter = Pack1>=QuarterPacketSize ? peeled_mc_half+((rows-peeled_mc_half)/(QuarterPacketSize))*(QuarterPacketSize) : 0; + + if(Pack1>=3*PacketSize) + for(Index i=0; i(blockA, lhs, cols, i, count); + + if(Pack1>=2*PacketSize) + for(Index i=peeled_mc3; i(blockA, lhs, cols, i, count); + + if(Pack1>=1*PacketSize) + for(Index i=peeled_mc2; i(blockA, lhs, cols, i, count); + + if(HasHalf && Pack1>=HalfPacketSize) + for(Index i=peeled_mc1; i(blockA, lhs, cols, i, count); + + if(HasQuarter && Pack1>=QuarterPacketSize) + for(Index i=peeled_mc_half; i(blockA, lhs, cols, i, count); + + // do the same with mr==1 + for(Index i=peeled_mc_quarter; i +struct symm_pack_rhs +{ + enum { PacketSize = packet_traits::size }; + void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2) + { + Index end_k = k2 + rows; + Index count = 0; + const_blas_data_mapper rhs(_rhs,rhsStride); + Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; + Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; + + // first part: normal case + for(Index j2=0; j2=4) + { + blockB[count+2] = rhs(k,j2+2); + blockB[count+3] = rhs(k,j2+3); + } + if (nr>=8) + { + blockB[count+4] = rhs(k,j2+4); + blockB[count+5] = rhs(k,j2+5); + blockB[count+6] = rhs(k,j2+6); + blockB[count+7] = rhs(k,j2+7); + } + count += nr; + } + } + + // second part: diagonal block + Index end8 = nr>=8 ? (std::min)(k2+rows,packet_cols8) : k2; + if(nr>=8) + { + for(Index j2=k2; j2=4) + { + for(Index j2=end8; j2<(std::min)(k2+rows,packet_cols4); j2+=4) + { + // again we can split vertically in three different parts (transpose, symmetric, normal) + // transpose + for(Index k=k2; k=8) + { + for(Index j2=k2+rows; j2=4) + { + for(Index j2=(std::max)(packet_cols8,k2+rows); j2 the same with nr==1) + for(Index j2=packet_cols4; j2 +struct product_selfadjoint_matrix; + +template +struct product_selfadjoint_matrix +{ + + static EIGEN_STRONG_INLINE void run( + Index rows, Index cols, + const Scalar* lhs, Index lhsStride, + const Scalar* rhs, Index rhsStride, + Scalar* res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking) + { + product_selfadjoint_matrix::IsComplex && logical_xor(RhsSelfAdjoint, ConjugateRhs), + logical_xor(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor, + LhsSelfAdjoint, NumTraits::IsComplex && logical_xor(LhsSelfAdjoint, ConjugateLhs), + ColMajor,ResInnerStride> + ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resIncr, resStride, alpha, blocking); + } +}; + +template +struct product_selfadjoint_matrix +{ + + static EIGEN_DONT_INLINE void run( + Index rows, Index cols, + const Scalar* _lhs, Index lhsStride, + const Scalar* _rhs, Index rhsStride, + Scalar* res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking); +}; + +template +EIGEN_DONT_INLINE void product_selfadjoint_matrix::run( + Index rows, Index cols, + const Scalar* _lhs, Index lhsStride, + const Scalar* _rhs, Index rhsStride, + Scalar* _res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking) + { + Index size = rows; + + typedef gebp_traits Traits; + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper LhsTransposeMapper; + typedef const_blas_data_mapper RhsMapper; + typedef blas_data_mapper ResMapper; + LhsMapper lhs(_lhs,lhsStride); + LhsTransposeMapper lhs_transpose(_lhs,lhsStride); + RhsMapper rhs(_rhs,rhsStride); + ResMapper res(_res, resStride, resIncr); + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction + // kc must be smaller than mc + kc = (std::min)(kc,mc); + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*cols; + ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); + + gebp_kernel gebp_kernel; + symm_pack_lhs pack_lhs; + gemm_pack_rhs pack_rhs; + gemm_pack_lhs pack_lhs_transposed; + + for(Index k2=0; k2 transposed packed copy + // 2 - the diagonal block => special packed copy + // 3 - the panel below the diagonal block => generic packed copy + for(Index i2=0; i2() + (blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); + + gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha); + } + } + } + +// matrix * selfadjoint product +template +struct product_selfadjoint_matrix +{ + + static EIGEN_DONT_INLINE void run( + Index rows, Index cols, + const Scalar* _lhs, Index lhsStride, + const Scalar* _rhs, Index rhsStride, + Scalar* res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking); +}; + +template +EIGEN_DONT_INLINE void product_selfadjoint_matrix::run( + Index rows, Index cols, + const Scalar* _lhs, Index lhsStride, + const Scalar* _rhs, Index rhsStride, + Scalar* _res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking) + { + Index size = cols; + + typedef gebp_traits Traits; + + typedef const_blas_data_mapper LhsMapper; + typedef blas_data_mapper ResMapper; + LhsMapper lhs(_lhs,lhsStride); + ResMapper res(_res,resStride, resIncr); + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*cols; + ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); + + gebp_kernel gebp_kernel; + gemm_pack_lhs pack_lhs; + symm_pack_rhs pack_rhs; + + for(Index k2=0; k2 GEPP + for(Index i2=0; i2 +struct selfadjoint_product_impl +{ + typedef typename Product::Scalar Scalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + + enum { + LhsIsUpper = (LhsMode&(Upper|Lower))==Upper, + LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint, + RhsIsUpper = (RhsMode&(Upper|Lower))==Upper, + RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint + }; + + template + static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha) + { + eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols()); + + add_const_on_value_type_t lhs = LhsBlasTraits::extract(a_lhs); + add_const_on_value_type_t rhs = RhsBlasTraits::extract(a_rhs); + + Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs) + * RhsBlasTraits::extractScalarFactor(a_rhs); + + typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, + Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,1> BlockingType; + + BlockingType blocking(lhs.rows(), rhs.cols(), lhs.cols(), 1, false); + + internal::product_selfadjoint_matrix::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint, + NumTraits::IsComplex && internal::logical_xor(LhsIsUpper, bool(LhsBlasTraits::NeedToConjugate)), + internal::logical_xor(RhsIsUpper, internal::traits::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint, + NumTraits::IsComplex && internal::logical_xor(RhsIsUpper, bool(RhsBlasTraits::NeedToConjugate)), + internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor, + Dest::InnerStrideAtCompileTime> + ::run( + lhs.rows(), rhs.cols(), // sizes + &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info + &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info + &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info + actualAlpha, blocking // alpha + ); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h new file mode 100644 index 0000000..0e371da --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h @@ -0,0 +1,297 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * Self adjoint matrix * matrix product functionality based on ?SYMM/?HEMM. + ******************************************************************************** +*/ + +#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_BLAS_H +#define EIGEN_SELFADJOINT_MATRIX_MATRIX_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + + +/* Optimized selfadjoint matrix * matrix (?SYMM/?HEMM) product */ + +#define EIGEN_BLAS_SYMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ +template \ +struct product_selfadjoint_matrix \ +{\ +\ + static void run( \ + Index rows, Index cols, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resIncr, Index resStride, \ + EIGTYPE alpha, level3_blocking& /*blocking*/) \ + { \ + EIGEN_ONLY_USED_FOR_DEBUG(resIncr); \ + eigen_assert(resIncr == 1); \ + char side='L', uplo='L'; \ + BlasIndex m, n, lda, ldb, ldc; \ + const EIGTYPE *a, *b; \ + EIGTYPE beta(1); \ + MatrixX##EIGPREFIX b_tmp; \ +\ +/* Set transpose options */ \ +/* Set m, n, k */ \ + m = convert_index(rows); \ + n = convert_index(cols); \ +\ +/* Set lda, ldb, ldc */ \ + lda = convert_index(lhsStride); \ + ldb = convert_index(rhsStride); \ + ldc = convert_index(resStride); \ +\ +/* Set a, b, c */ \ + if (LhsStorageOrder==RowMajor) uplo='U'; \ + a = _lhs; \ +\ + if (RhsStorageOrder==RowMajor) { \ + Map > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \ + b_tmp = rhs.adjoint(); \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ + } else b = _rhs; \ +\ + BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ +\ + } \ +}; + + +#define EIGEN_BLAS_HEMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ +template \ +struct product_selfadjoint_matrix \ +{\ + static void run( \ + Index rows, Index cols, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resIncr, Index resStride, \ + EIGTYPE alpha, level3_blocking& /*blocking*/) \ + { \ + EIGEN_ONLY_USED_FOR_DEBUG(resIncr); \ + eigen_assert(resIncr == 1); \ + char side='L', uplo='L'; \ + BlasIndex m, n, lda, ldb, ldc; \ + const EIGTYPE *a, *b; \ + EIGTYPE beta(1); \ + MatrixX##EIGPREFIX b_tmp; \ + Matrix a_tmp; \ +\ +/* Set transpose options */ \ +/* Set m, n, k */ \ + m = convert_index(rows); \ + n = convert_index(cols); \ +\ +/* Set lda, ldb, ldc */ \ + lda = convert_index(lhsStride); \ + ldb = convert_index(rhsStride); \ + ldc = convert_index(resStride); \ +\ +/* Set a, b, c */ \ + if (((LhsStorageOrder==ColMajor) && ConjugateLhs) || ((LhsStorageOrder==RowMajor) && (!ConjugateLhs))) { \ + Map, 0, OuterStride<> > lhs(_lhs,m,m,OuterStride<>(lhsStride)); \ + a_tmp = lhs.conjugate(); \ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else a = _lhs; \ + if (LhsStorageOrder==RowMajor) uplo='U'; \ +\ + if (RhsStorageOrder==ColMajor && (!ConjugateRhs)) { \ + b = _rhs; } \ + else { \ + if (RhsStorageOrder==ColMajor && ConjugateRhs) { \ + Map > rhs(_rhs,m,n,OuterStride<>(rhsStride)); \ + b_tmp = rhs.conjugate(); \ + } else \ + if (ConjugateRhs) { \ + Map > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \ + b_tmp = rhs.adjoint(); \ + } else { \ + Map > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \ + b_tmp = rhs.transpose(); \ + } \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ + } \ +\ + BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ +\ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_SYMM_L(double, double, d, dsymm) +EIGEN_BLAS_SYMM_L(float, float, f, ssymm) +EIGEN_BLAS_HEMM_L(dcomplex, MKL_Complex16, cd, zhemm) +EIGEN_BLAS_HEMM_L(scomplex, MKL_Complex8, cf, chemm) +#else +EIGEN_BLAS_SYMM_L(double, double, d, dsymm_) +EIGEN_BLAS_SYMM_L(float, float, f, ssymm_) +EIGEN_BLAS_HEMM_L(dcomplex, double, cd, zhemm_) +EIGEN_BLAS_HEMM_L(scomplex, float, cf, chemm_) +#endif + +/* Optimized matrix * selfadjoint matrix (?SYMM/?HEMM) product */ + +#define EIGEN_BLAS_SYMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ +template \ +struct product_selfadjoint_matrix \ +{\ +\ + static void run( \ + Index rows, Index cols, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resIncr, Index resStride, \ + EIGTYPE alpha, level3_blocking& /*blocking*/) \ + { \ + EIGEN_ONLY_USED_FOR_DEBUG(resIncr); \ + eigen_assert(resIncr == 1); \ + char side='R', uplo='L'; \ + BlasIndex m, n, lda, ldb, ldc; \ + const EIGTYPE *a, *b; \ + EIGTYPE beta(1); \ + MatrixX##EIGPREFIX b_tmp; \ +\ +/* Set m, n, k */ \ + m = convert_index(rows); \ + n = convert_index(cols); \ +\ +/* Set lda, ldb, ldc */ \ + lda = convert_index(rhsStride); \ + ldb = convert_index(lhsStride); \ + ldc = convert_index(resStride); \ +\ +/* Set a, b, c */ \ + if (RhsStorageOrder==RowMajor) uplo='U'; \ + a = _rhs; \ +\ + if (LhsStorageOrder==RowMajor) { \ + Map > lhs(_lhs,n,m,OuterStride<>(rhsStride)); \ + b_tmp = lhs.adjoint(); \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ + } else b = _lhs; \ +\ + BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ +\ + } \ +}; + + +#define EIGEN_BLAS_HEMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ +template \ +struct product_selfadjoint_matrix \ +{\ + static void run( \ + Index rows, Index cols, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resIncr, Index resStride, \ + EIGTYPE alpha, level3_blocking& /*blocking*/) \ + { \ + EIGEN_ONLY_USED_FOR_DEBUG(resIncr); \ + eigen_assert(resIncr == 1); \ + char side='R', uplo='L'; \ + BlasIndex m, n, lda, ldb, ldc; \ + const EIGTYPE *a, *b; \ + EIGTYPE beta(1); \ + MatrixX##EIGPREFIX b_tmp; \ + Matrix a_tmp; \ +\ +/* Set m, n, k */ \ + m = convert_index(rows); \ + n = convert_index(cols); \ +\ +/* Set lda, ldb, ldc */ \ + lda = convert_index(rhsStride); \ + ldb = convert_index(lhsStride); \ + ldc = convert_index(resStride); \ +\ +/* Set a, b, c */ \ + if (((RhsStorageOrder==ColMajor) && ConjugateRhs) || ((RhsStorageOrder==RowMajor) && (!ConjugateRhs))) { \ + Map, 0, OuterStride<> > rhs(_rhs,n,n,OuterStride<>(rhsStride)); \ + a_tmp = rhs.conjugate(); \ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else a = _rhs; \ + if (RhsStorageOrder==RowMajor) uplo='U'; \ +\ + if (LhsStorageOrder==ColMajor && (!ConjugateLhs)) { \ + b = _lhs; } \ + else { \ + if (LhsStorageOrder==ColMajor && ConjugateLhs) { \ + Map > lhs(_lhs,m,n,OuterStride<>(lhsStride)); \ + b_tmp = lhs.conjugate(); \ + } else \ + if (ConjugateLhs) { \ + Map > lhs(_lhs,n,m,OuterStride<>(lhsStride)); \ + b_tmp = lhs.adjoint(); \ + } else { \ + Map > lhs(_lhs,n,m,OuterStride<>(lhsStride)); \ + b_tmp = lhs.transpose(); \ + } \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ + } \ +\ + BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_SYMM_R(double, double, d, dsymm) +EIGEN_BLAS_SYMM_R(float, float, f, ssymm) +EIGEN_BLAS_HEMM_R(dcomplex, MKL_Complex16, cd, zhemm) +EIGEN_BLAS_HEMM_R(scomplex, MKL_Complex8, cf, chemm) +#else +EIGEN_BLAS_SYMM_R(double, double, d, dsymm_) +EIGEN_BLAS_SYMM_R(float, float, f, ssymm_) +EIGEN_BLAS_HEMM_R(dcomplex, double, cd, zhemm_) +EIGEN_BLAS_HEMM_R(scomplex, float, cf, chemm_) +#endif +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h new file mode 100644 index 0000000..a62b6b5 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h @@ -0,0 +1,264 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H +#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/* Optimized selfadjoint matrix * vector product: + * This algorithm processes 2 columns at once that allows to both reduce + * the number of load/stores of the result by a factor 2 and to reduce + * the instruction dependency. + */ + +template +struct selfadjoint_matrix_vector_product; + +template +struct selfadjoint_matrix_vector_product + +{ +static EIGEN_DONT_INLINE EIGEN_DEVICE_FUNC +void run( + Index size, + const Scalar* lhs, Index lhsStride, + const Scalar* rhs, + Scalar* res, + Scalar alpha); +}; + +template +EIGEN_DONT_INLINE EIGEN_DEVICE_FUNC +void selfadjoint_matrix_vector_product::run( + Index size, + const Scalar* lhs, Index lhsStride, + const Scalar* rhs, + Scalar* res, + Scalar alpha) +{ + typedef typename packet_traits::type Packet; + typedef typename NumTraits::Real RealScalar; + const Index PacketSize = sizeof(Packet)/sizeof(Scalar); + + enum { + IsRowMajor = StorageOrder==RowMajor ? 1 : 0, + IsLower = UpLo == Lower ? 1 : 0, + FirstTriangular = IsRowMajor == IsLower + }; + + conj_helper::IsComplex && logical_xor(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0; + conj_helper::IsComplex && logical_xor(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1; + conj_helper cjd; + + conj_helper::IsComplex && logical_xor(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0; + conj_helper::IsComplex && logical_xor(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1; + + Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha; + + Index bound = numext::maxi(Index(0), size-8) & 0xfffffffe; + if (FirstTriangular) + bound = size - bound; + + for (Index j=FirstTriangular ? bound : 0; + j<(FirstTriangular ? size : bound);j+=2) + { + const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride; + const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride; + + Scalar t0 = cjAlpha * rhs[j]; + Packet ptmp0 = pset1(t0); + Scalar t1 = cjAlpha * rhs[j+1]; + Packet ptmp1 = pset1(t1); + + Scalar t2(0); + Packet ptmp2 = pset1(t2); + Scalar t3(0); + Packet ptmp3 = pset1(t3); + + Index starti = FirstTriangular ? 0 : j+2; + Index endi = FirstTriangular ? j : size; + Index alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti); + Index alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize); + + res[j] += cjd.pmul(numext::real(A0[j]), t0); + res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1); + if(FirstTriangular) + { + res[j] += cj0.pmul(A1[j], t1); + t3 += cj1.pmul(A1[j], rhs[j]); + } + else + { + res[j+1] += cj0.pmul(A0[j+1],t0); + t2 += cj1.pmul(A0[j+1], rhs[j+1]); + } + + for (Index i=starti; i huge speed up) + // gcc 4.2 does this optimization automatically. + const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart; + const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart; + const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart; + Scalar* EIGEN_RESTRICT resIt = res + alignedStart; + for (Index i=alignedStart; i(a0It); a0It += PacketSize; + Packet A1i = ploadu(a1It); a1It += PacketSize; + Packet Bi = ploadu(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases + Packet Xi = pload (resIt); + + Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi)); + ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2); + ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3); + pstore(resIt,Xi); resIt += PacketSize; + } + for (Index i=alignedEnd; i +struct selfadjoint_product_impl +{ + typedef typename Product::Scalar Scalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::remove_all_t ActualLhsTypeCleaned; + + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + typedef internal::remove_all_t ActualRhsTypeCleaned; + + enum { LhsUpLo = LhsMode&(Upper|Lower) }; + + template + static EIGEN_DEVICE_FUNC + void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha) + { + typedef typename Dest::Scalar ResScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef Map, plain_enum_min(AlignedMax,internal::packet_traits::size)> MappedDest; + + eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols()); + + add_const_on_value_type_t lhs = LhsBlasTraits::extract(a_lhs); + add_const_on_value_type_t rhs = RhsBlasTraits::extract(a_rhs); + + Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs) + * RhsBlasTraits::extractScalarFactor(a_rhs); + + enum { + EvalToDest = (Dest::InnerStrideAtCompileTime==1), + UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1) + }; + + internal::gemv_static_vector_if static_dest; + internal::gemv_static_vector_if static_rhs; + + ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), + EvalToDest ? dest.data() : static_dest.data()); + + ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(), + UseRhs ? const_cast(rhs.data()) : static_rhs.data()); + + if(!EvalToDest) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = dest.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + MappedDest(actualDestPtr, dest.size()) = dest; + } + + if(!UseRhs) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = rhs.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + Map(actualRhsPtr, rhs.size()) = rhs; + } + + + internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, + int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run + ( + lhs.rows(), // size + &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info + actualRhsPtr, // rhs info + actualDestPtr, // result info + actualAlpha // scale factor + ); + + if(!EvalToDest) + dest = MappedDest(actualDestPtr, dest.size()); + } +}; + +template +struct selfadjoint_product_impl +{ + typedef typename Product::Scalar Scalar; + enum { RhsUpLo = RhsMode&(Upper|Lower) }; + + template + static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha) + { + // let's simply transpose the product + Transpose destT(dest); + selfadjoint_product_impl, int(RhsUpLo)==Upper ? Lower : Upper, false, + Transpose, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h new file mode 100644 index 0000000..99a8ccd --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h @@ -0,0 +1,120 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * Selfadjoint matrix-vector product functionality based on ?SYMV/HEMV. + ******************************************************************************** +*/ + +#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_BLAS_H +#define EIGEN_SELFADJOINT_MATRIX_VECTOR_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/********************************************************************** +* This file implements selfadjoint matrix-vector multiplication using BLAS +**********************************************************************/ + +// symv/hemv specialization + +template +struct selfadjoint_matrix_vector_product_symv : + selfadjoint_matrix_vector_product {}; + +#define EIGEN_BLAS_SYMV_SPECIALIZE(Scalar) \ +template \ +struct selfadjoint_matrix_vector_product { \ +static void run( \ + Index size, const Scalar* lhs, Index lhsStride, \ + const Scalar* _rhs, Scalar* res, Scalar alpha) { \ + enum {\ + IsColMajor = StorageOrder==ColMajor \ + }; \ + if (IsColMajor == ConjugateLhs) {\ + selfadjoint_matrix_vector_product::run( \ + size, lhs, lhsStride, _rhs, res, alpha); \ + } else {\ + selfadjoint_matrix_vector_product_symv::run( \ + size, lhs, lhsStride, _rhs, res, alpha); \ + }\ + } \ +}; \ + +EIGEN_BLAS_SYMV_SPECIALIZE(double) +EIGEN_BLAS_SYMV_SPECIALIZE(float) +EIGEN_BLAS_SYMV_SPECIALIZE(dcomplex) +EIGEN_BLAS_SYMV_SPECIALIZE(scomplex) + +#define EIGEN_BLAS_SYMV_SPECIALIZATION(EIGTYPE,BLASTYPE,BLASFUNC) \ +template \ +struct selfadjoint_matrix_vector_product_symv \ +{ \ +typedef Matrix SYMVVector;\ +\ +static void run( \ +Index size, const EIGTYPE* lhs, Index lhsStride, \ +const EIGTYPE* _rhs, EIGTYPE* res, EIGTYPE alpha) \ +{ \ + enum {\ + IsRowMajor = StorageOrder==RowMajor ? 1 : 0, \ + IsLower = UpLo == Lower ? 1 : 0 \ + }; \ + BlasIndex n=convert_index(size), lda=convert_index(lhsStride), incx=1, incy=1; \ + EIGTYPE beta(1); \ + const EIGTYPE *x_ptr; \ + char uplo=(IsRowMajor) ? (IsLower ? 'U' : 'L') : (IsLower ? 'L' : 'U'); \ + SYMVVector x_tmp; \ + if (ConjugateRhs) { \ + Map map_x(_rhs,size,1); \ + x_tmp=map_x.conjugate(); \ + x_ptr=x_tmp.data(); \ + } else x_ptr=_rhs; \ + BLASFUNC(&uplo, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &incy); \ +}\ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_SYMV_SPECIALIZATION(double, double, dsymv) +EIGEN_BLAS_SYMV_SPECIALIZATION(float, float, ssymv) +EIGEN_BLAS_SYMV_SPECIALIZATION(dcomplex, MKL_Complex16, zhemv) +EIGEN_BLAS_SYMV_SPECIALIZATION(scomplex, MKL_Complex8, chemv) +#else +EIGEN_BLAS_SYMV_SPECIALIZATION(double, double, dsymv_) +EIGEN_BLAS_SYMV_SPECIALIZATION(float, float, ssymv_) +EIGEN_BLAS_SYMV_SPECIALIZATION(dcomplex, double, zhemv_) +EIGEN_BLAS_SYMV_SPECIALIZATION(scomplex, float, chemv_) +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointProduct.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointProduct.h new file mode 100644 index 0000000..4cbc1f7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointProduct.h @@ -0,0 +1,135 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINT_PRODUCT_H +#define EIGEN_SELFADJOINT_PRODUCT_H + +/********************************************************************** +* This file implements a self adjoint product: C += A A^T updating only +* half of the selfadjoint matrix C. +* It corresponds to the level 3 SYRK and level 2 SYR Blas routines. +**********************************************************************/ + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + + +template +struct selfadjoint_rank1_update +{ + static void run(Index size, Scalar* mat, Index stride, const Scalar* vecX, const Scalar* vecY, const Scalar& alpha) + { + internal::conj_if cj; + typedef Map > OtherMap; + typedef std::conditional_t ConjLhsType; + for (Index i=0; i >(mat+stride*i+(UpLo==Lower ? i : 0), (UpLo==Lower ? size-i : (i+1))) + += (alpha * cj(vecY[i])) * ConjLhsType(OtherMap(vecX+(UpLo==Lower ? i : 0),UpLo==Lower ? size-i : (i+1))); + } + } +}; + +template +struct selfadjoint_rank1_update +{ + static void run(Index size, Scalar* mat, Index stride, const Scalar* vecX, const Scalar* vecY, const Scalar& alpha) + { + selfadjoint_rank1_update::run(size,mat,stride,vecY,vecX,alpha); + } +}; + +template +struct selfadjoint_product_selector; + +template +struct selfadjoint_product_selector +{ + static void run(MatrixType& mat, const OtherType& other, const typename MatrixType::Scalar& alpha) + { + typedef typename MatrixType::Scalar Scalar; + typedef internal::blas_traits OtherBlasTraits; + typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType; + typedef internal::remove_all_t ActualOtherType_; + internal::add_const_on_value_type_t actualOther = OtherBlasTraits::extract(other.derived()); + + Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived()); + + enum { + StorageOrder = (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, + UseOtherDirectly = ActualOtherType_::InnerStrideAtCompileTime==1 + }; + internal::gemv_static_vector_if static_other; + + ei_declare_aligned_stack_constructed_variable(Scalar, actualOtherPtr, other.size(), + (UseOtherDirectly ? const_cast(actualOther.data()) : static_other.data())); + + if(!UseOtherDirectly) + Map(actualOtherPtr, actualOther.size()) = actualOther; + + selfadjoint_rank1_update::IsComplex, + (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex> + ::run(other.size(), mat.data(), mat.outerStride(), actualOtherPtr, actualOtherPtr, actualAlpha); + } +}; + +template +struct selfadjoint_product_selector +{ + static void run(MatrixType& mat, const OtherType& other, const typename MatrixType::Scalar& alpha) + { + typedef typename MatrixType::Scalar Scalar; + typedef internal::blas_traits OtherBlasTraits; + typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType; + typedef internal::remove_all_t ActualOtherType_; + internal::add_const_on_value_type_t actualOther = OtherBlasTraits::extract(other.derived()); + + Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived()); + + enum { + IsRowMajor = (internal::traits::Flags&RowMajorBit) ? 1 : 0, + OtherIsRowMajor = ActualOtherType_::Flags&RowMajorBit ? 1 : 0 + }; + + Index size = mat.cols(); + Index depth = actualOther.cols(); + + typedef internal::gemm_blocking_space BlockingType; + + BlockingType blocking(size, size, depth, 1, false); + + + internal::general_matrix_matrix_triangular_product::IsComplex, + Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, + IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> + ::run(size, depth, + actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), + mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); + } +}; + +// high level API + +template +template +EIGEN_DEVICE_FUNC SelfAdjointView& SelfAdjointView +::rankUpdate(const MatrixBase& u, const Scalar& alpha) +{ + selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); + + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINT_PRODUCT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointRank2Update.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointRank2Update.h new file mode 100644 index 0000000..fb199ad --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/SelfadjointRank2Update.h @@ -0,0 +1,95 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINTRANK2UPTADE_H +#define EIGEN_SELFADJOINTRANK2UPTADE_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu' + * It corresponds to the Level2 syr2 BLAS routine + */ + +template +struct selfadjoint_rank2_update_selector; + +template +struct selfadjoint_rank2_update_selector +{ + static EIGEN_DEVICE_FUNC + void run(Scalar* mat, Index stride, const UType& u, const VType& v, const Scalar& alpha) + { + const Index size = u.size(); + for (Index i=0; i >(mat+stride*i+i, size-i) += + (numext::conj(alpha) * numext::conj(u.coeff(i))) * v.tail(size-i) + + (alpha * numext::conj(v.coeff(i))) * u.tail(size-i); + } + } +}; + +template +struct selfadjoint_rank2_update_selector +{ + static void run(Scalar* mat, Index stride, const UType& u, const VType& v, const Scalar& alpha) + { + const Index size = u.size(); + for (Index i=0; i >(mat+stride*i, i+1) += + (numext::conj(alpha) * numext::conj(u.coeff(i))) * v.head(i+1) + + (alpha * numext::conj(v.coeff(i))) * u.head(i+1); + } +}; + +template +using conj_expr_if = std::conditional::Scalar>,T>>; + +} // end namespace internal + +template +template +EIGEN_DEVICE_FUNC SelfAdjointView& SelfAdjointView +::rankUpdate(const MatrixBase& u, const MatrixBase& v, const Scalar& alpha) +{ + typedef internal::blas_traits UBlasTraits; + typedef typename UBlasTraits::DirectLinearAccessType ActualUType; + typedef internal::remove_all_t ActualUType_; + internal::add_const_on_value_type_t actualU = UBlasTraits::extract(u.derived()); + + typedef internal::blas_traits VBlasTraits; + typedef typename VBlasTraits::DirectLinearAccessType ActualVType; + typedef internal::remove_all_t ActualVType_; + internal::add_const_on_value_type_t actualV = VBlasTraits::extract(v.derived()); + + // If MatrixType is row major, then we use the routine for lower triangular in the upper triangular case and + // vice versa, and take the complex conjugate of all coefficients and vector entries. + + enum { IsRowMajor = (internal::traits::Flags&RowMajorBit) ? 1 : 0 }; + Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived()) + * numext::conj(VBlasTraits::extractScalarFactor(v.derived())); + if (IsRowMajor) + actualAlpha = numext::conj(actualAlpha); + + typedef internal::remove_all_t::type> UType; + typedef internal::remove_all_t::type> VType; + internal::selfadjoint_rank2_update_selector + ::run(_expression().const_cast_derived().data(),_expression().outerStride(),UType(actualU),VType(actualV),actualAlpha); + + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINTRANK2UPTADE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h new file mode 100644 index 0000000..80c98dd --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h @@ -0,0 +1,480 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H +#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// template +// struct gemm_pack_lhs_triangular +// { +// Matrix::IsComplex && Conjugate> cj; +// const_blas_data_mapper lhs(lhs_,lhsStride); +// int count = 0; +// const int peeled_mc = (rows/mr)*mr; +// for(int i=0; i +struct product_triangular_matrix_matrix; + +template +struct product_triangular_matrix_matrix +{ + static EIGEN_STRONG_INLINE void run( + Index rows, Index cols, Index depth, + const Scalar* lhs, Index lhsStride, + const Scalar* rhs, Index rhsStride, + Scalar* res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking) + { + product_triangular_matrix_matrix + ::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride, res, resIncr, resStride, alpha, blocking); + } +}; + +// implements col-major += alpha * op(triangular) * op(general) +template +struct product_triangular_matrix_matrix +{ + + typedef gebp_traits Traits; + enum { + SmallPanelWidth = 2 * plain_enum_max(Traits::mr, Traits::nr), + IsLower = (Mode&Lower) == Lower, + SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1 + }; + + static EIGEN_DONT_INLINE void run( + Index _rows, Index _cols, Index _depth, + const Scalar* lhs_, Index lhsStride, + const Scalar* rhs_, Index rhsStride, + Scalar* res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking); +}; + +template +EIGEN_DONT_INLINE void product_triangular_matrix_matrix::run( + Index _rows, Index _cols, Index _depth, + const Scalar* lhs_, Index lhsStride, + const Scalar* rhs_, Index rhsStride, + Scalar* res_, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking) + { + // strip zeros + Index diagSize = (std::min)(_rows,_depth); + Index rows = IsLower ? _rows : diagSize; + Index depth = IsLower ? diagSize : _depth; + Index cols = _cols; + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + typedef blas_data_mapper ResMapper; + LhsMapper lhs(lhs_,lhsStride); + RhsMapper rhs(rhs_,rhsStride); + ResMapper res(res_, resStride, resIncr); + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction + // The small panel size must not be larger than blocking size. + // Usually this should never be the case because SmallPanelWidth^2 is very small + // compared to L2 cache size, but let's be safe: + Index panelWidth = (std::min)(Index(SmallPanelWidth),(std::min)(kc,mc)); + + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*cols; + + ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); + + // To work around an "error: member reference base type 'Matrix<...> + // (Eigen::internal::constructor_without_unaligned_array_assert (*)())' is + // not a structure or union" compilation error in nvcc (tested V8.0.61), + // create a dummy internal::constructor_without_unaligned_array_assert + // object to pass to the Matrix constructor. + internal::constructor_without_unaligned_array_assert a; + Matrix triangularBuffer(a); + triangularBuffer.setZero(); + if((Mode&ZeroDiag)==ZeroDiag) + triangularBuffer.diagonal().setZero(); + else + triangularBuffer.diagonal().setOnes(); + + gebp_kernel gebp_kernel; + gemm_pack_lhs pack_lhs; + gemm_pack_rhs pack_rhs; + + for(Index k2=IsLower ? depth : 0; + IsLower ? k2>0 : k2rows)) + { + actual_kc = rows-k2; + k2 = k2+actual_kc-kc; + } + + pack_rhs(blockB, rhs.getSubMapper(actual_k2,0), actual_kc, cols); + + // the selected lhs's panel has to be split in three different parts: + // 1 - the part which is zero => skip it + // 2 - the diagonal block => special kernel + // 3 - the dense panel below (lower case) or above (upper case) the diagonal block => GEPP + + // the block diagonal, if any: + if(IsLower || actual_k2(actual_kc-k1, panelWidth); + Index lengthTarget = IsLower ? actual_kc-k1-actualPanelWidth : k1; + Index startBlock = actual_k2+k1; + Index blockBOffset = k1; + + // => GEBP with the micro triangular block + // The trick is to pack this micro block while filling the opposite triangular part with zeros. + // To this end we do an extra triangular copy to a small temporary buffer + for (Index k=0;k0) + { + Index startTarget = IsLower ? actual_k2+k1+actualPanelWidth : actual_k2; + + pack_lhs(blockA, lhs.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget); + + gebp_kernel(res.getSubMapper(startTarget, 0), blockA, blockB, + lengthTarget, actualPanelWidth, cols, alpha, + actualPanelWidth, actual_kc, 0, blockBOffset); + } + } + } + // the part below (lower case) or above (upper case) the diagonal => GEPP + { + Index start = IsLower ? k2 : 0; + Index end = IsLower ? rows : (std::min)(actual_k2,rows); + for(Index i2=start; i2() + (blockA, lhs.getSubMapper(i2, actual_k2), actual_kc, actual_mc); + + gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, + actual_kc, cols, alpha, -1, -1, 0, 0); + } + } + } + } + +// implements col-major += alpha * op(general) * op(triangular) +template +struct product_triangular_matrix_matrix +{ + typedef gebp_traits Traits; + enum { + SmallPanelWidth = plain_enum_max(Traits::mr, Traits::nr), + IsLower = (Mode&Lower) == Lower, + SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1 + }; + + static EIGEN_DONT_INLINE void run( + Index _rows, Index _cols, Index _depth, + const Scalar* lhs_, Index lhsStride, + const Scalar* rhs_, Index rhsStride, + Scalar* res, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking); +}; + +template +EIGEN_DONT_INLINE void product_triangular_matrix_matrix::run( + Index _rows, Index _cols, Index _depth, + const Scalar* lhs_, Index lhsStride, + const Scalar* rhs_, Index rhsStride, + Scalar* res_, Index resIncr, Index resStride, + const Scalar& alpha, level3_blocking& blocking) + { + const Index PacketBytes = packet_traits::size*sizeof(Scalar); + // strip zeros + Index diagSize = (std::min)(_cols,_depth); + Index rows = _rows; + Index depth = IsLower ? _depth : diagSize; + Index cols = IsLower ? diagSize : _cols; + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + typedef blas_data_mapper ResMapper; + LhsMapper lhs(lhs_,lhsStride); + RhsMapper rhs(rhs_,rhsStride); + ResMapper res(res_, resStride, resIncr); + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction + + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*cols+EIGEN_MAX_ALIGN_BYTES/sizeof(Scalar); + + ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); + + internal::constructor_without_unaligned_array_assert a; + Matrix triangularBuffer(a); + triangularBuffer.setZero(); + if((Mode&ZeroDiag)==ZeroDiag) + triangularBuffer.diagonal().setZero(); + else + triangularBuffer.diagonal().setOnes(); + + gebp_kernel gebp_kernel; + gemm_pack_lhs pack_lhs; + gemm_pack_rhs pack_rhs; + gemm_pack_rhs pack_rhs_panel; + + for(Index k2=IsLower ? 0 : depth; + IsLower ? k20; + IsLower ? k2+=kc : k2-=kc) + { + Index actual_kc = (std::min)(IsLower ? depth-k2 : k2, kc); + Index actual_k2 = IsLower ? k2 : k2-actual_kc; + + // align blocks with the end of the triangular part for trapezoidal rhs + if(IsLower && (k2cols)) + { + actual_kc = cols-k2; + k2 = actual_k2 + actual_kc - kc; + } + + // remaining size + Index rs = IsLower ? (std::min)(cols,actual_k2) : cols - k2; + // size of the triangular part + Index ts = (IsLower && actual_k2>=cols) ? 0 : actual_kc; + + Scalar* geb = blockB+ts*ts; + geb = geb + internal::first_aligned(geb,PacketBytes/sizeof(Scalar)); + + pack_rhs(geb, rhs.getSubMapper(actual_k2,IsLower ? 0 : k2), actual_kc, rs); + + // pack the triangular part of the rhs padding the unrolled blocks with zeros + if(ts>0) + { + for (Index j2=0; j2(actual_kc-j2, SmallPanelWidth); + Index actual_j2 = actual_k2 + j2; + Index panelOffset = IsLower ? j2+actualPanelWidth : 0; + Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2; + // general part + pack_rhs_panel(blockB+j2*actual_kc, + rhs.getSubMapper(actual_k2+panelOffset, actual_j2), + panelLength, actualPanelWidth, + actual_kc, panelOffset); + + // append the triangular part via a temporary buffer + for (Index j=0;j0) + { + for (Index j2=0; j2(actual_kc-j2, SmallPanelWidth); + Index panelLength = IsLower ? actual_kc-j2 : j2+actualPanelWidth; + Index blockOffset = IsLower ? j2 : 0; + + gebp_kernel(res.getSubMapper(i2, actual_k2 + j2), + blockA, blockB+j2*actual_kc, + actual_mc, panelLength, actualPanelWidth, + alpha, + actual_kc, actual_kc, // strides + blockOffset, blockOffset);// offsets + } + } + gebp_kernel(res.getSubMapper(i2, IsLower ? 0 : k2), + blockA, geb, actual_mc, actual_kc, rs, + alpha, + -1, -1, 0, 0); + } + } + } + +/*************************************************************************** +* Wrapper to product_triangular_matrix_matrix +***************************************************************************/ + +} // end namespace internal + +namespace internal { +template +struct triangular_product_impl +{ + template static void run(Dest& dst, const Lhs &a_lhs, const Rhs &a_rhs, const typename Dest::Scalar& alpha) + { + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar Scalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::remove_all_t ActualLhsTypeCleaned; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + typedef internal::remove_all_t ActualRhsTypeCleaned; + + internal::add_const_on_value_type_t lhs = LhsBlasTraits::extract(a_lhs); + internal::add_const_on_value_type_t rhs = RhsBlasTraits::extract(a_rhs); + + // Empty product, return early. Otherwise, we get `nullptr` use errors below when we try to access + // coeffRef(0,0). + if (lhs.size() == 0 || rhs.size() == 0) { + return; + } + + LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(a_lhs); + RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(a_rhs); + Scalar actualAlpha = alpha * lhs_alpha * rhs_alpha; + + typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, + Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,4> BlockingType; + + enum { IsLower = (Mode&Lower) == Lower }; + Index stripedRows = ((!LhsIsTriangular) || (IsLower)) ? lhs.rows() : (std::min)(lhs.rows(),lhs.cols()); + Index stripedCols = ((LhsIsTriangular) || (!IsLower)) ? rhs.cols() : (std::min)(rhs.cols(),rhs.rows()); + Index stripedDepth = LhsIsTriangular ? ((!IsLower) ? lhs.cols() : (std::min)(lhs.cols(),lhs.rows())) + : ((IsLower) ? rhs.rows() : (std::min)(rhs.rows(),rhs.cols())); + + BlockingType blocking(stripedRows, stripedCols, stripedDepth, 1, false); + + internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, + (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, + (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> + ::run( + stripedRows, stripedCols, stripedDepth, // sizes + &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info + &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info + &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info + actualAlpha, blocking + ); + + // Apply correction if the diagonal is unit and a scalar factor was nested: + if ((Mode&UnitDiag)==UnitDiag) + { + if (LhsIsTriangular && !numext::is_exactly_one(lhs_alpha)) + { + Index diagSize = (std::min)(lhs.rows(),lhs.cols()); + dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); + } + else if ((!LhsIsTriangular) && !numext::is_exactly_one(rhs_alpha)) + { + Index diagSize = (std::min)(rhs.rows(),rhs.cols()); + dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); + } + } + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h new file mode 100644 index 0000000..1eb57d3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h @@ -0,0 +1,319 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * Triangular matrix * matrix product functionality based on ?TRMM. + ******************************************************************************** +*/ + +#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_BLAS_H +#define EIGEN_TRIANGULAR_MATRIX_MATRIX_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + + +template +struct product_triangular_matrix_matrix_trmm : + product_triangular_matrix_matrix {}; + + +// try to go to BLAS specialization +#define EIGEN_BLAS_TRMM_SPECIALIZE(Scalar, LhsIsTriangular) \ +template \ +struct product_triangular_matrix_matrix { \ + static inline void run(Index _rows, Index _cols, Index _depth, const Scalar* _lhs, Index lhsStride,\ + const Scalar* _rhs, Index rhsStride, Scalar* res, Index resIncr, Index resStride, Scalar alpha, level3_blocking& blocking) { \ + EIGEN_ONLY_USED_FOR_DEBUG(resIncr); \ + eigen_assert(resIncr == 1); \ + product_triangular_matrix_matrix_trmm::run( \ + _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \ + } \ +}; + +EIGEN_BLAS_TRMM_SPECIALIZE(double, true) +EIGEN_BLAS_TRMM_SPECIALIZE(double, false) +EIGEN_BLAS_TRMM_SPECIALIZE(dcomplex, true) +EIGEN_BLAS_TRMM_SPECIALIZE(dcomplex, false) +EIGEN_BLAS_TRMM_SPECIALIZE(float, true) +EIGEN_BLAS_TRMM_SPECIALIZE(float, false) +EIGEN_BLAS_TRMM_SPECIALIZE(scomplex, true) +EIGEN_BLAS_TRMM_SPECIALIZE(scomplex, false) + +// implements col-major += alpha * op(triangular) * op(general) +#define EIGEN_BLAS_TRMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ +template \ +struct product_triangular_matrix_matrix_trmm \ +{ \ + enum { \ + IsLower = (Mode&Lower) == Lower, \ + SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ + IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ + IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ + LowUp = IsLower ? Lower : Upper, \ + conjA = ((LhsStorageOrder==ColMajor) && ConjugateLhs) ? 1 : 0 \ + }; \ +\ + static void run( \ + Index _rows, Index _cols, Index _depth, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resStride, \ + EIGTYPE alpha, level3_blocking& blocking) \ + { \ + Index diagSize = (std::min)(_rows,_depth); \ + Index rows = IsLower ? _rows : diagSize; \ + Index depth = IsLower ? diagSize : _depth; \ + Index cols = _cols; \ +\ + typedef Matrix MatrixLhs; \ + typedef Matrix MatrixRhs; \ +\ +/* Non-square case - doesn't fit to BLAS ?TRMM. Fall to default triangular product or call BLAS ?GEMM*/ \ + if (rows != depth) { \ +\ + /* FIXME handle mkl_domain_get_max_threads */ \ + /*int nthr = mkl_domain_get_max_threads(EIGEN_BLAS_DOMAIN_BLAS);*/ int nthr = 1;\ +\ + if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \ + /* Most likely no benefit to call TRMM or GEMM from BLAS */ \ + product_triangular_matrix_matrix::run( \ + _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, 1, resStride, alpha, blocking); \ + /*std::cout << "TRMM_L: A is not square! Go to Eigen TRMM implementation!\n";*/ \ + } else { \ + /* Make sense to call GEMM */ \ + Map > lhsMap(_lhs,rows,depth,OuterStride<>(lhsStride)); \ + MatrixLhs aa_tmp=lhsMap.template triangularView(); \ + BlasIndex aStride = convert_index(aa_tmp.outerStride()); \ + gemm_blocking_space gemm_blocking(_rows,_cols,_depth, 1, true); \ + general_matrix_matrix_product::run( \ + rows, cols, depth, aa_tmp.data(), aStride, _rhs, rhsStride, res, 1, resStride, alpha, gemm_blocking, 0); \ +\ + /*std::cout << "TRMM_L: A is not square! Go to BLAS GEMM implementation! " << nthr<<" \n";*/ \ + } \ + return; \ + } \ + char side = 'L', transa, uplo, diag = 'N'; \ + EIGTYPE *b; \ + const EIGTYPE *a; \ + BlasIndex m, n, lda, ldb; \ +\ +/* Set m, n */ \ + m = convert_index(diagSize); \ + n = convert_index(cols); \ +\ +/* Set trans */ \ + transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \ +\ +/* Set b, ldb */ \ + Map > rhs(_rhs,depth,cols,OuterStride<>(rhsStride)); \ + MatrixX##EIGPREFIX b_tmp; \ +\ + if (ConjugateRhs) b_tmp = rhs.conjugate(); else b_tmp = rhs; \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ +\ +/* Set uplo */ \ + uplo = IsLower ? 'L' : 'U'; \ + if (LhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ +/* Set a, lda */ \ + Map > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \ + MatrixLhs a_tmp; \ +\ + if ((conjA!=0) || (SetDiag==0)) { \ + if (conjA) a_tmp = lhs.conjugate(); else a_tmp = lhs; \ + if (IsZeroDiag) \ + a_tmp.diagonal().setZero(); \ + else if (IsUnitDiag) \ + a_tmp.diagonal().setOnes();\ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else { \ + a = _lhs; \ + lda = convert_index(lhsStride); \ + } \ + /*std::cout << "TRMM_L: A is square! Go to BLAS TRMM implementation! \n";*/ \ +/* call ?trmm*/ \ + BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \ +\ +/* Add op(a_triangular)*b into res*/ \ + Map > res_tmp(res,rows,cols,OuterStride<>(resStride)); \ + res_tmp=res_tmp+b_tmp; \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_TRMM_L(double, double, d, dtrmm) +EIGEN_BLAS_TRMM_L(dcomplex, MKL_Complex16, cd, ztrmm) +EIGEN_BLAS_TRMM_L(float, float, f, strmm) +EIGEN_BLAS_TRMM_L(scomplex, MKL_Complex8, cf, ctrmm) +#else +EIGEN_BLAS_TRMM_L(double, double, d, dtrmm_) +EIGEN_BLAS_TRMM_L(dcomplex, double, cd, ztrmm_) +EIGEN_BLAS_TRMM_L(float, float, f, strmm_) +EIGEN_BLAS_TRMM_L(scomplex, float, cf, ctrmm_) +#endif + +// implements col-major += alpha * op(general) * op(triangular) +#define EIGEN_BLAS_TRMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ +template \ +struct product_triangular_matrix_matrix_trmm \ +{ \ + enum { \ + IsLower = (Mode&Lower) == Lower, \ + SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ + IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ + IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ + LowUp = IsLower ? Lower : Upper, \ + conjA = ((RhsStorageOrder==ColMajor) && ConjugateRhs) ? 1 : 0 \ + }; \ +\ + static void run( \ + Index _rows, Index _cols, Index _depth, \ + const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsStride, \ + EIGTYPE* res, Index resStride, \ + EIGTYPE alpha, level3_blocking& blocking) \ + { \ + Index diagSize = (std::min)(_cols,_depth); \ + Index rows = _rows; \ + Index depth = IsLower ? _depth : diagSize; \ + Index cols = IsLower ? diagSize : _cols; \ +\ + typedef Matrix MatrixLhs; \ + typedef Matrix MatrixRhs; \ +\ +/* Non-square case - doesn't fit to BLAS ?TRMM. Fall to default triangular product or call BLAS ?GEMM*/ \ + if (cols != depth) { \ +\ + int nthr = 1 /*mkl_domain_get_max_threads(EIGEN_BLAS_DOMAIN_BLAS)*/; \ +\ + if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \ + /* Most likely no benefit to call TRMM or GEMM from BLAS*/ \ + product_triangular_matrix_matrix::run( \ + _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, 1, resStride, alpha, blocking); \ + /*std::cout << "TRMM_R: A is not square! Go to Eigen TRMM implementation!\n";*/ \ + } else { \ + /* Make sense to call GEMM */ \ + Map > rhsMap(_rhs,depth,cols, OuterStride<>(rhsStride)); \ + MatrixRhs aa_tmp=rhsMap.template triangularView(); \ + BlasIndex aStride = convert_index(aa_tmp.outerStride()); \ + gemm_blocking_space gemm_blocking(_rows,_cols,_depth, 1, true); \ + general_matrix_matrix_product::run( \ + rows, cols, depth, _lhs, lhsStride, aa_tmp.data(), aStride, res, 1, resStride, alpha, gemm_blocking, 0); \ +\ + /*std::cout << "TRMM_R: A is not square! Go to BLAS GEMM implementation! " << nthr<<" \n";*/ \ + } \ + return; \ + } \ + char side = 'R', transa, uplo, diag = 'N'; \ + EIGTYPE *b; \ + const EIGTYPE *a; \ + BlasIndex m, n, lda, ldb; \ +\ +/* Set m, n */ \ + m = convert_index(rows); \ + n = convert_index(diagSize); \ +\ +/* Set trans */ \ + transa = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \ +\ +/* Set b, ldb */ \ + Map > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \ + MatrixX##EIGPREFIX b_tmp; \ +\ + if (ConjugateLhs) b_tmp = lhs.conjugate(); else b_tmp = lhs; \ + b = b_tmp.data(); \ + ldb = convert_index(b_tmp.outerStride()); \ +\ +/* Set uplo */ \ + uplo = IsLower ? 'L' : 'U'; \ + if (RhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ +/* Set a, lda */ \ + Map > rhs(_rhs,depth,cols, OuterStride<>(rhsStride)); \ + MatrixRhs a_tmp; \ +\ + if ((conjA!=0) || (SetDiag==0)) { \ + if (conjA) a_tmp = rhs.conjugate(); else a_tmp = rhs; \ + if (IsZeroDiag) \ + a_tmp.diagonal().setZero(); \ + else if (IsUnitDiag) \ + a_tmp.diagonal().setOnes();\ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else { \ + a = _rhs; \ + lda = convert_index(rhsStride); \ + } \ + /*std::cout << "TRMM_R: A is square! Go to BLAS TRMM implementation! \n";*/ \ +/* call ?trmm*/ \ + BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \ +\ +/* Add op(a_triangular)*b into res*/ \ + Map > res_tmp(res,rows,cols,OuterStride<>(resStride)); \ + res_tmp=res_tmp+b_tmp; \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_TRMM_R(double, double, d, dtrmm) +EIGEN_BLAS_TRMM_R(dcomplex, MKL_Complex16, cd, ztrmm) +EIGEN_BLAS_TRMM_R(float, float, f, strmm) +EIGEN_BLAS_TRMM_R(scomplex, MKL_Complex8, cf, ctrmm) +#else +EIGEN_BLAS_TRMM_R(double, double, d, dtrmm_) +EIGEN_BLAS_TRMM_R(dcomplex, double, cd, ztrmm_) +EIGEN_BLAS_TRMM_R(float, float, f, strmm_) +EIGEN_BLAS_TRMM_R(scomplex, float, cf, ctrmm_) +#endif +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixVector.h new file mode 100644 index 0000000..ce7550c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixVector.h @@ -0,0 +1,346 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIANGULARMATRIXVECTOR_H +#define EIGEN_TRIANGULARMATRIXVECTOR_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct triangular_matrix_vector_product; + +template +struct triangular_matrix_vector_product +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + static constexpr bool IsLower = ((Mode & Lower) == Lower); + static constexpr bool HasUnitDiag = (Mode & UnitDiag) == UnitDiag; + static constexpr bool HasZeroDiag = (Mode & ZeroDiag) == ZeroDiag; + static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, + const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, + const RhsScalar& alpha); +}; + +template +EIGEN_DONT_INLINE void triangular_matrix_vector_product + ::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, + const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha) + { + static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; + Index size = (std::min)(_rows,_cols); + Index rows = IsLower ? _rows : (std::min)(_rows,_cols); + Index cols = IsLower ? (std::min)(_rows,_cols) : _cols; + + typedef Map, 0, OuterStride<> > LhsMap; + const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride)); + typename conj_expr_if::type cjLhs(lhs); + + typedef Map, 0, InnerStride<> > RhsMap; + const RhsMap rhs(_rhs,cols,InnerStride<>(rhsIncr)); + typename conj_expr_if::type cjRhs(rhs); + + typedef Map > ResMap; + ResMap res(_res,rows); + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + + for (Index pi=0; pi0) + res.segment(s,r) += (alpha * cjRhs.coeff(i)) * cjLhs.col(i).segment(s,r); + if (HasUnitDiag) + res.coeffRef(i) += alpha * cjRhs.coeff(i); + } + Index r = IsLower ? rows - pi - actualPanelWidth : pi; + if (r>0) + { + Index s = IsLower ? pi+actualPanelWidth : 0; + general_matrix_vector_product::run( + r, actualPanelWidth, + LhsMapper(&lhs.coeffRef(s,pi), lhsStride), + RhsMapper(&rhs.coeffRef(pi), rhsIncr), + &res.coeffRef(s), resIncr, alpha); + } + } + if((!IsLower) && cols>size) + { + general_matrix_vector_product::run( + rows, cols-size, + LhsMapper(&lhs.coeffRef(0,size), lhsStride), + RhsMapper(&rhs.coeffRef(size), rhsIncr), + _res, resIncr, alpha); + } + } + +template +struct triangular_matrix_vector_product +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + static constexpr bool IsLower = ((Mode & Lower) == Lower); + static constexpr bool HasUnitDiag = (Mode & UnitDiag) == UnitDiag; + static constexpr bool HasZeroDiag = (Mode & ZeroDiag) == ZeroDiag; + static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, + const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, + const ResScalar& alpha); +}; + +template +EIGEN_DONT_INLINE void triangular_matrix_vector_product + ::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, + const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha) + { + static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; + Index diagSize = (std::min)(_rows,_cols); + Index rows = IsLower ? _rows : diagSize; + Index cols = IsLower ? diagSize : _cols; + + typedef Map, 0, OuterStride<> > LhsMap; + const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride)); + typename conj_expr_if::type cjLhs(lhs); + + typedef Map > RhsMap; + const RhsMap rhs(_rhs,cols); + typename conj_expr_if::type cjRhs(rhs); + + typedef Map, 0, InnerStride<> > ResMap; + ResMap res(_res,rows,InnerStride<>(resIncr)); + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + + for (Index pi=0; pi0) + res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum(); + if (HasUnitDiag) + res.coeffRef(i) += alpha * cjRhs.coeff(i); + } + Index r = IsLower ? pi : cols - pi - actualPanelWidth; + if (r>0) + { + Index s = IsLower ? 0 : pi + actualPanelWidth; + general_matrix_vector_product::run( + actualPanelWidth, r, + LhsMapper(&lhs.coeffRef(pi,s), lhsStride), + RhsMapper(&rhs.coeffRef(s), rhsIncr), + &res.coeffRef(pi), resIncr, alpha); + } + } + if(IsLower && rows>diagSize) + { + general_matrix_vector_product::run( + rows-diagSize, cols, + LhsMapper(&lhs.coeffRef(diagSize,0), lhsStride), + RhsMapper(&rhs.coeffRef(0), rhsIncr), + &res.coeffRef(diagSize), resIncr, alpha); + } + } + +/*************************************************************************** +* Wrapper to product_triangular_vector +***************************************************************************/ + +template +struct trmv_selector; + +} // end namespace internal + +namespace internal { + +template +struct triangular_product_impl +{ + template static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha) + { + eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols()); + + internal::trmv_selector::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(lhs, rhs, dst, alpha); + } +}; + +template +struct triangular_product_impl +{ + template static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha) + { + eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols()); + + Transpose dstT(dst); + internal::trmv_selector<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower), + (int(internal::traits::Flags)&RowMajorBit) ? ColMajor : RowMajor> + ::run(rhs.transpose(),lhs.transpose(), dstT, alpha); + } +}; + +} // end namespace internal + +namespace internal { + +// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same. + +template struct trmv_selector +{ + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar ResScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + constexpr int Alignment = (std::min)(int(AlignedMax), int(internal::packet_traits::size)); + + typedef Map, Alignment> MappedDest; + + add_const_on_value_type_t actualLhs = LhsBlasTraits::extract(lhs); + add_const_on_value_type_t actualRhs = RhsBlasTraits::extract(rhs); + + LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs); + RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs); + ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha; + + // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 + // on, the other hand it is good for the cache to pack the vector anyways... + constexpr bool EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1; + constexpr bool ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex); + constexpr bool MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal; + + gemv_static_vector_if static_dest; + + bool alphaIsCompatible = (!ComplexByReal) || numext::is_exactly_zero(numext::imag(actualAlpha)); + bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; + + RhsScalar compatibleAlpha = get_factor::run(actualAlpha); + + ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), + evalToDest ? dest.data() : static_dest.data()); + + if(!evalToDest) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = dest.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + if(!alphaIsCompatible) + { + MappedDest(actualDestPtr, dest.size()).setZero(); + compatibleAlpha = RhsScalar(1); + } + else + MappedDest(actualDestPtr, dest.size()) = dest; + } + + internal::triangular_matrix_vector_product + + ::run(actualLhs.rows(),actualLhs.cols(), + actualLhs.data(),actualLhs.outerStride(), + actualRhs.data(),actualRhs.innerStride(), + actualDestPtr,1,compatibleAlpha); + + if (!evalToDest) + { + if(!alphaIsCompatible) + dest += actualAlpha * MappedDest(actualDestPtr, dest.size()); + else + dest = MappedDest(actualDestPtr, dest.size()); + } + + if ( ((Mode&UnitDiag)==UnitDiag) && !numext::is_exactly_one(lhs_alpha) ) + { + Index diagSize = (std::min)(lhs.rows(),lhs.cols()); + dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize); + } + } +}; + +template struct trmv_selector +{ + template + static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) + { + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + typedef typename Dest::Scalar ResScalar; + + typedef internal::blas_traits LhsBlasTraits; + typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; + typedef internal::blas_traits RhsBlasTraits; + typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; + typedef internal::remove_all_t ActualRhsTypeCleaned; + + std::add_const_t actualLhs = LhsBlasTraits::extract(lhs); + std::add_const_t actualRhs = RhsBlasTraits::extract(rhs); + + LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs); + RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs); + ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha; + + constexpr bool DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1; + + gemv_static_vector_if static_rhs; + + ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), + DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); + + if(!DirectlyUseRhs) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + Index size = actualRhs.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + Map(actualRhsPtr, actualRhs.size()) = actualRhs; + } + + internal::triangular_matrix_vector_product + + ::run(actualLhs.rows(),actualLhs.cols(), + actualLhs.data(),actualLhs.outerStride(), + actualRhsPtr,1, + dest.data(),dest.innerStride(), + actualAlpha); + + if ( ((Mode&UnitDiag)==UnitDiag) && !numext::is_exactly_one(lhs_alpha) ) + { + Index diagSize = (std::min)(lhs.rows(),lhs.cols()); + dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize); + } + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULARMATRIXVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h new file mode 100644 index 0000000..7a4d59e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h @@ -0,0 +1,257 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * Triangular matrix-vector product functionality based on ?TRMV. + ******************************************************************************** +*/ + +#ifndef EIGEN_TRIANGULAR_MATRIX_VECTOR_BLAS_H +#define EIGEN_TRIANGULAR_MATRIX_VECTOR_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/********************************************************************** +* This file implements triangular matrix-vector multiplication using BLAS +**********************************************************************/ + +// trmv/hemv specialization + +template +struct triangular_matrix_vector_product_trmv : + triangular_matrix_vector_product {}; + +#define EIGEN_BLAS_TRMV_SPECIALIZE(Scalar) \ +template \ +struct triangular_matrix_vector_product { \ + static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \ + const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \ + triangular_matrix_vector_product_trmv::run( \ + _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ + } \ +}; \ +template \ +struct triangular_matrix_vector_product { \ + static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \ + const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \ + triangular_matrix_vector_product_trmv::run( \ + _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ + } \ +}; + +EIGEN_BLAS_TRMV_SPECIALIZE(double) +EIGEN_BLAS_TRMV_SPECIALIZE(float) +EIGEN_BLAS_TRMV_SPECIALIZE(dcomplex) +EIGEN_BLAS_TRMV_SPECIALIZE(scomplex) + +// implements col-major: res += alpha * op(triangular) * vector +#define EIGEN_BLAS_TRMV_CM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX, BLASPOSTFIX) \ +template \ +struct triangular_matrix_vector_product_trmv { \ + enum { \ + IsLower = (Mode&Lower) == Lower, \ + SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ + IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ + IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ + LowUp = IsLower ? Lower : Upper \ + }; \ + static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \ + { \ + if (ConjLhs || IsZeroDiag) { \ + triangular_matrix_vector_product::run( \ + _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ + return; \ + }\ + Index size = (std::min)(_rows,_cols); \ + Index rows = IsLower ? _rows : size; \ + Index cols = IsLower ? size : _cols; \ +\ + typedef VectorX##EIGPREFIX VectorRhs; \ + EIGTYPE *x, *y;\ +\ +/* Set x*/ \ + Map > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \ + VectorRhs x_tmp; \ + if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ + x = x_tmp.data(); \ +\ +/* Square part handling */\ +\ + char trans, uplo, diag; \ + BlasIndex m, n, lda, incx, incy; \ + EIGTYPE const *a; \ + EIGTYPE beta(1); \ +\ +/* Set m, n */ \ + n = convert_index(size); \ + lda = convert_index(lhsStride); \ + incx = 1; \ + incy = convert_index(resIncr); \ +\ +/* Set uplo, trans and diag*/ \ + trans = 'N'; \ + uplo = IsLower ? 'L' : 'U'; \ + diag = IsUnitDiag ? 'U' : 'N'; \ +\ +/* call ?TRMV*/ \ + BLASPREFIX##trmv##BLASPOSTFIX(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \ +\ +/* Add op(a_tr)rhs into res*/ \ + BLASPREFIX##axpy##BLASPOSTFIX(&n, (const BLASTYPE*)&numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \ +/* Non-square case - doesn't fit to BLAS ?TRMV. Fall to default triangular product*/ \ + if (size<(std::max)(rows,cols)) { \ + if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ + x = x_tmp.data(); \ + if (size(rows-size); \ + n = convert_index(size); \ + } \ + else { \ + x += size; \ + y = _res; \ + a = _lhs + size*lda; \ + m = convert_index(size); \ + n = convert_index(cols-size); \ + } \ + BLASPREFIX##gemv##BLASPOSTFIX(&trans, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)y, &incy); \ + } \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_TRMV_CM(double, double, d, d,) +EIGEN_BLAS_TRMV_CM(dcomplex, MKL_Complex16, cd, z,) +EIGEN_BLAS_TRMV_CM(float, float, f, s,) +EIGEN_BLAS_TRMV_CM(scomplex, MKL_Complex8, cf, c,) +#else +EIGEN_BLAS_TRMV_CM(double, double, d, d, _) +EIGEN_BLAS_TRMV_CM(dcomplex, double, cd, z, _) +EIGEN_BLAS_TRMV_CM(float, float, f, s, _) +EIGEN_BLAS_TRMV_CM(scomplex, float, cf, c, _) +#endif + +// implements row-major: res += alpha * op(triangular) * vector +#define EIGEN_BLAS_TRMV_RM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX, BLASPOSTFIX) \ +template \ +struct triangular_matrix_vector_product_trmv { \ + enum { \ + IsLower = (Mode&Lower) == Lower, \ + SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ + IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ + IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ + LowUp = IsLower ? Lower : Upper \ + }; \ + static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \ + const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \ + { \ + if (IsZeroDiag) { \ + triangular_matrix_vector_product::run( \ + _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ + return; \ + }\ + Index size = (std::min)(_rows,_cols); \ + Index rows = IsLower ? _rows : size; \ + Index cols = IsLower ? size : _cols; \ +\ + typedef VectorX##EIGPREFIX VectorRhs; \ + EIGTYPE *x, *y;\ +\ +/* Set x*/ \ + Map > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \ + VectorRhs x_tmp; \ + if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ + x = x_tmp.data(); \ +\ +/* Square part handling */\ +\ + char trans, uplo, diag; \ + BlasIndex m, n, lda, incx, incy; \ + EIGTYPE const *a; \ + EIGTYPE beta(1); \ +\ +/* Set m, n */ \ + n = convert_index(size); \ + lda = convert_index(lhsStride); \ + incx = 1; \ + incy = convert_index(resIncr); \ +\ +/* Set uplo, trans and diag*/ \ + trans = ConjLhs ? 'C' : 'T'; \ + uplo = IsLower ? 'U' : 'L'; \ + diag = IsUnitDiag ? 'U' : 'N'; \ +\ +/* call ?TRMV*/ \ + BLASPREFIX##trmv##BLASPOSTFIX(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \ +\ +/* Add op(a_tr)rhs into res*/ \ + BLASPREFIX##axpy##BLASPOSTFIX(&n, (const BLASTYPE*)&numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \ +/* Non-square case - doesn't fit to BLAS ?TRMV. Fall to default triangular product*/ \ + if (size<(std::max)(rows,cols)) { \ + if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ + x = x_tmp.data(); \ + if (size(rows-size); \ + n = convert_index(size); \ + } \ + else { \ + x += size; \ + y = _res; \ + a = _lhs + size; \ + m = convert_index(size); \ + n = convert_index(cols-size); \ + } \ + BLASPREFIX##gemv##BLASPOSTFIX(&trans, &n, &m, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)y, &incy); \ + } \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_TRMV_RM(double, double, d, d,) +EIGEN_BLAS_TRMV_RM(dcomplex, MKL_Complex16, cd, z,) +EIGEN_BLAS_TRMV_RM(float, float, f, s,) +EIGEN_BLAS_TRMV_RM(scomplex, MKL_Complex8, cf, c,) +#else +EIGEN_BLAS_TRMV_RM(double, double, d, d,_) +EIGEN_BLAS_TRMV_RM(dcomplex, double, cd, z,_) +EIGEN_BLAS_TRMV_RM(float, float, f, s,_) +EIGEN_BLAS_TRMV_RM(scomplex, float, cf, c,_) +#endif + +} // end namespase internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULAR_MATRIX_VECTOR_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverMatrix.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverMatrix.h new file mode 100644 index 0000000..22b4a7f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverMatrix.h @@ -0,0 +1,449 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Modifications Copyright (C) 2022 Intel Corporation +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H +#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct trsmKernelL { + // Generic Implementation of triangular solve for triangular matrix on left and multiple rhs. + // Handles non-packed matrices. + static void kernel( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride); +}; + +template +struct trsmKernelR { + // Generic Implementation of triangular solve for triangular matrix on right and multiple lhs. + // Handles non-packed matrices. + static void kernel( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride); +}; + +template +EIGEN_STRONG_INLINE void trsmKernelL::kernel( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride) + { + typedef const_blas_data_mapper TriMapper; + typedef blas_data_mapper OtherMapper; + TriMapper tri(_tri, triStride); + OtherMapper other(_other, otherStride, otherIncr); + + enum { IsLower = (Mode&Lower) == Lower }; + conj_if conj; + + // tr solve + for (Index k=0; k +EIGEN_STRONG_INLINE void trsmKernelR::kernel( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride) +{ + typedef typename NumTraits::Real RealScalar; + typedef blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + LhsMapper lhs(_other, otherStride, otherIncr); + RhsMapper rhs(_tri, triStride); + + enum { + RhsStorageOrder = TriStorageOrder, + IsLower = (Mode&Lower) == Lower + }; + conj_if conj; + + for (Index k=0; k +struct triangular_solve_matrix +{ + static void run( + Index size, Index cols, + const Scalar* tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride, + level3_blocking& blocking) + { + triangular_solve_matrix< + Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft, + (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper), + NumTraits::IsComplex && Conjugate, + TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor, OtherInnerStride> + ::run(size, cols, tri, triStride, _other, otherIncr, otherStride, blocking); + } +}; + +/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left + */ +template +struct triangular_solve_matrix +{ + static EIGEN_DONT_INLINE void run( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride, + level3_blocking& blocking); +}; + +template +EIGEN_DONT_INLINE void triangular_solve_matrix::run( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride, + level3_blocking& blocking) + { + Index cols = otherSize; + + std::ptrdiff_t l1, l2, l3; + manage_caching_sizes(GetAction, &l1, &l2, &l3); + +#if defined(EIGEN_VECTORIZE_AVX512) && EIGEN_USE_AVX512_TRSM_L_KERNELS && EIGEN_ENABLE_AVX512_NOCOPY_TRSM_L_CUTOFFS + EIGEN_IF_CONSTEXPR( (OtherInnerStride == 1 && + (std::is_same::value || + std::is_same::value)) ) { + // Very rough cutoffs to determine when to call trsm w/o packing + // For small problem sizes trsmKernel compiled with clang is generally faster. + // TODO: Investigate better heuristics for cutoffs. + double L2Cap = 0.5; // 50% of L2 size + if (size < avx512_trsm_cutoff(l2, cols, L2Cap)) { + trsmKernelL::kernel( + size, cols, _tri, triStride, _other, 1, otherStride); + return; + } + } +#endif + + typedef const_blas_data_mapper TriMapper; + typedef blas_data_mapper OtherMapper; + TriMapper tri(_tri, triStride); + OtherMapper other(_other, otherStride, otherIncr); + + typedef gebp_traits Traits; + + enum { + SmallPanelWidth = plain_enum_max(Traits::mr, Traits::nr), + IsLower = (Mode&Lower) == Lower + }; + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(size,blocking.mc()); // cache block size along the M direction + + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*cols; + + ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); + + gebp_kernel gebp_kernel; + gemm_pack_lhs pack_lhs; + gemm_pack_rhs pack_rhs; + + // the goal here is to subdivise the Rhs panels such that we keep some cache + // coherence when accessing the rhs elements + Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max(otherStride,size)) : 0; + subcols = std::max((subcols/Traits::nr)*Traits::nr, Traits::nr); + + for(Index k2=IsLower ? 0 : size; + IsLower ? k20; + IsLower ? k2+=kc : k2-=kc) + { + const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc); + + // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel, + // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into + // A11 (the triangular part) and A21 the remaining rectangular part. + // Then the high level algorithm is: + // - B = R1 => general block copy (done during the next step) + // - R1 = A11^-1 B => tricky part + // - update B from the new R1 => actually this has to be performed continuously during the above step + // - R2 -= A21 * B => GEPP + + // The tricky part: compute R1 = A11^-1 B while updating B from R1 + // The idea is to split A11 into multiple small vertical panels. + // Each panel can be split into a small triangular part T1k which is processed without optimization, + // and the remaining small part T2k which is processed using gebp with appropriate block strides + for(Index j2=0; j2(actual_kc-k1, SmallPanelWidth); + // tr solve + { + Index i = IsLower ? k2+k1 : k2-k1; +#if defined(EIGEN_VECTORIZE_AVX512) && EIGEN_USE_AVX512_TRSM_L_KERNELS + EIGEN_IF_CONSTEXPR( (OtherInnerStride == 1 && + (std::is_same::value || + std::is_same::value)) ) { + i = IsLower ? k2 + k1: k2 - k1 - actualPanelWidth; + } +#endif + trsmKernelL::kernel( + actualPanelWidth, actual_cols, + _tri + i + (i)*triStride, triStride, + _other + i*OtherInnerStride + j2*otherStride, otherIncr, otherStride); + } + + Index lengthTarget = actual_kc-k1-actualPanelWidth; + Index startBlock = IsLower ? k2+k1 : k2-k1-actualPanelWidth; + Index blockBOffset = IsLower ? k1 : lengthTarget; + + // update the respective rows of B from other + pack_rhs(blockB+actual_kc*j2, other.getSubMapper(startBlock,j2), actualPanelWidth, actual_cols, actual_kc, blockBOffset); + + // GEBP + if (lengthTarget>0) + { + Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc; + + pack_lhs(blockA, tri.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget); + + gebp_kernel(other.getSubMapper(startTarget,j2), blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1), + actualPanelWidth, actual_kc, 0, blockBOffset); + } + } + } + + // R2 -= A21 * B => GEPP + { + Index start = IsLower ? k2+kc : 0; + Index end = IsLower ? size : k2-kc; + for(Index i2=start; i20) + { + pack_lhs(blockA, tri.getSubMapper(i2, IsLower ? k2 : k2-kc), actual_kc, actual_mc); + + gebp_kernel(other.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0); + } + } + } + } + } + +/* Optimized triangular solver with multiple left hand sides and the triangular matrix on the right + */ +template +struct triangular_solve_matrix +{ + static EIGEN_DONT_INLINE void run( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride, + level3_blocking& blocking); +}; + +template +EIGEN_DONT_INLINE void triangular_solve_matrix::run( + Index size, Index otherSize, + const Scalar* _tri, Index triStride, + Scalar* _other, Index otherIncr, Index otherStride, + level3_blocking& blocking) + { + Index rows = otherSize; + +#if defined(EIGEN_VECTORIZE_AVX512) && EIGEN_USE_AVX512_TRSM_R_KERNELS && EIGEN_ENABLE_AVX512_NOCOPY_TRSM_R_CUTOFFS + EIGEN_IF_CONSTEXPR( (OtherInnerStride == 1 && + (std::is_same::value || + std::is_same::value)) ) { + // TODO: Investigate better heuristics for cutoffs. + std::ptrdiff_t l1, l2, l3; + manage_caching_sizes(GetAction, &l1, &l2, &l3); + double L2Cap = 0.5; // 50% of L2 size + if (size < avx512_trsm_cutoff(l2, rows, L2Cap)) { + trsmKernelR:: + kernel(size, rows, _tri, triStride, _other, 1, otherStride); + return; + } + } +#endif + + typedef blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + LhsMapper lhs(_other, otherStride, otherIncr); + RhsMapper rhs(_tri, triStride); + + typedef gebp_traits Traits; + enum { + RhsStorageOrder = TriStorageOrder, + SmallPanelWidth = plain_enum_max(Traits::mr, Traits::nr), + IsLower = (Mode&Lower) == Lower + }; + + Index kc = blocking.kc(); // cache block size along the K direction + Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction + + std::size_t sizeA = kc*mc; + std::size_t sizeB = kc*size; + + ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); + ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); + + gebp_kernel gebp_kernel; + gemm_pack_rhs pack_rhs; + gemm_pack_rhs pack_rhs_panel; + gemm_pack_lhs pack_lhs_panel; + + for(Index k2=IsLower ? size : 0; + IsLower ? k2>0 : k20) pack_rhs(geb, rhs.getSubMapper(actual_k2,startPanel), actual_kc, rs); + + // triangular packing (we only pack the panels off the diagonal, + // neglecting the blocks overlapping the diagonal + { + for (Index j2=0; j2(actual_kc-j2, SmallPanelWidth); + Index actual_j2 = actual_k2 + j2; + Index panelOffset = IsLower ? j2+actualPanelWidth : 0; + Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2; + + if (panelLength>0) + pack_rhs_panel(blockB+j2*actual_kc, + rhs.getSubMapper(actual_k2+panelOffset, actual_j2), + panelLength, actualPanelWidth, + actual_kc, panelOffset); + } + } + + for(Index i2=0; i2 vertical panels of rhs) + for (Index j2 = IsLower + ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth) + : Index(SmallPanelWidth))) + : 0; + IsLower ? j2>=0 : j2(actual_kc-j2, SmallPanelWidth); + Index absolute_j2 = actual_k2 + j2; + Index panelOffset = IsLower ? j2+actualPanelWidth : 0; + Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2; + + // GEBP + if(panelLength>0) + { + gebp_kernel(lhs.getSubMapper(i2,absolute_j2), + blockA, blockB+j2*actual_kc, + actual_mc, panelLength, actualPanelWidth, + Scalar(-1), + actual_kc, actual_kc, // strides + panelOffset, panelOffset); // offsets + } + + { + // unblocked triangular solve + trsmKernelR:: + kernel(actualPanelWidth, actual_mc, + _tri + absolute_j2 + absolute_j2*triStride, triStride, + _other + i2*OtherInnerStride + absolute_j2*otherStride, otherIncr, otherStride); + } + // pack the just computed part of lhs to A + pack_lhs_panel(blockA, lhs.getSubMapper(i2,absolute_j2), + actualPanelWidth, actual_mc, + actual_kc, j2); + } + } + + if (rs>0) + gebp_kernel(lhs.getSubMapper(i2, startPanel), blockA, geb, + actual_mc, actual_kc, rs, Scalar(-1), + -1, -1, 0, 0); + } + } + } +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h new file mode 100644 index 0000000..2b63388 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h @@ -0,0 +1,169 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to BLAS F77 + * Triangular matrix * matrix product functionality based on ?TRMM. + ******************************************************************************** +*/ + +#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_BLAS_H +#define EIGEN_TRIANGULAR_SOLVER_MATRIX_BLAS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// implements LeftSide op(triangular)^-1 * general +#define EIGEN_BLAS_TRSM_L(EIGTYPE, BLASTYPE, BLASFUNC) \ +template \ +struct triangular_solve_matrix \ +{ \ + enum { \ + IsLower = (Mode&Lower) == Lower, \ + IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ + IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ + conjA = ((TriStorageOrder==ColMajor) && Conjugate) ? 1 : 0 \ + }; \ + static void run( \ + Index size, Index otherSize, \ + const EIGTYPE* _tri, Index triStride, \ + EIGTYPE* _other, Index otherIncr, Index otherStride, level3_blocking& /*blocking*/) \ + { \ + EIGEN_ONLY_USED_FOR_DEBUG(otherIncr); \ + eigen_assert(otherIncr == 1); \ + BlasIndex m = convert_index(size), n = convert_index(otherSize), lda, ldb; \ + char side = 'L', uplo, diag='N', transa; \ + /* Set alpha_ */ \ + EIGTYPE alpha(1); \ + ldb = convert_index(otherStride);\ +\ + const EIGTYPE *a; \ +/* Set trans */ \ + transa = (TriStorageOrder==RowMajor) ? ((Conjugate) ? 'C' : 'T') : 'N'; \ +/* Set uplo */ \ + uplo = IsLower ? 'L' : 'U'; \ + if (TriStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ +/* Set a, lda */ \ + typedef Matrix MatrixTri; \ + Map > tri(_tri,size,size,OuterStride<>(triStride)); \ + MatrixTri a_tmp; \ +\ + if (conjA) { \ + a_tmp = tri.conjugate(); \ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else { \ + a = _tri; \ + lda = convert_index(triStride); \ + } \ + if (IsUnitDiag) diag='U'; \ +/* call ?trsm*/ \ + BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_TRSM_L(double, double, dtrsm) +EIGEN_BLAS_TRSM_L(dcomplex, MKL_Complex16, ztrsm) +EIGEN_BLAS_TRSM_L(float, float, strsm) +EIGEN_BLAS_TRSM_L(scomplex, MKL_Complex8, ctrsm) +#else +EIGEN_BLAS_TRSM_L(double, double, dtrsm_) +EIGEN_BLAS_TRSM_L(dcomplex, double, ztrsm_) +EIGEN_BLAS_TRSM_L(float, float, strsm_) +EIGEN_BLAS_TRSM_L(scomplex, float, ctrsm_) +#endif + +// implements RightSide general * op(triangular)^-1 +#define EIGEN_BLAS_TRSM_R(EIGTYPE, BLASTYPE, BLASFUNC) \ +template \ +struct triangular_solve_matrix \ +{ \ + enum { \ + IsLower = (Mode&Lower) == Lower, \ + IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ + IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ + conjA = ((TriStorageOrder==ColMajor) && Conjugate) ? 1 : 0 \ + }; \ + static void run( \ + Index size, Index otherSize, \ + const EIGTYPE* _tri, Index triStride, \ + EIGTYPE* _other, Index otherIncr, Index otherStride, level3_blocking& /*blocking*/) \ + { \ + EIGEN_ONLY_USED_FOR_DEBUG(otherIncr); \ + eigen_assert(otherIncr == 1); \ + BlasIndex m = convert_index(otherSize), n = convert_index(size), lda, ldb; \ + char side = 'R', uplo, diag='N', transa; \ + /* Set alpha_ */ \ + EIGTYPE alpha(1); \ + ldb = convert_index(otherStride);\ +\ + const EIGTYPE *a; \ +/* Set trans */ \ + transa = (TriStorageOrder==RowMajor) ? ((Conjugate) ? 'C' : 'T') : 'N'; \ +/* Set uplo */ \ + uplo = IsLower ? 'L' : 'U'; \ + if (TriStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ +/* Set a, lda */ \ + typedef Matrix MatrixTri; \ + Map > tri(_tri,size,size,OuterStride<>(triStride)); \ + MatrixTri a_tmp; \ +\ + if (conjA) { \ + a_tmp = tri.conjugate(); \ + a = a_tmp.data(); \ + lda = convert_index(a_tmp.outerStride()); \ + } else { \ + a = _tri; \ + lda = convert_index(triStride); \ + } \ + if (IsUnitDiag) diag='U'; \ +/* call ?trsm*/ \ + BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \ + /*std::cout << "TRMS_L specialization!\n";*/ \ + } \ +}; + +#ifdef EIGEN_USE_MKL +EIGEN_BLAS_TRSM_R(double, double, dtrsm) +EIGEN_BLAS_TRSM_R(dcomplex, MKL_Complex16, ztrsm) +EIGEN_BLAS_TRSM_R(float, float, strsm) +EIGEN_BLAS_TRSM_R(scomplex, MKL_Complex8, ctrsm) +#else +EIGEN_BLAS_TRSM_R(double, double, dtrsm_) +EIGEN_BLAS_TRSM_R(dcomplex, double, ztrsm_) +EIGEN_BLAS_TRSM_R(float, float, strsm_) +EIGEN_BLAS_TRSM_R(scomplex, float, ctrsm_) +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_BLAS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverVector.h new file mode 100644 index 0000000..b8fbb5b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/products/TriangularSolverVector.h @@ -0,0 +1,149 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIANGULAR_SOLVER_VECTOR_H +#define EIGEN_TRIANGULAR_SOLVER_VECTOR_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct triangular_solve_vector +{ + static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) + { + triangular_solve_vector::run(size, _lhs, lhsStride, rhs); + } +}; + +// forward and backward substitution, row-major, rhs is a vector +template +struct triangular_solve_vector +{ + enum { + IsLower = ((Mode&Lower)==Lower) + }; + static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) + { + typedef Map, 0, OuterStride<> > LhsMap; + const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride)); + + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + + std::conditional_t< + Conjugate, + const CwiseUnaryOp,LhsMap>, + const LhsMap&> cjLhs(lhs); + static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; + for(Index pi=IsLower ? 0 : size; + IsLower ? pi0; + IsLower ? pi+=PanelWidth : pi-=PanelWidth) + { + Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth); + + Index r = IsLower ? pi : size - pi; // remaining size + if (r > 0) + { + // let's directly call the low level product function because: + // 1 - it is faster to compile + // 2 - it is slightly faster at runtime + Index startRow = IsLower ? pi : pi-actualPanelWidth; + Index startCol = IsLower ? 0 : pi; + + general_matrix_vector_product::run( + actualPanelWidth, r, + LhsMapper(&lhs.coeffRef(startRow,startCol), lhsStride), + RhsMapper(rhs + startCol, 1), + rhs + startRow, 1, + RhsScalar(-1)); + } + + for(Index k=0; k0) + rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map >(rhs+s,k))).sum(); + + if((!(Mode & UnitDiag)) && !is_identically_zero(rhs[i])) + rhs[i] /= cjLhs(i,i); + } + } + } +}; + +// forward and backward substitution, column-major, rhs is a vector +template +struct triangular_solve_vector +{ + enum { + IsLower = ((Mode&Lower)==Lower) + }; + static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) + { + typedef Map, 0, OuterStride<> > LhsMap; + const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride)); + typedef const_blas_data_mapper LhsMapper; + typedef const_blas_data_mapper RhsMapper; + std::conditional_t,LhsMap>, + const LhsMap& + > cjLhs(lhs); + static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; + + for(Index pi=IsLower ? 0 : size; + IsLower ? pi0; + IsLower ? pi+=PanelWidth : pi-=PanelWidth) + { + Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth); + Index startBlock = IsLower ? pi : pi-actualPanelWidth; + Index endBlock = IsLower ? pi + actualPanelWidth : 0; + + for(Index k=0; k0) + Map >(rhs+s,r) -= rhs[i] * cjLhs.col(i).segment(s,r); + } + } + Index r = IsLower ? size - endBlock : startBlock; // remaining size + if (r > 0) + { + // let's directly call the low level product function because: + // 1 - it is faster to compile + // 2 - it is slightly faster at runtime + general_matrix_vector_product::run( + r, actualPanelWidth, + LhsMapper(&lhs.coeffRef(endBlock,startBlock), lhsStride), + RhsMapper(rhs+startBlock, 1), + rhs+endBlock, 1, RhsScalar(-1)); + } + } + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULAR_SOLVER_VECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Assert.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Assert.h new file mode 100644 index 0000000..f8ba632 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Assert.h @@ -0,0 +1,166 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2022, The Eigen authors. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CORE_UTIL_ASSERT_H +#define EIGEN_CORE_UTIL_ASSERT_H + +// Eigen custom assert function. +// +// The combination of Eigen's relative includes and cassert's `assert` function +// (or any usage of the __FILE__ macro) can lead to ODR issues: +// a header included using different relative paths in two different TUs will +// have two different token-for-token definitions, since __FILE__ is expanded +// as an in-line string with different values. Normally this would be +// harmless - the linker would just choose one definition. However, it breaks +// with C++20 modules when functions in different modules have different +// definitions. +// +// To get around this, we need to use __builtin_FILE() when available, which is +// considered a single token, and thus satisfies the ODR. + +// Only define eigen_plain_assert if we are debugging, and either +// - we are not compiling for GPU, or +// - gpu debugging is enabled. +#if !defined(EIGEN_NO_DEBUG) && (!defined(EIGEN_GPU_COMPILE_PHASE) || !defined(EIGEN_NO_DEBUG_GPU)) + +#include + +#ifndef EIGEN_USE_CUSTOM_PLAIN_ASSERT +// Disable new custom asserts by default for now. +#define EIGEN_USE_CUSTOM_PLAIN_ASSERT 0 +#endif + +#if EIGEN_USE_CUSTOM_PLAIN_ASSERT + +#ifndef EIGEN_HAS_BUILTIN_FILE +// Clang can check if __builtin_FILE() is supported. +// GCC > 5, MSVC 2019 14.26 (1926) all have __builtin_FILE(). +// +// For NVCC, it's more complicated. Through trial-and-error: +// - nvcc+gcc supports __builtin_FILE() on host, and on device after CUDA 11. +// - nvcc+msvc supports __builtin_FILE() only after CUDA 11. +#if (EIGEN_HAS_BUILTIN(__builtin_FILE) && (EIGEN_COMP_CLANG || !defined(EIGEN_CUDA_ARCH))) || \ + (EIGEN_GNUC_STRICT_AT_LEAST(5, 0, 0) && (EIGEN_COMP_NVCC >= 110000 || !defined(EIGEN_CUDA_ARCH))) || \ + (EIGEN_COMP_MSVC >= 1926 && (!EIGEN_COMP_NVCC || EIGEN_COMP_NVCC >= 110000)) +#define EIGEN_HAS_BUILTIN_FILE 1 +#else +#define EIGEN_HAS_BUILTIN_FILE 0 +#endif +#endif // EIGEN_HAS_BUILTIN_FILE + +#if EIGEN_HAS_BUILTIN_FILE +# define EIGEN_BUILTIN_FILE __builtin_FILE() +# define EIGEN_BUILTIN_LINE __builtin_LINE() +#else +// Default (potentially unsafe) values. +# define EIGEN_BUILTIN_FILE __FILE__ +# define EIGEN_BUILTIN_LINE __LINE__ +#endif + +// Use __PRETTY_FUNCTION__ when available, since it is more descriptive, as +// __builtin_FUNCTION() only returns the undecorated function name. +// This should still be okay ODR-wise since it is a compiler-specific fixed +// value. Mixing compilers will likely lead to ODR violations anyways. +#if EIGEN_COMP_MSVC +# define EIGEN_BUILTIN_FUNCTION __FUNCSIG__ +#elif EIGEN_COMP_GNUC +# define EIGEN_BUILTIN_FUNCTION __PRETTY_FUNCTION__ +#else +# define EIGEN_BUILTIN_FUNCTION __func__ +#endif + +namespace Eigen { +namespace internal { + +// Generic default assert handler. +template +struct assert_handler_impl { + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE + static inline void run(const char* expression, const char* file, unsigned line, const char* function) { +#ifdef EIGEN_GPU_COMPILE_PHASE + // GPU device code doesn't allow stderr or abort, so use printf and raise an + // illegal instruction exception to trigger a kernel failure. +#ifndef EIGEN_NO_IO + printf("Assertion failed at %s:%u in %s: %s\n", + file == nullptr ? "" : file, + line, + function == nullptr ? "" : function, + expression); +#endif + __trap(); + +#else // EIGEN_GPU_COMPILE_PHASE + + // Print to stderr and abort, as specified in . +#ifndef EIGEN_NO_IO + fprintf(stderr, "Assertion failed at %s:%u in %s: %s\n", + file == nullptr ? "" : file, + line, + function == nullptr ? "" : function, + expression); +#endif + std::abort(); + +#endif // EIGEN_GPU_COMPILE_PHASE + } +}; + +// Use POSIX __assert_fail handler when available. +// +// This allows us to integrate with systems that have custom handlers. +// +// NOTE: this handler is not always available on all POSIX systems (otherwise +// we could simply test for __unix__ or similar). The handler function name +// seems to depend on the specific toolchain implementation, and differs between +// compilers, platforms, OSes, etc. Hence, we detect support via SFINAE. +template +struct assert_handler_impl< + void_t()... // Empty substitution required for SFINAE. + ))>, EmptyArgs... > { + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE + static inline void run(const char* expression, const char* file, unsigned line, const char* function) { + // GCC requires this call to be dependent on the template parameters. + __assert_fail(expression, file, line, function, std::declval()...); + } +}; + +EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE +inline void __assert_handler(const char* expression, const char* file, unsigned line, const char* function) { + assert_handler_impl<>::run(expression, file, line, function); +} + +} // namespace internal +} // namespace Eigen + +#define eigen_plain_assert(expression) \ + (EIGEN_PREDICT_FALSE(!(expression)) ? \ + Eigen::internal::__assert_handler(#expression, \ + EIGEN_BUILTIN_FILE, \ + EIGEN_BUILTIN_LINE, \ + EIGEN_BUILTIN_FUNCTION) : (void)0) + +#else // EIGEN_USE_CUSTOM_PLAIN_ASSERT + +// Use regular assert. +#define eigen_plain_assert(condition) assert(condition) + +#endif // EIGEN_USE_CUSTOM_PLAIN_ASSERT + +#else // EIGEN_NO_DEBUG + +#define eigen_plain_assert(condition) ((void)0) + +#endif // EIGEN_NO_DEBUG + +#endif // EIGEN_CORE_UTIL_ASSERT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/BlasUtil.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/BlasUtil.h new file mode 100644 index 0000000..b0217a9 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/BlasUtil.h @@ -0,0 +1,647 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BLASUTIL_H +#define EIGEN_BLASUTIL_H + +// This file contains many lightweight helper classes used to +// implement and control fast level 2 and level 3 BLAS-like routines. + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// forward declarations +template +struct gebp_kernel; + +template +struct gemm_pack_rhs; + +template +struct gemm_pack_lhs; + +template< + typename Index, + typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, + typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, + int ResStorageOrder, int ResInnerStride> +struct general_matrix_matrix_product; + +template +struct general_matrix_vector_product; + +template struct get_factor { + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); } +}; + +template struct get_factor::Real> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE typename NumTraits::Real run(const Scalar& x) { return numext::real(x); } +}; + + +template +class BlasVectorMapper { + public: + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar *data) : m_data(data) {} + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { + return m_data[i]; + } + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { + return ploadt(m_data + i); + } + + template + EIGEN_DEVICE_FUNC bool aligned(Index i) const { + return (std::uintptr_t(m_data+i)%sizeof(Packet))==0; + } + + protected: + Scalar* m_data; +}; + +template +class BlasLinearMapper; + +template +class BlasLinearMapper +{ +public: + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data, Index incr=1) + : m_data(data) + { + EIGEN_ONLY_USED_FOR_DEBUG(incr); + eigen_assert(incr==1); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i) const { + internal::prefetch(&operator()(i)); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { + return m_data[i]; + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { + return ploadt(m_data + i); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index n, Index offset = 0) const { + return ploadt_partial(m_data + i, n, offset); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType load(Index i) const { + return ploadt(m_data + i); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const { + pstoret(m_data + i, p); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, const PacketType &p, Index n, Index offset = 0) const { + pstoret_partial(m_data + i, p, n, offset); + } + +protected: + Scalar *m_data; +}; + +// Lightweight helper class to access matrix coefficients. +template +class blas_data_mapper; + +// TMP to help PacketBlock store implementation. +// There's currently no known use case for PacketBlock load. +// The default implementation assumes ColMajor order. +// It always store each packet sequentially one `stride` apart. +template +struct PacketBlockManagement +{ + PacketBlockManagement pbm; + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { + pbm.store(to, stride, i, j, block); + pstoreu(to + i + (j + idx)*stride, block.packet[idx]); + } +}; + +// PacketBlockManagement specialization to take care of RowMajor order without ifs. +template +struct PacketBlockManagement +{ + PacketBlockManagement pbm; + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { + pbm.store(to, stride, i, j, block); + pstoreu(to + j + (i + idx)*stride, block.packet[idx]); + } +}; + +template +struct PacketBlockManagement +{ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { + EIGEN_UNUSED_VARIABLE(to); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(i); + EIGEN_UNUSED_VARIABLE(j); + EIGEN_UNUSED_VARIABLE(block); + } +}; + +template +struct PacketBlockManagement +{ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar *to, const Index stride, Index i, Index j, const PacketBlock &block) const { + EIGEN_UNUSED_VARIABLE(to); + EIGEN_UNUSED_VARIABLE(stride); + EIGEN_UNUSED_VARIABLE(i); + EIGEN_UNUSED_VARIABLE(j); + EIGEN_UNUSED_VARIABLE(block); + } +}; + +template +class blas_data_mapper +{ +public: + typedef BlasLinearMapper LinearMapper; + typedef blas_data_mapper SubMapper; + typedef BlasVectorMapper VectorMapper; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr=1) + : m_data(data), m_stride(stride) + { + EIGEN_ONLY_USED_FOR_DEBUG(incr); + eigen_assert(incr==1); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubMapper + getSubMapper(Index i, Index j) const { + return SubMapper(&operator()(i, j), m_stride); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { + return LinearMapper(&operator()(i, j)); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { + return VectorMapper(&operator()(i, j)); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i, Index j) const { + internal::prefetch(&operator()(i, j)); + } + + EIGEN_DEVICE_FUNC + EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { + return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { + return ploadt(&operator()(i, j)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index j, Index n, Index offset = 0) const { + return ploadt_partial(&operator()(i, j), n, offset); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { + return ploadt(&operator()(i, j)); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Index j, const PacketType &p) const { + pstoret(&operator()(i, j), p); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, Index j, const PacketType &p, Index n, Index offset = 0) const { + pstoret_partial(&operator()(i, j), p, n, offset); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { + pscatter(&operator()(i, j), p, m_stride); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { + return pgather(&operator()(i, j), m_stride); + } + + EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } + EIGEN_DEVICE_FUNC const Index incr() const { return 1; } + EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; } + + EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { + if (std::uintptr_t(m_data)%sizeof(Scalar)) { + return -1; + } + return internal::first_default_aligned(m_data, size); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock &block) const { + PacketBlockManagement pbm; + pbm.store(m_data, m_stride, i, j, block); + } +protected: + Scalar* EIGEN_RESTRICT m_data; + const Index m_stride; +}; + +// Implementation of non-natural increment (i.e. inner-stride != 1) +// The exposed API is not complete yet compared to the Incr==1 case +// because some features makes less sense in this case. +template +class BlasLinearMapper +{ +public: + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data,Index incr) : m_data(data), m_incr(incr) {} + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { + internal::prefetch(&operator()(i)); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { + return m_data[i*m_incr.value()]; + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { + return pgather(m_data + i*m_incr.value(), m_incr.value()); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index n, Index /*offset*/ = 0) const { + return pgather_partial(m_data + i*m_incr.value(), m_incr.value(), n); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const { + pscatter(m_data + i*m_incr.value(), p, m_incr.value()); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, const PacketType &p, Index n, Index /*offset*/ = 0) const { + pscatter_partial(m_data + i*m_incr.value(), p, m_incr.value(), n); + } + +protected: + Scalar *m_data; + const internal::variable_if_dynamic m_incr; +}; + +template +class blas_data_mapper +{ +public: + typedef BlasLinearMapper LinearMapper; + typedef blas_data_mapper SubMapper; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr) : m_data(data), m_stride(stride), m_incr(incr) {} + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubMapper + getSubMapper(Index i, Index j) const { + return SubMapper(&operator()(i, j), m_stride, m_incr.value()); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { + return LinearMapper(&operator()(i, j), m_incr.value()); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i, Index j) const { + internal::prefetch(&operator()(i, j)); + } + + EIGEN_DEVICE_FUNC + EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { + return m_data[StorageOrder==RowMajor ? j*m_incr.value() + i*m_stride : i*m_incr.value() + j*m_stride]; + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { + return pgather(&operator()(i, j),m_incr.value()); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index j, Index n, Index /*offset*/ = 0) const { + return pgather_partial(&operator()(i, j),m_incr.value(),n); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { + return pgather(&operator()(i, j),m_incr.value()); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Index j, const PacketType &p) const { + pscatter(&operator()(i, j), p, m_incr.value()); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, Index j, const PacketType &p, Index n, Index /*offset*/ = 0) const { + pscatter_partial(&operator()(i, j), p, m_incr.value(), n); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { + pscatter(&operator()(i, j), p, m_stride); + } + + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { + return pgather(&operator()(i, j), m_stride); + } + + // storePacketBlock_helper defines a way to access values inside the PacketBlock, this is essentially required by the Complex types. + template + struct storePacketBlock_helper + { + storePacketBlock_helper spbh; + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { + spbh.store(sup, i,j,block); + sup->template storePacket(i, j+idx, block.packet[idx]); + } + }; + + template + struct storePacketBlock_helper, n, idx> + { + storePacketBlock_helper, n, idx-1> spbh; + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { + spbh.store(sup,i,j,block); + sup->template storePacket(i, j+idx, block.packet[idx]); + } + }; + + template + struct storePacketBlock_helper, n, idx> + { + storePacketBlock_helper, n, idx-1> spbh; + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { + spbh.store(sup,i,j,block); + for(int l = 0; l < unpacket_traits::size; l++) + { + std::complex *v = &sup->operator()(i+l, j+idx); + v->real(block.packet[idx].v[2*l+0]); + v->imag(block.packet[idx].v[2*l+1]); + } + } + }; + + template + struct storePacketBlock_helper + { + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper*, Index, Index, const PacketBlock& ) const { + } + }; + + template + struct storePacketBlock_helper, n, -1> + { + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper*, Index, Index, const PacketBlock& ) const { + } + }; + + template + struct storePacketBlock_helper, n, -1> + { + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(const blas_data_mapper*, Index, Index, const PacketBlock& ) const { + } + }; + // This function stores a PacketBlock on m_data, this approach is really quite slow compare to Incr=1 and should be avoided when possible. + template + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock&block) const { + storePacketBlock_helper spb; + spb.store(this, i,j,block); + } + + EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } + EIGEN_DEVICE_FUNC const Index incr() const { return m_incr.value(); } + EIGEN_DEVICE_FUNC Scalar* data() const { return m_data; } +protected: + Scalar* EIGEN_RESTRICT m_data; + const Index m_stride; + const internal::variable_if_dynamic m_incr; +}; + +// lightweight helper class to access matrix coefficients (const version) +template +class const_blas_data_mapper : public blas_data_mapper { + public: + typedef const_blas_data_mapper SubMapper; + + EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar *data, Index stride) : blas_data_mapper(data, stride) {} + + EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { + return SubMapper(&(this->operator()(i, j)), this->m_stride); + } +}; + + +/* Helper class to analyze the factors of a Product expression. + * In particular it allows to pop out operator-, scalar multiples, + * and conjugate */ +template struct blas_traits +{ + typedef typename traits::Scalar Scalar; + typedef const XprType& ExtractType; + typedef XprType ExtractType_; + enum { + IsComplex = NumTraits::IsComplex, + IsTransposed = false, + NeedToConjugate = false, + HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) + && ( bool(XprType::IsVectorAtCompileTime) + || int(inner_stride_at_compile_time::ret) == 1) + ) ? 1 : 0, + HasScalarFactor = false + }; + typedef std::conditional_t DirectLinearAccessType; + EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return x; } + EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } +}; + +// pop conjugate +template +struct blas_traits, NestedXpr> > + : blas_traits +{ + typedef blas_traits Base; + typedef CwiseUnaryOp, NestedXpr> XprType; + typedef typename Base::ExtractType ExtractType; + + enum { + IsComplex = NumTraits::IsComplex, + NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex + }; + EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } + EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } +}; + +// pop scalar multiple +template +struct blas_traits, const CwiseNullaryOp,Plain>, NestedXpr> > + : blas_traits +{ + enum { + HasScalarFactor = true + }; + typedef blas_traits Base; + typedef CwiseBinaryOp, const CwiseNullaryOp,Plain>, NestedXpr> XprType; + typedef typename Base::ExtractType ExtractType; + EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return Base::extract(x.rhs()); } + EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC Scalar extractScalarFactor(const XprType& x) + { return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); } +}; +template +struct blas_traits, NestedXpr, const CwiseNullaryOp,Plain> > > + : blas_traits +{ + enum { + HasScalarFactor = true + }; + typedef blas_traits Base; + typedef CwiseBinaryOp, NestedXpr, const CwiseNullaryOp,Plain> > XprType; + typedef typename Base::ExtractType ExtractType; + EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); } + EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) + { return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; } +}; +template +struct blas_traits, const CwiseNullaryOp,Plain1>, + const CwiseNullaryOp,Plain2> > > + : blas_traits,Plain1> > +{}; + +// pop opposite +template +struct blas_traits, NestedXpr> > + : blas_traits +{ + enum { + HasScalarFactor = true + }; + typedef blas_traits Base; + typedef CwiseUnaryOp, NestedXpr> XprType; + typedef typename Base::ExtractType ExtractType; + EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } + EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) + { return - Base::extractScalarFactor(x.nestedExpression()); } +}; + +// pop/push transpose +template +struct blas_traits > + : blas_traits +{ + typedef typename NestedXpr::Scalar Scalar; + typedef blas_traits Base; + typedef Transpose XprType; + typedef Transpose ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS + typedef Transpose ExtractType_; + typedef std::conditional_t DirectLinearAccessType; + enum { + IsTransposed = Base::IsTransposed ? 0 : 1 + }; + EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); } + EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } +}; + +template +struct blas_traits + : blas_traits +{}; + +template::HasUsableDirectAccess> +struct extract_data_selector { + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static const typename T::Scalar* run(const T& m) + { + return blas_traits::extract(m).data(); + } +}; + +template +struct extract_data_selector { + EIGEN_DEVICE_FUNC static typename T::Scalar* run(const T&) { return 0; } +}; + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename T::Scalar* extract_data(const T& m) +{ + return extract_data_selector::run(m); +} + +/** + * \c combine_scalar_factors extracts and multiplies factors from GEMM and GEMV products. + * There is a specialization for booleans + */ +template +struct combine_scalar_factors_impl +{ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const Lhs& lhs, const Rhs& rhs) + { + return blas_traits::extractScalarFactor(lhs) * blas_traits::extractScalarFactor(rhs); + } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) + { + return alpha * blas_traits::extractScalarFactor(lhs) * blas_traits::extractScalarFactor(rhs); + } +}; +template +struct combine_scalar_factors_impl +{ + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const Lhs& lhs, const Rhs& rhs) + { + return blas_traits::extractScalarFactor(lhs) && blas_traits::extractScalarFactor(rhs); + } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const bool& alpha, const Lhs& lhs, const Rhs& rhs) + { + return alpha && blas_traits::extractScalarFactor(lhs) && blas_traits::extractScalarFactor(rhs); + } +}; + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) +{ + return combine_scalar_factors_impl::run(alpha, lhs, rhs); +} +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const Lhs& lhs, const Rhs& rhs) +{ + return combine_scalar_factors_impl::run(lhs, rhs); +} + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BLASUTIL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ConfigureVectorization.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ConfigureVectorization.h new file mode 100644 index 0000000..29e43d5 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ConfigureVectorization.h @@ -0,0 +1,515 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2018 Gael Guennebaud +// Copyright (C) 2020, Arm Limited and Contributors +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CONFIGURE_VECTORIZATION_H +#define EIGEN_CONFIGURE_VECTORIZATION_H + +//------------------------------------------------------------------------------------------ +// Static and dynamic alignment control +// +// The main purpose of this section is to define EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES +// as the maximal boundary in bytes on which dynamically and statically allocated data may be alignment respectively. +// The values of EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES can be specified by the user. If not, +// a default value is automatically computed based on architecture, compiler, and OS. +// +// This section also defines macros EIGEN_ALIGN_TO_BOUNDARY(N) and the shortcuts EIGEN_ALIGN{8,16,32,_MAX} +// to be used to declare statically aligned buffers. +//------------------------------------------------------------------------------------------ + + +/* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements. + * However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled, + * so that vectorization doesn't affect binary compatibility. + * + * If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link + * vectorized and non-vectorized code. + */ +#if (defined EIGEN_CUDACC) + #define EIGEN_ALIGN_TO_BOUNDARY(n) __align__(n) + #define EIGEN_ALIGNOF(x) __alignof(x) +#else + #define EIGEN_ALIGN_TO_BOUNDARY(n) alignas(n) + #define EIGEN_ALIGNOF(x) alignof(x) +#endif + +// If the user explicitly disable vectorization, then we also disable alignment +#if defined(EIGEN_DONT_VECTORIZE) + #if defined(EIGEN_GPUCC) + // GPU code is always vectorized and requires memory alignment for + // statically allocated buffers. + #define EIGEN_IDEAL_MAX_ALIGN_BYTES 16 + #else + #define EIGEN_IDEAL_MAX_ALIGN_BYTES 0 + #endif +#elif defined(__AVX512F__) + // 64 bytes static alignment is preferred only if really required + #define EIGEN_IDEAL_MAX_ALIGN_BYTES 64 +#elif defined(__AVX__) + // 32 bytes static alignment is preferred only if really required + #define EIGEN_IDEAL_MAX_ALIGN_BYTES 32 +#elif defined __HVX__ && (__HVX_LENGTH__ == 128) + #define EIGEN_IDEAL_MAX_ALIGN_BYTES 128 +#else + #define EIGEN_IDEAL_MAX_ALIGN_BYTES 16 +#endif + + +// EIGEN_MIN_ALIGN_BYTES defines the minimal value for which the notion of explicit alignment makes sense +#define EIGEN_MIN_ALIGN_BYTES 16 + +// Defined the boundary (in bytes) on which the data needs to be aligned. Note +// that unless EIGEN_ALIGN is defined and not equal to 0, the data may not be +// aligned at all regardless of the value of this #define. + +#if (defined(EIGEN_DONT_ALIGN_STATICALLY) || defined(EIGEN_DONT_ALIGN)) && defined(EIGEN_MAX_STATIC_ALIGN_BYTES) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 +#error EIGEN_MAX_STATIC_ALIGN_BYTES and EIGEN_DONT_ALIGN[_STATICALLY] are both defined with EIGEN_MAX_STATIC_ALIGN_BYTES!=0. Use EIGEN_MAX_STATIC_ALIGN_BYTES=0 as a synonym of EIGEN_DONT_ALIGN_STATICALLY. +#endif + +// EIGEN_DONT_ALIGN_STATICALLY and EIGEN_DONT_ALIGN are deprecated +// They imply EIGEN_MAX_STATIC_ALIGN_BYTES=0 +#if defined(EIGEN_DONT_ALIGN_STATICALLY) || defined(EIGEN_DONT_ALIGN) + #ifdef EIGEN_MAX_STATIC_ALIGN_BYTES + #undef EIGEN_MAX_STATIC_ALIGN_BYTES + #endif + #define EIGEN_MAX_STATIC_ALIGN_BYTES 0 +#endif + +#ifndef EIGEN_MAX_STATIC_ALIGN_BYTES + + // Try to automatically guess what is the best default value for EIGEN_MAX_STATIC_ALIGN_BYTES + + // 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable + // 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always + // enable alignment, but it can be a cause of problems on some platforms, so we just disable it in + // certain common platform (compiler+architecture combinations) to avoid these problems. + // Only static alignment is really problematic (relies on nonstandard compiler extensions), + // try to keep heap alignment even when we have to disable static alignment. + #if EIGEN_COMP_GNUC && !(EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64 || EIGEN_ARCH_PPC || EIGEN_ARCH_IA64 || EIGEN_ARCH_MIPS) + #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1 + #else + #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0 + #endif + + // static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX + #if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \ + && !EIGEN_COMP_SUNCC \ + && !EIGEN_OS_QNX + #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1 + #else + #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0 + #endif + + #if EIGEN_ARCH_WANTS_STACK_ALIGNMENT + #define EIGEN_MAX_STATIC_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES + #else + #define EIGEN_MAX_STATIC_ALIGN_BYTES 0 + #endif + +#endif + +// If EIGEN_MAX_ALIGN_BYTES is defined, then it is considered as an upper bound for EIGEN_MAX_STATIC_ALIGN_BYTES +#if defined(EIGEN_MAX_ALIGN_BYTES) && EIGEN_MAX_ALIGN_BYTES0 is the true test whether we want to align arrays on the stack or not. +// It takes into account both the user choice to explicitly enable/disable alignment (by setting EIGEN_MAX_STATIC_ALIGN_BYTES) +// and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT). +// Henceforth, only EIGEN_MAX_STATIC_ALIGN_BYTES should be used. + + +// Shortcuts to EIGEN_ALIGN_TO_BOUNDARY +#define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8) +#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16) +#define EIGEN_ALIGN32 EIGEN_ALIGN_TO_BOUNDARY(32) +#define EIGEN_ALIGN64 EIGEN_ALIGN_TO_BOUNDARY(64) +#if EIGEN_MAX_STATIC_ALIGN_BYTES>0 +#define EIGEN_ALIGN_MAX EIGEN_ALIGN_TO_BOUNDARY(EIGEN_MAX_STATIC_ALIGN_BYTES) +#else +#define EIGEN_ALIGN_MAX +#endif + + +// Dynamic alignment control + +#if defined(EIGEN_DONT_ALIGN) && defined(EIGEN_MAX_ALIGN_BYTES) && EIGEN_MAX_ALIGN_BYTES>0 +#error EIGEN_MAX_ALIGN_BYTES and EIGEN_DONT_ALIGN are both defined with EIGEN_MAX_ALIGN_BYTES!=0. Use EIGEN_MAX_ALIGN_BYTES=0 as a synonym of EIGEN_DONT_ALIGN. +#endif + +#ifdef EIGEN_DONT_ALIGN + #ifdef EIGEN_MAX_ALIGN_BYTES + #undef EIGEN_MAX_ALIGN_BYTES + #endif + #define EIGEN_MAX_ALIGN_BYTES 0 +#elif !defined(EIGEN_MAX_ALIGN_BYTES) + #define EIGEN_MAX_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES +#endif + +#if EIGEN_IDEAL_MAX_ALIGN_BYTES > EIGEN_MAX_ALIGN_BYTES +#define EIGEN_DEFAULT_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES +#else +#define EIGEN_DEFAULT_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES +#endif + + +#ifndef EIGEN_UNALIGNED_VECTORIZE +#define EIGEN_UNALIGNED_VECTORIZE 1 +#endif + +//---------------------------------------------------------------------- + +// if alignment is disabled, then disable vectorization. Note: EIGEN_MAX_ALIGN_BYTES is the proper check, it takes into +// account both the user's will (EIGEN_MAX_ALIGN_BYTES,EIGEN_DONT_ALIGN) and our own platform checks +#if EIGEN_MAX_ALIGN_BYTES==0 + #ifndef EIGEN_DONT_VECTORIZE + #define EIGEN_DONT_VECTORIZE + #endif +#endif + + +// The following (except #include and _M_IX86_FP ??) can likely be +// removed as gcc 4.1 and msvc 2008 are not supported anyways. +#if EIGEN_COMP_MSVC + #include // for _aligned_malloc -- need it regardless of whether vectorization is enabled + // a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP. + #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || EIGEN_ARCH_x86_64 + #define EIGEN_SSE2_ON_MSVC_2008_OR_LATER + #endif +#else + #if defined(__SSE2__) + #define EIGEN_SSE2_ON_NON_MSVC + #endif +#endif + +#if !(defined(EIGEN_DONT_VECTORIZE) || defined(EIGEN_GPUCC)) + + #if defined (EIGEN_SSE2_ON_NON_MSVC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER) + + // Defines symbols for compile-time detection of which instructions are + // used. + // EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_SSE + #define EIGEN_VECTORIZE_SSE2 + + // Detect sse3/ssse3/sse4: + // gcc and icc defines __SSE3__, ... + // there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you + // want to force the use of those instructions with msvc. + #ifdef __SSE3__ + #define EIGEN_VECTORIZE_SSE3 + #endif + #ifdef __SSSE3__ + #define EIGEN_VECTORIZE_SSSE3 + #endif + #ifdef __SSE4_1__ + #define EIGEN_VECTORIZE_SSE4_1 + #endif + #ifdef __SSE4_2__ + #define EIGEN_VECTORIZE_SSE4_2 + #endif + #ifdef __AVX__ + #ifndef EIGEN_USE_SYCL + #define EIGEN_VECTORIZE_AVX + #endif + #define EIGEN_VECTORIZE_SSE3 + #define EIGEN_VECTORIZE_SSSE3 + #define EIGEN_VECTORIZE_SSE4_1 + #define EIGEN_VECTORIZE_SSE4_2 + #endif + #ifdef __AVX2__ + #ifndef EIGEN_USE_SYCL + #define EIGEN_VECTORIZE_AVX2 + #define EIGEN_VECTORIZE_AVX + #endif + #define EIGEN_VECTORIZE_SSE3 + #define EIGEN_VECTORIZE_SSSE3 + #define EIGEN_VECTORIZE_SSE4_1 + #define EIGEN_VECTORIZE_SSE4_2 + #endif + #if defined(__FMA__) || (EIGEN_COMP_MSVC && defined(__AVX2__)) + // MSVC does not expose a switch dedicated for FMA + // For MSVC, AVX2 => FMA + #define EIGEN_VECTORIZE_FMA + #endif + #if defined(__AVX512F__) + #ifndef EIGEN_VECTORIZE_FMA + #if EIGEN_COMP_GNUC + #error Please add -mfma to your compiler flags: compiling with -mavx512f alone without SSE/AVX FMA is not supported (bug 1638). + #else + #error Please enable FMA in your compiler flags (e.g. -mfma): compiling with AVX512 alone without SSE/AVX FMA is not supported (bug 1638). + #endif + #endif + #ifndef EIGEN_USE_SYCL + #define EIGEN_VECTORIZE_AVX512 + #define EIGEN_VECTORIZE_AVX2 + #define EIGEN_VECTORIZE_AVX + #endif + #define EIGEN_VECTORIZE_FMA + #define EIGEN_VECTORIZE_SSE3 + #define EIGEN_VECTORIZE_SSSE3 + #define EIGEN_VECTORIZE_SSE4_1 + #define EIGEN_VECTORIZE_SSE4_2 + #ifndef EIGEN_USE_SYCL + #ifdef __AVX512DQ__ + #define EIGEN_VECTORIZE_AVX512DQ + #endif + #ifdef __AVX512ER__ + #define EIGEN_VECTORIZE_AVX512ER + #endif + #ifdef __AVX512BF16__ + #define EIGEN_VECTORIZE_AVX512BF16 + #endif + #ifdef __AVX512FP16__ + #ifdef __AVX512VL__ + #define EIGEN_VECTORIZE_AVX512FP16 + #else + #if EIGEN_COMP_GNUC + #error Please add -mavx512vl to your compiler flags: compiling with -mavx512fp16 alone without AVX512-VL is not supported. + #else + #error Please enable AVX512-VL in your compiler flags (e.g. -mavx512vl): compiling with AVX512-FP16 alone without AVX512-VL is not supported. + #endif + #endif + #endif + #endif + #endif + + // Disable AVX support on broken xcode versions + #if ( EIGEN_COMP_CLANGAPPLE == 11000033 ) && ( __MAC_OS_X_VERSION_MIN_REQUIRED == 101500 ) + // A nasty bug in the clang compiler shipped with xcode in a common compilation situation + // when XCode 11.0 and Mac deployment target macOS 10.15 is https://trac.macports.org/ticket/58776#no1 + #ifdef EIGEN_VECTORIZE_AVX + #undef EIGEN_VECTORIZE_AVX + #warning "Disabling AVX support: clang compiler shipped with XCode 11.[012] generates broken assembly with -macosx-version-min=10.15 and AVX enabled. " + #ifdef EIGEN_VECTORIZE_AVX2 + #undef EIGEN_VECTORIZE_AVX2 + #endif + #ifdef EIGEN_VECTORIZE_FMA + #undef EIGEN_VECTORIZE_FMA + #endif + #ifdef EIGEN_VECTORIZE_AVX512 + #undef EIGEN_VECTORIZE_AVX512 + #endif + #ifdef EIGEN_VECTORIZE_AVX512DQ + #undef EIGEN_VECTORIZE_AVX512DQ + #endif + #ifdef EIGEN_VECTORIZE_AVX512ER + #undef EIGEN_VECTORIZE_AVX512ER + #endif + #endif + // NOTE: Confirmed test failures in XCode 11.0, and XCode 11.2 with -macosx-version-min=10.15 and AVX + // NOTE using -macosx-version-min=10.15 with Xcode 11.0 results in runtime segmentation faults in many tests, 11.2 produce core dumps in 3 tests + // NOTE using -macosx-version-min=10.14 produces functioning and passing tests in all cases + // NOTE __clang_version__ "11.0.0 (clang-1100.0.33.8)" XCode 11.0 <- Produces many segfault and core dumping tests + // with -macosx-version-min=10.15 and AVX + // NOTE __clang_version__ "11.0.0 (clang-1100.0.33.12)" XCode 11.2 <- Produces 3 core dumping tests with + // -macosx-version-min=10.15 and AVX + #endif + + // include files + + // This extern "C" works around a MINGW-w64 compilation issue + // https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354 + // In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do). + // However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations + // with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know; + // so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too. + // notice that since these are C headers, the extern "C" is theoretically needed anyways. + extern "C" { + // In theory we should only include immintrin.h and not the other *mmintrin.h header files directly. + // Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus: + #if EIGEN_COMP_ICC >= 1110 || EIGEN_COMP_EMSCRIPTEN + #include + #else + #include + #include + #include + #ifdef EIGEN_VECTORIZE_SSE3 + #include + #endif + #ifdef EIGEN_VECTORIZE_SSSE3 + #include + #endif + #ifdef EIGEN_VECTORIZE_SSE4_1 + #include + #endif + #ifdef EIGEN_VECTORIZE_SSE4_2 + #include + #endif + #if defined(EIGEN_VECTORIZE_AVX) || defined(EIGEN_VECTORIZE_AVX512) + #include + #endif + #endif + } // end extern "C" + + #elif defined(__VSX__) && !defined(__APPLE__) + + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_VSX 1 + #include + // We need to #undef all these ugly tokens defined in + // => use __vector instead of vector + #undef bool + #undef vector + #undef pixel + + #elif defined __ALTIVEC__ + + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_ALTIVEC + #include + // We need to #undef all these ugly tokens defined in + // => use __vector instead of vector + #undef bool + #undef vector + #undef pixel + + #elif ((defined __ARM_NEON) || (defined __ARM_NEON__)) && !(defined EIGEN_ARM64_USE_SVE) + + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_NEON + #include + + // We currently require SVE to be enabled explicitly via EIGEN_ARM64_USE_SVE and + // will not select the backend automatically + #elif (defined __ARM_FEATURE_SVE) && (defined EIGEN_ARM64_USE_SVE) + + #define EIGEN_VECTORIZE + #define EIGEN_VECTORIZE_SVE + #include + + // Since we depend on knowing SVE vector lengths at compile-time, we need + // to ensure a fixed lengths is set + #if defined __ARM_FEATURE_SVE_BITS + #define EIGEN_ARM64_SVE_VL __ARM_FEATURE_SVE_BITS + #else +#error "Eigen requires a fixed SVE lector length but EIGEN_ARM64_SVE_VL is not set." +#endif + +#elif (defined __s390x__ && defined __VEC__) + +#define EIGEN_VECTORIZE +#define EIGEN_VECTORIZE_ZVECTOR +#include + +#elif defined __mips_msa + +// Limit MSA optimizations to little-endian CPUs for now. +// TODO: Perhaps, eventually support MSA optimizations on big-endian CPUs? +#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) +#if defined(__LP64__) +#define EIGEN_MIPS_64 +#else +#define EIGEN_MIPS_32 +#endif +#define EIGEN_VECTORIZE +#define EIGEN_VECTORIZE_MSA +#include +#endif + +#elif defined __HVX__ && (__HVX_LENGTH__ == 128) + +#define EIGEN_VECTORIZE +#define EIGEN_VECTORIZE_HVX +#include + +#endif +#endif + +// Following the Arm ACLE arm_neon.h should also include arm_fp16.h but not all +// compilers seem to follow this. We therefore include it explicitly. +// See also: https://bugs.llvm.org/show_bug.cgi?id=47955 +#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) + #include +#endif + +#if defined(__F16C__) && !defined(EIGEN_GPUCC) && (!EIGEN_COMP_CLANG_STRICT || EIGEN_CLANG_STRICT_AT_LEAST(3,8,0)) + // We can use the optimized fp16 to float and float to fp16 conversion routines + #define EIGEN_HAS_FP16_C + + #if EIGEN_COMP_GNUC + // Make sure immintrin.h is included, even if e.g. vectorization is + // explicitly disabled (see also issue #2395). + // Note that FP16C intrinsics for gcc and clang are included by immintrin.h, + // as opposed to emmintrin.h as suggested by Intel: + // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#othertechs=FP16C&expand=1711 + #include + #endif +#endif + +#if defined EIGEN_CUDACC + #define EIGEN_VECTORIZE_GPU + #include + #if EIGEN_CUDA_SDK_VER >= 70500 + #define EIGEN_HAS_CUDA_FP16 + #endif +#endif + +#if defined(EIGEN_HAS_CUDA_FP16) + #include + #include +#endif + +#if defined(EIGEN_HIPCC) + #define EIGEN_VECTORIZE_GPU + #include + #define EIGEN_HAS_HIP_FP16 + #include + #define EIGEN_HAS_HIP_BF16 + #include +#endif + + +/** \brief Namespace containing all symbols from the %Eigen library. */ +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +inline static const char *SimdInstructionSetsInUse(void) { +#if defined(EIGEN_VECTORIZE_AVX512) + return "AVX512, FMA, AVX2, AVX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; +#elif defined(EIGEN_VECTORIZE_AVX) + return "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; +#elif defined(EIGEN_VECTORIZE_SSE4_2) + return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; +#elif defined(EIGEN_VECTORIZE_SSE4_1) + return "SSE, SSE2, SSE3, SSSE3, SSE4.1"; +#elif defined(EIGEN_VECTORIZE_SSSE3) + return "SSE, SSE2, SSE3, SSSE3"; +#elif defined(EIGEN_VECTORIZE_SSE3) + return "SSE, SSE2, SSE3"; +#elif defined(EIGEN_VECTORIZE_SSE2) + return "SSE, SSE2"; +#elif defined(EIGEN_VECTORIZE_ALTIVEC) + return "AltiVec"; +#elif defined(EIGEN_VECTORIZE_VSX) + return "VSX"; +#elif defined(EIGEN_VECTORIZE_NEON) + return "ARM NEON"; +#elif defined(EIGEN_VECTORIZE_SVE) + return "ARM SVE"; +#elif defined(EIGEN_VECTORIZE_ZVECTOR) + return "S390X ZVECTOR"; +#elif defined(EIGEN_VECTORIZE_MSA) + return "MIPS MSA"; +#else + return "None"; +#endif +} + +} // end namespace Eigen + + +#endif // EIGEN_CONFIGURE_VECTORIZATION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Constants.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Constants.h new file mode 100644 index 0000000..04f7af4 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Constants.h @@ -0,0 +1,571 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// Copyright (C) 2007-2009 Benoit Jacob +// Copyright (C) 2020, Arm Limited and Contributors +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CONSTANTS_H +#define EIGEN_CONSTANTS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +/** This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is + * stored in some runtime variable. + * + * Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix. + */ +const int Dynamic = -1; + +/** This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value + * has to be specified at runtime. + */ +const int DynamicIndex = 0xffffff; + +/** This value means that the increment to go from one value to another in a sequence is not constant for each step. + */ +const int UndefinedIncr = 0xfffffe; + +/** This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm(). + * The value Infinity there means the L-infinity norm. + */ +const int Infinity = -1; + +/** This value means that the cost to evaluate an expression coefficient is either very expensive or + * cannot be known at compile time. + * + * This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. + * It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow. + */ +const int HugeCost = 10000; + +/** \defgroup flags Flags + * \ingroup Core_Module + * + * These are the possible bits which can be OR'ed to constitute the flags of a matrix or + * expression. + * + * It is important to note that these flags are a purely compile-time notion. They are a compile-time property of + * an expression type, implemented as enum's. They are not stored in memory at runtime, and they do not incur any + * runtime overhead. + * + * \sa MatrixBase::Flags + */ + +/** \ingroup flags + * + * for a matrix, this means that the storage order is row-major. + * If this bit is not set, the storage order is column-major. + * For an expression, this determines the storage order of + * the matrix created by evaluation of that expression. + * \sa \blank \ref TopicStorageOrders */ +const unsigned int RowMajorBit = 0x1; + +/** \ingroup flags + * means the expression should be evaluated by the calling expression */ +const unsigned int EvalBeforeNestingBit = 0x2; + +/** \ingroup flags + * \deprecated + * means the expression should be evaluated before any assignment */ +EIGEN_DEPRECATED +const unsigned int EvalBeforeAssigningBit = 0x4; // FIXME deprecated + +/** \ingroup flags + * + * Short version: means the expression might be vectorized + * + * Long version: means that the coefficients can be handled by packets + * and start at a memory location whose alignment meets the requirements + * of the present CPU architecture for optimized packet access. In the fixed-size + * case, there is the additional condition that it be possible to access all the + * coefficients by packets (this implies the requirement that the size be a multiple of 16 bytes, + * and that any nontrivial strides don't break the alignment). In the dynamic-size case, + * there is no such condition on the total size and strides, so it might not be possible to access + * all coeffs by packets. + * + * \note This bit can be set regardless of whether vectorization is actually enabled. + * To check for actual vectorizability, see \a ActualPacketAccessBit. + */ +const unsigned int PacketAccessBit = 0x8; + +#ifdef EIGEN_VECTORIZE +/** \ingroup flags + * + * If vectorization is enabled (EIGEN_VECTORIZE is defined) this constant + * is set to the value \a PacketAccessBit. + * + * If vectorization is not enabled (EIGEN_VECTORIZE is not defined) this constant + * is set to the value 0. + */ +const unsigned int ActualPacketAccessBit = PacketAccessBit; +#else +const unsigned int ActualPacketAccessBit = 0x0; +#endif + +/** \ingroup flags + * + * Short version: means the expression can be seen as 1D vector. + * + * Long version: means that one can access the coefficients + * of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These + * index-based access methods are guaranteed + * to not have to do any runtime computation of a (row, col)-pair from the index, so that it + * is guaranteed that whenever it is available, index-based access is at least as fast as + * (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit. + * + * If both PacketAccessBit and LinearAccessBit are set, then the + * packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a + * lvalue expression. + * + * Typically, all vector expressions have the LinearAccessBit, but there is one exception: + * Product expressions don't have it, because it would be troublesome for vectorization, even when the + * Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but + * not index-based packet access, so they don't have the LinearAccessBit. + */ +const unsigned int LinearAccessBit = 0x10; + +/** \ingroup flags + * + * Means the expression has a coeffRef() method, i.e. is writable as its individual coefficients are directly addressable. + * This rules out read-only expressions. + * + * Note that DirectAccessBit and LvalueBit are mutually orthogonal, as there are examples of expression having one but not + * the other: + * \li writable expressions that don't have a very simple memory layout as a strided array, have LvalueBit but not DirectAccessBit + * \li Map-to-const expressions, for example Map, have DirectAccessBit but not LvalueBit + * + * Expressions having LvalueBit also have their coeff() method returning a const reference instead of returning a new value. + */ +const unsigned int LvalueBit = 0x20; + +/** \ingroup flags + * + * Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout + * of the array of coefficients must be exactly the natural one suggested by rows(), cols(), + * outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients, + * though referencable, do not have such a regular memory layout. + * + * See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal. + */ +const unsigned int DirectAccessBit = 0x40; + +/** \deprecated \ingroup flags + * + * means the first coefficient packet is guaranteed to be aligned. + * An expression cannot have the AlignedBit without the PacketAccessBit flag. + * In other words, this means we are allow to perform an aligned packet access to the first element regardless + * of the expression kind: + * \code + * expression.packet(0); + * \endcode + */ +EIGEN_DEPRECATED const unsigned int AlignedBit = 0x80; + +const unsigned int NestByRefBit = 0x100; + +/** \ingroup flags + * + * for an expression, this means that the storage order + * can be either row-major or column-major. + * The precise choice will be decided at evaluation time or when + * combined with other expressions. + * \sa \blank \ref RowMajorBit, \ref TopicStorageOrders */ +const unsigned int NoPreferredStorageOrderBit = 0x200; + +/** \ingroup flags + * + * Means that the underlying coefficients can be accessed through pointers to the sparse (un)compressed storage format, + * that is, the expression provides: + * \code + inline const Scalar* valuePtr() const; + inline const Index* innerIndexPtr() const; + inline const Index* outerIndexPtr() const; + inline const Index* innerNonZeroPtr() const; + \endcode + */ +const unsigned int CompressedAccessBit = 0x400; + + +// list of flags that are inherited by default +const unsigned int HereditaryBits = RowMajorBit + | EvalBeforeNestingBit; + +/** \defgroup enums Enumerations + * \ingroup Core_Module + * + * Various enumerations used in %Eigen. Many of these are used as template parameters. + */ + +/** \ingroup enums + * Enum containing possible values for the \c Mode or \c UpLo parameter of + * MatrixBase::selfadjointView() and MatrixBase::triangularView(), and selfadjoint solvers. */ +enum UpLoType { + /** View matrix as a lower triangular matrix. */ + Lower=0x1, + /** View matrix as an upper triangular matrix. */ + Upper=0x2, + /** %Matrix has ones on the diagonal; to be used in combination with #Lower or #Upper. */ + UnitDiag=0x4, + /** %Matrix has zeros on the diagonal; to be used in combination with #Lower or #Upper. */ + ZeroDiag=0x8, + /** View matrix as a lower triangular matrix with ones on the diagonal. */ + UnitLower=UnitDiag|Lower, + /** View matrix as an upper triangular matrix with ones on the diagonal. */ + UnitUpper=UnitDiag|Upper, + /** View matrix as a lower triangular matrix with zeros on the diagonal. */ + StrictlyLower=ZeroDiag|Lower, + /** View matrix as an upper triangular matrix with zeros on the diagonal. */ + StrictlyUpper=ZeroDiag|Upper, + /** Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint. */ + SelfAdjoint=0x10, + /** Used to support symmetric, non-selfadjoint, complex matrices. */ + Symmetric=0x20 +}; + +/** \ingroup enums + * Enum for indicating whether a buffer is aligned or not. */ +enum AlignmentType { + Unaligned=0, /**< Data pointer has no specific alignment. */ + Aligned8=8, /**< Data pointer is aligned on a 8 bytes boundary. */ + Aligned16=16, /**< Data pointer is aligned on a 16 bytes boundary. */ + Aligned32=32, /**< Data pointer is aligned on a 32 bytes boundary. */ + Aligned64=64, /**< Data pointer is aligned on a 64 bytes boundary. */ + Aligned128=128, /**< Data pointer is aligned on a 128 bytes boundary. */ + AlignedMask=255, + Aligned=16, /**< \deprecated Synonym for Aligned16. */ +#if EIGEN_MAX_ALIGN_BYTES==128 + AlignedMax = Aligned128 +#elif EIGEN_MAX_ALIGN_BYTES==64 + AlignedMax = Aligned64 +#elif EIGEN_MAX_ALIGN_BYTES==32 + AlignedMax = Aligned32 +#elif EIGEN_MAX_ALIGN_BYTES==16 + AlignedMax = Aligned16 +#elif EIGEN_MAX_ALIGN_BYTES==8 + AlignedMax = Aligned8 +#elif EIGEN_MAX_ALIGN_BYTES==0 + AlignedMax = Unaligned +#else +#error Invalid value for EIGEN_MAX_ALIGN_BYTES +#endif +}; + +/** \ingroup enums + * Enum containing possible values for the \p Direction parameter of + * Reverse, PartialReduxExpr and VectorwiseOp. */ +enum DirectionType { + /** For Reverse, all columns are reversed; + * for PartialReduxExpr and VectorwiseOp, act on columns. */ + Vertical, + /** For Reverse, all rows are reversed; + * for PartialReduxExpr and VectorwiseOp, act on rows. */ + Horizontal, + /** For Reverse, both rows and columns are reversed; + * not used for PartialReduxExpr and VectorwiseOp. */ + BothDirections +}; + +/** \internal \ingroup enums + * Enum to specify how to traverse the entries of a matrix. */ +enum TraversalType { + /** \internal Default traversal, no vectorization, no index-based access */ + DefaultTraversal, + /** \internal No vectorization, use index-based access to have only one for loop instead of 2 nested loops */ + LinearTraversal, + /** \internal Equivalent to a slice vectorization for fixed-size matrices having good alignment + * and good size */ + InnerVectorizedTraversal, + /** \internal Vectorization path using a single loop plus scalar loops for the + * unaligned boundaries */ + LinearVectorizedTraversal, + /** \internal Generic vectorization path using one vectorized loop per row/column with some + * scalar loops to handle the unaligned boundaries */ + SliceVectorizedTraversal, + /** \internal Special case to properly handle incompatible scalar types or other defecting cases*/ + InvalidTraversal, + /** \internal Evaluate all entries at once */ + AllAtOnceTraversal +}; + +/** \internal \ingroup enums + * Enum to specify whether to unroll loops when traversing over the entries of a matrix. */ +enum UnrollingType { + /** \internal Do not unroll loops. */ + NoUnrolling, + /** \internal Unroll only the inner loop, but not the outer loop. */ + InnerUnrolling, + /** \internal Unroll both the inner and the outer loop. If there is only one loop, + * because linear traversal is used, then unroll that loop. */ + CompleteUnrolling +}; + +/** \internal \ingroup enums + * Enum to specify whether to use the default (built-in) implementation or the specialization. */ +enum SpecializedType { + Specialized, + BuiltIn +}; + +/** \ingroup enums + * Enum containing possible values for the \p Options_ template parameter of + * Matrix, Array and BandMatrix. */ +enum StorageOptions { + /** Storage order is column major (see \ref TopicStorageOrders). */ + ColMajor = 0, + /** Storage order is row major (see \ref TopicStorageOrders). */ + RowMajor = 0x1, // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that + /** Align the matrix itself if it is vectorizable fixed-size */ + AutoAlign = 0, + /** Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned) */ // FIXME --- clarify the situation + DontAlign = 0x2 +}; + +/** \ingroup enums + * Enum for specifying whether to apply or solve on the left or right. */ +enum SideType { + /** Apply transformation on the left. */ + OnTheLeft = 1, + /** Apply transformation on the right. */ + OnTheRight = 2 +}; + +/** \ingroup enums + * Enum for specifying NaN-propagation behavior, e.g. for coeff-wise min/max. */ +enum NaNPropagationOptions { + /** Implementation defined behavior if NaNs are present. */ + PropagateFast = 0, + /** Always propagate NaNs. */ + PropagateNaN, + /** Always propagate not-NaNs. */ + PropagateNumbers +}; + +/* the following used to be written as: + * + * struct NoChange_t {}; + * namespace { + * EIGEN_UNUSED NoChange_t NoChange; + * } + * + * on the ground that it feels dangerous to disambiguate overloaded functions on enum/integer types. + * However, this leads to "variable declared but never referenced" warnings on Intel Composer XE, + * and we do not know how to get rid of them (bug 450). + */ + +enum NoChange_t { NoChange }; +enum Sequential_t { Sequential }; +enum Default_t { Default }; + +/** \internal \ingroup enums + * Used in AmbiVector. */ +enum AmbiVectorMode { + IsDense = 0, + IsSparse +}; + +/** \ingroup enums + * Used as template parameter in DenseCoeffBase and MapBase to indicate + * which accessors should be provided. */ +enum AccessorLevels { + /** Read-only access via a member function. */ + ReadOnlyAccessors, + /** Read/write access via member functions. */ + WriteAccessors, + /** Direct read-only access to the coefficients. */ + DirectAccessors, + /** Direct read/write access to the coefficients. */ + DirectWriteAccessors +}; + +/** \ingroup enums + * Enum with options to give to various decompositions. */ +enum DecompositionOptions { + /** \internal Not used (meant for LDLT?). */ + Pivoting = 0x01, + /** \internal Not used (meant for LDLT?). */ + NoPivoting = 0x02, + /** Used in JacobiSVD to indicate that the square matrix U is to be computed. */ + ComputeFullU = 0x04, + /** Used in JacobiSVD to indicate that the thin matrix U is to be computed. */ + ComputeThinU = 0x08, + /** Used in JacobiSVD to indicate that the square matrix V is to be computed. */ + ComputeFullV = 0x10, + /** Used in JacobiSVD to indicate that the thin matrix V is to be computed. */ + ComputeThinV = 0x20, + /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify + * that only the eigenvalues are to be computed and not the eigenvectors. */ + EigenvaluesOnly = 0x40, + /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify + * that both the eigenvalues and the eigenvectors are to be computed. */ + ComputeEigenvectors = 0x80, + /** \internal */ + EigVecMask = EigenvaluesOnly | ComputeEigenvectors, + /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should + * solve the generalized eigenproblem \f$ Ax = \lambda B x \f$. */ + Ax_lBx = 0x100, + /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should + * solve the generalized eigenproblem \f$ ABx = \lambda x \f$. */ + ABx_lx = 0x200, + /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should + * solve the generalized eigenproblem \f$ BAx = \lambda x \f$. */ + BAx_lx = 0x400, + /** \internal */ + GenEigMask = Ax_lBx | ABx_lx | BAx_lx +}; + +/** \ingroup enums + * Possible values for the \p QRPreconditioner template parameter of JacobiSVD. */ +enum QRPreconditioners { + /** Use a QR decomposition with column pivoting as the first step. */ + ColPivHouseholderQRPreconditioner = 0x0, + /** Do not specify what is to be done if the SVD of a non-square matrix is asked for. */ + NoQRPreconditioner = 0x40, + /** Use a QR decomposition without pivoting as the first step. */ + HouseholderQRPreconditioner = 0x80, + /** Use a QR decomposition with full pivoting as the first step. */ + FullPivHouseholderQRPreconditioner = 0xC0, + /** Used to disable the QR Preconditioner in BDCSVD. */ + DisableQRDecomposition = NoQRPreconditioner +}; + +#ifdef Success +#error The preprocessor symbol 'Success' is defined, possibly by the X11 header file X.h +#endif + +/** \ingroup enums + * Enum for reporting the status of a computation. */ +enum ComputationInfo { + /** Computation was successful. */ + Success = 0, + /** The provided data did not satisfy the prerequisites. */ + NumericalIssue = 1, + /** Iterative procedure did not converge. */ + NoConvergence = 2, + /** The inputs are invalid, or the algorithm has been improperly called. + * When assertions are enabled, such errors trigger an assert. */ + InvalidInput = 3 +}; + +/** \ingroup enums + * Enum used to specify how a particular transformation is stored in a matrix. + * \sa Transform, Hyperplane::transform(). */ +enum TransformTraits { + /** Transformation is an isometry. */ + Isometry = 0x1, + /** Transformation is an affine transformation stored as a (Dim+1)^2 matrix whose last row is + * assumed to be [0 ... 0 1]. */ + Affine = 0x2, + /** Transformation is an affine transformation stored as a (Dim) x (Dim+1) matrix. */ + AffineCompact = 0x10 | Affine, + /** Transformation is a general projective transformation stored as a (Dim+1)^2 matrix. */ + Projective = 0x20 +}; + +/** \internal \ingroup enums + * Enum used to choose between implementation depending on the computer architecture. */ +namespace Architecture +{ + enum Type { + Generic = 0x0, + SSE = 0x1, + AltiVec = 0x2, + VSX = 0x3, + NEON = 0x4, + MSA = 0x5, + SVE = 0x6, + HVX = 0x7, +#if defined EIGEN_VECTORIZE_SSE + Target = SSE +#elif defined EIGEN_VECTORIZE_ALTIVEC + Target = AltiVec +#elif defined EIGEN_VECTORIZE_VSX + Target = VSX +#elif defined EIGEN_VECTORIZE_NEON + Target = NEON +#elif defined EIGEN_VECTORIZE_SVE + Target = SVE +#elif defined EIGEN_VECTORIZE_MSA + Target = MSA +#elif defined EIGEN_VECTORIZE_HVX + Target = HVX +#else + Target = Generic +#endif + }; +} + +/** \internal \ingroup enums + * Enum used as template parameter in Product and product evaluators. */ +enum ProductImplType +{ DefaultProduct=0, LazyProduct, AliasFreeProduct, CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct }; + +/** \internal \ingroup enums + * Enum used in experimental parallel implementation. */ +enum Action {GetAction, SetAction}; + +/** The type used to identify a dense storage. */ +struct Dense {}; + +/** The type used to identify a general sparse storage. */ +struct Sparse {}; + +/** The type used to identify a general solver (factored) storage. */ +struct SolverStorage {}; + +/** The type used to identify a permutation storage. */ +struct PermutationStorage {}; + +/** The type used to identify a permutation storage. */ +struct TranspositionsStorage {}; + +/** The type used to identify a matrix expression */ +struct MatrixXpr {}; + +/** The type used to identify an array expression */ +struct ArrayXpr {}; + +// An evaluator must define its shape. By default, it can be one of the following: +struct DenseShape { static std::string debugName() { return "DenseShape"; } }; +struct SolverShape { static std::string debugName() { return "SolverShape"; } }; +struct HomogeneousShape { static std::string debugName() { return "HomogeneousShape"; } }; +struct DiagonalShape { static std::string debugName() { return "DiagonalShape"; } }; +struct SkewSymmetricShape { static std::string debugName() { return "SkewSymmetricShape"; } }; +struct BandShape { static std::string debugName() { return "BandShape"; } }; +struct TriangularShape { static std::string debugName() { return "TriangularShape"; } }; +struct SelfAdjointShape { static std::string debugName() { return "SelfAdjointShape"; } }; +struct PermutationShape { static std::string debugName() { return "PermutationShape"; } }; +struct TranspositionsShape { static std::string debugName() { return "TranspositionsShape"; } }; +struct SparseShape { static std::string debugName() { return "SparseShape"; } }; + +namespace internal { + + // random access iterators based on coeff*() accessors. +struct IndexBased {}; + +// evaluator based on iterators to access coefficients. +struct IteratorBased {}; + +/** \internal + * Constants for comparison functors + */ +enum ComparisonName : unsigned int { + cmp_EQ = 0, + cmp_LT = 1, + cmp_LE = 2, + cmp_UNORD = 3, + cmp_NEQ = 4, + cmp_GT = 5, + cmp_GE = 6 +}; +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CONSTANTS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/DisableStupidWarnings.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/DisableStupidWarnings.h new file mode 100644 index 0000000..bed6cdd --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/DisableStupidWarnings.h @@ -0,0 +1,139 @@ +#ifndef EIGEN_WARNINGS_DISABLED +#define EIGEN_WARNINGS_DISABLED + +#if defined(_MSC_VER) + // 4100 - unreferenced formal parameter (occurred e.g. in aligned_allocator::destroy(pointer p)) + // 4101 - unreferenced local variable + // 4127 - conditional expression is constant + // 4181 - qualifier applied to reference type ignored + // 4211 - nonstandard extension used : redefined extern to static + // 4244 - 'argument' : conversion from 'type1' to 'type2', possible loss of data + // 4273 - QtAlignedMalloc, inconsistent DLL linkage + // 4324 - structure was padded due to declspec(align()) + // 4503 - decorated name length exceeded, name was truncated + // 4512 - assignment operator could not be generated + // 4522 - 'class' : multiple assignment operators specified + // 4700 - uninitialized local variable 'xyz' used + // 4714 - function marked as __forceinline not inlined + // 4717 - 'function' : recursive on all control paths, function will cause runtime stack overflow + // 4800 - 'type' : forcing value to bool 'true' or 'false' (performance warning) + #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS + #pragma warning( push ) + #endif + #pragma warning( disable : 4100 4101 4127 4181 4211 4244 4273 4324 4503 4512 4522 4700 4714 4717 4800) + +#elif defined __INTEL_COMPILER + // 2196 - routine is both "inline" and "noinline" ("noinline" assumed) + // ICC 12 generates this warning even without any inline keyword, when defining class methods 'inline' i.e. inside of class body + // typedef that may be a reference type. + // 279 - controlling expression is constant + // ICC 12 generates this warning on assert(constant_expression_depending_on_template_params) and frankly this is a legitimate use case. + // 1684 - conversion from pointer to same-sized integral type (potential portability problem) + // 2259 - non-pointer conversion from "Eigen::Index={ptrdiff_t={long}}" to "int" may lose significant bits + #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS + #pragma warning push + #endif + #pragma warning disable 2196 279 1684 2259 + +#elif defined __clang__ + #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS + #pragma clang diagnostic push + #endif + #if defined(__has_warning) + // -Wconstant-logical-operand - warning: use of logical && with constant operand; switch to bitwise & or remove constant + // this is really a stupid warning as it warns on compile-time expressions involving enums + #if __has_warning("-Wconstant-logical-operand") + #pragma clang diagnostic ignored "-Wconstant-logical-operand" + #endif + #if __has_warning("-Wimplicit-int-float-conversion") + #pragma clang diagnostic ignored "-Wimplicit-int-float-conversion" + #endif + #if ( defined(__ALTIVEC__) || defined(__VSX__) ) && ( !defined(__STDC_VERSION__) || (__STDC_VERSION__ < 201112L) ) + // warning: generic selections are a C11-specific feature + // ignoring warnings thrown at vec_ctf in Altivec/PacketMath.h + #if __has_warning("-Wc11-extensions") + #pragma clang diagnostic ignored "-Wc11-extensions" + #endif + #endif + #endif + +#elif defined __GNUC__ && !defined(__FUJITSU) + + #if (!defined(EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS)) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) + #pragma GCC diagnostic push + #endif + // g++ warns about local variables shadowing member functions, which is too strict + #pragma GCC diagnostic ignored "-Wshadow" + #if __GNUC__ == 4 && __GNUC_MINOR__ < 8 + // Until g++-4.7 there are warnings when comparing unsigned int vs 0, even in templated functions: + #pragma GCC diagnostic ignored "-Wtype-limits" + #endif + #if __GNUC__>=6 + #pragma GCC diagnostic ignored "-Wignored-attributes" + #endif + #if __GNUC__==7 + // See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89325 + #pragma GCC diagnostic ignored "-Wattributes" + #endif +#endif + +#if defined __NVCC__ + // MSVC 14.16 (required by CUDA 9.*) does not support the _Pragma keyword, so + // we instead use Microsoft's __pragma extension. + #if defined _MSC_VER + #define EIGEN_MAKE_PRAGMA(X) __pragma(#X) + #else + #define EIGEN_MAKE_PRAGMA(X) _Pragma(#X) + #endif + #if defined __NVCC_DIAG_PRAGMA_SUPPORT__ + #define EIGEN_NV_DIAG_SUPPRESS(X) EIGEN_MAKE_PRAGMA(nv_diag_suppress X) + #else + #define EIGEN_NV_DIAG_SUPPRESS(X) EIGEN_MAKE_PRAGMA(diag_suppress X) + #endif + + EIGEN_NV_DIAG_SUPPRESS(boolean_controlling_expr_is_constant) + // Disable the "statement is unreachable" message + EIGEN_NV_DIAG_SUPPRESS(code_is_unreachable) + // Disable the "dynamic initialization in unreachable code" message + EIGEN_NV_DIAG_SUPPRESS(initialization_not_reachable) + // Disable the "invalid error number" message that we get with older versions of nvcc + EIGEN_NV_DIAG_SUPPRESS(1222) + // Disable the "calling a __host__ function from a __host__ __device__ function is not allowed" messages (yes, there are many of them and they seem to change with every version of the compiler) + EIGEN_NV_DIAG_SUPPRESS(2527) + EIGEN_NV_DIAG_SUPPRESS(2529) + EIGEN_NV_DIAG_SUPPRESS(2651) + EIGEN_NV_DIAG_SUPPRESS(2653) + EIGEN_NV_DIAG_SUPPRESS(2668) + EIGEN_NV_DIAG_SUPPRESS(2669) + EIGEN_NV_DIAG_SUPPRESS(2670) + EIGEN_NV_DIAG_SUPPRESS(2671) + EIGEN_NV_DIAG_SUPPRESS(2735) + EIGEN_NV_DIAG_SUPPRESS(2737) + EIGEN_NV_DIAG_SUPPRESS(2739) + EIGEN_NV_DIAG_SUPPRESS(2885) + EIGEN_NV_DIAG_SUPPRESS(2888) + EIGEN_NV_DIAG_SUPPRESS(2976) + EIGEN_NV_DIAG_SUPPRESS(2979) + EIGEN_NV_DIAG_SUPPRESS(20011) + EIGEN_NV_DIAG_SUPPRESS(20014) + // Disable the "// __device__ annotation is ignored on a function(...) that is + // explicitly defaulted on its first declaration" message. + // The __device__ annotation seems to actually be needed in some cases, + // otherwise resulting in kernel runtime errors. + EIGEN_NV_DIAG_SUPPRESS(2886) + EIGEN_NV_DIAG_SUPPRESS(2929) + EIGEN_NV_DIAG_SUPPRESS(2977) + EIGEN_NV_DIAG_SUPPRESS(20012) + #undef EIGEN_NV_DIAG_SUPPRESS + #undef EIGEN_MAKE_PRAGMA +#endif + +#else +// warnings already disabled: +# ifndef EIGEN_WARNINGS_DISABLED_2 +# define EIGEN_WARNINGS_DISABLED_2 +# elif defined(EIGEN_INTERNAL_DEBUGGING) +# error "Do not include \"DisableStupidWarnings.h\" recursively more than twice!" +# endif + +#endif // not EIGEN_WARNINGS_DISABLED diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/EmulateArray.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/EmulateArray.h new file mode 100644 index 0000000..a4b1d0c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/EmulateArray.h @@ -0,0 +1,286 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EMULATE_ARRAY_H +#define EIGEN_EMULATE_ARRAY_H + +// CUDA doesn't support the STL containers, so we use our own instead. +#if defined(EIGEN_GPUCC) || defined(EIGEN_AVOID_STL_ARRAY) + +namespace Eigen { +template class array { + + public: + typedef T value_type; + typedef T* iterator; + typedef const T* const_iterator; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE iterator begin() { return values; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const_iterator begin() const { return values; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE iterator end() { return values + n; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const_iterator end() const { return values + n; } + + +#if !defined(EIGEN_GPUCC) + typedef std::reverse_iterator reverse_iterator; + typedef std::reverse_iterator const_reverse_iterator; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE reverse_iterator rbegin() { return reverse_iterator(end());} + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE reverse_iterator rend() { return reverse_iterator(begin()); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } +#endif + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& operator[] (size_t index) { eigen_internal_assert(index < size()); return values[index]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& operator[] (size_t index) const { eigen_internal_assert(index < size()); return values[index]; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& at(size_t index) { eigen_assert(index < size()); return values[index]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& at(size_t index) const { eigen_assert(index < size()); return values[index]; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& front() { return values[0]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& front() const { return values[0]; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& back() { return values[n-1]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& back() const { return values[n-1]; } + + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + static std::size_t size() { return n; } + + T values[n]; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array() { } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v) { + EIGEN_STATIC_ASSERT(n==1, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2) { + EIGEN_STATIC_ASSERT(n==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3) { + EIGEN_STATIC_ASSERT(n==3, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, + const T& v4) { + EIGEN_STATIC_ASSERT(n==4, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5) { + EIGEN_STATIC_ASSERT(n==5, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5, const T& v6) { + EIGEN_STATIC_ASSERT(n==6, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + values[5] = v6; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5, const T& v6, const T& v7) { + EIGEN_STATIC_ASSERT(n==7, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + values[5] = v6; + values[6] = v7; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array( + const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5, const T& v6, const T& v7, const T& v8) { + EIGEN_STATIC_ASSERT(n==8, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + values[5] = v6; + values[6] = v7; + values[7] = v8; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(std::initializer_list l) { + eigen_assert(l.size() == n); + internal::smart_copy(l.begin(), l.end(), values); + } +}; + + +// Specialize array for zero size +template class array { + public: + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& operator[] (size_t) { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& operator[] (size_t) const { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& front() { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& front() const { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& back() { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& back() const { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::size_t size() { return 0; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array() : dummy() { } + + EIGEN_DEVICE_FUNC array(std::initializer_list l) : dummy() { + EIGEN_UNUSED_VARIABLE(l); + eigen_assert(l.size() == 0); + } + + private: + T dummy; +}; + +// Comparison operator +// Todo: implement !=, <, <=, >, and >= +template +EIGEN_DEVICE_FUNC bool operator==(const array& lhs, const array& rhs) { + for (std::size_t i = 0; i < N; ++i) { + if (lhs[i] != rhs[i]) { + return false; + } + } + return true; +} + + +namespace internal { +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& array_get(array& a) { + return a[I_]; +} +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const array& a) { + return a[I_]; +} + +template struct array_size > { + enum { value = N }; +}; +template struct array_size& > { + enum { value = N }; +}; +template struct array_size > { + enum { value = N }; +}; +template struct array_size& > { + enum { value = N }; +}; + +} // end namespace internal +} // end namespace Eigen + +#else + +// The compiler supports c++11, and we're not targeting cuda: use std::array as Eigen::array +#include + +namespace Eigen { + +template using array = std::array; + +namespace internal { +/* std::get is only constexpr in C++14, not yet in C++11 + * - libstdc++ from version 4.7 onwards has it nevertheless, + * so use that + * - libstdc++ older versions: use _M_instance directly + * - libc++ all versions so far: use __elems_ directly + * - all other libs: use std::get to be portable, but + * this may not be constexpr + */ +#if defined(__GLIBCXX__) && __GLIBCXX__ < 20120322 +#define STD_GET_ARR_HACK a._M_instance[I_] +#elif defined(_LIBCPP_VERSION) +#define STD_GET_ARR_HACK a.__elems_[I_] +#else +#define STD_GET_ARR_HACK std::template get(a) +#endif + +template constexpr inline T& array_get(std::array& a) { return (T&) STD_GET_ARR_HACK; } +template constexpr inline T&& array_get(std::array&& a) { return (T&&) STD_GET_ARR_HACK; } +template constexpr inline T const& array_get(std::array const& a) { return (T const&) STD_GET_ARR_HACK; } + +#undef STD_GET_ARR_HACK + +} // end namespace internal +} // end namespace Eigen + +#endif + +#endif // EIGEN_EMULATE_ARRAY_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ForwardDeclarations.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ForwardDeclarations.h new file mode 100644 index 0000000..8963019 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ForwardDeclarations.h @@ -0,0 +1,329 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2007-2010 Benoit Jacob +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_FORWARDDECLARATIONS_H +#define EIGEN_FORWARDDECLARATIONS_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +template struct traits; + +// here we say once and for all that traits == traits +// When constness must affect traits, it has to be constness on template parameters on which T itself depends. +// For example, traits > != traits >, but +// traits > == traits > +template struct traits : traits {}; + +template struct has_direct_access +{ + enum { ret = (traits::Flags & DirectAccessBit) ? 1 : 0 }; +}; + +template struct accessors_level +{ + enum { has_direct_access = (traits::Flags & DirectAccessBit) ? 1 : 0, + has_write_access = (traits::Flags & LvalueBit) ? 1 : 0, + value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors) + : (has_write_access ? WriteAccessors : ReadOnlyAccessors) + }; +}; + +template struct evaluator_traits; + +template< typename T> struct evaluator; + +} // end namespace internal + +template struct NumTraits; + +template struct EigenBase; +template class DenseBase; +template class PlainObjectBase; +template class DenseCoeffsBase; + +template class Matrix; + +template class MatrixBase; +template class ArrayBase; + +template class Flagged; +template class StorageBase > class NoAlias; +template class NestByValue; +template class ForceAlignedAccess; +template class SwapWrapper; + +template class Block; +template class IndexedView; +template class Reshaped; + +template class VectorBlock; +template class Transpose; +template class Conjugate; +template class CwiseNullaryOp; +template class CwiseUnaryOp; +template class CwiseBinaryOp; +template class CwiseTernaryOp; +template class Solve; +template class Inverse; + +template class Product; + +template class DiagonalBase; +template class DiagonalWrapper; +template class DiagonalMatrix; +template class DiagonalProduct; +template class Diagonal; +template class SkewSymmetricBase; +template class SkewSymmetricWrapper; +template class SkewSymmetricMatrix3; +template class PermutationMatrix; +template class Transpositions; +template class PermutationBase; +template class TranspositionsBase; +template class PermutationWrapper; +template class TranspositionsWrapper; + +template::has_write_access ? WriteAccessors : ReadOnlyAccessors +> class MapBase; +template class Stride; +template class InnerStride; +template class OuterStride; +template > class Map; +template class RefBase; +template,OuterStride<> > > class Ref; +template> class CwiseUnaryView; + +template class TriangularBase; +template class TriangularView; +template class SelfAdjointView; +template class SparseView; +template class WithFormat; +template struct CommaInitializer; +template class ReturnByValue; +template class ArrayWrapper; +template class MatrixWrapper; +template class SolverBase; +template class InnerIterator; + +namespace internal { +template class generic_randaccess_stl_iterator; +template class pointer_based_stl_iterator; +template class subvector_stl_iterator; +template class subvector_stl_reverse_iterator; +template struct kernel_retval_base; +template struct kernel_retval; +template struct image_retval_base; +template struct image_retval; +} // end namespace internal + +namespace internal { +template class BandMatrix; +} + +namespace internal { +template struct product_type; + +template struct EnableIf; + +/** \internal + * \class product_evaluator + * Products need their own evaluator with more template arguments allowing for + * easier partial template specializations. + */ +template< typename T, + int ProductTag = internal::product_type::ret, + typename LhsShape = typename evaluator_traits::Shape, + typename RhsShape = typename evaluator_traits::Shape, + typename LhsScalar = typename traits::Scalar, + typename RhsScalar = typename traits::Scalar + > struct product_evaluator; +} + +template::value> +struct ProductReturnType; + +// this is a workaround for sun CC +template struct LazyProductReturnType; + +namespace internal { + +// Provides scalar/packet-wise product and product with accumulation +// with optional conjugation of the arguments. +template struct conj_helper; + +template struct scalar_sum_op; +template struct scalar_difference_op; +template struct scalar_conj_product_op; +template struct scalar_min_op; +template struct scalar_max_op; +template struct scalar_opposite_op; +template struct scalar_conjugate_op; +template struct scalar_real_op; +template struct scalar_imag_op; +template struct scalar_abs_op; +template struct scalar_abs2_op; +template struct scalar_absolute_difference_op; +template struct scalar_sqrt_op; +template struct scalar_rsqrt_op; +template struct scalar_exp_op; +template struct scalar_log_op; +template struct scalar_cos_op; +template struct scalar_sin_op; +template struct scalar_acos_op; +template struct scalar_asin_op; +template struct scalar_tan_op; +template struct scalar_atan_op; +template struct scalar_atan2_op; +template struct scalar_inverse_op; +template struct scalar_square_op; +template struct scalar_cube_op; +template struct scalar_cast_op; +template struct scalar_random_op; +template struct scalar_constant_op; +template struct scalar_identity_op; +template struct scalar_sign_op; +template +struct scalar_pow_op; +template +struct scalar_unary_pow_op; +template struct scalar_hypot_op; +template struct scalar_product_op; +template struct scalar_quotient_op; +// logical and bitwise operations +template struct scalar_boolean_and_op; +template struct scalar_boolean_or_op; +template struct scalar_boolean_xor_op; +template struct scalar_boolean_not_op; +template struct scalar_bitwise_and_op; +template struct scalar_bitwise_or_op; +template struct scalar_bitwise_xor_op; +template struct scalar_bitwise_not_op; + +// SpecialFunctions module +template struct scalar_lgamma_op; +template struct scalar_digamma_op; +template struct scalar_erf_op; +template struct scalar_erfc_op; +template struct scalar_ndtri_op; +template struct scalar_igamma_op; +template struct scalar_igammac_op; +template struct scalar_zeta_op; +template struct scalar_betainc_op; + +// Bessel functions in SpecialFunctions module +template struct scalar_bessel_i0_op; +template struct scalar_bessel_i0e_op; +template struct scalar_bessel_i1_op; +template struct scalar_bessel_i1e_op; +template struct scalar_bessel_j0_op; +template struct scalar_bessel_y0_op; +template struct scalar_bessel_j1_op; +template struct scalar_bessel_y1_op; +template struct scalar_bessel_k0_op; +template struct scalar_bessel_k0e_op; +template struct scalar_bessel_k1_op; +template struct scalar_bessel_k1e_op; + + +} // end namespace internal + +struct IOFormat; + +// Array module +template class Array; +template class Select; +template class PartialReduxExpr; +template class VectorwiseOp; +template class Replicate; +template class Reverse; + +#if defined(EIGEN_USE_LAPACKE) && defined(lapack_int) +// Lapacke interface requires StorageIndex to be lapack_int +typedef lapack_int DefaultPermutationIndex; +#else +typedef int DefaultPermutationIndex; +#endif + +template class FullPivLU; +template class PartialPivLU; +namespace internal { +template struct inverse_impl; +} +template class HouseholderQR; +template class ColPivHouseholderQR; +template class FullPivHouseholderQR; +template class CompleteOrthogonalDecomposition; +template class SVDBase; +template class JacobiSVD; +template class BDCSVD; +template class LLT; +template class LDLT; +template class HouseholderSequence; +template class JacobiRotation; + +// Geometry module: +namespace internal { +template::SizeAtCompileTime> struct cross_impl; +} +template class RotationBase; +template class QuaternionBase; +template class Rotation2D; +template class AngleAxis; +template class Translation; +template class AlignedBox; +template class Quaternion; +template class Transform; +template class ParametrizedLine; +template class Hyperplane; +template class UniformScaling; +template class Homogeneous; + +// Sparse module: +template class SparseMatrixBase; + +// MatrixFunctions module +template struct MatrixExponentialReturnValue; +template class MatrixFunctionReturnValue; +template class MatrixSquareRootReturnValue; +template class MatrixLogarithmReturnValue; +template class MatrixPowerReturnValue; +template class MatrixComplexPowerReturnValue; + +namespace internal { +template +struct stem_function +{ + typedef std::complex::Real> ComplexScalar; + typedef ComplexScalar type(ComplexScalar, int); +}; +} + +} // end namespace Eigen + +#endif // EIGEN_FORWARDDECLARATIONS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/IndexedViewHelper.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/IndexedViewHelper.h new file mode 100644 index 0000000..19fa45d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/IndexedViewHelper.h @@ -0,0 +1,195 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_INDEXED_VIEW_HELPER_H +#define EIGEN_INDEXED_VIEW_HELPER_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +struct symbolic_last_tag {}; +} // namespace internal + +namespace placeholders { + +typedef symbolic::SymbolExpr last_t; + +/** \var last + * \ingroup Core_Module + * + * Can be used as a parameter to Eigen::seq and Eigen::seqN functions to symbolically reference the last element/row/columns + * of the underlying vector or matrix once passed to DenseBase::operator()(const RowIndices&, const ColIndices&). + * + * This symbolic placeholder supports standard arithmetic operations. + * + * A typical usage example would be: + * \code + * using namespace Eigen; + * using Eigen::placeholders::last; + * VectorXd v(n); + * v(seq(2,last-2)).setOnes(); + * \endcode + * + * \sa end + */ +static const last_t last; + +} // namespace placeholders + +namespace internal { + +// Replace symbolic last/end "keywords" by their true runtime value +inline Index eval_expr_given_size(Index x, Index /* size */) { return x; } + +template +FixedInt eval_expr_given_size(FixedInt x, Index /*size*/) { return x; } + +template +Index eval_expr_given_size(const symbolic::BaseExpr &x, Index size) +{ + return x.derived().eval(Eigen::placeholders::last=size-1); +} + +// Extract increment/step at compile time +template struct get_compile_time_incr { + enum { value = UndefinedIncr }; +}; + +// Analogue of std::get<0>(x), but tailored for our needs. +template +EIGEN_CONSTEXPR Index first(const T& x) EIGEN_NOEXCEPT { return x.first(); } + +// IndexedViewCompatibleType/makeIndexedViewCompatible turn an arbitrary object of type T into something usable by MatrixSlice +// The generic implementation is a no-op +template +struct IndexedViewCompatibleType { + typedef T type; +}; + +template +const T& makeIndexedViewCompatible(const T& x, Index /*size*/, Q) { return x; } + +//-------------------------------------------------------------------------------- +// Handling of a single Index +//-------------------------------------------------------------------------------- + +struct SingleRange { + enum { + SizeAtCompileTime = 1 + }; + SingleRange(Index val) : m_value(val) {} + Index operator[](Index) const { return m_value; } + static EIGEN_CONSTEXPR Index size() EIGEN_NOEXCEPT { return 1; } + Index first() const EIGEN_NOEXCEPT { return m_value; } + Index m_value; +}; + +template<> struct get_compile_time_incr { + enum { value = 1 }; // 1 or 0 ?? +}; + +// Turn a single index into something that looks like an array (i.e., that exposes a .size(), and operator[](int) methods) +template +struct IndexedViewCompatibleType::value>> { + // Here we could simply use Array, but maybe it's less work for the compiler to use + // a simpler wrapper as SingleRange + //typedef Eigen::Array type; + typedef SingleRange type; +}; + +template +struct IndexedViewCompatibleType::value>> { + typedef SingleRange type; +}; + + +template +std::enable_if_t::value,SingleRange> +makeIndexedViewCompatible(const T& id, Index size, SpecializedType) { + return eval_expr_given_size(id,size); +} + +//-------------------------------------------------------------------------------- +// Handling of all +//-------------------------------------------------------------------------------- + +struct all_t { all_t() {} }; + +// Convert a symbolic 'all' into a usable range type +template +struct AllRange { + enum { SizeAtCompileTime = XprSize }; + AllRange(Index size = XprSize) : m_size(size) {} + EIGEN_CONSTEXPR Index operator[](Index i) const EIGEN_NOEXCEPT { return i; } + EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_size.value(); } + EIGEN_CONSTEXPR Index first() const EIGEN_NOEXCEPT { return 0; } + variable_if_dynamic m_size; +}; + +template +struct IndexedViewCompatibleType { + typedef AllRange type; +}; + +template +inline AllRange::value> makeIndexedViewCompatible(all_t , XprSizeType size, SpecializedType) { + return AllRange::value>(size); +} + +template struct get_compile_time_incr > { + enum { value = 1 }; +}; + +} // end namespace internal + +namespace placeholders { + +typedef symbolic::AddExpr,symbolic::ValueExpr > > lastp1_t; +typedef Eigen::internal::all_t all_t; + +/** \var lastp1 + * \ingroup Core_Module + * + * Can be used as a parameter to Eigen::seq and Eigen::seqN functions to symbolically + * reference the last+1 element/row/columns of the underlying vector or matrix once + * passed to DenseBase::operator()(const RowIndices&, const ColIndices&). + * + * This symbolic placeholder supports standard arithmetic operations. + * It is essentially an alias to last+fix<1>. + * + * \sa last + */ +#ifdef EIGEN_PARSED_BY_DOXYGEN +static const auto lastp1 = last+fix<1>; +#else +// Using a FixedExpr<1> expression is important here to make sure the compiler +// can fully optimize the computation starting indices with zero overhead. +static const lastp1_t lastp1(last+fix<1>()); +#endif + +/** \var end + * \ingroup Core_Module + * \sa lastp1 + */ +static const lastp1_t end = lastp1; + +/** \var all + * \ingroup Core_Module + * Can be used as a parameter to DenseBase::operator()(const RowIndices&, const ColIndices&) to index all rows or columns + */ +static const Eigen::internal::all_t all; + +} // namespace placeholders + +} // end namespace Eigen + +#endif // EIGEN_INDEXED_VIEW_HELPER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/IntegralConstant.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/IntegralConstant.h new file mode 100644 index 0000000..ea275bd --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/IntegralConstant.h @@ -0,0 +1,252 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_INTEGRAL_CONSTANT_H +#define EIGEN_INTEGRAL_CONSTANT_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template class FixedInt; +template class VariableAndFixedInt; + +/** \internal + * \class FixedInt + * + * This class embeds a compile-time integer \c N. + * + * It is similar to c++11 std::integral_constant but with some additional features + * such as: + * - implicit conversion to int + * - arithmetic and some bitwise operators: -, +, *, /, %, &, | + * - c++98/14 compatibility with fix and fix() syntax to define integral constants. + * + * It is strongly discouraged to directly deal with this class FixedInt. Instances are expected to + * be created by the user using Eigen::fix or Eigen::fix(). + * \code + * internal::cleanup_index_type::type + * internal::cleanup_index_type::type + * \endcode + * where T can a FixedInt, a pointer to function FixedInt (*)(), or numerous other integer-like representations. + * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. + * + * For convenience, you can extract the compile-time value \c N in a generic way using the following helper: + * \code + * internal::get_fixed_value::value + * \endcode + * that will give you \c N if T equals FixedInt or FixedInt (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). + * + * \sa fix, class VariableAndFixedInt + */ +template class FixedInt +{ +public: + static const int value = N; + EIGEN_CONSTEXPR operator int() const { return value; } + + EIGEN_CONSTEXPR + FixedInt() = default; + + EIGEN_CONSTEXPR + FixedInt(std::integral_constant) {} + + EIGEN_CONSTEXPR + FixedInt( VariableAndFixedInt other) { + #ifndef EIGEN_INTERNAL_DEBUGGING + EIGEN_UNUSED_VARIABLE(other); + #endif + eigen_internal_assert(int(other)==N); + } + + EIGEN_CONSTEXPR + FixedInt<-N> operator-() const { return FixedInt<-N>(); } + + template + EIGEN_CONSTEXPR + FixedInt operator+( FixedInt) const { return FixedInt(); } + + template + EIGEN_CONSTEXPR + FixedInt operator-( FixedInt) const { return FixedInt(); } + + template + EIGEN_CONSTEXPR + FixedInt operator*( FixedInt) const { return FixedInt(); } + + template + EIGEN_CONSTEXPR + FixedInt operator/( FixedInt) const { return FixedInt(); } + + template + EIGEN_CONSTEXPR + FixedInt operator%( FixedInt) const { return FixedInt(); } + + template + EIGEN_CONSTEXPR + FixedInt operator|( FixedInt) const { return FixedInt(); } + + template + EIGEN_CONSTEXPR + FixedInt operator&( FixedInt) const { return FixedInt(); } + + // Needed in C++14 to allow fix(): + EIGEN_CONSTEXPR FixedInt operator() () const { return *this; } + + VariableAndFixedInt operator() (int val) const { return VariableAndFixedInt(val); } +}; + +/** \internal + * \class VariableAndFixedInt + * + * This class embeds both a compile-time integer \c N and a runtime integer. + * Both values are supposed to be equal unless the compile-time value \c N has a special + * value meaning that the runtime-value should be used. Depending on the context, this special + * value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for + * quantities that can be negative). + * + * It is the return-type of the function Eigen::fix(int), and most of the time this is the only + * way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt. + * Indeed, in order to write generic code, it is the responsibility of the callee to properly convert + * it to either a true compile-time quantity (i.e. a FixedInt), or to a runtime quantity (e.g., an Index) + * using the following generic helper: + * \code + * internal::cleanup_index_type::type + * internal::cleanup_index_type::type + * \endcode + * where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations. + * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. + * + * For convenience, you can also extract the compile-time value \c N using the following helper: + * \code + * internal::get_fixed_value::value + * \endcode + * that will give you \c N if T equals VariableAndFixedInt, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). + * + * \sa fix(int), class FixedInt + */ +template class VariableAndFixedInt +{ +public: + static const int value = N; + operator int() const { return m_value; } + VariableAndFixedInt(int val) { m_value = val; } +protected: + int m_value; +}; + +template struct get_fixed_value { + static const int value = Default; +}; + +template struct get_fixed_value,Default> { + static const int value = N; +}; + +template struct get_fixed_value,Default> { + static const int value = N ; +}; + +template +struct get_fixed_value,Default> { + static const int value = N; +}; + +template EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; } + +// Cleanup integer/FixedInt/VariableAndFixedInt/etc types: + +// By default, no cleanup: +template struct cleanup_index_type { typedef T type; }; + +// Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index +template struct cleanup_index_type::value>> { typedef Index type; }; + +// If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value: +template struct cleanup_index_type, DynamicKey> { typedef FixedInt type; }; +// If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index): +template struct cleanup_index_type, DynamicKey> { typedef Index type; }; + +template struct cleanup_index_type, DynamicKey> { typedef FixedInt type; }; + +} // end namespace internal + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +template +constexpr internal::FixedInt fix{}; + +#else // EIGEN_PARSED_BY_DOXYGEN + +/** \var fix() + * \ingroup Core_Module + * + * This \em identifier permits to construct an object embedding a compile-time integer \c N. + * + * \tparam N the compile-time integer value + * + * It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them: + * \code + * seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1] + * \endcode + * + * See also the function fix(int) to pass both a compile-time and runtime value. + * + * In c++14, it is implemented as: + * \code + * template static const internal::FixedInt fix{}; + * \endcode + * where internal::FixedInt is an internal template class similar to + * \c std::integral_constant + * Here, \c fix is thus an object of type \c internal::FixedInt. + * + * \sa fix(int), seq, seqN + */ +template +static const auto fix(); + +/** \fn fix(int) + * \ingroup Core_Module + * + * This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val. + * + * \tparam N the compile-time integer value + * \param val the fallback runtime integer value + * + * This function is a more general version of the \ref fix identifier/function that can be used in template code + * where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers + * such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers + * (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val + * will be used as a fallback. + * + * A typical use case would be: + * \code + * template void foo(const MatrixBase &mat) { + * const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2; + * const int n = mat.rows()/2; + * ... mat( seqN(0,fix(n) ) ...; + * } + * \endcode + * In this example, the function Eigen::seqN knows that the second argument is expected to be a size. + * If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n. + * Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as seqN(0,fix) . + * + * \sa fix, seqN, class ArithmeticSequence + */ +template +static const auto fix(int val); + +#endif // EIGEN_PARSED_BY_DOXYGEN + +} // end namespace Eigen + +#endif // EIGEN_INTEGRAL_CONSTANT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MKL_support.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MKL_support.h new file mode 100644 index 0000000..9cf5f6f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MKL_support.h @@ -0,0 +1,139 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to Intel(R) MKL + * Include file with common MKL declarations + ******************************************************************************** +*/ + +#ifndef EIGEN_MKL_SUPPORT_H +#define EIGEN_MKL_SUPPORT_H + +#ifdef EIGEN_USE_MKL_ALL + #ifndef EIGEN_USE_BLAS + #define EIGEN_USE_BLAS + #endif + #ifndef EIGEN_USE_LAPACKE + #define EIGEN_USE_LAPACKE + #endif + #ifndef EIGEN_USE_MKL_VML + #define EIGEN_USE_MKL_VML + #endif +#endif + +#ifdef EIGEN_USE_LAPACKE_STRICT + #define EIGEN_USE_LAPACKE +#endif + +#if defined(EIGEN_USE_MKL_VML) && !defined(EIGEN_USE_MKL) + #define EIGEN_USE_MKL +#endif + + +#if defined EIGEN_USE_MKL +# if (!defined MKL_DIRECT_CALL) && (!defined EIGEN_MKL_NO_DIRECT_CALL) +# define MKL_DIRECT_CALL +# define MKL_DIRECT_CALL_JUST_SET +# endif +# include +/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/ +# ifndef INTEL_MKL_VERSION +# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */ +# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/ +# undef EIGEN_USE_MKL +# endif +# ifndef EIGEN_USE_MKL + /*If the MKL version is too old, undef everything*/ +# undef EIGEN_USE_MKL_ALL +# undef EIGEN_USE_LAPACKE +# undef EIGEN_USE_MKL_VML +# undef EIGEN_USE_LAPACKE_STRICT +# undef EIGEN_USE_LAPACKE +# ifdef MKL_DIRECT_CALL_JUST_SET +# undef MKL_DIRECT_CALL +# endif +# endif +#endif + +#if defined EIGEN_USE_MKL + +#define EIGEN_MKL_VML_THRESHOLD 128 + +/* MKL_DOMAIN_BLAS, etc are defined only in 10.3 update 7 */ +/* MKL_BLAS, etc are not defined in 11.2 */ +#ifdef MKL_DOMAIN_ALL +#define EIGEN_MKL_DOMAIN_ALL MKL_DOMAIN_ALL +#else +#define EIGEN_MKL_DOMAIN_ALL MKL_ALL +#endif + +#ifdef MKL_DOMAIN_BLAS +#define EIGEN_MKL_DOMAIN_BLAS MKL_DOMAIN_BLAS +#else +#define EIGEN_MKL_DOMAIN_BLAS MKL_BLAS +#endif + +#ifdef MKL_DOMAIN_FFT +#define EIGEN_MKL_DOMAIN_FFT MKL_DOMAIN_FFT +#else +#define EIGEN_MKL_DOMAIN_FFT MKL_FFT +#endif + +#ifdef MKL_DOMAIN_VML +#define EIGEN_MKL_DOMAIN_VML MKL_DOMAIN_VML +#else +#define EIGEN_MKL_DOMAIN_VML MKL_VML +#endif + +#ifdef MKL_DOMAIN_PARDISO +#define EIGEN_MKL_DOMAIN_PARDISO MKL_DOMAIN_PARDISO +#else +#define EIGEN_MKL_DOMAIN_PARDISO MKL_PARDISO +#endif +#endif + +#if defined(EIGEN_USE_BLAS) && !defined(EIGEN_USE_MKL) +#include "../../misc/blas.h" +#endif + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +typedef std::complex dcomplex; +typedef std::complex scomplex; + +#if defined(EIGEN_USE_MKL) +typedef MKL_INT BlasIndex; +#else +typedef int BlasIndex; +#endif + +} // end namespace Eigen + + +#endif // EIGEN_MKL_SUPPORT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Macros.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Macros.h new file mode 100644 index 0000000..613a261 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Macros.h @@ -0,0 +1,1301 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MACROS_H +#define EIGEN_MACROS_H +#include "../InternalHeaderCheck.h" + +//------------------------------------------------------------------------------------------ +// Eigen version and basic defaults +//------------------------------------------------------------------------------------------ + +#define EIGEN_WORLD_VERSION 3 +#define EIGEN_MAJOR_VERSION 4 +#define EIGEN_MINOR_VERSION 90 + +#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \ + (EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \ + EIGEN_MINOR_VERSION>=z)))) + +#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR +#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION Eigen::RowMajor +#else +#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION Eigen::ColMajor +#endif + +#ifndef EIGEN_DEFAULT_DENSE_INDEX_TYPE +#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t +#endif + +// Upperbound on the C++ version to use. +// Expected values are 03, 11, 14, 17, etc. +// By default, let's use an arbitrarily large C++ version. +#ifndef EIGEN_MAX_CPP_VER +#define EIGEN_MAX_CPP_VER 99 +#endif + +/** Allows to disable some optimizations which might affect the accuracy of the result. + * Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them. + * They currently include: + * - single precision ArrayBase::sin() and ArrayBase::cos() for SSE and AVX vectorization. + */ +#ifndef EIGEN_FAST_MATH +#define EIGEN_FAST_MATH 1 +#endif + +#ifndef EIGEN_STACK_ALLOCATION_LIMIT +// 131072 == 128 KB +#define EIGEN_STACK_ALLOCATION_LIMIT 131072 +#endif + +//------------------------------------------------------------------------------------------ +// Compiler identification, EIGEN_COMP_* +//------------------------------------------------------------------------------------------ + +/// \internal EIGEN_COMP_GNUC set to version (e.g., 951 for GCC 9.5.1) for all compilers compatible with GCC +#ifdef __GNUC__ + #define EIGEN_COMP_GNUC (__GNUC__*100+__GNUC_MINOR__*10+__GNUC_PATCHLEVEL__) +#else + #define EIGEN_COMP_GNUC 0 +#endif + +/// \internal EIGEN_COMP_CLANG set to version (e.g., 372 for clang 3.7.2) if the compiler is clang +#if defined(__clang__) + #define EIGEN_COMP_CLANG (__clang_major__*100+__clang_minor__*10+__clang_patchlevel__) +#else + #define EIGEN_COMP_CLANG 0 +#endif + +/// \internal EIGEN_COMP_CLANGAPPLE set to the version number (e.g. 9000000 for AppleClang 9.0) if the compiler is AppleClang +#if defined(__clang__) && defined(__apple_build_version__) + #define EIGEN_COMP_CLANGAPPLE __apple_build_version__ +#else + #define EIGEN_COMP_CLANGAPPLE 0 +#endif + +/// \internal EIGEN_COMP_CASTXML set to 1 if being preprocessed by CastXML +#if defined(__castxml__) + #define EIGEN_COMP_CASTXML 1 +#else + #define EIGEN_COMP_CASTXML 0 +#endif + +/// \internal EIGEN_COMP_LLVM set to 1 if the compiler backend is llvm +#if defined(__llvm__) + #define EIGEN_COMP_LLVM 1 +#else + #define EIGEN_COMP_LLVM 0 +#endif + +/// \internal EIGEN_COMP_ICC set to __INTEL_COMPILER if the compiler is Intel icc compiler, 0 otherwise +#if defined(__INTEL_COMPILER) + #define EIGEN_COMP_ICC __INTEL_COMPILER +#else + #define EIGEN_COMP_ICC 0 +#endif + +/// \internal EIGEN_COMP_CLANGICC set to __INTEL_CLANG_COMPILER if the compiler is Intel icx compiler, 0 otherwise +#if defined(__INTEL_CLANG_COMPILER) + #define EIGEN_COMP_CLANGICC __INTEL_CLANG_COMPILER +#else + #define EIGEN_COMP_CLANGICC 0 +#endif + +/// \internal EIGEN_COMP_MINGW set to 1 if the compiler is mingw +#if defined(__MINGW32__) + #define EIGEN_COMP_MINGW 1 +#else + #define EIGEN_COMP_MINGW 0 +#endif + +/// \internal EIGEN_COMP_SUNCC set to 1 if the compiler is Solaris Studio +#if defined(__SUNPRO_CC) + #define EIGEN_COMP_SUNCC 1 +#else + #define EIGEN_COMP_SUNCC 0 +#endif + +/// \internal EIGEN_COMP_MSVC set to _MSC_VER if the compiler is Microsoft Visual C++, 0 otherwise. +#if defined(_MSC_VER) + #define EIGEN_COMP_MSVC _MSC_VER +#else + #define EIGEN_COMP_MSVC 0 +#endif + +#if defined(__NVCC__) +#if defined(__CUDACC_VER_MAJOR__) && (__CUDACC_VER_MAJOR__ >= 9) + #define EIGEN_COMP_NVCC ((__CUDACC_VER_MAJOR__ * 10000) + (__CUDACC_VER_MINOR__ * 100)) +#elif defined(__CUDACC_VER__) + #define EIGEN_COMP_NVCC __CUDACC_VER__ +#else + #error "NVCC did not define compiler version." +#endif +#else + #define EIGEN_COMP_NVCC 0 +#endif + +// For the record, here is a table summarizing the possible values for EIGEN_COMP_MSVC: +// name ver MSC_VER +// 2015 14 1900 +// "15" 15 1900 +// 2017-14.1 15.0 1910 +// 2017-14.11 15.3 1911 +// 2017-14.12 15.5 1912 +// 2017-14.13 15.6 1913 +// 2017-14.14 15.7 1914 +// 2017 15.8 1915 +// 2017 15.9 1916 +// 2019 RTW 16.0 1920 + +/// \internal EIGEN_COMP_MSVC_LANG set to _MSVC_LANG if the compiler is Microsoft Visual C++, 0 otherwise. +#if defined(_MSVC_LANG) + #define EIGEN_COMP_MSVC_LANG _MSVC_LANG +#else + #define EIGEN_COMP_MSVC_LANG 0 +#endif + +// For the record, here is a table summarizing the possible values for EIGEN_COMP_MSVC_LANG: +// MSVC option Standard MSVC_LANG +// /std:c++14 (default as of VS 2019) C++14 201402L +// /std:c++17 C++17 201703L +// /std:c++latest >C++17 >201703L + +/// \internal EIGEN_COMP_MSVC_STRICT set to 1 if the compiler is really Microsoft Visual C++ and not ,e.g., ICC or clang-cl +#if EIGEN_COMP_MSVC && !(EIGEN_COMP_ICC || EIGEN_COMP_LLVM || EIGEN_COMP_CLANG) + #define EIGEN_COMP_MSVC_STRICT _MSC_VER +#else + #define EIGEN_COMP_MSVC_STRICT 0 +#endif + +/// \internal EIGEN_COMP_IBM set to xlc version if the compiler is IBM XL C++ +// XLC version +// 3.1 0x0301 +// 4.5 0x0405 +// 5.0 0x0500 +// 12.1 0x0C01 +#if defined(__IBMCPP__) || defined(__xlc__) || defined(__ibmxl__) + #define EIGEN_COMP_IBM __xlC__ +#else + #define EIGEN_COMP_IBM 0 +#endif + +/// \internal EIGEN_COMP_PGI set to PGI version if the compiler is Portland Group Compiler +#if defined(__PGI) + #define EIGEN_COMP_PGI (__PGIC__*100+__PGIC_MINOR__) +#else + #define EIGEN_COMP_PGI 0 +#endif + +/// \internal EIGEN_COMP_ARM set to 1 if the compiler is ARM Compiler +#if defined(__CC_ARM) || defined(__ARMCC_VERSION) + #define EIGEN_COMP_ARM 1 +#else + #define EIGEN_COMP_ARM 0 +#endif + +/// \internal EIGEN_COMP_EMSCRIPTEN set to 1 if the compiler is Emscripten Compiler +#if defined(__EMSCRIPTEN__) + #define EIGEN_COMP_EMSCRIPTEN 1 +#else + #define EIGEN_COMP_EMSCRIPTEN 0 +#endif + +/// \internal EIGEN_COMP_FCC set to FCC version if the compiler is Fujitsu Compiler (traditional mode) +/// \note The Fujitsu C/C++ compiler uses the traditional mode based +/// on EDG g++ 6.1 by default or if envoked with the -Nnoclang flag +#if defined(__FUJITSU) + #define EIGEN_COMP_FCC (__FCC_major__*100+__FCC_minor__*10+__FCC_patchlevel__) +#else + #define EIGEN_COMP_FCC 0 +#endif + +/// \internal EIGEN_COMP_CLANGFCC set to FCC version if the compiler is Fujitsu Compiler (Clang mode) +/// \note The Fujitsu C/C++ compiler uses the non-traditional mode +/// based on Clang 7.1.0 if envoked with the -Nclang flag +#if defined(__CLANG_FUJITSU) + #define EIGEN_COMP_CLANGFCC (__FCC_major__*100+__FCC_minor__*10+__FCC_patchlevel__) +#else + #define EIGEN_COMP_CLANGFCC 0 +#endif + +/// \internal EIGEN_COMP_CPE set to CPE version if the compiler is HPE Cray Compiler (GCC based) +/// \note This is the SVE-enabled C/C++ compiler from the HPE Cray +/// Programming Environment (CPE) based on Cray GCC 8.1 +#if defined(_CRAYC) && !defined(__clang__) + #define EIGEN_COMP_CPE (_RELEASE_MAJOR*100+_RELEASE_MINOR*10+_RELEASE_PATCHLEVEL) +#else + #define EIGEN_COMP_CPE 0 +#endif + +/// \internal EIGEN_COMP_CLANGCPE set to CPE version if the compiler is HPE Cray Compiler (Clang based) +/// \note This is the C/C++ compiler from the HPE Cray Programming +/// Environment (CPE) based on Cray Clang 11.0 without SVE-support +#if defined(_CRAYC) && defined(__clang__) + #define EIGEN_COMP_CLANGCPE (_RELEASE_MAJOR*100+_RELEASE_MINOR*10+_RELEASE_PATCHLEVEL) +#else + #define EIGEN_COMP_CLANGCPE 0 +#endif + +/// \internal EIGEN_COMP_LCC set to 1 if the compiler is MCST-LCC (MCST eLbrus Compiler Collection) +#if defined(__LCC__) && defined(__MCST__) + #define EIGEN_COMP_LCC (__LCC__*100+__LCC_MINOR__) +#else + #define EIGEN_COMP_LCC 0 +#endif + + +/// \internal EIGEN_COMP_GNUC_STRICT set to 1 if the compiler is really GCC and not a compatible compiler (e.g., ICC, clang, mingw, etc.) +#if EIGEN_COMP_GNUC && !(EIGEN_COMP_CLANG || EIGEN_COMP_ICC || EIGEN_COMP_CLANGICC || EIGEN_COMP_MINGW || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM || EIGEN_COMP_EMSCRIPTEN || EIGEN_COMP_FCC || EIGEN_COMP_CLANGFCC || EIGEN_COMP_CPE || EIGEN_COMP_CLANGCPE || EIGEN_COMP_LCC) + #define EIGEN_COMP_GNUC_STRICT 1 +#else + #define EIGEN_COMP_GNUC_STRICT 0 +#endif + +// GCC, and compilers that pretend to be it, have different version schemes, so this only makes sense to use with the real GCC. +#if EIGEN_COMP_GNUC_STRICT + #define EIGEN_GNUC_STRICT_AT_LEAST(x,y,z) ((__GNUC__ > x) || \ + (__GNUC__ == x && __GNUC_MINOR__ > y) || \ + (__GNUC__ == x && __GNUC_MINOR__ == y && __GNUC_PATCHLEVEL__ >= z)) + #define EIGEN_GNUC_STRICT_LESS_THAN(x,y,z) ((__GNUC__ < x) || \ + (__GNUC__ == x && __GNUC_MINOR__ < y) || \ + (__GNUC__ == x && __GNUC_MINOR__ == y && __GNUC_PATCHLEVEL__ < z)) +#else + #define EIGEN_GNUC_STRICT_AT_LEAST(x,y,z) 0 + #define EIGEN_GNUC_STRICT_LESS_THAN(x,y,z) 0 +#endif + + + +/// \internal EIGEN_COMP_CLANG_STRICT set to 1 if the compiler is really Clang and not a compatible compiler (e.g., AppleClang, etc.) +#if EIGEN_COMP_CLANG && !(EIGEN_COMP_CLANGAPPLE || EIGEN_COMP_CLANGICC || EIGEN_COMP_CLANGFCC || EIGEN_COMP_CLANGCPE) + #define EIGEN_COMP_CLANG_STRICT 1 +#else + #define EIGEN_COMP_CLANG_STRICT 0 +#endif + +// Clang, and compilers forked from it, have different version schemes, so this only makes sense to use with the real Clang. +#if EIGEN_COMP_CLANG_STRICT + #define EIGEN_CLANG_STRICT_AT_LEAST(x,y,z) ((__clang_major__ > x) || \ + (__clang_major__ == x && __clang_minor__ > y) || \ + (__clang_major__ == x && __clang_minor__ == y && __clang_patchlevel__ >= z)) + #define EIGEN_CLANG_STRICT_LESS_THAN(x,y,z) ((__clang_major__ < x) || \ + (__clang_major__ == x && __clang_minor__ < y) || \ + (__clang_major__ == x && __clang_minor__ == y && __clang_patchlevel__ < z)) +#else + #define EIGEN_CLANG_STRICT_AT_LEAST(x,y,z) 0 + #define EIGEN_CLANG_STRICT_LESS_THAN(x,y,z) 0 +#endif + +//------------------------------------------------------------------------------------------ +// Architecture identification, EIGEN_ARCH_* +//------------------------------------------------------------------------------------------ + + +#if defined(__x86_64__) || (defined(_M_X64) && !defined(_M_ARM64EC)) || defined(__amd64) + #define EIGEN_ARCH_x86_64 1 +#else + #define EIGEN_ARCH_x86_64 0 +#endif + +#if defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__i386) + #define EIGEN_ARCH_i386 1 +#else + #define EIGEN_ARCH_i386 0 +#endif + +#if EIGEN_ARCH_x86_64 || EIGEN_ARCH_i386 + #define EIGEN_ARCH_i386_OR_x86_64 1 +#else + #define EIGEN_ARCH_i386_OR_x86_64 0 +#endif + +/// \internal EIGEN_ARCH_ARM set to 1 if the architecture is ARM +#if defined(__arm__) + #define EIGEN_ARCH_ARM 1 +#else + #define EIGEN_ARCH_ARM 0 +#endif + +/// \internal EIGEN_ARCH_ARM64 set to 1 if the architecture is ARM64 +#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC) + #define EIGEN_ARCH_ARM64 1 +#else + #define EIGEN_ARCH_ARM64 0 +#endif + +/// \internal EIGEN_ARCH_ARM_OR_ARM64 set to 1 if the architecture is ARM or ARM64 +#if EIGEN_ARCH_ARM || EIGEN_ARCH_ARM64 + #define EIGEN_ARCH_ARM_OR_ARM64 1 +#else + #define EIGEN_ARCH_ARM_OR_ARM64 0 +#endif + +/// \internal EIGEN_ARCH_ARMV8 set to 1 if the architecture is armv8 or greater. +#if EIGEN_ARCH_ARM_OR_ARM64 && defined(__ARM_ARCH) && __ARM_ARCH >= 8 +#define EIGEN_ARCH_ARMV8 1 +#else +#define EIGEN_ARCH_ARMV8 0 +#endif + + +/// \internal EIGEN_HAS_ARM64_FP16 set to 1 if the architecture provides an IEEE +/// compliant Arm fp16 type +#if EIGEN_ARCH_ARM_OR_ARM64 + #ifndef EIGEN_HAS_ARM64_FP16 + #if defined(__ARM_FP16_FORMAT_IEEE) + #define EIGEN_HAS_ARM64_FP16 1 + #else + #define EIGEN_HAS_ARM64_FP16 0 + #endif + #endif +#endif + +/// \internal EIGEN_ARCH_MIPS set to 1 if the architecture is MIPS +#if defined(__mips__) || defined(__mips) + #define EIGEN_ARCH_MIPS 1 +#else + #define EIGEN_ARCH_MIPS 0 +#endif + +/// \internal EIGEN_ARCH_SPARC set to 1 if the architecture is SPARC +#if defined(__sparc__) || defined(__sparc) + #define EIGEN_ARCH_SPARC 1 +#else + #define EIGEN_ARCH_SPARC 0 +#endif + +/// \internal EIGEN_ARCH_IA64 set to 1 if the architecture is Intel Itanium +#if defined(__ia64__) + #define EIGEN_ARCH_IA64 1 +#else + #define EIGEN_ARCH_IA64 0 +#endif + +/// \internal EIGEN_ARCH_PPC set to 1 if the architecture is PowerPC +#if defined(__powerpc__) || defined(__ppc__) || defined(_M_PPC) || defined(__POWERPC__) + #define EIGEN_ARCH_PPC 1 +#else + #define EIGEN_ARCH_PPC 0 +#endif + + + +//------------------------------------------------------------------------------------------ +// Operating system identification, EIGEN_OS_* +//------------------------------------------------------------------------------------------ + +/// \internal EIGEN_OS_UNIX set to 1 if the OS is a unix variant +#if defined(__unix__) || defined(__unix) + #define EIGEN_OS_UNIX 1 +#else + #define EIGEN_OS_UNIX 0 +#endif + +/// \internal EIGEN_OS_LINUX set to 1 if the OS is based on Linux kernel +#if defined(__linux__) + #define EIGEN_OS_LINUX 1 +#else + #define EIGEN_OS_LINUX 0 +#endif + +/// \internal EIGEN_OS_ANDROID set to 1 if the OS is Android +// note: ANDROID is defined when using ndk_build, __ANDROID__ is defined when using a standalone toolchain. +#if defined(__ANDROID__) || defined(ANDROID) + #define EIGEN_OS_ANDROID 1 +#else + #define EIGEN_OS_ANDROID 0 +#endif + +/// \internal EIGEN_OS_GNULINUX set to 1 if the OS is GNU Linux and not Linux-based OS (e.g., not android) +#if defined(__gnu_linux__) && !(EIGEN_OS_ANDROID) + #define EIGEN_OS_GNULINUX 1 +#else + #define EIGEN_OS_GNULINUX 0 +#endif + +/// \internal EIGEN_OS_BSD set to 1 if the OS is a BSD variant +#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) || defined(__DragonFly__) + #define EIGEN_OS_BSD 1 +#else + #define EIGEN_OS_BSD 0 +#endif + +/// \internal EIGEN_OS_MAC set to 1 if the OS is MacOS +#if defined(__APPLE__) + #define EIGEN_OS_MAC 1 +#else + #define EIGEN_OS_MAC 0 +#endif + +/// \internal EIGEN_OS_QNX set to 1 if the OS is QNX +#if defined(__QNX__) + #define EIGEN_OS_QNX 1 +#else + #define EIGEN_OS_QNX 0 +#endif + +/// \internal EIGEN_OS_WIN set to 1 if the OS is Windows based +#if defined(_WIN32) + #define EIGEN_OS_WIN 1 +#else + #define EIGEN_OS_WIN 0 +#endif + +/// \internal EIGEN_OS_WIN64 set to 1 if the OS is Windows 64bits +#if defined(_WIN64) + #define EIGEN_OS_WIN64 1 +#else + #define EIGEN_OS_WIN64 0 +#endif + +/// \internal EIGEN_OS_WINCE set to 1 if the OS is Windows CE +#if defined(_WIN32_WCE) + #define EIGEN_OS_WINCE 1 +#else + #define EIGEN_OS_WINCE 0 +#endif + +/// \internal EIGEN_OS_CYGWIN set to 1 if the OS is Windows/Cygwin +#if defined(__CYGWIN__) + #define EIGEN_OS_CYGWIN 1 +#else + #define EIGEN_OS_CYGWIN 0 +#endif + +/// \internal EIGEN_OS_WIN_STRICT set to 1 if the OS is really Windows and not some variants +#if EIGEN_OS_WIN && !( EIGEN_OS_WINCE || EIGEN_OS_CYGWIN ) + #define EIGEN_OS_WIN_STRICT 1 +#else + #define EIGEN_OS_WIN_STRICT 0 +#endif + +/// \internal EIGEN_OS_SUN set to __SUNPRO_C if the OS is SUN +// compiler solaris __SUNPRO_C +// version studio +// 5.7 10 0x570 +// 5.8 11 0x580 +// 5.9 12 0x590 +// 5.10 12.1 0x5100 +// 5.11 12.2 0x5110 +// 5.12 12.3 0x5120 +#if (defined(sun) || defined(__sun)) && !(defined(__SVR4) || defined(__svr4__)) + #define EIGEN_OS_SUN __SUNPRO_C +#else + #define EIGEN_OS_SUN 0 +#endif + +/// \internal EIGEN_OS_SOLARIS set to 1 if the OS is Solaris +#if (defined(sun) || defined(__sun)) && (defined(__SVR4) || defined(__svr4__)) + #define EIGEN_OS_SOLARIS 1 +#else + #define EIGEN_OS_SOLARIS 0 +#endif + + +//------------------------------------------------------------------------------------------ +// Detect GPU compilers and architectures +//------------------------------------------------------------------------------------------ + +// NVCC is not supported as the target platform for HIPCC +// Note that this also makes EIGEN_CUDACC and EIGEN_HIPCC mutually exclusive +#if defined(__NVCC__) && defined(__HIPCC__) + #error "NVCC as the target platform for HIPCC is currently not supported." +#endif + +#if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA) && !defined(__SYCL_DEVICE_ONLY__) + // Means the compiler is either nvcc or clang with CUDA enabled + #define EIGEN_CUDACC __CUDACC__ +#endif + +#if defined(__CUDA_ARCH__) && !defined(EIGEN_NO_CUDA) && !defined(__SYCL_DEVICE_ONLY__) + // Means we are generating code for the device + #define EIGEN_CUDA_ARCH __CUDA_ARCH__ +#endif + +#if defined(EIGEN_CUDACC) +#include + #define EIGEN_CUDA_SDK_VER (CUDA_VERSION * 10) +#else + #define EIGEN_CUDA_SDK_VER 0 +#endif + +#if defined(__HIPCC__) && !defined(EIGEN_NO_HIP) && !defined(__SYCL_DEVICE_ONLY__) + // Means the compiler is HIPCC (analogous to EIGEN_CUDACC, but for HIP) + #define EIGEN_HIPCC __HIPCC__ + + // We need to include hip_runtime.h here because it pulls in + // ++ hip_common.h which contains the define for __HIP_DEVICE_COMPILE__ + // ++ host_defines.h which contains the defines for the __host__ and __device__ macros + #include + + #if defined(__HIP_DEVICE_COMPILE__) && !defined(__SYCL_DEVICE_ONLY__) + // analogous to EIGEN_CUDA_ARCH, but for HIP + #define EIGEN_HIP_DEVICE_COMPILE __HIP_DEVICE_COMPILE__ + #endif + + // For HIP (ROCm 3.5 and higher), we need to explicitly set the launch_bounds attribute + // value to 1024. The compiler assigns a default value of 256 when the attribute is not + // specified. This results in failures on the HIP platform, for cases when a GPU kernel + // without an explicit launch_bounds attribute is called with a threads_per_block value + // greater than 256. + // + // This is a regression in functioanlity and is expected to be fixed within the next + // couple of ROCm releases (compiler will go back to using 1024 value as the default) + // + // In the meantime, we will use a "only enabled for HIP" macro to set the launch_bounds + // attribute. + + #define EIGEN_HIP_LAUNCH_BOUNDS_1024 __launch_bounds__(1024) + +#endif + +#if !defined(EIGEN_HIP_LAUNCH_BOUNDS_1024) +#define EIGEN_HIP_LAUNCH_BOUNDS_1024 +#endif // !defined(EIGEN_HIP_LAUNCH_BOUNDS_1024) + +// Unify CUDA/HIPCC + +#if defined(EIGEN_CUDACC) || defined(EIGEN_HIPCC) +// +// If either EIGEN_CUDACC or EIGEN_HIPCC is defined, then define EIGEN_GPUCC +// +#define EIGEN_GPUCC +// +// EIGEN_HIPCC implies the HIP compiler and is used to tweak Eigen code for use in HIP kernels +// EIGEN_CUDACC implies the CUDA compiler and is used to tweak Eigen code for use in CUDA kernels +// +// In most cases the same tweaks are required to the Eigen code to enable in both the HIP and CUDA kernels. +// For those cases, the corresponding code should be guarded with +// #if defined(EIGEN_GPUCC) +// instead of +// #if defined(EIGEN_CUDACC) || defined(EIGEN_HIPCC) +// +// For cases where the tweak is specific to HIP, the code should be guarded with +// #if defined(EIGEN_HIPCC) +// +// For cases where the tweak is specific to CUDA, the code should be guarded with +// #if defined(EIGEN_CUDACC) +// +#endif + +#if defined(EIGEN_CUDA_ARCH) || defined(EIGEN_HIP_DEVICE_COMPILE) +// +// If either EIGEN_CUDA_ARCH or EIGEN_HIP_DEVICE_COMPILE is defined, then define EIGEN_GPU_COMPILE_PHASE +// +#define EIGEN_GPU_COMPILE_PHASE +// +// GPU compilers (HIPCC, NVCC) typically do two passes over the source code, +// + one to compile the source for the "host" (ie CPU) +// + another to compile the source for the "device" (ie. GPU) +// +// Code that needs to enabled only during the either the "host" or "device" compilation phase +// needs to be guarded with a macro that indicates the current compilation phase +// +// EIGEN_HIP_DEVICE_COMPILE implies the device compilation phase in HIP +// EIGEN_CUDA_ARCH implies the device compilation phase in CUDA +// +// In most cases, the "host" / "device" specific code is the same for both HIP and CUDA +// For those cases, the code should be guarded with +// #if defined(EIGEN_GPU_COMPILE_PHASE) +// instead of +// #if defined(EIGEN_CUDA_ARCH) || defined(EIGEN_HIP_DEVICE_COMPILE) +// +// For cases where the tweak is specific to HIP, the code should be guarded with +// #if defined(EIGEN_HIP_DEVICE_COMPILE) +// +// For cases where the tweak is specific to CUDA, the code should be guarded with +// #if defined(EIGEN_CUDA_ARCH) +// +#endif + +/// \internal EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC set to 1 if the architecture +/// supports Neon vector intrinsics for fp16. +#if EIGEN_ARCH_ARM_OR_ARM64 + #ifndef EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC + // Clang only supports FP16 on aarch64, and not all intrinsics are available + // on A32 anyways even in GCC (e.g. vdiv_f16, vsqrt_f16). + #if EIGEN_ARCH_ARM64 && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE) + #define EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC 1 + #else + #define EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC 0 + #endif + #endif +#endif + +/// \internal EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC set to 1 if the architecture +/// supports Neon scalar intrinsics for fp16. +#if EIGEN_ARCH_ARM_OR_ARM64 + #ifndef EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC + // Clang only supports FP16 on aarch64, and not all intrinsics are available + // on A32 anyways, even in GCC (e.g. vceqh_f16). + #if EIGEN_ARCH_ARM64 && defined(__ARM_FEATURE_FP16_SCALAR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE) + #define EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC 1 + #endif + #endif +#endif + +#if defined(EIGEN_USE_SYCL) && defined(__SYCL_DEVICE_ONLY__) +// EIGEN_USE_SYCL is a user-defined macro while __SYCL_DEVICE_ONLY__ is a compiler-defined macro. +// In most cases we want to check if both macros are defined which can be done using the define below. +#define SYCL_DEVICE_ONLY +#endif + +//------------------------------------------------------------------------------------------ +// Detect Compiler/Architecture/OS specific features +//------------------------------------------------------------------------------------------ + +// Cross compiler wrapper around LLVM's __has_builtin +#ifdef __has_builtin +# define EIGEN_HAS_BUILTIN(x) __has_builtin(x) +#else +# define EIGEN_HAS_BUILTIN(x) 0 +#endif + +// A Clang feature extension to determine compiler features. +// We use it to determine 'cxx_rvalue_references' +#ifndef __has_feature +# define __has_feature(x) 0 +#endif + +// The macro EIGEN_CPLUSPLUS is a replacement for __cplusplus/_MSVC_LANG that +// works for both platforms, indicating the C++ standard version number. +// +// With MSVC, without defining /Zc:__cplusplus, the __cplusplus macro will +// report 199711L regardless of the language standard specified via /std. +// We need to rely on _MSVC_LANG instead, which is only available after +// VS2015.3. +#if EIGEN_COMP_MSVC_LANG > 0 +#define EIGEN_CPLUSPLUS EIGEN_COMP_MSVC_LANG +#elif EIGEN_COMP_MSVC >= 1900 +#define EIGEN_CPLUSPLUS 201103L +#elif defined(__cplusplus) +#define EIGEN_CPLUSPLUS __cplusplus +#else +#define EIGEN_CPLUSPLUS 0 +#endif + +// The macro EIGEN_COMP_CXXVER defines the c++ version expected by the compiler. +// For instance, if compiling with gcc and -std=c++17, then EIGEN_COMP_CXXVER +// is defined to 17. +#if EIGEN_CPLUSPLUS >= 202002L + #define EIGEN_COMP_CXXVER 20 +#elif EIGEN_CPLUSPLUS >= 201703L + #define EIGEN_COMP_CXXVER 17 +#elif EIGEN_CPLUSPLUS >= 201402L + #define EIGEN_COMP_CXXVER 14 +#elif EIGEN_CPLUSPLUS >= 201103L + #define EIGEN_COMP_CXXVER 11 +#else + #define EIGEN_COMP_CXXVER 03 +#endif + + +// The macros EIGEN_HAS_CXX?? defines a rough estimate of available c++ features +// but in practice we should not rely on them but rather on the availability of +// individual features as defined later. +// This is why there is no EIGEN_HAS_CXX17. +#if EIGEN_MAX_CPP_VER < 14 || EIGEN_COMP_CXXVER < 14 || \ + (EIGEN_COMP_MSVC && EIGEN_COMP_MSVC < 1900) || \ + (EIGEN_COMP_ICC && EIGEN_COMP_ICC < 1500) || \ + (EIGEN_COMP_NVCC && EIGEN_COMP_NVCC < 80000) || \ + (EIGEN_COMP_CLANG_STRICT && EIGEN_COMP_CLANG < 390) || \ + (EIGEN_COMP_CLANGAPPLE && EIGEN_COMP_CLANGAPPLE < 9000000) || \ + (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC < 510) +#error This compiler appears to be too old to be supported by Eigen +#endif + +// Does the compiler support C99? +// Need to include to make sure _GLIBCXX_USE_C99 gets defined +#include +#ifndef EIGEN_HAS_C99_MATH +#if ((defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901)) \ + || (defined(__GNUC__) && defined(_GLIBCXX_USE_C99)) \ + || (defined(_LIBCPP_VERSION) && !defined(_MSC_VER)) \ + || (EIGEN_COMP_MSVC) || defined(SYCL_DEVICE_ONLY)) + #define EIGEN_HAS_C99_MATH 1 +#else + #define EIGEN_HAS_C99_MATH 0 +#endif +#endif + +// Does the compiler support std::hash? +#ifndef EIGEN_HAS_STD_HASH +// The std::hash struct is defined in C++11 but is not labelled as a __device__ +// function and is not constexpr, so cannot be used on device. +#if !defined(EIGEN_GPU_COMPILE_PHASE) +#define EIGEN_HAS_STD_HASH 1 +#else +#define EIGEN_HAS_STD_HASH 0 +#endif +#endif // EIGEN_HAS_STD_HASH + +#ifndef EIGEN_HAS_STD_INVOKE_RESULT +#if EIGEN_MAX_CPP_VER >= 17 && EIGEN_COMP_CXXVER >= 17 +#define EIGEN_HAS_STD_INVOKE_RESULT 1 +#else +#define EIGEN_HAS_STD_INVOKE_RESULT 0 +#endif +#endif + +#define EIGEN_CONSTEXPR constexpr + +// NOTE: the required Apple's clang version is very conservative +// and it could be that XCode 9 works just fine. +// NOTE: the MSVC version is based on https://en.cppreference.com/w/cpp/compiler_support +// and not tested. +// NOTE: Intel C++ Compiler Classic (icc) Version 19.0 and later supports dynamic allocation +// for over-aligned data, but not in a manner that is compatible with Eigen. +// See https://gitlab.com/libeigen/eigen/-/issues/2575 +#ifndef EIGEN_HAS_CXX17_OVERALIGN +#if EIGEN_MAX_CPP_VER>=17 && EIGEN_COMP_CXXVER>=17 && ( \ + (EIGEN_COMP_MSVC >= 1912) \ + || (EIGEN_GNUC_STRICT_AT_LEAST(7,0,0)) \ + || (EIGEN_CLANG_STRICT_AT_LEAST(5,0,0)) \ + || (EIGEN_COMP_CLANGAPPLE && EIGEN_COMP_CLANGAPPLE >= 10000000) \ + ) && !EIGEN_COMP_ICC +#define EIGEN_HAS_CXX17_OVERALIGN 1 +#else +#define EIGEN_HAS_CXX17_OVERALIGN 0 +#endif +#endif + +#if defined(EIGEN_CUDACC) + // While available already with c++11, this is useful mostly starting with c++14 and relaxed constexpr rules + #if defined(__NVCC__) + // nvcc considers constexpr functions as __host__ __device__ with the option --expt-relaxed-constexpr + #ifdef __CUDACC_RELAXED_CONSTEXPR__ + #define EIGEN_CONSTEXPR_ARE_DEVICE_FUNC + #endif + #elif defined(__clang__) && defined(__CUDA__) && __has_feature(cxx_relaxed_constexpr) + // clang++ always considers constexpr functions as implicitly __host__ __device__ + #define EIGEN_CONSTEXPR_ARE_DEVICE_FUNC + #endif +#endif + +// Does the compiler support the __int128 and __uint128_t extensions for 128-bit +// integer arithmetic? +// +// Clang and GCC define __SIZEOF_INT128__ when these extensions are supported, +// but we avoid using them in certain cases: +// +// * Building using Clang for Windows, where the Clang runtime library has +// 128-bit support only on LP64 architectures, but Windows is LLP64. +#ifndef EIGEN_HAS_BUILTIN_INT128 +#if defined(__SIZEOF_INT128__) && !(EIGEN_OS_WIN && EIGEN_COMP_CLANG) +#define EIGEN_HAS_BUILTIN_INT128 1 +#else +#define EIGEN_HAS_BUILTIN_INT128 0 +#endif +#endif + +//------------------------------------------------------------------------------------------ +// Preprocessor programming helpers +//------------------------------------------------------------------------------------------ + +// This macro can be used to prevent from macro expansion, e.g.: +// std::max EIGEN_NOT_A_MACRO(a,b) +#define EIGEN_NOT_A_MACRO + +#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl; + +// concatenate two tokens +#define EIGEN_CAT2(a,b) a ## b +#define EIGEN_CAT(a,b) EIGEN_CAT2(a,b) + +#define EIGEN_COMMA , + +// convert a token to a string +#define EIGEN_MAKESTRING2(a) #a +#define EIGEN_MAKESTRING(a) EIGEN_MAKESTRING2(a) + +// EIGEN_STRONG_INLINE is a stronger version of the inline, using __forceinline on MSVC, +// but it still doesn't use GCC's always_inline. This is useful in (common) situations where MSVC needs forceinline +// but GCC is still doing fine with just inline. +#ifndef EIGEN_STRONG_INLINE +#if (EIGEN_COMP_MSVC || EIGEN_COMP_ICC) && !defined(EIGEN_GPUCC) +#define EIGEN_STRONG_INLINE __forceinline +#else +#define EIGEN_STRONG_INLINE inline +#endif +#endif + +// EIGEN_ALWAYS_INLINE is the strongest, it has the effect of making the function inline and adding every possible +// attribute to maximize inlining. This should only be used when really necessary: in particular, +// it uses __attribute__((always_inline)) on GCC, which most of the time is useless and can severely harm compile times. +// FIXME with the always_inline attribute, +#if EIGEN_COMP_GNUC && !defined(SYCL_DEVICE_ONLY) +#define EIGEN_ALWAYS_INLINE __attribute__((always_inline)) inline +#else +#define EIGEN_ALWAYS_INLINE EIGEN_STRONG_INLINE +#endif + +#if EIGEN_COMP_GNUC +#define EIGEN_DONT_INLINE __attribute__((noinline)) +#elif EIGEN_COMP_MSVC +#define EIGEN_DONT_INLINE __declspec(noinline) +#else +#define EIGEN_DONT_INLINE +#endif + +#if EIGEN_COMP_GNUC +#define EIGEN_PERMISSIVE_EXPR __extension__ +#else +#define EIGEN_PERMISSIVE_EXPR +#endif + +// GPU stuff + +// Disable some features when compiling with GPU compilers (SYCL/HIPCC) +#if defined(SYCL_DEVICE_ONLY) || defined(EIGEN_HIP_DEVICE_COMPILE) + // Do not try asserts on device code + #ifndef EIGEN_NO_DEBUG + #define EIGEN_NO_DEBUG + #endif + + #ifdef EIGEN_INTERNAL_DEBUGGING + #undef EIGEN_INTERNAL_DEBUGGING + #endif +#endif + +// No exceptions on device. +#if defined(SYCL_DEVICE_ONLY) || defined(EIGEN_GPU_COMPILE_PHASE) + #ifdef EIGEN_EXCEPTIONS + #undef EIGEN_EXCEPTIONS + #endif +#endif + +#if defined(SYCL_DEVICE_ONLY) + #ifndef EIGEN_DONT_VECTORIZE + #define EIGEN_DONT_VECTORIZE + #endif + #define EIGEN_DEVICE_FUNC __attribute__((flatten)) __attribute__((always_inline)) +// All functions callable from CUDA/HIP code must be qualified with __device__ +#elif defined(EIGEN_GPUCC) + #define EIGEN_DEVICE_FUNC __host__ __device__ +#else + #define EIGEN_DEVICE_FUNC +#endif + + +// this macro allows to get rid of linking errors about multiply defined functions. +// - static is not very good because it prevents definitions from different object files to be merged. +// So static causes the resulting linked executable to be bloated with multiple copies of the same function. +// - inline is not perfect either as it unwantedly hints the compiler toward inlining the function. +#define EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC +#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC inline + +#ifdef NDEBUG +# ifndef EIGEN_NO_DEBUG +# define EIGEN_NO_DEBUG +# endif +#endif + +// eigen_assert can be overridden +#ifndef eigen_assert +#define eigen_assert(x) eigen_plain_assert(x) +#endif + +#ifdef EIGEN_INTERNAL_DEBUGGING +#define eigen_internal_assert(x) eigen_assert(x) +#else +#define eigen_internal_assert(x) ((void)0) +#endif + +#if defined(EIGEN_NO_DEBUG) || (defined(EIGEN_GPU_COMPILE_PHASE) && defined(EIGEN_NO_DEBUG_GPU)) +#define EIGEN_ONLY_USED_FOR_DEBUG(x) EIGEN_UNUSED_VARIABLE(x) +#else +#define EIGEN_ONLY_USED_FOR_DEBUG(x) +#endif + +#ifndef EIGEN_NO_DEPRECATED_WARNING + #if EIGEN_COMP_GNUC + #define EIGEN_DEPRECATED __attribute__((deprecated)) + #elif EIGEN_COMP_MSVC + #define EIGEN_DEPRECATED __declspec(deprecated) + #else + #define EIGEN_DEPRECATED + #endif +#else + #define EIGEN_DEPRECATED +#endif + +#if EIGEN_COMP_GNUC +#define EIGEN_UNUSED __attribute__((unused)) +#else +#define EIGEN_UNUSED +#endif + +#if EIGEN_COMP_GNUC + #define EIGEN_PRAGMA(tokens) _Pragma(#tokens) + #define EIGEN_DIAGNOSTICS(tokens) EIGEN_PRAGMA(GCC diagnostic tokens) + #define EIGEN_DIAGNOSTICS_OFF(msc, gcc) EIGEN_DIAGNOSTICS(gcc) +#elif EIGEN_COMP_MSVC + #define EIGEN_PRAGMA(tokens) __pragma(tokens) + #define EIGEN_DIAGNOSTICS(tokens) EIGEN_PRAGMA(warning(tokens)) + #define EIGEN_DIAGNOSTICS_OFF(msc, gcc) EIGEN_DIAGNOSTICS(msc) +#else + #define EIGEN_PRAGMA(tokens) + #define EIGEN_DIAGNOSTICS(tokens) + #define EIGEN_DIAGNOSTICS_OFF(msc, gcc) +#endif + +#define EIGEN_DISABLE_DEPRECATED_WARNING EIGEN_DIAGNOSTICS_OFF(disable : 4996, ignored "-Wdeprecated-declarations") + +// Suppresses 'unused variable' warnings. +namespace Eigen { + namespace internal { + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void ignore_unused_variable(const T&) {} + } +} +#define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var); + +#if !defined(EIGEN_ASM_COMMENT) + #if EIGEN_COMP_GNUC && (EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64) + #define EIGEN_ASM_COMMENT(X) __asm__("#" X) + #else + #define EIGEN_ASM_COMMENT(X) + #endif +#endif + + +// Acts as a barrier preventing operations involving `X` from crossing. This +// occurs, for example, in the fast rounding trick where a magic constant is +// added then subtracted, which is otherwise compiled away with -ffast-math. +// +// See bug 1674 +#if !defined(EIGEN_OPTIMIZATION_BARRIER) + #if EIGEN_COMP_GNUC + // According to https://gcc.gnu.org/onlinedocs/gcc/Constraints.html: + // X: Any operand whatsoever. + // r: A register operand is allowed provided that it is in a general + // register. + // g: Any register, memory or immediate integer operand is allowed, except + // for registers that are not general registers. + // w: (AArch32/AArch64) Floating point register, Advanced SIMD vector + // register or SVE vector register. + // x: (SSE) Any SSE register. + // (AArch64) Like w, but restricted to registers 0 to 15 inclusive. + // v: (PowerPC) An Altivec vector register. + // wa:(PowerPC) A VSX register. + // + // "X" (uppercase) should work for all cases, though this seems to fail for + // some versions of GCC for arm/aarch64 with + // "error: inconsistent operand constraints in an 'asm'" + // Clang x86_64/arm/aarch64 seems to require "g" to support both scalars and + // vectors, otherwise + // "error: non-trivial scalar-to-vector conversion, possible invalid + // constraint for vector type" + // + // GCC for ppc64le generates an internal compiler error with x/X/g. + // GCC for AVX generates an internal compiler error with X. + // + // Tested on icc/gcc/clang for sse, avx, avx2, avx512dq + // gcc for arm, aarch64, + // gcc for ppc64le, + // both vectors and scalars. + // + // Note that this is restricted to plain types - this will not work + // directly for std::complex, Eigen::half, Eigen::bfloat16. For these, + // you will need to apply to the underlying POD type. + #if EIGEN_ARCH_PPC && EIGEN_COMP_GNUC_STRICT + // This seems to be broken on clang. Packet4f is loaded into a single + // register rather than a vector, zeroing out some entries. Integer + // types also generate a compile error. + #if EIGEN_OS_MAC + // General, Altivec for Apple (VSX were added in ISA v2.06): + #define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+r,v" (X)); + #else + // General, Altivec, VSX otherwise: + #define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+r,v,wa" (X)); + #endif + #elif EIGEN_ARCH_ARM_OR_ARM64 + #ifdef __ARM_FP + // General, VFP or NEON. + // Clang doesn't like "r", + // error: non-trivial scalar-to-vector conversion, possible invalid + // constraint for vector typ + #define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+g,w" (X)); + #else + // Arm without VFP or NEON. + // "w" constraint will not compile. + #define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+g" (X)); + #endif + #elif EIGEN_ARCH_i386_OR_x86_64 + // General, SSE. + #define EIGEN_OPTIMIZATION_BARRIER(X) __asm__ ("" : "+g,x" (X)); + #else + // Not implemented for other architectures. + #define EIGEN_OPTIMIZATION_BARRIER(X) + #endif + #else + // Not implemented for other compilers. + #define EIGEN_OPTIMIZATION_BARRIER(X) + #endif +#endif + +#if EIGEN_COMP_MSVC + // NOTE MSVC often gives C4127 warnings with compiletime if statements. See bug 1362. + // This workaround is ugly, but it does the job. +# define EIGEN_CONST_CONDITIONAL(cond) (void)0, cond +#else +# define EIGEN_CONST_CONDITIONAL(cond) cond +#endif + +#ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD + #define EIGEN_RESTRICT +#endif +#ifndef EIGEN_RESTRICT + #define EIGEN_RESTRICT __restrict +#endif + + +#ifndef EIGEN_DEFAULT_IO_FORMAT +#ifdef EIGEN_MAKING_DOCS +// format used in Eigen's documentation +// needed to define it here as escaping characters in CMake add_definition's argument seems very problematic. +#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat(3, 0, " ", "\n", "", "") +#else +#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat() +#endif +#endif + +// just an empty macro ! +#define EIGEN_EMPTY + + +// When compiling CUDA/HIP device code with NVCC or HIPCC +// pull in math functions from the global namespace. +// In host mode, and when device code is compiled with clang, +// use the std versions. +#if (defined(EIGEN_CUDA_ARCH) && defined(__NVCC__)) || defined(EIGEN_HIP_DEVICE_COMPILE) + #define EIGEN_USING_STD(FUNC) using ::FUNC; +#else + #define EIGEN_USING_STD(FUNC) using std::FUNC; +#endif + +#if EIGEN_COMP_MSVC_STRICT && EIGEN_COMP_NVCC + // Wwhen compiling with NVCC, using the base operator is necessary, + // otherwise we get duplicate definition errors + // For later MSVC versions, we require explicit operator= definition, otherwise we get + // use of implicitly deleted operator errors. + // (cf Bugs 920, 1000, 1324, 2291) + #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + using Base::operator =; +#elif EIGEN_COMP_CLANG // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653) + #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + using Base::operator =; \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \ + template \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other) { Base::operator=(other.derived()); return *this; } +#else + #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + using Base::operator =; \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \ + { \ + Base::operator=(other); \ + return *this; \ + } +#endif + + +/** + * \internal + * \brief Macro to explicitly define the default copy constructor. + * This is necessary, because the implicit definition is deprecated if the copy-assignment is overridden. + */ +#define EIGEN_DEFAULT_COPY_CONSTRUCTOR(CLASS) EIGEN_DEVICE_FUNC CLASS(const CLASS&) = default; + + + +/** \internal + * \brief Macro to manually inherit assignment operators. + * This is necessary, because the implicitly defined assignment operator gets deleted when a custom operator= is defined. + * With C++11 or later this also default-implements the copy-constructor + */ +#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \ + EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + EIGEN_DEFAULT_COPY_CONSTRUCTOR(Derived) + +/** \internal + * \brief Macro to manually define default constructors and destructors. + * This is necessary when the copy constructor is re-defined. + * For empty helper classes this should usually be protected, to avoid accidentally creating empty objects. + * + * Hiding the default destructor lead to problems in C++03 mode together with boost::multiprecision + */ +#define EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(Derived) \ + EIGEN_DEVICE_FUNC Derived() = default; \ + EIGEN_DEVICE_FUNC ~Derived() = default; + + + + + +/** +* Just a side note. Commenting within defines works only by documenting +* behind the object (via '!<'). Comments cannot be multi-line and thus +* we have these extra long lines. What is confusing doxygen over here is +* that we use '\' and basically have a bunch of typedefs with their +* documentation in a single line. +**/ + +#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \ + typedef typename Eigen::internal::traits::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex. */ \ + typedef typename Eigen::NumTraits::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex, T were corresponding to RealScalar. */ \ + typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \ + typedef typename Eigen::internal::ref_selector::type Nested; \ + typedef typename Eigen::internal::traits::StorageKind StorageKind; \ + typedef typename Eigen::internal::traits::StorageIndex StorageIndex; \ + enum CompileTimeTraits \ + { RowsAtCompileTime = Eigen::internal::traits::RowsAtCompileTime, \ + ColsAtCompileTime = Eigen::internal::traits::ColsAtCompileTime, \ + Flags = Eigen::internal::traits::Flags, \ + SizeAtCompileTime = Base::SizeAtCompileTime, \ + MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \ + IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \ + using Base::derived; \ + using Base::const_cast_derived; + + +// FIXME Maybe the EIGEN_DENSE_PUBLIC_INTERFACE could be removed as importing PacketScalar is rarely needed +#define EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \ + EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \ + typedef typename Base::PacketScalar PacketScalar; + + +#if EIGEN_HAS_BUILTIN(__builtin_expect) || EIGEN_COMP_GNUC +#define EIGEN_PREDICT_FALSE(x) (__builtin_expect(x, false)) +#define EIGEN_PREDICT_TRUE(x) (__builtin_expect(false || (x), true)) +#else +#define EIGEN_PREDICT_FALSE(x) (x) +#define EIGEN_PREDICT_TRUE(x) (x) +#endif + +// the expression type of a standard coefficient wise binary operation +#define EIGEN_CWISE_BINARY_RETURN_TYPE(LHS,RHS,OPNAME) \ + CwiseBinaryOp< \ + EIGEN_CAT(EIGEN_CAT(internal::scalar_,OPNAME),_op)< \ + typename internal::traits::Scalar, \ + typename internal::traits::Scalar \ + >, \ + const LHS, \ + const RHS \ + > + +#define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,OPNAME) \ + template \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,OPNAME) \ + (METHOD)(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ + { \ + return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,OPNAME)(derived(), other.derived()); \ + } + +#define EIGEN_SCALAR_BINARY_SUPPORTED(OPNAME,TYPEA,TYPEB) \ + (Eigen::internal::has_ReturnType > >::value) + +#define EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(EXPR,SCALAR,OPNAME) \ + CwiseBinaryOp::Scalar,SCALAR>, const EXPR, \ + const typename internal::plain_constant_type::type> + +#define EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(SCALAR,EXPR,OPNAME) \ + CwiseBinaryOp::Scalar>, \ + const typename internal::plain_constant_type::type, const EXPR> + +#define EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(METHOD,OPNAME) \ + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ + const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename internal::promote_scalar_arg::type,OPNAME)\ + (METHOD)(const T& scalar) const { \ + typedef typename internal::promote_scalar_arg::type PromotedT; \ + return EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,PromotedT,OPNAME)(derived(), \ + typename internal::plain_constant_type::type(derived().rows(), derived().cols(), internal::scalar_constant_op(scalar))); \ + } + +#define EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(METHOD,OPNAME) \ + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend \ + const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename internal::promote_scalar_arg::type,Derived,OPNAME) \ + (METHOD)(const T& scalar, const StorageBaseType& matrix) { \ + typedef typename internal::promote_scalar_arg::type PromotedT; \ + return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(PromotedT,Derived,OPNAME)( \ + typename internal::plain_constant_type::type(matrix.derived().rows(), matrix.derived().cols(), internal::scalar_constant_op(scalar)), matrix.derived()); \ + } + +#define EIGEN_MAKE_SCALAR_BINARY_OP(METHOD,OPNAME) \ + EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(METHOD,OPNAME) \ + EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(METHOD,OPNAME) + + +#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(EIGEN_CUDA_ARCH) && !defined(EIGEN_EXCEPTIONS) && !defined(EIGEN_USE_SYCL) && !defined(EIGEN_HIP_DEVICE_COMPILE) + #define EIGEN_EXCEPTIONS +#endif + + +#ifdef EIGEN_EXCEPTIONS +# define EIGEN_THROW_X(X) throw X +# define EIGEN_THROW throw +# define EIGEN_TRY try +# define EIGEN_CATCH(X) catch (X) +#else +# if defined(EIGEN_CUDA_ARCH) +# define EIGEN_THROW_X(X) asm("trap;") +# define EIGEN_THROW asm("trap;") +# elif defined(EIGEN_HIP_DEVICE_COMPILE) +# define EIGEN_THROW_X(X) asm("s_trap 0") +# define EIGEN_THROW asm("s_trap 0") +# else +# define EIGEN_THROW_X(X) std::abort() +# define EIGEN_THROW std::abort() +# endif +# define EIGEN_TRY if (true) +# define EIGEN_CATCH(X) else +#endif + + +#define EIGEN_NOEXCEPT noexcept +#define EIGEN_NOEXCEPT_IF(x) noexcept(x) +#define EIGEN_NO_THROW noexcept(true) +#define EIGEN_EXCEPTION_SPEC(X) noexcept(false) + + +// The all function is used to enable a variadic version of eigen_assert which can take a parameter pack as its input. +namespace Eigen { +namespace internal { + +EIGEN_DEVICE_FUNC inline bool all(){ return true; } + +template +EIGEN_DEVICE_FUNC bool all(T t, Ts ... ts){ return t && all(ts...); } + +} +} + +// provide override and final specifiers if they are available: +#define EIGEN_OVERRIDE override +#define EIGEN_FINAL final + +// Wrapping #pragma unroll in a macro since it is required for SYCL +#if defined(SYCL_DEVICE_ONLY) + #if defined(_MSC_VER) + #define EIGEN_UNROLL_LOOP __pragma(unroll) + #else + #define EIGEN_UNROLL_LOOP _Pragma("unroll") + #endif +#else + #define EIGEN_UNROLL_LOOP +#endif + +// Notice: Use this macro with caution. The code in the if body should still +// compile with C++14. +#if defined(EIGEN_HAS_CXX17_IFCONSTEXPR) +#define EIGEN_IF_CONSTEXPR(X) if constexpr (X) +#else +#define EIGEN_IF_CONSTEXPR(X) if (X) +#endif + +#endif // EIGEN_MACROS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MaxSizeVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MaxSizeVector.h new file mode 100644 index 0000000..ca0e3d1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MaxSizeVector.h @@ -0,0 +1,158 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_FIXEDSIZEVECTOR_H +#define EIGEN_FIXEDSIZEVECTOR_H + +namespace Eigen { + +/** \class MaxSizeVector + * \ingroup Core + * + * \brief The MaxSizeVector class. + * + * The %MaxSizeVector provides a subset of std::vector functionality. + * + * The goal is to provide basic std::vector operations when using + * std::vector is not an option (e.g. on GPU or when compiling using + * FMA/AVX, as this can cause either compilation failures or illegal + * instruction failures). + * + * Beware: The constructors are not API compatible with these of + * std::vector. + */ +template +class MaxSizeVector { + static const size_t alignment = internal::plain_enum_max(EIGEN_ALIGNOF(T), sizeof(void*)); + public: + // Construct a new MaxSizeVector, reserve n elements. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit MaxSizeVector(size_t n) + : reserve_(n), size_(0), + data_(static_cast(internal::handmade_aligned_malloc(n * sizeof(T), alignment))) { + } + + // Construct a new MaxSizeVector, reserve and resize to n. + // Copy the init value to all elements. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + MaxSizeVector(size_t n, const T& init) + : reserve_(n), size_(n), + data_(static_cast(internal::handmade_aligned_malloc(n * sizeof(T), alignment))) { + size_t i = 0; + EIGEN_TRY + { + for(; i < size_; ++i) { new (&data_[i]) T(init); } + } + EIGEN_CATCH(...) + { + // Construction failed, destruct in reverse order: + for(; (i+1) > 0; --i) { data_[i-1].~T(); } + internal::handmade_aligned_free(data_); + EIGEN_THROW; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ~MaxSizeVector() { + for (size_t i = size_; i > 0; --i) { + data_[i-1].~T(); + } + internal::handmade_aligned_free(data_); + } + + void resize(size_t n) { + eigen_assert(n <= reserve_); + for (; size_ < n; ++size_) { + new (&data_[size_]) T; + } + for (; size_ > n; --size_) { + data_[size_-1].~T(); + } + eigen_assert(size_ == n); + } + + // Append new elements (up to reserved size). + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void push_back(const T& t) { + eigen_assert(size_ < reserve_); + new (&data_[size_++]) T(t); + } + + // For C++03 compatibility this only takes one argument + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void emplace_back(const X& x) { + eigen_assert(size_ < reserve_); + new (&data_[size_++]) T(x); + } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T& operator[] (size_t i) const { + eigen_assert(i < size_); + return data_[i]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T& operator[] (size_t i) { + eigen_assert(i < size_); + return data_[i]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T& back() { + eigen_assert(size_ > 0); + return data_[size_ - 1]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T& back() const { + eigen_assert(size_ > 0); + return data_[size_ - 1]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void pop_back() { + eigen_assert(size_ > 0); + data_[--size_].~T(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + size_t size() const { return size_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + bool empty() const { return size_ == 0; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T* data() { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T* data() const { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T* begin() { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T* end() { return data_ + size_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T* begin() const { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T* end() const { return data_ + size_; } + + private: + size_t reserve_; + size_t size_; + T* data_; +}; + +} // namespace Eigen + +#endif // EIGEN_FIXEDSIZEVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Memory.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Memory.h new file mode 100644 index 0000000..f4217e2 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Memory.h @@ -0,0 +1,1274 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// Copyright (C) 2008-2009 Benoit Jacob +// Copyright (C) 2009 Kenneth Riddile +// Copyright (C) 2010 Hauke Heibel +// Copyright (C) 2010 Thomas Capricelli +// Copyright (C) 2013 Pavel Holoborodko +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +/***************************************************************************** +*** Platform checks for aligned malloc functions *** +*****************************************************************************/ + +#ifndef EIGEN_MEMORY_H +#define EIGEN_MEMORY_H + +#ifndef EIGEN_MALLOC_ALREADY_ALIGNED + +// Try to determine automatically if malloc is already aligned. + +// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: +// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html +// This is true at least since glibc 2.8. +// This leaves the question how to detect 64-bit. According to this document, +// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf +// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed +// quite safe, at least within the context of glibc, to equate 64-bit with LP64. +#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ + && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) + #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 +#else + #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 +#endif + +// FreeBSD 6 seems to have 16-byte aligned malloc +// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup +// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures +// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup +#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) + #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 +#else + #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 +#endif + +#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ + || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ + || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ + || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED + #define EIGEN_MALLOC_ALREADY_ALIGNED 1 +#else + #define EIGEN_MALLOC_ALREADY_ALIGNED 0 +#endif + +#endif + +#ifndef EIGEN_MALLOC_CHECK_THREAD_LOCAL + +// Check whether we can use the thread_local keyword to allow or disallow +// allocating memory with per-thread granularity, by means of the +// set_is_malloc_allowed() function. +#ifndef EIGEN_AVOID_THREAD_LOCAL + +#if ((EIGEN_COMP_GNUC) || __has_feature(cxx_thread_local) || EIGEN_COMP_MSVC >= 1900) && !defined(EIGEN_GPU_COMPILE_PHASE) +#define EIGEN_MALLOC_CHECK_THREAD_LOCAL thread_local +#else +#define EIGEN_MALLOC_CHECK_THREAD_LOCAL +#endif + +#else // EIGEN_AVOID_THREAD_LOCAL +#define EIGEN_MALLOC_CHECK_THREAD_LOCAL +#endif // EIGEN_AVOID_THREAD_LOCAL + +#endif + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/***************************************************************************** +*** Implementation of portable aligned versions of malloc/free/realloc *** +*****************************************************************************/ + +#ifdef EIGEN_NO_MALLOC +EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() +{ + eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); +} +#elif defined EIGEN_RUNTIME_NO_MALLOC +EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) +{ + EIGEN_MALLOC_CHECK_THREAD_LOCAL static bool value = true; + if (update == 1) + value = new_value; + return value; +} +EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } +EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } +EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() +{ + eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); +} +#else +EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() +{} +#endif + + +EIGEN_DEVICE_FUNC +inline void throw_std_bad_alloc() +{ + #ifdef EIGEN_EXCEPTIONS + throw std::bad_alloc(); + #else + std::size_t huge = static_cast(-1); + #if defined(EIGEN_HIPCC) + // + // calls to "::operator new" are to be treated as opaque function calls (i.e no inlining), + // and as a consequence the code in the #else block triggers the hipcc warning : + // "no overloaded function has restriction specifiers that are compatible with the ambient context" + // + // "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects + // the same on "operator new" + // Reverting code back to the old version in this #if block for the hipcc compiler + // + new int[huge]; + #else + void* unused = ::operator new(huge); + EIGEN_UNUSED_VARIABLE(unused); + #endif + #endif +} + +/***************************************************************************** +*** Implementation of handmade aligned functions *** +*****************************************************************************/ + +/* ----- Hand made implementations of aligned malloc/free and realloc ----- */ + +/** \internal Like malloc, but the returned pointer is guaranteed to be aligned to `alignment`. + * Fast, but wastes `alignment` additional bytes of memory. Does not throw any exception. + */ +EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) +{ + eigen_assert(alignment >= sizeof(void*) && alignment <= 128 && (alignment & (alignment-1)) == 0 && "Alignment must be at least sizeof(void*), less than or equal to 128, and a power of 2"); + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(malloc) + void* original = malloc(size + alignment); + if (original == 0) return 0; + uint8_t offset = static_cast(alignment - (reinterpret_cast(original) & (alignment - 1))); + void* aligned = static_cast(static_cast(original) + offset); + *(static_cast(aligned) - 1) = offset; + return aligned; +} + +/** \internal Frees memory allocated with handmade_aligned_malloc */ +EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void *ptr) +{ + if (ptr) { + uint8_t offset = static_cast(*(static_cast(ptr) - 1)); + void* original = static_cast(static_cast(ptr) - offset); + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(free) + free(original); + } +} + +/** \internal + * \brief Reallocates aligned memory. + * Since we know that our handmade version is based on std::malloc + * we can use std::realloc to implement efficient reallocation. + */ +EIGEN_DEVICE_FUNC inline void* handmade_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) +{ + if (ptr == nullptr) return handmade_aligned_malloc(new_size, alignment); + uint8_t old_offset = *(static_cast(ptr) - 1); + void* old_original = static_cast(ptr) - old_offset; + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(realloc) + void* original = realloc(old_original, new_size + alignment); + if (original == nullptr) return nullptr; + if (original == old_original) return ptr; + uint8_t offset = static_cast(alignment - (reinterpret_cast(original) & (alignment - 1))); + void* aligned = static_cast(static_cast(original) + offset); + if (offset != old_offset) { + const void* src = static_cast(static_cast(original) + old_offset); + std::size_t count = (std::min)(new_size, old_size); + std::memmove(aligned, src, count); + } + *(static_cast(aligned) - 1) = offset; + return aligned; +} + +/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. + * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. + */ +EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) +{ + if (size == 0) return nullptr; + + void *result; + #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(malloc) + result = malloc(size); + + #if EIGEN_DEFAULT_ALIGN_BYTES==16 + eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade aligned memory allocator."); + #endif + #else + result = handmade_aligned_malloc(size); + #endif + + if(!result && size) + throw_std_bad_alloc(); + + return result; +} + +/** \internal Frees memory allocated with aligned_malloc. */ +EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr) +{ + #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED + + if(ptr) + check_that_malloc_is_allowed(); + EIGEN_USING_STD(free) + free(ptr); + + #else + handmade_aligned_free(ptr); + #endif +} + +/** + * \internal + * \brief Reallocates an aligned block of memory. + * \throws std::bad_alloc on allocation failure + */ +EIGEN_DEVICE_FUNC inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size) +{ + if (ptr == nullptr) return aligned_malloc(new_size); + if (old_size == new_size) return ptr; + if (new_size == 0) { aligned_free(ptr); return nullptr; } + + void *result; +#if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED + EIGEN_UNUSED_VARIABLE(old_size) + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(realloc) + result = realloc(ptr,new_size); +#else + result = handmade_aligned_realloc(ptr,new_size,old_size); +#endif + + if (!result && new_size) + throw_std_bad_alloc(); + + return result; +} + +/***************************************************************************** +*** Implementation of conditionally aligned functions *** +*****************************************************************************/ + +/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. + * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. + */ +template EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) +{ + return aligned_malloc(size); +} + +template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) +{ + if (size == 0) return nullptr; + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(malloc) + void *result = malloc(size); + + if(!result && size) + throw_std_bad_alloc(); + return result; +} + +/** \internal Frees memory allocated with conditional_aligned_malloc */ +template EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) +{ + aligned_free(ptr); +} + +template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) +{ + if(ptr) + check_that_malloc_is_allowed(); + EIGEN_USING_STD(free) + free(ptr); +} + +template EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) +{ + return aligned_realloc(ptr, new_size, old_size); +} + +template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) +{ + if (ptr == nullptr) return conditional_aligned_malloc(new_size); + if (old_size == new_size) return ptr; + if (new_size == 0) { conditional_aligned_free(ptr); return nullptr; } + + check_that_malloc_is_allowed(); + EIGEN_USING_STD(realloc) + return realloc(ptr, new_size); +} + +/***************************************************************************** +*** Construction/destruction of array elements *** +*****************************************************************************/ + +/** \internal Destructs the elements of an array. + * The \a size parameters tells on how many objects to call the destructor of T. + */ +template EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size) +{ + // always destruct an array starting from the end. + if(ptr) + while(size) ptr[--size].~T(); +} + +/** \internal Constructs the elements of an array. + * The \a size parameter tells on how many objects to call the constructor of T. + */ +template EIGEN_DEVICE_FUNC inline T* default_construct_elements_of_array(T *ptr, std::size_t size) +{ + std::size_t i=0; + EIGEN_TRY + { + for (i = 0; i < size; ++i) ::new (ptr + i) T; + } + EIGEN_CATCH(...) + { + destruct_elements_of_array(ptr, i); + EIGEN_THROW; + } + return ptr; +} + +/** \internal Copy-constructs the elements of an array. + * The \a size parameter tells on how many objects to copy. + */ +template EIGEN_DEVICE_FUNC inline T* copy_construct_elements_of_array(T *ptr, const T* src, std::size_t size) +{ + std::size_t i=0; + EIGEN_TRY + { + for (i = 0; i < size; ++i) ::new (ptr + i) T(*(src + i)); + } + EIGEN_CATCH(...) + { + destruct_elements_of_array(ptr, i); + EIGEN_THROW; + } + return ptr; +} + +/** \internal Move-constructs the elements of an array. + * The \a size parameter tells on how many objects to move. + */ +template EIGEN_DEVICE_FUNC inline T* move_construct_elements_of_array(T *ptr, T* src, std::size_t size) +{ + std::size_t i=0; + EIGEN_TRY + { + for (i = 0; i < size; ++i) ::new (ptr + i) T(std::move(*(src + i))); + } + EIGEN_CATCH(...) + { + destruct_elements_of_array(ptr, i); + EIGEN_THROW; + } + return ptr; +} + +/***************************************************************************** +*** Implementation of aligned new/delete-like functions *** +*****************************************************************************/ + +template +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) +{ + if(size > std::size_t(-1) / sizeof(T)) + throw_std_bad_alloc(); +} + +/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. + * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. + * The default constructor of T is called. + */ +template EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) +{ + check_size_for_overflow(size); + T *result = static_cast(aligned_malloc(sizeof(T)*size)); + EIGEN_TRY + { + return default_construct_elements_of_array(result, size); + } + EIGEN_CATCH(...) + { + aligned_free(result); + EIGEN_THROW; + } + return result; +} + +template EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) +{ + check_size_for_overflow(size); + T *result = static_cast(conditional_aligned_malloc(sizeof(T)*size)); + EIGEN_TRY + { + return default_construct_elements_of_array(result, size); + } + EIGEN_CATCH(...) + { + conditional_aligned_free(result); + EIGEN_THROW; + } + return result; +} + +/** \internal Deletes objects constructed with aligned_new + * The \a size parameters tells on how many objects to call the destructor of T. + */ +template EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size) +{ + destruct_elements_of_array(ptr, size); + aligned_free(ptr); +} + +/** \internal Deletes objects constructed with conditional_aligned_new + * The \a size parameters tells on how many objects to call the destructor of T. + */ +template EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size) +{ + destruct_elements_of_array(ptr, size); + conditional_aligned_free(ptr); +} + +template EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) +{ + check_size_for_overflow(new_size); + check_size_for_overflow(old_size); + + // If elements need to be explicitly initialized, we cannot simply realloc + // (or memcpy) the memory block - each element needs to be reconstructed. + // Otherwise, objects that contain internal pointers like mpfr or + // AnnoyingScalar can be pointing to the wrong thing. + T* result = static_cast(conditional_aligned_malloc(sizeof(T)*new_size)); + EIGEN_TRY + { + // Move-construct initial elements. + std::size_t copy_size = (std::min)(old_size, new_size); + move_construct_elements_of_array(result, pts, copy_size); + + // Default-construct remaining elements. + if (new_size > old_size) { + default_construct_elements_of_array(result + copy_size, new_size - old_size); + } + + // Delete old elements. + conditional_aligned_delete(pts, old_size); + } + EIGEN_CATCH(...) + { + conditional_aligned_free(result); + EIGEN_THROW; + } + + return result; +} + + +template EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) +{ + if(size==0) + return 0; // short-cut. Also fixes Bug 884 + check_size_for_overflow(size); + T *result = static_cast(conditional_aligned_malloc(sizeof(T)*size)); + if(NumTraits::RequireInitialization) + { + EIGEN_TRY + { + default_construct_elements_of_array(result, size); + } + EIGEN_CATCH(...) + { + conditional_aligned_free(result); + EIGEN_THROW; + } + } + return result; +} + +template EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) +{ + if (NumTraits::RequireInitialization) { + return conditional_aligned_realloc_new(pts, new_size, old_size); + } + + check_size_for_overflow(new_size); + check_size_for_overflow(old_size); + return static_cast(conditional_aligned_realloc(static_cast(pts), sizeof(T)*new_size, sizeof(T)*old_size)); +} + +template EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size) +{ + if(NumTraits::RequireInitialization) + destruct_elements_of_array(ptr, size); + conditional_aligned_free(ptr); +} + +/****************************************************************************/ + +/** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment. + * + * \tparam Alignment requested alignment in Bytes. + * \param array the address of the start of the array + * \param size the size of the array + * + * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, + * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If + * packet size for the given scalar type is 1, then everything is considered well-aligned. + * + * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a + * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for + * example with Scalar=double on certain 32-bit platforms, see bug #79. + * + * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. + * \sa first_default_aligned() + */ +template +EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) +{ + const Index ScalarSize = sizeof(Scalar); + const Index AlignmentSize = Alignment / ScalarSize; + const Index AlignmentMask = AlignmentSize-1; + + if(AlignmentSize<=1) + { + // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar + // so that all elements of the array have the same alignment. + return 0; + } + else if( (std::uintptr_t(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0) + { + // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size. + // Consequently, no element of the array is well aligned. + return size; + } + else + { + Index first = (AlignmentSize - (Index((std::uintptr_t(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; + return (first < size) ? first : size; + } +} + +/** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement. + * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase) */ +template +EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) +{ + typedef typename packet_traits::type DefaultPacketType; + return first_aligned::alignment>(array, size); +} + +/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size + */ +template +inline Index first_multiple(Index size, Index base) +{ + return ((size+base-1)/base)*base; +} + +// std::copy is much slower than memcpy, so let's introduce a smart_copy which +// use memcpy on trivial types, i.e., on types that does not require an initialization ctor. +template struct smart_copy_helper; + +template EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) +{ + smart_copy_helper::RequireInitialization>::run(start, end, target); +} + +template struct smart_copy_helper { + EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) + { + std::intptr_t size = std::intptr_t(end)-std::intptr_t(start); + if(size==0) return; + eigen_internal_assert(start!=0 && end!=0 && target!=0); + EIGEN_USING_STD(memcpy) + memcpy(target, start, size); + } +}; + +template struct smart_copy_helper { + EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) + { std::copy(start, end, target); } +}; + +// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. +template struct smart_memmove_helper; + +template void smart_memmove(const T* start, const T* end, T* target) +{ + smart_memmove_helper::RequireInitialization>::run(start, end, target); +} + +template struct smart_memmove_helper { + static inline void run(const T* start, const T* end, T* target) + { + std::intptr_t size = std::intptr_t(end)-std::intptr_t(start); + if(size==0) return; + eigen_internal_assert(start!=0 && end!=0 && target!=0); + std::memmove(target, start, size); + } +}; + +template struct smart_memmove_helper { + static inline void run(const T* start, const T* end, T* target) + { + if (std::uintptr_t(target) < std::uintptr_t(start)) + { + std::copy(start, end, target); + } + else + { + std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T); + std::copy_backward(start, end, target + count); + } + } +}; + +template EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target) +{ + return std::move(start, end, target); +} + +/***************************************************************************** +*** Implementation of runtime stack allocation (falling back to malloc) *** +*****************************************************************************/ + +// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA +// to the appropriate stack allocation function +#if ! defined EIGEN_ALLOCA && ! defined EIGEN_GPU_COMPILE_PHASE + #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) + #define EIGEN_ALLOCA alloca + #elif EIGEN_COMP_MSVC + #define EIGEN_ALLOCA _alloca + #endif +#endif + +// With clang -Oz -mthumb, alloca changes the stack pointer in a way that is +// not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because +// the compiler still emits bad code because stack allocation checks use "<=". +// TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772 +// is fixed. +#if defined(__clang__) && defined(__thumb__) + #undef EIGEN_ALLOCA +#endif + +// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data +// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. +template class aligned_stack_memory_handler : noncopyable +{ + public: + /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. + * Note that \a ptr can be 0 regardless of the other parameters. + * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits::RequireInitialization). + * In this case, the buffer elements will also be destructed when this handler will be destructed. + * Finally, if \a dealloc is true, then the pointer \a ptr is freed. + **/ + EIGEN_DEVICE_FUNC + aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) + : m_ptr(ptr), m_size(size), m_deallocate(dealloc) + { + if(NumTraits::RequireInitialization && m_ptr) + Eigen::internal::default_construct_elements_of_array(m_ptr, size); + } + EIGEN_DEVICE_FUNC + ~aligned_stack_memory_handler() + { + if(NumTraits::RequireInitialization && m_ptr) + Eigen::internal::destruct_elements_of_array(m_ptr, m_size); + if(m_deallocate) + Eigen::internal::aligned_free(m_ptr); + } + protected: + T* m_ptr; + std::size_t m_size; + bool m_deallocate; +}; + +#ifdef EIGEN_ALLOCA + +template::Evaluate && Xpr::MaxSizeAtCompileTime==Dynamic + > +struct local_nested_eval_wrapper +{ + static constexpr bool NeedExternalBuffer = false; + typedef typename Xpr::Scalar Scalar; + typedef typename nested_eval::type ObjectType; + ObjectType object; + + EIGEN_DEVICE_FUNC + local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr) + { + EIGEN_UNUSED_VARIABLE(ptr); + eigen_internal_assert(ptr==0); + } +}; + +template +struct local_nested_eval_wrapper +{ + static constexpr bool NeedExternalBuffer = true; + typedef typename Xpr::Scalar Scalar; + typedef typename plain_object_eval::type PlainObject; + typedef Map ObjectType; + ObjectType object; + + EIGEN_DEVICE_FUNC + local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) + : object(ptr==0 ? reinterpret_cast(Eigen::internal::aligned_malloc(sizeof(Scalar)*xpr.size())) : ptr, xpr.rows(), xpr.cols()), + m_deallocate(ptr==0) + { + if(NumTraits::RequireInitialization && object.data()) + Eigen::internal::default_construct_elements_of_array(object.data(), object.size()); + object = xpr; + } + + EIGEN_DEVICE_FUNC + ~local_nested_eval_wrapper() + { + if(NumTraits::RequireInitialization && object.data()) + Eigen::internal::destruct_elements_of_array(object.data(), object.size()); + if(m_deallocate) + Eigen::internal::aligned_free(object.data()); + } + +private: + bool m_deallocate; +}; + +#endif // EIGEN_ALLOCA + +template class scoped_array : noncopyable +{ + T* m_ptr; +public: + explicit scoped_array(std::ptrdiff_t size) + { + m_ptr = new T[size]; + } + ~scoped_array() + { + delete[] m_ptr; + } + T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } + const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } + T* &ptr() { return m_ptr; } + const T* ptr() const { return m_ptr; } + operator const T*() const { return m_ptr; } +}; + +template void swap(scoped_array &a,scoped_array &b) +{ + std::swap(a.ptr(),b.ptr()); +} + +} // end namespace internal + +/** \internal + * + * The macro ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) declares, allocates, + * and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack + * if the size in bytes is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform + * (currently, this is Linux, OSX and Visual Studio only). Otherwise the memory is allocated on the heap. + * The allocated buffer is automatically deleted when exiting the scope of this declaration. + * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. + * Here is an example: + * \code + * { + * ei_declare_aligned_stack_constructed_variable(float,data,size,0); + * // use data[0] to data[size-1] + * } + * \endcode + * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. + * + * The macro ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) is analogue to + * \code + * typename internal::nested_eval::type NAME(XPR); + * \endcode + * with the advantage of using aligned stack allocation even if the maximal size of XPR at compile time is unknown. + * This is accomplished through alloca if this later is supported and if the required number of bytes + * is below EIGEN_STACK_ALLOCATION_LIMIT. + */ +#ifdef EIGEN_ALLOCA + + #if EIGEN_DEFAULT_ALIGN_BYTES>0 + // We always manually re-align the result of EIGEN_ALLOCA. + // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. + #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast((std::uintptr_t(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + #else + #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) + #endif + + #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ + Eigen::internal::check_size_for_overflow(SIZE); \ + TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ + : reinterpret_cast( \ + (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ + : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ + Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) + + + #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) \ + Eigen::internal::local_nested_eval_wrapper EIGEN_CAT(NAME,_wrapper)(XPR, reinterpret_cast( \ + ( (Eigen::internal::local_nested_eval_wrapper::NeedExternalBuffer) && ((sizeof(typename XPR_T::Scalar)*XPR.size())<=EIGEN_STACK_ALLOCATION_LIMIT) ) \ + ? EIGEN_ALIGNED_ALLOCA( sizeof(typename XPR_T::Scalar)*XPR.size() ) : 0 ) ) ; \ + typename Eigen::internal::local_nested_eval_wrapper::ObjectType NAME(EIGEN_CAT(NAME,_wrapper).object) + +#else + + #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ + Eigen::internal::check_size_for_overflow(SIZE); \ + TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ + Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) + + +#define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) typename Eigen::internal::nested_eval::type NAME(XPR) + +#endif + + +/***************************************************************************** +*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** +*****************************************************************************/ + +#if EIGEN_HAS_CXX17_OVERALIGN + +// C++17 -> no need to bother about alignment anymore :) + +#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) +#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) +#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW +#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) + +#else + +// HIP does not support new/delete on device. +#if EIGEN_MAX_ALIGN_BYTES!=0 && !defined(EIGEN_HIP_DEVICE_COMPILE) + #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ + EIGEN_DEVICE_FUNC \ + void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ + EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc(size); } \ + EIGEN_CATCH (...) { return 0; } \ + } + #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ + EIGEN_DEVICE_FUNC \ + void *operator new(std::size_t size) { \ + return Eigen::internal::conditional_aligned_malloc(size); \ + } \ + EIGEN_DEVICE_FUNC \ + void *operator new[](std::size_t size) { \ + return Eigen::internal::conditional_aligned_malloc(size); \ + } \ + EIGEN_DEVICE_FUNC \ + void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ + EIGEN_DEVICE_FUNC \ + void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ + EIGEN_DEVICE_FUNC \ + void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ + EIGEN_DEVICE_FUNC \ + void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ + /* in-place new and delete. since (at least afaik) there is no actual */ \ + /* memory allocated we can safely let the default implementation handle */ \ + /* this particular case. */ \ + EIGEN_DEVICE_FUNC \ + static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ + EIGEN_DEVICE_FUNC \ + static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ + EIGEN_DEVICE_FUNC \ + void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ + EIGEN_DEVICE_FUNC \ + void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ + /* nothrow-new (returns zero instead of std::bad_alloc) */ \ + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ + EIGEN_DEVICE_FUNC \ + void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ + Eigen::internal::conditional_aligned_free(ptr); \ + } \ + typedef void eigen_aligned_operator_new_marker_type; +#else + #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) +#endif + +#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) +#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool( \ + ((Size)!=Eigen::Dynamic) && \ + (((EIGEN_MAX_ALIGN_BYTES>=16) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES )==0)) || \ + ((EIGEN_MAX_ALIGN_BYTES>=32) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/2)==0)) || \ + ((EIGEN_MAX_ALIGN_BYTES>=64) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/4)==0)) ))) + +#endif + +/****************************************************************************/ + +/** \class aligned_allocator +* \ingroup Core_Module +* +* \brief STL compatible allocator to use with types requiring a non-standard alignment. +* +* The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd. +* By default, it will thus provide at least 16 bytes alignment and more in following cases: +* - 32 bytes alignment if AVX is enabled. +* - 64 bytes alignment if AVX512 is enabled. +* +* This can be controlled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented +* \link TopicPreprocessorDirectivesPerformance there \endlink. +* +* Example: +* \code +* // Matrix4f requires 16 bytes alignment: +* std::map< int, Matrix4f, std::less, +* aligned_allocator > > my_map_mat4; +* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: +* std::map< int, Vector3f > my_map_vec3; +* \endcode +* +* \sa \blank \ref TopicStlContainers. +*/ +template +class aligned_allocator : public std::allocator +{ +public: + typedef std::size_t size_type; + typedef std::ptrdiff_t difference_type; + typedef T* pointer; + typedef const T* const_pointer; + typedef T& reference; + typedef const T& const_reference; + typedef T value_type; + + template + struct rebind + { + typedef aligned_allocator other; + }; + + aligned_allocator() : std::allocator() {} + + aligned_allocator(const aligned_allocator& other) : std::allocator(other) {} + + template + aligned_allocator(const aligned_allocator& other) : std::allocator(other) {} + + ~aligned_allocator() {} + + #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_STRICT_AT_LEAST(7,0,0) + // In gcc std::allocator::max_size() is bugged making gcc triggers a warning: + // eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807 + // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544 + size_type max_size() const { + return (std::numeric_limits::max)()/sizeof(T); + } + #endif + + pointer allocate(size_type num, const void* /*hint*/ = 0) + { + internal::check_size_for_overflow(num); + return static_cast( internal::aligned_malloc(num * sizeof(T)) ); + } + + void deallocate(pointer p, size_type /*num*/) + { + internal::aligned_free(p); + } +}; + +//---------- Cache sizes ---------- + +#if !defined(EIGEN_NO_CPUID) +# if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 +# if defined(__PIC__) && EIGEN_ARCH_i386 + // Case for x86 with PIC +# define EIGEN_CPUID(abcd,func,id) \ + __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); +# elif defined(__PIC__) && EIGEN_ARCH_x86_64 + // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. + // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. +# define EIGEN_CPUID(abcd,func,id) \ + __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); +# else + // Case for x86_64 or x86 w/o PIC +# define EIGEN_CPUID(abcd,func,id) \ + __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); +# endif +# elif EIGEN_COMP_MSVC +# if EIGEN_ARCH_i386_OR_x86_64 +# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) +# endif +# endif +#endif + +namespace internal { + +#ifdef EIGEN_CPUID + +inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) +{ + return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; +} + +inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) +{ + int abcd[4]; + l1 = l2 = l3 = 0; + int cache_id = 0; + int cache_type = 0; + do { + abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; + EIGEN_CPUID(abcd,0x4,cache_id); + cache_type = (abcd[0] & 0x0F) >> 0; + if(cache_type==1||cache_type==3) // data or unified cache + { + int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] + int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] + int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] + int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] + int sets = (abcd[2]); // C[31:0] + + int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); + + switch(cache_level) + { + case 1: l1 = cache_size; break; + case 2: l2 = cache_size; break; + case 3: l3 = cache_size; break; + default: break; + } + } + cache_id++; + } while(cache_type>0 && cache_id<16); +} + +inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) +{ + int abcd[4]; + abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; + l1 = l2 = l3 = 0; + EIGEN_CPUID(abcd,0x00000002,0); + unsigned char * bytes = reinterpret_cast(abcd)+2; + bool check_for_p2_core2 = false; + for(int i=0; i<14; ++i) + { + switch(bytes[i]) + { + case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines + case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines + case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines + case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) + case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) + case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines + case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines + case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored + case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored + case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored + case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored + case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) + case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored + case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored + case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored + case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored + case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored + case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored + case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored + case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored + case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored + case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored + case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) + case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines + case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines + case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines + case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines + case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines + case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines + case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines + case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines + case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 + case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines + case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines + case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines + case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines + case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines + case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines + case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored + case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored + case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored + case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored + case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines + case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) + case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines + case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines + case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines + case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines + case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines + case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines + case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines + case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines + case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines + case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) + case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) + case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) + case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) + + default: break; + } + } + if(check_for_p2_core2 && l2 == l3) + l3 = 0; + l1 *= 1024; + l2 *= 1024; + l3 *= 1024; +} + +inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) +{ + if(max_std_funcs>=4) + queryCacheSizes_intel_direct(l1,l2,l3); + else if(max_std_funcs>=2) + queryCacheSizes_intel_codes(l1,l2,l3); + else + l1 = l2 = l3 = 0; +} + +inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) +{ + int abcd[4]; + abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; + + // First query the max supported function. + EIGEN_CPUID(abcd,0x80000000,0); + if(static_cast(abcd[0]) >= static_cast(0x80000006)) + { + EIGEN_CPUID(abcd,0x80000005,0); + l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB + abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; + EIGEN_CPUID(abcd,0x80000006,0); + l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB + l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB + } + else + { + l1 = l2 = l3 = 0; + } +} +#endif + +/** \internal + * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ +inline void queryCacheSizes(int& l1, int& l2, int& l3) +{ + #ifdef EIGEN_CPUID + int abcd[4]; + const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; + const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; + const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" + + // identify the CPU vendor + EIGEN_CPUID(abcd,0x0,0); + int max_std_funcs = abcd[0]; + if(cpuid_is_vendor(abcd,GenuineIntel)) + queryCacheSizes_intel(l1,l2,l3,max_std_funcs); + else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) + queryCacheSizes_amd(l1,l2,l3); + else + // by default let's use Intel's API + queryCacheSizes_intel(l1,l2,l3,max_std_funcs); + + // here is the list of other vendors: +// ||cpuid_is_vendor(abcd,"VIA VIA VIA ") +// ||cpuid_is_vendor(abcd,"CyrixInstead") +// ||cpuid_is_vendor(abcd,"CentaurHauls") +// ||cpuid_is_vendor(abcd,"GenuineTMx86") +// ||cpuid_is_vendor(abcd,"TransmetaCPU") +// ||cpuid_is_vendor(abcd,"RiseRiseRise") +// ||cpuid_is_vendor(abcd,"Geode by NSC") +// ||cpuid_is_vendor(abcd,"SiS SiS SiS ") +// ||cpuid_is_vendor(abcd,"UMC UMC UMC ") +// ||cpuid_is_vendor(abcd,"NexGenDriven") + #else + l1 = l2 = l3 = -1; + #endif +} + +/** \internal + * \returns the size in Bytes of the L1 data cache */ +inline int queryL1CacheSize() +{ + int l1(-1), l2, l3; + queryCacheSizes(l1,l2,l3); + return l1; +} + +/** \internal + * \returns the size in Bytes of the L2 or L3 cache if this later is present */ +inline int queryTopLevelCacheSize() +{ + int l1, l2(-1), l3(-1); + queryCacheSizes(l1,l2,l3); + return (std::max)(l2,l3); +} + + + +/** \internal + * This wraps C++20's std::construct_at, using placement new instead if it is not available. + */ + +#if EIGEN_COMP_CXXVER >= 20 +using std::construct_at; +#else +template +EIGEN_DEVICE_FUNC T* construct_at( T* p, Args&&... args ) +{ + return ::new (const_cast(static_cast(p))) + T(std::forward(args)...); +} +#endif + +/** \internal + * This wraps C++17's std::destroy_at. If it's not available it calls the destructor. + * The wrapper is not a full replacement for C++20's std::destroy_at as it cannot + * be applied to std::array. + */ +#if EIGEN_COMP_CXXVER >= 17 +using std::destroy_at; +#else +template +EIGEN_DEVICE_FUNC void destroy_at(T* p) +{ + p->~T(); +} +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MEMORY_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Meta.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Meta.h new file mode 100644 index 0000000..ba5a563 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Meta.h @@ -0,0 +1,594 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_META_H +#define EIGEN_META_H + +#include "../InternalHeaderCheck.h" + +#if defined(EIGEN_GPU_COMPILE_PHASE) + + #include + + #if defined(EIGEN_CUDA_ARCH) + #include + #endif + + #if defined(EIGEN_HIP_DEVICE_COMPILE) + #include "Eigen/src/Core/arch/HIP/hcc/math_constants.h" + #endif + +#endif + +// Define portable (u)int{32,64} types +#include + +namespace Eigen { +namespace numext { +typedef std::uint8_t uint8_t; +typedef std::int8_t int8_t; +typedef std::uint16_t uint16_t; +typedef std::int16_t int16_t; +typedef std::uint32_t uint32_t; +typedef std::int32_t int32_t; +typedef std::uint64_t uint64_t; +typedef std::int64_t int64_t; + +template +struct get_integer_by_size { + typedef void signed_type; + typedef void unsigned_type; +}; +template <> +struct get_integer_by_size<1> { + typedef int8_t signed_type; + typedef uint8_t unsigned_type; +}; +template <> +struct get_integer_by_size<2> { + typedef int16_t signed_type; + typedef uint16_t unsigned_type; +}; +template <> +struct get_integer_by_size<4> { + typedef int32_t signed_type; + typedef uint32_t unsigned_type; +}; +template <> +struct get_integer_by_size<8> { + typedef int64_t signed_type; + typedef uint64_t unsigned_type; +}; +} +} + +namespace Eigen { + +typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; + +/** + * \brief The Index type as used for the API. + * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. + * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. + */ + +typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; + +namespace internal { + +/** \internal + * \file Meta.h + * This file contains generic metaprogramming classes which are not specifically related to Eigen. + * \note In case you wonder, yes we're aware that Boost already provides all these features, + * we however don't want to add a dependency to Boost. + */ + +struct true_type { enum { value = 1 }; }; +struct false_type { enum { value = 0 }; }; + +template +struct bool_constant; + +template<> +struct bool_constant : true_type {}; + +template<> +struct bool_constant : false_type {}; + +// Third-party libraries rely on these. +using std::conditional; +using std::remove_reference; +using std::remove_pointer; +using std::remove_const; + +template struct remove_all { typedef T type; }; +template struct remove_all { typedef typename remove_all::type type; }; +template struct remove_all { typedef typename remove_all::type type; }; +template struct remove_all { typedef typename remove_all::type type; }; +template struct remove_all { typedef typename remove_all::type type; }; +template struct remove_all { typedef typename remove_all::type type; }; + +template +using remove_all_t = typename remove_all::type; + +template struct is_arithmetic { enum { value = false }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +// GPU devices treat `long double` as `double`. +#ifndef EIGEN_GPU_COMPILE_PHASE +template<> struct is_arithmetic { enum { value = true }; }; +#endif +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic{ enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; + +template struct is_same { enum { value = 0 }; }; +template struct is_same { enum { value = 1 }; }; + +template< class T > +struct is_void : is_same> {}; + +/** \internal + * Implementation of std::void_t for SFINAE. + * + * Pre C++17: + * Custom implementation. + * + * Post C++17: Uses std::void_t + */ +#if EIGEN_COMP_CXXVER >= 17 +using std::void_t; +#else +template +using void_t = void; +#endif + +template<> struct is_arithmetic { enum { value = true }; }; +template<> struct is_arithmetic { enum { value = true }; }; +using std::is_integral; + +using std::make_unsigned; + +template struct is_const { enum { value = 0 }; }; +template struct is_const { enum { value = 1 }; }; + +template struct add_const_on_value_type { typedef const T type; }; +template struct add_const_on_value_type { typedef T const& type; }; +template struct add_const_on_value_type { typedef T const* type; }; +template struct add_const_on_value_type { typedef T const* const type; }; +template struct add_const_on_value_type { typedef T const* const type; }; + +template +using add_const_on_value_type_t = typename add_const_on_value_type::type; + +using std::is_convertible; + +/** \internal + * A base class do disable default copy ctor and copy assignment operator. + */ +class noncopyable +{ + EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); + EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); +protected: + EIGEN_DEVICE_FUNC noncopyable() {} + EIGEN_DEVICE_FUNC ~noncopyable() {} +}; + +/** \internal + * Provides access to the number of elements in the object of as a compile-time constant expression. + * It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default). + * + * Similar to std::tuple_size, but more general. + * + * It currently supports: + * - any types T defining T::SizeAtCompileTime + * - plain C arrays as T[N] + * - std::array (c++11) + * - some internal types such as SingleRange and AllRange + * + * The second template parameter eases SFINAE-based specializations. + */ +template struct array_size { + enum { value = Dynamic }; +}; + +template struct array_size> { + enum { value = T::SizeAtCompileTime }; +}; + +template struct array_size { + enum { value = N }; +}; +template struct array_size { + enum { value = N }; +}; + +template struct array_size > { + enum { value = N }; +}; +template struct array_size > { + enum { value = N }; +}; + + +/** \internal + * Analogue of the std::ssize free function. + * It returns the signed size of the container or view \a x of type \c T + * + * It currently supports: + * - any types T defining a member T::size() const + * - plain C arrays as T[N] + * + * For C++20, this function just forwards to `std::ssize`, or any ADL discoverable `ssize` function. + */ +#if EIGEN_COMP_CXXVER < 20 || EIGEN_GNUC_STRICT_LESS_THAN(10,0,0) +template +EIGEN_CONSTEXPR auto index_list_size(const T& x) { + using R = std::common_type_t>; + return static_cast(x.size()); +} + +template +EIGEN_CONSTEXPR std::ptrdiff_t index_list_size(const T (&)[N]) { return N; } +#else +template +EIGEN_CONSTEXPR auto index_list_size(T&& x) { + using std::ssize; + return ssize(std::forward(x)); +} +#endif // EIGEN_COMP_CXXVER + +/** \internal + * Convenient struct to get the result type of a nullary, unary, binary, or + * ternary functor. + * + * Pre C++17: + * This uses std::result_of. However, note the `type` member removes + * const and converts references/pointers to their corresponding value type. + * + * Post C++17: Uses std::invoke_result + */ +#if EIGEN_HAS_STD_INVOKE_RESULT +template struct result_of; + +template +struct result_of { + typedef typename std::invoke_result::type type1; + typedef remove_all_t type; +}; + +template +struct invoke_result { + typedef typename std::invoke_result::type type1; + typedef remove_all_t type; +}; +#else +template struct result_of { + typedef typename std::result_of::type type1; + typedef remove_all_t type; +}; + +template +struct invoke_result { + typedef typename result_of::type type1; + typedef remove_all_t type; +}; +#endif + +// Reduces a sequence of bools to true if all are true, false otherwise. +template +using reduce_all = std::is_same, + std::integer_sequence >; + +// Reduces a sequence of bools to true if any are true, false if all false. +template +using reduce_any = std::integral_constant, std::integer_sequence >::value>; + +struct meta_yes { char a[1]; }; +struct meta_no { char a[2]; }; + +// Check whether T::ReturnType does exist +template +struct has_ReturnType +{ + template static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0); + template static meta_no testFunctor(...); + + enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; +}; + +template const T* return_ptr(); + +template +struct has_nullary_operator +{ + template static meta_yes testFunctor(C const *,std::enable_if_t<(sizeof(return_ptr()->operator()())>0)> * = 0); + static meta_no testFunctor(...); + + enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; +}; + +template +struct has_unary_operator +{ + template static meta_yes testFunctor(C const *,std::enable_if_t<(sizeof(return_ptr()->operator()(IndexType(0)))>0)> * = 0); + static meta_no testFunctor(...); + + enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; +}; + +template +struct has_binary_operator +{ + template static meta_yes testFunctor(C const *,std::enable_if_t<(sizeof(return_ptr()->operator()(IndexType(0),IndexType(0)))>0)> * = 0); + static meta_no testFunctor(...); + + enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; +}; + +/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. + * Usage example: \code meta_sqrt<1023>::ret \endcode + */ +template Y)))> +class meta_sqrt +{ + enum { + MidX = (InfX+SupX)/2, + TakeInf = MidX*MidX > Y ? 1 : 0, + NewInf = int(TakeInf) ? InfX : int(MidX), + NewSup = int(TakeInf) ? int(MidX) : SupX + }; + public: + enum { ret = meta_sqrt::ret }; +}; + +template +class meta_sqrt { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; + + +/** \internal Computes the least common multiple of two positive integer A and B + * at compile-time. + */ +template=B)> +struct meta_least_common_multiple +{ + enum { ret = meta_least_common_multiple::ret }; +}; +template +struct meta_least_common_multiple +{ + enum { ret = meta_least_common_multiple::ret }; +}; +template +struct meta_least_common_multiple +{ + enum { ret = A*K }; +}; + + +/** \internal determines whether the product of two numeric types is allowed and what the return type is */ +template struct scalar_product_traits +{ + enum { Defined = 0 }; +}; + +// FIXME quick workaround around current limitation of result_of +// template +// struct result_of(ArgType0,ArgType1)> { +// typedef typename scalar_product_traits, remove_all_t>::ReturnType type; +// }; + +/** \internal Obtains a POD type suitable to use as storage for an object of a size + * of at most Len bytes, aligned as specified by \c Align. + */ +template +struct aligned_storage { + struct type { + EIGEN_ALIGN_TO_BOUNDARY(Align) unsigned char data[Len]; + }; +}; + +} // end namespace internal + +template struct NumTraits; + +namespace numext { + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } +#else +template EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } +#endif + +using std::numeric_limits; + +// Integer division with rounding up. +// T is assumed to be an integer type with a>=0, and b>0 +template +EIGEN_DEVICE_FUNC +T div_ceil(const T &a, const T &b) +{ + return (a+b-1) / b; +} + +// Handle integer comparisons of different signedness. +template ::IsInteger, bool XIsSigned = NumTraits::IsSigned, + bool YIsInteger = NumTraits::IsInteger, bool YIsSigned = NumTraits::IsSigned> +struct equal_strict_impl { + static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool run(const X& x, const Y& y) { return x == y; } +}; +template +struct equal_strict_impl { + // X is an unsigned integer + // Y is a signed integer + // if Y is non-negative, it may be represented exactly as its unsigned counterpart. + using UnsignedY = typename internal::make_unsigned::type; + static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool run(const X& x, const Y& y) { + return y < Y(0) ? false : (x == static_cast(y)); + } +}; +template +struct equal_strict_impl { + // X is a signed integer + // Y is an unsigned integer + static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool run(const X& x, const Y& y) { + return equal_strict_impl::run(y, x); + } +}; + +// The aim of the following functions is to bypass -Wfloat-equal warnings +// when we really want a strict equality comparison on floating points. +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict(const X& x, const Y& y) { return equal_strict_impl::run(x, y); } + +#if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool equal_strict(const float& x,const float& y) { return std::equal_to()(x,y); } + +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool equal_strict(const double& x,const double& y) { return std::equal_to()(x,y); } +#endif + +/** + * \internal Performs an exact comparison of x to zero, e.g. to decide whether a term can be ignored. + * Use this to to bypass -Wfloat-equal warnings when exact zero is what needs to be tested. +*/ +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool is_exactly_zero(const X& x) { return equal_strict(x, typename NumTraits::Literal{0}); } + +/** + * \internal Performs an exact comparison of x to one, e.g. to decide whether a factor needs to be multiplied. + * Use this to to bypass -Wfloat-equal warnings when exact one is what needs to be tested. +*/ +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool is_exactly_one(const X& x) { return equal_strict(x, typename NumTraits::Literal{1}); } + +template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool not_equal_strict(const X& x,const Y& y) { return !equal_strict_impl::run(x, y); } + +#if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to()(x,y); } + +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC +bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to()(x,y); } +#endif + +} // end namespace numext + +namespace internal { + +template +struct is_identically_zero_impl { + static inline bool run(const Scalar& s) { + return numext::is_exactly_zero(s); + } +}; + +template EIGEN_STRONG_INLINE +bool is_identically_zero(const Scalar& s) { return is_identically_zero_impl::run(s); } + +/// \internal Returns true if its argument is of integer or enum type. +/// FIXME this has the same purpose as `is_valid_index_type` in XprHelper.h +template +constexpr bool is_int_or_enum_v = std::is_enum::value || std::is_integral::value; + +/// \internal Gets the minimum of two values which may be integers or enums +template +inline constexpr int plain_enum_min(A a, B b) { + static_assert(is_int_or_enum_v, "Argument a must be an integer or enum"); + static_assert(is_int_or_enum_v, "Argument b must be an integer or enum"); + return ((int) a <= (int) b) ? (int) a : (int) b; +} + +/// \internal Gets the maximum of two values which may be integers or enums +template +inline constexpr int plain_enum_max(A a, B b) { + static_assert(is_int_or_enum_v, "Argument a must be an integer or enum"); + static_assert(is_int_or_enum_v, "Argument b must be an integer or enum"); + return ((int) a >= (int) b) ? (int) a : (int) b; +} + +/** + * \internal + * `min_size_prefer_dynamic` gives the min between compile-time sizes. 0 has absolute priority, followed by 1, + * followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over + * finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. + */ +template +inline constexpr int min_size_prefer_dynamic(A a, B b) { + static_assert(is_int_or_enum_v, "Argument a must be an integer or enum"); + static_assert(is_int_or_enum_v, "Argument b must be an integer or enum"); + if ((int) a == 0 || (int) b == 0) return 0; + if ((int) a == 1 || (int) b == 1) return 1; + if ((int) a == Dynamic || (int) b == Dynamic) return Dynamic; + return plain_enum_min(a, b); +} + +/** + * \internal + * min_size_prefer_fixed is a variant of `min_size_prefer_dynamic` comparing MaxSizes. The difference is that finite values + * now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is + * (between 0 and 3), it is not more than 3. + */ +template +inline constexpr int min_size_prefer_fixed(A a, B b) { + static_assert(is_int_or_enum_v, "Argument a must be an integer or enum"); + static_assert(is_int_or_enum_v, "Argument b must be an integer or enum"); + if ((int) a == 0 || (int) b == 0) return 0; + if ((int) a == 1 || (int) b == 1) return 1; + if ((int) a == Dynamic && (int) b == Dynamic) return Dynamic; + if ((int) a == Dynamic) return (int) b; + if ((int) b == Dynamic) return (int) a; + return plain_enum_min(a, b); +} + +/// \internal see `min_size_prefer_fixed`. No need for a separate variant for MaxSizes here. +template +inline constexpr int max_size_prefer_dynamic(A a, B b) { + static_assert(is_int_or_enum_v, "Argument a must be an integer or enum"); + static_assert(is_int_or_enum_v, "Argument b must be an integer or enum"); + if ((int) a == Dynamic || (int) b == Dynamic) return Dynamic; + return plain_enum_max(a, b); +} + +/// \internal Calculate logical XOR at compile time +inline constexpr bool logical_xor(bool a, bool b) { + return a != b; +} + +/// \internal Calculate logical IMPLIES at compile time +inline constexpr bool check_implication(bool a, bool b) { + return !a || b; +} + +/// \internal Provide fallback for std::is_constant_evaluated for pre-C++20. +#if EIGEN_COMP_CXXVER >= 20 +using std::is_constant_evaluated; +#else +constexpr bool is_constant_evaluated() { return false; } +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_META_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MoreMeta.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MoreMeta.h new file mode 100644 index 0000000..53a9de6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/MoreMeta.h @@ -0,0 +1,531 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MOREMETA_H +#define EIGEN_MOREMETA_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct type_list { constexpr static int count = sizeof...(tt); }; + +template +struct type_list { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; }; + +template +struct numeric_list { constexpr static std::size_t count = sizeof...(nn); }; + +template +struct numeric_list { static constexpr std::size_t count = sizeof...(nn) + 1; + static constexpr T first_value = n; }; + +#ifndef EIGEN_PARSED_BY_DOXYGEN +/* numeric list constructors + * + * equivalencies: + * constructor result + * typename gen_numeric_list::type numeric_list + * typename gen_numeric_list_reversed::type numeric_list + * typename gen_numeric_list_swapped_pair::type numeric_list + * typename gen_numeric_list_repeated::type numeric_list + */ + +template struct gen_numeric_list : gen_numeric_list {}; +template struct gen_numeric_list { typedef numeric_list type; }; + +template struct gen_numeric_list_reversed : gen_numeric_list_reversed {}; +template struct gen_numeric_list_reversed { typedef numeric_list type; }; + +template struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair {}; +template struct gen_numeric_list_swapped_pair { typedef numeric_list type; }; + +template struct gen_numeric_list_repeated : gen_numeric_list_repeated {}; +template struct gen_numeric_list_repeated { typedef numeric_list type; }; + +/* list manipulation: concatenate */ + +template struct concat; + +template struct concat, type_list> { typedef type_list type; }; +template struct concat, numeric_list > { typedef numeric_list type; }; + +template struct mconcat; +template struct mconcat { typedef a type; }; +template struct mconcat : concat {}; +template struct mconcat : concat::type> {}; + +/* list manipulation: extract slices */ + +template struct take; +template struct take> : concat, typename take>::type> {}; +template struct take> { typedef type_list<> type; }; +template struct take<0, type_list> { typedef type_list<> type; }; +template<> struct take<0, type_list<>> { typedef type_list<> type; }; + +template struct take> : concat, typename take>::type> {}; +// XXX The following breaks in gcc-11, and is invalid anyways. +// template struct take> { typedef numeric_list type; }; +template struct take<0, numeric_list> { typedef numeric_list type; }; +template struct take<0, numeric_list> { typedef numeric_list type; }; + +template struct h_skip_helper_numeric; +template struct h_skip_helper_numeric : h_skip_helper_numeric {}; +template struct h_skip_helper_numeric { typedef numeric_list type; }; +template struct h_skip_helper_numeric { typedef numeric_list type; }; +template struct h_skip_helper_numeric { typedef numeric_list type; }; + +template struct h_skip_helper_type; +template struct h_skip_helper_type : h_skip_helper_type {}; +template struct h_skip_helper_type<0, t, tt...> { typedef type_list type; }; +template struct h_skip_helper_type { typedef type_list<> type; }; +template<> struct h_skip_helper_type<0> { typedef type_list<> type; }; +#endif //not EIGEN_PARSED_BY_DOXYGEN + +template +struct h_skip { + template + constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_numeric::type helper(numeric_list) { return typename h_skip_helper_numeric::type(); } + template + constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_type::type helper(type_list) { return typename h_skip_helper_type::type(); } +}; + +template struct skip { typedef decltype(h_skip::helper(a())) type; }; + +template struct slice : take::type> {}; + +/* list manipulation: retrieve single element from list */ + +template struct get; + +template struct get> : get> {}; +template struct get<0, type_list> { typedef a type; }; + +template struct get> : get> {}; +template struct get<0, numeric_list> { constexpr static T value = a; }; + +template constexpr T array_get(const numeric_list&) { + return get<(int)n, numeric_list>::value; +} + +/* always get type, regardless of dummy; good for parameter pack expansion */ + +template struct id_numeric { typedef t type; }; +template struct id_type { typedef t type; }; + +/* equality checking, flagged version */ + +template struct is_same_gf : is_same { constexpr static int global_flags = 0; }; + +/* apply_op to list */ + +template< + bool from_left, // false + template class op, + typename additional_param, + typename... values +> +struct h_apply_op_helper { typedef type_list::type...> type; }; +template< + template class op, + typename additional_param, + typename... values +> +struct h_apply_op_helper { typedef type_list::type...> type; }; + +template< + bool from_left, + template class op, + typename additional_param +> +struct h_apply_op +{ + template + constexpr static typename h_apply_op_helper::type helper(type_list) + { return typename h_apply_op_helper::type(); } +}; + +template< + template class op, + typename additional_param, + typename a +> +struct apply_op_from_left { typedef decltype(h_apply_op::helper(a())) type; }; + +template< + template class op, + typename additional_param, + typename a +> +struct apply_op_from_right { typedef decltype(h_apply_op::helper(a())) type; }; + +/* see if an element is in a list */ + +template< + template class test, + typename check_against, + typename h_list, + bool last_check_positive = false +> +struct contained_in_list; + +template< + template class test, + typename check_against, + typename h_list +> +struct contained_in_list +{ + constexpr static bool value = true; +}; + +template< + template class test, + typename check_against, + typename a, + typename... as +> +struct contained_in_list, false> : contained_in_list, test::value> {}; + +template< + template class test, + typename check_against, + typename... empty +> +struct contained_in_list, false> { constexpr static bool value = false; }; + +/* see if an element is in a list and check for global flags */ + +template< + template class test, + typename check_against, + typename h_list, + int default_flags = 0, + bool last_check_positive = false, + int last_check_flags = default_flags +> +struct contained_in_list_gf; + +template< + template class test, + typename check_against, + typename h_list, + int default_flags, + int last_check_flags +> +struct contained_in_list_gf +{ + constexpr static bool value = true; + constexpr static int global_flags = last_check_flags; +}; + +template< + template class test, + typename check_against, + typename a, + typename... as, + int default_flags, + int last_check_flags +> +struct contained_in_list_gf, default_flags, false, last_check_flags> : contained_in_list_gf, default_flags, test::value, test::global_flags> {}; + +template< + template class test, + typename check_against, + typename... empty, + int default_flags, + int last_check_flags +> +struct contained_in_list_gf, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; }; + +/* generic reductions */ + +template< + typename Reducer, + typename... Ts +> struct reduce; + +template< + typename Reducer +> struct reduce +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE int run() { return Reducer::Identity; } +}; + +template< + typename Reducer, + typename A +> struct reduce +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE A run(A a) { return a; } +}; + +template< + typename Reducer, + typename A, + typename... Ts +> struct reduce +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce::run(ts...))) { + return Reducer::run(a, reduce::run(ts...)); + } +}; + +/* generic binary operations */ + +struct sum_op { + template EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a + b) { return a + b; } + static constexpr int Identity = 0; +}; +struct product_op { + template EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a * b) { return a * b; } + static constexpr int Identity = 1; +}; + +struct logical_and_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a && b) { return a && b; } }; +struct logical_or_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a || b) { return a || b; } }; + +struct equal_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a == b) { return a == b; } }; +struct not_equal_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a != b) { return a != b; } }; +struct lesser_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a < b) { return a < b; } }; +struct lesser_equal_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a <= b) { return a <= b; } }; +struct greater_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a > b) { return a > b; } }; +struct greater_equal_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a >= b) { return a >= b; } }; + +/* generic unary operations */ + +struct not_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(!a) { return !a; } }; +struct negation_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(-a) { return -a; } }; +struct greater_equal_zero_op { template constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(a >= 0) { return a >= 0; } }; + + +/* reductions for lists */ + +// using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it +// together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1 +// does... +template +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE decltype(reduce::run((*((Ts*)0))...)) arg_prod(Ts... ts) +{ + return reduce::run(ts...); +} + +template +constexpr EIGEN_STRONG_INLINE decltype(reduce::run((*((Ts*)0))...)) arg_sum(Ts... ts) +{ + return reduce::run(ts...); +} + +/* reverse arrays */ + +template +constexpr EIGEN_STRONG_INLINE Array h_array_reverse(Array arr, numeric_list) +{ + return {{array_get(arr)...}}; +} + +template +constexpr EIGEN_STRONG_INLINE array array_reverse(array arr) +{ + return h_array_reverse(arr, typename gen_numeric_list::type()); +} + + +/* generic array reductions */ + +// can't reuse standard reduce() interface above because Intel's Compiler +// *really* doesn't like it, so we just reimplement the stuff +// (start from N - 1 and work down to 0 because specialization for +// n == N - 1 also doesn't work in Intel's compiler, so it goes into +// an infinite loop) +template +struct h_array_reduce { + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(array arr, T identity) -> decltype(Reducer::run(h_array_reduce::run(arr, identity), array_get(arr))) + { + return Reducer::run(h_array_reduce::run(arr, identity), array_get(arr)); + } +}; + +template +struct h_array_reduce +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array& arr, T) + { + return array_get<0>(arr); + } +}; + +template +struct h_array_reduce +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array&, T identity) + { + return identity; + } +}; + +template +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_reduce(const array& arr, T identity) -> decltype(h_array_reduce::run(arr, identity)) +{ + return h_array_reduce::run(arr, identity); +} + +/* standard array reductions */ + +template +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_sum(const array& arr) -> decltype(array_reduce(arr, static_cast(0))) +{ + return array_reduce(arr, static_cast(0)); +} + +template +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_prod(const array& arr) -> decltype(array_reduce(arr, static_cast(1))) +{ + return array_reduce(arr, static_cast(1)); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector& a) { + eigen_assert(a.size() > 0); + t prod = 1; + for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; } + return prod; +} + +/* zip an array */ + +template +constexpr EIGEN_STRONG_INLINE array h_array_zip(array a, array b, numeric_list) +{ + return array{{ Op::run(array_get(a), array_get(b))... }}; +} + +template +constexpr EIGEN_STRONG_INLINE array array_zip(array a, array b) +{ + return h_array_zip(a, b, typename gen_numeric_list::type()); +} + +/* zip an array and reduce the result */ + +template +constexpr EIGEN_STRONG_INLINE auto h_array_zip_and_reduce(array a, array b, numeric_list) -> decltype(reduce::type...>::run(Op::run(array_get(a), array_get(b))...)) +{ + return reduce::type...>::run(Op::run(array_get(a), array_get(b))...); +} + +template +constexpr EIGEN_STRONG_INLINE auto array_zip_and_reduce(array a, array b) -> decltype(h_array_zip_and_reduce(a, b, typename gen_numeric_list::type())) +{ + return h_array_zip_and_reduce(a, b, typename gen_numeric_list::type()); +} + +/* apply stuff to an array */ + +template +constexpr EIGEN_STRONG_INLINE array h_array_apply(array a, numeric_list) +{ + return array{{ Op::run(array_get(a))... }}; +} + +template +constexpr EIGEN_STRONG_INLINE array array_apply(array a) +{ + return h_array_apply(a, typename gen_numeric_list::type()); +} + +/* apply stuff to an array and reduce */ + +template +constexpr EIGEN_STRONG_INLINE auto h_array_apply_and_reduce(array arr, numeric_list) -> decltype(reduce::type...>::run(Op::run(array_get(arr))...)) +{ + return reduce::type...>::run(Op::run(array_get(arr))...); +} + +template +constexpr EIGEN_STRONG_INLINE auto array_apply_and_reduce(array a) -> decltype(h_array_apply_and_reduce(a, typename gen_numeric_list::type())) +{ + return h_array_apply_and_reduce(a, typename gen_numeric_list::type()); +} + +/* repeat a value n times (and make an array out of it + * usage: + * array = repeat<16>(42); + */ + +template +struct h_repeat +{ + template + constexpr static EIGEN_STRONG_INLINE array run(t v, numeric_list) + { + return {{ typename id_numeric::type(v)... }}; + } +}; + +template +constexpr array repeat(t v) { return h_repeat::run(v, typename gen_numeric_list::type()); } + +/* instantiate a class by a C-style array */ +template +struct h_instantiate_by_c_array; + +template +struct h_instantiate_by_c_array +{ + static InstType run(ArrType* arr, Ps... args) + { + return h_instantiate_by_c_array::run(arr + 1, args..., arr[0]); + } +}; + +template +struct h_instantiate_by_c_array +{ + static InstType run(ArrType* arr, Ps... args) + { + return h_instantiate_by_c_array::run(arr + 1, arr[0], args...); + } +}; + +template +struct h_instantiate_by_c_array +{ + static InstType run(ArrType* arr, Ps... args) + { + (void)arr; + return InstType(args...); + } +}; + +template +struct h_instantiate_by_c_array +{ + static InstType run(ArrType* arr, Ps... args) + { + (void)arr; + return InstType(args...); + } +}; + +template +InstType instantiate_by_c_array(ArrType* arr) +{ + return h_instantiate_by_c_array::run(arr); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MOREMETA_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ReenableStupidWarnings.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ReenableStupidWarnings.h new file mode 100644 index 0000000..7021e6d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ReenableStupidWarnings.h @@ -0,0 +1,39 @@ +#ifdef EIGEN_WARNINGS_DISABLED_2 +// "DisableStupidWarnings.h" was included twice recursively: Do not re-enable warnings yet! +# undef EIGEN_WARNINGS_DISABLED_2 + +#elif defined(EIGEN_WARNINGS_DISABLED) +#undef EIGEN_WARNINGS_DISABLED + +#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS + #ifdef _MSC_VER + #pragma warning( pop ) + #elif defined __INTEL_COMPILER + #pragma warning pop + #elif defined __clang__ + #pragma clang diagnostic pop + #elif defined __GNUC__ && !defined(__FUJITSU) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) + #pragma GCC diagnostic pop + #endif + + #if defined __NVCC__ +// Don't re-enable the diagnostic messages, as it turns out these messages need +// to be disabled at the point of the template instantiation (i.e the user code) +// otherwise they'll be triggered by nvcc. +// #define EIGEN_MAKE_PRAGMA(X) _Pragma(#X) +// #if __NVCC_DIAG_PRAGMA_SUPPORT__ +// #define EIGEN_NV_DIAG_DEFAULT(X) EIGEN_MAKE_PRAGMA(nv_diag_default X) +// #else +// #define EIGEN_NV_DIAG_DEFAULT(X) EIGEN_MAKE_PRAGMA(diag_default X) +// #endif +// EIGEN_NV_DIAG_DEFAULT(code_is_unreachable) +// EIGEN_NV_DIAG_DEFAULT(initialization_not_reachable) +// EIGEN_NV_DIAG_DEFAULT(2651) +// EIGEN_NV_DIAG_DEFAULT(2653) +// #undef EIGEN_NV_DIAG_DEFAULT +// #undef EIGEN_MAKE_PRAGMA + #endif + +#endif + +#endif // EIGEN_WARNINGS_DISABLED diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ReshapedHelper.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ReshapedHelper.h new file mode 100644 index 0000000..6daea03 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/ReshapedHelper.h @@ -0,0 +1,52 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_RESHAPED_HELPER_H +#define EIGEN_RESHAPED_HELPER_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +enum AutoSize_t { AutoSize }; +const int AutoOrder = 2; + +namespace internal { + +template +struct get_compiletime_reshape_size { + enum { value = get_fixed_value::value }; +}; + +template +Index get_runtime_reshape_size(SizeType size, Index /*other*/, Index /*total*/) { + return internal::get_runtime_value(size); +} + +template +struct get_compiletime_reshape_size { + enum { + other_size = get_fixed_value::value, + value = (TotalSize==Dynamic || other_size==Dynamic) ? Dynamic : TotalSize / other_size }; +}; + +inline Index get_runtime_reshape_size(AutoSize_t /*size*/, Index other, Index total) { + return total/other; +} + +constexpr inline int get_compiletime_reshape_order(int flags, int order) { + return order == AutoOrder ? flags & RowMajorBit : order; +} + +} + +} // end namespace Eigen + +#endif // EIGEN_RESHAPED_HELPER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Serializer.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Serializer.h new file mode 100644 index 0000000..cbfc04a --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/Serializer.h @@ -0,0 +1,220 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2021 The Eigen Team +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SERIALIZER_H +#define EIGEN_SERIALIZER_H + +#include + +// The Serializer class encodes data into a memory buffer so it can be later +// reconstructed. This is mainly used to send objects back-and-forth between +// the CPU and GPU. + +namespace Eigen { + +/** + * Serializes an object to a memory buffer. + * + * Useful for transferring data (e.g. back-and-forth to a device). + */ +template +class Serializer; + +// Specialization for POD types. +template +class Serializer::value + && std::is_standard_layout::value>> { + public: + + /** + * Determines the required size of the serialization buffer for a value. + * + * \param value the value to serialize. + * \return the required size. + */ + EIGEN_DEVICE_FUNC size_t size(const T& value) const { + return sizeof(value); + } + + /** + * Serializes a value to a byte buffer. + * \param dest the destination buffer; if this is nullptr, does nothing. + * \param end the end of the destination buffer. + * \param value the value to serialize. + * \return the next memory address past the end of the serialized data. + */ + EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end, const T& value) { + if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(dest + sizeof(value) > end)) return nullptr; + EIGEN_USING_STD(memcpy) + memcpy(dest, &value, sizeof(value)); + return dest + sizeof(value); + } + + /** + * Deserializes a value from a byte buffer. + * \param src the source buffer; if this is nullptr, does nothing. + * \param end the end of the source buffer. + * \param value the value to populate. + * \return the next unprocessed memory address; nullptr if parsing errors are detected. + */ + EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src, const uint8_t* end, T& value) const { + if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(src + sizeof(value) > end)) return nullptr; + EIGEN_USING_STD(memcpy) + memcpy(&value, src, sizeof(value)); + return src + sizeof(value); + } +}; + +// Specialization for DenseBase. +// Serializes [rows, cols, data...]. +template +class Serializer, void> { + public: + typedef typename Derived::Scalar Scalar; + + struct Header { + typename Derived::Index rows; + typename Derived::Index cols; + }; + + EIGEN_DEVICE_FUNC size_t size(const Derived& value) const { + return sizeof(Header) + sizeof(Scalar) * value.size(); + } + + EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end, const Derived& value) { + if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr; + const size_t header_bytes = sizeof(Header); + const size_t data_bytes = sizeof(Scalar) * value.size(); + Header header = {value.rows(), value.cols()}; + EIGEN_USING_STD(memcpy) + memcpy(dest, &header, header_bytes); + dest += header_bytes; + memcpy(dest, value.data(), data_bytes); + return dest + data_bytes; + } + + EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src, const uint8_t* end, Derived& value) const { + if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr; + const size_t header_bytes = sizeof(Header); + Header header; + EIGEN_USING_STD(memcpy) + memcpy(&header, src, header_bytes); + src += header_bytes; + const size_t data_bytes = sizeof(Scalar) * header.rows * header.cols; + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + value.resize(header.rows, header.cols); + memcpy(value.data(), src, data_bytes); + return src + data_bytes; + } +}; + +template +class Serializer > : public + Serializer > > {}; + +template +class Serializer > : public + Serializer > > {}; + +namespace internal { + +// Recursive serialization implementation helper. +template +struct serialize_impl; + +template +struct serialize_impl { + using Serializer = Eigen::Serializer::type>; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + size_t serialize_size(const T1& value, const Ts&... args) { + Serializer serializer; + size_t size = serializer.size(value); + return size + serialize_impl::serialize_size(args...); + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + uint8_t* serialize(uint8_t* dest, uint8_t* end, const T1& value, const Ts&... args) { + Serializer serializer; + dest = serializer.serialize(dest, end, value); + return serialize_impl::serialize(dest, end, args...); + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const uint8_t* deserialize(const uint8_t* src, const uint8_t* end, T1& value, Ts&... args) { + Serializer serializer; + src = serializer.deserialize(src, end, value); + return serialize_impl::deserialize(src, end, args...); + } +}; + +// Base case. +template<> +struct serialize_impl<0> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + size_t serialize_size() { return 0; } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + uint8_t* serialize(uint8_t* dest, uint8_t* /*end*/) { return dest; } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const uint8_t* deserialize(const uint8_t* src, const uint8_t* /*end*/) { return src; } +}; + +} // namespace internal + + +/** + * Determine the buffer size required to serialize a set of values. + * + * \param args ... arguments to serialize in sequence. + * \return the total size of the required buffer. + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +size_t serialize_size(const Args&... args) { + return internal::serialize_impl::serialize_size(args...); +} + +/** + * Serialize a set of values to the byte buffer. + * + * \param dest output byte buffer; if this is nullptr, does nothing. + * \param end the end of the output byte buffer. + * \param args ... arguments to serialize in sequence. + * \return the next address after all serialized values. + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +uint8_t* serialize(uint8_t* dest, uint8_t* end, const Args&... args) { + return internal::serialize_impl::serialize(dest, end, args...); +} + +/** + * Deserialize a set of values from the byte buffer. + * + * \param src input byte buffer; if this is nullptr, does nothing. + * \param end the end of input byte buffer. + * \param args ... arguments to deserialize in sequence. + * \return the next address after all parsed values; nullptr if parsing errors are detected. + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const uint8_t* deserialize(const uint8_t* src, const uint8_t* end, Args&... args) { + return internal::serialize_impl::deserialize(src, end, args...); +} + +} // namespace Eigen + +#endif // EIGEN_SERIALIZER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/StaticAssert.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/StaticAssert.h new file mode 100644 index 0000000..c938eb8 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/StaticAssert.h @@ -0,0 +1,115 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STATIC_ASSERT_H +#define EIGEN_STATIC_ASSERT_H + +/* Some notes on Eigen's static assertion mechanism: + * + * - in EIGEN_STATIC_ASSERT(CONDITION,MSG) the parameter CONDITION must be a compile time boolean + * expression, and MSG an enum listed in struct internal::static_assertion + * + * - currently EIGEN_STATIC_ASSERT can only be used in function scope + * + */ + +#ifndef EIGEN_STATIC_ASSERT +#ifndef EIGEN_NO_STATIC_ASSERT + +#define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG); + +#else // EIGEN_NO_STATIC_ASSERT + +#define EIGEN_STATIC_ASSERT(CONDITION,MSG) + +#endif // EIGEN_NO_STATIC_ASSERT +#endif // EIGEN_STATIC_ASSERT + +// static assertion failing if the type \a TYPE is not a vector type +#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE) \ + EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime, \ + YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX) + +// static assertion failing if the type \a TYPE is not fixed-size +#define EIGEN_STATIC_ASSERT_FIXED_SIZE(TYPE) \ + EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime!=Eigen::Dynamic, \ + YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR) + +// static assertion failing if the type \a TYPE is not dynamic-size +#define EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(TYPE) \ + EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime==Eigen::Dynamic, \ + YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR) + +// static assertion failing if the type \a TYPE is not a vector type of the given size +#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE) \ + EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime && TYPE::SizeAtCompileTime==SIZE, \ + THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE) + +// static assertion failing if the type \a TYPE is not a vector type of the given size +#define EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(TYPE, ROWS, COLS) \ + EIGEN_STATIC_ASSERT(TYPE::RowsAtCompileTime==ROWS && TYPE::ColsAtCompileTime==COLS, \ + THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE) + +// static assertion failing if the two vector expression types are not compatible (same fixed-size or dynamic size) +#define EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(TYPE0,TYPE1) \ + EIGEN_STATIC_ASSERT( \ + (int(TYPE0::SizeAtCompileTime)==Eigen::Dynamic \ + || int(TYPE1::SizeAtCompileTime)==Eigen::Dynamic \ + || int(TYPE0::SizeAtCompileTime)==int(TYPE1::SizeAtCompileTime)),\ + YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES) + +#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1) \ + ( \ + (int(Eigen::internal::size_of_xpr_at_compile_time::ret)==0 && int(Eigen::internal::size_of_xpr_at_compile_time::ret)==0) \ + || (\ + (int(TYPE0::RowsAtCompileTime)==Eigen::Dynamic \ + || int(TYPE1::RowsAtCompileTime)==Eigen::Dynamic \ + || int(TYPE0::RowsAtCompileTime)==int(TYPE1::RowsAtCompileTime)) \ + && (int(TYPE0::ColsAtCompileTime)==Eigen::Dynamic \ + || int(TYPE1::ColsAtCompileTime)==Eigen::Dynamic \ + || int(TYPE0::ColsAtCompileTime)==int(TYPE1::ColsAtCompileTime))\ + ) \ + ) + +#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \ + EIGEN_STATIC_ASSERT(!Eigen::NumTraits::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) + + +// static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes +#define EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(TYPE0,TYPE1) \ + EIGEN_STATIC_ASSERT( \ + EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1),\ + YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES) + +#define EIGEN_STATIC_ASSERT_SIZE_1x1(TYPE) \ + EIGEN_STATIC_ASSERT((TYPE::RowsAtCompileTime == 1 || TYPE::RowsAtCompileTime == Eigen::Dynamic) && \ + (TYPE::ColsAtCompileTime == 1 || TYPE::ColsAtCompileTime == Eigen::Dynamic), \ + THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS) + +#define EIGEN_STATIC_ASSERT_LVALUE(Derived) \ + EIGEN_STATIC_ASSERT(Eigen::internal::is_lvalue::value, \ + THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY) + +#define EIGEN_STATIC_ASSERT_ARRAYXPR(Derived) \ + EIGEN_STATIC_ASSERT((Eigen::internal::is_same::XprKind, ArrayXpr>::value), \ + THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES) + +#define EIGEN_STATIC_ASSERT_SAME_XPR_KIND(Derived1, Derived2) \ + EIGEN_STATIC_ASSERT((Eigen::internal::is_same::XprKind, \ + typename Eigen::internal::traits::XprKind \ + >::value), \ + YOU_CANNOT_MIX_ARRAYS_AND_MATRICES) + +// Check that a cost value is positive, and that is stay within a reasonable range +// TODO this check could be enabled for internal debugging only +#define EIGEN_INTERNAL_CHECK_COST_VALUE(C) \ + EIGEN_STATIC_ASSERT((C)>=0 && (C)<=HugeCost*HugeCost, EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT__INVALID_COST_VALUE); + +#endif // EIGEN_STATIC_ASSERT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/SymbolicIndex.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/SymbolicIndex.h new file mode 100644 index 0000000..3b19185 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/SymbolicIndex.h @@ -0,0 +1,262 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SYMBOLIC_INDEX_H +#define EIGEN_SYMBOLIC_INDEX_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +/** \namespace Eigen::symbolic + * \ingroup Core_Module + * + * This namespace defines a set of classes and functions to build and evaluate symbolic expressions of scalar type Index. + * Here is a simple example: + * + * \code + * // First step, defines symbols: + * struct x_tag {}; static const symbolic::SymbolExpr x; + * struct y_tag {}; static const symbolic::SymbolExpr y; + * struct z_tag {}; static const symbolic::SymbolExpr z; + * + * // Defines an expression: + * auto expr = (x+3)/y+z; + * + * // And evaluate it: (c++14) + * std::cout << expr.eval(x=6,y=3,z=-13) << "\n"; + * + * \endcode + * + * It is currently only used internally to define and manipulate the + * Eigen::placeholders::last and Eigen::placeholders::lastp1 symbols in + * Eigen::seq and Eigen::seqN. + * + */ +namespace symbolic { + +template class Symbol; +template class NegateExpr; +template class AddExpr; +template class ProductExpr; +template class QuotientExpr; + +// A simple wrapper around an integral value to provide the eval method. +// We could also use a free-function symbolic_eval... +template +class ValueExpr { +public: + ValueExpr(IndexType val) : m_value(val) {} + template + IndexType eval_impl(const T&) const { return m_value; } +protected: + IndexType m_value; +}; + +// Specialization for compile-time value, +// It is similar to ValueExpr(N) but this version helps the compiler to generate better code. +template +class ValueExpr > { +public: + ValueExpr() {} + template + EIGEN_CONSTEXPR Index eval_impl(const T&) const { return N; } +}; + + +/** \class BaseExpr + * \ingroup Core_Module + * Common base class of any symbolic expressions + */ +template +class BaseExpr +{ +public: + const Derived& derived() const { return *static_cast(this); } + + /** Evaluate the expression given the \a values of the symbols. + * + * \param values defines the values of the symbols, it can either be a SymbolValue or a std::tuple of SymbolValue + * as constructed by SymbolExpr::operator= operator. + * + */ + template + Index eval(const T& values) const { return derived().eval_impl(values); } + + template + Index eval(Types&&... values) const { return derived().eval_impl(std::make_tuple(values...)); } + + NegateExpr operator-() const { return NegateExpr(derived()); } + + AddExpr > operator+(Index b) const + { return AddExpr >(derived(), b); } + AddExpr > operator-(Index a) const + { return AddExpr >(derived(), -a); } + ProductExpr > operator*(Index a) const + { return ProductExpr >(derived(),a); } + QuotientExpr > operator/(Index a) const + { return QuotientExpr >(derived(),a); } + + friend AddExpr > operator+(Index a, const BaseExpr& b) + { return AddExpr >(b.derived(), a); } + friend AddExpr,ValueExpr<> > operator-(Index a, const BaseExpr& b) + { return AddExpr,ValueExpr<> >(-b.derived(), a); } + friend ProductExpr,Derived> operator*(Index a, const BaseExpr& b) + { return ProductExpr,Derived>(a,b.derived()); } + friend QuotientExpr,Derived> operator/(Index a, const BaseExpr& b) + { return QuotientExpr,Derived>(a,b.derived()); } + + template + AddExpr > > operator+(internal::FixedInt) const + { return AddExpr > >(derived(), ValueExpr >()); } + template + AddExpr > > operator-(internal::FixedInt) const + { return AddExpr > >(derived(), ValueExpr >()); } + template + ProductExpr > > operator*(internal::FixedInt) const + { return ProductExpr > >(derived(),ValueExpr >()); } + template + QuotientExpr > > operator/(internal::FixedInt) const + { return QuotientExpr > >(derived(),ValueExpr >()); } + + template + friend AddExpr > > operator+(internal::FixedInt, const BaseExpr& b) + { return AddExpr > >(b.derived(), ValueExpr >()); } + template + friend AddExpr,ValueExpr > > operator-(internal::FixedInt, const BaseExpr& b) + { return AddExpr,ValueExpr > >(-b.derived(), ValueExpr >()); } + template + friend ProductExpr >,Derived> operator*(internal::FixedInt, const BaseExpr& b) + { return ProductExpr >,Derived>(ValueExpr >(),b.derived()); } + template + friend QuotientExpr >,Derived> operator/(internal::FixedInt, const BaseExpr& b) + { return QuotientExpr > ,Derived>(ValueExpr >(),b.derived()); } + + + template + AddExpr operator+(const BaseExpr &b) const + { return AddExpr(derived(), b.derived()); } + + template + AddExpr > operator-(const BaseExpr &b) const + { return AddExpr >(derived(), -b.derived()); } + + template + ProductExpr operator*(const BaseExpr &b) const + { return ProductExpr(derived(), b.derived()); } + + template + QuotientExpr operator/(const BaseExpr &b) const + { return QuotientExpr(derived(), b.derived()); } +}; + +template +struct is_symbolic { + // BaseExpr has no conversion ctor, so we only have to check whether T can be statically cast to its base class BaseExpr. + enum { value = internal::is_convertible >::value }; +}; + +/** Represents the actual value of a symbol identified by its tag + * + * It is the return type of SymbolValue::operator=, and most of the time this is only way it is used. + */ +template +class SymbolValue +{ +public: + /** Default constructor from the value \a val */ + SymbolValue(Index val) : m_value(val) {} + + /** \returns the stored value of the symbol */ + Index value() const { return m_value; } +protected: + Index m_value; +}; + +/** Expression of a symbol uniquely identified by the template parameter type \c tag */ +template +class SymbolExpr : public BaseExpr > +{ +public: + /** Alias to the template parameter \c tag */ + typedef tag Tag; + + SymbolExpr() {} + + /** Associate the value \a val to the given symbol \c *this, uniquely identified by its \c Tag. + * + * The returned object should be passed to ExprBase::eval() to evaluate a given expression with this specified runtime-time value. + */ + SymbolValue operator=(Index val) const { + return SymbolValue(val); + } + + Index eval_impl(const SymbolValue &values) const { return values.value(); } + + // C++14 versions suitable for multiple symbols + template + Index eval_impl(const std::tuple& values) const { return std::get >(values).value(); } +}; + +template +class NegateExpr : public BaseExpr > +{ +public: + NegateExpr(const Arg0& arg0) : m_arg0(arg0) {} + + template + Index eval_impl(const T& values) const { return -m_arg0.eval_impl(values); } +protected: + Arg0 m_arg0; +}; + +template +class AddExpr : public BaseExpr > +{ +public: + AddExpr(const Arg0& arg0, const Arg1& arg1) : m_arg0(arg0), m_arg1(arg1) {} + + template + Index eval_impl(const T& values) const { return m_arg0.eval_impl(values) + m_arg1.eval_impl(values); } +protected: + Arg0 m_arg0; + Arg1 m_arg1; +}; + +template +class ProductExpr : public BaseExpr > +{ +public: + ProductExpr(const Arg0& arg0, const Arg1& arg1) : m_arg0(arg0), m_arg1(arg1) {} + + template + Index eval_impl(const T& values) const { return m_arg0.eval_impl(values) * m_arg1.eval_impl(values); } +protected: + Arg0 m_arg0; + Arg1 m_arg1; +}; + +template +class QuotientExpr : public BaseExpr > +{ +public: + QuotientExpr(const Arg0& arg0, const Arg1& arg1) : m_arg0(arg0), m_arg1(arg1) {} + + template + Index eval_impl(const T& values) const { return m_arg0.eval_impl(values) / m_arg1.eval_impl(values); } +protected: + Arg0 m_arg0; + Arg1 m_arg1; +}; + +} // end namespace symbolic + +} // end namespace Eigen + +#endif // EIGEN_SYMBOLIC_INDEX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/XprHelper.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/XprHelper.h new file mode 100644 index 0000000..d8ac1b3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Core/util/XprHelper.h @@ -0,0 +1,906 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_XPRHELPER_H +#define EIGEN_XPRHELPER_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + + +// useful for unsigned / signed integer comparisons when idx is intended to be non-negative +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename make_unsigned::type returnUnsignedIndexValue( + const IndexType& idx) { + EIGEN_STATIC_ASSERT((NumTraits::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES) + eigen_internal_assert(idx >= 0 && "Index value is negative and target type is unsigned"); + using UnsignedType = typename make_unsigned::type; + return static_cast(idx); +} + +template ::IsInteger, + bool IndexDestIsSigned = NumTraits::IsSigned, + bool IndexSrcIsInteger = NumTraits::IsInteger, + bool IndexSrcIsSigned = NumTraits::IsSigned> +struct convert_index_impl { + static inline EIGEN_DEVICE_FUNC IndexDest run(const IndexSrc& idx) { + eigen_internal_assert(idx <= NumTraits::highest() && "Index value is too big for target type"); + return static_cast(idx); + } +}; +template +struct convert_index_impl { + // IndexDest is a signed integer + // IndexSrc is an unsigned integer + static inline EIGEN_DEVICE_FUNC IndexDest run(const IndexSrc& idx) { + eigen_internal_assert(idx <= returnUnsignedIndexValue(NumTraits::highest()) && + "Index value is too big for target type"); + return static_cast(idx); + } +}; +template +struct convert_index_impl { + // IndexDest is an unsigned integer + // IndexSrc is a signed integer + static inline EIGEN_DEVICE_FUNC IndexDest run(const IndexSrc& idx) { + eigen_internal_assert(returnUnsignedIndexValue(idx) <= NumTraits::highest() && + "Index value is too big for target type"); + return static_cast(idx); + } +}; + +template +EIGEN_DEVICE_FUNC inline IndexDest convert_index(const IndexSrc& idx) { + return convert_index_impl::run(idx); +} + +// true if T can be considered as an integral index (i.e., and integral type or enum) +template struct is_valid_index_type +{ + enum { value = internal::is_integral::value || std::is_enum::value + }; +}; + +// true if both types are not valid index types +template +struct valid_indexed_view_overload { + enum { value = !(internal::is_valid_index_type::value && internal::is_valid_index_type::value) }; +}; + +// promote_scalar_arg is an helper used in operation between an expression and a scalar, like: +// expression * scalar +// Its role is to determine how the type T of the scalar operand should be promoted given the scalar type ExprScalar of the given expression. +// The IsSupported template parameter must be provided by the caller as: internal::has_ReturnType >::value using the proper order for ExprScalar and T. +// Then the logic is as follows: +// - if the operation is natively supported as defined by IsSupported, then the scalar type is not promoted, and T is returned. +// - otherwise, NumTraits::Literal is returned if T is implicitly convertible to NumTraits::Literal AND that this does not imply a float to integer conversion. +// - otherwise, ExprScalar is returned if T is implicitly convertible to ExprScalar AND that this does not imply a float to integer conversion. +// - In all other cases, the promoted type is not defined, and the respective operation is thus invalid and not available (SFINAE). +template +struct promote_scalar_arg; + +template +struct promote_scalar_arg +{ + typedef T type; +}; + +// Recursively check safe conversion to PromotedType, and then ExprScalar if they are different. +template::value, + bool IsSafe = NumTraits::IsInteger || !NumTraits::IsInteger> +struct promote_scalar_arg_unsupported; + +// Start recursion with NumTraits::Literal +template +struct promote_scalar_arg : promote_scalar_arg_unsupported::Literal> {}; + +// We found a match! +template +struct promote_scalar_arg_unsupported +{ + typedef PromotedType type; +}; + +// No match, but no real-to-integer issues, and ExprScalar and current PromotedType are different, +// so let's try to promote to ExprScalar +template +struct promote_scalar_arg_unsupported + : promote_scalar_arg_unsupported +{}; + +// Unsafe real-to-integer, let's stop. +template +struct promote_scalar_arg_unsupported {}; + +// T is not even convertible to ExprScalar, let's stop. +template +struct promote_scalar_arg_unsupported {}; + +//classes inheriting no_assignment_operator don't generate a default operator=. +class no_assignment_operator +{ + private: + no_assignment_operator& operator=(const no_assignment_operator&); + protected: + EIGEN_DEFAULT_COPY_CONSTRUCTOR(no_assignment_operator) + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(no_assignment_operator) +}; + +/** \internal return the index type with the largest number of bits */ +template +struct promote_index_type +{ + typedef std::conditional_t<(sizeof(I1) type; +}; + +/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that + * can be accessed using value() and setValue(). + * Otherwise, this class is an empty structure and value() just returns the template parameter Value. + */ +template class variable_if_dynamic +{ + public: + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(variable_if_dynamic) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + T value() { return T(Value); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + operator T() const { return T(Value); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void setValue(T v) const { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } +}; + +template class variable_if_dynamic +{ + T m_value; + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T value = 0) EIGEN_NO_THROW : m_value(value) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T value() const { return m_value; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE operator T() const { return m_value; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; } +}; + +/** \internal like variable_if_dynamic but for DynamicIndex + */ +template class variable_if_dynamicindex +{ + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + T value() { return T(Value); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void setValue(T) {} +}; + +template class variable_if_dynamicindex +{ + T m_value; + EIGEN_DEVICE_FUNC variable_if_dynamicindex() { eigen_assert(false); } + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T value) : m_value(value) {} + EIGEN_DEVICE_FUNC T EIGEN_STRONG_INLINE value() const { return m_value; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; } +}; + +template struct functor_traits +{ + enum + { + Cost = 10, + PacketAccess = false, + IsRepeatable = false + }; +}; + +template struct packet_traits; + +template struct unpacket_traits; + +template::size)==0 || is_same::half>::value> +struct find_best_packet_helper; + +template< int Size, typename PacketType> +struct find_best_packet_helper +{ + typedef PacketType type; +}; + +template +struct find_best_packet_helper +{ + typedef typename find_best_packet_helper::half>::type type; +}; + +template +struct find_best_packet +{ + typedef typename find_best_packet_helper::type>::type type; +}; + +template ::size) || + is_same::half>::value> +struct find_packet_by_size_helper; +template +struct find_packet_by_size_helper { + using type = PacketType; +}; +template +struct find_packet_by_size_helper { + using type = typename find_packet_by_size_helper::half>::type; +}; + +template +struct find_packet_by_size { + using type = typename find_packet_by_size_helper::type>::type; + static constexpr bool value = (Size == unpacket_traits::size); +}; +template +struct find_packet_by_size { + using type = typename unpacket_traits::type; + static constexpr bool value = (unpacket_traits::size == 1); +}; + +#if EIGEN_MAX_STATIC_ALIGN_BYTES>0 +constexpr inline int compute_default_alignment_helper(int ArrayBytes, int AlignmentBytes) { + if((ArrayBytes % AlignmentBytes) == 0) { + return AlignmentBytes; + } else if (EIGEN_MIN_ALIGN_BYTES struct compute_default_alignment { + enum { value = compute_default_alignment_helper(Size*sizeof(T), EIGEN_MAX_STATIC_ALIGN_BYTES) }; +}; + +template struct compute_default_alignment { + enum { value = EIGEN_MAX_ALIGN_BYTES }; +}; + +template class make_proper_matrix_type +{ + enum { + IsColVector = Cols_==1 && Rows_!=1, + IsRowVector = Rows_==1 && Cols_!=1, + Options = IsColVector ? (Options_ | ColMajor) & ~RowMajor + : IsRowVector ? (Options_ | RowMajor) & ~ColMajor + : Options_ + }; + public: + typedef Matrix type; +}; + +constexpr inline unsigned compute_matrix_flags(int Options) { + unsigned row_major_bit = Options&RowMajor ? RowMajorBit : 0; + // FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<> + // and then propagate this information to the evaluator's flags. + // However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage. + return DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit; +} + +constexpr inline int size_at_compile_time(int rows, int cols) { + if (rows == 0 || cols == 0) return 0; + if (rows == Dynamic || cols == Dynamic) return Dynamic; + return rows * cols; +} + +template struct size_of_xpr_at_compile_time +{ + enum { ret = size_at_compile_time(traits::RowsAtCompileTime, traits::ColsAtCompileTime) }; +}; + +/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type, + * whereas eval is a const reference in the case of a matrix + */ + +template::StorageKind> struct plain_matrix_type; +template struct plain_matrix_type_dense; +template struct plain_matrix_type +{ + typedef typename plain_matrix_type_dense::XprKind, traits::Flags>::type type; +}; +template struct plain_matrix_type +{ + typedef typename T::PlainObject type; +}; + +template struct plain_matrix_type +{ + typedef typename T::PlainObject type; +}; + +template struct plain_matrix_type_dense +{ + typedef Matrix::Scalar, + traits::RowsAtCompileTime, + traits::ColsAtCompileTime, + AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor), + traits::MaxRowsAtCompileTime, + traits::MaxColsAtCompileTime + > type; +}; + +template struct plain_matrix_type_dense +{ + typedef Array::Scalar, + traits::RowsAtCompileTime, + traits::ColsAtCompileTime, + AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor), + traits::MaxRowsAtCompileTime, + traits::MaxColsAtCompileTime + > type; +}; + +/* eval : the return type of eval(). For matrices, this is just a const reference + * in order to avoid a useless copy + */ + +template::StorageKind> struct eval; + +template struct eval +{ + typedef typename plain_matrix_type::type type; +// typedef typename T::PlainObject type; +// typedef T::Matrix::Scalar, +// traits::RowsAtCompileTime, +// traits::ColsAtCompileTime, +// AutoAlign | (traits::Flags&RowMajorBit ? RowMajor : ColMajor), +// traits::MaxRowsAtCompileTime, +// traits::MaxColsAtCompileTime +// > type; +}; + +template struct eval +{ + typedef typename plain_matrix_type::type type; +}; + +template struct eval +{ + typedef typename plain_matrix_type::type type; +}; + +// for matrices, no need to evaluate, just use a const reference to avoid a useless copy +template +struct eval, Dense> +{ + typedef const Matrix& type; +}; + +template +struct eval, Dense> +{ + typedef const Array& type; +}; + + +/* similar to plain_matrix_type, but using the evaluator's Flags */ +template::StorageKind> struct plain_object_eval; + +template +struct plain_object_eval +{ + typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; +}; + + +/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major + */ +template struct plain_matrix_type_column_major +{ + enum { Rows = traits::RowsAtCompileTime, + Cols = traits::ColsAtCompileTime, + MaxRows = traits::MaxRowsAtCompileTime, + MaxCols = traits::MaxColsAtCompileTime + }; + typedef Matrix::Scalar, + Rows, + Cols, + (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor, + MaxRows, + MaxCols + > type; +}; + +/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major + */ +template struct plain_matrix_type_row_major +{ + enum { Rows = traits::RowsAtCompileTime, + Cols = traits::ColsAtCompileTime, + MaxRows = traits::MaxRowsAtCompileTime, + MaxCols = traits::MaxColsAtCompileTime + }; + typedef Matrix::Scalar, + Rows, + Cols, + (MaxCols==1&&MaxRows!=1) ? ColMajor : RowMajor, + MaxRows, + MaxCols + > type; +}; + +/** \internal The reference selector for template expressions. The idea is that we don't + * need to use references for expressions since they are light weight proxy + * objects which should generate no copying overhead. */ +template +struct ref_selector +{ + typedef std::conditional_t< + bool(traits::Flags & NestByRefBit), + T const&, + const T + > type; + + typedef std::conditional_t< + bool(traits::Flags & NestByRefBit), + T &, + T + > non_const_type; +}; + +/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */ +template +struct transfer_constness +{ + typedef std::conditional_t< + bool(internal::is_const::value), + add_const_on_value_type_t, + T2 + > type; +}; + + +// However, we still need a mechanism to detect whether an expression which is evaluated multiple time +// has to be evaluated into a temporary. +// That's the purpose of this new nested_eval helper: +/** \internal Determines how a given expression should be nested when evaluated multiple times. + * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be + * evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or + * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is + * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes + * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. + * + * \tparam T the type of the expression being nested. + * \tparam n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. + * \tparam PlainObject the type of the temporary if needed. + */ +template::type> struct nested_eval +{ + enum { + ScalarReadCost = NumTraits::Scalar>::ReadCost, + CoeffReadCost = evaluator::CoeffReadCost, // NOTE What if an evaluator evaluate itself into a temporary? + // Then CoeffReadCost will be small (e.g., 1) but we still have to evaluate, especially if n>1. + // This situation is already taken care by the EvalBeforeNestingBit flag, which is turned ON + // for all evaluator creating a temporary. This flag is then propagated by the parent evaluators. + // Another solution could be to count the number of temps? + NAsInteger = n == Dynamic ? HugeCost : n, + CostEval = (NAsInteger+1) * ScalarReadCost + CoeffReadCost, + CostNoEval = NAsInteger * CoeffReadCost, + Evaluate = (int(evaluator::Flags) & EvalBeforeNestingBit) || (int(CostEval) < int(CostNoEval)) + }; + + typedef std::conditional_t::type> type; +}; + +template +EIGEN_DEVICE_FUNC +inline T* const_cast_ptr(const T* ptr) +{ + return const_cast(ptr); +} + +template::XprKind> +struct dense_xpr_base +{ + /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */ +}; + +template +struct dense_xpr_base +{ + typedef MatrixBase type; +}; + +template +struct dense_xpr_base +{ + typedef ArrayBase type; +}; + +template::XprKind, typename StorageKind = typename traits::StorageKind> +struct generic_xpr_base; + +template +struct generic_xpr_base +{ + typedef typename dense_xpr_base::type type; +}; + +template struct cast_return_type +{ + typedef typename XprType::Scalar CurrentScalarType; + typedef remove_all_t CastType_; + typedef typename CastType_::Scalar NewScalarType; + typedef std::conditional_t::value, + const XprType&,CastType> type; +}; + +template struct promote_storage_type; + +template struct promote_storage_type +{ + typedef A ret; +}; +template struct promote_storage_type +{ + typedef A ret; +}; +template struct promote_storage_type +{ + typedef A ret; +}; + +/** \internal Specify the "storage kind" of applying a coefficient-wise + * binary operations between two expressions of kinds A and B respectively. + * The template parameter Functor permits to specialize the resulting storage kind wrt to + * the functor. + * The default rules are as follows: + * \code + * A op A -> A + * A op dense -> dense + * dense op B -> dense + * sparse op dense -> sparse + * dense op sparse -> sparse + * \endcode + */ +template struct cwise_promote_storage_type; + +template struct cwise_promote_storage_type { typedef A ret; }; +template struct cwise_promote_storage_type { typedef Dense ret; }; +template struct cwise_promote_storage_type { typedef Dense ret; }; +template struct cwise_promote_storage_type { typedef Dense ret; }; +template struct cwise_promote_storage_type { typedef Sparse ret; }; +template struct cwise_promote_storage_type { typedef Sparse ret; }; + +template struct cwise_promote_storage_order { + enum { value = LhsOrder }; +}; + +template struct cwise_promote_storage_order { enum { value = RhsOrder }; }; +template struct cwise_promote_storage_order { enum { value = LhsOrder }; }; +template struct cwise_promote_storage_order { enum { value = Order }; }; + + +/** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B. + * The template parameter ProductTag permits to specialize the resulting storage kind wrt to + * some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct. + * The default rules are as follows: + * \code + * K * K -> K + * dense * K -> dense + * K * dense -> dense + * diag * K -> K + * K * diag -> K + * Perm * K -> K + * K * Perm -> K + * \endcode + */ +template struct product_promote_storage_type; + +template struct product_promote_storage_type { typedef A ret;}; +template struct product_promote_storage_type { typedef Dense ret;}; +template struct product_promote_storage_type { typedef Dense ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; + +template struct product_promote_storage_type { typedef A ret; }; +template struct product_promote_storage_type { typedef B ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; + +template struct product_promote_storage_type { typedef A ret; }; +template struct product_promote_storage_type { typedef B ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; + +template struct product_promote_storage_type { typedef A ret; }; +template struct product_promote_storage_type { typedef B ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; +template struct product_promote_storage_type { typedef Dense ret; }; + +/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type. + * \tparam Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType. + */ +template +struct plain_row_type +{ + typedef Matrix MatrixRowType; + typedef Array ArrayRowType; + + typedef std::conditional_t< + is_same< typename traits::XprKind, MatrixXpr >::value, + MatrixRowType, + ArrayRowType + > type; +}; + +template +struct plain_col_type +{ + typedef Matrix MatrixColType; + typedef Array ArrayColType; + + typedef std::conditional_t< + is_same< typename traits::XprKind, MatrixXpr >::value, + MatrixColType, + ArrayColType + > type; +}; + +template +struct plain_diag_type +{ + enum { diag_size = internal::min_size_prefer_dynamic(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime), + max_diag_size = min_size_prefer_fixed(ExpressionType::MaxRowsAtCompileTime, + ExpressionType::MaxColsAtCompileTime) + }; + typedef Matrix MatrixDiagType; + typedef Array ArrayDiagType; + + typedef std::conditional_t< + is_same< typename traits::XprKind, MatrixXpr >::value, + MatrixDiagType, + ArrayDiagType + > type; +}; + +template +struct plain_constant_type +{ + enum { Options = (traits::Flags&RowMajorBit)?RowMajor:0 }; + + typedef Array::RowsAtCompileTime, traits::ColsAtCompileTime, + Options, traits::MaxRowsAtCompileTime,traits::MaxColsAtCompileTime> array_type; + + typedef Matrix::RowsAtCompileTime, traits::ColsAtCompileTime, + Options, traits::MaxRowsAtCompileTime,traits::MaxColsAtCompileTime> matrix_type; + + typedef CwiseNullaryOp, const std::conditional_t::XprKind, MatrixXpr >::value, matrix_type, array_type> > type; +}; + +template +struct is_lvalue +{ + enum { value = (!bool(is_const::value)) && + bool(traits::Flags & LvalueBit) }; +}; + +template struct is_diagonal +{ enum { ret = false }; }; + +template struct is_diagonal > +{ enum { ret = true }; }; + +template struct is_diagonal > +{ enum { ret = true }; }; + +template struct is_diagonal > +{ enum { ret = true }; }; + + +template struct is_identity +{ enum { value = false }; }; + +template struct is_identity, T> > +{ enum { value = true }; }; + + +template struct glue_shapes; +template<> struct glue_shapes { typedef TriangularShape type; }; + +template +struct possibly_same_dense { + enum { value = has_direct_access::ret && has_direct_access::ret && is_same::value }; +}; + +template +EIGEN_DEVICE_FUNC +bool is_same_dense(const T1 &mat1, const T2 &mat2, std::enable_if_t::value> * = 0) +{ + return (mat1.data()==mat2.data()) && (mat1.innerStride()==mat2.innerStride()) && (mat1.outerStride()==mat2.outerStride()); +} + +template +EIGEN_DEVICE_FUNC +bool is_same_dense(const T1 &, const T2 &, std::enable_if_t::value> * = 0) +{ + return false; +} + +// Internal helper defining the cost of a scalar division for the type T. +// The default heuristic can be specialized for each scalar type and architecture. +template +struct scalar_div_cost { + enum { value = 8*NumTraits::MulCost }; +}; + +template +struct scalar_div_cost, Vectorized> { + enum { value = 2*scalar_div_cost::value + + 6*NumTraits::MulCost + + 3*NumTraits::AddCost + }; +}; + + +template +struct scalar_div_cost> { enum { value = 24 }; }; +template +struct scalar_div_cost> { enum { value = 21 }; }; + + +#ifdef EIGEN_DEBUG_ASSIGN +std::string demangle_traversal(int t) +{ + if(t==DefaultTraversal) return "DefaultTraversal"; + if(t==LinearTraversal) return "LinearTraversal"; + if(t==InnerVectorizedTraversal) return "InnerVectorizedTraversal"; + if(t==LinearVectorizedTraversal) return "LinearVectorizedTraversal"; + if(t==SliceVectorizedTraversal) return "SliceVectorizedTraversal"; + return "?"; +} +std::string demangle_unrolling(int t) +{ + if(t==NoUnrolling) return "NoUnrolling"; + if(t==InnerUnrolling) return "InnerUnrolling"; + if(t==CompleteUnrolling) return "CompleteUnrolling"; + return "?"; +} +std::string demangle_flags(int f) +{ + std::string res; + if(f&RowMajorBit) res += " | RowMajor"; + if(f&PacketAccessBit) res += " | Packet"; + if(f&LinearAccessBit) res += " | Linear"; + if(f&LvalueBit) res += " | Lvalue"; + if(f&DirectAccessBit) res += " | Direct"; + if(f&NestByRefBit) res += " | NestByRef"; + if(f&NoPreferredStorageOrderBit) res += " | NoPreferredStorageOrderBit"; + + return res; +} +#endif + +} // end namespace internal + + +/** \class ScalarBinaryOpTraits + * \ingroup Core_Module + * + * \brief Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. + * + * This class permits to control the scalar return type of any binary operation performed on two different scalar types through (partial) template specializations. + * + * For instance, let \c U1, \c U2 and \c U3 be three user defined scalar types for which most operations between instances of \c U1 and \c U2 returns an \c U3. + * You can let %Eigen knows that by defining: + \code + template + struct ScalarBinaryOpTraits { typedef U3 ReturnType; }; + template + struct ScalarBinaryOpTraits { typedef U3 ReturnType; }; + \endcode + * You can then explicitly disable some particular operations to get more explicit error messages: + \code + template<> + struct ScalarBinaryOpTraits > {}; + \endcode + * Or customize the return type for individual operation: + \code + template<> + struct ScalarBinaryOpTraits > { typedef U1 ReturnType; }; + \endcode + * + * By default, the following generic combinations are supported: + + + + + +
ScalarAScalarBBinaryOpReturnTypeNote
\c T \c T \c * \c T
\c NumTraits::Real \c T \c * \c T Only if \c NumTraits::IsComplex
\c T \c NumTraits::Real \c * \c T Only if \c NumTraits::IsComplex
+ * + * \sa CwiseBinaryOp + */ +template > +struct ScalarBinaryOpTraits +#ifndef EIGEN_PARSED_BY_DOXYGEN + // for backward compatibility, use the hints given by the (deprecated) internal::scalar_product_traits class. + : internal::scalar_product_traits +#endif // EIGEN_PARSED_BY_DOXYGEN +{}; + +template +struct ScalarBinaryOpTraits +{ + typedef T ReturnType; +}; + +template +struct ScalarBinaryOpTraits::IsComplex,T>>::Real, BinaryOp> +{ + typedef T ReturnType; +}; +template +struct ScalarBinaryOpTraits::IsComplex,T>>::Real, T, BinaryOp> +{ + typedef T ReturnType; +}; + +// For Matrix * Permutation +template +struct ScalarBinaryOpTraits +{ + typedef T ReturnType; +}; + +// For Permutation * Matrix +template +struct ScalarBinaryOpTraits +{ + typedef T ReturnType; +}; + +// for Permutation*Permutation +template +struct ScalarBinaryOpTraits +{ + typedef void ReturnType; +}; + +// We require Lhs and Rhs to have "compatible" scalar types. +// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths. +// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to +// add together a float matrix and a double matrix. +#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \ + EIGEN_STATIC_ASSERT((Eigen::internal::has_ReturnType >::value), \ + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + +} // end namespace Eigen + +#endif // EIGEN_XPRHELPER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h new file mode 100644 index 0000000..1cfc0ca --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h @@ -0,0 +1,343 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Claire Maurice +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H +#define EIGEN_COMPLEX_EIGEN_SOLVER_H + +#include "./ComplexSchur.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class ComplexEigenSolver + * + * \brief Computes eigenvalues and eigenvectors of general complex matrices + * + * \tparam MatrixType_ the type of the matrix of which we are + * computing the eigendecomposition; this is expected to be an + * instantiation of the Matrix class template. + * + * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars + * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v + * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on + * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as + * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is + * almost always invertible, in which case we have \f$ A = V D V^{-1} + * \f$. This is called the eigendecomposition. + * + * The main function in this class is compute(), which computes the + * eigenvalues and eigenvectors of a given function. The + * documentation for that function contains an example showing the + * main features of the class. + * + * \sa class EigenSolver, class SelfAdjointEigenSolver + */ +template class ComplexEigenSolver +{ + public: + + /** \brief Synonym for the template parameter \p MatrixType_. */ + typedef MatrixType_ MatrixType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for #MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #ComplexScalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix EigenvalueType; + + /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of #MatrixType. + */ + typedef Matrix EigenvectorType; + + /** \brief Default constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). + */ + ComplexEigenSolver() + : m_eivec(), + m_eivalues(), + m_schur(), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_matX() + {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa ComplexEigenSolver() + */ + explicit ComplexEigenSolver(Index size) + : m_eivec(size, size), + m_eivalues(size), + m_schur(size), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_matX(size, size) + {} + + /** \brief Constructor; computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * + * This constructor calls compute() to compute the eigendecomposition. + */ + template + explicit ComplexEigenSolver(const EigenBase& matrix, bool computeEigenvectors = true) + : m_eivec(matrix.rows(),matrix.cols()), + m_eivalues(matrix.cols()), + m_schur(matrix.rows()), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_matX(matrix.rows(),matrix.cols()) + { + compute(matrix.derived(), computeEigenvectors); + } + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns A const reference to the matrix whose columns are the eigenvectors. + * + * \pre Either the constructor + * ComplexEigenSolver(const MatrixType& matrix, bool) or the member + * function compute(const MatrixType& matrix, bool) has been called before + * to compute the eigendecomposition of a matrix, and + * \p computeEigenvectors was set to true (the default). + * + * This function returns a matrix whose columns are the eigenvectors. Column + * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k + * \f$ as returned by eigenvalues(). The eigenvectors are normalized to + * have (Euclidean) norm equal to one. The matrix returned by this + * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D + * V^{-1} \f$, if it exists. + * + * Example: \include ComplexEigenSolver_eigenvectors.cpp + * Output: \verbinclude ComplexEigenSolver_eigenvectors.out + */ + const EigenvectorType& eigenvectors() const + { + eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre Either the constructor + * ComplexEigenSolver(const MatrixType& matrix, bool) or the member + * function compute(const MatrixType& matrix, bool) has been called before + * to compute the eigendecomposition of a matrix. + * + * This function returns a column vector containing the + * eigenvalues. Eigenvalues are repeated according to their + * algebraic multiplicity, so there are as many eigenvalues as + * rows in the matrix. The eigenvalues are not sorted in any particular + * order. + * + * Example: \include ComplexEigenSolver_eigenvalues.cpp + * Output: \verbinclude ComplexEigenSolver_eigenvalues.out + */ + const EigenvalueType& eigenvalues() const + { + eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of the complex matrix \p matrix. + * The eigenvalues() function can be used to retrieve them. If + * \p computeEigenvectors is true, then the eigenvectors are also computed + * and can be retrieved by calling eigenvectors(). + * + * The matrix is first reduced to Schur form using the + * ComplexSchur class. The Schur decomposition is then used to + * compute the eigenvalues and eigenvectors. + * + * The cost of the computation is dominated by the cost of the + * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ + * is the size of the matrix. + * + * Example: \include ComplexEigenSolver_compute.cpp + * Output: \verbinclude ComplexEigenSolver_compute.out + */ + template + ComplexEigenSolver& compute(const EigenBase& matrix, bool computeEigenvectors = true); + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); + return m_schur.info(); + } + + /** \brief Sets the maximum number of iterations allowed. */ + ComplexEigenSolver& setMaxIterations(Index maxIters) + { + m_schur.setMaxIterations(maxIters); + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_schur.getMaxIterations(); + } + + protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + EigenvectorType m_eivec; + EigenvalueType m_eivalues; + ComplexSchur m_schur; + bool m_isInitialized; + bool m_eigenvectorsOk; + EigenvectorType m_matX; + + private: + void doComputeEigenvectors(RealScalar matrixnorm); + void sortEigenvalues(bool computeEigenvectors); +}; + + +template +template +ComplexEigenSolver& +ComplexEigenSolver::compute(const EigenBase& matrix, bool computeEigenvectors) +{ + // this code is inspired from Jampack + eigen_assert(matrix.cols() == matrix.rows()); + + // Do a complex Schur decomposition, A = U T U^* + // The eigenvalues are on the diagonal of T. + m_schur.compute(matrix.derived(), computeEigenvectors); + + if(m_schur.info() == Success) + { + m_eivalues = m_schur.matrixT().diagonal(); + if(computeEigenvectors) + doComputeEigenvectors(m_schur.matrixT().norm()); + sortEigenvalues(computeEigenvectors); + } + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; +} + + +template +void ComplexEigenSolver::doComputeEigenvectors(RealScalar matrixnorm) +{ + const Index n = m_eivalues.size(); + + matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits::min)()); + + // Compute X such that T = X D X^(-1), where D is the diagonal of T. + // The matrix X is unit triangular. + m_matX = EigenvectorType::Zero(n, n); + for(Index k=n-1 ; k>=0 ; k--) + { + m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); + // Compute X(i,k) using the (i,k) entry of the equation X T = D X + for(Index i=k-1 ; i>=0 ; i--) + { + m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); + if(k-i-1>0) + m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); + ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); + if(z==ComplexScalar(0)) + { + // If the i-th and k-th eigenvalue are equal, then z equals 0. + // Use a small value instead, to prevent division by zero. + numext::real_ref(z) = NumTraits::epsilon() * matrixnorm; + } + m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; + } + } + + // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) + m_eivec.noalias() = m_schur.matrixU() * m_matX; + // .. and normalize the eigenvectors + for(Index k=0 ; k +void ComplexEigenSolver::sortEigenvalues(bool computeEigenvectors) +{ + const Index n = m_eivalues.size(); + for (Index i=0; i +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_SCHUR_H +#define EIGEN_COMPLEX_SCHUR_H + +#include "./HessenbergDecomposition.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template struct complex_schur_reduce_to_hessenberg; +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class ComplexSchur + * + * \brief Performs a complex Schur decomposition of a real or complex square matrix + * + * \tparam MatrixType_ the type of the matrix of which we are + * computing the Schur decomposition; this is expected to be an + * instantiation of the Matrix class template. + * + * Given a real or complex square matrix A, this class computes the + * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary + * complex matrix, and T is a complex upper triangular matrix. The + * diagonal of the matrix T corresponds to the eigenvalues of the + * matrix A. + * + * Call the function compute() to compute the Schur decomposition of + * a given matrix. Alternatively, you can use the + * ComplexSchur(const MatrixType&, bool) constructor which computes + * the Schur decomposition at construction time. Once the + * decomposition is computed, you can use the matrixU() and matrixT() + * functions to retrieve the matrices U and V in the decomposition. + * + * \note This code is inspired from Jampack + * + * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver + */ +template class ComplexSchur +{ + public: + typedef MatrixType_ MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type \p MatrixType_. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for \p MatrixType_. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for the matrices in the Schur decomposition. + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of \p MatrixType_. + */ + typedef Matrix ComplexMatrixType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. + * + * The default constructor is useful in cases in which the user + * intends to perform decompositions via compute(). The \p size + * parameter is only used as a hint. It is not an error to give a + * wrong \p size, but it may impair performance. + * + * \sa compute() for an example. + */ + explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) + : m_matT(size,size), + m_matU(size,size), + m_hess(size), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + {} + + /** \brief Constructor; computes Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + * + * This constructor calls compute() to compute the Schur decomposition. + * + * \sa matrixT() and matrixU() for examples. + */ + template + explicit ComplexSchur(const EigenBase& matrix, bool computeU = true) + : m_matT(matrix.rows(),matrix.cols()), + m_matU(matrix.rows(),matrix.cols()), + m_hess(matrix.rows()), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + { + compute(matrix.derived(), computeU); + } + + /** \brief Returns the unitary matrix in the Schur decomposition. + * + * \returns A const reference to the matrix U. + * + * It is assumed that either the constructor + * ComplexSchur(const MatrixType& matrix, bool computeU) or the + * member function compute(const MatrixType& matrix, bool computeU) + * has been called before to compute the Schur decomposition of a + * matrix, and that \p computeU was set to true (the default + * value). + * + * Example: \include ComplexSchur_matrixU.cpp + * Output: \verbinclude ComplexSchur_matrixU.out + */ + const ComplexMatrixType& matrixU() const + { + eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); + eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); + return m_matU; + } + + /** \brief Returns the triangular matrix in the Schur decomposition. + * + * \returns A const reference to the matrix T. + * + * It is assumed that either the constructor + * ComplexSchur(const MatrixType& matrix, bool computeU) or the + * member function compute(const MatrixType& matrix, bool computeU) + * has been called before to compute the Schur decomposition of a + * matrix. + * + * Note that this function returns a plain square matrix. If you want to reference + * only the upper triangular part, use: + * \code schur.matrixT().triangularView() \endcode + * + * Example: \include ComplexSchur_matrixT.cpp + * Output: \verbinclude ComplexSchur_matrixT.out + */ + const ComplexMatrixType& matrixT() const + { + eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); + return m_matT; + } + + /** \brief Computes Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + + * \returns Reference to \c *this + * + * The Schur decomposition is computed by first reducing the + * matrix to Hessenberg form using the class + * HessenbergDecomposition. The Hessenberg matrix is then reduced + * to triangular form by performing QR iterations with a single + * shift. The cost of computing the Schur decomposition depends + * on the number of iterations; as a rough guide, it may be taken + * on the number of iterations; as a rough guide, it may be taken + * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops + * if \a computeU is false. + * + * Example: \include ComplexSchur_compute.cpp + * Output: \verbinclude ComplexSchur_compute.out + * + * \sa compute(const MatrixType&, bool, Index) + */ + template + ComplexSchur& compute(const EigenBase& matrix, bool computeU = true); + + /** \brief Compute Schur decomposition from a given Hessenberg matrix + * \param[in] matrixH Matrix in Hessenberg form H + * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T + * \param computeU Computes the matriX U of the Schur vectors + * \return Reference to \c *this + * + * This routine assumes that the matrix is already reduced in Hessenberg form matrixH + * using either the class HessenbergDecomposition or another mean. + * It computes the upper quasi-triangular matrix T of the Schur decomposition of H + * When computeU is true, this routine computes the matrix U such that + * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix + * + * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix + * is not available, the user should give an identity matrix (Q.setIdentity()) + * + * \sa compute(const MatrixType&, bool) + */ + template + ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); + return m_info; + } + + /** \brief Sets the maximum number of iterations allowed. + * + * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size + * of the matrix. + */ + ComplexSchur& setMaxIterations(Index maxIters) + { + m_maxIters = maxIters; + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_maxIters; + } + + /** \brief Maximum number of iterations per row. + * + * If not otherwise specified, the maximum number of iterations is this number times the size of the + * matrix. It is currently set to 30. + */ + static const int m_maxIterationsPerRow = 30; + + protected: + ComplexMatrixType m_matT, m_matU; + HessenbergDecomposition m_hess; + ComputationInfo m_info; + bool m_isInitialized; + bool m_matUisUptodate; + Index m_maxIters; + + private: + bool subdiagonalEntryIsNeglegible(Index i); + ComplexScalar computeShift(Index iu, Index iter); + void reduceToTriangularForm(bool computeU); + friend struct internal::complex_schur_reduce_to_hessenberg::IsComplex>; +}; + +/** If m_matT(i+1,i) is negligible in floating point arithmetic + * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and + * return true, else return false. */ +template +inline bool ComplexSchur::subdiagonalEntryIsNeglegible(Index i) +{ + RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); + RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); + if (internal::isMuchSmallerThan(sd, d, NumTraits::epsilon())) + { + m_matT.coeffRef(i+1,i) = ComplexScalar(0); + return true; + } + return false; +} + + +/** Compute the shift in the current QR iteration. */ +template +typename ComplexSchur::ComplexScalar ComplexSchur::computeShift(Index iu, Index iter) +{ + using std::abs; + if (iter == 10 || iter == 20) + { + // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f + return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); + } + + // compute the shift as one of the eigenvalues of t, the 2x2 + // diagonal block on the bottom of the active submatrix + Matrix t = m_matT.template block<2,2>(iu-1,iu-1); + RealScalar normt = t.cwiseAbs().sum(); + t /= normt; // the normalization by sf is to avoid under/overflow + + ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); + ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); + ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); + ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; + ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); + ComplexScalar eival1 = (trace + disc) / RealScalar(2); + ComplexScalar eival2 = (trace - disc) / RealScalar(2); + RealScalar eival1_norm = numext::norm1(eival1); + RealScalar eival2_norm = numext::norm1(eival2); + // A division by zero can only occur if eival1==eival2==0. + // In this case, det==0, and all we have to do is checking that eival2_norm!=0 + if(eival1_norm > eival2_norm) + eival2 = det / eival1; + else if(!numext::is_exactly_zero(eival2_norm)) + eival1 = det / eival2; + + // choose the eigenvalue closest to the bottom entry of the diagonal + if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) + return normt * eival1; + else + return normt * eival2; +} + + +template +template +ComplexSchur& ComplexSchur::compute(const EigenBase& matrix, bool computeU) +{ + m_matUisUptodate = false; + eigen_assert(matrix.cols() == matrix.rows()); + + if(matrix.cols() == 1) + { + m_matT = matrix.derived().template cast(); + if(computeU) m_matU = ComplexMatrixType::Identity(1,1); + m_info = Success; + m_isInitialized = true; + m_matUisUptodate = computeU; + return *this; + } + + internal::complex_schur_reduce_to_hessenberg::IsComplex>::run(*this, matrix.derived(), computeU); + computeFromHessenberg(m_matT, m_matU, computeU); + return *this; +} + +template +template +ComplexSchur& ComplexSchur::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) +{ + m_matT = matrixH; + if(computeU) + m_matU = matrixQ; + reduceToTriangularForm(computeU); + return *this; +} +namespace internal { + +/* Reduce given matrix to Hessenberg form */ +template +struct complex_schur_reduce_to_hessenberg +{ + // this is the implementation for the case IsComplex = true + static void run(ComplexSchur& _this, const MatrixType& matrix, bool computeU) + { + _this.m_hess.compute(matrix); + _this.m_matT = _this.m_hess.matrixH(); + if(computeU) _this.m_matU = _this.m_hess.matrixQ(); + } +}; + +template +struct complex_schur_reduce_to_hessenberg +{ + static void run(ComplexSchur& _this, const MatrixType& matrix, bool computeU) + { + typedef typename ComplexSchur::ComplexScalar ComplexScalar; + + // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar + _this.m_hess.compute(matrix); + _this.m_matT = _this.m_hess.matrixH().template cast(); + if(computeU) + { + // This may cause an allocation which seems to be avoidable + MatrixType Q = _this.m_hess.matrixQ(); + _this.m_matU = Q.template cast(); + } + } +}; + +} // end namespace internal + +// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. +template +void ComplexSchur::reduceToTriangularForm(bool computeU) +{ + Index maxIters = m_maxIters; + if (maxIters == -1) + maxIters = m_maxIterationsPerRow * m_matT.rows(); + + // The matrix m_matT is divided in three parts. + // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. + // Rows il,...,iu is the part we are working on (the active submatrix). + // Rows iu+1,...,end are already brought in triangular form. + Index iu = m_matT.cols() - 1; + Index il; + Index iter = 0; // number of iterations we are working on the (iu,iu) element + Index totalIter = 0; // number of iterations for whole matrix + + while(true) + { + // find iu, the bottom row of the active submatrix + while(iu > 0) + { + if(!subdiagonalEntryIsNeglegible(iu-1)) break; + iter = 0; + --iu; + } + + // if iu is zero then we are done; the whole matrix is triangularized + if(iu==0) break; + + // if we spent too many iterations, we give up + iter++; + totalIter++; + if(totalIter > maxIters) break; + + // find il, the top row of the active submatrix + il = iu-1; + while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) + { + --il; + } + + /* perform the QR step using Givens rotations. The first rotation + creates a bulge; the (il+2,il) element becomes nonzero. This + bulge is chased down to the bottom of the active submatrix. */ + + ComplexScalar shift = computeShift(iu, iter); + JacobiRotation rot; + rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); + m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); + m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); + if(computeU) m_matU.applyOnTheRight(il, il+1, rot); + + for(Index i=il+1 ; i template inline \ +ComplexSchur >& \ +ComplexSchur >::compute(const EigenBase& matrix, bool computeU) \ +{ \ + typedef Matrix MatrixType; \ + typedef MatrixType::RealScalar RealScalar; \ + typedef std::complex ComplexScalar; \ +\ + eigen_assert(matrix.cols() == matrix.rows()); \ +\ + m_matUisUptodate = false; \ + if(matrix.cols() == 1) \ + { \ + m_matT = matrix.derived().template cast(); \ + if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \ + m_info = Success; \ + m_isInitialized = true; \ + m_matUisUptodate = computeU; \ + return *this; \ + } \ + lapack_int n = internal::convert_index(matrix.cols()), sdim, info; \ + lapack_int matrix_order = LAPACKE_COLROW; \ + char jobvs, sort='N'; \ + LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \ + jobvs = (computeU) ? 'V' : 'N'; \ + m_matU.resize(n, n); \ + lapack_int ldvs = internal::convert_index(m_matU.outerStride()); \ + m_matT = matrix; \ + lapack_int lda = internal::convert_index(m_matT.outerStride()); \ + Matrix w; \ + w.resize(n, 1);\ + info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \ + if(info == 0) \ + m_info = Success; \ + else \ + m_info = NoConvergence; \ +\ + m_isInitialized = true; \ + m_matUisUptodate = computeU; \ + return *this; \ +\ +} + +EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR) +EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR) + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/EigenSolver.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/EigenSolver.h new file mode 100644 index 0000000..f6ff140 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/EigenSolver.h @@ -0,0 +1,624 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EIGENSOLVER_H +#define EIGEN_EIGENSOLVER_H + +#include "./RealSchur.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class EigenSolver + * + * \brief Computes eigenvalues and eigenvectors of general matrices + * + * \tparam MatrixType_ the type of the matrix of which we are computing the + * eigendecomposition; this is expected to be an instantiation of the Matrix + * class template. Currently, only real matrices are supported. + * + * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars + * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If + * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and + * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = + * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we + * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. + * + * The eigenvalues and eigenvectors of a matrix may be complex, even when the + * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D + * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the + * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to + * have blocks of the form + * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] + * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These + * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call + * this variant of the eigendecomposition the pseudo-eigendecomposition. + * + * Call the function compute() to compute the eigenvalues and eigenvectors of + * a given matrix. Alternatively, you can use the + * EigenSolver(const MatrixType&, bool) constructor which computes the + * eigenvalues and eigenvectors at construction time. Once the eigenvalue and + * eigenvectors are computed, they can be retrieved with the eigenvalues() and + * eigenvectors() functions. The pseudoEigenvalueMatrix() and + * pseudoEigenvectors() methods allow the construction of the + * pseudo-eigendecomposition. + * + * The documentation for EigenSolver(const MatrixType&, bool) contains an + * example of the typical use of this class. + * + * \note The implementation is adapted from + *
JAMA (public domain). + * Their code is based on EISPACK. + * + * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver + */ +template class EigenSolver +{ + public: + + /** \brief Synonym for the template parameter \p MatrixType_. */ + typedef MatrixType_ MatrixType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for #MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #ComplexScalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix EigenvalueType; + + /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of #MatrixType. + */ + typedef Matrix EigenvectorsType; + + /** \brief Default constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via EigenSolver::compute(const MatrixType&, bool). + * + * \sa compute() for an example. + */ + EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {} + + /** \brief Default constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa EigenSolver() + */ + explicit EigenSolver(Index size) + : m_eivec(size, size), + m_eivalues(size), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_realSchur(size), + m_matT(size, size), + m_tmp(size) + {} + + /** \brief Constructor; computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * + * This constructor calls compute() to compute the eigenvalues + * and eigenvectors. + * + * Example: \include EigenSolver_EigenSolver_MatrixType.cpp + * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out + * + * \sa compute() + */ + template + explicit EigenSolver(const EigenBase& matrix, bool computeEigenvectors = true) + : m_eivec(matrix.rows(), matrix.cols()), + m_eivalues(matrix.cols()), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_realSchur(matrix.cols()), + m_matT(matrix.rows(), matrix.cols()), + m_tmp(matrix.cols()) + { + compute(matrix.derived(), computeEigenvectors); + } + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns %Matrix whose columns are the (possibly complex) eigenvectors. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before, and + * \p computeEigenvectors was set to true (the default). + * + * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding + * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The + * eigenvectors are normalized to have (Euclidean) norm equal to one. The + * matrix returned by this function is the matrix \f$ V \f$ in the + * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. + * + * Example: \include EigenSolver_eigenvectors.cpp + * Output: \verbinclude EigenSolver_eigenvectors.out + * + * \sa eigenvalues(), pseudoEigenvectors() + */ + EigenvectorsType eigenvectors() const; + + /** \brief Returns the pseudo-eigenvectors of given matrix. + * + * \returns Const reference to matrix whose columns are the pseudo-eigenvectors. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before, and + * \p computeEigenvectors was set to true (the default). + * + * The real matrix \f$ V \f$ returned by this function and the + * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() + * satisfy \f$ AV = VD \f$. + * + * Example: \include EigenSolver_pseudoEigenvectors.cpp + * Output: \verbinclude EigenSolver_pseudoEigenvectors.out + * + * \sa pseudoEigenvalueMatrix(), eigenvectors() + */ + const MatrixType& pseudoEigenvectors() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. + * + * \returns A block-diagonal matrix. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before. + * + * The matrix \f$ D \f$ returned by this function is real and + * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 + * blocks of the form + * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. + * These blocks are not sorted in any particular order. + * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by + * pseudoEigenvectors() satisfy \f$ AV = VD \f$. + * + * \sa pseudoEigenvectors() for an example, eigenvalues() + */ + MatrixType pseudoEigenvalueMatrix() const; + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are not sorted in any particular order. + * + * Example: \include EigenSolver_eigenvalues.cpp + * Output: \verbinclude EigenSolver_eigenvalues.out + * + * \sa eigenvectors(), pseudoEigenvalueMatrix(), + * MatrixBase::eigenvalues() + */ + const EigenvalueType& eigenvalues() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of the real matrix \p matrix. + * The eigenvalues() function can be used to retrieve them. If + * \p computeEigenvectors is true, then the eigenvectors are also computed + * and can be retrieved by calling eigenvectors(). + * + * The matrix is first reduced to real Schur form using the RealSchur + * class. The Schur decomposition is then used to compute the eigenvalues + * and eigenvectors. + * + * The cost of the computation is dominated by the cost of the + * Schur decomposition, which is very approximately \f$ 25n^3 \f$ + * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors + * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. + * + * This method reuses of the allocated data in the EigenSolver object. + * + * Example: \include EigenSolver_compute.cpp + * Output: \verbinclude EigenSolver_compute.out + */ + template + EigenSolver& compute(const EigenBase& matrix, bool computeEigenvectors = true); + + /** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise. */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_info; + } + + /** \brief Sets the maximum number of iterations allowed. */ + EigenSolver& setMaxIterations(Index maxIters) + { + m_realSchur.setMaxIterations(maxIters); + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_realSchur.getMaxIterations(); + } + + private: + void doComputeEigenvectors(); + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); + } + + MatrixType m_eivec; + EigenvalueType m_eivalues; + bool m_isInitialized; + bool m_eigenvectorsOk; + ComputationInfo m_info; + RealSchur m_realSchur; + MatrixType m_matT; + + typedef Matrix ColumnVectorType; + ColumnVectorType m_tmp; +}; + +template +MatrixType EigenSolver::pseudoEigenvalueMatrix() const +{ + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); + Index n = m_eivalues.rows(); + MatrixType matD = MatrixType::Zero(n,n); + for (Index i=0; i(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), + -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); + ++i; + } + } + return matD; +} + +template +typename EigenSolver::EigenvectorsType EigenSolver::eigenvectors() const +{ + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); + Index n = m_eivec.cols(); + EigenvectorsType matV(n,n); + for (Index j=0; j(); + matV.col(j).normalize(); + } + else + { + // we have a pair of complex eigen values + for (Index i=0; i +template +EigenSolver& +EigenSolver::compute(const EigenBase& matrix, bool computeEigenvectors) +{ + check_template_parameters(); + + using std::sqrt; + using std::abs; + using numext::isfinite; + eigen_assert(matrix.cols() == matrix.rows()); + + // Reduce to real Schur form. + m_realSchur.compute(matrix.derived(), computeEigenvectors); + + m_info = m_realSchur.info(); + + if (m_info == Success) + { + m_matT = m_realSchur.matrixT(); + if (computeEigenvectors) + m_eivec = m_realSchur.matrixU(); + + // Compute eigenvalues from matT + m_eivalues.resize(matrix.cols()); + Index i = 0; + while (i < matrix.cols()) + { + if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) + { + m_eivalues.coeffRef(i) = m_matT.coeff(i, i); + if(!(isfinite)(m_eivalues.coeffRef(i))) + { + m_isInitialized = true; + m_eigenvectorsOk = false; + m_info = NumericalIssue; + return *this; + } + ++i; + } + else + { + Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); + Scalar z; + // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); + // without overflow + { + Scalar t0 = m_matT.coeff(i+1, i); + Scalar t1 = m_matT.coeff(i, i+1); + Scalar maxval = numext::maxi(abs(p),numext::maxi(abs(t0),abs(t1))); + t0 /= maxval; + t1 /= maxval; + Scalar p0 = p/maxval; + z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); + } + + m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); + m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); + if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) + { + m_isInitialized = true; + m_eigenvectorsOk = false; + m_info = NumericalIssue; + return *this; + } + i += 2; + } + } + + // Compute eigenvectors. + if (computeEigenvectors) + doComputeEigenvectors(); + } + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + + return *this; +} + + +template +void EigenSolver::doComputeEigenvectors() +{ + using std::abs; + const Index size = m_eivec.cols(); + const Scalar eps = NumTraits::epsilon(); + + // inefficient! this is already computed in RealSchur + Scalar norm(0); + for (Index j = 0; j < size; ++j) + { + norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); + } + + // Backsubstitute to find vectors of upper triangular form + if (norm == Scalar(0)) + { + return; + } + + for (Index n = size-1; n >= 0; n--) + { + Scalar p = m_eivalues.coeff(n).real(); + Scalar q = m_eivalues.coeff(n).imag(); + + // Scalar vector + if (q == Scalar(0)) + { + Scalar lastr(0), lastw(0); + Index l = n; + + m_matT.coeffRef(n,n) = Scalar(1); + for (Index i = n-1; i >= 0; i--) + { + Scalar w = m_matT.coeff(i,i) - p; + Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); + + if (m_eivalues.coeff(i).imag() < Scalar(0)) + { + lastw = w; + lastr = r; + } + else + { + l = i; + if (m_eivalues.coeff(i).imag() == Scalar(0)) + { + if (w != Scalar(0)) + m_matT.coeffRef(i,n) = -r / w; + else + m_matT.coeffRef(i,n) = -r / (eps * norm); + } + else // Solve real equations + { + Scalar x = m_matT.coeff(i,i+1); + Scalar y = m_matT.coeff(i+1,i); + Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); + Scalar t = (x * lastr - lastw * r) / denom; + m_matT.coeffRef(i,n) = t; + if (abs(x) > abs(lastw)) + m_matT.coeffRef(i+1,n) = (-r - w * t) / x; + else + m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; + } + + // Overflow control + Scalar t = abs(m_matT.coeff(i,n)); + if ((eps * t) * t > Scalar(1)) + m_matT.col(n).tail(size-i) /= t; + } + } + } + else if (q < Scalar(0) && n > 0) // Complex vector + { + Scalar lastra(0), lastsa(0), lastw(0); + Index l = n-1; + + // Last vector component imaginary so matrix is triangular + if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) + { + m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); + m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); + } + else + { + ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q); + m_matT.coeffRef(n-1,n-1) = numext::real(cc); + m_matT.coeffRef(n-1,n) = numext::imag(cc); + } + m_matT.coeffRef(n,n-1) = Scalar(0); + m_matT.coeffRef(n,n) = Scalar(1); + for (Index i = n-2; i >= 0; i--) + { + Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); + Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); + Scalar w = m_matT.coeff(i,i) - p; + + if (m_eivalues.coeff(i).imag() < Scalar(0)) + { + lastw = w; + lastra = ra; + lastsa = sa; + } + else + { + l = i; + if (m_eivalues.coeff(i).imag() == RealScalar(0)) + { + ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q); + m_matT.coeffRef(i,n-1) = numext::real(cc); + m_matT.coeffRef(i,n) = numext::imag(cc); + } + else + { + // Solve complex equations + Scalar x = m_matT.coeff(i,i+1); + Scalar y = m_matT.coeff(i+1,i); + Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; + Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; + if ((vr == Scalar(0)) && (vi == Scalar(0))) + vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); + + ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi); + m_matT.coeffRef(i,n-1) = numext::real(cc); + m_matT.coeffRef(i,n) = numext::imag(cc); + if (abs(x) > (abs(lastw) + abs(q))) + { + m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; + m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; + } + else + { + cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q); + m_matT.coeffRef(i+1,n-1) = numext::real(cc); + m_matT.coeffRef(i+1,n) = numext::imag(cc); + } + } + + // Overflow control + Scalar t = numext::maxi(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); + if ((eps * t) * t > Scalar(1)) + m_matT.block(i, n-1, size-i, 2) /= t; + + } + } + + // We handled a pair of complex conjugate eigenvalues, so need to skip them both + n--; + } + else + { + eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen + } + } + + // Back transformation to get eigenvectors of original matrix + for (Index j = size-1; j >= 0; j--) + { + m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); + m_eivec.col(j) = m_tmp; + } +} + +} // end namespace Eigen + +#endif // EIGEN_EIGENSOLVER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h new file mode 100644 index 0000000..d62c411 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h @@ -0,0 +1,414 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012-2016 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// Copyright (C) 2016 Tobias Wood +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H +#define EIGEN_GENERALIZEDEIGENSOLVER_H + +#include "./RealQZ.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class GeneralizedEigenSolver + * + * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices + * + * \tparam MatrixType_ the type of the matrices of which we are computing the + * eigen-decomposition; this is expected to be an instantiation of the Matrix + * class template. Currently, only real matrices are supported. + * + * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars + * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If + * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and + * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = + * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we + * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition. + * + * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the + * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is + * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ + * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero, + * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that: + * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is + * called the left eigenvector. + * + * Call the function compute() to compute the generalized eigenvalues and eigenvectors of + * a given matrix pair. Alternatively, you can use the + * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the + * eigenvalues and eigenvectors at construction time. Once the eigenvalue and + * eigenvectors are computed, they can be retrieved with the eigenvalues() and + * eigenvectors() functions. + * + * Here is an usage example of this class: + * Example: \include GeneralizedEigenSolver.cpp + * Output: \verbinclude GeneralizedEigenSolver.out + * + * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver + */ +template class GeneralizedEigenSolver +{ + public: + + /** \brief Synonym for the template parameter \p MatrixType_. */ + typedef MatrixType_ MatrixType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for #MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for vector of real scalar values eigenvalues as returned by betas(). + * + * This is a column vector with entries of type #Scalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix VectorType; + + /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas(). + * + * This is a column vector with entries of type #ComplexScalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix ComplexVectorType; + + /** \brief Expression type for the eigenvalues as returned by eigenvalues(). + */ + typedef CwiseBinaryOp,ComplexVectorType,VectorType> EigenvalueType; + + /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of #MatrixType. + */ + typedef Matrix EigenvectorsType; + + /** \brief Default constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via EigenSolver::compute(const MatrixType&, bool). + * + * \sa compute() for an example. + */ + GeneralizedEigenSolver() + : m_eivec(), + m_alphas(), + m_betas(), + m_computeEigenvectors(false), + m_isInitialized(false), + m_realQZ() + {} + + /** \brief Default constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa GeneralizedEigenSolver() + */ + explicit GeneralizedEigenSolver(Index size) + : m_eivec(size, size), + m_alphas(size), + m_betas(size), + m_computeEigenvectors(false), + m_isInitialized(false), + m_realQZ(size), + m_tmp(size) + {} + + /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair. + * + * \param[in] A Square matrix whose eigendecomposition is to be computed. + * \param[in] B Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are computed. + * + * This constructor calls compute() to compute the generalized eigenvalues + * and eigenvectors. + * + * \sa compute() + */ + GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true) + : m_eivec(A.rows(), A.cols()), + m_alphas(A.cols()), + m_betas(A.cols()), + m_computeEigenvectors(false), + m_isInitialized(false), + m_realQZ(A.cols()), + m_tmp(A.cols()) + { + compute(A, B, computeEigenvectors); + } + + /* \brief Returns the computed generalized eigenvectors. + * + * \returns %Matrix whose columns are the (possibly complex) right eigenvectors. + * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues. + * + * \pre Either the constructor + * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function + * compute(const MatrixType&, const MatrixType& bool) has been called before, and + * \p computeEigenvectors was set to true (the default). + * + * \sa eigenvalues() + */ + EigenvectorsType eigenvectors() const { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute eigenvectors"); + eigen_assert(m_computeEigenvectors && "Eigenvectors for GeneralizedEigenSolver were not calculated"); + return m_eivec; + } + + /** \brief Returns an expression of the computed generalized eigenvalues. + * + * \returns An expression of the column vector containing the eigenvalues. + * + * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode + * Not that betas might contain zeros. It is therefore not recommended to use this function, + * but rather directly deal with the alphas and betas vectors. + * + * \pre Either the constructor + * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function + * compute(const MatrixType&,const MatrixType&,bool) has been called before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are not sorted in any particular order. + * + * \sa alphas(), betas(), eigenvectors() + */ + EigenvalueType eigenvalues() const + { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute eigenvalues."); + return EigenvalueType(m_alphas,m_betas); + } + + /** \returns A const reference to the vectors containing the alpha values + * + * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). + * + * \sa betas(), eigenvalues() */ + const ComplexVectorType& alphas() const + { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute alphas."); + return m_alphas; + } + + /** \returns A const reference to the vectors containing the beta values + * + * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). + * + * \sa alphas(), eigenvalues() */ + const VectorType& betas() const + { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute betas."); + return m_betas; + } + + /** \brief Computes generalized eigendecomposition of given matrix. + * + * \param[in] A Square matrix whose eigendecomposition is to be computed. + * \param[in] B Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of the real matrix \p matrix. + * The eigenvalues() function can be used to retrieve them. If + * \p computeEigenvectors is true, then the eigenvectors are also computed + * and can be retrieved by calling eigenvectors(). + * + * The matrix is first reduced to real generalized Schur form using the RealQZ + * class. The generalized Schur decomposition is then used to compute the eigenvalues + * and eigenvectors. + * + * The cost of the computation is dominated by the cost of the + * generalized Schur decomposition. + * + * This method reuses of the allocated data in the GeneralizedEigenSolver object. + */ + GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true); + + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_realQZ.info(); + } + + /** Sets the maximal number of iterations allowed. + */ + GeneralizedEigenSolver& setMaxIterations(Index maxIters) + { + m_realQZ.setMaxIterations(maxIters); + return *this; + } + + protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) + + EigenvectorsType m_eivec; + ComplexVectorType m_alphas; + VectorType m_betas; + bool m_computeEigenvectors; + bool m_isInitialized; + RealQZ m_realQZ; + ComplexVectorType m_tmp; +}; + +template +GeneralizedEigenSolver& +GeneralizedEigenSolver::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) +{ + using std::sqrt; + using std::abs; + eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows()); + Index size = A.cols(); + // Reduce to generalized real Schur form: + // A = Q S Z and B = Q T Z + m_realQZ.compute(A, B, computeEigenvectors); + if (m_realQZ.info() == Success) + { + // Resize storage + m_alphas.resize(size); + m_betas.resize(size); + if (computeEigenvectors) + { + m_eivec.resize(size,size); + m_tmp.resize(size); + } + + // Aliases: + Map v(reinterpret_cast(m_tmp.data()), size); + ComplexVectorType &cv = m_tmp; + const MatrixType &mS = m_realQZ.matrixS(); + const MatrixType &mT = m_realQZ.matrixT(); + + Index i = 0; + while (i < size) + { + if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0)) + { + // Real eigenvalue + m_alphas.coeffRef(i) = mS.diagonal().coeff(i); + m_betas.coeffRef(i) = mT.diagonal().coeff(i); + if (computeEigenvectors) + { + v.setConstant(Scalar(0.0)); + v.coeffRef(i) = Scalar(1.0); + // For singular eigenvalues do nothing more + if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits::min)()) + { + // Non-singular eigenvalue + const Scalar alpha = real(m_alphas.coeffRef(i)); + const Scalar beta = m_betas.coeffRef(i); + for (Index j = i-1; j >= 0; j--) + { + const Index st = j+1; + const Index sz = i-j; + if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) + { + // 2x2 block + Matrix rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) ); + Matrix lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); + v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); + j--; + } + else + { + v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j)); + } + } + } + m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v; + m_eivec.col(i).real().normalize(); + m_eivec.col(i).imag().setConstant(0); + } + ++i; + } + else + { + // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T + // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00): + + // T = [a 0] + // [0 b] + RealScalar a = mT.diagonal().coeff(i), + b = mT.diagonal().coeff(i+1); + const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b; + + // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug. + Matrix S2 = mS.template block<2,2>(i,i) * Matrix(b,a).asDiagonal(); + + Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1)); + Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1))); + const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z); + m_alphas.coeffRef(i) = conj(alpha); + m_alphas.coeffRef(i+1) = alpha; + + if (computeEigenvectors) { + // Compute eigenvector in position (i+1) and then position (i) is just the conjugate + cv.setZero(); + cv.coeffRef(i+1) = Scalar(1.0); + // here, the "static_cast" workaound expression template issues. + cv.coeffRef(i) = -(static_cast(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1)) + / (static_cast(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i)); + for (Index j = i-1; j >= 0; j--) + { + const Index st = j+1; + const Index sz = i+1-j; + if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) + { + // 2x2 block + Matrix rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) ); + Matrix lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); + cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); + j--; + } else { + cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() + / (alpha*mT.coeffRef(j,j) - static_cast(beta*mS.coeffRef(j,j))); + } + } + m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv); + m_eivec.col(i+1).normalize(); + m_eivec.col(i) = m_eivec.col(i+1).conjugate(); + } + i += 2; + } + } + } + m_computeEigenvectors = computeEigenvectors; + m_isInitialized = true; + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_GENERALIZEDEIGENSOLVER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h new file mode 100644 index 0000000..dab66ca --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h @@ -0,0 +1,228 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H +#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H + +#include "./Tridiagonalization.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class GeneralizedSelfAdjointEigenSolver + * + * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem + * + * \tparam MatrixType_ the type of the matrix of which we are computing the + * eigendecomposition; this is expected to be an instantiation of the Matrix + * class template. + * + * This class solves the generalized eigenvalue problem + * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be + * selfadjoint and the matrix \f$ B \f$ should be positive definite. + * + * Only the \b lower \b triangular \b part of the input matrix is referenced. + * + * Call the function compute() to compute the eigenvalues and eigenvectors of + * a given matrix. Alternatively, you can use the + * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) + * constructor which computes the eigenvalues and eigenvectors at construction time. + * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues() + * and eigenvectors() functions. + * + * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) + * contains an example of the typical use of this class. + * + * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver + */ +template +class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver +{ + typedef SelfAdjointEigenSolver Base; + public: + + typedef MatrixType_ MatrixType; + + /** \brief Default constructor for fixed-size matrices. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). This constructor + * can only be used if \p MatrixType_ is a fixed-size matrix; use + * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices. + */ + GeneralizedSelfAdjointEigenSolver() : Base() {} + + /** \brief Constructor, pre-allocates memory for dynamic-size matrices. + * + * \param [in] size Positive integer, size of the matrix whose + * eigenvalues and eigenvectors will be computed. + * + * This constructor is useful for dynamic-size matrices, when the user + * intends to perform decompositions via compute(). The \p size + * parameter is only used as a hint. It is not an error to give a wrong + * \p size, but it may impair performance. + * + * \sa compute() for an example + */ + explicit GeneralizedSelfAdjointEigenSolver(Index size) + : Base(size) + {} + + /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil. + * + * \param[in] matA Selfadjoint matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] matB Positive-definite matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. + * Default is #ComputeEigenvectors|#Ax_lBx. + * + * This constructor calls compute(const MatrixType&, const MatrixType&, int) + * to compute the eigenvalues and (if requested) the eigenvectors of the + * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the + * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix + * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property + * \f$ x^* B x = 1 \f$. The eigenvectors are computed if + * \a options contains ComputeEigenvectors. + * + * In addition, the two following variants can be solved via \p options: + * - \c ABx_lx: \f$ ABx = \lambda x \f$ + * - \c BAx_lx: \f$ BAx = \lambda x \f$ + * + * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp + * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out + * + * \sa compute(const MatrixType&, const MatrixType&, int) + */ + GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, + int options = ComputeEigenvectors|Ax_lBx) + : Base(matA.cols()) + { + compute(matA, matB, options); + } + + /** \brief Computes generalized eigendecomposition of given matrix pencil. + * + * \param[in] matA Selfadjoint matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] matB Positive-definite matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. + * Default is #ComputeEigenvectors|#Ax_lBx. + * + * \returns Reference to \c *this + * + * According to \p options, this function computes eigenvalues and (if requested) + * the eigenvectors of one of the following three generalized eigenproblems: + * - \c Ax_lBx: \f$ Ax = \lambda B x \f$ + * - \c ABx_lx: \f$ ABx = \lambda x \f$ + * - \c BAx_lx: \f$ BAx = \lambda x \f$ + * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite + * matrix \f$ B \f$. + * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$. + * + * The eigenvalues() function can be used to retrieve + * the eigenvalues. If \p options contains ComputeEigenvectors, then the + * eigenvectors are also computed and can be retrieved by calling + * eigenvectors(). + * + * The implementation uses LLT to compute the Cholesky decomposition + * \f$ B = LL^* \f$ and computes the classical eigendecomposition + * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx + * and of \f$ L^{*} A L \f$ otherwise. This solves the + * generalized eigenproblem, because any solution of the generalized + * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution + * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the + * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements + * can be made for the two other variants. + * + * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp + * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out + * + * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) + */ + GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, + int options = ComputeEigenvectors|Ax_lBx); + + protected: + +}; + + +template +GeneralizedSelfAdjointEigenSolver& GeneralizedSelfAdjointEigenSolver:: +compute(const MatrixType& matA, const MatrixType& matB, int options) +{ + eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx + || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx) + && "invalid option parameter"); + + bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors); + + // Compute the cholesky decomposition of matB = L L' = U'U + LLT cholB(matB); + + int type = (options&GenEigMask); + if(type==0) + type = Ax_lBx; + + if(type==Ax_lBx) + { + // compute C = inv(L) A inv(L') + MatrixType matC = matA.template selfadjointView(); + cholB.matrixL().template solveInPlace(matC); + cholB.matrixU().template solveInPlace(matC); + + Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly ); + + // transform back the eigen vectors: evecs = inv(U) * evecs + if(computeEigVecs) + cholB.matrixU().solveInPlace(Base::m_eivec); + } + else if(type==ABx_lx) + { + // compute C = L' A L + MatrixType matC = matA.template selfadjointView(); + matC = matC * cholB.matrixL(); + matC = cholB.matrixU() * matC; + + Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); + + // transform back the eigen vectors: evecs = inv(U) * evecs + if(computeEigVecs) + cholB.matrixU().solveInPlace(Base::m_eivec); + } + else if(type==BAx_lx) + { + // compute C = L' A L + MatrixType matC = matA.template selfadjointView(); + matC = matC * cholB.matrixL(); + matC = cholB.matrixU() * matC; + + Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); + + // transform back the eigen vectors: evecs = L * evecs + if(computeEigVecs) + Base::m_eivec = cholB.matrixL() * Base::m_eivec; + } + + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h new file mode 100644 index 0000000..fafab99 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h @@ -0,0 +1,376 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HESSENBERGDECOMPOSITION_H +#define EIGEN_HESSENBERGDECOMPOSITION_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template struct HessenbergDecompositionMatrixHReturnType; +template +struct traits > +{ + typedef MatrixType ReturnType; +}; + +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class HessenbergDecomposition + * + * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation + * + * \tparam MatrixType_ the type of the matrix of which we are computing the Hessenberg decomposition + * + * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In + * the real case, the Hessenberg decomposition consists of an orthogonal + * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H + * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its + * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the + * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition + * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is, + * \f$ Q^{-1} = Q^* \f$). + * + * Call the function compute() to compute the Hessenberg decomposition of a + * given matrix. Alternatively, you can use the + * HessenbergDecomposition(const MatrixType&) constructor which computes the + * Hessenberg decomposition at construction time. Once the decomposition is + * computed, you can use the matrixH() and matrixQ() functions to construct + * the matrices H and Q in the decomposition. + * + * The documentation for matrixH() contains an example of the typical use of + * this class. + * + * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module" + */ +template class HessenbergDecomposition +{ + public: + + /** \brief Synonym for the template parameter \p MatrixType_. */ + typedef MatrixType_ MatrixType; + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1, + Options = MatrixType::Options, + MaxSize = MatrixType::MaxRowsAtCompileTime, + MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1 + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Type for vector of Householder coefficients. + * + * This is column vector with entries of type #Scalar. The length of the + * vector is one less than the size of #MatrixType, if it is a fixed-side + * type. + */ + typedef Matrix CoeffVectorType; + + /** \brief Return type of matrixQ() */ + typedef HouseholderSequence> HouseholderSequenceType; + + typedef internal::HessenbergDecompositionMatrixHReturnType MatrixHReturnType; + + /** \brief Default constructor; the decomposition will be computed later. + * + * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), + m_temp(size), + m_isInitialized(false) + { + if(size>1) + m_hCoeffs.resize(size-1); + } + + /** \brief Constructor; computes Hessenberg decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed. + * + * This constructor calls compute() to compute the Hessenberg + * decomposition. + * + * \sa matrixH() for an example. + */ + template + explicit HessenbergDecomposition(const EigenBase& matrix) + : m_matrix(matrix.derived()), + m_temp(matrix.rows()), + m_isInitialized(false) + { + if(matrix.rows()<2) + { + m_isInitialized = true; + return; + } + m_hCoeffs.resize(matrix.rows()-1,1); + _compute(m_matrix, m_hCoeffs, m_temp); + m_isInitialized = true; + } + + /** \brief Computes Hessenberg decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed. + * \returns Reference to \c *this + * + * The Hessenberg decomposition is computed by bringing the columns of the + * matrix successively in the required form using Householder reflections + * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, %Matrix + * Computations). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$ + * denotes the size of the given matrix. + * + * This method reuses of the allocated data in the HessenbergDecomposition + * object. + * + * Example: \include HessenbergDecomposition_compute.cpp + * Output: \verbinclude HessenbergDecomposition_compute.out + */ + template + HessenbergDecomposition& compute(const EigenBase& matrix) + { + m_matrix = matrix.derived(); + if(matrix.rows()<2) + { + m_isInitialized = true; + return *this; + } + m_hCoeffs.resize(matrix.rows()-1,1); + _compute(m_matrix, m_hCoeffs, m_temp); + m_isInitialized = true; + return *this; + } + + /** \brief Returns the Householder coefficients. + * + * \returns a const reference to the vector of Householder coefficients + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * The Householder coefficients allow the reconstruction of the matrix + * \f$ Q \f$ in the Hessenberg decomposition from the packed data. + * + * \sa packedMatrix(), \ref Householder_Module "Householder module" + */ + const CoeffVectorType& householderCoefficients() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return m_hCoeffs; + } + + /** \brief Returns the internal representation of the decomposition + * + * \returns a const reference to a matrix with the internal representation + * of the decomposition. + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * The returned matrix contains the following information: + * - the upper part and lower sub-diagonal represent the Hessenberg matrix H + * - the rest of the lower part contains the Householder vectors that, combined with + * Householder coefficients returned by householderCoefficients(), + * allows to reconstruct the matrix Q as + * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. + * Here, the matrices \f$ H_i \f$ are the Householder transformations + * \f$ H_i = (I - h_i v_i v_i^T) \f$ + * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and + * \f$ v_i \f$ is the Householder vector defined by + * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ + * with M the matrix returned by this function. + * + * See LAPACK for further details on this packed storage. + * + * Example: \include HessenbergDecomposition_packedMatrix.cpp + * Output: \verbinclude HessenbergDecomposition_packedMatrix.out + * + * \sa householderCoefficients() + */ + const MatrixType& packedMatrix() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return m_matrix; + } + + /** \brief Reconstructs the orthogonal matrix Q in the decomposition + * + * \returns object representing the matrix Q + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * This function returns a light-weight object of template class + * HouseholderSequence. You can either apply it directly to a matrix or + * you can convert it to a matrix of type #MatrixType. + * + * \sa matrixH() for an example, class HouseholderSequence + */ + HouseholderSequenceType matrixQ() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) + .setLength(m_matrix.rows() - 1) + .setShift(1); + } + + /** \brief Constructs the Hessenberg matrix H in the decomposition + * + * \returns expression object representing the matrix H + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * The object returned by this function constructs the Hessenberg matrix H + * when it is assigned to a matrix or otherwise evaluated. The matrix H is + * constructed from the packed matrix as returned by packedMatrix(): The + * upper part (including the subdiagonal) of the packed matrix contains + * the matrix H. It may sometimes be better to directly use the packed + * matrix instead of constructing the matrix H. + * + * Example: \include HessenbergDecomposition_matrixH.cpp + * Output: \verbinclude HessenbergDecomposition_matrixH.out + * + * \sa matrixQ(), packedMatrix() + */ + MatrixHReturnType matrixH() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return MatrixHReturnType(*this); + } + + private: + + typedef Matrix VectorType; + typedef typename NumTraits::Real RealScalar; + static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp); + + protected: + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; + VectorType m_temp; + bool m_isInitialized; +}; + +/** \internal + * Performs a tridiagonal decomposition of \a matA in place. + * + * \param matA the input selfadjoint matrix + * \param hCoeffs returned Householder coefficients + * + * The result is written in the lower triangular part of \a matA. + * + * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1. + * + * \sa packedMatrix() + */ +template +void HessenbergDecomposition::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp) +{ + eigen_assert(matA.rows()==matA.cols()); + Index n = matA.rows(); + temp.resize(n); + for (Index i = 0; i struct HessenbergDecompositionMatrixHReturnType +: public ReturnByValue > +{ + public: + /** \brief Constructor. + * + * \param[in] hess Hessenberg decomposition + */ + HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition& hess) : m_hess(hess) { } + + /** \brief Hessenberg matrix in decomposition. + * + * \param[out] result Hessenberg matrix in decomposition \p hess which + * was passed to the constructor + */ + template + inline void evalTo(ResultType& result) const + { + result = m_hess.packedMatrix(); + Index n = result.rows(); + if (n>2) + result.bottomLeftCorner(n-2, n-2).template triangularView().setZero(); + } + + Index rows() const { return m_hess.packedMatrix().rows(); } + Index cols() const { return m_hess.packedMatrix().cols(); } + + protected: + const HessenbergDecomposition& m_hess; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_HESSENBERGDECOMPOSITION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/InternalHeaderCheck.h new file mode 100644 index 0000000..374cbd4 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_EIGENVALUES_MODULE_H +#error "Please include Eigen/Eigenvalues instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h new file mode 100644 index 0000000..c8df260 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h @@ -0,0 +1,160 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIXBASEEIGENVALUES_H +#define EIGEN_MATRIXBASEEIGENVALUES_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct eigenvalues_selector +{ + // this is the implementation for the case IsComplex = true + static inline typename MatrixBase::EigenvaluesReturnType const + run(const MatrixBase& m) + { + typedef typename Derived::PlainObject PlainObject; + PlainObject m_eval(m); + return ComplexEigenSolver(m_eval, false).eigenvalues(); + } +}; + +template +struct eigenvalues_selector +{ + static inline typename MatrixBase::EigenvaluesReturnType const + run(const MatrixBase& m) + { + typedef typename Derived::PlainObject PlainObject; + PlainObject m_eval(m); + return EigenSolver(m_eval, false).eigenvalues(); + } +}; + +} // end namespace internal + +/** \brief Computes the eigenvalues of a matrix + * \returns Column vector containing the eigenvalues. + * + * \eigenvalues_module + * This function computes the eigenvalues with the help of the EigenSolver + * class (for real matrices) or the ComplexEigenSolver class (for complex + * matrices). + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. + * + * The SelfAdjointView class provides a better algorithm for selfadjoint + * matrices. + * + * Example: \include MatrixBase_eigenvalues.cpp + * Output: \verbinclude MatrixBase_eigenvalues.out + * + * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), + * SelfAdjointView::eigenvalues() + */ +template +inline typename MatrixBase::EigenvaluesReturnType +MatrixBase::eigenvalues() const +{ + return internal::eigenvalues_selector::IsComplex>::run(derived()); +} + +/** \brief Computes the eigenvalues of a matrix + * \returns Column vector containing the eigenvalues. + * + * \eigenvalues_module + * This function computes the eigenvalues with the help of the + * SelfAdjointEigenSolver class. The eigenvalues are repeated according to + * their algebraic multiplicity, so there are as many eigenvalues as rows in + * the matrix. + * + * Example: \include SelfAdjointView_eigenvalues.cpp + * Output: \verbinclude SelfAdjointView_eigenvalues.out + * + * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() + */ +template +EIGEN_DEVICE_FUNC inline typename SelfAdjointView::EigenvaluesReturnType +SelfAdjointView::eigenvalues() const +{ + PlainObject thisAsMatrix(*this); + return SelfAdjointEigenSolver(thisAsMatrix, false).eigenvalues(); +} + + + +/** \brief Computes the L2 operator norm + * \returns Operator norm of the matrix. + * + * \eigenvalues_module + * This function computes the L2 operator norm of a matrix, which is also + * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be + * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] + * where the maximum is over all vectors and the norm on the right is the + * Euclidean vector norm. The norm equals the largest singular value, which is + * the square root of the largest eigenvalue of the positive semi-definite + * matrix \f$ A^*A \f$. + * + * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed + * by SelfAdjointView::eigenvalues(), to compute the operator norm of a + * matrix. The SelfAdjointView class provides a better algorithm for + * selfadjoint matrices. + * + * Example: \include MatrixBase_operatorNorm.cpp + * Output: \verbinclude MatrixBase_operatorNorm.out + * + * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() + */ +template +inline typename MatrixBase::RealScalar +MatrixBase::operatorNorm() const +{ + using std::sqrt; + typename Derived::PlainObject m_eval(derived()); + // FIXME if it is really guaranteed that the eigenvalues are already sorted, + // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. + return sqrt((m_eval*m_eval.adjoint()) + .eval() + .template selfadjointView() + .eigenvalues() + .maxCoeff() + ); +} + +/** \brief Computes the L2 operator norm + * \returns Operator norm of the matrix. + * + * \eigenvalues_module + * This function computes the L2 operator norm of a self-adjoint matrix. For a + * self-adjoint matrix, the operator norm is the largest eigenvalue. + * + * The current implementation uses the eigenvalues of the matrix, as computed + * by eigenvalues(), to compute the operator norm of the matrix. + * + * Example: \include SelfAdjointView_operatorNorm.cpp + * Output: \verbinclude SelfAdjointView_operatorNorm.out + * + * \sa eigenvalues(), MatrixBase::operatorNorm() + */ +template +EIGEN_DEVICE_FUNC inline typename SelfAdjointView::RealScalar +SelfAdjointView::operatorNorm() const +{ + return eigenvalues().cwiseAbs().maxCoeff(); +} + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealQZ.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealQZ.h new file mode 100644 index 0000000..545918f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealQZ.h @@ -0,0 +1,659 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Alexey Korepanov +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REAL_QZ_H +#define EIGEN_REAL_QZ_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + + /** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class RealQZ + * + * \brief Performs a real QZ decomposition of a pair of square matrices + * + * \tparam MatrixType_ the type of the matrix of which we are computing the + * real QZ decomposition; this is expected to be an instantiation of the + * Matrix class template. + * + * Given a real square matrices A and B, this class computes the real QZ + * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are + * real orthogonal matrixes, T is upper-triangular matrix, and S is upper + * quasi-triangular matrix. An orthogonal matrix is a matrix whose + * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular + * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 + * blocks and 2-by-2 blocks where further reduction is impossible due to + * complex eigenvalues. + * + * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from + * 1x1 and 2x2 blocks on the diagonals of S and T. + * + * Call the function compute() to compute the real QZ decomposition of a + * given pair of matrices. Alternatively, you can use the + * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ) + * constructor which computes the real QZ decomposition at construction + * time. Once the decomposition is computed, you can use the matrixS(), + * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices + * S, T, Q and Z in the decomposition. If computeQZ==false, some time + * is saved by not computing matrices Q and Z. + * + * Example: \include RealQZ_compute.cpp + * Output: \include RealQZ_compute.out + * + * \note The implementation is based on the algorithm in "Matrix Computations" + * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for + * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart. + * + * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver + */ + + template class RealQZ + { + public: + typedef MatrixType_ MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef std::complex::Real> ComplexScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + typedef Matrix EigenvalueType; + typedef Matrix ColumnVectorType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : + m_S(size, size), + m_T(size, size), + m_Q(size, size), + m_Z(size, size), + m_workspace(size*2), + m_maxIters(400), + m_isInitialized(false), + m_computeQZ(true) + {} + + /** \brief Constructor; computes real QZ decomposition of given matrices + * + * \param[in] A Matrix A. + * \param[in] B Matrix B. + * \param[in] computeQZ If false, A and Z are not computed. + * + * This constructor calls compute() to compute the QZ decomposition. + */ + RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) : + m_S(A.rows(),A.cols()), + m_T(A.rows(),A.cols()), + m_Q(A.rows(),A.cols()), + m_Z(A.rows(),A.cols()), + m_workspace(A.rows()*2), + m_maxIters(400), + m_isInitialized(false), + m_computeQZ(true) + { + compute(A, B, computeQZ); + } + + /** \brief Returns matrix Q in the QZ decomposition. + * + * \returns A const reference to the matrix Q. + */ + const MatrixType& matrixQ() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); + return m_Q; + } + + /** \brief Returns matrix Z in the QZ decomposition. + * + * \returns A const reference to the matrix Z. + */ + const MatrixType& matrixZ() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); + return m_Z; + } + + /** \brief Returns matrix S in the QZ decomposition. + * + * \returns A const reference to the matrix S. + */ + const MatrixType& matrixS() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_S; + } + + /** \brief Returns matrix S in the QZ decomposition. + * + * \returns A const reference to the matrix S. + */ + const MatrixType& matrixT() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_T; + } + + /** \brief Computes QZ decomposition of given matrix. + * + * \param[in] A Matrix A. + * \param[in] B Matrix B. + * \param[in] computeQZ If false, A and Z are not computed. + * \returns Reference to \c *this + */ + RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true); + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_info; + } + + /** \brief Returns number of performed QR-like iterations. + */ + Index iterations() const + { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_global_iter; + } + + /** Sets the maximal number of iterations allowed to converge to one eigenvalue + * or decouple the problem. + */ + RealQZ& setMaxIterations(Index maxIters) + { + m_maxIters = maxIters; + return *this; + } + + private: + + MatrixType m_S, m_T, m_Q, m_Z; + Matrix m_workspace; + ComputationInfo m_info; + Index m_maxIters; + bool m_isInitialized; + bool m_computeQZ; + Scalar m_normOfT, m_normOfS; + Index m_global_iter; + + typedef Matrix Vector3s; + typedef Matrix Vector2s; + typedef Matrix Matrix2s; + typedef JacobiRotation JRs; + + void hessenbergTriangular(); + void computeNorms(); + Index findSmallSubdiagEntry(Index iu); + Index findSmallDiagEntry(Index f, Index l); + void splitOffTwoRows(Index i); + void pushDownZero(Index z, Index f, Index l); + void step(Index f, Index l, Index iter); + + }; // RealQZ + + /** \internal Reduces S and T to upper Hessenberg - triangular form */ + template + void RealQZ::hessenbergTriangular() + { + + const Index dim = m_S.cols(); + + // perform QR decomposition of T, overwrite T with R, save Q + HouseholderQR qrT(m_T); + m_T = qrT.matrixQR(); + m_T.template triangularView().setZero(); + m_Q = qrT.householderQ(); + // overwrite S with Q* S + m_S.applyOnTheLeft(m_Q.adjoint()); + // init Z as Identity + if (m_computeQZ) + m_Z = MatrixType::Identity(dim,dim); + // reduce S to upper Hessenberg with Givens rotations + for (Index j=0; j<=dim-3; j++) { + for (Index i=dim-1; i>=j+2; i--) { + JRs G; + // kill S(i,j) + if(!numext::is_exactly_zero(m_S.coeff(i, j))) + { + G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j)); + m_S.coeffRef(i,j) = Scalar(0.0); + m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint()); + m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint()); + // update Q + if (m_computeQZ) + m_Q.applyOnTheRight(i-1,i,G); + } + // kill T(i,i-1) + if(!numext::is_exactly_zero(m_T.coeff(i, i - 1))) + { + G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i)); + m_T.coeffRef(i,i-1) = Scalar(0.0); + m_S.applyOnTheRight(i,i-1,G); + m_T.topRows(i).applyOnTheRight(i,i-1,G); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(i,i-1,G.adjoint()); + } + } + } + } + + /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */ + template + inline void RealQZ::computeNorms() + { + const Index size = m_S.cols(); + m_normOfS = Scalar(0.0); + m_normOfT = Scalar(0.0); + for (Index j = 0; j < size; ++j) + { + m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); + m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum(); + } + } + + + /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */ + template + inline Index RealQZ::findSmallSubdiagEntry(Index iu) + { + using std::abs; + Index res = iu; + while (res > 0) + { + Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res)); + if (numext::is_exactly_zero(s)) + s = m_normOfS; + if (abs(m_S.coeff(res,res-1)) < NumTraits::epsilon() * s) + break; + res--; + } + return res; + } + + /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */ + template + inline Index RealQZ::findSmallDiagEntry(Index f, Index l) + { + using std::abs; + Index res = l; + while (res >= f) { + if (abs(m_T.coeff(res,res)) <= NumTraits::epsilon() * m_normOfT) + break; + res--; + } + return res; + } + + /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */ + template + inline void RealQZ::splitOffTwoRows(Index i) + { + using std::abs; + using std::sqrt; + const Index dim=m_S.cols(); + if (numext::is_exactly_zero(abs(m_S.coeff(i + 1, i)))) + return; + Index j = findSmallDiagEntry(i,i+1); + if (j==i-1) + { + // block of (S T^{-1}) + Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView(). + template solve(m_S.template block<2,2>(i,i)); + Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1)); + Scalar q = p*p + STi(1,0)*STi(0,1); + if (q>=0) { + Scalar z = sqrt(q); + // one QR-like iteration for ABi - lambda I + // is enough - when we know exact eigenvalue in advance, + // convergence is immediate + JRs G; + if (p>=0) + G.makeGivens(p + z, STi(1,0)); + else + G.makeGivens(p - z, STi(1,0)); + m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); + m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); + // update Q + if (m_computeQZ) + m_Q.applyOnTheRight(i,i+1,G); + + G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i)); + m_S.topRows(i+2).applyOnTheRight(i+1,i,G); + m_T.topRows(i+2).applyOnTheRight(i+1,i,G); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(i+1,i,G.adjoint()); + + m_S.coeffRef(i+1,i) = Scalar(0.0); + m_T.coeffRef(i+1,i) = Scalar(0.0); + } + } + else + { + pushDownZero(j,i,i+1); + } + } + + /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */ + template + inline void RealQZ::pushDownZero(Index z, Index f, Index l) + { + JRs G; + const Index dim = m_S.cols(); + for (Index zz=z; zzf ? (zz-1) : zz; + G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1)); + m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint()); + m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint()); + m_T.coeffRef(zz+1,zz+1) = Scalar(0.0); + // update Q + if (m_computeQZ) + m_Q.applyOnTheRight(zz,zz+1,G); + // kill S(zz+1, zz-1) + if (zz>f) + { + G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1)); + m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G); + m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G); + m_S.coeffRef(zz+1,zz-1) = Scalar(0.0); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(zz,zz-1,G.adjoint()); + } + } + // finally kill S(l,l-1) + G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1)); + m_S.applyOnTheRight(l,l-1,G); + m_T.applyOnTheRight(l,l-1,G); + m_S.coeffRef(l,l-1)=Scalar(0.0); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(l,l-1,G.adjoint()); + } + + /** \internal QR-like iterative step for block f..l */ + template + inline void RealQZ::step(Index f, Index l, Index iter) + { + using std::abs; + const Index dim = m_S.cols(); + + // x, y, z + Scalar x, y, z; + if (iter==10) + { + // Wilkinson ad hoc shift + const Scalar + a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1), + a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1), + b12=m_T.coeff(f+0,f+1), + b11i=Scalar(1.0)/m_T.coeff(f+0,f+0), + b22i=Scalar(1.0)/m_T.coeff(f+1,f+1), + a87=m_S.coeff(l-1,l-2), + a98=m_S.coeff(l-0,l-1), + b77i=Scalar(1.0)/m_T.coeff(l-2,l-2), + b88i=Scalar(1.0)/m_T.coeff(l-1,l-1); + Scalar ss = abs(a87*b77i) + abs(a98*b88i), + lpl = Scalar(1.5)*ss, + ll = ss*ss; + x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i + - a11*a21*b12*b11i*b11i*b22i; + y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i + - a21*a21*b12*b11i*b11i*b22i; + z = a21*a32*b11i*b22i; + } + else if (iter==16) + { + // another exceptional shift + x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) / + (m_T.coeff(l-1,l-1)*m_T.coeff(l,l)); + y = m_S.coeff(f+1,f)/m_T.coeff(f,f); + z = 0; + } + else if (iter>23 && !(iter%8)) + { + // extremely exceptional shift + x = internal::random(-1.0,1.0); + y = internal::random(-1.0,1.0); + z = internal::random(-1.0,1.0); + } + else + { + // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1 + // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where + // U and V are 2x2 bottom right sub matrices of A and B. Thus: + // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1) + // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1) + // Since we are only interested in having x, y, z with a correct ratio, we have: + const Scalar + a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1), + a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1), + a32 = m_S.coeff(f+2,f+1), + + a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l), + a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l), + + b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1), + b22 = m_T.coeff(f+1,f+1), + + b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l), + b99 = m_T.coeff(l,l); + + x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21) + + a12/b22 - (a11/b11)*(b12/b22); + y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99); + z = a32/b22; + } + + JRs G; + + for (Index k=f; k<=l-2; k++) + { + // variables for Householder reflections + Vector2s essential2; + Scalar tau, beta; + + Vector3s hr(x,y,z); + + // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1) + hr.makeHouseholderInPlace(tau, beta); + essential2 = hr.template bottomRows<2>(); + Index fc=(std::max)(k-1,Index(0)); // first col to update + m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); + m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); + if (m_computeQZ) + m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data()); + if (k>f) + m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0); + + // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k) + hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1); + hr.makeHouseholderInPlace(tau, beta); + essential2 = hr.template bottomRows<2>(); + { + Index lr = (std::min)(k+4,dim); // last row to update + Map > tmp(m_workspace.data(),lr); + // S + tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2; + tmp += m_S.col(k+2).head(lr); + m_S.col(k+2).head(lr) -= tau*tmp; + m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); + // T + tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2; + tmp += m_T.col(k+2).head(lr); + m_T.col(k+2).head(lr) -= tau*tmp; + m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); + } + if (m_computeQZ) + { + // Z + Map > tmp(m_workspace.data(),dim); + tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k)); + tmp += m_Z.row(k+2); + m_Z.row(k+2) -= tau*tmp; + m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp); + } + m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0); + + // Z_{k2} to annihilate T(k+1,k) + G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k)); + m_S.applyOnTheRight(k+1,k,G); + m_T.applyOnTheRight(k+1,k,G); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(k+1,k,G.adjoint()); + m_T.coeffRef(k+1,k) = Scalar(0.0); + + // update x,y,z + x = m_S.coeff(k+1,k); + y = m_S.coeff(k+2,k); + if (k < l-2) + z = m_S.coeff(k+3,k); + } // loop over k + + // Q_{n-1} to annihilate y = S(l,l-2) + G.makeGivens(x,y); + m_S.applyOnTheLeft(l-1,l,G.adjoint()); + m_T.applyOnTheLeft(l-1,l,G.adjoint()); + if (m_computeQZ) + m_Q.applyOnTheRight(l-1,l,G); + m_S.coeffRef(l,l-2) = Scalar(0.0); + + // Z_{n-1} to annihilate T(l,l-1) + G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1)); + m_S.applyOnTheRight(l,l-1,G); + m_T.applyOnTheRight(l,l-1,G); + if (m_computeQZ) + m_Z.applyOnTheLeft(l,l-1,G.adjoint()); + m_T.coeffRef(l,l-1) = Scalar(0.0); + } + + template + RealQZ& RealQZ::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) + { + + const Index dim = A_in.cols(); + + eigen_assert (A_in.rows()==dim && A_in.cols()==dim + && B_in.rows()==dim && B_in.cols()==dim + && "Need square matrices of the same dimension"); + + m_isInitialized = true; + m_computeQZ = computeQZ; + m_S = A_in; m_T = B_in; + m_workspace.resize(dim*2); + m_global_iter = 0; + + // entrance point: hessenberg triangular decomposition + hessenbergTriangular(); + // compute L1 vector norms of T, S into m_normOfS, m_normOfT + computeNorms(); + + Index l = dim-1, + f, + local_iter = 0; + + while (l>0 && local_iter0) m_S.coeffRef(f,f-1) = Scalar(0.0); + if (f == l) // One root found + { + l--; + local_iter = 0; + } + else if (f == l-1) // Two roots found + { + splitOffTwoRows(f); + l -= 2; + local_iter = 0; + } + else // No convergence yet + { + // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations + Index z = findSmallDiagEntry(f,l); + if (z>=f) + { + // zero found + pushDownZero(z,f,l); + } + else + { + // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg + // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to + // apply a QR-like iteration to rows and columns f..l. + step(f,l, local_iter); + local_iter++; + m_global_iter++; + } + } + } + // check if we converged before reaching iterations limit + m_info = (local_iter j_left, j_right; + internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right); + + // Apply resulting Jacobi rotations + m_S.applyOnTheLeft(i,i+1,j_left); + m_S.applyOnTheRight(i,i+1,j_right); + m_T.applyOnTheLeft(i,i+1,j_left); + m_T.applyOnTheRight(i,i+1,j_right); + m_T(i+1,i) = m_T(i,i+1) = Scalar(0); + + if(m_computeQZ) { + m_Q.applyOnTheRight(i,i+1,j_left.transpose()); + m_Z.applyOnTheLeft(i,i+1,j_right.transpose()); + } + + i++; + } + } + } + + return *this; + } // end compute + +} // end namespace Eigen + +#endif //EIGEN_REAL_QZ diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealSchur.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealSchur.h new file mode 100644 index 0000000..9817666 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealSchur.h @@ -0,0 +1,560 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REAL_SCHUR_H +#define EIGEN_REAL_SCHUR_H + +#include "./HessenbergDecomposition.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class RealSchur + * + * \brief Performs a real Schur decomposition of a square matrix + * + * \tparam MatrixType_ the type of the matrix of which we are computing the + * real Schur decomposition; this is expected to be an instantiation of the + * Matrix class template. + * + * Given a real square matrix A, this class computes the real Schur + * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and + * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose + * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular + * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 + * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the + * blocks on the diagonal of T are the same as the eigenvalues of the matrix + * A, and thus the real Schur decomposition is used in EigenSolver to compute + * the eigendecomposition of a matrix. + * + * Call the function compute() to compute the real Schur decomposition of a + * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) + * constructor which computes the real Schur decomposition at construction + * time. Once the decomposition is computed, you can use the matrixU() and + * matrixT() functions to retrieve the matrices U and T in the decomposition. + * + * The documentation of RealSchur(const MatrixType&, bool) contains an example + * of the typical use of this class. + * + * \note The implementation is adapted from + * JAMA (public domain). + * Their code is based on EISPACK. + * + * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver + */ +template class RealSchur +{ + public: + typedef MatrixType_ MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef std::complex::Real> ComplexScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + typedef Matrix EigenvalueType; + typedef Matrix ColumnVectorType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) + : m_matT(size, size), + m_matU(size, size), + m_workspaceVector(size), + m_hess(size), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + { } + + /** \brief Constructor; computes real Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + * + * This constructor calls compute() to compute the Schur decomposition. + * + * Example: \include RealSchur_RealSchur_MatrixType.cpp + * Output: \verbinclude RealSchur_RealSchur_MatrixType.out + */ + template + explicit RealSchur(const EigenBase& matrix, bool computeU = true) + : m_matT(matrix.rows(),matrix.cols()), + m_matU(matrix.rows(),matrix.cols()), + m_workspaceVector(matrix.rows()), + m_hess(matrix.rows()), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + { + compute(matrix.derived(), computeU); + } + + /** \brief Returns the orthogonal matrix in the Schur decomposition. + * + * \returns A const reference to the matrix U. + * + * \pre Either the constructor RealSchur(const MatrixType&, bool) or the + * member function compute(const MatrixType&, bool) has been called before + * to compute the Schur decomposition of a matrix, and \p computeU was set + * to true (the default value). + * + * \sa RealSchur(const MatrixType&, bool) for an example + */ + const MatrixType& matrixU() const + { + eigen_assert(m_isInitialized && "RealSchur is not initialized."); + eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); + return m_matU; + } + + /** \brief Returns the quasi-triangular matrix in the Schur decomposition. + * + * \returns A const reference to the matrix T. + * + * \pre Either the constructor RealSchur(const MatrixType&, bool) or the + * member function compute(const MatrixType&, bool) has been called before + * to compute the Schur decomposition of a matrix. + * + * \sa RealSchur(const MatrixType&, bool) for an example + */ + const MatrixType& matrixT() const + { + eigen_assert(m_isInitialized && "RealSchur is not initialized."); + return m_matT; + } + + /** \brief Computes Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + * \returns Reference to \c *this + * + * The Schur decomposition is computed by first reducing the matrix to + * Hessenberg form using the class HessenbergDecomposition. The Hessenberg + * matrix is then reduced to triangular form by performing Francis QR + * iterations with implicit double shift. The cost of computing the Schur + * decomposition depends on the number of iterations; as a rough guide, it + * may be taken to be \f$25n^3\f$ flops if \a computeU is true and + * \f$10n^3\f$ flops if \a computeU is false. + * + * Example: \include RealSchur_compute.cpp + * Output: \verbinclude RealSchur_compute.out + * + * \sa compute(const MatrixType&, bool, Index) + */ + template + RealSchur& compute(const EigenBase& matrix, bool computeU = true); + + /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T + * \param[in] matrixH Matrix in Hessenberg form H + * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T + * \param computeU Computes the matriX U of the Schur vectors + * \return Reference to \c *this + * + * This routine assumes that the matrix is already reduced in Hessenberg form matrixH + * using either the class HessenbergDecomposition or another mean. + * It computes the upper quasi-triangular matrix T of the Schur decomposition of H + * When computeU is true, this routine computes the matrix U such that + * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix + * + * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix + * is not available, the user should give an identity matrix (Q.setIdentity()) + * + * \sa compute(const MatrixType&, bool) + */ + template + RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "RealSchur is not initialized."); + return m_info; + } + + /** \brief Sets the maximum number of iterations allowed. + * + * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size + * of the matrix. + */ + RealSchur& setMaxIterations(Index maxIters) + { + m_maxIters = maxIters; + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_maxIters; + } + + /** \brief Maximum number of iterations per row. + * + * If not otherwise specified, the maximum number of iterations is this number times the size of the + * matrix. It is currently set to 40. + */ + static const int m_maxIterationsPerRow = 40; + + private: + + MatrixType m_matT; + MatrixType m_matU; + ColumnVectorType m_workspaceVector; + HessenbergDecomposition m_hess; + ComputationInfo m_info; + bool m_isInitialized; + bool m_matUisUptodate; + Index m_maxIters; + + typedef Matrix Vector3s; + + Scalar computeNormOfT(); + Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero); + void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift); + void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); + void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); + void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace); +}; + + +template +template +RealSchur& RealSchur::compute(const EigenBase& matrix, bool computeU) +{ + const Scalar considerAsZero = (std::numeric_limits::min)(); + + eigen_assert(matrix.cols() == matrix.rows()); + Index maxIters = m_maxIters; + if (maxIters == -1) + maxIters = m_maxIterationsPerRow * matrix.rows(); + + Scalar scale = matrix.derived().cwiseAbs().maxCoeff(); + if(scale +template +RealSchur& RealSchur::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) +{ + using std::abs; + + m_matT = matrixH; + m_workspaceVector.resize(m_matT.cols()); + if(computeU && !internal::is_same_dense(m_matU,matrixQ)) + m_matU = matrixQ; + + Index maxIters = m_maxIters; + if (maxIters == -1) + maxIters = m_maxIterationsPerRow * matrixH.rows(); + Scalar* workspace = &m_workspaceVector.coeffRef(0); + + // The matrix m_matT is divided in three parts. + // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. + // Rows il,...,iu is the part we are working on (the active window). + // Rows iu+1,...,end are already brought in triangular form. + Index iu = m_matT.cols() - 1; + Index iter = 0; // iteration count for current eigenvalue + Index totalIter = 0; // iteration count for whole matrix + Scalar exshift(0); // sum of exceptional shifts + Scalar norm = computeNormOfT(); + // sub-diagonal entries smaller than considerAsZero will be treated as zero. + // We use eps^2 to enable more precision in small eigenvalues. + Scalar considerAsZero = numext::maxi( norm * numext::abs2(NumTraits::epsilon()), + (std::numeric_limits::min)() ); + + if(!numext::is_exactly_zero(norm)) + { + while (iu >= 0) + { + Index il = findSmallSubdiagEntry(iu,considerAsZero); + + // Check for convergence + if (il == iu) // One root found + { + m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; + if (iu > 0) + m_matT.coeffRef(iu, iu-1) = Scalar(0); + iu--; + iter = 0; + } + else if (il == iu-1) // Two roots found + { + splitOffTwoRows(iu, computeU, exshift); + iu -= 2; + iter = 0; + } + else // No convergence yet + { + // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG ) + Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo; + computeShift(iu, iter, exshift, shiftInfo); + iter = iter + 1; + totalIter = totalIter + 1; + if (totalIter > maxIters) break; + Index im; + initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); + performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); + } + } + } + if(totalIter <= maxIters) + m_info = Success; + else + m_info = NoConvergence; + + m_isInitialized = true; + m_matUisUptodate = computeU; + return *this; +} + +/** \internal Computes and returns vector L1 norm of T */ +template +inline typename MatrixType::Scalar RealSchur::computeNormOfT() +{ + const Index size = m_matT.cols(); + // FIXME to be efficient the following would requires a triangular reduxion code + // Scalar norm = m_matT.upper().cwiseAbs().sum() + // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); + Scalar norm(0); + for (Index j = 0; j < size; ++j) + norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); + return norm; +} + +/** \internal Look for single small sub-diagonal element and returns its index */ +template +inline Index RealSchur::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero) +{ + using std::abs; + Index res = iu; + while (res > 0) + { + Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res)); + + s = numext::maxi(s * NumTraits::epsilon(), considerAsZero); + + if (abs(m_matT.coeff(res,res-1)) <= s) + break; + res--; + } + return res; +} + +/** \internal Update T given that rows iu-1 and iu decouple from the rest. */ +template +inline void RealSchur::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) +{ + using std::sqrt; + using std::abs; + const Index size = m_matT.cols(); + + // The eigenvalues of the 2x2 matrix [a b; c d] are + // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc + Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); + Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 + m_matT.coeffRef(iu,iu) += exshift; + m_matT.coeffRef(iu-1,iu-1) += exshift; + + if (q >= Scalar(0)) // Two real eigenvalues + { + Scalar z = sqrt(abs(q)); + JacobiRotation rot; + if (p >= Scalar(0)) + rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); + else + rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); + + m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); + m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); + m_matT.coeffRef(iu, iu-1) = Scalar(0); + if (computeU) + m_matU.applyOnTheRight(iu-1, iu, rot); + } + + if (iu > 1) + m_matT.coeffRef(iu-1, iu-2) = Scalar(0); +} + +/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ +template +inline void RealSchur::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) +{ + using std::sqrt; + using std::abs; + shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); + shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); + shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); + + // Wilkinson's original ad hoc shift + if (iter == 10) + { + exshift += shiftInfo.coeff(0); + for (Index i = 0; i <= iu; ++i) + m_matT.coeffRef(i,i) -= shiftInfo.coeff(0); + Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); + shiftInfo.coeffRef(0) = Scalar(0.75) * s; + shiftInfo.coeffRef(1) = Scalar(0.75) * s; + shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; + } + + // MATLAB's new ad hoc shift + if (iter == 30) + { + Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); + s = s * s + shiftInfo.coeff(2); + if (s > Scalar(0)) + { + s = sqrt(s); + if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) + s = -s; + s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); + s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; + exshift += s; + for (Index i = 0; i <= iu; ++i) + m_matT.coeffRef(i,i) -= s; + shiftInfo.setConstant(Scalar(0.964)); + } + } +} + +/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ +template +inline void RealSchur::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector) +{ + using std::abs; + Vector3s& v = firstHouseholderVector; // alias to save typing + + for (im = iu-2; im >= il; --im) + { + const Scalar Tmm = m_matT.coeff(im,im); + const Scalar r = shiftInfo.coeff(0) - Tmm; + const Scalar s = shiftInfo.coeff(1) - Tmm; + v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1); + v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s; + v.coeffRef(2) = m_matT.coeff(im+2,im+1); + if (im == il) { + break; + } + const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2))); + const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1))); + if (abs(lhs) < NumTraits::epsilon() * rhs) + break; + } +} + +/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ +template +inline void RealSchur::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace) +{ + eigen_assert(im >= il); + eigen_assert(im <= iu-2); + + const Index size = m_matT.cols(); + + for (Index k = im; k <= iu-2; ++k) + { + bool firstIteration = (k == im); + + Vector3s v; + if (firstIteration) + v = firstHouseholderVector; + else + v = m_matT.template block<3,1>(k,k-1); + + Scalar tau, beta; + Matrix ess; + v.makeHouseholder(ess, tau, beta); + + if (!numext::is_exactly_zero(beta)) // if v is not zero + { + if (firstIteration && k > il) + m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1); + else if (!firstIteration) + m_matT.coeffRef(k,k-1) = beta; + + // These Householder transformations form the O(n^3) part of the algorithm + m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace); + m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); + if (computeU) + m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); + } + } + + Matrix v = m_matT.template block<2,1>(iu-1, iu-2); + Scalar tau, beta; + Matrix ess; + v.makeHouseholder(ess, tau, beta); + + if (!numext::is_exactly_zero(beta)) // if v is not zero + { + m_matT.coeffRef(iu-1, iu-2) = beta; + m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); + m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); + if (computeU) + m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); + } + + // clean up pollution due to round-off errors + for (Index i = im+2; i <= iu; ++i) + { + m_matT.coeffRef(i,i-2) = Scalar(0); + if (i > im+2) + m_matT.coeffRef(i,i-3) = Scalar(0); + } +} + +} // end namespace Eigen + +#endif // EIGEN_REAL_SCHUR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h new file mode 100644 index 0000000..0a6ed21 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h @@ -0,0 +1,79 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Real Schur needed to real unsymmetrical eigenvalues/eigenvectors. + ******************************************************************************** +*/ + +#ifndef EIGEN_REAL_SCHUR_LAPACKE_H +#define EIGEN_REAL_SCHUR_LAPACKE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \internal Specialization for the data types supported by LAPACKe */ + +#define EIGEN_LAPACKE_SCHUR_REAL(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \ +template<> template inline \ +RealSchur >& \ +RealSchur >::compute(const EigenBase& matrix, bool computeU) \ +{ \ + eigen_assert(matrix.cols() == matrix.rows()); \ +\ + lapack_int n = internal::convert_index(matrix.cols()), sdim, info; \ + lapack_int matrix_order = LAPACKE_COLROW; \ + char jobvs, sort='N'; \ + LAPACK_##LAPACKE_PREFIX_U##_SELECT2 select = 0; \ + jobvs = (computeU) ? 'V' : 'N'; \ + m_matU.resize(n, n); \ + lapack_int ldvs = internal::convert_index(m_matU.outerStride()); \ + m_matT = matrix; \ + lapack_int lda = internal::convert_index(m_matT.outerStride()); \ + Matrix wr, wi; \ + wr.resize(n, 1); wi.resize(n, 1); \ + info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)wr.data(), (LAPACKE_TYPE*)wi.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \ + if(info == 0) \ + m_info = Success; \ + else \ + m_info = NoConvergence; \ +\ + m_isInitialized = true; \ + m_matUisUptodate = computeU; \ + return *this; \ +\ +} + +EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR) +EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR) + +} // end namespace Eigen + +#endif // EIGEN_REAL_SCHUR_LAPACKE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h new file mode 100644 index 0000000..88e05bd --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h @@ -0,0 +1,905 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H +#define EIGEN_SELFADJOINTEIGENSOLVER_H + +#include "./Tridiagonalization.h" + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +class GeneralizedSelfAdjointEigenSolver; + +namespace internal { +template struct direct_selfadjoint_eigenvalues; + +template +EIGEN_DEVICE_FUNC +ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class SelfAdjointEigenSolver + * + * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices + * + * \tparam MatrixType_ the type of the matrix of which we are computing the + * eigendecomposition; this is expected to be an instantiation of the Matrix + * class template. + * + * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real + * matrices, this means that the matrix is symmetric: it equals its + * transpose. This class computes the eigenvalues and eigenvectors of a + * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors + * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a + * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with + * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the + * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the + * eigendecomposition. + * + * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal + * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then + * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is + * equal to its transpose, \f$ V^{-1} = V^T \f$. + * + * The algorithm exploits the fact that the matrix is selfadjoint, making it + * faster and more accurate than the general purpose eigenvalue algorithms + * implemented in EigenSolver and ComplexEigenSolver. + * + * Only the \b lower \b triangular \b part of the input matrix is referenced. + * + * Call the function compute() to compute the eigenvalues and eigenvectors of + * a given matrix. Alternatively, you can use the + * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes + * the eigenvalues and eigenvectors at construction time. Once the eigenvalue + * and eigenvectors are computed, they can be retrieved with the eigenvalues() + * and eigenvectors() functions. + * + * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) + * contains an example of the typical use of this class. + * + * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and + * the likes, see the class GeneralizedSelfAdjointEigenSolver. + * + * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver + */ +template class SelfAdjointEigenSolver +{ + public: + + typedef MatrixType_ MatrixType; + enum { + Size = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type \p MatrixType_. */ + typedef typename MatrixType::Scalar Scalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + typedef Matrix EigenvectorsType; + + /** \brief Real scalar type for \p MatrixType_. + * + * This is just \c Scalar if #Scalar is real (e.g., \c float or + * \c double), and the type of the real part of \c Scalar if #Scalar is + * complex. + */ + typedef typename NumTraits::Real RealScalar; + + friend struct internal::direct_selfadjoint_eigenvalues::IsComplex>; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #RealScalar. + * The length of the vector is the size of \p MatrixType_. + */ + typedef typename internal::plain_col_type::type VectorType; + typedef typename internal::plain_col_type::type RealVectorType; + typedef Tridiagonalization TridiagonalizationType; + typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; + + /** \brief Default constructor for fixed-size matrices. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). This constructor + * can only be used if \p MatrixType_ is a fixed-size matrix; use + * SelfAdjointEigenSolver(Index) for dynamic-size matrices. + * + * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp + * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out + */ + EIGEN_DEVICE_FUNC + SelfAdjointEigenSolver() + : m_eivec(), + m_workspace(), + m_eivalues(), + m_subdiag(), + m_hcoeffs(), + m_info(InvalidInput), + m_isInitialized(false), + m_eigenvectorsOk(false) + { } + + /** \brief Constructor, pre-allocates memory for dynamic-size matrices. + * + * \param [in] size Positive integer, size of the matrix whose + * eigenvalues and eigenvectors will be computed. + * + * This constructor is useful for dynamic-size matrices, when the user + * intends to perform decompositions via compute(). The \p size + * parameter is only used as a hint. It is not an error to give a wrong + * \p size, but it may impair performance. + * + * \sa compute() for an example + */ + EIGEN_DEVICE_FUNC + explicit SelfAdjointEigenSolver(Index size) + : m_eivec(size, size), + m_workspace(size), + m_eivalues(size), + m_subdiag(size > 1 ? size - 1 : 1), + m_hcoeffs(size > 1 ? size - 1 : 1), + m_isInitialized(false), + m_eigenvectorsOk(false) + {} + + /** \brief Constructor; computes eigendecomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to + * be computed. Only the lower triangular part of the matrix is referenced. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * + * This constructor calls compute(const MatrixType&, int) to compute the + * eigenvalues of the matrix \p matrix. The eigenvectors are computed if + * \p options equals #ComputeEigenvectors. + * + * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp + * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out + * + * \sa compute(const MatrixType&, int) + */ + template + EIGEN_DEVICE_FUNC + explicit SelfAdjointEigenSolver(const EigenBase& matrix, int options = ComputeEigenvectors) + : m_eivec(matrix.rows(), matrix.cols()), + m_workspace(matrix.cols()), + m_eivalues(matrix.cols()), + m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), + m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1), + m_isInitialized(false), + m_eigenvectorsOk(false) + { + compute(matrix.derived(), options); + } + + /** \brief Computes eigendecomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to + * be computed. Only the lower triangular part of the matrix is referenced. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of \p matrix. The eigenvalues() + * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, + * then the eigenvectors are also computed and can be retrieved by + * calling eigenvectors(). + * + * This implementation uses a symmetric QR algorithm. The matrix is first + * reduced to tridiagonal form using the Tridiagonalization class. The + * tridiagonal matrix is then brought to diagonal form with implicit + * symmetric QR steps with Wilkinson shift. Details can be found in + * Section 8.3 of Golub \& Van Loan, %Matrix Computations. + * + * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors + * are required and \f$ 4n^3/3 \f$ if they are not required. + * + * This method reuses the memory in the SelfAdjointEigenSolver object that + * was allocated when the object was constructed, if the size of the + * matrix does not change. + * + * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp + * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out + * + * \sa SelfAdjointEigenSolver(const MatrixType&, int) + */ + template + EIGEN_DEVICE_FUNC + SelfAdjointEigenSolver& compute(const EigenBase& matrix, int options = ComputeEigenvectors); + + /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm + * + * This is a variant of compute(const MatrixType&, int options) which + * directly solves the underlying polynomial equation. + * + * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). + * + * This method is usually significantly faster than the QR iterative algorithm + * but it might also be less accurate. It is also worth noting that + * for 3x3 matrices it involves trigonometric operations which are + * not necessarily available for all scalar types. + * + * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: + * - double: 1e-8 + * - float: 1e-3 + * + * \sa compute(const MatrixType&, int options) + */ + EIGEN_DEVICE_FUNC + SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); + + /** + *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix + * + * \param[in] diag The vector containing the diagonal of the matrix. + * \param[in] subdiag The subdiagonal of the matrix. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \returns Reference to \c *this + * + * This function assumes that the matrix has been reduced to tridiagonal form. + * + * \sa compute(const MatrixType&, int) for more information + */ + SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns A const reference to the matrix whose columns are the eigenvectors. + * + * \pre The eigenvectors have been computed before. + * + * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding + * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The + * eigenvectors are normalized to have (Euclidean) norm equal to one. If + * this object was used to solve the eigenproblem for the selfadjoint + * matrix \f$ A \f$, then the matrix returned by this function is the + * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. + * + * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal + * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then + * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is + * equal to its transpose, \f$ V^{-1} = V^T \f$. + * + * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp + * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out + * + * \sa eigenvalues() + */ + EIGEN_DEVICE_FUNC + const EigenvectorsType& eigenvectors() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre The eigenvalues have been computed before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are sorted in increasing order. + * + * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp + * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out + * + * \sa eigenvectors(), MatrixBase::eigenvalues() + */ + EIGEN_DEVICE_FUNC + const RealVectorType& eigenvalues() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes the positive-definite square root of the matrix. + * + * \returns the positive-definite square root of the matrix + * + * \pre The eigenvalues and eigenvectors of a positive-definite matrix + * have been computed before. + * + * The square root of a positive-definite matrix \f$ A \f$ is the + * positive-definite matrix whose square equals \f$ A \f$. This function + * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the + * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. + * + * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp + * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out + * + * \sa operatorInverseSqrt(), MatrixFunctions Module + */ + EIGEN_DEVICE_FUNC + MatrixType operatorSqrt() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \brief Computes the inverse square root of the matrix. + * + * \returns the inverse positive-definite square root of the matrix + * + * \pre The eigenvalues and eigenvectors of a positive-definite matrix + * have been computed before. + * + * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to + * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is + * cheaper than first computing the square root with operatorSqrt() and + * then its inverse with MatrixBase::inverse(). + * + * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp + * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out + * + * \sa operatorSqrt(), MatrixBase::inverse(), MatrixFunctions Module + */ + EIGEN_DEVICE_FUNC + MatrixType operatorInverseSqrt() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + EIGEN_DEVICE_FUNC + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + return m_info; + } + + /** \brief Maximum number of iterations. + * + * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n + * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). + */ + static const int m_maxIterations = 30; + + protected: + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + EigenvectorsType m_eivec; + VectorType m_workspace; + RealVectorType m_eivalues; + typename TridiagonalizationType::SubDiagonalType m_subdiag; + typename TridiagonalizationType::CoeffVectorType m_hcoeffs; + ComputationInfo m_info; + bool m_isInitialized; + bool m_eigenvectorsOk; +}; + +namespace internal { +/** \internal + * + * \eigenvalues_module \ingroup Eigenvalues_Module + * + * Performs a QR step on a tridiagonal symmetric matrix represented as a + * pair of two vectors \a diag and \a subdiag. + * + * \param diag the diagonal part of the input selfadjoint tridiagonal matrix + * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix + * \param start starting index of the submatrix to work on + * \param end last+1 index of the submatrix to work on + * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0 + * \param n size of the input matrix + * + * For compilation efficiency reasons, this procedure does not use eigen expression + * for its arguments. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: + * "implicit symmetric QR step with Wilkinson shift" + */ +template +EIGEN_DEVICE_FUNC +static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); +} + +template +template +EIGEN_DEVICE_FUNC +SelfAdjointEigenSolver& SelfAdjointEigenSolver +::compute(const EigenBase& a_matrix, int options) +{ + const InputType &matrix(a_matrix.derived()); + + EIGEN_USING_STD(abs); + eigen_assert(matrix.cols() == matrix.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && "invalid option parameter"); + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + Index n = matrix.cols(); + m_eivalues.resize(n,1); + + if(n==1) + { + m_eivec = matrix; + m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); + if(computeEigenvectors) + m_eivec.setOnes(n,n); + m_info = Success; + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; + } + + // declare some aliases + RealVectorType& diag = m_eivalues; + EigenvectorsType& mat = m_eivec; + + // map the matrix coefficients to [-1:1] to avoid over- and underflow. + mat = matrix.template triangularView(); + RealScalar scale = mat.cwiseAbs().maxCoeff(); + if(numext::is_exactly_zero(scale)) scale = RealScalar(1); + mat.template triangularView() /= scale; + m_subdiag.resize(n-1); + m_hcoeffs.resize(n-1); + internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, m_workspace, computeEigenvectors); + + m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); + + // scale back the eigen values + m_eivalues *= scale; + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; +} + +template +SelfAdjointEigenSolver& SelfAdjointEigenSolver +::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) +{ + //TODO : Add an option to scale the values beforehand + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + + m_eivalues = diag; + m_subdiag = subdiag; + if (computeEigenvectors) + { + m_eivec.setIdentity(diag.size(), diag.size()); + } + m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; +} + +namespace internal { +/** + * \internal + * \brief Compute the eigendecomposition from a tridiagonal matrix + * + * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues + * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition) + * \param[in] maxIterations : the maximum number of iterations + * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not + * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input. + * \returns \c Success or \c NoConvergence + */ +template +EIGEN_DEVICE_FUNC +ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) +{ + ComputationInfo info; + typedef typename MatrixType::Scalar Scalar; + + Index n = diag.size(); + Index end = n-1; + Index start = 0; + Index iter = 0; // total number of iterations + + typedef typename DiagType::RealScalar RealScalar; + const RealScalar considerAsZero = (std::numeric_limits::min)(); + const RealScalar precision_inv = RealScalar(1)/NumTraits::epsilon(); + while (end>0) + { + for (Index i = start; i0 && numext::is_exactly_zero(subdiag[end - 1])) + { + end--; + } + if (end<=0) + break; + + // if we spent too many iterations, we give up + iter++; + if(iter > maxIterations * n) break; + + start = end - 1; + while (start>0 && !numext::is_exactly_zero(subdiag[start - 1])) + start--; + + internal::tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); + } + if (iter <= maxIterations * n) + info = Success; + else + info = NoConvergence; + + // Sort eigenvalues and corresponding vectors. + // TODO make the sort optional ? + // TODO use a better sort algorithm !! + if (info == Success) + { + for (Index i = 0; i < n-1; ++i) + { + Index k; + diag.segment(i,n-i).minCoeff(&k); + if (k > 0) + { + numext::swap(diag[i], diag[k+i]); + if(computeEigenvectors) + eivec.col(i).swap(eivec.col(k+i)); + } + } + } + return info; +} + +template struct direct_selfadjoint_eigenvalues +{ + EIGEN_DEVICE_FUNC + static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) + { eig.compute(A,options); } +}; + +template struct direct_selfadjoint_eigenvalues +{ + typedef typename SolverType::MatrixType MatrixType; + typedef typename SolverType::RealVectorType VectorType; + typedef typename SolverType::Scalar Scalar; + typedef typename SolverType::EigenvectorsType EigenvectorsType; + + + /** \internal + * Computes the roots of the characteristic polynomial of \a m. + * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized. + */ + EIGEN_DEVICE_FUNC + static inline void computeRoots(const MatrixType& m, VectorType& roots) + { + EIGEN_USING_STD(sqrt) + EIGEN_USING_STD(atan2) + EIGEN_USING_STD(cos) + EIGEN_USING_STD(sin) + const Scalar s_inv3 = Scalar(1)/Scalar(3); + const Scalar s_sqrt3 = sqrt(Scalar(3)); + + // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The + // eigenvalues are the roots to this equation, all guaranteed to be + // real-valued, because the matrix is symmetric. + Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0); + Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1); + Scalar c2 = m(0,0) + m(1,1) + m(2,2); + + // Construct the parameters used in classifying the roots of the equation + // and in solving the equation for the roots in closed form. + Scalar c2_over_3 = c2*s_inv3; + Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3; + a_over_3 = numext::maxi(a_over_3, Scalar(0)); + + Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); + + Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b; + q = numext::maxi(q, Scalar(0)); + + // Compute the eigenvalues by solving for the roots of the polynomial. + Scalar rho = sqrt(a_over_3); + Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] + Scalar cos_theta = cos(theta); + Scalar sin_theta = sin(theta); + // roots are already sorted, since cos is monotonically decreasing on [0, pi] + roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3) + roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3) + roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; + } + + EIGEN_DEVICE_FUNC + static inline bool extract_kernel(MatrixType& mat, Ref res, Ref representative) + { + EIGEN_USING_STD(abs); + EIGEN_USING_STD(sqrt); + Index i0; + // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): + mat.diagonal().cwiseAbs().maxCoeff(&i0); + // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, + // so let's save it: + representative = mat.col(i0); + Scalar n0, n1; + VectorType c0, c1; + n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm(); + n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm(); + if(n0>n1) res = c0/sqrt(n0); + else res = c1/sqrt(n1); + + return true; + } + + EIGEN_DEVICE_FUNC + static inline void run(SolverType& solver, const MatrixType& mat, int options) + { + eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && "invalid option parameter"); + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + + EigenvectorsType& eivecs = solver.m_eivec; + VectorType& eivals = solver.m_eivalues; + + // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. + Scalar shift = mat.trace() / Scalar(3); + // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later + MatrixType scaledMat = mat.template selfadjointView(); + scaledMat.diagonal().array() -= shift; + Scalar scale = scaledMat.cwiseAbs().maxCoeff(); + if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations + + // compute the eigenvalues + computeRoots(scaledMat,eivals); + + // compute the eigenvectors + if(computeEigenvectors) + { + if((eivals(2)-eivals(0))<=Eigen::NumTraits::epsilon()) + { + // All three eigenvalues are numerically the same + eivecs.setIdentity(); + } + else + { + MatrixType tmp; + tmp = scaledMat; + + // Compute the eigenvector of the most distinct eigenvalue + Scalar d0 = eivals(2) - eivals(1); + Scalar d1 = eivals(1) - eivals(0); + Index k(0), l(2); + if(d0 > d1) + { + numext::swap(k,l); + d0 = d1; + } + + // Compute the eigenvector of index k + { + tmp.diagonal().array () -= eivals(k); + // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. + extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); + } + + // Compute eigenvector of index l + if(d0<=2*Eigen::NumTraits::epsilon()*d1) + { + // If d0 is too small, then the two other eigenvalues are numerically the same, + // and thus we only have to ortho-normalize the near orthogonal vector we saved above. + eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l); + eivecs.col(l).normalize(); + } + else + { + tmp = scaledMat; + tmp.diagonal().array () -= eivals(l); + + VectorType dummy; + extract_kernel(tmp, eivecs.col(l), dummy); + } + + // Compute last eigenvector from the other two + eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); + } + } + + // Rescale back to the original size. + eivals *= scale; + eivals.array() += shift; + + solver.m_info = Success; + solver.m_isInitialized = true; + solver.m_eigenvectorsOk = computeEigenvectors; + } +}; + +// 2x2 direct eigenvalues decomposition, code from Hauke Heibel +template +struct direct_selfadjoint_eigenvalues +{ + typedef typename SolverType::MatrixType MatrixType; + typedef typename SolverType::RealVectorType VectorType; + typedef typename SolverType::Scalar Scalar; + typedef typename SolverType::EigenvectorsType EigenvectorsType; + + EIGEN_DEVICE_FUNC + static inline void computeRoots(const MatrixType& m, VectorType& roots) + { + EIGEN_USING_STD(sqrt); + const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))); + const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1)); + roots(0) = t1 - t0; + roots(1) = t1 + t0; + } + + EIGEN_DEVICE_FUNC + static inline void run(SolverType& solver, const MatrixType& mat, int options) + { + EIGEN_USING_STD(sqrt); + EIGEN_USING_STD(abs); + + eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && "invalid option parameter"); + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + + EigenvectorsType& eivecs = solver.m_eivec; + VectorType& eivals = solver.m_eivalues; + + // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. + Scalar shift = mat.trace() / Scalar(2); + MatrixType scaledMat = mat; + scaledMat.coeffRef(0,1) = mat.coeff(1,0); + scaledMat.diagonal().array() -= shift; + Scalar scale = scaledMat.cwiseAbs().maxCoeff(); + if(scale > Scalar(0)) + scaledMat /= scale; + + // Compute the eigenvalues + computeRoots(scaledMat,eivals); + + // compute the eigen vectors + if(computeEigenvectors) + { + if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits::epsilon()) + { + eivecs.setIdentity(); + } + else + { + scaledMat.diagonal().array () -= eivals(1); + Scalar a2 = numext::abs2(scaledMat(0,0)); + Scalar c2 = numext::abs2(scaledMat(1,1)); + Scalar b2 = numext::abs2(scaledMat(1,0)); + if(a2>c2) + { + eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0); + eivecs.col(1) /= sqrt(a2+b2); + } + else + { + eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0); + eivecs.col(1) /= sqrt(c2+b2); + } + + eivecs.col(0) << eivecs.col(1).unitOrthogonal(); + } + } + + // Rescale back to the original size. + eivals *= scale; + eivals.array() += shift; + + solver.m_info = Success; + solver.m_isInitialized = true; + solver.m_eigenvectorsOk = computeEigenvectors; + } +}; + +} + +template +EIGEN_DEVICE_FUNC +SelfAdjointEigenSolver& SelfAdjointEigenSolver +::computeDirect(const MatrixType& matrix, int options) +{ + internal::direct_selfadjoint_eigenvalues::IsComplex>::run(*this,matrix,options); + return *this; +} + +namespace internal { + +// Francis implicit QR step. +template +EIGEN_DEVICE_FUNC +static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) +{ + // Wilkinson Shift. + RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); + RealScalar e = subdiag[end-1]; + // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still + // underflow thus leading to inf/NaN values when using the following commented code: + // RealScalar e2 = numext::abs2(subdiag[end-1]); + // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); + // This explain the following, somewhat more complicated, version: + RealScalar mu = diag[end]; + if(numext::is_exactly_zero(td)) { + mu -= numext::abs(e); + } else if (!numext::is_exactly_zero(e)) { + const RealScalar e2 = numext::abs2(e); + const RealScalar h = numext::hypot(td,e); + if(numext::is_exactly_zero(e2)) { + mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e); + } else { + mu -= e2 / (td + (td>RealScalar(0) ? h : -h)); + } + } + + RealScalar x = diag[start] - mu; + RealScalar z = subdiag[start]; + // If z ever becomes zero, the Givens rotation will be the identity and + // z will stay zero for all future iterations. + for (Index k = start; k < end && !numext::is_exactly_zero(z); ++k) + { + JacobiRotation rot; + rot.makeGivens(x, z); + + // do T = G' T G + RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; + RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; + + diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); + diag[k+1] = rot.s() * sdk + rot.c() * dkp1; + subdiag[k] = rot.c() * sdk - rot.s() * dkp1; + + if (k > start) + subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; + + // "Chasing the bulge" to return to triangular form. + x = subdiag[k]; + if (k < end - 1) + { + z = -rot.s() * subdiag[k+1]; + subdiag[k + 1] = rot.c() * subdiag[k+1]; + } + + // apply the givens rotation to the unit matrix Q = Q * G + if (matrixQ) + { + // FIXME if StorageOrder == RowMajor this operation is not very efficient + Map > q(matrixQ,n,n); + q.applyOnTheRight(k,k+1,rot); + } + } +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINTEIGENSOLVER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h new file mode 100644 index 0000000..b24de67 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h @@ -0,0 +1,89 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Self-adjoint eigenvalues/eigenvectors. + ******************************************************************************** +*/ + +#ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H +#define EIGEN_SAEIGENSOLVER_LAPACKE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \internal Specialization for the data types supported by LAPACKe */ + +#define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \ +template<> template inline \ +SelfAdjointEigenSolver >& \ +SelfAdjointEigenSolver >::compute(const EigenBase& matrix, int options) \ +{ \ + eigen_assert(matrix.cols() == matrix.rows()); \ + eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ + && (options&EigVecMask)!=EigVecMask \ + && "invalid option parameter"); \ + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ + lapack_int n = internal::convert_index(matrix.cols()), lda, info; \ + m_eivalues.resize(n,1); \ + m_subdiag.resize(n-1); \ + m_eivec = matrix; \ +\ + if(n==1) \ + { \ + m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \ + if(computeEigenvectors) m_eivec.setOnes(n,n); \ + m_info = Success; \ + m_isInitialized = true; \ + m_eigenvectorsOk = computeEigenvectors; \ + return *this; \ + } \ +\ + lda = internal::convert_index(m_eivec.outerStride()); \ + char jobz, uplo='L'/*, range='A'*/; \ + jobz = computeEigenvectors ? 'V' : 'N'; \ +\ + info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \ + m_info = (info==0) ? Success : NoConvergence; \ + m_isInitialized = true; \ + m_eigenvectorsOk = computeEigenvectors; \ + return *this; \ +} + +#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \ + EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \ + EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor ) + +EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev) +EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev) +EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev) +EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev) + +} // end namespace Eigen + +#endif // EIGEN_SAEIGENSOLVER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/Tridiagonalization.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/Tridiagonalization.h new file mode 100644 index 0000000..3de9818 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Eigenvalues/Tridiagonalization.h @@ -0,0 +1,564 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIDIAGONALIZATION_H +#define EIGEN_TRIDIAGONALIZATION_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template struct TridiagonalizationMatrixTReturnType; +template +struct traits > + : public traits +{ + typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix? + enum { Flags = 0 }; +}; + +template +EIGEN_DEVICE_FUNC +void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class Tridiagonalization + * + * \brief Tridiagonal decomposition of a selfadjoint matrix + * + * \tparam MatrixType_ the type of the matrix of which we are computing the + * tridiagonal decomposition; this is expected to be an instantiation of the + * Matrix class template. + * + * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: + * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. + * + * A tridiagonal matrix is a matrix which has nonzero elements only on the + * main diagonal and the first diagonal below and above it. The Hessenberg + * decomposition of a selfadjoint matrix is in fact a tridiagonal + * decomposition. This class is used in SelfAdjointEigenSolver to compute the + * eigenvalues and eigenvectors of a selfadjoint matrix. + * + * Call the function compute() to compute the tridiagonal decomposition of a + * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) + * constructor which computes the tridiagonal Schur decomposition at + * construction time. Once the decomposition is computed, you can use the + * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the + * decomposition. + * + * The documentation of Tridiagonalization(const MatrixType&) contains an + * example of the typical use of this class. + * + * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver + */ +template class Tridiagonalization +{ + public: + + /** \brief Synonym for the template parameter \p MatrixType_. */ + typedef MatrixType_ MatrixType; + + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), + Options = MatrixType::Options, + MaxSize = MatrixType::MaxRowsAtCompileTime, + MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) + }; + + typedef Matrix CoeffVectorType; + typedef typename internal::plain_col_type::type DiagonalType; + typedef Matrix SubDiagonalType; + typedef internal::remove_all_t MatrixTypeRealView; + typedef internal::TridiagonalizationMatrixTReturnType MatrixTReturnType; + + typedef std::conditional_t::IsComplex, + internal::add_const_on_value_type_t::RealReturnType>, + const Diagonal + > DiagonalReturnType; + + typedef std::conditional_t::IsComplex, + internal::add_const_on_value_type_t::RealReturnType>, + const Diagonal + > SubDiagonalReturnType; + + /** \brief Return type of matrixQ() */ + typedef HouseholderSequence> HouseholderSequenceType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose tridiagonal + * decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), + m_hCoeffs(size > 1 ? size-1 : 1), + m_isInitialized(false) + {} + + /** \brief Constructor; computes tridiagonal decomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition + * is to be computed. + * + * This constructor calls compute() to compute the tridiagonal decomposition. + * + * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp + * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out + */ + template + explicit Tridiagonalization(const EigenBase& matrix) + : m_matrix(matrix.derived()), + m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), + m_isInitialized(false) + { + internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); + m_isInitialized = true; + } + + /** \brief Computes tridiagonal decomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition + * is to be computed. + * \returns Reference to \c *this + * + * The tridiagonal decomposition is computed by bringing the columns of + * the matrix successively in the required form using Householder + * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes + * the size of the given matrix. + * + * This method reuses of the allocated data in the Tridiagonalization + * object, if the size of the matrix does not change. + * + * Example: \include Tridiagonalization_compute.cpp + * Output: \verbinclude Tridiagonalization_compute.out + */ + template + Tridiagonalization& compute(const EigenBase& matrix) + { + m_matrix = matrix.derived(); + m_hCoeffs.resize(matrix.rows()-1, 1); + internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); + m_isInitialized = true; + return *this; + } + + /** \brief Returns the Householder coefficients. + * + * \returns a const reference to the vector of Householder coefficients + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * The Householder coefficients allow the reconstruction of the matrix + * \f$ Q \f$ in the tridiagonal decomposition from the packed data. + * + * Example: \include Tridiagonalization_householderCoefficients.cpp + * Output: \verbinclude Tridiagonalization_householderCoefficients.out + * + * \sa packedMatrix(), \ref Householder_Module "Householder module" + */ + inline CoeffVectorType householderCoefficients() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_hCoeffs; + } + + /** \brief Returns the internal representation of the decomposition + * + * \returns a const reference to a matrix with the internal representation + * of the decomposition. + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * The returned matrix contains the following information: + * - the strict upper triangular part is equal to the input matrix A. + * - the diagonal and lower sub-diagonal represent the real tridiagonal + * symmetric matrix T. + * - the rest of the lower part contains the Householder vectors that, + * combined with Householder coefficients returned by + * householderCoefficients(), allows to reconstruct the matrix Q as + * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. + * Here, the matrices \f$ H_i \f$ are the Householder transformations + * \f$ H_i = (I - h_i v_i v_i^T) \f$ + * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and + * \f$ v_i \f$ is the Householder vector defined by + * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ + * with M the matrix returned by this function. + * + * See LAPACK for further details on this packed storage. + * + * Example: \include Tridiagonalization_packedMatrix.cpp + * Output: \verbinclude Tridiagonalization_packedMatrix.out + * + * \sa householderCoefficients() + */ + inline const MatrixType& packedMatrix() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_matrix; + } + + /** \brief Returns the unitary matrix Q in the decomposition + * + * \returns object representing the matrix Q + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * This function returns a light-weight object of template class + * HouseholderSequence. You can either apply it directly to a matrix or + * you can convert it to a matrix of type #MatrixType. + * + * \sa Tridiagonalization(const MatrixType&) for an example, + * matrixT(), class HouseholderSequence + */ + HouseholderSequenceType matrixQ() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) + .setLength(m_matrix.rows() - 1) + .setShift(1); + } + + /** \brief Returns an expression of the tridiagonal matrix T in the decomposition + * + * \returns expression object representing the matrix T + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * Currently, this function can be used to extract the matrix T from internal + * data and copy it to a dense matrix object. In most cases, it may be + * sufficient to directly use the packed matrix or the vector expressions + * returned by diagonal() and subDiagonal() instead of creating a new + * dense copy matrix with this function. + * + * \sa Tridiagonalization(const MatrixType&) for an example, + * matrixQ(), packedMatrix(), diagonal(), subDiagonal() + */ + MatrixTReturnType matrixT() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return MatrixTReturnType(m_matrix.real()); + } + + /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. + * + * \returns expression representing the diagonal of T + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * Example: \include Tridiagonalization_diagonal.cpp + * Output: \verbinclude Tridiagonalization_diagonal.out + * + * \sa matrixT(), subDiagonal() + */ + DiagonalReturnType diagonal() const; + + /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. + * + * \returns expression representing the subdiagonal of T + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * \sa diagonal() for an example, matrixT() + */ + SubDiagonalReturnType subDiagonal() const; + + protected: + + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; + bool m_isInitialized; +}; + +template +typename Tridiagonalization::DiagonalReturnType +Tridiagonalization::diagonal() const +{ + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_matrix.diagonal().real(); +} + +template +typename Tridiagonalization::SubDiagonalReturnType +Tridiagonalization::subDiagonal() const +{ + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_matrix.template diagonal<-1>().real(); +} + +namespace internal { + +/** \internal + * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. + * + * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. + * On output, the strict upper part is left unchanged, and the lower triangular part + * represents the T and Q matrices in packed format has detailed below. + * \param[out] hCoeffs returned Householder coefficients (see below) + * + * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal + * and lower sub-diagonal of the matrix \a matA. + * The unitary matrix Q is represented in a compact way as a product of + * Householder reflectors \f$ H_i \f$ such that: + * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. + * The Householder reflectors are defined as + * \f$ H_i = (I - h_i v_i v_i^T) \f$ + * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and + * \f$ v_i \f$ is the Householder vector defined by + * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. + * + * \sa Tridiagonalization::packedMatrix() + */ +template +EIGEN_DEVICE_FUNC +void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) +{ + using numext::conj; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + Index n = matA.rows(); + eigen_assert(n==matA.cols()); + eigen_assert(n==hCoeffs.size()+1 || n==1); + + for (Index i = 0; i() + * (conj(h) * matA.col(i).tail(remainingSize))); + + hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); + + matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() + .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); + + matA.col(i).coeffRef(i+1) = beta; + hCoeffs.coeffRef(i) = h; + } +} + +// forward declaration, implementation at the end of this file +template::IsComplex> +struct tridiagonalization_inplace_selector; + +/** \brief Performs a full tridiagonalization in place + * + * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal + * decomposition is to be computed. Only the lower triangular part referenced. + * The rest is left unchanged. On output, the orthogonal matrix Q + * in the decomposition if \p extractQ is true. + * \param[out] diag The diagonal of the tridiagonal matrix T in the + * decomposition. + * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in + * the decomposition. + * \param[in] extractQ If true, the orthogonal matrix Q in the + * decomposition is computed and stored in \p mat. + * + * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place + * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real + * symmetric tridiagonal matrix. + * + * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If + * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower + * part of the matrix \p mat is destroyed. + * + * The vectors \p diag and \p subdiag are not resized. The function + * assumes that they are already of the correct size. The length of the + * vector \p diag should equal the number of rows in \p mat, and the + * length of the vector \p subdiag should be one left. + * + * This implementation contains an optimized path for 3-by-3 matrices + * which is especially useful for plane fitting. + * + * \note Currently, it requires two temporary vectors to hold the intermediate + * Householder coefficients, and to reconstruct the matrix Q from the Householder + * reflectors. + * + * Example (this uses the same matrix as the example in + * Tridiagonalization::Tridiagonalization(const MatrixType&)): + * \include Tridiagonalization_decomposeInPlace.cpp + * Output: \verbinclude Tridiagonalization_decomposeInPlace.out + * + * \sa class Tridiagonalization + */ +template +EIGEN_DEVICE_FUNC +void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, + CoeffVectorType& hcoeffs, WorkSpaceType& workspace, bool extractQ) +{ + eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); + tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, workspace, extractQ); +} + +/** \internal + * General full tridiagonalization + */ +template +struct tridiagonalization_inplace_selector +{ + typedef typename Tridiagonalization::HouseholderSequenceType HouseholderSequenceType; + template + static EIGEN_DEVICE_FUNC + void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, WorkSpaceType& workspace, bool extractQ) + { + tridiagonalization_inplace(mat, hCoeffs); + diag = mat.diagonal().real(); + subdiag = mat.template diagonal<-1>().real(); + if (extractQ) { + HouseholderSequenceType(mat, hCoeffs.conjugate()) + .setLength(mat.rows() - 1) + .setShift(1) + .evalTo(mat, workspace); + } + } +}; + +/** \internal + * Specialization for 3x3 real matrices. + * Especially useful for plane fitting. + */ +template +struct tridiagonalization_inplace_selector +{ + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + template + static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, WorkSpaceType&, bool extractQ) + { + using std::sqrt; + const RealScalar tol = (std::numeric_limits::min)(); + diag[0] = mat(0,0); + RealScalar v1norm2 = numext::abs2(mat(2,0)); + if(v1norm2 <= tol) + { + diag[1] = mat(1,1); + diag[2] = mat(2,2); + subdiag[0] = mat(1,0); + subdiag[1] = mat(2,1); + if (extractQ) + mat.setIdentity(); + } + else + { + RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); + RealScalar invBeta = RealScalar(1)/beta; + Scalar m01 = mat(1,0) * invBeta; + Scalar m02 = mat(2,0) * invBeta; + Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); + diag[1] = mat(1,1) + m02*q; + diag[2] = mat(2,2) - m02*q; + subdiag[0] = beta; + subdiag[1] = mat(2,1) - m01 * q; + if (extractQ) + { + mat << 1, 0, 0, + 0, m01, m02, + 0, m02, -m01; + } + } + } +}; + +/** \internal + * Trivial specialization for 1x1 matrices + */ +template +struct tridiagonalization_inplace_selector +{ + typedef typename MatrixType::Scalar Scalar; + + template + static EIGEN_DEVICE_FUNC + void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, WorkSpaceType&, bool extractQ) + { + diag(0,0) = numext::real(mat(0,0)); + if(extractQ) + mat(0,0) = Scalar(1); + } +}; + +/** \internal + * \eigenvalues_module \ingroup Eigenvalues_Module + * + * \brief Expression type for return value of Tridiagonalization::matrixT() + * + * \tparam MatrixType type of underlying dense matrix + */ +template struct TridiagonalizationMatrixTReturnType +: public ReturnByValue > +{ + public: + /** \brief Constructor. + * + * \param[in] mat The underlying dense matrix + */ + TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } + + template + inline void evalTo(ResultType& result) const + { + result.setZero(); + result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); + result.diagonal() = m_matrix.diagonal(); + result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); + } + + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + protected: + typename MatrixType::Nested m_matrix; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIDIAGONALIZATION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/AlignedBox.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/AlignedBox.h new file mode 100644 index 0000000..a824817 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/AlignedBox.h @@ -0,0 +1,488 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// Function void Eigen::AlignedBox::transform(const Transform& transform) +// is provided under the following license agreement: +// +// Software License Agreement (BSD License) +// +// Copyright (c) 2011-2014, Willow Garage, Inc. +// Copyright (c) 2014-2015, Open Source Robotics Foundation +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Open Source Robotics Foundation nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +// POSSIBILITY OF SUCH DAMAGE. + +#ifndef EIGEN_ALIGNEDBOX_H +#define EIGEN_ALIGNEDBOX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \class AlignedBox + * + * \brief An axis aligned box + * + * \tparam Scalar_ the type of the scalar coefficients + * \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic. + * + * This class represents an axis aligned box as a pair of the minimal and maximal corners. + * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty(). + * \sa alignedboxtypedefs + */ +template +class AlignedBox +{ +public: +EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,AmbientDim_) + enum { AmbientDimAtCompileTime = AmbientDim_ }; + typedef Scalar_ Scalar; + typedef NumTraits ScalarTraits; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef typename ScalarTraits::Real RealScalar; + typedef typename ScalarTraits::NonInteger NonInteger; + typedef Matrix VectorType; + typedef CwiseBinaryOp, const VectorType, const VectorType> VectorTypeSum; + + /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ + enum CornerType + { + /** 1D names @{ */ + Min=0, Max=1, + /** @} */ + + /** Identifier for 2D corner @{ */ + BottomLeft=0, BottomRight=1, + TopLeft=2, TopRight=3, + /** @} */ + + /** Identifier for 3D corner @{ */ + BottomLeftFloor=0, BottomRightFloor=1, + TopLeftFloor=2, TopRightFloor=3, + BottomLeftCeil=4, BottomRightCeil=5, + TopLeftCeil=6, TopRightCeil=7 + /** @} */ + }; + + + /** Default constructor initializing a null box. */ + EIGEN_DEVICE_FUNC inline AlignedBox() + { if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime!=Dynamic)) setEmpty(); } + + /** Constructs a null box with \a _dim the dimension of the ambient space. */ + EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) + { setEmpty(); } + + /** Constructs a box with extremities \a _min and \a _max. + * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */ + template + EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} + + /** Constructs a box containing a single point \a p. */ + template + EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase& p) : m_min(p), m_max(m_min) + { } + + EIGEN_DEVICE_FUNC ~AlignedBox() {} + + /** \returns the dimension in which the box holds */ + EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); } + + /** \deprecated use isEmpty() */ + EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); } + + /** \deprecated use setEmpty() */ + EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); } + + /** \returns true if the box is empty. + * \sa setEmpty */ + EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } + + /** Makes \c *this an empty box. + * \sa isEmpty */ + EIGEN_DEVICE_FUNC inline void setEmpty() + { + m_min.setConstant( ScalarTraits::highest() ); + m_max.setConstant( ScalarTraits::lowest() ); + } + + /** \returns the minimal corner */ + EIGEN_DEVICE_FUNC inline const VectorType& (min)() const { return m_min; } + /** \returns a non const reference to the minimal corner */ + EIGEN_DEVICE_FUNC inline VectorType& (min)() { return m_min; } + /** \returns the maximal corner */ + EIGEN_DEVICE_FUNC inline const VectorType& (max)() const { return m_max; } + /** \returns a non const reference to the maximal corner */ + EIGEN_DEVICE_FUNC inline VectorType& (max)() { return m_max; } + + /** \returns the center of the box */ + EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient) + center() const + { return (m_min+m_max)/RealScalar(2); } + + /** \returns the lengths of the sides of the bounding box. + * Note that this function does not get the same + * result for integral or floating scalar types: see + */ + EIGEN_DEVICE_FUNC inline const CwiseBinaryOp< internal::scalar_difference_op, const VectorType, const VectorType> sizes() const + { return m_max - m_min; } + + /** \returns the volume of the bounding box */ + EIGEN_DEVICE_FUNC inline Scalar volume() const + { return sizes().prod(); } + + /** \returns an expression for the bounding box diagonal vector + * if the length of the diagonal is needed: diagonal().norm() + * will provide it. + */ + EIGEN_DEVICE_FUNC inline CwiseBinaryOp< internal::scalar_difference_op, const VectorType, const VectorType> diagonal() const + { return sizes(); } + + /** \returns the vertex of the bounding box at the corner defined by + * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. + * For 1D bounding boxes corners are named by 2 enum constants: + * BottomLeft and BottomRight. + * For 2D bounding boxes, corners are named by 4 enum constants: + * BottomLeft, BottomRight, TopLeft, TopRight. + * For 3D bounding boxes, the following names are added: + * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. + */ + EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const + { + EIGEN_STATIC_ASSERT(AmbientDim_ <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); + + VectorType res; + + Index mult = 1; + for(Index d=0; d(Scalar(0), Scalar(1)); + } + else + r[d] = internal::random(m_min[d], m_max[d]); + } + return r; + } + + /** \returns true if the point \a p is inside the box \c *this. */ + template + EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase& p) const + { + typename internal::nested_eval::type p_n(p.derived()); + return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all(); + } + + /** \returns true if the box \a b is entirely inside the box \c *this. */ + EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const + { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } + + /** \returns true if the box \a b is intersecting the box \c *this. + * \sa intersection, clamp */ + EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const + { return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); } + + /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. + * \sa extend(const AlignedBox&) */ + template + EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase& p) + { + typename internal::nested_eval::type p_n(p.derived()); + m_min = m_min.cwiseMin(p_n); + m_max = m_max.cwiseMax(p_n); + return *this; + } + + /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. + * \sa merged, extend(const MatrixBase&) */ + EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b) + { + m_min = m_min.cwiseMin(b.m_min); + m_max = m_max.cwiseMax(b.m_max); + return *this; + } + + /** Clamps \c *this by the box \a b and returns a reference to \c *this. + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersection(), intersects() */ + EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b) + { + m_min = m_min.cwiseMax(b.m_min); + m_max = m_max.cwiseMin(b.m_max); + return *this; + } + + /** Returns an AlignedBox that is the intersection of \a b and \c *this + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersects(), clamp, contains() */ + EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const + {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } + + /** Returns an AlignedBox that is the union of \a b and \c *this. + * \note Merging with an empty box may result in a box bigger than \c *this. + * \sa extend(const AlignedBox&) */ + EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const + { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } + + /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ + template + EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase& a_t) + { + const typename internal::nested_eval::type t(a_t.derived()); + m_min += t; + m_max += t; + return *this; + } + + /** \returns a copy of \c *this translated by the vector \a t. */ + template + EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase& a_t) const + { + AlignedBox result(m_min, m_max); + result.translate(a_t); + return result; + } + + /** \returns the squared distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) + */ + template + EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase& p) const; + + /** \returns the squared distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) + */ + EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const; + + /** \returns the distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) + */ + template + EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase& p) const + { EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); } + + /** \returns the distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) + */ + EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const + { EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); } + + /** + * Specialization of transform for pure translation. + */ + template + EIGEN_DEVICE_FUNC inline void transform( + const typename Transform::TranslationType& translation) + { + this->translate(translation); + } + + /** + * Transforms this box by \a transform and recomputes it to + * still be an axis-aligned box. + * + * \note This method is provided under BSD license (see the top of this file). + */ + template + EIGEN_DEVICE_FUNC inline void transform(const Transform& transform) + { + // Only Affine and Isometry transforms are currently supported. + EIGEN_STATIC_ASSERT(Mode == Affine || Mode == AffineCompact || Mode == Isometry, THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS); + + // Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV(...) + // https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292 + // + // Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/ + + // two times rotated extent + const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes(); + // two times new center + const VectorType rotated_center_2 = transform.linear() * (this->m_max + this->m_min) + + Scalar(2) * transform.translation(); + + this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2); + this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2); + } + + /** + * \returns a copy of \c *this transformed by \a transform and recomputed to + * still be an axis-aligned box. + */ + template + EIGEN_DEVICE_FUNC AlignedBox transformed(const Transform& transform) const + { + AlignedBox result(m_min, m_max); + result.transform(transform); + return result; + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { + return typename internal::cast_return_type >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox& other) + { + m_min = (other.min)().template cast(); + m_max = (other.max)().template cast(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const + { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } + +protected: + + VectorType m_min, m_max; +}; + + + +template +template +EIGEN_DEVICE_FUNC inline Scalar AlignedBox::squaredExteriorDistance(const MatrixBase& a_p) const +{ + typename internal::nested_eval::type p(a_p.derived()); + Scalar dist2(0); + Scalar aux; + for (Index k=0; k p[k] ) + { + aux = m_min[k] - p[k]; + dist2 += aux*aux; + } + else if( p[k] > m_max[k] ) + { + aux = p[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +template +EIGEN_DEVICE_FUNC inline Scalar AlignedBox::squaredExteriorDistance(const AlignedBox& b) const +{ + Scalar dist2(0); + Scalar aux; + for (Index k=0; k b.m_max[k] ) + { + aux = m_min[k] - b.m_max[k]; + dist2 += aux*aux; + } + else if( b.m_min[k] > m_max[k] ) + { + aux = b.m_min[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +/** \defgroup alignedboxtypedefs Global aligned box typedefs + * + * \ingroup Geometry_Module + * + * Eigen defines several typedef shortcuts for most common aligned box types. + * + * The general patterns are the following: + * + * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, + * and where \c Type can be \c i for integer, \c f for float, \c d for double. + * + * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. + * + * \sa class AlignedBox + */ + +#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ +/** \ingroup alignedboxtypedefs */ \ +typedef AlignedBox AlignedBox##SizeSuffix##TypeSuffix; + +#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) + +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) + +#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES +#undef EIGEN_MAKE_TYPEDEFS + +} // end namespace Eigen + +#endif // EIGEN_ALIGNEDBOX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/AngleAxis.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/AngleAxis.h new file mode 100644 index 0000000..c23a908 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/AngleAxis.h @@ -0,0 +1,249 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ANGLEAXIS_H +#define EIGEN_ANGLEAXIS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class AngleAxis + * + * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis + * + * \param Scalar_ the scalar type, i.e., the type of the coefficients. + * + * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. + * + * The following two typedefs are provided for convenience: + * \li \c AngleAxisf for \c float + * \li \c AngleAxisd for \c double + * + * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily + * mimic Euler-angles. Here is an example: + * \include AngleAxis_mimic_euler.cpp + * Output: \verbinclude AngleAxis_mimic_euler.out + * + * \note This class is not aimed to be used to store a rotation transformation, + * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) + * and transformation objects. + * + * \sa class Quaternion, class Transform, MatrixBase::UnitX() + */ + +namespace internal { +template struct traits > +{ + typedef Scalar_ Scalar; +}; +} + +template +class AngleAxis : public RotationBase,3> +{ + typedef RotationBase,3> Base; + +public: + + using Base::operator*; + + enum { Dim = 3 }; + /** the scalar type of the coefficients */ + typedef Scalar_ Scalar; + typedef Matrix Matrix3; + typedef Matrix Vector3; + typedef Quaternion QuaternionType; + +protected: + + Vector3 m_axis; + Scalar m_angle; + +public: + + /** Default constructor without initialization. */ + EIGEN_DEVICE_FUNC AngleAxis() {} + /** Constructs and initialize the angle-axis rotation from an \a angle in radian + * and an \a axis which \b must \b be \b normalized. + * + * \warning If the \a axis vector is not normalized, then the angle-axis object + * represents an invalid rotation. */ + template + EIGEN_DEVICE_FUNC + inline AngleAxis(const Scalar& angle, const MatrixBase& axis) : m_axis(axis), m_angle(angle) {} + /** Constructs and initialize the angle-axis rotation from a quaternion \a q. + * This function implicitly normalizes the quaternion \a q. + */ + template + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase& q) { *this = q; } + /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ + template + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase& m) { *this = m; } + + /** \returns the value of the rotation angle in radian */ + EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } + /** \returns a read-write reference to the stored angle in radian */ + EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } + + /** \returns the rotation axis */ + EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } + /** \returns a read-write reference to the stored rotation axis. + * + * \warning The rotation axis must remain a \b unit vector. + */ + EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const + { return QuaternionType(*this) * QuaternionType(other); } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const + { return QuaternionType(*this) * other; } + + /** Concatenates two rotations */ + friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) + { return a * QuaternionType(b); } + + /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ + EIGEN_DEVICE_FUNC AngleAxis inverse() const + { return AngleAxis(-m_angle, m_axis); } + + template + EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase& q); + template + EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase& m); + + template + EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase& m); + EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis& other) + { + m_axis = other.axis().template cast(); + m_angle = Scalar(other.angle()); + } + + EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } +}; + +/** \ingroup Geometry_Module + * single precision angle-axis type */ +typedef AngleAxis AngleAxisf; +/** \ingroup Geometry_Module + * double precision angle-axis type */ +typedef AngleAxis AngleAxisd; + +/** Set \c *this from a \b unit quaternion. + * + * The resulting axis is normalized, and the computed angle is in the [0,pi] range. + * + * This function implicitly normalizes the quaternion \a q. + */ +template +template +EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::operator=(const QuaternionBase& q) +{ + EIGEN_USING_STD(atan2) + EIGEN_USING_STD(abs) + Scalar n = q.vec().norm(); + if(n::epsilon()) + n = q.vec().stableNorm(); + + if (n != Scalar(0)) + { + m_angle = Scalar(2)*atan2(n, abs(q.w())); + if(q.w() < Scalar(0)) + n = -n; + m_axis = q.vec() / n; + } + else + { + m_angle = Scalar(0); + m_axis << Scalar(1), Scalar(0), Scalar(0); + } + return *this; +} + +/** Set \c *this from a 3x3 rotation matrix \a mat. + */ +template +template +EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::operator=(const MatrixBase& mat) +{ + // Since a direct conversion would not be really faster, + // let's use the robust Quaternion implementation: + return *this = QuaternionType(mat); +} + +/** +* \brief Sets \c *this from a 3x3 rotation matrix. +**/ +template +template +EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::fromRotationMatrix(const MatrixBase& mat) +{ + return *this = QuaternionType(mat); +} + +/** Constructs and \returns an equivalent 3x3 rotation matrix. + */ +template +typename AngleAxis::Matrix3 +EIGEN_DEVICE_FUNC AngleAxis::toRotationMatrix(void) const +{ + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + Matrix3 res; + Vector3 sin_axis = sin(m_angle) * m_axis; + Scalar c = cos(m_angle); + Vector3 cos1_axis = (Scalar(1)-c) * m_axis; + + Scalar tmp; + tmp = cos1_axis.x() * m_axis.y(); + res.coeffRef(0,1) = tmp - sin_axis.z(); + res.coeffRef(1,0) = tmp + sin_axis.z(); + + tmp = cos1_axis.x() * m_axis.z(); + res.coeffRef(0,2) = tmp + sin_axis.y(); + res.coeffRef(2,0) = tmp - sin_axis.y(); + + tmp = cos1_axis.y() * m_axis.z(); + res.coeffRef(1,2) = tmp - sin_axis.x(); + res.coeffRef(2,1) = tmp + sin_axis.x(); + + res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; + + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_ANGLEAXIS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/EulerAngles.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/EulerAngles.h new file mode 100644 index 0000000..b9cce67 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/EulerAngles.h @@ -0,0 +1,222 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2023 Juraj Oršulić, University of Zagreb +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EULERANGLES_H +#define EIGEN_EULERANGLES_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \returns the canonical Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) + * + * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. + * For instance, in: + * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode + * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that + * we have the following equality: + * \code + * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) + * * AngleAxisf(ea[1], Vector3f::UnitX()) + * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode + * This corresponds to the right-multiply conventions (with right hand side frames). + * + * For Tait-Bryan angle configurations (a0 != a2), the returned angles are in the ranges [-pi:pi]x[-pi/2:pi/2]x[-pi:pi]. + * For proper Euler angle configurations (a0 == a2), the returned angles are in the ranges [-pi:pi]x[0:pi]x[-pi:pi]. + * + * The approach used is also described here: https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles.pdf + * + * \sa class AngleAxis + */ +template +EIGEN_DEVICE_FUNC inline Matrix::Scalar,3,1> +MatrixBase::canonicalEulerAngles(Index a0, Index a1, Index a2) const +{ + /* Implemented from Graphics Gems IV */ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) + + Matrix res; + + const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1; + const Index i = a0; + const Index j = (a0 + 1 + odd) % 3; + const Index k = (a0 + 2 - odd) % 3; + + if (a0 == a2) + { + // Proper Euler angles (same first and last axis). + // The i, j, k indices enable addressing the input matrix as the XYX archetype matrix (see Graphics Gems IV), + // where e.g. coeff(k, i) means third column, first row in the XYX archetype matrix: + // c2 s2s1 s2c1 + // s2s3 -c2s1s3 + c1c3 -c2c1s3 - s1c3 + // -s2c3 c2s1c3 + c1s3 c2c1c3 - s1s3 + + // Note: s2 is always positive. + Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i)); + if (odd) + { + res[0] = numext::atan2(coeff(j, i), coeff(k, i)); + // s2 is always positive, so res[1] will be within the canonical [0, pi] range + res[1] = numext::atan2(s2, coeff(i, i)); + } + else + { + // In the !odd case, signs of all three angles are flipped at the very end. To keep the solution within the canonical range, + // we flip the solution and make res[1] always negative here (since s2 is always positive, -atan2(s2, c2) will always be negative). + // The final flip at the end due to !odd will thus make res[1] positive and canonical. + // NB: in the general case, there are two correct solutions, but only one is canonical. For proper Euler angles, + // flipping from one solution to the other involves flipping the sign of the second angle res[1] and adding/subtracting pi + // to the first and third angles. The addition/subtraction of pi to the first angle res[0] is handled here by flipping + // the signs of arguments to atan2, while the calculation of the third angle does not need special adjustment since + // it uses the adjusted res[0] as the input and produces a correct result. + res[0] = numext::atan2(-coeff(j, i), -coeff(k, i)); + res[1] = -numext::atan2(s2, coeff(i, i)); + } + + // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, + // we can compute their respective rotation, and apply its inverse to M. Since the result must + // be a rotation around x, we have: + // + // c2 s1.s2 c1.s2 1 0 0 + // 0 c1 -s1 * M = 0 c3 s3 + // -s2 s1.c2 c1.c2 0 -s3 c3 + // + // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 + + Scalar s1 = numext::sin(res[0]); + Scalar c1 = numext::cos(res[0]); + res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j)); + } + else + { + // Tait-Bryan angles (all three axes are different; typically used for yaw-pitch-roll calculations). + // The i, j, k indices enable addressing the input matrix as the XYZ archetype matrix (see Graphics Gems IV), + // where e.g. coeff(k, i) means third column, first row in the XYZ archetype matrix: + // c2c3 s2s1c3 - c1s3 s2c1c3 + s1s3 + // c2s3 s2s1s3 + c1c3 s2c1s3 - s1c3 + // -s2 c2s1 c2c1 + + res[0] = numext::atan2(coeff(j, k), coeff(k, k)); + + Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j)); + // c2 is always positive, so the following atan2 will always return a result in the correct canonical middle angle range [-pi/2, pi/2] + res[1] = numext::atan2(-coeff(i, k), c2); + + Scalar s1 = numext::sin(res[0]); + Scalar c1 = numext::cos(res[0]); + res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j)); + } + if (!odd) + { + res = -res; + } + + return res; +} + +/** \geometry_module \ingroup Geometry_Module + * + * + * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) + * + * NB: The returned angles are in non-canonical ranges [0:pi]x[-pi:pi]x[-pi:pi]. For canonical Tait-Bryan/proper Euler ranges, use canonicalEulerAngles. + * + * \sa MatrixBase::canonicalEulerAngles + * \sa class AngleAxis + */ +template +EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Matrix::Scalar,3,1> +MatrixBase::eulerAngles(Index a0, Index a1, Index a2) const +{ + /* Implemented from Graphics Gems IV */ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) + + Matrix res; + + const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1; + const Index i = a0; + const Index j = (a0 + 1 + odd) % 3; + const Index k = (a0 + 2 - odd) % 3; + + if (a0 == a2) + { + res[0] = numext::atan2(coeff(j, i), coeff(k, i)); + if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) + { + if (res[0] > Scalar(0)) + { + res[0] -= Scalar(EIGEN_PI); + } + else + { + res[0] += Scalar(EIGEN_PI); + } + + Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i)); + res[1] = -numext::atan2(s2, coeff(i, i)); + } + else + { + Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i)); + res[1] = numext::atan2(s2, coeff(i, i)); + } + + // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, + // we can compute their respective rotation, and apply its inverse to M. Since the result must + // be a rotation around x, we have: + // + // c2 s1.s2 c1.s2 1 0 0 + // 0 c1 -s1 * M = 0 c3 s3 + // -s2 s1.c2 c1.c2 0 -s3 c3 + // + // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 + + Scalar s1 = numext::sin(res[0]); + Scalar c1 = numext::cos(res[0]); + res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j)); + } + else + { + res[0] = numext::atan2(coeff(j, k), coeff(k, k)); + Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j)); + if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) + { + if (res[0] > Scalar(0)) + { + res[0] -= Scalar(EIGEN_PI); + } + else + { + res[0] += Scalar(EIGEN_PI); + } + res[1] = numext::atan2(-coeff(i, k), -c2); + } + else + { + res[1] = numext::atan2(-coeff(i, k), c2); + } + Scalar s1 = numext::sin(res[0]); + Scalar c1 = numext::cos(res[0]); + res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j)); + } + if (!odd) + { + res = -res; + } + + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_EULERANGLES_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Homogeneous.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Homogeneous.h new file mode 100644 index 0000000..538cf83 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Homogeneous.h @@ -0,0 +1,503 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOMOGENEOUS_H +#define EIGEN_HOMOGENEOUS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Homogeneous + * + * \brief Expression of one (or a set of) homogeneous vector(s) + * + * \param MatrixType the type of the object in which we are making homogeneous + * + * This class represents an expression of one (or a set of) homogeneous vector(s). + * It is the return type of MatrixBase::homogeneous() and most of the time + * this is the only way it is used. + * + * \sa MatrixBase::homogeneous() + */ + +namespace internal { + +template +struct traits > + : traits +{ + typedef typename traits::StorageKind StorageKind; + typedef typename ref_selector::type MatrixTypeNested; + typedef std::remove_reference_t MatrixTypeNested_; + enum { + RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? + int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, + ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? + int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, + RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, + ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + TmpFlags = MatrixTypeNested_::Flags & HereditaryBits, + Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) + : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) + : TmpFlags + }; +}; + +template struct homogeneous_left_product_impl; +template struct homogeneous_right_product_impl; + +} // end namespace internal + +template class Homogeneous + : public MatrixBase >, internal::no_assignment_operator +{ + public: + + typedef MatrixType NestedExpression; + enum { Direction = Direction_ }; + + typedef MatrixBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) + + EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) + : m_matrix(matrix) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } + + EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } + + template + EIGEN_DEVICE_FUNC inline const Product + operator* (const MatrixBase& rhs) const + { + eigen_assert(int(Direction)==Horizontal); + return Product(*this,rhs.derived()); + } + + template friend + EIGEN_DEVICE_FUNC inline const Product + operator* (const MatrixBase& lhs, const Homogeneous& rhs) + { + eigen_assert(int(Direction)==Vertical); + return Product(lhs.derived(),rhs); + } + + template friend + EIGEN_DEVICE_FUNC inline const Product, Homogeneous > + operator* (const Transform& lhs, const Homogeneous& rhs) + { + eigen_assert(int(Direction)==Vertical); + return Product, Homogeneous>(lhs,rhs); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of::type + redux(const Func& func) const + { + return func(m_matrix.redux(func), Scalar(1)); + } + + protected: + typename MatrixType::Nested m_matrix; +}; + +/** \geometry_module \ingroup Geometry_Module + * + * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient. + * + * This can be used to convert affine coordinates to homogeneous coordinates. + * + * \only_for_vectors + * + * Example: \include MatrixBase_homogeneous.cpp + * Output: \verbinclude MatrixBase_homogeneous.out + * + * \sa VectorwiseOp::homogeneous(), class Homogeneous + */ +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::HomogeneousReturnType +MatrixBase::homogeneous() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return HomogeneousReturnType(derived()); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix. + * + * This can be used to convert affine coordinates to homogeneous coordinates. + * + * Example: \include VectorwiseOp_homogeneous.cpp + * Output: \verbinclude VectorwiseOp_homogeneous.out + * + * \sa MatrixBase::homogeneous(), class Homogeneous */ +template +EIGEN_DEVICE_FUNC inline Homogeneous +VectorwiseOp::homogeneous() const +{ + return HomogeneousReturnType(_expression()); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \brief homogeneous normalization + * + * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. + * + * This can be used to convert homogeneous coordinates to affine coordinates. + * + * It is essentially a shortcut for: + * \code + this->head(this->size()-1)/this->coeff(this->size()-1); + \endcode + * + * Example: \include MatrixBase_hnormalized.cpp + * Output: \verbinclude MatrixBase_hnormalized.out + * + * \sa VectorwiseOp::hnormalized() */ +template +EIGEN_DEVICE_FUNC inline const typename MatrixBase::HNormalizedReturnType +MatrixBase::hnormalized() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return ConstStartMinusOne(derived(),0,0, + ColsAtCompileTime==1?size()-1:1, + ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \brief column or row-wise homogeneous normalization + * + * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row). + * + * This can be used to convert homogeneous coordinates to affine coordinates. + * + * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. + * + * Example: \include DirectionWise_hnormalized.cpp + * Output: \verbinclude DirectionWise_hnormalized.out + * + * \sa MatrixBase::hnormalized() */ +template +EIGEN_DEVICE_FUNC inline const typename VectorwiseOp::HNormalizedReturnType +VectorwiseOp::hnormalized() const +{ + return HNormalized_Block(_expression(),0,0, + Direction==Vertical ? _expression().rows()-1 : _expression().rows(), + Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( + Replicate + (HNormalized_Factors(_expression(), + Direction==Vertical ? _expression().rows()-1:0, + Direction==Horizontal ? _expression().cols()-1:0, + Direction==Vertical ? 1 : _expression().rows(), + Direction==Horizontal ? 1 : _expression().cols()), + Direction==Vertical ? _expression().rows()-1 : 1, + Direction==Horizontal ? _expression().cols()-1 : 1)); +} + +namespace internal { + +template +struct take_matrix_for_product +{ + typedef MatrixOrTransformType type; + EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; } +}; + +template +struct take_matrix_for_product > +{ + typedef Transform TransformType; + typedef std::add_const_t type; + EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); } +}; + +template +struct take_matrix_for_product > +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType type; + EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); } +}; + +template +struct traits,Lhs> > +{ + typedef typename take_matrix_for_product::type LhsMatrixType; + typedef remove_all_t MatrixTypeCleaned; + typedef remove_all_t LhsMatrixTypeCleaned; + typedef typename make_proper_matrix_type< + typename traits::Scalar, + LhsMatrixTypeCleaned::RowsAtCompileTime, + MatrixTypeCleaned::ColsAtCompileTime, + MatrixTypeCleaned::PlainObject::Options, + LhsMatrixTypeCleaned::MaxRowsAtCompileTime, + MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; +}; + +template +struct homogeneous_left_product_impl,Lhs> + : public ReturnByValue,Lhs> > +{ + typedef typename traits::LhsMatrixType LhsMatrixType; + typedef remove_all_t LhsMatrixTypeCleaned; + typedef remove_all_t LhsMatrixTypeNested; + EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) + : m_lhs(take_matrix_for_product::run(lhs)), + m_rhs(rhs) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const + { + // FIXME investigate how to allow lazy evaluation of this product when possible + dst = Block + (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; + dst += m_lhs.col(m_lhs.cols()-1).rowwise() + .template replicate(m_rhs.cols()); + } + + typename LhsMatrixTypeCleaned::Nested m_lhs; + typename MatrixType::Nested m_rhs; +}; + +template +struct traits,Rhs> > +{ + typedef typename make_proper_matrix_type::Scalar, + MatrixType::RowsAtCompileTime, + Rhs::ColsAtCompileTime, + MatrixType::PlainObject::Options, + MatrixType::MaxRowsAtCompileTime, + Rhs::MaxColsAtCompileTime>::type ReturnType; +}; + +template +struct homogeneous_right_product_impl,Rhs> + : public ReturnByValue,Rhs> > +{ + typedef remove_all_t RhsNested; + EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) + : m_lhs(lhs), m_rhs(rhs) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const + { + // FIXME investigate how to allow lazy evaluation of this product when possible + dst = m_lhs * Block + (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); + dst += m_rhs.row(m_rhs.rows()-1).colwise() + .template replicate(m_lhs.rows()); + } + + typename MatrixType::Nested m_lhs; + typename Rhs::Nested m_rhs; +}; + +template +struct evaluator_traits > +{ + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef HomogeneousShape Shape; +}; + +template<> struct AssignmentKind { typedef Dense2Dense Kind; }; + + +template +struct unary_evaluator, IndexBased> + : evaluator::PlainObject > +{ + typedef Homogeneous XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) + : Base(), m_temp(op) + { + internal::construct_at(this, m_temp); + } + +protected: + PlainObject m_temp; +}; + +// dense = homogeneous +template< typename DstXprType, typename ArgType, typename Scalar> +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Homogeneous SrcXprType; + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst.template topRows(src.nestedExpression().rows()) = src.nestedExpression(); + dst.row(dst.rows()-1).setOnes(); + } +}; + +// dense = homogeneous +template< typename DstXprType, typename ArgType, typename Scalar> +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Homogeneous SrcXprType; + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst.template leftCols(src.nestedExpression().cols()) = src.nestedExpression(); + dst.col(dst.cols()-1).setOnes(); + } +}; + +template +struct generic_product_impl, Rhs, HomogeneousShape, DenseShape, ProductTag> +{ + template + EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous& lhs, const Rhs& rhs) + { + homogeneous_right_product_impl, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); + } +}; + +template +struct homogeneous_right_product_refactoring_helper +{ + enum { + Dim = Lhs::ColsAtCompileTime, + Rows = Lhs::RowsAtCompileTime + }; + typedef typename Rhs::template ConstNRowsBlockXpr::Type LinearBlockConst; + typedef std::remove_const_t LinearBlock; + typedef typename Rhs::ConstRowXpr ConstantColumn; + typedef Replicate ConstantBlock; + typedef Product LinearProduct; + typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; +}; + +template +struct product_evaluator, ProductTag, HomogeneousShape, DenseShape> + : public evaluator::Xpr> +{ + typedef Product XprType; + typedef homogeneous_right_product_refactoring_helper helper; + typedef typename helper::ConstantBlock ConstantBlock; + typedef typename helper::Xpr RefactoredXpr; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows(xpr.lhs().nestedExpression().cols()) ) + + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) ) + {} +}; + +template +struct generic_product_impl, DenseShape, HomogeneousShape, ProductTag> +{ + template + EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) + { + homogeneous_left_product_impl, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); + } +}; + +// TODO: the following specialization is to address a regression from 3.2 to 3.3 +// In the future, this path should be optimized. +template +struct generic_product_impl, TriangularShape, HomogeneousShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) + { + dst.noalias() = lhs * rhs.eval(); + } +}; + +template +struct homogeneous_left_product_refactoring_helper +{ + enum { + Dim = Rhs::RowsAtCompileTime, + Cols = Rhs::ColsAtCompileTime + }; + typedef typename Lhs::template ConstNColsBlockXpr::Type LinearBlockConst; + typedef std::remove_const_t LinearBlock; + typedef typename Lhs::ConstColXpr ConstantColumn; + typedef Replicate ConstantBlock; + typedef Product LinearProduct; + typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; +}; + +template +struct product_evaluator, ProductTag, DenseShape, HomogeneousShape> + : public evaluator::Xpr> +{ + typedef Product XprType; + typedef homogeneous_left_product_refactoring_helper helper; + typedef typename helper::ConstantBlock ConstantBlock; + typedef typename helper::Xpr RefactoredXpr; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base( xpr.lhs().template leftCols(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() ) + + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) ) + {} +}; + +template +struct generic_product_impl, Homogeneous, DenseShape, HomogeneousShape, ProductTag> +{ + typedef Transform TransformType; + template + EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous& rhs) + { + homogeneous_left_product_impl, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst); + } +}; + +template +struct permutation_matrix_product + : public permutation_matrix_product +{}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_HOMOGENEOUS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Hyperplane.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Hyperplane.h new file mode 100644 index 0000000..ad6aae9 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Hyperplane.h @@ -0,0 +1,284 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HYPERPLANE_H +#define EIGEN_HYPERPLANE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Hyperplane + * + * \brief A hyperplane + * + * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. + * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients + * \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic. + * Notice that the dimension of the hyperplane is AmbientDim_-1. + * + * This class represents an hyperplane as the zero set of the implicit equation + * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) + * and \f$ d \f$ is the distance (offset) to the origin. + */ +template +class Hyperplane +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,AmbientDim_==Dynamic ? Dynamic : AmbientDim_+1) + enum { + AmbientDimAtCompileTime = AmbientDim_, + Options = Options_ + }; + typedef Scalar_ Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef Matrix VectorType; + typedef Matrix Coefficients; + typedef Block NormalReturnType; + typedef const Block ConstNormalReturnType; + + /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC inline Hyperplane() {} + + template + EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane& other) + : m_coeffs(other.coeffs()) + {} + + /** Constructs a dynamic-size hyperplane with \a _dim the dimension + * of the ambient space */ + EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {} + + /** Construct a plane from its normal \a n and a point \a e onto the plane. + * \warning the vector normal is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e) + : m_coeffs(n.size()+1) + { + normal() = n; + offset() = -n.dot(e); + } + + /** Constructs a plane from its normal \a n and distance to the origin \a d + * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. + * \warning the vector normal is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d) + : m_coeffs(n.size()+1) + { + normal() = n; + offset() = d; + } + + /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space + * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. + */ + EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) + { + Hyperplane result(p0.size()); + result.normal() = (p1 - p0).unitOrthogonal(); + result.offset() = -p0.dot(result.normal()); + return result; + } + + /** Constructs a hyperplane passing through the three points. The dimension of the ambient space + * is required to be exactly 3. + */ + EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) + Hyperplane result(p0.size()); + VectorType v0(p2 - p0), v1(p1 - p0); + result.normal() = v0.cross(v1); + RealScalar norm = result.normal().norm(); + if(norm <= v0.norm() * v1.norm() * NumTraits::epsilon()) + { + Matrix m; m << v0.transpose(), v1.transpose(); + JacobiSVD, ComputeFullV> svd(m); + result.normal() = svd.matrixV().col(2); + } + else + result.normal() /= norm; + result.offset() = -p0.dot(result.normal()); + return result; + } + + /** Constructs a hyperplane passing through the parametrized line \a parametrized. + * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, + * so an arbitrary choice is made. + */ + // FIXME to be consistent with the rest this could be implemented as a static Through function ?? + EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine& parametrized) + { + normal() = parametrized.direction().unitOrthogonal(); + offset() = -parametrized.origin().dot(normal()); + } + + EIGEN_DEVICE_FUNC ~Hyperplane() {} + + /** \returns the dimension in which the plane holds */ + EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); } + + /** normalizes \c *this */ + EIGEN_DEVICE_FUNC void normalize(void) + { + m_coeffs /= normal().norm(); + } + + /** \returns the signed distance between the plane \c *this and a point \a p. + * \sa absDistance() + */ + EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); } + + /** \returns the absolute distance between the plane \c *this and a point \a p. + * \sa signedDistance() + */ + EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); } + + /** \returns the projection of a point \a p onto the plane \c *this. + */ + EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } + + /** \returns a constant reference to the unit normal vector of the plane, which corresponds + * to the linear part of the implicit equation. + */ + EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); } + + /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds + * to the linear part of the implicit equation. + */ + EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } + + /** \returns the distance to the origin, which is also the "constant term" of the implicit equation + * \warning the vector normal is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } + + /** \returns a non-constant reference to the distance to the origin, which is also the constant part + * of the implicit equation */ + EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); } + + /** \returns a constant reference to the coefficients c_i of the plane equation: + * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ + */ + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } + + /** \returns a non-constant reference to the coefficients c_i of the plane equation: + * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ + */ + EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } + + /** \returns the intersection of *this with \a other. + * + * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. + * + * \note If \a other is approximately parallel to *this, this method will return any point on *this. + */ + EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) + Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); + // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests + // whether the two lines are approximately parallel. + if(internal::isMuchSmallerThan(det, Scalar(1))) + { // special case where the two lines are approximately parallel. Pick any point on the first line. + if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0))) + return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); + else + return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); + } + else + { // general case + Scalar invdet = Scalar(1) / det; + return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), + invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); + } + } + + /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. + * + * \param mat the Dim x Dim transformation matrix + * \param traits specifies whether the matrix \a mat represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + */ + template + EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase& mat, TransformTraits traits = Affine) + { + if (traits==Affine) + { + normal() = mat.inverse().transpose() * normal(); + m_coeffs /= normal().norm(); + } + else if (traits==Isometry) + normal() = mat * normal(); + else + { + eigen_assert(0 && "invalid traits value in Hyperplane::transform()"); + } + return *this; + } + + /** Applies the transformation \a t to \c *this and returns a reference to \c *this. + * + * \param t the transformation of dimension Dim + * \param traits specifies whether the transformation \a t represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + * Other kind of transformations are not supported. + */ + template + EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform& t, + TransformTraits traits = Affine) + { + transform(t.linear(), traits); + offset() -= normal().dot(t.translation()); + return *this; + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { + return typename internal::cast_return_type >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane& other) + { m_coeffs = other.coeffs().template cast(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + template + EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +protected: + + Coefficients m_coeffs; +}; + +} // end namespace Eigen + +#endif // EIGEN_HYPERPLANE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/InternalHeaderCheck.h new file mode 100644 index 0000000..a1159a3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_GEOMETRY_MODULE_H +#error "Please include Eigen/Geometry instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/OrthoMethods.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/OrthoMethods.h new file mode 100644 index 0000000..fbf020d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/OrthoMethods.h @@ -0,0 +1,281 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ORTHOMETHODS_H +#define EIGEN_ORTHOMETHODS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// Vector3 version (default) +template +struct cross_impl +{ + typedef typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; + typedef Matrix::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> return_type; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + return_type run(const MatrixBase& first, const MatrixBase& second) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) + + // Note that there is no need for an expression here since the compiler + // optimize such a small temporary very well (even within a complex expression) + typename internal::nested_eval::type lhs(first.derived()); + typename internal::nested_eval::type rhs(second.derived()); + return return_type( + numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), + numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), + numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) + ); + } +}; + +// Vector2 version +template +struct cross_impl +{ + typedef typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; + typedef Scalar return_type; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + return_type run(const MatrixBase& first, const MatrixBase& second) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,2); + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,2); + typename internal::nested_eval::type lhs(first.derived()); + typename internal::nested_eval::type rhs(second.derived()); + return numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)); + } +}; + +} // end namespace internal + +/** \geometry_module \ingroup Geometry_Module + * + * \returns the cross product of \c *this and \a other. This is either a scalar for size-2 vectors or a size-3 vector for size-3 vectors. + * + * This method is implemented for two different cases: between vectors of fixed size 2 and between vectors of fixed size 3. + * + * For vectors of size 3, the output is simply the traditional cross product. + * + * For vectors of size 2, the output is a scalar. + * Given vectors \f$ v = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \f$ and \f$ w = \begin{bmatrix} w_1 & w_2 \end{bmatrix} \f$, + * the result is simply \f$ v\times w = \overline{v_1 w_2 - v_2 w_1} = \text{conj}\left|\begin{smallmatrix} v_1 & w_1 \\ v_2 & w_2 \end{smallmatrix}\right| \f$; + * or, to put it differently, it is the third coordinate of the cross product of \f$ \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \f$ and \f$ \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \f$. + * For real-valued inputs, the result can be interpreted as the signed area of a parallelogram spanned by the two vectors. + * + * \note With complex numbers, the cross product is implemented as + * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})\f$ + * + * \sa MatrixBase::cross3() + */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename internal::cross_impl::return_type +#else +inline std::conditional_t +#endif +MatrixBase::cross(const MatrixBase& other) const +{ + return internal::cross_impl::run(*this, other); +} + +namespace internal { + +template< int Arch,typename VectorLhs,typename VectorRhs, + typename Scalar = typename VectorLhs::Scalar, + bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> +struct cross3_impl { + EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type::type + run(const VectorLhs& lhs, const VectorRhs& rhs) + { + return typename internal::plain_matrix_type::type( + numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), + numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), + numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), + 0 + ); + } +}; + +} + +/** \geometry_module \ingroup Geometry_Module + * + * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients + * + * The size of \c *this and \a other must be four. This function is especially useful + * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. + * + * \sa MatrixBase::cross() + */ +template +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::PlainObject +MatrixBase::cross3(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) + + typedef typename internal::nested_eval::type DerivedNested; + typedef typename internal::nested_eval::type OtherDerivedNested; + DerivedNested lhs(derived()); + OtherDerivedNested rhs(other.derived()); + + return internal::cross3_impl, + internal::remove_all_t>::run(lhs,rhs); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \returns a matrix expression of the cross product of each column or row + * of the referenced expression with the \a other vector. + * + * The referenced matrix must have one dimension equal to 3. + * The result matrix has the same dimensions than the referenced one. + * + * \sa MatrixBase::cross() */ +template +template +EIGEN_DEVICE_FUNC +const typename VectorwiseOp::CrossReturnType +VectorwiseOp::cross(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + typename internal::nested_eval::type mat(_expression()); + typename internal::nested_eval::type vec(other.derived()); + + CrossReturnType res(_expression().rows(),_expression().cols()); + if(Direction==Vertical) + { + eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); + res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); + res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); + res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); + } + else + { + eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); + res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); + res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); + res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); + } + return res; +} + +namespace internal { + +template +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type::type VectorType; + typedef typename traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Matrix Vector2; + EIGEN_DEVICE_FUNC + static inline VectorType run(const Derived& src) + { + VectorType perp = VectorType::Zero(src.size()); + Index maxi = 0; + Index sndi = 0; + src.cwiseAbs().maxCoeff(&maxi); + if (maxi==0) + sndi = 1; + RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); + perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; + perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; + + return perp; + } +}; + +template +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type::type VectorType; + typedef typename traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline VectorType run(const Derived& src) + { + VectorType perp; + /* Let us compute the crossed product of *this with a vector + * that is not too close to being colinear to *this. + */ + + /* unless the x and y coords are both close to zero, we can + * simply take ( -y, x, 0 ) and normalize it. + */ + if((!isMuchSmallerThan(src.x(), src.z())) + || (!isMuchSmallerThan(src.y(), src.z()))) + { + RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); + perp.coeffRef(0) = -numext::conj(src.y())*invnm; + perp.coeffRef(1) = numext::conj(src.x())*invnm; + perp.coeffRef(2) = 0; + } + /* if both x and y are close to zero, then the vector is close + * to the z-axis, so it's far from colinear to the x-axis for instance. + * So we take the crossed product with (1,0,0) and normalize it. + */ + else + { + RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); + perp.coeffRef(0) = 0; + perp.coeffRef(1) = -numext::conj(src.z())*invnm; + perp.coeffRef(2) = numext::conj(src.y())*invnm; + } + + return perp; + } +}; + +template +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type::type VectorType; + EIGEN_DEVICE_FUNC + static inline VectorType run(const Derived& src) + { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } +}; + +} // end namespace internal + +/** \geometry_module \ingroup Geometry_Module + * + * \returns a unit vector which is orthogonal to \c *this + * + * The size of \c *this must be at least 2. If the size is exactly 2, + * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). + * + * \sa cross() + */ +template +EIGEN_DEVICE_FUNC typename MatrixBase::PlainObject +MatrixBase::unitOrthogonal() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return internal::unitOrthogonal_selector::run(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_ORTHOMETHODS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/ParametrizedLine.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/ParametrizedLine.h new file mode 100644 index 0000000..7576922 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/ParametrizedLine.h @@ -0,0 +1,234 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARAMETRIZEDLINE_H +#define EIGEN_PARAMETRIZEDLINE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class ParametrizedLine + * + * \brief A parametrized line + * + * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit + * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to + * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$. + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients + * \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic. + */ +template +class ParametrizedLine +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,AmbientDim_) + enum { + AmbientDimAtCompileTime = AmbientDim_, + Options = Options_ + }; + typedef Scalar_ Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef Matrix VectorType; + + /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC inline ParametrizedLine() {} + + template + EIGEN_DEVICE_FUNC ParametrizedLine(const ParametrizedLine& other) + : m_origin(other.origin()), m_direction(other.direction()) + {} + + /** Constructs a dynamic-size line with \a _dim the dimension + * of the ambient space */ + EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {} + + /** Initializes a parametrized line of direction \a direction and origin \a origin. + * \warning the vector direction is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC ParametrizedLine(const VectorType& origin, const VectorType& direction) + : m_origin(origin), m_direction(direction) {} + + template + EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane& hyperplane); + + /** Constructs a parametrized line going from \a p0 to \a p1. */ + EIGEN_DEVICE_FUNC static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) + { return ParametrizedLine(p0, (p1-p0).normalized()); } + + EIGEN_DEVICE_FUNC ~ParametrizedLine() {} + + /** \returns the dimension in which the line holds */ + EIGEN_DEVICE_FUNC inline Index dim() const { return m_direction.size(); } + + EIGEN_DEVICE_FUNC const VectorType& origin() const { return m_origin; } + EIGEN_DEVICE_FUNC VectorType& origin() { return m_origin; } + + EIGEN_DEVICE_FUNC const VectorType& direction() const { return m_direction; } + EIGEN_DEVICE_FUNC VectorType& direction() { return m_direction; } + + /** \returns the squared distance of a point \a p to its projection onto the line \c *this. + * \sa distance() + */ + EIGEN_DEVICE_FUNC RealScalar squaredDistance(const VectorType& p) const + { + VectorType diff = p - origin(); + return (diff - direction().dot(diff) * direction()).squaredNorm(); + } + /** \returns the distance of a point \a p to its projection onto the line \c *this. + * \sa squaredDistance() + */ + EIGEN_DEVICE_FUNC RealScalar distance(const VectorType& p) const { EIGEN_USING_STD(sqrt) return sqrt(squaredDistance(p)); } + + /** \returns the projection of a point \a p onto the line \c *this. */ + EIGEN_DEVICE_FUNC VectorType projection(const VectorType& p) const + { return origin() + direction().dot(p-origin()) * direction(); } + + EIGEN_DEVICE_FUNC VectorType pointAt(const Scalar& t) const; + + template + EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane& hyperplane) const; + + template + EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane& hyperplane) const; + + template + EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane& hyperplane) const; + + /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. + * + * \param mat the Dim x Dim transformation matrix + * \param traits specifies whether the matrix \a mat represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + */ + template + EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const MatrixBase& mat, TransformTraits traits = Affine) + { + if (traits==Affine) + direction() = (mat * direction()).normalized(); + else if (traits==Isometry) + direction() = mat * direction(); + else + { + eigen_assert(0 && "invalid traits value in ParametrizedLine::transform()"); + } + origin() = mat * origin(); + return *this; + } + + /** Applies the transformation \a t to \c *this and returns a reference to \c *this. + * + * \param t the transformation of dimension Dim + * \param traits specifies whether the transformation \a t represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + * Other kind of transformations are not supported. + */ + template + EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const Transform& t, + TransformTraits traits = Affine) + { + transform(t.linear(), traits); + origin() += t.translation(); + return *this; + } + +/** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { + return typename internal::cast_return_type >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(const ParametrizedLine& other) + { + m_origin = other.origin().template cast(); + m_direction = other.direction().template cast(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const ParametrizedLine& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } + +protected: + + VectorType m_origin, m_direction; +}; + +/** Constructs a parametrized line from a 2D hyperplane + * + * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line + */ +template +template +EIGEN_DEVICE_FUNC inline ParametrizedLine::ParametrizedLine(const Hyperplane& hyperplane) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) + direction() = hyperplane.normal().unitOrthogonal(); + origin() = -hyperplane.normal()*hyperplane.offset(); +} + +/** \returns the point at \a t along this line + */ +template +EIGEN_DEVICE_FUNC inline typename ParametrizedLine::VectorType +ParametrizedLine::pointAt(const Scalar_& t) const +{ + return origin() + (direction()*t); +} + +/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane + */ +template +template +EIGEN_DEVICE_FUNC inline Scalar_ ParametrizedLine::intersectionParameter(const Hyperplane& hyperplane) const +{ + return -(hyperplane.offset()+hyperplane.normal().dot(origin())) + / hyperplane.normal().dot(direction()); +} + + +/** \deprecated use intersectionParameter() + * \returns the parameter value of the intersection between \c *this and the given \a hyperplane + */ +template +template +EIGEN_DEVICE_FUNC inline Scalar_ ParametrizedLine::intersection(const Hyperplane& hyperplane) const +{ + return intersectionParameter(hyperplane); +} + +/** \returns the point of the intersection between \c *this and the given hyperplane + */ +template +template +EIGEN_DEVICE_FUNC inline typename ParametrizedLine::VectorType +ParametrizedLine::intersectionPoint(const Hyperplane& hyperplane) const +{ + return pointAt(intersectionParameter(hyperplane)); +} + +} // end namespace Eigen + +#endif // EIGEN_PARAMETRIZEDLINE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Quaternion.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Quaternion.h new file mode 100644 index 0000000..3413a51 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Quaternion.h @@ -0,0 +1,876 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2009 Mathieu Gautier +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QUATERNION_H +#define EIGEN_QUATERNION_H +#include "./InternalHeaderCheck.h" + +namespace Eigen { + + +/*************************************************************************** +* Definition of QuaternionBase +* The implementation is at the end of the file +***************************************************************************/ + +namespace internal { +template +struct quaternionbase_assign_impl; +} + +/** \geometry_module \ingroup Geometry_Module + * \class QuaternionBase + * \brief Base class for quaternion expressions + * \tparam Derived derived type (CRTP) + * \sa class Quaternion + */ +template +class QuaternionBase : public RotationBase +{ + public: + typedef RotationBase Base; + + using Base::operator*; + using Base::derived; + + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef typename internal::traits::Coefficients Coefficients; + typedef typename Coefficients::CoeffReturnType CoeffReturnType; + typedef std::conditional_t::Flags&LvalueBit), + Scalar&, CoeffReturnType> NonConstCoeffReturnType; + + + enum { + Flags = Eigen::internal::traits::Flags + }; + + // typedef typename Matrix Coefficients; + /** the type of a 3D vector */ + typedef Matrix Vector3; + /** the equivalent rotation matrix type */ + typedef Matrix Matrix3; + /** the equivalent angle-axis type */ + typedef AngleAxis AngleAxisType; + + + + /** \returns the \c x coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } + /** \returns the \c y coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } + /** \returns the \c z coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } + /** \returns the \c w coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } + + /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } + /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } + /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } + /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } + + /** \returns a read-only vector expression of the imaginary part (x,y,z) */ + EIGEN_DEVICE_FUNC inline const VectorBlock vec() const { return coeffs().template head<3>(); } + + /** \returns a vector expression of the imaginary part (x,y,z) */ + EIGEN_DEVICE_FUNC inline VectorBlock vec() { return coeffs().template head<3>(); } + + /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ + EIGEN_DEVICE_FUNC inline const typename internal::traits::Coefficients& coeffs() const { return derived().coeffs(); } + + /** \returns a vector expression of the coefficients (x,y,z,w) */ + EIGEN_DEVICE_FUNC inline typename internal::traits::Coefficients& coeffs() { return derived().coeffs(); } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase& operator=(const QuaternionBase& other); + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase& other); + +// disabled this copy operator as it is giving very strange compilation errors when compiling +// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's +// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase +// we didn't have to add, in addition to templated operator=, such a non-templated copy operator. +// Derived& operator=(const QuaternionBase& other) +// { return operator=(other); } + + EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); + template EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase& m); + + /** \returns a quaternion representing an identity rotation + * \sa MatrixBase::Identity() + */ + EIGEN_DEVICE_FUNC static inline Quaternion Identity() { return Quaternion(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } + + /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() + */ + EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } + + /** \returns the squared norm of the quaternion's coefficients + * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() + */ + EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } + + /** \returns the norm of the quaternion's coefficients + * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() + */ + EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } + + /** Normalizes the quaternion \c *this + * \sa normalized(), MatrixBase::normalize() */ + EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } + /** \returns a normalized copy of \c *this + * \sa normalize(), MatrixBase::normalized() */ + EIGEN_DEVICE_FUNC inline Quaternion normalized() const { return Quaternion(coeffs().normalized()); } + + /** \returns the dot product of \c *this and \a other + * Geometrically speaking, the dot product of two unit quaternions + * corresponds to the cosine of half the angle between the two rotations. + * \sa angularDistance() + */ + template EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase& other) const { return coeffs().dot(other.coeffs()); } + + template EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase& other) const; + + /** \returns an equivalent 3x3 rotation matrix */ + EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const; + + /** \returns the quaternion which transform \a a into \a b through a rotation */ + template + EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); + + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion operator* (const QuaternionBase& q) const; + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase& q); + + /** \returns the quaternion describing the inverse rotation */ + EIGEN_DEVICE_FUNC Quaternion inverse() const; + + /** \returns the conjugated quaternion */ + EIGEN_DEVICE_FUNC Quaternion conjugate() const; + + template EIGEN_DEVICE_FUNC Quaternion slerp(const Scalar& t, const QuaternionBase& other) const; + + /** \returns true if each coefficients of \c *this and \a other are all exactly equal. + * \warning When using floating point scalar values you probably should rather use a + * fuzzy comparison such as isApprox() + * \sa isApprox(), operator!= */ + template + EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase& other) const + { return coeffs() == other.coeffs(); } + + /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. + * \warning When using floating point scalar values you probably should rather use a + * fuzzy comparison such as isApprox() + * \sa isApprox(), operator== */ + template + EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase& other) const + { return coeffs() != other.coeffs(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + template + EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const + { return coeffs().isApprox(other.coeffs(), prec); } + + /** return the result vector of \a v through the rotation*/ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const; + + #else + + template + EIGEN_DEVICE_FUNC inline + std::enable_if_t::value,const Derived&> cast() const + { + return derived(); + } + + template + EIGEN_DEVICE_FUNC inline + std::enable_if_t::value,Quaternion > cast() const + { + return Quaternion(coeffs().template cast()); + } + #endif + +#ifndef EIGEN_NO_IO + friend std::ostream& operator<<(std::ostream& s, const QuaternionBase& q) { + s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w(); + return s; + } +#endif + +#ifdef EIGEN_QUATERNIONBASE_PLUGIN +# include EIGEN_QUATERNIONBASE_PLUGIN +#endif +protected: + EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase) + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase) +}; + +/*************************************************************************** +* Definition/implementation of Quaternion +***************************************************************************/ + +/** \geometry_module \ingroup Geometry_Module + * + * \class Quaternion + * + * \brief The quaternion class used to represent 3D orientations and rotations + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients + * \tparam Options_ controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. + * + * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of + * orientations and rotations of objects in three dimensions. Compared to other representations + * like Euler angles or 3x3 matrices, quaternions offer the following advantages: + * \li \b compact storage (4 scalars) + * \li \b efficient to compose (28 flops), + * \li \b stable spherical interpolation + * + * The following two typedefs are provided for convenience: + * \li \c Quaternionf for \c float + * \li \c Quaterniond for \c double + * + * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. + * + * \sa class AngleAxis, class Transform + */ + +namespace internal { +template +struct traits > +{ + typedef Quaternion PlainObject; + typedef Scalar_ Scalar; + typedef Matrix Coefficients; + enum{ + Alignment = internal::traits::Alignment, + Flags = LvalueBit + }; +}; +} + +template +class Quaternion : public QuaternionBase > +{ +public: + typedef QuaternionBase > Base; + enum { NeedsAlignment = internal::traits::Alignment>0 }; + + typedef Scalar_ Scalar; + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) + using Base::operator*=; + + typedef typename internal::traits::Coefficients Coefficients; + typedef typename Base::AngleAxisType AngleAxisType; + + /** Default constructor leaving the quaternion uninitialized. */ + EIGEN_DEVICE_FUNC inline Quaternion() {} + + /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from + * its four coefficients \a w, \a x, \a y and \a z. + * + * \warning Note the order of the arguments: the real \a w coefficient first, + * while internally the coefficients are stored in the following order: + * [\c x, \c y, \c z, \c w] + */ + EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} + + /** Constructs and initializes a quaternion from its real part as a scalar, + * and its imaginary part as a 3-vector [\c x, \c y, \c z] + */ + template + EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Eigen::MatrixBase& vec) + : m_coeffs(vec.x(), vec.y(), vec.z(), w) { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3); + } + + /** Constructs and initialize a quaternion from the array data */ + EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} + + /** Copy constructor */ + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase& other) { this->Base::operator=(other); } + + /** Constructs and initializes a quaternion from the angle-axis \a aa */ + EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } + + /** Constructs and initializes a quaternion from either: + * - a rotation matrix expression, + * - a 4D vector expression representing quaternion coefficients in the order [\c x, \c y, \c z, \c w]. + */ + template + EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase& other) { *this = other; } + + /** Explicit copy constructor with scalar conversion */ + template + EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion& other) + { m_coeffs = other.coeffs().template cast(); } + + // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator. + /** Default move constructor */ + EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible::value) + : m_coeffs(std::move(other.coeffs())) + {} + + /** Default move assignment operator */ + EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable::value) + { + m_coeffs = std::move(other.coeffs()); + return *this; + } + + EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); + + template + EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase& a, const MatrixBase& b); + + EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} + + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) + +#ifdef EIGEN_QUATERNION_PLUGIN +# include EIGEN_QUATERNION_PLUGIN +#endif + +protected: + Coefficients m_coeffs; + +#ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_STATIC_ASSERT( (Options_ & DontAlign) == Options_, + INVALID_MATRIX_TEMPLATE_PARAMETERS) +#endif +}; + +/** \ingroup Geometry_Module + * single precision quaternion type */ +typedef Quaternion Quaternionf; +/** \ingroup Geometry_Module + * double precision quaternion type */ +typedef Quaternion Quaterniond; + +/*************************************************************************** +* Specialization of Map> +***************************************************************************/ + +namespace internal { + template + struct traits, Options_> > : traits > + { + typedef Map, Options_> Coefficients; + }; +} + +namespace internal { + template + struct traits, Options_> > : traits > + { + typedef Map, Options_> Coefficients; + typedef traits > TraitsBase; + enum { + Flags = TraitsBase::Flags & ~LvalueBit + }; + }; +} + +/** \ingroup Geometry_Module + * \brief Quaternion expression mapping a constant memory buffer + * + * \tparam Scalar_ the type of the Quaternion coefficients + * \tparam Options_ see class Map + * + * This is a specialization of class Map for Quaternion. This class allows to view + * a 4 scalar memory buffer as an Eigen's Quaternion object. + * + * \sa class Map, class Quaternion, class QuaternionBase + */ +template +class Map, Options_ > + : public QuaternionBase, Options_> > +{ + public: + typedef QuaternionBase, Options_> > Base; + + typedef Scalar_ Scalar; + typedef typename internal::traits::Coefficients Coefficients; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + using Base::operator*=; + + /** Constructs a Mapped Quaternion object from the pointer \a coeffs + * + * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: + * \code *coeffs == {x, y, z, w} \endcode + * + * If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */ + EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} + + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} + + protected: + const Coefficients m_coeffs; +}; + +/** \ingroup Geometry_Module + * \brief Expression of a quaternion from a memory buffer + * + * \tparam Scalar_ the type of the Quaternion coefficients + * \tparam Options_ see class Map + * + * This is a specialization of class Map for Quaternion. This class allows to view + * a 4 scalar memory buffer as an Eigen's Quaternion object. + * + * \sa class Map, class Quaternion, class QuaternionBase + */ +template +class Map, Options_ > + : public QuaternionBase, Options_> > +{ + public: + typedef QuaternionBase, Options_> > Base; + + typedef Scalar_ Scalar; + typedef typename internal::traits::Coefficients Coefficients; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + using Base::operator*=; + + /** Constructs a Mapped Quaternion object from the pointer \a coeffs + * + * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: + * \code *coeffs == {x, y, z, w} \endcode + * + * If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */ + EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} + + EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } + + protected: + Coefficients m_coeffs; +}; + +/** \ingroup Geometry_Module + * Map an unaligned array of single precision scalars as a quaternion */ +typedef Map, 0> QuaternionMapf; +/** \ingroup Geometry_Module + * Map an unaligned array of double precision scalars as a quaternion */ +typedef Map, 0> QuaternionMapd; +/** \ingroup Geometry_Module + * Map a 16-byte aligned array of single precision scalars as a quaternion */ +typedef Map, Aligned> QuaternionMapAlignedf; +/** \ingroup Geometry_Module + * Map a 16-byte aligned array of double precision scalars as a quaternion */ +typedef Map, Aligned> QuaternionMapAlignedd; + +/*************************************************************************** +* Implementation of QuaternionBase methods +***************************************************************************/ + +// Generic Quaternion * Quaternion product +// This product can be specialized for a given architecture via the Arch template argument. +namespace internal { +template struct quat_product +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& a, const QuaternionBase& b){ + return Quaternion + ( + a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), + a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), + a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), + a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() + ); + } +}; +} + +/** \returns the concatenation of two rotations as a quaternion-quaternion product */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion::Scalar> +QuaternionBase::operator* (const QuaternionBase& other) const +{ + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + return internal::quat_product::Scalar>::run(*this, other); +} + +/** \sa operator*(Quaternion) */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator*= (const QuaternionBase& other) +{ + derived() = derived() * other.derived(); + return derived(); +} + +/** Rotation of a vector by a quaternion. + * \remarks If the quaternion is used to rotate several points (>1) + * then it is much more efficient to first convert it to a 3x3 Matrix. + * Comparison of the operation cost for n transformations: + * - Quaternion2: 30n + * - Via a Matrix3: 24 + 15n + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase::Vector3 +QuaternionBase::_transformVector(const Vector3& v) const +{ + // Note that this algorithm comes from the optimization by hand + // of the conversion to a Matrix followed by a Matrix/Vector product. + // It appears to be much faster than the common algorithm found + // in the literature (30 versus 39 flops). It also requires two + // Vector3 as temporaries. + Vector3 uv = this->vec().cross(v); + uv += uv; + return v + this->w() * uv + this->vec().cross(uv); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase& QuaternionBase::operator=(const QuaternionBase& other) +{ + coeffs() = other.coeffs(); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const QuaternionBase& other) +{ + coeffs() = other.coeffs(); + return derived(); +} + +/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const AngleAxisType& aa) +{ + EIGEN_USING_STD(cos) + EIGEN_USING_STD(sin) + Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings + this->w() = cos(ha); + this->vec() = sin(ha) * aa.axis(); + return derived(); +} + +/** Set \c *this from the expression \a xpr: + * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion + * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix + * and \a xpr is converted to a quaternion + */ + +template +template +EIGEN_DEVICE_FUNC inline Derived& QuaternionBase::operator=(const MatrixBase& xpr) +{ + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + internal::quaternionbase_assign_impl::run(*this, xpr.derived()); + return derived(); +} + +/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to + * be normalized, otherwise the result is undefined. + */ +template +EIGEN_DEVICE_FUNC inline typename QuaternionBase::Matrix3 +QuaternionBase::toRotationMatrix(void) const +{ + // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) + // if not inlined then the cost of the return by value is huge ~ +35%, + // however, not inlining this function is an order of magnitude slower, so + // it has to be inlined, and so the return by value is not an issue + Matrix3 res; + + const Scalar tx = Scalar(2)*this->x(); + const Scalar ty = Scalar(2)*this->y(); + const Scalar tz = Scalar(2)*this->z(); + const Scalar twx = tx*this->w(); + const Scalar twy = ty*this->w(); + const Scalar twz = tz*this->w(); + const Scalar txx = tx*this->x(); + const Scalar txy = ty*this->x(); + const Scalar txz = tz*this->x(); + const Scalar tyy = ty*this->y(); + const Scalar tyz = tz*this->y(); + const Scalar tzz = tz*this->z(); + + res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); + res.coeffRef(0,1) = txy-twz; + res.coeffRef(0,2) = txz+twy; + res.coeffRef(1,0) = txy+twz; + res.coeffRef(1,1) = Scalar(1)-(txx+tzz); + res.coeffRef(1,2) = tyz-twx; + res.coeffRef(2,0) = txz-twy; + res.coeffRef(2,1) = tyz+twx; + res.coeffRef(2,2) = Scalar(1)-(txx+tyy); + + return res; +} + +/** Sets \c *this to be a quaternion representing a rotation between + * the two arbitrary vectors \a a and \a b. In other words, the built + * rotation represent a rotation sending the line of direction \a a + * to the line of direction \a b, both lines passing through the origin. + * + * \returns a reference to \c *this. + * + * Note that the two input vectors do \b not have to be normalized, and + * do not need to have the same norm. + */ +template +template +EIGEN_DEVICE_FUNC inline Derived& QuaternionBase::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) +{ + EIGEN_USING_STD(sqrt) + Vector3 v0 = a.normalized(); + Vector3 v1 = b.normalized(); + Scalar c = v1.dot(v0); + + // if dot == -1, vectors are nearly opposites + // => accurately compute the rotation axis by computing the + // intersection of the two planes. This is done by solving: + // x^T v0 = 0 + // x^T v1 = 0 + // under the constraint: + // ||x|| = 1 + // which yields a singular value problem + if (c < Scalar(-1)+NumTraits::dummy_precision()) + { + c = numext::maxi(c,Scalar(-1)); + Matrix m; m << v0.transpose(), v1.transpose(); + JacobiSVD, ComputeFullV> svd(m); + Vector3 axis = svd.matrixV().col(2); + + Scalar w2 = (Scalar(1)+c)*Scalar(0.5); + this->w() = sqrt(w2); + this->vec() = axis * sqrt(Scalar(1) - w2); + return derived(); + } + Vector3 axis = v0.cross(v1); + Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); + Scalar invs = Scalar(1)/s; + this->vec() = axis * invs; + this->w() = s * Scalar(0.5); + + return derived(); +} + +/** \returns a random unit quaternion following a uniform distribution law on SO(3) + * + * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html + */ +template +EIGEN_DEVICE_FUNC Quaternion Quaternion::UnitRandom() +{ + EIGEN_USING_STD(sqrt) + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + const Scalar u1 = internal::random(0, 1), + u2 = internal::random(0, 2*EIGEN_PI), + u3 = internal::random(0, 2*EIGEN_PI); + const Scalar a = sqrt(Scalar(1) - u1), + b = sqrt(u1); + return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); +} + + +/** Returns a quaternion representing a rotation between + * the two arbitrary vectors \a a and \a b. In other words, the built + * rotation represent a rotation sending the line of direction \a a + * to the line of direction \a b, both lines passing through the origin. + * + * \returns resulting quaternion + * + * Note that the two input vectors do \b not have to be normalized, and + * do not need to have the same norm. + */ +template +template +EIGEN_DEVICE_FUNC Quaternion Quaternion::FromTwoVectors(const MatrixBase& a, const MatrixBase& b) +{ + Quaternion quat; + quat.setFromTwoVectors(a, b); + return quat; +} + + +/** \returns the multiplicative inverse of \c *this + * Note that in most cases, i.e., if you simply want the opposite rotation, + * and/or the quaternion is normalized, then it is enough to use the conjugate. + * + * \sa QuaternionBase::conjugate() + */ +template +EIGEN_DEVICE_FUNC inline Quaternion::Scalar> QuaternionBase::inverse() const +{ + // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? + Scalar n2 = this->squaredNorm(); + if (n2 > Scalar(0)) + return Quaternion(conjugate().coeffs() / n2); + else + { + // return an invalid result to flag the error + return Quaternion(Coefficients::Zero()); + } +} + +// Generic conjugate of a Quaternion +namespace internal { +template struct quat_conj +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& q){ + return Quaternion(q.w(),-q.x(),-q.y(),-q.z()); + } +}; +} + +/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse + * if the quaternion is normalized. + * The conjugate of a quaternion represents the opposite rotation. + * + * \sa Quaternion2::inverse() + */ +template +EIGEN_DEVICE_FUNC inline Quaternion::Scalar> +QuaternionBase::conjugate() const +{ + return internal::quat_conj::Scalar>::run(*this); + +} + +/** \returns the angle (in radian) between two rotations + * \sa dot() + */ +template +template +EIGEN_DEVICE_FUNC inline typename internal::traits::Scalar +QuaternionBase::angularDistance(const QuaternionBase& other) const +{ + EIGEN_USING_STD(atan2) + Quaternion d = (*this) * other.conjugate(); + return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); +} + + + +/** \returns the spherical linear interpolation between the two quaternions + * \c *this and \a other at the parameter \a t in [0;1]. + * + * This represents an interpolation for a constant motion between \c *this and \a other, + * see also http://en.wikipedia.org/wiki/Slerp. + */ +template +template +EIGEN_DEVICE_FUNC Quaternion::Scalar> +QuaternionBase::slerp(const Scalar& t, const QuaternionBase& other) const +{ + EIGEN_USING_STD(acos) + EIGEN_USING_STD(sin) + const Scalar one = Scalar(1) - NumTraits::epsilon(); + Scalar d = this->dot(other); + Scalar absD = numext::abs(d); + + Scalar scale0; + Scalar scale1; + + if(absD>=one) + { + scale0 = Scalar(1) - t; + scale1 = t; + } + else + { + // theta is the angle between the 2 quaternions + Scalar theta = acos(absD); + Scalar sinTheta = sin(theta); + + scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; + scale1 = sin( ( t * theta) ) / sinTheta; + } + if(d(scale0 * coeffs() + scale1 * other.coeffs()); +} + +namespace internal { + +// set from a rotation matrix +template +struct quaternionbase_assign_impl +{ + typedef typename Other::Scalar Scalar; + template EIGEN_DEVICE_FUNC static inline void run(QuaternionBase& q, const Other& a_mat) + { + const typename internal::nested_eval::type mat(a_mat); + EIGEN_USING_STD(sqrt) + // This algorithm comes from "Quaternion Calculus and Fast Animation", + // Ken Shoemake, 1987 SIGGRAPH course notes + Scalar t = mat.trace(); + if (t > Scalar(0)) + { + t = sqrt(t + Scalar(1.0)); + q.w() = Scalar(0.5)*t; + t = Scalar(0.5)/t; + q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; + q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; + q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; + } + else + { + Index i = 0; + if (mat.coeff(1,1) > mat.coeff(0,0)) + i = 1; + if (mat.coeff(2,2) > mat.coeff(i,i)) + i = 2; + Index j = (i+1)%3; + Index k = (j+1)%3; + + t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); + q.coeffs().coeffRef(i) = Scalar(0.5) * t; + t = Scalar(0.5)/t; + q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; + q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; + q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; + } + } +}; + +// set from a vector of coefficients assumed to be a quaternion +template +struct quaternionbase_assign_impl +{ + typedef typename Other::Scalar Scalar; + template EIGEN_DEVICE_FUNC static inline void run(QuaternionBase& q, const Other& vec) + { + q.coeffs() = vec; + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_QUATERNION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Rotation2D.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Rotation2D.h new file mode 100644 index 0000000..aa7f863 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Rotation2D.h @@ -0,0 +1,201 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ROTATION2D_H +#define EIGEN_ROTATION2D_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Rotation2D + * + * \brief Represents a rotation/orientation in a 2 dimensional space. + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients + * + * This class is equivalent to a single scalar representing a counter clock wise rotation + * as a single angle in radian. It provides some additional features such as the automatic + * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar + * interface to Quaternion in order to facilitate the writing of generic algorithms + * dealing with rotations. + * + * \sa class Quaternion, class Transform + */ + +namespace internal { + +template struct traits > +{ + typedef Scalar_ Scalar; +}; +} // end namespace internal + +template +class Rotation2D : public RotationBase,2> +{ + typedef RotationBase,2> Base; + +public: + + using Base::operator*; + + enum { Dim = 2 }; + /** the scalar type of the coefficients */ + typedef Scalar_ Scalar; + typedef Matrix Vector2; + typedef Matrix Matrix2; + +protected: + + Scalar m_angle; + +public: + + /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ + EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} + + /** Default constructor wihtout initialization. The represented rotation is undefined. */ + EIGEN_DEVICE_FUNC Rotation2D() {} + + /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. + * + * \sa fromRotationMatrix() + */ + template + EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase& m) + { + fromRotationMatrix(m.derived()); + } + + /** \returns the rotation angle */ + EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } + + /** \returns a read-write reference to the rotation angle */ + EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } + + /** \returns the rotation angle in [0,2pi] */ + EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { + Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); + return tmpScalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI); + else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); + return tmp; + } + + /** \returns the inverse rotation */ + EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const + { return Rotation2D(m_angle + other.m_angle); } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) + { m_angle += other.m_angle; return *this; } + + /** Applies the rotation to a 2D vector */ + EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const + { return toRotationMatrix() * vec; } + + template + EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase& m); + EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; + + /** Set \c *this from a 2x2 rotation matrix \a mat. + * In other words, this function extract the rotation angle from the rotation matrix. + * + * This method is an alias for fromRotationMatrix() + * + * \sa fromRotationMatrix() + */ + template + EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase& m) + { return fromRotationMatrix(m.derived()); } + + /** \returns the spherical interpolation between \c *this and \a other using + * parameter \a t. It is in fact equivalent to a linear interpolation. + */ + EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const + { + Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); + return Rotation2D(m_angle + dist*t); + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D& other) + { + m_angle = Scalar(other.angle()); + } + + EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return internal::isApprox(m_angle,other.m_angle, prec); } + +}; + +/** \ingroup Geometry_Module + * single precision 2D rotation type */ +typedef Rotation2D Rotation2Df; +/** \ingroup Geometry_Module + * double precision 2D rotation type */ +typedef Rotation2D Rotation2Dd; + +/** Set \c *this from a 2x2 rotation matrix \a mat. + * In other words, this function extract the rotation angle + * from the rotation matrix. + */ +template +template +EIGEN_DEVICE_FUNC Rotation2D& Rotation2D::fromRotationMatrix(const MatrixBase& mat) +{ + EIGEN_USING_STD(atan2) + EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) + m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); + return *this; +} + +/** Constructs and \returns an equivalent 2x2 rotation matrix. + */ +template +typename Rotation2D::Matrix2 +EIGEN_DEVICE_FUNC Rotation2D::toRotationMatrix(void) const +{ + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + Scalar sinA = sin(m_angle); + Scalar cosA = cos(m_angle); + return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); +} + +} // end namespace Eigen + +#endif // EIGEN_ROTATION2D_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/RotationBase.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/RotationBase.h new file mode 100644 index 0000000..f21277f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/RotationBase.h @@ -0,0 +1,208 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ROTATIONBASE_H +#define EIGEN_ROTATIONBASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// forward declaration +namespace internal { +template +struct rotation_base_generic_product_selector; +} + +/** \class RotationBase + * + * \brief Common base class for compact rotation representations + * + * \tparam Derived is the derived type, i.e., a rotation type + * \tparam Dim_ the dimension of the space + */ +template +class RotationBase +{ + public: + enum { Dim = Dim_ }; + /** the scalar type of the coefficients */ + typedef typename internal::traits::Scalar Scalar; + + /** corresponding linear transformation matrix type */ + typedef Matrix RotationMatrixType; + typedef Matrix VectorType; + + public: + EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast(this); } + + /** \returns an equivalent rotation matrix */ + EIGEN_DEVICE_FUNC inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } + + /** \returns an equivalent rotation matrix + * This function is added to be conform with the Transform class' naming scheme. + */ + EIGEN_DEVICE_FUNC inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } + + /** \returns the inverse rotation */ + EIGEN_DEVICE_FUNC inline Derived inverse() const { return derived().inverse(); } + + /** \returns the concatenation of the rotation \c *this with a translation \a t */ + EIGEN_DEVICE_FUNC inline Transform operator*(const Translation& t) const + { return Transform(*this) * t; } + + /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ + EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const UniformScaling& s) const + { return toRotationMatrix() * s.factor(); } + + /** \returns the concatenation of the rotation \c *this with a generic expression \a e + * \a e can be: + * - a DimxDim linear transformation matrix + * - a DimxDim diagonal matrix (axis aligned scaling) + * - a vector of size Dim + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector::ReturnType + operator*(const EigenBase& e) const + { return internal::rotation_base_generic_product_selector::run(derived(), e.derived()); } + + /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ + template friend + EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const EigenBase& l, const Derived& r) + { return l.derived() * r.toRotationMatrix(); } + + /** \returns the concatenation of a scaling \a l with the rotation \a r */ + EIGEN_DEVICE_FUNC friend inline Transform operator*(const DiagonalMatrix& l, const Derived& r) + { + Transform res(r); + res.linear().applyOnTheLeft(l); + return res; + } + + /** \returns the concatenation of the rotation \c *this with a transformation \a t */ + template + EIGEN_DEVICE_FUNC inline Transform operator*(const Transform& t) const + { return toRotationMatrix() * t; } + + template + EIGEN_DEVICE_FUNC inline VectorType _transformVector(const OtherVectorType& v) const + { return toRotationMatrix() * v; } +}; + +namespace internal { + +// implementation of the generic product rotation * matrix +template +struct rotation_base_generic_product_selector +{ + enum { Dim = RotationDerived::Dim }; + typedef Matrix ReturnType; + EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const MatrixType& m) + { return r.toRotationMatrix() * m; } +}; + +template +struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix, false > +{ + typedef Transform ReturnType; + EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix& m) + { + ReturnType res(r); + res.linear() *= m; + return res; + } +}; + +template +struct rotation_base_generic_product_selector +{ + enum { Dim = RotationDerived::Dim }; + typedef Matrix ReturnType; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v) + { + return r._transformVector(v); + } +}; + +} // end namespace internal + +/** \geometry_module + * + * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r + */ +template +template +EIGEN_DEVICE_FUNC Matrix +::Matrix(const RotationBase& r) +{ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) + *this = r.toRotationMatrix(); +} + +/** \geometry_module + * + * \brief Set a Dim x Dim rotation matrix from the rotation \a r + */ +template +template +EIGEN_DEVICE_FUNC Matrix& +Matrix +::operator=(const RotationBase& r) +{ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) + return *this = r.toRotationMatrix(); +} + +namespace internal { + +/** \internal + * + * Helper function to return an arbitrary rotation object to a rotation matrix. + * + * \tparam Scalar the numeric type of the matrix coefficients + * \tparam Dim the dimension of the current space + * + * It returns a Dim x Dim fixed size matrix. + * + * Default specializations are provided for: + * - any scalar type (2D), + * - any matrix expression, + * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) + * + * Currently toRotationMatrix is only used by Transform. + * + * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis + */ +template +EIGEN_DEVICE_FUNC static inline Matrix toRotationMatrix(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) + return Rotation2D(s).toRotationMatrix(); +} + +template +EIGEN_DEVICE_FUNC static inline Matrix toRotationMatrix(const RotationBase& r) +{ + return r.toRotationMatrix(); +} + +template +EIGEN_DEVICE_FUNC static inline const MatrixBase& toRotationMatrix(const MatrixBase& mat) +{ + EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, + YOU_MADE_A_PROGRAMMING_MISTAKE) + return mat; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ROTATIONBASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Scaling.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Scaling.h new file mode 100644 index 0000000..8bcdce6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Scaling.h @@ -0,0 +1,195 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SCALING_H +#define EIGEN_SCALING_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class UniformScaling + * + * \brief Represents a generic uniform scaling transformation + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients. + * + * This class represent a uniform scaling transformation. It is the return + * type of Scaling(Scalar), and most of the time this is the only way it + * is used. In particular, this class is not aimed to be used to store a scaling transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * To represent an axis aligned scaling, use the DiagonalMatrix class. + * + * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform + */ + +namespace internal +{ + // This helper helps nvcc+MSVC to properly parse this file. + // See bug 1412. + template + struct uniformscaling_times_affine_returntype + { + enum + { + NewMode = int(Mode) == int(Isometry) ? Affine : Mode + }; + typedef Transform type; + }; +} + +template +class UniformScaling +{ +public: + /** the scalar type of the coefficients */ + typedef Scalar_ Scalar; + +protected: + + Scalar m_factor; + +public: + + /** Default constructor without initialization. */ + UniformScaling() {} + /** Constructs and initialize a uniform scaling transformation */ + explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} + + inline const Scalar& factor() const { return m_factor; } + inline Scalar& factor() { return m_factor; } + + /** Concatenates two uniform scaling */ + inline UniformScaling operator* (const UniformScaling& other) const + { return UniformScaling(m_factor * other.factor()); } + + /** Concatenates a uniform scaling and a translation */ + template + inline Transform operator* (const Translation& t) const; + + /** Concatenates a uniform scaling and an affine transformation */ + template + inline typename + internal::uniformscaling_times_affine_returntype::type + operator* (const Transform& t) const + { + typename internal::uniformscaling_times_affine_returntype::type res = t; + res.prescale(factor()); + return res; + } + + /** Concatenates a uniform scaling and a linear transformation matrix */ + // TODO returns an expression + template + inline typename Eigen::internal::plain_matrix_type::type operator* (const MatrixBase& other) const + { return other * m_factor; } + + template + inline Matrix operator*(const RotationBase& r) const + { return r.toRotationMatrix() * m_factor; } + + /** \returns the inverse scaling */ + inline UniformScaling inverse() const + { return UniformScaling(Scalar(1)/m_factor); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + inline UniformScaling cast() const + { return UniformScaling(NewScalarType(m_factor)); } + + /** Copy constructor with scalar type conversion */ + template + inline explicit UniformScaling(const UniformScaling& other) + { m_factor = Scalar(other.factor()); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const UniformScaling& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return internal::isApprox(m_factor, other.factor(), prec); } + +}; + +/** \addtogroup Geometry_Module */ +//@{ + +/** Concatenates a linear transformation matrix and a uniform scaling + * \relates UniformScaling + */ +// NOTE this operator is defined in MatrixBase and not as a friend function +// of UniformScaling to fix an internal crash of Intel's ICC +template +EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product) +operator*(const MatrixBase& matrix, const UniformScaling& s) +{ return matrix.derived() * s.factor(); } + +/** Constructs a uniform scaling from scale factor \a s */ +inline UniformScaling Scaling(float s) { return UniformScaling(s); } +/** Constructs a uniform scaling from scale factor \a s */ +inline UniformScaling Scaling(double s) { return UniformScaling(s); } +/** Constructs a uniform scaling from scale factor \a s */ +template +inline UniformScaling > Scaling(const std::complex& s) +{ return UniformScaling >(s); } + +/** Constructs a 2D axis aligned scaling */ +template +inline DiagonalMatrix Scaling(const Scalar& sx, const Scalar& sy) +{ return DiagonalMatrix(sx, sy); } +/** Constructs a 3D axis aligned scaling */ +template +inline DiagonalMatrix Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) +{ return DiagonalMatrix(sx, sy, sz); } + +/** Constructs an axis aligned scaling expression from vector expression \a coeffs + * This is an alias for coeffs.asDiagonal() + */ +template +inline const DiagonalWrapper Scaling(const MatrixBase& coeffs) +{ return coeffs.asDiagonal(); } + +/** Constructs an axis aligned scaling expression from vector \a coeffs when passed as an rvalue reference */ +template +inline typename DiagonalWrapper::PlainObject Scaling(MatrixBase&& coeffs) +{ return typename DiagonalWrapper::PlainObject(std::move(coeffs.derived())); } + +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling2f; +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling2d; +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling3f; +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling3d; +//@} + +template +template +inline Transform +UniformScaling::operator* (const Translation& t) const +{ + Transform res; + res.matrix().setZero(); + res.linear().diagonal().fill(factor()); + res.translation() = factor() * t.vector(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_SCALING_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Transform.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Transform.h new file mode 100644 index 0000000..fd0ae7e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Transform.h @@ -0,0 +1,1570 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2010 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSFORM_H +#define EIGEN_TRANSFORM_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct transform_traits +{ + enum + { + Dim = Transform::Dim, + HDim = Transform::HDim, + Mode = Transform::Mode, + IsProjective = (int(Mode)==int(Projective)) + }; +}; + +template< typename TransformType, + typename MatrixType, + int Case = transform_traits::IsProjective ? 0 + : int(MatrixType::RowsAtCompileTime) == int(transform_traits::HDim) ? 1 + : 2, + int RhsCols = MatrixType::ColsAtCompileTime> +struct transform_right_product_impl; + +template< typename Other, + int Mode, + int Options, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct transform_left_product_impl; + +template< typename Lhs, + typename Rhs, + bool AnyProjective = + transform_traits::IsProjective || + transform_traits::IsProjective> +struct transform_transform_product_impl; + +template< typename Other, + int Mode, + int Options, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct transform_construct_from_matrix; + +template struct transform_take_affine_part; + +template +struct traits > +{ + typedef Scalar_ Scalar; + typedef Eigen::Index StorageIndex; + typedef Dense StorageKind; + enum { + Dim1 = Dim_==Dynamic ? Dim_ : Dim_ + 1, + RowsAtCompileTime = Mode_==Projective ? Dim1 : Dim_, + ColsAtCompileTime = Dim1, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + Flags = 0 + }; +}; + +template struct transform_make_affine; + +} // end namespace internal + +/** \geometry_module \ingroup Geometry_Module + * + * \class Transform + * + * \brief Represents an homogeneous transformation in a N dimensional space + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients + * \tparam Dim_ the dimension of the space + * \tparam Mode_ the type of the transformation. Can be: + * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, + * where the last row is assumed to be [0 ... 0 1]. + * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. + * - #Projective: the transformation is stored as a (Dim+1)^2 matrix + * without any assumption. + * - #Isometry: same as #Affine with the additional assumption that + * the linear part represents a rotation. This assumption is exploited + * to speed up some functions such as inverse() and rotation(). + * \tparam Options_ has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. + * These Options are passed directly to the underlying matrix type. + * + * The homography is internally represented and stored by a matrix which + * is available through the matrix() method. To understand the behavior of + * this class you have to think a Transform object as its internal + * matrix representation. The chosen convention is right multiply: + * + * \code v' = T * v \endcode + * + * Therefore, an affine transformation matrix M is shaped like this: + * + * \f$ \left( \begin{array}{cc} + * linear & translation\\ + * 0 ... 0 & 1 + * \end{array} \right) \f$ + * + * Note that for a projective transformation the last row can be anything, + * and then the interpretation of different parts might be slightly different. + * + * However, unlike a plain matrix, the Transform class provides many features + * simplifying both its assembly and usage. In particular, it can be composed + * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) + * and can be directly used to transform implicit homogeneous vectors. All these + * operations are handled via the operator*. For the composition of transformations, + * its principle consists to first convert the right/left hand sides of the product + * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. + * Of course, internally, operator* tries to perform the minimal number of operations + * according to the nature of each terms. Likewise, when applying the transform + * to points, the latters are automatically promoted to homogeneous vectors + * before doing the matrix product. The conventions to homogeneous representations + * are performed as follow: + * + * \b Translation t (Dim)x(1): + * \f$ \left( \begin{array}{cc} + * I & t \\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Rotation R (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * R & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * S & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Column \b point v (Dim)x(1): + * \f$ \left( \begin{array}{c} + * v\\ + * 1 + * \end{array} \right) \f$ + * + * \b Set \b of \b column \b points V1...Vn (Dim)x(n): + * \f$ \left( \begin{array}{ccc} + * v_1 & ... & v_n\\ + * 1 & ... & 1 + * \end{array} \right) \f$ + * + * The concatenation of a Transform object with any kind of other transformation + * always returns a Transform object. + * + * A little exception to the "as pure matrix product" rule is the case of the + * transformation of non homogeneous vectors by an affine transformation. In + * that case the last matrix row can be ignored, and the product returns non + * homogeneous vectors. + * + * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, + * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. + * The solution is either to use a Dim x Dynamic matrix or explicitly request a + * vector transformation by making the vector homogeneous: + * \code + * m' = T * m.colwise().homogeneous(); + * \endcode + * Note that there is zero overhead. + * + * Conversion methods from/to Qt's QMatrix and QTransform are available if the + * preprocessor token EIGEN_QT_SUPPORT is defined. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. + * + * \sa class Matrix, class Quaternion + */ +template +class Transform +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,Dim_==Dynamic ? Dynamic : (Dim_+1)*(Dim_+1)) + enum { + Mode = Mode_, + Options = Options_, + Dim = Dim_, ///< space dimension in which the transformation holds + HDim = Dim_+1, ///< size of a respective homogeneous vector + Rows = int(Mode)==(AffineCompact) ? Dim : HDim + }; + /** the scalar type of the coefficients */ + typedef Scalar_ Scalar; + typedef Eigen::Index StorageIndex; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + /** type of the matrix used to represent the transformation */ + typedef typename internal::make_proper_matrix_type::type MatrixType; + /** constified MatrixType */ + typedef const MatrixType ConstMatrixType; + /** type of the matrix used to represent the linear part of the transformation */ + typedef Matrix LinearMatrixType; + /** type of read/write reference to the linear part of the transformation */ + typedef Block LinearPart; + /** type of read reference to the linear part of the transformation */ + typedef const Block ConstLinearPart; + /** type of read/write reference to the affine part of the transformation */ + typedef std::conditional_t > AffinePart; + /** type of read reference to the affine part of the transformation */ + typedef std::conditional_t > ConstAffinePart; + /** type of a vector */ + typedef Matrix VectorType; + /** type of a read/write reference to the translation part of the rotation */ + typedef Block::Flags & RowMajorBit)> TranslationPart; + /** type of a read reference to the translation part of the rotation */ + typedef const Block::Flags & RowMajorBit)> ConstTranslationPart; + /** corresponding translation type */ + typedef Translation TranslationType; + + // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 + enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; + /** The return type of the product between a diagonal matrix and a transform */ + typedef Transform TransformTimeDiagonalReturnType; + +protected: + + MatrixType m_matrix; + +public: + + /** Default constructor without initialization of the meaningful coefficients. + * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */ + EIGEN_DEVICE_FUNC inline Transform() + { + check_template_params(); + internal::transform_make_affine<(int(Mode)==Affine || int(Mode)==Isometry) ? Affine : AffineCompact>::run(m_matrix); + } + + EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t) + { + check_template_params(); + *this = t; + } + EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling& s) + { + check_template_params(); + *this = s; + } + template + EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase& r) + { + check_template_params(); + *this = r; + } + + typedef internal::transform_take_affine_part take_affine_part; + + /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ + template + EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase& other) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); + + check_template_params(); + internal::transform_construct_from_matrix::run(this, other.derived()); + } + + /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ + template + EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase& other) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); + + internal::transform_construct_from_matrix::run(this, other.derived()); + return *this; + } + + template + EIGEN_DEVICE_FUNC inline Transform(const Transform& other) + { + check_template_params(); + // only the options change, we can directly copy the matrices + m_matrix = other.matrix(); + } + + template + EIGEN_DEVICE_FUNC inline Transform(const Transform& other) + { + check_template_params(); + // prevent conversions as: + // Affine | AffineCompact | Isometry = Projective + EIGEN_STATIC_ASSERT(internal::check_implication(OtherMode==int(Projective), Mode==int(Projective)), + YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) + + // prevent conversions as: + // Isometry = Affine | AffineCompact + EIGEN_STATIC_ASSERT(internal::check_implication(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), + YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) + + enum { ModeIsAffineCompact = Mode == int(AffineCompact), + OtherModeIsAffineCompact = OtherMode == int(AffineCompact) + }; + + if(EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact)) + { + // We need the block expression because the code is compiled for all + // combinations of transformations and will trigger a compile time error + // if one tries to assign the matrices directly + m_matrix.template block(0,0) = other.matrix().template block(0,0); + makeAffine(); + } + else if(EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact)) + { + typedef typename Transform::MatrixType OtherMatrixType; + internal::transform_construct_from_matrix::run(this, other.matrix()); + } + else + { + // here we know that Mode == AffineCompact and OtherMode != AffineCompact. + // if OtherMode were Projective, the static assert above would already have caught it. + // So the only possibility is that OtherMode == Affine + linear() = other.linear(); + translation() = other.translation(); + } + } + + template + EIGEN_DEVICE_FUNC Transform(const ReturnByValue& other) + { + check_template_params(); + other.evalTo(*this); + } + + template + EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue& other) + { + other.evalTo(*this); + return *this; + } + + #ifdef EIGEN_QT_SUPPORT + #if (QT_VERSION < QT_VERSION_CHECK(6, 0, 0)) + inline Transform(const QMatrix& other); + inline Transform& operator=(const QMatrix& other); + inline QMatrix toQMatrix(void) const; + #endif + inline Transform(const QTransform& other); + inline Transform& operator=(const QTransform& other); + inline QTransform toQTransform(void) const; + #endif + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operator(Index,Index) const */ + EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operator(Index,Index) */ + EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } + + /** \returns a read-only expression of the transformation matrix */ + EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; } + /** \returns a writable expression of the transformation matrix */ + EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; } + + /** \returns a read-only expression of the linear part of the transformation */ + EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } + /** \returns a writable expression of the linear part of the transformation */ + EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); } + + /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ + EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } + /** \returns a writable expression of the Dim x HDim affine part of the transformation */ + EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); } + + /** \returns a read-only expression of the translation vector of the transformation */ + EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } + /** \returns a writable expression of the translation vector of the transformation */ + EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } + + /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. + * + * The right-hand-side \a other can be either: + * \li an homogeneous vector of size Dim+1, + * \li a set of homogeneous vectors of size Dim+1 x N, + * \li a transformation matrix of size Dim+1 x Dim+1. + * + * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: + * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), + * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode), + * + * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. + * + * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type, + * or do your own cooking. + * + * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: + * \code + * Affine3f A; + * Vector3f v1, v2; + * v2 = A.linear() * v1; + * \endcode + * + */ + // note: this function is defined here because some compilers cannot find the respective declaration + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl::ResultType + operator * (const EigenBase &other) const + { return internal::transform_right_product_impl::run(*this,other.derived()); } + + /** \returns the product expression of a transformation matrix \a a times a transform \a b + * + * The left hand side \a other can be either: + * \li a linear transformation matrix of size Dim x Dim, + * \li an affine transformation matrix of size Dim x Dim+1, + * \li a general transformation matrix of size Dim+1 x Dim+1. + */ + template friend + EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl::ResultType + operator * (const EigenBase &a, const Transform &b) + { return internal::transform_left_product_impl::run(a.derived(),b); } + + /** \returns The product expression of a transform \a a times a diagonal matrix \a b + * + * The rhs diagonal matrix is interpreted as an affine scaling transformation. The + * product results in a Transform of the same type (mode) as the lhs only if the lhs + * mode is no isometry. In that case, the returned transform is an affinity. + */ + template + EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType + operator * (const DiagonalBase &b) const + { + TransformTimeDiagonalReturnType res(*this); + res.linearExt() *= b; + return res; + } + + /** \returns The product expression of a diagonal matrix \a a times a transform \a b + * + * The lhs diagonal matrix is interpreted as an affine scaling transformation. The + * product results in a Transform of the same type (mode) as the lhs only if the lhs + * mode is no isometry. In that case, the returned transform is an affinity. + */ + template + EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType + operator * (const DiagonalBase &a, const Transform &b) + { + TransformTimeDiagonalReturnType res; + res.linear().noalias() = a*b.linear(); + res.translation().noalias() = a*b.translation(); + if (EIGEN_CONST_CONDITIONAL(Mode!=int(AffineCompact))) + res.matrix().row(Dim) = b.matrix().row(Dim); + return res; + } + + template + EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase& other) { return *this = *this * other; } + + /** Concatenates two transformations */ + EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const + { + return internal::transform_transform_product_impl::run(*this,other); + } + + #if EIGEN_COMP_ICC +private: + // this intermediate structure permits to workaround a bug in ICC 11: + // error: template instantiation resulted in unexpected function type of "Eigen::Transform + // (const Eigen::Transform &) const" + // (the meaning of a name may have changed since the template declaration -- the type of the template is: + // "Eigen::internal::transform_transform_product_impl, + // Eigen::Transform, >::ResultType (const Eigen::Transform &) const") + // + template struct icc_11_workaround + { + typedef internal::transform_transform_product_impl > ProductType; + typedef typename ProductType::ResultType ResultType; + }; + +public: + /** Concatenates two different transformations */ + template + inline typename icc_11_workaround::ResultType + operator * (const Transform& other) const + { + typedef typename icc_11_workaround::ProductType ProductType; + return ProductType::run(*this,other); + } + #else + /** Concatenates two different transformations */ + template + EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl >::ResultType + operator * (const Transform& other) const + { + return internal::transform_transform_product_impl >::run(*this,other); + } + #endif + + /** \sa MatrixBase::setIdentity() */ + EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); } + + /** + * \brief Returns an identity transformation. + * \todo In the future this function should be returning a Transform expression. + */ + EIGEN_DEVICE_FUNC static const Transform Identity() + { + return Transform(MatrixType::Identity()); + } + + template + EIGEN_DEVICE_FUNC + inline Transform& scale(const MatrixBase &other); + + template + EIGEN_DEVICE_FUNC + inline Transform& prescale(const MatrixBase &other); + + EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s); + EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s); + + template + EIGEN_DEVICE_FUNC + inline Transform& translate(const MatrixBase &other); + + template + EIGEN_DEVICE_FUNC + inline Transform& pretranslate(const MatrixBase &other); + + template + EIGEN_DEVICE_FUNC + inline Transform& rotate(const RotationType& rotation); + + template + EIGEN_DEVICE_FUNC + inline Transform& prerotate(const RotationType& rotation); + + EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy); + EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy); + + EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t); + + EIGEN_DEVICE_FUNC + inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } + + EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const; + + EIGEN_DEVICE_FUNC + inline Transform& operator=(const UniformScaling& t); + + EIGEN_DEVICE_FUNC + inline Transform& operator*=(const UniformScaling& s) { return scale(s.factor()); } + + EIGEN_DEVICE_FUNC + inline TransformTimeDiagonalReturnType operator*(const UniformScaling& s) const + { + TransformTimeDiagonalReturnType res = *this; + res.scale(s.factor()); + return res; + } + + EIGEN_DEVICE_FUNC + inline Transform& operator*=(const DiagonalMatrix& s) { linearExt() *= s; return *this; } + + template + EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase& r); + template + EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase& r) { return rotate(r.toRotationMatrix()); } + template + EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase& r) const; + + typedef std::conditional_t RotationReturnType; + EIGEN_DEVICE_FUNC RotationReturnType rotation() const; + + template + EIGEN_DEVICE_FUNC + void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; + template + EIGEN_DEVICE_FUNC + void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; + + template + EIGEN_DEVICE_FUNC + Transform& fromPositionOrientationScale(const MatrixBase &position, + const OrientationType& orientation, const MatrixBase &scale); + + EIGEN_DEVICE_FUNC + inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; + + /** \returns a const pointer to the column major internal matrix */ + EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); } + /** \returns a non-const pointer to the column major internal matrix */ + EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Transform(const Transform& other) + { + check_template_params(); + m_matrix = other.matrix().template cast(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_matrix.isApprox(other.m_matrix, prec); } + + /** Sets the last row to [0 ... 0 1] + */ + EIGEN_DEVICE_FUNC void makeAffine() + { + internal::transform_make_affine::run(m_matrix); + } + + /** \internal + * \returns the Dim x Dim linear part if the transformation is affine, + * and the HDim x Dim part for projective transformations. + */ + EIGEN_DEVICE_FUNC inline Block linearExt() + { return m_matrix.template block(0,0); } + /** \internal + * \returns the Dim x Dim linear part if the transformation is affine, + * and the HDim x Dim part for projective transformations. + */ + EIGEN_DEVICE_FUNC inline const Block linearExt() const + { return m_matrix.template block(0,0); } + + /** \internal + * \returns the translation part if the transformation is affine, + * and the last column for projective transformations. + */ + EIGEN_DEVICE_FUNC inline Block translationExt() + { return m_matrix.template block(0,Dim); } + /** \internal + * \returns the translation part if the transformation is affine, + * and the last column for projective transformations. + */ + EIGEN_DEVICE_FUNC inline const Block translationExt() const + { return m_matrix.template block(0,Dim); } + + + #ifdef EIGEN_TRANSFORM_PLUGIN + #include EIGEN_TRANSFORM_PLUGIN + #endif + +protected: + #ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params() + { + EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) + } + #endif + +}; + +/** \ingroup Geometry_Module */ +typedef Transform Isometry2f; +/** \ingroup Geometry_Module */ +typedef Transform Isometry3f; +/** \ingroup Geometry_Module */ +typedef Transform Isometry2d; +/** \ingroup Geometry_Module */ +typedef Transform Isometry3d; + +/** \ingroup Geometry_Module */ +typedef Transform Affine2f; +/** \ingroup Geometry_Module */ +typedef Transform Affine3f; +/** \ingroup Geometry_Module */ +typedef Transform Affine2d; +/** \ingroup Geometry_Module */ +typedef Transform Affine3d; + +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact2f; +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact3f; +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact2d; +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact3d; + +/** \ingroup Geometry_Module */ +typedef Transform Projective2f; +/** \ingroup Geometry_Module */ +typedef Transform Projective3f; +/** \ingroup Geometry_Module */ +typedef Transform Projective2d; +/** \ingroup Geometry_Module */ +typedef Transform Projective3d; + +/************************** +*** Optional QT support *** +**************************/ + +#ifdef EIGEN_QT_SUPPORT + +#if (QT_VERSION < QT_VERSION_CHECK(6, 0, 0)) +/** Initializes \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform::Transform(const QMatrix& other) +{ + check_template_params(); + *this = other; +} + +/** Set \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform& Transform::operator=(const QMatrix& other) +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(); + else + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + 0, 0, 1; + return *this; +} + +/** \returns a QMatrix from \c *this assuming the dimension is 2. + * + * \warning this conversion might loss data if \c *this is not affine + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +QMatrix Transform::toQMatrix(void) const +{ + check_template_params(); + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); +} +#endif + +/** Initializes \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform::Transform(const QTransform& other) +{ + check_template_params(); + *this = other; +} + +/** Set \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform& Transform::operator=(const QTransform& other) +{ + check_template_params(); + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(); + else + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + other.m13(), other.m23(), other.m33(); + return *this; +} + +/** \returns a QTransform from \c *this assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +QTransform Transform::toQTransform(void) const +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); + else + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); +} +#endif + +/********************* +*** Procedural API *** +*********************/ + +/** Applies on the right the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa prescale() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::scale(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + linearExt().noalias() = (linearExt() * other.asDiagonal()); + return *this; +} + +/** Applies on the right a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa prescale(Scalar) + */ +template +EIGEN_DEVICE_FUNC inline Transform& Transform::scale(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + linearExt() *= s; + return *this; +} + +/** Applies on the left the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa scale() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::prescale(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + affine().noalias() = (other.asDiagonal() * affine()); + return *this; +} + +/** Applies on the left a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa scale(Scalar) + */ +template +EIGEN_DEVICE_FUNC inline Transform& Transform::prescale(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + m_matrix.template topRows() *= s; + return *this; +} + +/** Applies on the right the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa pretranslate() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::translate(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + translationExt() += linearExt() * other; + return *this; +} + +/** Applies on the left the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa translate() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::pretranslate(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + if(EIGEN_CONST_CONDITIONAL(int(Mode)==int(Projective))) + affine() += other * m_matrix.row(Dim); + else + translation() += other; + return *this; +} + +/** Applies on the right the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * The template parameter \a RotationType is the type of the rotation which + * must be known by internal::toRotationMatrix<>. + * + * Natively supported types includes: + * - any scalar (2D), + * - a Dim x Dim matrix expression, + * - a Quaternion (3D), + * - a AngleAxis (3D) + * + * This mechanism is easily extendable to support user types such as Euler angles, + * or a pair of Quaternion for 4D rotations. + * + * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::rotate(const RotationType& rotation) +{ + linearExt() *= internal::toRotationMatrix(rotation); + return *this; +} + +/** Applies on the left the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * See rotate() for further details. + * + * \sa rotate() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::prerotate(const RotationType& rotation) +{ + m_matrix.template block(0,0) = internal::toRotationMatrix(rotation) + * m_matrix.template block(0,0); + return *this; +} + +/** Applies on the right the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa preshear() + */ +template +EIGEN_DEVICE_FUNC Transform& +Transform::shear(const Scalar& sx, const Scalar& sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + VectorType tmp = linear().col(0)*sy + linear().col(1); + linear() << linear().col(0) + linear().col(1)*sx, tmp; + return *this; +} + +/** Applies on the left the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa shear() + */ +template +EIGEN_DEVICE_FUNC Transform& +Transform::preshear(const Scalar& sx, const Scalar& sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + m_matrix.template block(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block(0,0); + return *this; +} + +/****************************************************** +*** Scaling, Translation and Rotation compatibility *** +******************************************************/ + +template +EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const TranslationType& t) +{ + linear().setIdentity(); + translation() = t.vector(); + makeAffine(); + return *this; +} + +template +EIGEN_DEVICE_FUNC inline Transform Transform::operator*(const TranslationType& t) const +{ + Transform res = *this; + res.translate(t.vector()); + return res; +} + +template +EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const UniformScaling& s) +{ + m_matrix.setZero(); + linear().diagonal().fill(s.factor()); + makeAffine(); + return *this; +} + +template +template +EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const RotationBase& r) +{ + linear() = internal::toRotationMatrix(r); + translation().setZero(); + makeAffine(); + return *this; +} + +template +template +EIGEN_DEVICE_FUNC inline Transform Transform::operator*(const RotationBase& r) const +{ + Transform res = *this; + res.rotate(r.derived()); + return res; +} + +/************************ +*** Special functions *** +************************/ + +namespace internal { +template struct transform_rotation_impl { + template + EIGEN_DEVICE_FUNC static inline + const typename TransformType::LinearMatrixType run(const TransformType& t) + { + typedef typename TransformType::LinearMatrixType LinearMatrixType; + LinearMatrixType result; + t.computeRotationScaling(&result, (LinearMatrixType*)0); + return result; + } +}; +template<> struct transform_rotation_impl { + template + EIGEN_DEVICE_FUNC static inline + typename TransformType::ConstLinearPart run(const TransformType& t) + { + return t.linear(); + } +}; +} +/** \returns the rotation part of the transformation + * + * If Mode==Isometry, then this method is an alias for linear(), + * otherwise it calls computeRotationScaling() to extract the rotation + * through a SVD decomposition. + * + * \svd_module + * + * \sa computeRotationScaling(), computeScalingRotation(), class SVD + */ +template +EIGEN_DEVICE_FUNC +typename Transform::RotationReturnType +Transform::rotation() const +{ + return internal::transform_rotation_impl::run(*this); +} + + +/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * + * + * \svd_module + * + * \sa computeScalingRotation(), rotation(), class SVD + */ +template +template +EIGEN_DEVICE_FUNC void Transform::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const +{ + // Note that JacobiSVD is faster than BDCSVD for small matrices. + JacobiSVD svd(linear()); + + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1 + VectorType sv(svd.singularValues()); + sv.coeffRef(Dim-1) *= x; + if(scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(Dim-1) *= x; + *rotation = m * svd.matrixV().adjoint(); + } +} + +/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * + * + * \svd_module + * + * \sa computeRotationScaling(), rotation(), class SVD + */ +template +template +EIGEN_DEVICE_FUNC void Transform::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const +{ + // Note that JacobiSVD is faster than BDCSVD for small matrices. + JacobiSVD svd(linear()); + + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1 + VectorType sv(svd.singularValues()); + sv.coeffRef(Dim-1) *= x; + if(scaling) *scaling = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(Dim-1) *= x; + *rotation = m * svd.matrixV().adjoint(); + } +} + +/** Convenient method to set \c *this from a position, orientation and scale + * of a 3D object. + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::fromPositionOrientationScale(const MatrixBase &position, + const OrientationType& orientation, const MatrixBase &scale) +{ + linear() = internal::toRotationMatrix(orientation); + linear() *= scale.asDiagonal(); + translation() = position; + makeAffine(); + return *this; +} + +namespace internal { + +template +struct transform_make_affine +{ + template + EIGEN_DEVICE_FUNC static void run(MatrixType &mat) + { + static const int Dim = MatrixType::ColsAtCompileTime-1; + mat.template block<1,Dim>(Dim,0).setZero(); + mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); + } +}; + +template<> +struct transform_make_affine +{ + template EIGEN_DEVICE_FUNC static void run(MatrixType &) { } +}; + +// selector needed to avoid taking the inverse of a 3x4 matrix +template +struct projective_transform_inverse +{ + EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&) + {} +}; + +template +struct projective_transform_inverse +{ + EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res) + { + res.matrix() = m.matrix().inverse(); + } +}; + +} // end namespace internal + + +/** + * + * \returns the inverse transformation according to some given knowledge + * on \c *this. + * + * \param hint allows to optimize the inversion process when the transformation + * is known to be not a general transformation (optional). The possible values are: + * - #Projective if the transformation is not necessarily affine, i.e., if the + * last row is not guaranteed to be [0 ... 0 1] + * - #Affine if the last row can be assumed to be [0 ... 0 1] + * - #Isometry if the transformation is only a concatenations of translations + * and rotations. + * The default is the template class parameter \c Mode. + * + * \warning unless \a traits is always set to NoShear or NoScaling, this function + * requires the generic inverse method of MatrixBase defined in the LU module. If + * you forget to include this module, then you will get hard to debug linking errors. + * + * \sa MatrixBase::inverse() + */ +template +EIGEN_DEVICE_FUNC Transform +Transform::inverse(TransformTraits hint) const +{ + Transform res; + if (hint == Projective) + { + internal::projective_transform_inverse::run(*this, res); + } + else + { + if (hint == Isometry) + { + res.matrix().template topLeftCorner() = linear().transpose(); + } + else if(hint&Affine) + { + res.matrix().template topLeftCorner() = linear().inverse(); + } + else + { + eigen_assert(false && "Invalid transform traits in Transform::Inverse"); + } + // translation and remaining parts + res.matrix().template topRightCorner() + = - res.matrix().template topLeftCorner() * translation(); + res.makeAffine(); // we do need this, because in the beginning res is uninitialized + } + return res; +} + +namespace internal { + +/***************************************************** +*** Specializations of take affine part *** +*****************************************************/ + +template struct transform_take_affine_part { + typedef typename TransformType::MatrixType MatrixType; + typedef typename TransformType::AffinePart AffinePart; + typedef typename TransformType::ConstAffinePart ConstAffinePart; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AffinePart run(MatrixType& m) + { return m.template block(0,0); } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ConstAffinePart run(const MatrixType& m) + { return m.template block(0,0); } +}; + +template +struct transform_take_affine_part > { + typedef typename Transform::MatrixType MatrixType; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixType& run(MatrixType& m) { return m; } + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixType& run(const MatrixType& m) { return m; } +}; + +/***************************************************** +*** Specializations of construct from matrix *** +*****************************************************/ + +template +struct transform_construct_from_matrix +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Transform *transform, const Other& other) + { + transform->linear() = other; + transform->translation().setZero(); + transform->makeAffine(); + } +}; + +template +struct transform_construct_from_matrix +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Transform *transform, const Other& other) + { + transform->affine() = other; + transform->makeAffine(); + } +}; + +template +struct transform_construct_from_matrix +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Transform *transform, const Other& other) + { transform->matrix() = other; } +}; + +template +struct transform_construct_from_matrix +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Transform *transform, const Other& other) + { transform->matrix() = other.template block(0,0); } +}; + +/********************************************************** +*** Specializations of operator* with rhs EigenBase *** +**********************************************************/ + +template +struct transform_product_result +{ + enum + { + Mode = + (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : + (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : + (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : + (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective + }; +}; + +template< typename TransformType, typename MatrixType, int RhsCols> +struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols> +{ + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + return T.matrix() * other; + } +}; + +template< typename TransformType, typename MatrixType, int RhsCols> +struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols> +{ + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + OtherCols = MatrixType::ColsAtCompileTime + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + typedef Block TopLeftLhs; + + ResultType res(other.rows(),other.cols()); + TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; + res.row(OtherRows-1) = other.row(OtherRows-1); + + return res; + } +}; + +template< typename TransformType, typename MatrixType, int RhsCols> +struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols> +{ + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + OtherCols = MatrixType::ColsAtCompileTime + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + typedef Block TopLeftLhs; + ResultType res(Replicate(T.translation(),1,other.cols())); + TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; + + return res; + } +}; + +template< typename TransformType, typename MatrixType > +struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim +{ + typedef typename TransformType::MatrixType TransformMatrix; + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + WorkingRows = plain_enum_min(TransformMatrix::RowsAtCompileTime, HDim) + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + Matrix rhs; + rhs.template head() = other; rhs[Dim] = typename ResultType::Scalar(1); + Matrix res(T.matrix() * rhs); + return res.template head(); + } +}; + +/********************************************************** +*** Specializations of operator* with lhs EigenBase *** +**********************************************************/ + +// generic HDim x HDim matrix * T => Projective +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef Transform ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { return ResultType(other * tr.matrix()); } +}; + +// generic HDim x HDim matrix * AffineCompact => Projective +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef Transform ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.matrix().noalias() = other.template block(0,0) * tr.matrix(); + res.matrix().col(Dim) += other.col(Dim); + return res; + } +}; + +// affine matrix * T +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.affine().noalias() = other * tr.matrix(); + res.matrix().row(Dim) = tr.matrix().row(Dim); + return res; + } +}; + +// affine matrix * AffineCompact +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.matrix().noalias() = other.template block(0,0) * tr.matrix(); + res.translation() += other.col(Dim); + return res; + } +}; + +// linear matrix * T +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other, const TransformType& tr) + { + TransformType res; + if(Mode!=int(AffineCompact)) + res.matrix().row(Dim) = tr.matrix().row(Dim); + res.matrix().template topRows().noalias() + = other * tr.matrix().template topRows(); + return res; + } +}; + +/********************************************************** +*** Specializations of operator* with another Transform *** +**********************************************************/ + +template +struct transform_transform_product_impl,Transform,false > +{ + enum { ResultMode = transform_product_result::Mode }; + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res; + res.linear() = lhs.linear() * rhs.linear(); + res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); + res.makeAffine(); + return res; + } +}; + +template +struct transform_transform_product_impl,Transform,true > +{ + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + return ResultType( lhs.matrix() * rhs.matrix() ); + } +}; + +template +struct transform_transform_product_impl,Transform,true > +{ + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res; + res.matrix().template topRows() = lhs.matrix() * rhs.matrix(); + res.matrix().row(Dim) = rhs.matrix().row(Dim); + return res; + } +}; + +template +struct transform_transform_product_impl,Transform,true > +{ + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res(lhs.matrix().template leftCols() * rhs.matrix()); + res.matrix().col(Dim) += lhs.matrix().col(Dim); + return res; + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRANSFORM_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Translation.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Translation.h new file mode 100644 index 0000000..dd0adba --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Translation.h @@ -0,0 +1,204 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSLATION_H +#define EIGEN_TRANSLATION_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Translation + * + * \brief Represents a translation transformation + * + * \tparam Scalar_ the scalar type, i.e., the type of the coefficients. + * \tparam Dim_ the dimension of the space, can be a compile time value or Dynamic + * + * \note This class is not aimed to be used to store a translation transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * \sa class Scaling, class Transform + */ +template +class Translation +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,Dim_) + /** dimension of the space */ + enum { Dim = Dim_ }; + /** the scalar type of the coefficients */ + typedef Scalar_ Scalar; + /** corresponding vector type */ + typedef Matrix VectorType; + /** corresponding linear transformation matrix type */ + typedef Matrix LinearMatrixType; + /** corresponding affine transformation type */ + typedef Transform AffineTransformType; + /** corresponding isometric transformation type */ + typedef Transform IsometryTransformType; + +protected: + + VectorType m_coeffs; + +public: + + /** Default constructor without initialization. */ + EIGEN_DEVICE_FUNC Translation() {} + /** */ + EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy) + { + eigen_assert(Dim==2); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + } + /** */ + EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) + { + eigen_assert(Dim==3); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + m_coeffs.z() = sz; + } + /** Constructs and initialize the translation transformation from a vector of translation coefficients */ + EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} + + /** \brief Returns the x-translation by value. **/ + EIGEN_DEVICE_FUNC inline Scalar x() const { return m_coeffs.x(); } + /** \brief Returns the y-translation by value. **/ + EIGEN_DEVICE_FUNC inline Scalar y() const { return m_coeffs.y(); } + /** \brief Returns the z-translation by value. **/ + EIGEN_DEVICE_FUNC inline Scalar z() const { return m_coeffs.z(); } + + /** \brief Returns the x-translation as a reference. **/ + EIGEN_DEVICE_FUNC inline Scalar& x() { return m_coeffs.x(); } + /** \brief Returns the y-translation as a reference. **/ + EIGEN_DEVICE_FUNC inline Scalar& y() { return m_coeffs.y(); } + /** \brief Returns the z-translation as a reference. **/ + EIGEN_DEVICE_FUNC inline Scalar& z() { return m_coeffs.z(); } + + EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; } + EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; } + + EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; } + EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; } + + /** Concatenates two translation */ + EIGEN_DEVICE_FUNC inline Translation operator* (const Translation& other) const + { return Translation(m_coeffs + other.m_coeffs); } + + /** Concatenates a translation and a uniform scaling */ + EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const UniformScaling& other) const; + + /** Concatenates a translation and a linear transformation */ + template + EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const EigenBase& linear) const; + + /** Concatenates a translation and a rotation */ + template + EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase& r) const + { return *this * IsometryTransformType(r); } + + /** \returns the concatenation of a linear transformation \a l with the translation \a t */ + // its a nightmare to define a templated friend function outside its declaration + template friend + EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase& linear, const Translation& t) + { + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = linear.derived() * t.m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; + } + + /** Concatenates a translation and a transformation */ + template + EIGEN_DEVICE_FUNC inline Transform operator* (const Transform& t) const + { + Transform res = t; + res.pretranslate(m_coeffs); + return res; + } + + /** Applies translation to vector */ + template + inline std::enable_if_t + operator* (const MatrixBase& vec) const + { return m_coeffs + vec.derived(); } + + /** \returns the inverse translation (opposite) */ + Translation inverse() const { return Translation(-m_coeffs); } + + static const Translation Identity() { return Translation(VectorType::Zero()); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Translation(const Translation& other) + { m_coeffs = other.vector().template cast(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +}; + +/** \addtogroup Geometry_Module */ +//@{ +typedef Translation Translation2f; +typedef Translation Translation2d; +typedef Translation Translation3f; +typedef Translation Translation3d; +//@} + +template +EIGEN_DEVICE_FUNC inline typename Translation::AffineTransformType +Translation::operator* (const UniformScaling& other) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear().diagonal().fill(other.factor()); + res.translation() = m_coeffs; + res(Dim,Dim) = Scalar(1); + return res; +} + +template +template +EIGEN_DEVICE_FUNC inline typename Translation::AffineTransformType +Translation::operator* (const EigenBase& linear) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_TRANSLATION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Umeyama.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Umeyama.h new file mode 100644 index 0000000..2da2635 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/Umeyama.h @@ -0,0 +1,170 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_UMEYAMA_H +#define EIGEN_UMEYAMA_H + +// This file requires the user to include +// * Eigen/Core +// * Eigen/LU +// * Eigen/SVD +// * Eigen/Array + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +// These helpers are required since it allows to use mixed types as parameters +// for the Umeyama. The problem with mixed parameters is that the return type +// cannot trivially be deduced when float and double types are mixed. +namespace internal { + +// Compile time return type deduction for different MatrixBase types. +// Different means here different alignment and parameters but the same underlying +// real scalar type. +template +struct umeyama_transform_matrix_type +{ + enum { + MinRowsAtCompileTime = internal::min_size_prefer_dynamic(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), + + // When possible we want to choose some small fixed size value since the result + // is likely to fit on the stack. So here, min_size_prefer_dynamic is not what we want. + HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 + }; + + typedef Matrix::Scalar, + HomogeneousDimension, + HomogeneousDimension, + AutoAlign | (traits::Flags & RowMajorBit ? RowMajor : ColMajor), + HomogeneousDimension, + HomogeneousDimension + > type; +}; + +} + +#endif + +/** +* \geometry_module \ingroup Geometry_Module +* +* \brief Returns the transformation between two point sets. +* +* The algorithm is based on: +* "Least-squares estimation of transformation parameters between two point patterns", +* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 +* +* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that +* \f{align*} +* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 +* \f} +* is minimized. +* +* The algorithm is based on the analysis of the covariance matrix +* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ +* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where +* \f$d\f$ is corresponding to the dimension (which is typically small). +* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ +* though the actual computational effort lies in the covariance +* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when +* the input point sets have dimension \f$d \times m\f$. +* +* Currently the method is working only for floating point matrices. +* +* \todo Should the return type of umeyama() become a Transform? +* +* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. +* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. +* \param with_scaling Sets \f$ c=1 \f$ when false is passed. +* \return The homogeneous transformation +* \f{align*} +* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} +* \f} +* minimizing the residual above. This transformation is always returned as an +* Eigen::Matrix. +*/ +template +typename internal::umeyama_transform_matrix_type::type +umeyama(const MatrixBase& src, const MatrixBase& dst, bool with_scaling = true) +{ + typedef typename internal::umeyama_transform_matrix_type::type TransformationMatrixType; + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + + EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) + EIGEN_STATIC_ASSERT((internal::is_same::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + enum { Dimension = internal::min_size_prefer_dynamic(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; + + typedef Matrix VectorType; + typedef Matrix MatrixType; + typedef typename internal::plain_matrix_type_row_major::type RowMajorMatrixType; + + const Index m = src.rows(); // dimension + const Index n = src.cols(); // number of measurements + + // required for demeaning ... + const RealScalar one_over_n = RealScalar(1) / static_cast(n); + + // computation of mean + const VectorType src_mean = src.rowwise().sum() * one_over_n; + const VectorType dst_mean = dst.rowwise().sum() * one_over_n; + + // demeaning of src and dst points + const RowMajorMatrixType src_demean = src.colwise() - src_mean; + const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; + + // Eq. (38) + const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); + + JacobiSVD svd(sigma); + + // Initialize the resulting transformation with an identity matrix... + TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); + + // Eq. (39) + VectorType S = VectorType::Ones(m); + + if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) { + Index tmp = m - 1; + S(tmp) = -1; + } + + // Eq. (40) and (43) + Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); + + if (with_scaling) + { + // Eq. (36)-(37) + const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; + + // Eq. (42) + const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); + + // Eq. (41) + Rt.col(m).head(m) = dst_mean; + Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; + Rt.block(0,0,m,m) *= c; + } + else + { + Rt.col(m).head(m) = dst_mean; + Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; + } + + return Rt; +} + +} // end namespace Eigen + +#endif // EIGEN_UMEYAMA_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h new file mode 100644 index 0000000..bd91949 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h @@ -0,0 +1,170 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Rohit Garg +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GEOMETRY_SIMD_H +#define EIGEN_GEOMETRY_SIMD_H + +#include "../InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct quat_product +{ + enum { + AAlignment = traits::Alignment, + BAlignment = traits::Alignment, + ResAlignment = traits >::Alignment + }; + static inline Quaternion run(const QuaternionBase& _a, const QuaternionBase& _b) + { + evaluator ae(_a.coeffs()); + evaluator be(_b.coeffs()); + Quaternion res; + const float neg_zero = numext::bit_cast(0x80000000u); + const float arr[4] = {0.f, 0.f, 0.f, neg_zero}; + const Packet4f mask = ploadu(arr); + Packet4f a = ae.template packet(0); + Packet4f b = be.template packet(0); + Packet4f s1 = pmul(vec4f_swizzle1(a,1,2,0,2),vec4f_swizzle1(b,2,0,1,2)); + Packet4f s2 = pmul(vec4f_swizzle1(a,3,3,3,1),vec4f_swizzle1(b,0,1,2,1)); + pstoret( + &res.x(), + padd(psub(pmul(a,vec4f_swizzle1(b,3,3,3,3)), + pmul(vec4f_swizzle1(a,2,0,1,0), + vec4f_swizzle1(b,1,2,0,0))), + pxor(mask,padd(s1,s2)))); + + return res; + } +}; + +template +struct quat_conj +{ + enum { + ResAlignment = traits >::Alignment + }; + static inline Quaternion run(const QuaternionBase& q) + { + evaluator qe(q.coeffs()); + Quaternion res; + const float neg_zero = numext::bit_cast(0x80000000u); + const float arr[4] = {neg_zero, neg_zero, neg_zero,0.f}; + const Packet4f mask = ploadu(arr); + pstoret(&res.x(), pxor(mask, qe.template packet::Alignment,Packet4f>(0))); + return res; + } +}; + + +template +struct cross3_impl +{ + enum { + ResAlignment = traits::type>::Alignment + }; + static inline typename plain_matrix_type::type + run(const VectorLhs& lhs, const VectorRhs& rhs) + { + evaluator lhs_eval(lhs); + evaluator rhs_eval(rhs); + Packet4f a = lhs_eval.template packet::Alignment,Packet4f>(0); + Packet4f b = rhs_eval.template packet::Alignment,Packet4f>(0); + Packet4f mul1 = pmul(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3)); + Packet4f mul2 = pmul(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3)); + typename plain_matrix_type::type res; + pstoret(&res.x(),psub(mul1,mul2)); + return res; + } +}; + + + +#if (defined EIGEN_VECTORIZE_SSE) || (EIGEN_ARCH_ARM64) + +template +struct quat_product +{ + enum { + BAlignment = traits::Alignment, + ResAlignment = traits >::Alignment + }; + + static inline Quaternion run(const QuaternionBase& _a, const QuaternionBase& _b) + { + Quaternion res; + + evaluator ae(_a.coeffs()); + evaluator be(_b.coeffs()); + + const double* a = _a.coeffs().data(); + Packet2d b_xy = be.template packet(0); + Packet2d b_zw = be.template packet(2); + Packet2d a_xx = pset1(a[0]); + Packet2d a_yy = pset1(a[1]); + Packet2d a_zz = pset1(a[2]); + Packet2d a_ww = pset1(a[3]); + + // two temporaries: + Packet2d t1, t2; + + /* + * t1 = ww*xy + yy*zw + * t2 = zz*xy - xx*zw + * res.xy = t1 +/- swap(t2) + */ + t1 = padd(pmul(a_ww, b_xy), pmul(a_yy, b_zw)); + t2 = psub(pmul(a_zz, b_xy), pmul(a_xx, b_zw)); + pstoret(&res.x(), paddsub(t1, preverse(t2))); + + /* + * t1 = ww*zw - yy*xy + * t2 = zz*zw + xx*xy + * res.zw = t1 -/+ swap(t2) = swap( swap(t1) +/- t2) + */ + t1 = psub(pmul(a_ww, b_zw), pmul(a_yy, b_xy)); + t2 = padd(pmul(a_zz, b_zw), pmul(a_xx, b_xy)); + pstoret(&res.z(), preverse(paddsub(preverse(t1), t2))); + + return res; +} +}; + +template +struct quat_conj +{ + enum { + ResAlignment = traits >::Alignment + }; + static inline Quaternion run(const QuaternionBase& q) + { + evaluator qe(q.coeffs()); + Quaternion res; + const double neg_zero = numext::bit_cast(0x8000000000000000ull); + const double arr1[2] = {neg_zero, neg_zero}; + const double arr2[2] = {neg_zero, 0.0}; + const Packet2d mask0 = ploadu(arr1); + const Packet2d mask2 = ploadu(arr2); + pstoret(&res.x(), pxor(mask0, qe.template packet::Alignment,Packet2d>(0))); + pstoret(&res.z(), pxor(mask2, qe.template packet::Alignment,Packet2d>(2))); + return res; + } +}; + +#endif // end EIGEN_VECTORIZE_SSE_OR_EIGEN_ARCH_ARM64 + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GEOMETRY_SIMD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/BlockHouseholder.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/BlockHouseholder.h new file mode 100644 index 0000000..a5c8095 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/BlockHouseholder.h @@ -0,0 +1,112 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Vincent Lejeune +// Copyright (C) 2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BLOCK_HOUSEHOLDER_H +#define EIGEN_BLOCK_HOUSEHOLDER_H + +// This file contains some helper function to deal with block householder reflectors + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal */ +// template +// void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) +// { +// typedef typename VectorsType::Scalar Scalar; +// const Index nbVecs = vectors.cols(); +// eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); +// +// for(Index i = 0; i < nbVecs; i++) +// { +// Index rs = vectors.rows() - i; +// // Warning, note that hCoeffs may alias with vectors. +// // It is then necessary to copy it before modifying vectors(i,i). +// typename CoeffsType::Scalar h = hCoeffs(i); +// // This hack permits to pass trough nested Block<> and Transpose<> expressions. +// Scalar *Vii_ptr = const_cast(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i); +// Scalar Vii = *Vii_ptr; +// *Vii_ptr = Scalar(1); +// triFactor.col(i).head(i).noalias() = -h * vectors.block(i, 0, rs, i).adjoint() +// * vectors.col(i).tail(rs); +// *Vii_ptr = Vii; +// // FIXME add .noalias() once the triangular product can work inplace +// triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView() +// * triFactor.col(i).head(i); +// triFactor(i,i) = hCoeffs(i); +// } +// } + +/** \internal */ +// This variant avoid modifications in vectors +template +void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) +{ + const Index nbVecs = vectors.cols(); + eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); + + for(Index i = nbVecs-1; i >=0 ; --i) + { + Index rs = vectors.rows() - i - 1; + Index rt = nbVecs-i-1; + + if(rt>0) + { + triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint() + * vectors.bottomRightCorner(rs, rt).template triangularView(); + + // FIXME use the following line with .noalias() once the triangular product can work inplace + // triFactor.row(i).tail(rt) = triFactor.row(i).tail(rt) * triFactor.bottomRightCorner(rt,rt).template triangularView(); + for(Index j=nbVecs-1; j>i; --j) + { + typename TriangularFactorType::Scalar z = triFactor(i,j); + triFactor(i,j) = z * triFactor(j,j); + if(nbVecs-j-1>0) + triFactor.row(i).tail(nbVecs-j-1) += z * triFactor.row(j).tail(nbVecs-j-1); + } + + } + triFactor(i,i) = hCoeffs(i); + } +} + +/** \internal + * if forward then perform mat = H0 * H1 * H2 * mat + * otherwise perform mat = H2 * H1 * H0 * mat + */ +template +void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs, bool forward) +{ + enum { TFactorSize = VectorsType::ColsAtCompileTime }; + Index nbVecs = vectors.cols(); + Matrix T(nbVecs,nbVecs); + + if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs); + else make_block_householder_triangular_factor(T, vectors, hCoeffs.conjugate()); + const TriangularView V(vectors); + + // A -= V T V^* A + Matrix tmp = V.adjoint() * mat; + // FIXME add .noalias() once the triangular product can work inplace + if(forward) tmp = T.template triangularView() * tmp; + else tmp = T.template triangularView().adjoint() * tmp; + mat.noalias() -= V * tmp; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BLOCK_HOUSEHOLDER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/Householder.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/Householder.h new file mode 100644 index 0000000..855b752 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/Householder.h @@ -0,0 +1,178 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOUSEHOLDER_H +#define EIGEN_HOUSEHOLDER_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template struct decrement_size +{ + enum { + ret = n==Dynamic ? n : n-1 + }; +}; +} + +/** Computes the elementary reflector H such that: + * \f$ H *this = [ beta 0 ... 0]^T \f$ + * where the transformation H is: + * \f$ H = I - tau v v^*\f$ + * and the vector v is: + * \f$ v^T = [1 essential^T] \f$ + * + * The essential part of the vector \c v is stored in *this. + * + * On output: + * \param tau the scaling factor of the Householder transformation + * \param beta the result of H * \c *this + * + * \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), + * MatrixBase::applyHouseholderOnTheRight() + */ +template +EIGEN_DEVICE_FUNC +void MatrixBase::makeHouseholderInPlace(Scalar& tau, RealScalar& beta) +{ + VectorBlock::ret> essentialPart(derived(), 1, size()-1); + makeHouseholder(essentialPart, tau, beta); +} + +/** Computes the elementary reflector H such that: + * \f$ H *this = [ beta 0 ... 0]^T \f$ + * where the transformation H is: + * \f$ H = I - tau v v^*\f$ + * and the vector v is: + * \f$ v^T = [1 essential^T] \f$ + * + * On output: + * \param essential the essential part of the vector \c v + * \param tau the scaling factor of the Householder transformation + * \param beta the result of H * \c *this + * + * \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), + * MatrixBase::applyHouseholderOnTheRight() + */ +template +template +EIGEN_DEVICE_FUNC +void MatrixBase::makeHouseholder( + EssentialPart& essential, + Scalar& tau, + RealScalar& beta) const +{ + using numext::sqrt; + using numext::conj; + + EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart) + VectorBlock tail(derived(), 1, size()-1); + + RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm(); + Scalar c0 = coeff(0); + const RealScalar tol = (std::numeric_limits::min)(); + + if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol) + { + tau = RealScalar(0); + beta = numext::real(c0); + essential.setZero(); + } + else + { + beta = sqrt(numext::abs2(c0) + tailSqNorm); + if (numext::real(c0)>=RealScalar(0)) + beta = -beta; + essential = tail / (c0 - beta); + tau = conj((beta - c0) / beta); + } +} + +/** Apply the elementary reflector H given by + * \f$ H = I - tau v v^*\f$ + * with + * \f$ v^T = [1 essential^T] \f$ + * from the left to a vector or matrix. + * + * On input: + * \param essential the essential part of the vector \c v + * \param tau the scaling factor of the Householder transformation + * \param workspace a pointer to working space with at least + * this->cols() entries + * + * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), + * MatrixBase::applyHouseholderOnTheRight() + */ +template +template +EIGEN_DEVICE_FUNC +void MatrixBase::applyHouseholderOnTheLeft( + const EssentialPart& essential, + const Scalar& tau, + Scalar* workspace) +{ + if(rows() == 1) + { + *this *= Scalar(1)-tau; + } + else if(!numext::is_exactly_zero(tau)) + { + Map::type> tmp(workspace,cols()); + Block bottom(derived(), 1, 0, rows()-1, cols()); + tmp.noalias() = essential.adjoint() * bottom; + tmp += this->row(0); + this->row(0) -= tau * tmp; + bottom.noalias() -= tau * essential * tmp; + } +} + +/** Apply the elementary reflector H given by + * \f$ H = I - tau v v^*\f$ + * with + * \f$ v^T = [1 essential^T] \f$ + * from the right to a vector or matrix. + * + * On input: + * \param essential the essential part of the vector \c v + * \param tau the scaling factor of the Householder transformation + * \param workspace a pointer to working space with at least + * this->rows() entries + * + * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), + * MatrixBase::applyHouseholderOnTheLeft() + */ +template +template +EIGEN_DEVICE_FUNC +void MatrixBase::applyHouseholderOnTheRight( + const EssentialPart& essential, + const Scalar& tau, + Scalar* workspace) +{ + if(cols() == 1) + { + *this *= Scalar(1)-tau; + } + else if(!numext::is_exactly_zero(tau)) + { + Map::type> tmp(workspace,rows()); + Block right(derived(), 0, 1, rows(), cols()-1); + tmp.noalias() = right * essential; + tmp += this->col(0); + this->col(0) -= tau * tmp; + right.noalias() -= tau * tmp * essential.adjoint(); + } +} + +} // end namespace Eigen + +#endif // EIGEN_HOUSEHOLDER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/HouseholderSequence.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/HouseholderSequence.h new file mode 100644 index 0000000..41fef64 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/HouseholderSequence.h @@ -0,0 +1,560 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H +#define EIGEN_HOUSEHOLDER_SEQUENCE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup Householder_Module + * \householder_module + * \class HouseholderSequence + * \brief Sequence of Householder reflections acting on subspaces with decreasing size + * \tparam VectorsType type of matrix containing the Householder vectors + * \tparam CoeffsType type of vector containing the Householder coefficients + * \tparam Side either OnTheLeft (the default) or OnTheRight + * + * This class represents a product sequence of Householder reflections where the first Householder reflection + * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by + * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace + * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but + * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections + * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods + * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), + * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. + * + * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the + * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i + * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ + * v_i \f$ is a vector of the form + * \f[ + * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. + * \f] + * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. + * + * Typical usages are listed below, where H is a HouseholderSequence: + * \code + * A.applyOnTheRight(H); // A = A * H + * A.applyOnTheLeft(H); // A = H * A + * A.applyOnTheRight(H.adjoint()); // A = A * H^* + * A.applyOnTheLeft(H.adjoint()); // A = H^* * A + * MatrixXd Q = H; // conversion to a dense matrix + * \endcode + * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. + * + * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ + +namespace internal { + +template +struct traits > +{ + typedef typename VectorsType::Scalar Scalar; + typedef typename VectorsType::StorageIndex StorageIndex; + typedef typename VectorsType::StorageKind StorageKind; + enum { + RowsAtCompileTime = Side==OnTheLeft ? traits::RowsAtCompileTime + : traits::ColsAtCompileTime, + ColsAtCompileTime = RowsAtCompileTime, + MaxRowsAtCompileTime = Side==OnTheLeft ? traits::MaxRowsAtCompileTime + : traits::MaxColsAtCompileTime, + MaxColsAtCompileTime = MaxRowsAtCompileTime, + Flags = 0 + }; +}; + +struct HouseholderSequenceShape {}; + +template +struct evaluator_traits > + : public evaluator_traits_base > +{ + typedef HouseholderSequenceShape Shape; +}; + +template +struct hseq_side_dependent_impl +{ + typedef Block EssentialVectorType; + typedef HouseholderSequence HouseholderSequenceType; + static EIGEN_DEVICE_FUNC inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) + { + Index start = k+1+h.m_shift; + return Block(h.m_vectors, start, k, h.rows()-start, 1); + } +}; + +template +struct hseq_side_dependent_impl +{ + typedef Transpose > EssentialVectorType; + typedef HouseholderSequence HouseholderSequenceType; + static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) + { + Index start = k+1+h.m_shift; + return Block(h.m_vectors, k, start, 1, h.rows()-start).transpose(); + } +}; + +template struct matrix_type_times_scalar_type +{ + typedef typename ScalarBinaryOpTraits::ReturnType + ResultScalar; + typedef Matrix Type; +}; + +} // end namespace internal + +template class HouseholderSequence + : public EigenBase > +{ + typedef typename internal::hseq_side_dependent_impl::EssentialVectorType EssentialVectorType; + + public: + enum { + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime + }; + typedef typename internal::traits::Scalar Scalar; + + typedef HouseholderSequence< + std::conditional_t::IsComplex, + internal::remove_all_t, + VectorsType>, + std::conditional_t::IsComplex, + internal::remove_all_t, + CoeffsType>, + Side + > ConjugateReturnType; + + typedef HouseholderSequence< + VectorsType, + std::conditional_t::IsComplex, + internal::remove_all_t, + CoeffsType>, + Side + > AdjointReturnType; + + typedef HouseholderSequence< + std::conditional_t::IsComplex, + internal::remove_all_t, + VectorsType>, + CoeffsType, + Side + > TransposeReturnType; + + typedef HouseholderSequence< + std::add_const_t, + std::add_const_t, + Side + > ConstHouseholderSequence; + + /** \brief Constructor. + * \param[in] v %Matrix containing the essential parts of the Householder vectors + * \param[in] h Vector containing the Householder coefficients + * + * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The + * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th + * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the + * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many + * Householder reflections as there are columns. + * + * \note The %HouseholderSequence object stores \p v and \p h by reference. + * + * Example: \include HouseholderSequence_HouseholderSequence.cpp + * Output: \verbinclude HouseholderSequence_HouseholderSequence.out + * + * \sa setLength(), setShift() + */ + EIGEN_DEVICE_FUNC + HouseholderSequence(const VectorsType& v, const CoeffsType& h) + : m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()), + m_shift(0) + { + } + + /** \brief Copy constructor. */ + EIGEN_DEVICE_FUNC + HouseholderSequence(const HouseholderSequence& other) + : m_vectors(other.m_vectors), + m_coeffs(other.m_coeffs), + m_reverse(other.m_reverse), + m_length(other.m_length), + m_shift(other.m_shift) + { + } + + /** \brief Number of rows of transformation viewed as a matrix. + * \returns Number of rows + * \details This equals the dimension of the space that the transformation acts on. + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } + + /** \brief Number of columns of transformation viewed as a matrix. + * \returns Number of columns + * \details This equals the dimension of the space that the transformation acts on. + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return rows(); } + + /** \brief Essential part of a Householder vector. + * \param[in] k Index of Householder reflection + * \returns Vector containing non-trivial entries of k-th Householder vector + * + * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of + * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector + * \f[ + * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. + * \f] + * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v + * passed to the constructor. + * + * \sa setShift(), shift() + */ + EIGEN_DEVICE_FUNC + const EssentialVectorType essentialVector(Index k) const + { + eigen_assert(k >= 0 && k < m_length); + return internal::hseq_side_dependent_impl::essentialVector(*this, k); + } + + /** \brief %Transpose of the Householder sequence. */ + TransposeReturnType transpose() const + { + return TransposeReturnType(m_vectors.conjugate(), m_coeffs) + .setReverseFlag(!m_reverse) + .setLength(m_length) + .setShift(m_shift); + } + + /** \brief Complex conjugate of the Householder sequence. */ + ConjugateReturnType conjugate() const + { + return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) + .setReverseFlag(m_reverse) + .setLength(m_length) + .setShift(m_shift); + } + + /** \returns an expression of the complex conjugate of \c *this if Cond==true, + * returns \c *this otherwise. + */ + template + EIGEN_DEVICE_FUNC + inline std::conditional_t + conjugateIf() const + { + typedef std::conditional_t ReturnType; + return ReturnType(m_vectors.template conjugateIf(), m_coeffs.template conjugateIf()); + } + + /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ + AdjointReturnType adjoint() const + { + return AdjointReturnType(m_vectors, m_coeffs.conjugate()) + .setReverseFlag(!m_reverse) + .setLength(m_length) + .setShift(m_shift); + } + + /** \brief Inverse of the Householder sequence (equals the adjoint). */ + AdjointReturnType inverse() const { return adjoint(); } + + /** \internal */ + template + inline EIGEN_DEVICE_FUNC + void evalTo(DestType& dst) const + { + Matrix workspace(rows()); + evalTo(dst, workspace); + } + + /** \internal */ + template + EIGEN_DEVICE_FUNC + void evalTo(Dest& dst, Workspace& workspace) const + { + workspace.resize(rows()); + Index vecs = m_length; + if(internal::is_same_dense(dst,m_vectors)) + { + // in-place + dst.diagonal().setOnes(); + dst.template triangularView().setZero(); + for(Index k = vecs-1; k >= 0; --k) + { + Index cornerSize = rows() - k - m_shift; + if(m_reverse) + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + else + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + + // clear the off diagonal vector + dst.col(k).tail(rows()-k-1).setZero(); + } + // clear the remaining columns if needed + for(Index k = 0; kBlockSize) + { + dst.setIdentity(rows(), rows()); + if(m_reverse) + applyThisOnTheLeft(dst,workspace,true); + else + applyThisOnTheLeft(dst,workspace,true); + } + else + { + dst.setIdentity(rows(), rows()); + for(Index k = vecs-1; k >= 0; --k) + { + Index cornerSize = rows() - k - m_shift; + if(m_reverse) + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + else + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + } + } + } + + /** \internal */ + template inline void applyThisOnTheRight(Dest& dst) const + { + Matrix workspace(dst.rows()); + applyThisOnTheRight(dst, workspace); + } + + /** \internal */ + template + inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const + { + workspace.resize(dst.rows()); + for(Index k = 0; k < m_length; ++k) + { + Index actual_k = m_reverse ? m_length-k-1 : k; + dst.rightCols(rows()-m_shift-actual_k) + .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); + } + } + + /** \internal */ + template inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const + { + Matrix workspace; + applyThisOnTheLeft(dst, workspace, inputIsIdentity); + } + + /** \internal */ + template + inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const + { + if(inputIsIdentity && m_reverse) + inputIsIdentity = false; + // if the entries are large enough, then apply the reflectors by block + if(m_length>=BlockSize && dst.cols()>1) + { + // Make sure we have at least 2 useful blocks, otherwise it is point-less: + Index blockSize = m_length,Dynamic,Dynamic> SubVectorsType; + SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, + Side==OnTheRight ? start : k, + Side==OnTheRight ? bs : m_vectors.rows()-start, + Side==OnTheRight ? m_vectors.cols()-start : bs); + std::conditional_t, SubVectorsType&> sub_vecs(sub_vecs1); + + Index dstRows = rows()-m_shift-k; + + if (inputIsIdentity) + { + Block sub_dst = dst.bottomRightCorner(dstRows, dstRows); + apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); + } + else + { + auto sub_dst = dst.bottomRows(dstRows); + apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); + } + } + } + else + { + workspace.resize(dst.cols()); + for(Index k = 0; k < m_length; ++k) + { + Index actual_k = m_reverse ? k : m_length-k-1; + Index dstRows = rows()-m_shift-actual_k; + + if (inputIsIdentity) + { + Block sub_dst = dst.bottomRightCorner(dstRows, dstRows); + sub_dst.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); + } + else + { + auto sub_dst = dst.bottomRows(dstRows); + sub_dst.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); + } + } + } + } + + /** \brief Computes the product of a Householder sequence with a matrix. + * \param[in] other %Matrix being multiplied. + * \returns Expression object representing the product. + * + * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this + * and \f$ M \f$ is the matrix \p other. + */ + template + typename internal::matrix_type_times_scalar_type::Type operator*(const MatrixBase& other) const + { + typename internal::matrix_type_times_scalar_type::Type + res(other.template cast::ResultScalar>()); + applyThisOnTheLeft(res, internal::is_identity::value && res.rows()==res.cols()); + return res; + } + + template friend struct internal::hseq_side_dependent_impl; + + /** \brief Sets the length of the Householder sequence. + * \param [in] length New value for the length. + * + * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set + * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that + * is smaller. After this function is called, the length equals \p length. + * + * \sa length() + */ + EIGEN_DEVICE_FUNC + HouseholderSequence& setLength(Index length) + { + m_length = length; + return *this; + } + + /** \brief Sets the shift of the Householder sequence. + * \param [in] shift New value for the shift. + * + * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th + * column of the matrix \p v passed to the constructor corresponds to the i-th Householder + * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} + * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th + * Householder reflection. + * + * \sa shift() + */ + EIGEN_DEVICE_FUNC + HouseholderSequence& setShift(Index shift) + { + m_shift = shift; + return *this; + } + + EIGEN_DEVICE_FUNC + Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ + + EIGEN_DEVICE_FUNC + Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ + + /* Necessary for .adjoint() and .conjugate() */ + template friend class HouseholderSequence; + + protected: + + /** \internal + * \brief Sets the reverse flag. + * \param [in] reverse New value of the reverse flag. + * + * By default, the reverse flag is not set. If the reverse flag is set, then this object represents + * \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. + * \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$. + * + * \sa reverseFlag(), transpose(), adjoint() + */ + HouseholderSequence& setReverseFlag(bool reverse) + { + m_reverse = reverse; + return *this; + } + + bool reverseFlag() const { return m_reverse; } /**< \internal \brief Returns the reverse flag. */ + + typename VectorsType::Nested m_vectors; + typename CoeffsType::Nested m_coeffs; + bool m_reverse; + Index m_length; + Index m_shift; + enum { BlockSize = 48 }; +}; + +/** \brief Computes the product of a matrix with a Householder sequence. + * \param[in] other %Matrix being multiplied. + * \param[in] h %HouseholderSequence being multiplied. + * \returns Expression object representing the product. + * + * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the + * Householder sequence represented by \p h. + */ +template +typename internal::matrix_type_times_scalar_type::Type operator*(const MatrixBase& other, const HouseholderSequence& h) +{ + typename internal::matrix_type_times_scalar_type::Type + res(other.template cast::ResultScalar>()); + h.applyThisOnTheRight(res); + return res; +} + +/** \ingroup Householder_Module \householder_module + * \brief Convenience function for constructing a Householder sequence. + * \returns A HouseholderSequence constructed from the specified arguments. + */ +template +HouseholderSequence householderSequence(const VectorsType& v, const CoeffsType& h) +{ + return HouseholderSequence(v, h); +} + +/** \ingroup Householder_Module \householder_module + * \brief Convenience function for constructing a Householder sequence. + * \returns A HouseholderSequence constructed from the specified arguments. + * \details This function differs from householderSequence() in that the template argument \p OnTheSide of + * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. + */ +template +HouseholderSequence rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) +{ + return HouseholderSequence(v, h); +} + +} // end namespace Eigen + +#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/InternalHeaderCheck.h new file mode 100644 index 0000000..70de89b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Householder/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_HOUSEHOLDER_MODULE_H +#error "Please include Eigen/Householder instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h new file mode 100644 index 0000000..d2d55b7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h @@ -0,0 +1,228 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BASIC_PRECONDITIONERS_H +#define EIGEN_BASIC_PRECONDITIONERS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup IterativeLinearSolvers_Module + * \brief A preconditioner based on the digonal entries + * + * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. + * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: + \code + A.diagonal().asDiagonal() . x = b + \endcode + * + * \tparam Scalar_ the type of the scalar. + * + * \implsparsesolverconcept + * + * This preconditioner is suitable for both selfadjoint and general problems. + * The diagonal entries are pre-inverted and stored into a dense vector. + * + * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. + * + * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient + */ +template +class DiagonalPreconditioner +{ + typedef Scalar_ Scalar; + typedef Matrix Vector; + public: + typedef typename Vector::StorageIndex StorageIndex; + enum { + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; + + DiagonalPreconditioner() : m_isInitialized(false) {} + + template + explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) + { + compute(mat); + } + + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_invdiag.size(); } + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_invdiag.size(); } + + template + DiagonalPreconditioner& analyzePattern(const MatType& ) + { + return *this; + } + + template + DiagonalPreconditioner& factorize(const MatType& mat) + { + m_invdiag.resize(mat.cols()); + for(int j=0; j + DiagonalPreconditioner& compute(const MatType& mat) + { + return factorize(mat); + } + + /** \internal */ + template + void _solve_impl(const Rhs& b, Dest& x) const + { + x = m_invdiag.array() * b.array() ; + } + + template inline const Solve + solve(const MatrixBase& b) const + { + eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); + eigen_assert(m_invdiag.size()==b.rows() + && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); + return Solve(*this, b.derived()); + } + + ComputationInfo info() { return Success; } + + protected: + Vector m_invdiag; + bool m_isInitialized; +}; + +/** \ingroup IterativeLinearSolvers_Module + * \brief Jacobi preconditioner for LeastSquaresConjugateGradient + * + * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. + * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: + \code + (A.adjoint() * A).diagonal().asDiagonal() * x = b + \endcode + * + * \tparam Scalar_ the type of the scalar. + * + * \implsparsesolverconcept + * + * The diagonal entries are pre-inverted and stored into a dense vector. + * + * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner + */ +template +class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner +{ + typedef Scalar_ Scalar; + typedef typename NumTraits::Real RealScalar; + typedef DiagonalPreconditioner Base; + using Base::m_invdiag; + public: + + LeastSquareDiagonalPreconditioner() : Base() {} + + template + explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base() + { + compute(mat); + } + + template + LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& ) + { + return *this; + } + + template + LeastSquareDiagonalPreconditioner& factorize(const MatType& mat) + { + // Compute the inverse squared-norm of each column of mat + m_invdiag.resize(mat.cols()); + if(MatType::IsRowMajor) + { + m_invdiag.setZero(); + for(Index j=0; jRealScalar(0)) + m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j)); + } + else + { + for(Index j=0; jRealScalar(0)) + m_invdiag(j) = RealScalar(1)/sum; + else + m_invdiag(j) = RealScalar(1); + } + } + Base::m_isInitialized = true; + return *this; + } + + template + LeastSquareDiagonalPreconditioner& compute(const MatType& mat) + { + return factorize(mat); + } + + ComputationInfo info() { return Success; } + + protected: +}; + +/** \ingroup IterativeLinearSolvers_Module + * \brief A naive preconditioner which approximates any matrix as the identity matrix + * + * \implsparsesolverconcept + * + * \sa class DiagonalPreconditioner + */ +class IdentityPreconditioner +{ + public: + + IdentityPreconditioner() {} + + template + explicit IdentityPreconditioner(const MatrixType& ) {} + + template + IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } + + template + IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } + + template + IdentityPreconditioner& compute(const MatrixType& ) { return *this; } + + template + inline const Rhs& solve(const Rhs& b) const { return b; } + + ComputationInfo info() { return Success; } +}; + +} // end namespace Eigen + +#endif // EIGEN_BASIC_PRECONDITIONERS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h new file mode 100644 index 0000000..76195c7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h @@ -0,0 +1,214 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BICGSTAB_H +#define EIGEN_BICGSTAB_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal Low-level bi conjugate gradient stabilized algorithm + * \param mat The matrix A + * \param rhs The right hand side vector b + * \param x On input and initial solution, on output the computed solution. + * \param precond A preconditioner being able to efficiently solve for an + * approximation of Ax=b (regardless of b) + * \param iters On input the max number of iteration, on output the number of performed iterations. + * \param tol_error On input the tolerance error, on output an estimation of the relative error. + * \return false in the case of numerical issue, for example a break down of BiCGSTAB. + */ +template +bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, + const Preconditioner& precond, Index& iters, + typename Dest::RealScalar& tol_error) +{ + using std::sqrt; + using std::abs; + typedef typename Dest::RealScalar RealScalar; + typedef typename Dest::Scalar Scalar; + typedef Matrix VectorType; + RealScalar tol = tol_error; + Index maxIters = iters; + + Index n = mat.cols(); + VectorType r = rhs - mat * x; + VectorType r0 = r; + + RealScalar r0_sqnorm = r0.squaredNorm(); + RealScalar rhs_sqnorm = rhs.squaredNorm(); + if(rhs_sqnorm == 0) + { + x.setZero(); + return true; + } + Scalar rho (1); + Scalar alpha (1); + Scalar w (1); + + VectorType v = VectorType::Zero(n), p = VectorType::Zero(n); + VectorType y(n), z(n); + VectorType kt(n), ks(n); + + VectorType s(n), t(n); + + RealScalar tol2 = tol*tol*rhs_sqnorm; + RealScalar eps2 = NumTraits::epsilon()*NumTraits::epsilon(); + Index i = 0; + Index restarts = 0; + + while ( r.squaredNorm() > tol2 && iRealScalar(0)) + w = t.dot(s) / tmp; + else + w = Scalar(0); + x += alpha * y + w * z; + r = s - w * t; + ++i; + } + tol_error = sqrt(r.squaredNorm()/rhs_sqnorm); + iters = i; + return true; +} + +} + +template< typename MatrixType_, + typename Preconditioner_ = DiagonalPreconditioner > +class BiCGSTAB; + +namespace internal { + +template< typename MatrixType_, typename Preconditioner_> +struct traits > +{ + typedef MatrixType_ MatrixType; + typedef Preconditioner_ Preconditioner; +}; + +} + +/** \ingroup IterativeLinearSolvers_Module + * \brief A bi conjugate gradient stabilized solver for sparse square problems + * + * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient + * stabilized algorithm. The vectors x and b can be either dense or sparse. + * + * \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix. + * \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner + * + * \implsparsesolverconcept + * + * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() + * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations + * and NumTraits::epsilon() for the tolerance. + * + * The tolerance corresponds to the relative residual error: |Ax-b|/|b| + * + * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format. + * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. + * See \ref TopicMultiThreading for details. + * + * This class can be used as the direct solver classes. Here is a typical usage example: + * \include BiCGSTAB_simple.cpp + * + * By default the iterations start with x=0 as an initial guess of the solution. + * One can control the start using the solveWithGuess() method. + * + * BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. + * + * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner + */ +template< typename MatrixType_, typename Preconditioner_> +class BiCGSTAB : public IterativeSolverBase > +{ + typedef IterativeSolverBase Base; + using Base::matrix; + using Base::m_error; + using Base::m_iterations; + using Base::m_info; + using Base::m_isInitialized; +public: + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef Preconditioner_ Preconditioner; + +public: + + /** Default constructor. */ + BiCGSTAB() : Base() {} + + /** Initialize the solver with matrix \a A for further \c Ax=b solving. + * + * This constructor is a shortcut for the default constructor followed + * by a call to compute(). + * + * \warning this class stores a reference to the matrix A as well as some + * precomputed values that depend on it. Therefore, if \a A is changed + * this class becomes invalid. Call compute() to update it with the new + * matrix A, or modify a copy of A. + */ + template + explicit BiCGSTAB(const EigenBase& A) : Base(A.derived()) {} + + ~BiCGSTAB() {} + + /** \internal */ + template + void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const + { + m_iterations = Base::maxIterations(); + m_error = Base::m_tolerance; + + bool ret = internal::bicgstab(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error); + + m_info = (!ret) ? NumericalIssue + : m_error <= Base::m_tolerance ? Success + : NoConvergence; + } + +protected: + +}; + +} // end namespace Eigen + +#endif // EIGEN_BICGSTAB_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h new file mode 100644 index 0000000..5a7dbc7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h @@ -0,0 +1,229 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CONJUGATE_GRADIENT_H +#define EIGEN_CONJUGATE_GRADIENT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal Low-level conjugate gradient algorithm + * \param mat The matrix A + * \param rhs The right hand side vector b + * \param x On input and initial solution, on output the computed solution. + * \param precond A preconditioner being able to efficiently solve for an + * approximation of Ax=b (regardless of b) + * \param iters On input the max number of iteration, on output the number of performed iterations. + * \param tol_error On input the tolerance error, on output an estimation of the relative error. + */ +template +EIGEN_DONT_INLINE +void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, + const Preconditioner& precond, Index& iters, + typename Dest::RealScalar& tol_error) +{ + typedef typename Dest::RealScalar RealScalar; + typedef typename Dest::Scalar Scalar; + typedef Matrix VectorType; + + RealScalar tol = tol_error; + Index maxIters = iters; + + Index n = mat.cols(); + + VectorType residual = rhs - mat * x; //initial residual + + RealScalar rhsNorm2 = rhs.squaredNorm(); + if(rhsNorm2 == 0) + { + x.setZero(); + iters = 0; + tol_error = 0; + return; + } + const RealScalar considerAsZero = (std::numeric_limits::min)(); + RealScalar threshold = numext::maxi(RealScalar(tol*tol*rhsNorm2),considerAsZero); + RealScalar residualNorm2 = residual.squaredNorm(); + if (residualNorm2 < threshold) + { + iters = 0; + tol_error = numext::sqrt(residualNorm2 / rhsNorm2); + return; + } + + VectorType p(n); + p = precond.solve(residual); // initial search direction + + VectorType z(n), tmp(n); + RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM + Index i = 0; + while(i < maxIters) + { + tmp.noalias() = mat * p; // the bottleneck of the algorithm + + Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir + x += alpha * p; // update solution + residual -= alpha * tmp; // update residual + + residualNorm2 = residual.squaredNorm(); + if(residualNorm2 < threshold) + break; + + z = precond.solve(residual); // approximately solve for "A z = residual" + + RealScalar absOld = absNew; + absNew = numext::real(residual.dot(z)); // update the absolute value of r + RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction + p = z + beta * p; // update search direction + i++; + } + tol_error = numext::sqrt(residualNorm2 / rhsNorm2); + iters = i; +} + +} + +template< typename MatrixType_, int UpLo_=Lower, + typename Preconditioner_ = DiagonalPreconditioner > +class ConjugateGradient; + +namespace internal { + +template< typename MatrixType_, int UpLo_, typename Preconditioner_> +struct traits > +{ + typedef MatrixType_ MatrixType; + typedef Preconditioner_ Preconditioner; +}; + +} + +/** \ingroup IterativeLinearSolvers_Module + * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems + * + * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. + * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse. + * + * \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix. + * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower, + * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered. + * Default is \c Lower, best performance is \c Lower|Upper. + * \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner + * + * \implsparsesolverconcept + * + * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() + * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations + * and NumTraits::epsilon() for the tolerance. + * + * The tolerance corresponds to the relative residual error: |Ax-b|/|b| + * + * \b Performance: Even though the default value of \c UpLo_ is \c Lower, significantly higher performance is + * achieved when using a complete matrix and \b Lower|Upper as the \a UpLo_ template parameter. Moreover, in this + * case multi-threading can be exploited if the user code is compiled with OpenMP enabled. + * See \ref TopicMultiThreading for details. + * + * This class can be used as the direct solver classes. Here is a typical usage example: + \code + int n = 10000; + VectorXd x(n), b(n); + SparseMatrix A(n,n); + // fill A and b + ConjugateGradient, Lower|Upper> cg; + cg.compute(A); + x = cg.solve(b); + std::cout << "#iterations: " << cg.iterations() << std::endl; + std::cout << "estimated error: " << cg.error() << std::endl; + // update b, and solve again + x = cg.solve(b); + \endcode + * + * By default the iterations start with x=0 as an initial guess of the solution. + * One can control the start using the solveWithGuess() method. + * + * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. + * + * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner + */ +template< typename MatrixType_, int UpLo_, typename Preconditioner_> +class ConjugateGradient : public IterativeSolverBase > +{ + typedef IterativeSolverBase Base; + using Base::matrix; + using Base::m_error; + using Base::m_iterations; + using Base::m_info; + using Base::m_isInitialized; +public: + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef Preconditioner_ Preconditioner; + + enum { + UpLo = UpLo_ + }; + +public: + + /** Default constructor. */ + ConjugateGradient() : Base() {} + + /** Initialize the solver with matrix \a A for further \c Ax=b solving. + * + * This constructor is a shortcut for the default constructor followed + * by a call to compute(). + * + * \warning this class stores a reference to the matrix A as well as some + * precomputed values that depend on it. Therefore, if \a A is changed + * this class becomes invalid. Call compute() to update it with the new + * matrix A, or modify a copy of A. + */ + template + explicit ConjugateGradient(const EigenBase& A) : Base(A.derived()) {} + + ~ConjugateGradient() {} + + /** \internal */ + template + void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const + { + typedef typename Base::MatrixWrapper MatrixWrapper; + typedef typename Base::ActualMatrixType ActualMatrixType; + enum { + TransposeInput = (!MatrixWrapper::MatrixFree) + && (UpLo==(Lower|Upper)) + && (!MatrixType::IsRowMajor) + && (!NumTraits::IsComplex) + }; + typedef std::conditional_t, ActualMatrixType const&> RowMajorWrapper; + EIGEN_STATIC_ASSERT(internal::check_implication(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY); + typedef std::conditional_t::Type + > SelfAdjointWrapper; + + m_iterations = Base::maxIterations(); + m_error = Base::m_tolerance; + + RowMajorWrapper row_mat(matrix()); + internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error); + m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; + } + +protected: + +}; + +} // end namespace Eigen + +#endif // EIGEN_CONJUGATE_GRADIENT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h new file mode 100644 index 0000000..122aea2 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h @@ -0,0 +1,395 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INCOMPLETE_CHOlESKY_H +#define EIGEN_INCOMPLETE_CHOlESKY_H + +#include +#include + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +/** + * \brief Modified Incomplete Cholesky with dual threshold + * + * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with + * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 + * + * \tparam Scalar the scalar type of the input matrices + * \tparam UpLo_ The triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * \tparam OrderingType_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering. + * + * \implsparsesolverconcept + * + * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$ + * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a + * fill-in reducing permutation as computed by the ordering method. + * + * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out, + * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed + * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where + * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$. + * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by + * the info() method, then you can either increase the initial shift, or better use another preconditioning technique. + * + */ +template > +class IncompleteCholesky : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase > Base; + using Base::m_isInitialized; + public: + typedef typename NumTraits::Real RealScalar; + typedef OrderingType_ OrderingType; + typedef typename OrderingType::PermutationType PermutationType; + typedef typename PermutationType::StorageIndex StorageIndex; + typedef SparseMatrix FactorType; + typedef Matrix VectorSx; + typedef Matrix VectorRx; + typedef Matrix VectorIx; + typedef std::vector > VectorList; + enum { UpLo = UpLo_ }; + enum { + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; + public: + + /** Default constructor leaving the object in a partly non-initialized stage. + * + * You must call compute() or the pair analyzePattern()/factorize() to make it valid. + * + * \sa IncompleteCholesky(const MatrixType&) + */ + IncompleteCholesky() : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) {} + + /** Constructor computing the incomplete factorization for the given matrix \a matrix. + */ + template + IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) + { + compute(matrix); + } + + /** \returns number of rows of the factored matrix */ + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); } + + /** \returns number of columns of the factored matrix */ + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); } + + + /** \brief Reports whether previous computation was successful. + * + * It triggers an assertion if \c *this has not been initialized through the respective constructor, + * or a call to compute() or analyzePattern(). + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); + return m_info; + } + + /** \brief Set the initial shift parameter \f$ \sigma \f$. + */ + void setInitialShift(RealScalar shift) { m_initialShift = shift; } + + /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat + */ + template + void analyzePattern(const MatrixType& mat) + { + OrderingType ord; + PermutationType pinv; + ord(mat.template selfadjointView(), pinv); + if(pinv.size()>0) m_perm = pinv.inverse(); + else m_perm.resize(0); + m_L.resize(mat.rows(), mat.cols()); + m_analysisIsOk = true; + m_isInitialized = true; + m_info = Success; + } + + /** \brief Performs the numerical factorization of the input matrix \a mat + * + * The method analyzePattern() or compute() must have been called beforehand + * with a matrix having the same pattern. + * + * \sa compute(), analyzePattern() + */ + template + void factorize(const MatrixType& mat); + + /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat + * + * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods. + * + * \sa analyzePattern(), factorize() + */ + template + void compute(const MatrixType& mat) + { + analyzePattern(mat); + factorize(mat); + } + + // internal + template + void _solve_impl(const Rhs& b, Dest& x) const + { + eigen_assert(m_factorizationIsOk && "factorize() should be called first"); + if (m_perm.rows() == b.rows()) x = m_perm * b; + else x = b; + x = m_scale.asDiagonal() * x; + x = m_L.template triangularView().solve(x); + x = m_L.adjoint().template triangularView().solve(x); + x = m_scale.asDiagonal() * x; + if (m_perm.rows() == b.rows()) + x = m_perm.inverse() * x; + } + + /** \returns the sparse lower triangular factor L */ + const FactorType& matrixL() const { eigen_assert(m_factorizationIsOk && "factorize() should be called first"); return m_L; } + + /** \returns a vector representing the scaling factor S */ + const VectorRx& scalingS() const { eigen_assert(m_factorizationIsOk && "factorize() should be called first"); return m_scale; } + + /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */ + const PermutationType& permutationP() const { eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); return m_perm; } + + protected: + FactorType m_L; // The lower part stored in CSC + VectorRx m_scale; // The vector for scaling the matrix + RealScalar m_initialShift; // The initial shift parameter + bool m_analysisIsOk; + bool m_factorizationIsOk; + ComputationInfo m_info; + PermutationType m_perm; + + private: + inline void updateList(Ref colPtr, Ref rowIdx, Ref vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol); +}; + +// Based on the following paper: +// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with +// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 +// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf +template +template +void IncompleteCholesky::factorize(const MatrixType_& mat) +{ + using std::sqrt; + eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); + + // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added + + // Apply the fill-reducing permutation computed in analyzePattern() + if (m_perm.rows() == mat.rows() ) // To detect the null permutation + { + // The temporary is needed to make sure that the diagonal entry is properly sorted + FactorType tmp(mat.rows(), mat.cols()); + tmp = mat.template selfadjointView().twistedBy(m_perm); + m_L.template selfadjointView() = tmp.template selfadjointView(); + } + else + { + m_L.template selfadjointView() = mat.template selfadjointView(); + } + + Index n = m_L.cols(); + Index nnz = m_L.nonZeros(); + Map vals(m_L.valuePtr(), nnz); //values + Map rowIdx(m_L.innerIndexPtr(), nnz); //Row indices + Map colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row + VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization + VectorList listCol(n); // listCol(j) is a linked list of columns to update column j + VectorSx col_vals(n); // Store a nonzero values in each column + VectorIx col_irow(n); // Row indices of nonzero elements in each column + VectorIx col_pattern(n); + col_pattern.fill(-1); + StorageIndex col_nnz; + + + // Computes the scaling factors + m_scale.resize(n); + m_scale.setZero(); + for (Index j = 0; j < n; j++) + for (Index k = colPtr[j]; k < colPtr[j+1]; k++) + { + m_scale(j) += numext::abs2(vals(k)); + if(rowIdx[k]!=j) + m_scale(rowIdx[k]) += numext::abs2(vals(k)); + } + + m_scale = m_scale.cwiseSqrt().cwiseSqrt(); + + for (Index j = 0; j < n; ++j) + if(m_scale(j)>(std::numeric_limits::min)()) + m_scale(j) = RealScalar(1)/m_scale(j); + else + m_scale(j) = 1; + + // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster) + + // Scale and compute the shift for the matrix + RealScalar mindiag = NumTraits::highest(); + for (Index j = 0; j < n; j++) + { + for (Index k = colPtr[j]; k < colPtr[j+1]; k++) + vals[k] *= (m_scale(j)*m_scale(rowIdx[k])); + eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored"); + mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); + } + + FactorType L_save = m_L; + + RealScalar shift = 0; + if(mindiag <= RealScalar(0.)) + shift = m_initialShift - mindiag; + + m_info = NumericalIssue; + + // Try to perform the incomplete factorization using the current shift + int iter = 0; + do + { + // Apply the shift to the diagonal elements of the matrix + for (Index j = 0; j < n; j++) + vals[colPtr[j]] += shift; + + // jki version of the Cholesky factorization + Index j=0; + for (; j < n; ++j) + { + // Left-looking factorization of the j-th column + // First, load the j-th column into col_vals + Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored + col_nnz = 0; + for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++) + { + StorageIndex l = rowIdx[i]; + col_vals(col_nnz) = vals[i]; + col_irow(col_nnz) = l; + col_pattern(l) = col_nnz; + col_nnz++; + } + { + typename std::list::iterator k; + // Browse all previous columns that will update column j + for(k = listCol[j].begin(); k != listCol[j].end(); k++) + { + Index jk = firstElt(*k); // First element to use in the column + eigen_internal_assert(rowIdx[jk]==j); + Scalar v_j_jk = numext::conj(vals[jk]); + + jk += 1; + for (Index i = jk; i < colPtr[*k+1]; i++) + { + StorageIndex l = rowIdx[i]; + if(col_pattern[l]<0) + { + col_vals(col_nnz) = vals[i] * v_j_jk; + col_irow[col_nnz] = l; + col_pattern(l) = col_nnz; + col_nnz++; + } + else + col_vals(col_pattern[l]) -= vals[i] * v_j_jk; + } + updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); + } + } + + // Scale the current column + if(numext::real(diag) <= 0) + { + if(++iter>=10) + return; + + // increase shift + shift = numext::maxi(m_initialShift,RealScalar(2)*shift); + // restore m_L, col_pattern, and listCol + vals = Map(L_save.valuePtr(), nnz); + rowIdx = Map(L_save.innerIndexPtr(), nnz); + colPtr = Map(L_save.outerIndexPtr(), n+1); + col_pattern.fill(-1); + for(Index i=0; i cvals = col_vals.head(col_nnz); + Ref cirow = col_irow.head(col_nnz); + internal::QuickSplit(cvals,cirow, p); + // Insert the largest p elements in the matrix + Index cpt = 0; + for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++) + { + vals[i] = col_vals(cpt); + rowIdx[i] = col_irow(cpt); + // restore col_pattern: + col_pattern(col_irow(cpt)) = -1; + cpt++; + } + // Get the first smallest row index and put it after the diagonal element + Index jk = colPtr(j)+1; + updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); + } + + if(j==n) + { + m_factorizationIsOk = true; + m_info = Success; + } + } while(m_info!=Success); +} + +template +inline void IncompleteCholesky::updateList(Ref colPtr, Ref rowIdx, Ref vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol) +{ + if (jk < colPtr(col+1) ) + { + Index p = colPtr(col+1) - jk; + Index minpos; + rowIdx.segment(jk,p).minCoeff(&minpos); + minpos += jk; + if (rowIdx(minpos) != rowIdx(jk)) + { + //Swap + std::swap(rowIdx(jk),rowIdx(minpos)); + std::swap(vals(jk),vals(minpos)); + } + firstElt(col) = internal::convert_index(jk); + listCol[rowIdx(jk)].push_back(internal::convert_index(col)); + } +} + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h new file mode 100644 index 0000000..44f25fc --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h @@ -0,0 +1,455 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INCOMPLETE_LUT_H +#define EIGEN_INCOMPLETE_LUT_H + + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal + * Compute a quick-sort split of a vector + * On output, the vector row is permuted such that its elements satisfy + * abs(row(i)) >= abs(row(ncut)) if incut + * \param row The vector of values + * \param ind The array of index for the elements in @p row + * \param ncut The number of largest elements to keep + **/ +template +Index QuickSplit(VectorV &row, VectorI &ind, Index ncut) +{ + typedef typename VectorV::RealScalar RealScalar; + using std::swap; + using std::abs; + Index mid; + Index n = row.size(); /* length of the vector */ + Index first, last ; + + ncut--; /* to fit the zero-based indices */ + first = 0; + last = n-1; + if (ncut < first || ncut > last ) return 0; + + do { + mid = first; + RealScalar abskey = abs(row(mid)); + for (Index j = first + 1; j <= last; j++) { + if ( abs(row(j)) > abskey) { + ++mid; + swap(row(mid), row(j)); + swap(ind(mid), ind(j)); + } + } + /* Interchange for the pivot element */ + swap(row(mid), row(first)); + swap(ind(mid), ind(first)); + + if (mid > ncut) last = mid - 1; + else if (mid < ncut ) first = mid + 1; + } while (mid != ncut ); + + return 0; /* mid is equal to ncut */ +} + +}// end namespace internal + +/** \ingroup IterativeLinearSolvers_Module + * \class IncompleteLUT + * \brief Incomplete LU factorization with dual-threshold strategy + * + * \implsparsesolverconcept + * + * During the numerical factorization, two dropping rules are used : + * 1) any element whose magnitude is less than some tolerance is dropped. + * This tolerance is obtained by multiplying the input tolerance @p droptol + * by the average magnitude of all the original elements in the current row. + * 2) After the elimination of the row, only the @p fill largest elements in + * the L part and the @p fill largest elements in the U part are kept + * (in addition to the diagonal element ). Note that @p fill is computed from + * the input parameter @p fillfactor which is used the ratio to control the fill_in + * relatively to the initial number of nonzero elements. + * + * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements) + * and when @p fill=n/2 with @p droptol being different to zero. + * + * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, + * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994. + * + * NOTE : The following implementation is derived from the ILUT implementation + * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota + * released under the terms of the GNU LGPL: + * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README + * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. + * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: + * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html + * alternatively, on GMANE: + * http://comments.gmane.org/gmane.comp.lib.eigen/3302 + */ +template +class IncompleteLUT : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase Base; + using Base::m_isInitialized; + public: + typedef Scalar_ Scalar; + typedef StorageIndex_ StorageIndex; + typedef typename NumTraits::Real RealScalar; + typedef Matrix Vector; + typedef Matrix VectorI; + typedef SparseMatrix FactorType; + + enum { + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; + + public: + + IncompleteLUT() + : m_droptol(NumTraits::dummy_precision()), m_fillfactor(10), + m_analysisIsOk(false), m_factorizationIsOk(false) + {} + + template + explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits::dummy_precision(), int fillfactor = 10) + : m_droptol(droptol),m_fillfactor(fillfactor), + m_analysisIsOk(false),m_factorizationIsOk(false) + { + eigen_assert(fillfactor != 0); + compute(mat); + } + + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } + + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); + return m_info; + } + + template + void analyzePattern(const MatrixType& amat); + + template + void factorize(const MatrixType& amat); + + /** + * Compute an incomplete LU factorization with dual threshold on the matrix mat + * No pivoting is done in this version + * + **/ + template + IncompleteLUT& compute(const MatrixType& amat) + { + analyzePattern(amat); + factorize(amat); + return *this; + } + + void setDroptol(const RealScalar& droptol); + void setFillfactor(int fillfactor); + + template + void _solve_impl(const Rhs& b, Dest& x) const + { + x = m_Pinv * b; + x = m_lu.template triangularView().solve(x); + x = m_lu.template triangularView().solve(x); + x = m_P * x; + } + +protected: + + /** keeps off-diagonal entries; drops diagonal entries */ + struct keep_diag { + inline bool operator() (const Index& row, const Index& col, const Scalar&) const + { + return row!=col; + } + }; + +protected: + + FactorType m_lu; + RealScalar m_droptol; + int m_fillfactor; + bool m_analysisIsOk; + bool m_factorizationIsOk; + ComputationInfo m_info; + PermutationMatrix m_P; // Fill-reducing permutation + PermutationMatrix m_Pinv; // Inverse permutation +}; + +/** + * Set control parameter droptol + * \param droptol Drop any element whose magnitude is less than this tolerance + **/ +template +void IncompleteLUT::setDroptol(const RealScalar& droptol) +{ + this->m_droptol = droptol; +} + +/** + * Set control parameter fillfactor + * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row. + **/ +template +void IncompleteLUT::setFillfactor(int fillfactor) +{ + this->m_fillfactor = fillfactor; +} + +template +template +void IncompleteLUT::analyzePattern(const MatrixType_& amat) +{ + // Compute the Fill-reducing permutation + // Since ILUT does not perform any numerical pivoting, + // it is highly preferable to keep the diagonal through symmetric permutations. + // To this end, let's symmetrize the pattern and perform AMD on it. + SparseMatrix mat1 = amat; + SparseMatrix mat2 = amat.transpose(); + // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice. + // on the other hand for a really non-symmetric pattern, mat2*mat1 should be preferred... + SparseMatrix AtA = mat2 + mat1; + AMDOrdering ordering; + ordering(AtA,m_P); + m_Pinv = m_P.inverse(); // cache the inverse permutation + m_analysisIsOk = true; + m_factorizationIsOk = false; + m_isInitialized = true; +} + +template +template +void IncompleteLUT::factorize(const MatrixType_& amat) +{ + using std::sqrt; + using std::swap; + using std::abs; + using internal::convert_index; + + eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix"); + Index n = amat.cols(); // Size of the matrix + m_lu.resize(n,n); + // Declare Working vectors and variables + Vector u(n) ; // real values of the row -- maximum size is n -- + VectorI ju(n); // column position of the values in u -- maximum size is n + VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 + + // Apply the fill-reducing permutation + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + SparseMatrix mat; + mat = amat.twistedBy(m_Pinv); + + // Initialization + jr.fill(-1); + ju.fill(0); + u.fill(0); + + // number of largest elements to keep in each row: + Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1; + if (fill_in > n) fill_in = n; + + // number of largest nonzero elements to keep in the L and the U part of the current row: + Index nnzL = fill_in/2; + Index nnzU = nnzL; + m_lu.reserve(n * (nnzL + nnzU + 1)); + + // global loop over the rows of the sparse matrix + for (Index ii = 0; ii < n; ii++) + { + // 1 - copy the lower and the upper part of the row i of mat in the working vector u + + Index sizeu = 1; // number of nonzero elements in the upper part of the current row + Index sizel = 0; // number of nonzero elements in the lower part of the current row + ju(ii) = convert_index(ii); + u(ii) = 0; + jr(ii) = convert_index(ii); + RealScalar rownorm = 0; + + typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii + for (; j_it; ++j_it) + { + Index k = j_it.index(); + if (k < ii) + { + // copy the lower part + ju(sizel) = convert_index(k); + u(sizel) = j_it.value(); + jr(k) = convert_index(sizel); + ++sizel; + } + else if (k == ii) + { + u(ii) = j_it.value(); + } + else + { + // copy the upper part + Index jpos = ii + sizeu; + ju(jpos) = convert_index(k); + u(jpos) = j_it.value(); + jr(k) = convert_index(jpos); + ++sizeu; + } + rownorm += numext::abs2(j_it.value()); + } + + // 2 - detect possible zero row + if(rownorm==0) + { + m_info = NumericalIssue; + return; + } + // Take the 2-norm of the current row as a relative tolerance + rownorm = sqrt(rownorm); + + // 3 - eliminate the previous nonzero rows + Index jj = 0; + Index len = 0; + while (jj < sizel) + { + // In order to eliminate in the correct order, + // we must select first the smallest column index among ju(jj:sizel) + Index k; + Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment + k += jj; + if (minrow != ju(jj)) + { + // swap the two locations + Index j = ju(jj); + swap(ju(jj), ju(k)); + jr(minrow) = convert_index(jj); + jr(j) = convert_index(k); + swap(u(jj), u(k)); + } + // Reset this location + jr(minrow) = -1; + + // Start elimination + typename FactorType::InnerIterator ki_it(m_lu, minrow); + while (ki_it && ki_it.index() < minrow) ++ki_it; + eigen_internal_assert(ki_it && ki_it.col()==minrow); + Scalar fact = u(jj) / ki_it.value(); + + // drop too small elements + if(abs(fact) <= m_droptol) + { + jj++; + continue; + } + + // linear combination of the current row ii and the row minrow + ++ki_it; + for (; ki_it; ++ki_it) + { + Scalar prod = fact * ki_it.value(); + Index j = ki_it.index(); + Index jpos = jr(j); + if (jpos == -1) // fill-in element + { + Index newpos; + if (j >= ii) // dealing with the upper part + { + newpos = ii + sizeu; + sizeu++; + eigen_internal_assert(sizeu<=n); + } + else // dealing with the lower part + { + newpos = sizel; + sizel++; + eigen_internal_assert(sizel<=ii); + } + ju(newpos) = convert_index(j); + u(newpos) = -prod; + jr(j) = convert_index(newpos); + } + else + u(jpos) -= prod; + } + // store the pivot element + u(len) = fact; + ju(len) = convert_index(minrow); + ++len; + + jj++; + } // end of the elimination on the row ii + + // reset the upper part of the pointer jr to zero + for(Index k = 0; k m_droptol * rownorm ) + { + ++len; + u(ii + len) = u(ii + k); + ju(ii + len) = ju(ii + k); + } + } + sizeu = len + 1; // +1 to take into account the diagonal element + len = (std::min)(sizeu, nnzU); + typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); + typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); + internal::QuickSplit(uu, juu, len); + + // store the largest elements of the U part + for(Index k = ii + 1; k < ii + len; k++) + m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); + } + m_lu.finalize(); + m_lu.makeCompressed(); + + m_factorizationIsOk = true; + m_info = Success; +} + +} // end namespace Eigen + +#endif // EIGEN_INCOMPLETE_LUT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/InternalHeaderCheck.h new file mode 100644 index 0000000..b657e84 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H +#error "Please include Eigen/IterativeLinearSolvers instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h new file mode 100644 index 0000000..49829d0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h @@ -0,0 +1,449 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H +#define EIGEN_ITERATIVE_SOLVER_BASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct is_ref_compatible_impl +{ +private: + template + struct any_conversion + { + template any_conversion(const volatile T&); + template any_conversion(T&); + }; + struct yes {int a[1];}; + struct no {int a[2];}; + + template + static yes test(const Ref&, int); + template + static no test(any_conversion, ...); + +public: + static MatrixType ms_from; + enum { value = sizeof(test(ms_from, 0))==sizeof(yes) }; +}; + +template +struct is_ref_compatible +{ + enum { value = is_ref_compatible_impl>::value }; +}; + +template::value> +class generic_matrix_wrapper; + +// We have an explicit matrix at hand, compatible with Ref<> +template +class generic_matrix_wrapper +{ +public: + typedef Ref ActualMatrixType; + template struct ConstSelfAdjointViewReturnType { + typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType::Type Type; + }; + + enum { + MatrixFree = false + }; + + generic_matrix_wrapper() + : m_dummy(0,0), m_matrix(m_dummy) + {} + + template + generic_matrix_wrapper(const InputType &mat) + : m_matrix(mat) + {} + + const ActualMatrixType& matrix() const + { + return m_matrix; + } + + template + void grab(const EigenBase &mat) + { + internal::destroy_at(&m_matrix); + internal::construct_at(&m_matrix, mat.derived()); + } + + void grab(const Ref &mat) + { + if(&(mat.derived()) != &m_matrix) + { + internal::destroy_at(&m_matrix); + internal::construct_at(&m_matrix, mat); + } + } + +protected: + MatrixType m_dummy; // used to default initialize the Ref<> object + ActualMatrixType m_matrix; +}; + +// MatrixType is not compatible with Ref<> -> matrix-free wrapper +template +class generic_matrix_wrapper +{ +public: + typedef MatrixType ActualMatrixType; + template struct ConstSelfAdjointViewReturnType + { + typedef ActualMatrixType Type; + }; + + enum { + MatrixFree = true + }; + + generic_matrix_wrapper() + : mp_matrix(0) + {} + + generic_matrix_wrapper(const MatrixType &mat) + : mp_matrix(&mat) + {} + + const ActualMatrixType& matrix() const + { + return *mp_matrix; + } + + void grab(const MatrixType &mat) + { + mp_matrix = &mat; + } + +protected: + const ActualMatrixType *mp_matrix; +}; + +} + +/** \ingroup IterativeLinearSolvers_Module + * \brief Base class for linear iterative solvers + * + * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner + */ +template< typename Derived> +class IterativeSolverBase : public SparseSolverBase +{ +protected: + typedef SparseSolverBase Base; + using Base::m_isInitialized; + +public: + typedef typename internal::traits::MatrixType MatrixType; + typedef typename internal::traits::Preconditioner Preconditioner; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef typename MatrixType::RealScalar RealScalar; + + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + +public: + + using Base::derived; + + /** Default constructor. */ + IterativeSolverBase() + { + init(); + } + + /** Initialize the solver with matrix \a A for further \c Ax=b solving. + * + * This constructor is a shortcut for the default constructor followed + * by a call to compute(). + * + * \warning this class stores a reference to the matrix A as well as some + * precomputed values that depend on it. Therefore, if \a A is changed + * this class becomes invalid. Call compute() to update it with the new + * matrix A, or modify a copy of A. + */ + template + explicit IterativeSolverBase(const EigenBase& A) + : m_matrixWrapper(A.derived()) + { + init(); + compute(matrix()); + } + + + IterativeSolverBase(IterativeSolverBase&&) = default; + + ~IterativeSolverBase() {} + + /** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems. + * + * Currently, this function mostly calls analyzePattern on the preconditioner. In the future + * we might, for instance, implement column reordering for faster matrix vector products. + */ + template + Derived& analyzePattern(const EigenBase& A) + { + grab(A.derived()); + m_preconditioner.analyzePattern(matrix()); + m_isInitialized = true; + m_analysisIsOk = true; + m_info = m_preconditioner.info(); + return derived(); + } + + /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems. + * + * Currently, this function mostly calls factorize on the preconditioner. + * + * \warning this class stores a reference to the matrix A as well as some + * precomputed values that depend on it. Therefore, if \a A is changed + * this class becomes invalid. Call compute() to update it with the new + * matrix A, or modify a copy of A. + */ + template + Derived& factorize(const EigenBase& A) + { + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + grab(A.derived()); + m_preconditioner.factorize(matrix()); + m_factorizationIsOk = true; + m_info = m_preconditioner.info(); + return derived(); + } + + /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems. + * + * Currently, this function mostly initializes/computes the preconditioner. In the future + * we might, for instance, implement column reordering for faster matrix vector products. + * + * \warning this class stores a reference to the matrix A as well as some + * precomputed values that depend on it. Therefore, if \a A is changed + * this class becomes invalid. Call compute() to update it with the new + * matrix A, or modify a copy of A. + */ + template + Derived& compute(const EigenBase& A) + { + grab(A.derived()); + m_preconditioner.compute(matrix()); + m_isInitialized = true; + m_analysisIsOk = true; + m_factorizationIsOk = true; + m_info = m_preconditioner.info(); + return derived(); + } + + /** \internal */ + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return matrix().rows(); } + + /** \internal */ + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return matrix().cols(); } + + /** \returns the tolerance threshold used by the stopping criteria. + * \sa setTolerance() + */ + RealScalar tolerance() const { return m_tolerance; } + + /** Sets the tolerance threshold used by the stopping criteria. + * + * This value is used as an upper bound to the relative residual error: |Ax-b|/|b|. + * The default value is the machine precision given by NumTraits::epsilon() + */ + Derived& setTolerance(const RealScalar& tolerance) + { + m_tolerance = tolerance; + return derived(); + } + + /** \returns a read-write reference to the preconditioner for custom configuration. */ + Preconditioner& preconditioner() { return m_preconditioner; } + + /** \returns a read-only reference to the preconditioner. */ + const Preconditioner& preconditioner() const { return m_preconditioner; } + + /** \returns the max number of iterations. + * It is either the value set by setMaxIterations or, by default, + * twice the number of columns of the matrix. + */ + Index maxIterations() const + { + return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations; + } + + /** Sets the max number of iterations. + * Default is twice the number of columns of the matrix. + */ + Derived& setMaxIterations(Index maxIters) + { + m_maxIterations = maxIters; + return derived(); + } + + /** \returns the number of iterations performed during the last solve */ + Index iterations() const + { + eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); + return m_iterations; + } + + /** \returns the tolerance error reached during the last solve. + * It is a close approximation of the true relative residual error |Ax-b|/|b|. + */ + RealScalar error() const + { + eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); + return m_error; + } + + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A + * and \a x0 as an initial solution. + * + * \sa solve(), compute() + */ + template + inline const SolveWithGuess + solveWithGuess(const MatrixBase& b, const Guess& x0) const + { + eigen_assert(m_isInitialized && "Solver is not initialized."); + eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); + return SolveWithGuess(derived(), b.derived(), x0); + } + + /** \returns Success if the iterations converged, and NoConvergence otherwise. */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); + return m_info; + } + + /** \internal */ + template + void _solve_with_guess_impl(const Rhs& b, SparseMatrixBase &aDest) const + { + eigen_assert(rows()==b.rows()); + + Index rhsCols = b.cols(); + Index size = b.rows(); + DestDerived& dest(aDest.derived()); + typedef typename DestDerived::Scalar DestScalar; + Eigen::Matrix tb(size); + Eigen::Matrix tx(cols()); + // We do not directly fill dest because sparse expressions have to be free of aliasing issue. + // For non square least-square problems, b and dest might not have the same size whereas they might alias each-other. + typename DestDerived::PlainObject tmp(cols(),rhsCols); + ComputationInfo global_info = Success; + for(Index k=0; k + std::enable_if_t + _solve_with_guess_impl(const Rhs& b, MatrixBase &aDest) const + { + eigen_assert(rows()==b.rows()); + + Index rhsCols = b.cols(); + DestDerived& dest(aDest.derived()); + ComputationInfo global_info = Success; + for(Index k=0; k + std::enable_if_t + _solve_with_guess_impl(const Rhs& b, MatrixBase &dest) const + { + derived()._solve_vector_with_guess_impl(b,dest.derived()); + } + + /** \internal default initial guess = 0 */ + template + void _solve_impl(const Rhs& b, Dest& x) const + { + x.setZero(); + derived()._solve_with_guess_impl(b,x); + } + +protected: + void init() + { + m_isInitialized = false; + m_analysisIsOk = false; + m_factorizationIsOk = false; + m_maxIterations = -1; + m_tolerance = NumTraits::epsilon(); + } + + typedef internal::generic_matrix_wrapper MatrixWrapper; + typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType; + + const ActualMatrixType& matrix() const + { + return m_matrixWrapper.matrix(); + } + + template + void grab(const InputType &A) + { + m_matrixWrapper.grab(A); + } + + MatrixWrapper m_matrixWrapper; + Preconditioner m_preconditioner; + + Index m_maxIterations; + RealScalar m_tolerance; + + mutable RealScalar m_error; + mutable Index m_iterations; + mutable ComputationInfo m_info; + mutable bool m_analysisIsOk, m_factorizationIsOk; +}; + +} // end namespace Eigen + +#endif // EIGEN_ITERATIVE_SOLVER_BASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h new file mode 100644 index 0000000..a76f3f8 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h @@ -0,0 +1,200 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H +#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal Low-level conjugate gradient algorithm for least-square problems + * \param mat The matrix A + * \param rhs The right hand side vector b + * \param x On input and initial solution, on output the computed solution. + * \param precond A preconditioner being able to efficiently solve for an + * approximation of A'Ax=b (regardless of b) + * \param iters On input the max number of iteration, on output the number of performed iterations. + * \param tol_error On input the tolerance error, on output an estimation of the relative error. + */ +template +EIGEN_DONT_INLINE +void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, + const Preconditioner& precond, Index& iters, + typename Dest::RealScalar& tol_error) +{ + using std::sqrt; + using std::abs; + typedef typename Dest::RealScalar RealScalar; + typedef typename Dest::Scalar Scalar; + typedef Matrix VectorType; + + RealScalar tol = tol_error; + Index maxIters = iters; + + Index m = mat.rows(), n = mat.cols(); + + VectorType residual = rhs - mat * x; + VectorType normal_residual = mat.adjoint() * residual; + + RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); + if(rhsNorm2 == 0) + { + x.setZero(); + iters = 0; + tol_error = 0; + return; + } + RealScalar threshold = tol*tol*rhsNorm2; + RealScalar residualNorm2 = normal_residual.squaredNorm(); + if (residualNorm2 < threshold) + { + iters = 0; + tol_error = sqrt(residualNorm2 / rhsNorm2); + return; + } + + VectorType p(n); + p = precond.solve(normal_residual); // initial search direction + + VectorType z(n), tmp(m); + RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM + Index i = 0; + while(i < maxIters) + { + tmp.noalias() = mat * p; + + Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir + x += alpha * p; // update solution + residual -= alpha * tmp; // update residual + normal_residual.noalias() = mat.adjoint() * residual; // update residual of the normal equation + + residualNorm2 = normal_residual.squaredNorm(); + if(residualNorm2 < threshold) + break; + + z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual" + + RealScalar absOld = absNew; + absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r + RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction + p = z + beta * p; // update search direction + i++; + } + tol_error = sqrt(residualNorm2 / rhsNorm2); + iters = i; +} + +} + +template< typename MatrixType_, + typename Preconditioner_ = LeastSquareDiagonalPreconditioner > +class LeastSquaresConjugateGradient; + +namespace internal { + +template< typename MatrixType_, typename Preconditioner_> +struct traits > +{ + typedef MatrixType_ MatrixType; + typedef Preconditioner_ Preconditioner; +}; + +} + +/** \ingroup IterativeLinearSolvers_Module + * \brief A conjugate gradient solver for sparse (or dense) least-square problems + * + * This class solves for the least-squares solution to A x = b using an iterative conjugate gradient algorithm. + * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. + * Otherwise, the SparseLU or SparseQR classes might be preferable. + * The matrix A and the vectors x and b can be either dense or sparse. + * + * \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix. + * \tparam Preconditioner_ the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner + * + * \implsparsesolverconcept + * + * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() + * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations + * and NumTraits::epsilon() for the tolerance. + * + * This class can be used as the direct solver classes. Here is a typical usage example: + \code + int m=1000000, n = 10000; + VectorXd x(n), b(m); + SparseMatrix A(m,n); + // fill A and b + LeastSquaresConjugateGradient > lscg; + lscg.compute(A); + x = lscg.solve(b); + std::cout << "#iterations: " << lscg.iterations() << std::endl; + std::cout << "estimated error: " << lscg.error() << std::endl; + // update b, and solve again + x = lscg.solve(b); + \endcode + * + * By default the iterations start with x=0 as an initial guess of the solution. + * One can control the start using the solveWithGuess() method. + * + * \sa class ConjugateGradient, SparseLU, SparseQR + */ +template< typename MatrixType_, typename Preconditioner_> +class LeastSquaresConjugateGradient : public IterativeSolverBase > +{ + typedef IterativeSolverBase Base; + using Base::matrix; + using Base::m_error; + using Base::m_iterations; + using Base::m_info; + using Base::m_isInitialized; +public: + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef Preconditioner_ Preconditioner; + +public: + + /** Default constructor. */ + LeastSquaresConjugateGradient() : Base() {} + + /** Initialize the solver with matrix \a A for further \c Ax=b solving. + * + * This constructor is a shortcut for the default constructor followed + * by a call to compute(). + * + * \warning this class stores a reference to the matrix A as well as some + * precomputed values that depend on it. Therefore, if \a A is changed + * this class becomes invalid. Call compute() to update it with the new + * matrix A, or modify a copy of A. + */ + template + explicit LeastSquaresConjugateGradient(const EigenBase& A) : Base(A.derived()) {} + + ~LeastSquaresConjugateGradient() {} + + /** \internal */ + template + void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const + { + m_iterations = Base::maxIterations(); + m_error = Base::m_tolerance; + + internal::least_square_conjugate_gradient(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error); + m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; + } + +}; + +} // end namespace Eigen + +#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h new file mode 100644 index 0000000..bb56db3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h @@ -0,0 +1,119 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SOLVEWITHGUESS_H +#define EIGEN_SOLVEWITHGUESS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template class SolveWithGuess; + +/** \class SolveWithGuess + * \ingroup IterativeLinearSolvers_Module + * + * \brief Pseudo expression representing a solving operation + * + * \tparam Decomposition the type of the matrix or decomposion object + * \tparam Rhstype the type of the right-hand side + * + * This class represents an expression of A.solve(B) + * and most of the time this is the only way it is used. + * + */ +namespace internal { + + +template +struct traits > + : traits > +{}; + +} + + +template +class SolveWithGuess : public internal::generic_xpr_base, MatrixXpr, typename internal::traits::StorageKind>::type +{ +public: + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::traits::PlainObject PlainObject; + typedef typename internal::generic_xpr_base, MatrixXpr, typename internal::traits::StorageKind>::type Base; + typedef typename internal::ref_selector::type Nested; + + SolveWithGuess(const Decomposition &dec, const RhsType &rhs, const GuessType &guess) + : m_dec(dec), m_rhs(rhs), m_guess(guess) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return m_dec.cols(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; } + EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; } + EIGEN_DEVICE_FUNC const GuessType& guess() const { return m_guess; } + +protected: + const Decomposition &m_dec; + const RhsType &m_rhs; + const GuessType &m_guess; + +private: + Scalar coeff(Index row, Index col) const; + Scalar coeff(Index i) const; +}; + +namespace internal { + +// Evaluator of SolveWithGuess -> eval into a temporary +template +struct evaluator > + : public evaluator::PlainObject> +{ + typedef SolveWithGuess SolveType; + typedef typename SolveType::PlainObject PlainObject; + typedef evaluator Base; + + evaluator(const SolveType& solve) + : m_result(solve.rows(), solve.cols()) + { + internal::construct_at(this, m_result); + m_result = solve.guess(); + solve.dec()._solve_with_guess_impl(solve.rhs(), m_result); + } + +protected: + PlainObject m_result; +}; + +// Specialization for "dst = dec.solveWithGuess(rhs)" +// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere +template +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef SolveWithGuess SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst = src.guess(); + src.dec()._solve_with_guess_impl(src.rhs(), dst/*, src.guess()*/); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SOLVEWITHGUESS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Jacobi/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Jacobi/InternalHeaderCheck.h new file mode 100644 index 0000000..b17b1f2 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Jacobi/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_JACOBI_MODULE_H +#error "Please include Eigen/Jacobi instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Jacobi/Jacobi.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Jacobi/Jacobi.h new file mode 100644 index 0000000..5d0f276 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/Jacobi/Jacobi.h @@ -0,0 +1,483 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_JACOBI_H +#define EIGEN_JACOBI_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup Jacobi_Module + * \jacobi_module + * \class JacobiRotation + * \brief Rotation given by a cosine-sine pair. + * + * This class represents a Jacobi or Givens rotation. + * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by + * its cosine \c c and sine \c s as follow: + * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ + * + * You can apply the respective counter-clockwise rotation to a column vector \c v by + * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: + * \code + * v.applyOnTheLeft(J.adjoint()); + * \endcode + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template class JacobiRotation +{ + public: + typedef typename NumTraits::Real RealScalar; + + /** Default constructor without any initialization. */ + EIGEN_DEVICE_FUNC + JacobiRotation() {} + + /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ + EIGEN_DEVICE_FUNC + JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} + + EIGEN_DEVICE_FUNC Scalar& c() { return m_c; } + EIGEN_DEVICE_FUNC Scalar c() const { return m_c; } + EIGEN_DEVICE_FUNC Scalar& s() { return m_s; } + EIGEN_DEVICE_FUNC Scalar s() const { return m_s; } + + /** Concatenates two planar rotation */ + EIGEN_DEVICE_FUNC + JacobiRotation operator*(const JacobiRotation& other) + { + using numext::conj; + return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, + conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); + } + + /** Returns the transposed transformation */ + EIGEN_DEVICE_FUNC + JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } + + /** Returns the adjoint transformation */ + EIGEN_DEVICE_FUNC + JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } + + template + EIGEN_DEVICE_FUNC + bool makeJacobi(const MatrixBase&, Index p, Index q); + EIGEN_DEVICE_FUNC + bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); + + EIGEN_DEVICE_FUNC + void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0); + + protected: + EIGEN_DEVICE_FUNC + void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); + EIGEN_DEVICE_FUNC + void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); + + Scalar m_c, m_s; +}; + +/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix + * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ + * + * \sa MatrixBase::makeJacobi(const MatrixBase&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +EIGEN_DEVICE_FUNC +bool JacobiRotation::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) +{ + using std::sqrt; + using std::abs; + + RealScalar deno = RealScalar(2)*abs(y); + if(deno < (std::numeric_limits::min)()) + { + m_c = Scalar(1); + m_s = Scalar(0); + return false; + } + else + { + RealScalar tau = (x-z)/deno; + RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); + RealScalar t; + if(tau>RealScalar(0)) + { + t = RealScalar(1) / (tau + w); + } + else + { + t = RealScalar(1) / (tau - w); + } + RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); + RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); + m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; + m_c = n; + return true; + } +} + +/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix + * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields + * a diagonal matrix \f$ A = J^* B J \f$ + * + * Example: \include Jacobi_makeJacobi.cpp + * Output: \verbinclude Jacobi_makeJacobi.out + * + * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +template +EIGEN_DEVICE_FUNC +inline bool JacobiRotation::makeJacobi(const MatrixBase& m, Index p, Index q) +{ + return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); +} + +/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector + * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: + * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. + * + * The value of \a r is returned if \a r is not null (the default is null). + * Also note that G is built such that the cosine is always real. + * + * Example: \include Jacobi_makeGivens.cpp + * Output: \verbinclude Jacobi_makeGivens.out + * + * This function implements the continuous Givens rotation generation algorithm + * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. + * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +EIGEN_DEVICE_FUNC +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) +{ + makeGivens(p, q, r, std::conditional_t::IsComplex, internal::true_type, internal::false_type>()); +} + + +// specialization for complexes +template +EIGEN_DEVICE_FUNC +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) +{ + using std::sqrt; + using std::abs; + using numext::conj; + + if(q==Scalar(0)) + { + m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); + m_s = 0; + if(r) *r = m_c * p; + } + else if(p==Scalar(0)) + { + m_c = 0; + m_s = -q/abs(q); + if(r) *r = abs(q); + } + else + { + RealScalar p1 = numext::norm1(p); + RealScalar q1 = numext::norm1(q); + if(p1>=q1) + { + Scalar ps = p / p1; + RealScalar p2 = numext::abs2(ps); + Scalar qs = q / p1; + RealScalar q2 = numext::abs2(qs); + + RealScalar u = sqrt(RealScalar(1) + q2/p2); + if(numext::real(p) +EIGEN_DEVICE_FUNC +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) +{ + using std::sqrt; + using std::abs; + if(numext::is_exactly_zero(q)) + { + m_c = p abs(q)) + { + Scalar t = q/p; + Scalar u = sqrt(Scalar(1) + numext::abs2(t)); + if(p +EIGEN_DEVICE_FUNC +void apply_rotation_in_the_plane(DenseBase& xpr_x, DenseBase& xpr_y, const JacobiRotation& j); +} + +/** \jacobi_module + * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, + * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. + * + * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() + */ +template +template +EIGEN_DEVICE_FUNC +inline void MatrixBase::applyOnTheLeft(Index p, Index q, const JacobiRotation& j) +{ + RowXpr x(this->row(p)); + RowXpr y(this->row(q)); + internal::apply_rotation_in_the_plane(x, y, j); +} + +/** \ingroup Jacobi_Module + * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J + * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. + * + * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() + */ +template +template +EIGEN_DEVICE_FUNC +inline void MatrixBase::applyOnTheRight(Index p, Index q, const JacobiRotation& j) +{ + ColXpr x(this->col(p)); + ColXpr y(this->col(q)); + internal::apply_rotation_in_the_plane(x, y, j.transpose()); +} + +namespace internal { + +template +struct apply_rotation_in_the_plane_selector +{ + static EIGEN_DEVICE_FUNC + inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) + { + for(Index i=0; i +struct apply_rotation_in_the_plane_selector +{ + static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) + { + typedef typename packet_traits::type Packet; + typedef typename packet_traits::type OtherPacket; + + constexpr int RequiredAlignment = + (std::max)(unpacket_traits::alignment, unpacket_traits::alignment); + constexpr Index PacketSize = packet_traits::size; + + /*** dynamic-size vectorized paths ***/ + if(size >= 2 * PacketSize && SizeAtCompileTime == Dynamic && ((incrx == 1 && incry == 1) || PacketSize == 1)) + { + // both vectors are sequentially stored in memory => vectorization + constexpr Index Peeling = 2; + + Index alignedStart = internal::first_default_aligned(y, size); + Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; + + const OtherPacket pc = pset1(c); + const OtherPacket ps = pset1(s); + conj_helper::IsComplex,false> pcj; + conj_helper pm; + + for(Index i=0; i(px); + Packet yi = pload(py); + pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + px += PacketSize; + py += PacketSize; + } + } + else + { + Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); + for(Index i=alignedStart; i(px); + Packet xi1 = ploadu(px+PacketSize); + Packet yi = pload (py); + Packet yi1 = pload (py+PacketSize); + pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1))); + pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1))); + px += Peeling*PacketSize; + py += Peeling*PacketSize; + } + if(alignedEnd!=peelingEnd) + { + Packet xi = ploadu(x+peelingEnd); + Packet yi = pload (y+peelingEnd); + pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + } + } + + for(Index i=alignedEnd; i= RequiredAlignment) + { + const OtherPacket pc = pset1(c); + const OtherPacket ps = pset1(s); + conj_helper::IsComplex,false> pcj; + conj_helper pm; + Scalar* EIGEN_RESTRICT px = x; + Scalar* EIGEN_RESTRICT py = y; + for(Index i=0; i(px); + Packet yi = pload(py); + pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + px += PacketSize; + py += PacketSize; + } + } + + /*** non-vectorized path ***/ + else + { + apply_rotation_in_the_plane_selector::run(x,incrx,y,incry,size,c,s); + } + } +}; + +template +EIGEN_DEVICE_FUNC +void inline apply_rotation_in_the_plane(DenseBase& xpr_x, DenseBase& xpr_y, const JacobiRotation& j) +{ + typedef typename VectorX::Scalar Scalar; + constexpr bool Vectorizable = (int(evaluator::Flags) & int(evaluator::Flags) & PacketAccessBit) && + (int(packet_traits::size) == int(packet_traits::size)); + + eigen_assert(xpr_x.size() == xpr_y.size()); + Index size = xpr_x.size(); + Index incrx = xpr_x.derived().innerStride(); + Index incry = xpr_y.derived().innerStride(); + + Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); + Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); + + OtherScalar c = j.c(); + OtherScalar s = j.s(); + if (numext::is_exactly_one(c) && numext::is_exactly_zero(s)) + return; + + constexpr int Alignment = (std::min)(int(evaluator::Alignment), int(evaluator::Alignment)); + apply_rotation_in_the_plane_selector::run( + x, incrx, y, incry, size, c, s); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_JACOBI_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/KLUSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/KLUSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..eb1d671 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/KLUSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_KLUSUPPORT_MODULE_H +#error "Please include Eigen/KLUSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/KLUSupport/KLUSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/KLUSupport/KLUSupport.h new file mode 100644 index 0000000..bfe2f66 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/KLUSupport/KLUSupport.h @@ -0,0 +1,360 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Kyle Macfarlan +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_KLUSUPPORT_H +#define EIGEN_KLUSUPPORT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/* TODO extract L, extract U, compute det, etc... */ + +/** \ingroup KLUSupport_Module + * \brief A sparse LU factorization and solver based on KLU + * + * This class allows to solve for A.X = B sparse linear problems via a LU factorization + * using the KLU library. The sparse matrix A must be squared and full rank. + * The vectors or matrices X and B can be either dense or sparse. + * + * \warning The input matrix A should be in a \b compressed and \b column-major form. + * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU + */ + + +inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B [ ], klu_common *Common, double) { + return klu_solve(Symbolic, Numeric, internal::convert_index(ldim), internal::convert_index(nrhs), B, Common); +} + +inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complexB[], klu_common *Common, std::complex) { + return klu_z_solve(Symbolic, Numeric, internal::convert_index(ldim), internal::convert_index(nrhs), &numext::real_ref(B[0]), Common); +} + +inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double) { + return klu_tsolve(Symbolic, Numeric, internal::convert_index(ldim), internal::convert_index(nrhs), B, Common); +} + +inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complexB[], klu_common *Common, std::complex) { + return klu_z_tsolve(Symbolic, Numeric, internal::convert_index(ldim), internal::convert_index(nrhs), &numext::real_ref(B[0]), 0, Common); +} + +inline klu_numeric* klu_factor(int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_common *Common, double) { + return klu_factor(Ap, Ai, Ax, Symbolic, Common); +} + +inline klu_numeric* klu_factor(int Ap[], int Ai[], std::complex Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex) { + return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common); +} + + +template +class KLU : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase > Base; + using Base::m_isInitialized; + public: + using Base::_solve_impl; + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix Vector; + typedef Matrix IntRowVectorType; + typedef Matrix IntColVectorType; + typedef SparseMatrix LUMatrixType; + typedef SparseMatrix KLUMatrixType; + typedef Ref KLUMatrixRef; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + KLU() + : m_dummy(0,0), mp_matrix(m_dummy) + { + init(); + } + + template + explicit KLU(const InputMatrixType& matrix) + : mp_matrix(matrix) + { + init(); + compute(matrix); + } + + ~KLU() + { + if(m_symbolic) klu_free_symbolic(&m_symbolic,&m_common); + if(m_numeric) klu_free_numeric(&m_numeric,&m_common); + } + + EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); } + EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } +#if 0 // not implemented yet + inline const LUMatrixType& matrixL() const + { + if (m_extractedDataAreDirty) extractData(); + return m_l; + } + + inline const LUMatrixType& matrixU() const + { + if (m_extractedDataAreDirty) extractData(); + return m_u; + } + + inline const IntColVectorType& permutationP() const + { + if (m_extractedDataAreDirty) extractData(); + return m_p; + } + + inline const IntRowVectorType& permutationQ() const + { + if (m_extractedDataAreDirty) extractData(); + return m_q; + } +#endif + /** Computes the sparse Cholesky decomposition of \a matrix + * Note that the matrix should be column-major, and in compressed format for best performance. + * \sa SparseMatrix::makeCompressed(). + */ + template + void compute(const InputMatrixType& matrix) + { + if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); + if(m_numeric) klu_free_numeric(&m_numeric, &m_common); + grab(matrix.derived()); + analyzePattern_impl(); + factorize_impl(); + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize(), compute() + */ + template + void analyzePattern(const InputMatrixType& matrix) + { + if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); + if(m_numeric) klu_free_numeric(&m_numeric, &m_common); + + grab(matrix.derived()); + + analyzePattern_impl(); + } + + + /** Provides access to the control settings array used by KLU. + * + * See KLU documentation for details. + */ + inline const klu_common& kluCommon() const + { + return m_common; + } + + /** Provides access to the control settings array used by UmfPack. + * + * If this array contains NaN's, the default values are used. + * + * See KLU documentation for details. + */ + inline klu_common& kluCommon() + { + return m_common; + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. + * + * \sa analyzePattern(), compute() + */ + template + void factorize(const InputMatrixType& matrix) + { + eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()"); + if(m_numeric) + klu_free_numeric(&m_numeric,&m_common); + + grab(matrix.derived()); + + factorize_impl(); + } + + /** \internal */ + template + bool _solve_impl(const MatrixBase &b, MatrixBase &x) const; + +#if 0 // not implemented yet + Scalar determinant() const; + + void extractData() const; +#endif + + protected: + + void init() + { + m_info = InvalidInput; + m_isInitialized = false; + m_numeric = 0; + m_symbolic = 0; + m_extractedDataAreDirty = true; + + klu_defaults(&m_common); + } + + void analyzePattern_impl() + { + m_info = InvalidInput; + m_analysisIsOk = false; + m_factorizationIsOk = false; + m_symbolic = klu_analyze(internal::convert_index(mp_matrix.rows()), + const_cast(mp_matrix.outerIndexPtr()), const_cast(mp_matrix.innerIndexPtr()), + &m_common); + if (m_symbolic) { + m_isInitialized = true; + m_info = Success; + m_analysisIsOk = true; + m_extractedDataAreDirty = true; + } + } + + void factorize_impl() + { + + m_numeric = klu_factor(const_cast(mp_matrix.outerIndexPtr()), const_cast(mp_matrix.innerIndexPtr()), const_cast(mp_matrix.valuePtr()), + m_symbolic, &m_common, Scalar()); + + + m_info = m_numeric ? Success : NumericalIssue; + m_factorizationIsOk = m_numeric ? 1 : 0; + m_extractedDataAreDirty = true; + } + + template + void grab(const EigenBase &A) + { + internal::destroy_at(&mp_matrix); + internal::construct_at(&mp_matrix, A.derived()); + } + + void grab(const KLUMatrixRef &A) + { + if(&(A.derived()) != &mp_matrix) + { + internal::destroy_at(&mp_matrix); + internal::construct_at(&mp_matrix, A); + } + } + + // cached data to reduce reallocation, etc. +#if 0 // not implemented yet + mutable LUMatrixType m_l; + mutable LUMatrixType m_u; + mutable IntColVectorType m_p; + mutable IntRowVectorType m_q; +#endif + + KLUMatrixType m_dummy; + KLUMatrixRef mp_matrix; + + klu_numeric* m_numeric; + klu_symbolic* m_symbolic; + klu_common m_common; + mutable ComputationInfo m_info; + int m_factorizationIsOk; + int m_analysisIsOk; + mutable bool m_extractedDataAreDirty; + + private: + KLU(const KLU& ) { } +}; + +#if 0 // not implemented yet +template +void KLU::extractData() const +{ + if (m_extractedDataAreDirty) + { + eigen_assert(false && "KLU: extractData Not Yet Implemented"); + + // get size of the data + int lnz, unz, rows, cols, nz_udiag; + umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); + + // allocate data + m_l.resize(rows,(std::min)(rows,cols)); + m_l.resizeNonZeros(lnz); + + m_u.resize((std::min)(rows,cols),cols); + m_u.resizeNonZeros(unz); + + m_p.resize(rows); + m_q.resize(cols); + + // extract + umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), + m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), + m_p.data(), m_q.data(), 0, 0, 0, m_numeric); + + m_extractedDataAreDirty = false; + } +} + +template +typename KLU::Scalar KLU::determinant() const +{ + eigen_assert(false && "KLU: extractData Not Yet Implemented"); + return Scalar(); +} +#endif + +template +template +bool KLU::_solve_impl(const MatrixBase &b, MatrixBase &x) const +{ + Index rhsCols = b.cols(); + EIGEN_STATIC_ASSERT((XDerived::Flags&RowMajorBit)==0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); + + x = b; + int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), const_cast(&m_common), Scalar()); + + m_info = info!=0 ? Success : NumericalIssue; + return true; +} + +} // end namespace Eigen + +#endif // EIGEN_KLUSUPPORT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/Determinant.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/Determinant.h new file mode 100644 index 0000000..80e695d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/Determinant.h @@ -0,0 +1,119 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DETERMINANT_H +#define EIGEN_DETERMINANT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +EIGEN_DEVICE_FUNC +inline const typename Derived::Scalar bruteforce_det3_helper +(const MatrixBase& matrix, int a, int b, int c) +{ + return matrix.coeff(0,a) + * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b)); +} + +template struct determinant_impl +{ + static inline typename traits::Scalar run(const Derived& m) + { + if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0) + return typename traits::Scalar(1); + return m.partialPivLu().determinant(); + } +}; + +template struct determinant_impl +{ + static inline EIGEN_DEVICE_FUNC + typename traits::Scalar run(const Derived& m) + { + return m.coeff(0,0); + } +}; + +template struct determinant_impl +{ + static inline EIGEN_DEVICE_FUNC + typename traits::Scalar run(const Derived& m) + { + return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1); + } +}; + +template struct determinant_impl +{ + static inline EIGEN_DEVICE_FUNC + typename traits::Scalar run(const Derived& m) + { + return bruteforce_det3_helper(m,0,1,2) + - bruteforce_det3_helper(m,1,0,2) + + bruteforce_det3_helper(m,2,0,1); + } +}; + +template struct determinant_impl +{ + typedef typename traits::Scalar Scalar; + static EIGEN_DEVICE_FUNC + Scalar run(const Derived& m) + { + Scalar d2_01 = det2(m, 0, 1); + Scalar d2_02 = det2(m, 0, 2); + Scalar d2_03 = det2(m, 0, 3); + Scalar d2_12 = det2(m, 1, 2); + Scalar d2_13 = det2(m, 1, 3); + Scalar d2_23 = det2(m, 2, 3); + Scalar d3_0 = det3(m, 1,d2_23, 2,d2_13, 3,d2_12); + Scalar d3_1 = det3(m, 0,d2_23, 2,d2_03, 3,d2_02); + Scalar d3_2 = det3(m, 0,d2_13, 1,d2_03, 3,d2_01); + Scalar d3_3 = det3(m, 0,d2_12, 1,d2_02, 2,d2_01); + return internal::pmadd(static_cast(-m(0,3)),d3_0, static_cast(m(1,3)*d3_1)) + + internal::pmadd(static_cast(-m(2,3)),d3_2, static_cast(m(3,3)*d3_3)); + } +protected: + static EIGEN_DEVICE_FUNC + Scalar det2(const Derived& m, Index i0, Index i1) + { + return m(i0,0) * m(i1,1) - m(i1,0) * m(i0,1); + } + + static EIGEN_DEVICE_FUNC + Scalar det3(const Derived& m, Index i0, const Scalar& d0, Index i1, const Scalar& d1, Index i2, const Scalar& d2) + { + return internal::pmadd(m(i0,2), d0, internal::pmadd(static_cast(-m(i1,2)), d1, static_cast(m(i2,2)*d2))); + } +}; + +} // end namespace internal + +/** \lu_module + * + * \returns the determinant of this matrix + */ +template +EIGEN_DEVICE_FUNC +inline typename internal::traits::Scalar MatrixBase::determinant() const +{ + eigen_assert(rows() == cols()); + typedef typename internal::nested_eval::type Nested; + return internal::determinant_impl>::run(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_DETERMINANT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/FullPivLU.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/FullPivLU.h new file mode 100644 index 0000000..d02dcc1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/FullPivLU.h @@ -0,0 +1,877 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LU_H +#define EIGEN_LU_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template struct traits > + : traits +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef PermutationIndex_ StorageIndex; + enum { Flags = 0 }; +}; + +} // end namespace internal + +/** \ingroup LU_Module + * + * \class FullPivLU + * + * \brief LU decomposition of a matrix with complete pivoting, and related features + * + * \tparam MatrixType_ the type of the matrix of which we are computing the LU decomposition + * + * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is + * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is + * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU + * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any + * zeros are at the end. + * + * This decomposition provides the generic approach to solving systems of linear equations, computing + * the rank, invertibility, inverse, kernel, and determinant. + * + * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD + * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, + * working with the SVD allows to select the smallest singular values of the matrix, something that + * the LU decomposition doesn't see. + * + * The data of the LU decomposition can be directly accessed through the methods matrixLU(), + * permutationP(), permutationQ(). + * + * As an example, here is how the original matrix can be retrieved: + * \include class_FullPivLU.cpp + * Output: \verbinclude class_FullPivLU.out + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() + */ +template class FullPivLU + : public SolverBase > +{ + public: + typedef MatrixType_ MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + using PermutationIndex = PermutationIndex_; + typedef typename internal::plain_row_type::type IntRowVectorType; + typedef typename internal::plain_col_type::type IntColVectorType; + typedef PermutationMatrix PermutationQType; + typedef PermutationMatrix PermutationPType; + typedef typename MatrixType::PlainObject PlainObject; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LU::compute(const MatrixType&). + */ + FullPivLU(); + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa FullPivLU() + */ + FullPivLU(Index rows, Index cols); + + /** Constructor. + * + * \param matrix the matrix of which to compute the LU decomposition. + * It is required to be nonzero. + */ + template + explicit FullPivLU(const EigenBase& matrix); + + /** \brief Constructs a LU factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa FullPivLU(const EigenBase&) + */ + template + explicit FullPivLU(EigenBase& matrix); + + /** Computes the LU decomposition of the given matrix. + * + * \param matrix the matrix of which to compute the LU decomposition. + * It is required to be nonzero. + * + * \returns a reference to *this + */ + template + FullPivLU& compute(const EigenBase& matrix) { + m_lu = matrix.derived(); + computeInPlace(); + return *this; + } + + /** \returns the LU decomposition matrix: the upper-triangular part is U, the + * unit-lower-triangular part is L (at least for square matrices; in the non-square + * case, special care is needed, see the documentation of class FullPivLU). + * + * \sa matrixL(), matrixU() + */ + inline const MatrixType& matrixLU() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_lu; + } + + /** \returns the number of nonzero pivots in the LU decomposition. + * Here nonzero is meant in the exact sense, not in a fuzzy sense. + * So that notion isn't really intrinsically interesting, but it is + * still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_nonzero_pivots; + } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of U. + */ + RealScalar maxPivot() const { return m_maxpivot; } + + /** \returns the permutation matrix P + * + * \sa permutationQ() + */ + EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_p; + } + + /** \returns the permutation matrix Q + * + * \sa permutationP() + */ + inline const PermutationQType& permutationQ() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_q; + } + + /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix + * will form a basis of the kernel. + * + * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + * + * Example: \include FullPivLU_kernel.cpp + * Output: \verbinclude FullPivLU_kernel.out + * + * \sa image() + */ + inline const internal::kernel_retval kernel() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return internal::kernel_retval(*this); + } + + /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix + * will form a basis of the image (column-space). + * + * \param originalMatrix the original matrix, of which *this is the LU decomposition. + * The reason why it is needed to pass it here, is that this allows + * a large optimization, as otherwise this method would need to reconstruct it + * from the LU decomposition. + * + * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + * + * Example: \include FullPivLU_image.cpp + * Output: \verbinclude FullPivLU_image.out + * + * \sa kernel() + */ + inline const internal::image_retval + image(const MatrixType& originalMatrix) const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return internal::image_retval(*this, originalMatrix); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \return a solution x to the equation Ax=b, where A is the matrix of which + * *this is the LU decomposition. + * + * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, + * the only requirement in order for the equation to make sense is that + * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. + * + * \returns a solution. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * \note_about_using_kernel_to_study_multiple_solutions + * + * Example: \include FullPivLU_solve.cpp + * Output: \verbinclude FullPivLU_solve.out + * + * \sa TriangularView::solve(), kernel(), inverse() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is + the LU decomposition. + */ + inline RealScalar rcond() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the determinant of the matrix of which + * *this is the LU decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the LU decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers + * optimized paths. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * + * \sa MatrixBase::determinant() + */ + typename internal::traits::Scalar determinant() const; + + /** Allows to prescribe a threshold to be used by certain methods, such as rank(), + * who need to determine when pivots are to be considered nonzero. This is not used for the + * LU decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). By default, this + * uses a formula to automatically determine a reasonable threshold. + * Once you have called the present method setThreshold(const RealScalar&), + * your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + FullPivLU& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code lu.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + FullPivLU& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + return m_usePrescribedThreshold ? m_prescribedThreshold + // this formula comes from experimenting (see "LU precision tuning" thread on the list) + // and turns out to be identical to Higham's formula used already in LDLt. + : NumTraits::epsilon() * RealScalar(m_lu.diagonalSize()); + } + + /** \returns the rank of the matrix of which *this is the LU decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + using std::abs; + eigen_assert(m_isInitialized && "LU is not initialized."); + RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); + Index result = 0; + for(Index i = 0; i < m_nonzero_pivots; ++i) + result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); + return result; + } + + /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return cols() - rank(); + } + + /** \returns true if the matrix of which *this is the LU decomposition represents an injective + * linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInjective() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return rank() == cols(); + } + + /** \returns true if the matrix of which *this is the LU decomposition represents a surjective + * linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isSurjective() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return rank() == rows(); + } + + /** \returns true if the matrix of which *this is the LU decomposition is invertible. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInvertible() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return isInjective() && (m_lu.rows() == m_lu.cols()); + } + + /** \returns the inverse of the matrix of which *this is the LU decomposition. + * + * \note If this matrix is not invertible, the returned matrix has undefined coefficients. + * Use isInvertible() to first determine whether this matrix is invertible. + * + * \sa MatrixBase::inverse() + */ + inline const Inverse inverse() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); + return Inverse(*this); + } + + MatrixType reconstructedMatrix() const; + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + void computeInPlace(); + + MatrixType m_lu; + PermutationPType m_p; + PermutationQType m_q; + IntColVectorType m_rowsTranspositions; + IntRowVectorType m_colsTranspositions; + Index m_nonzero_pivots; + RealScalar m_l1_norm; + RealScalar m_maxpivot, m_prescribedThreshold; + signed char m_det_pq; + bool m_isInitialized, m_usePrescribedThreshold; +}; + +template +FullPivLU::FullPivLU() + : m_isInitialized(false), m_usePrescribedThreshold(false) +{ +} + +template +FullPivLU::FullPivLU(Index rows, Index cols) + : m_lu(rows, cols), + m_p(rows), + m_q(cols), + m_rowsTranspositions(rows), + m_colsTranspositions(cols), + m_isInitialized(false), + m_usePrescribedThreshold(false) +{ +} + +template +template +FullPivLU::FullPivLU(const EigenBase& matrix) + : m_lu(matrix.rows(), matrix.cols()), + m_p(matrix.rows()), + m_q(matrix.cols()), + m_rowsTranspositions(matrix.rows()), + m_colsTranspositions(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) +{ + compute(matrix.derived()); +} + +template +template +FullPivLU::FullPivLU(EigenBase& matrix) + : m_lu(matrix.derived()), + m_p(matrix.rows()), + m_q(matrix.cols()), + m_rowsTranspositions(matrix.rows()), + m_colsTranspositions(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) +{ + computeInPlace(); +} + +template +void FullPivLU::computeInPlace() +{ + eigen_assert(m_lu.rows()<=NumTraits::highest() && m_lu.cols()<=NumTraits::highest()); + + m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); + + const Index size = m_lu.diagonalSize(); + const Index rows = m_lu.rows(); + const Index cols = m_lu.cols(); + + // will store the transpositions, before we accumulate them at the end. + // can't accumulate on-the-fly because that will be done in reverse order for the rows. + m_rowsTranspositions.resize(m_lu.rows()); + m_colsTranspositions.resize(m_lu.cols()); + Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i + + m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) + m_maxpivot = RealScalar(0); + + for(Index k = 0; k < size; ++k) + { + // First, we need to find the pivot. + + // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) + Index row_of_biggest_in_corner, col_of_biggest_in_corner; + typedef internal::scalar_score_coeff_op Scoring; + typedef typename Scoring::result_type Score; + Score biggest_in_corner; + biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) + .unaryExpr(Scoring()) + .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); + row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, + col_of_biggest_in_corner += k; // need to add k to them. + + if(numext::is_exactly_zero(biggest_in_corner)) + { + // before exiting, make sure to initialize the still uninitialized transpositions + // in a sane state without destroying what we already have. + m_nonzero_pivots = k; + for(Index i = k; i < size; ++i) + { + m_rowsTranspositions.coeffRef(i) = internal::convert_index(i); + m_colsTranspositions.coeffRef(i) = internal::convert_index(i); + } + break; + } + + RealScalar abs_pivot = internal::abs_knowing_score()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); + if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; + + // Now that we've found the pivot, we need to apply the row/col swaps to + // bring it to the location (k,k). + + m_rowsTranspositions.coeffRef(k) = internal::convert_index(row_of_biggest_in_corner); + m_colsTranspositions.coeffRef(k) = internal::convert_index(col_of_biggest_in_corner); + if(k != row_of_biggest_in_corner) { + m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); + ++number_of_transpositions; + } + if(k != col_of_biggest_in_corner) { + m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); + ++number_of_transpositions; + } + + // Now that the pivot is at the right location, we update the remaining + // bottom-right corner by Gaussian elimination. + + if(k= 0; --k) + m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); + + m_q.setIdentity(cols); + for(Index k = 0; k < size; ++k) + m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); + + m_det_pq = (number_of_transpositions%2) ? -1 : 1; + + m_isInitialized = true; +} + +template +typename internal::traits::Scalar FullPivLU::determinant() const +{ + eigen_assert(m_isInitialized && "LU is not initialized."); + eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); + return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. + * This function is provided for debug purposes. */ +template +MatrixType FullPivLU::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LU is not initialized."); + const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); + // LU + MatrixType res(m_lu.rows(),m_lu.cols()); + // FIXME the .toDenseMatrix() should not be needed... + res = m_lu.leftCols(smalldim) + .template triangularView().toDenseMatrix() + * m_lu.topRows(smalldim) + .template triangularView().toDenseMatrix(); + + // P^{-1}(LU) + res = m_p.inverse() * res; + + // (P^{-1}LU)Q^{-1} + res = res * m_q.inverse(); + + return res; +} + +/********* Implementation of kernel() **************************************************/ + +namespace internal { +template +struct kernel_retval > + : kernel_retval_base > +{ + using DecompositionType = FullPivLU; + EIGEN_MAKE_KERNEL_HELPERS(DecompositionType) + + enum { MaxSmallDimAtCompileTime = min_size_prefer_fixed( + MatrixType::MaxColsAtCompileTime, + MatrixType::MaxRowsAtCompileTime) + }; + + template void evalTo(Dest& dst) const + { + using std::abs; + const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); + if(dimker == 0) + { + // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's + // avoid crashing/asserting as that depends on floating point calculations. Let's + // just return a single column vector filled with zeros. + dst.setZero(); + return; + } + + /* Let us use the following lemma: + * + * Lemma: If the matrix A has the LU decomposition PAQ = LU, + * then Ker A = Q(Ker U). + * + * Proof: trivial: just keep in mind that P, Q, L are invertible. + */ + + /* Thus, all we need to do is to compute Ker U, and then apply Q. + * + * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. + * Thus, the diagonal of U ends with exactly + * dimKer zero's. Let us use that to construct dimKer linearly + * independent vectors in Ker U. + */ + + Matrix pivots(rank()); + RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); + Index p = 0; + for(Index i = 0; i < dec().nonzeroPivots(); ++i) + if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) + pivots.coeffRef(p++) = i; + eigen_internal_assert(p == rank()); + + // we construct a temporaty trapezoid matrix m, by taking the U matrix and + // permuting the rows and cols to bring the nonnegligible pivots to the top of + // the main diagonal. We need that to be able to apply our triangular solvers. + // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified + Matrix + m(dec().matrixLU().block(0, 0, rank(), cols)); + for(Index i = 0; i < rank(); ++i) + { + if(i) m.row(i).head(i).setZero(); + m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); + } + m.block(0, 0, rank(), rank()); + m.block(0, 0, rank(), rank()).template triangularView().setZero(); + for(Index i = 0; i < rank(); ++i) + m.col(i).swap(m.col(pivots.coeff(i))); + + // ok, we have our trapezoid matrix, we can apply the triangular solver. + // notice that the math behind this suggests that we should apply this to the + // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. + m.topLeftCorner(rank(), rank()) + .template triangularView().solveInPlace( + m.topRightCorner(rank(), dimker) + ); + + // now we must undo the column permutation that we had applied! + for(Index i = rank()-1; i >= 0; --i) + m.col(i).swap(m.col(pivots.coeff(i))); + + // see the negative sign in the next line, that's what we were talking about above. + for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); + for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); + for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); + } +}; + +/***** Implementation of image() *****************************************************/ + +template +struct image_retval > + : image_retval_base > +{ + using DecompositionType = FullPivLU; + EIGEN_MAKE_IMAGE_HELPERS(DecompositionType) + + enum { MaxSmallDimAtCompileTime = min_size_prefer_fixed( + MatrixType::MaxColsAtCompileTime, + MatrixType::MaxRowsAtCompileTime) + }; + + template void evalTo(Dest& dst) const + { + using std::abs; + if(rank() == 0) + { + // The Image is just {0}, so it doesn't have a basis properly speaking, but let's + // avoid crashing/asserting as that depends on floating point calculations. Let's + // just return a single column vector filled with zeros. + dst.setZero(); + return; + } + + Matrix pivots(rank()); + RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); + Index p = 0; + for(Index i = 0; i < dec().nonzeroPivots(); ++i) + if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) + pivots.coeffRef(p++) = i; + eigen_internal_assert(p == rank()); + + for(Index i = 0; i < rank(); ++i) + dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); + } +}; + +/***** Implementation of solve() *****************************************************/ + +} // end namespace internal + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void FullPivLU::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. + * So we proceed as follows: + * Step 1: compute c = P * rhs. + * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. + * Step 3: replace c by the solution x to Ux = c. May or may not exist. + * Step 4: result = Q * c; + */ + + const Index rows = this->rows(), + cols = this->cols(), + nonzero_pivots = this->rank(); + const Index smalldim = (std::min)(rows, cols); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); + + // Step 1 + c = permutationP() * rhs; + + // Step 2 + m_lu.topLeftCorner(smalldim,smalldim) + .template triangularView() + .solveInPlace(c.topRows(smalldim)); + if(rows>cols) + c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); + + // Step 3 + m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .solveInPlace(c.topRows(nonzero_pivots)); + + // Step 4 + for(Index i = 0; i < nonzero_pivots; ++i) + dst.row(permutationQ().indices().coeff(i)) = c.row(i); + for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) + dst.row(permutationQ().indices().coeff(i)).setZero(); +} + +template +template +void FullPivLU::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, + * and since permutations are real and unitary, we can write this + * as A^T = Q U^T L^T P, + * So we proceed as follows: + * Step 1: compute c = Q^T rhs. + * Step 2: replace c by the solution x to U^T x = c. May or may not exist. + * Step 3: replace c by the solution x to L^T x = c. + * Step 4: result = P^T c. + * If Conjugate is true, replace "^T" by "^*" above. + */ + + const Index rows = this->rows(), cols = this->cols(), + nonzero_pivots = this->rank(); + const Index smalldim = (std::min)(rows, cols); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); + + // Step 1 + c = permutationQ().inverse() * rhs; + + // Step 2 + m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .transpose() + .template conjugateIf() + .solveInPlace(c.topRows(nonzero_pivots)); + + // Step 3 + m_lu.topLeftCorner(smalldim, smalldim) + .template triangularView() + .transpose() + .template conjugateIf() + .solveInPlace(c.topRows(smalldim)); + + // Step 4 + PermutationPType invp = permutationP().inverse().eval(); + for(Index i = 0; i < smalldim; ++i) + dst.row(invp.indices().coeff(i)) = c.row(i); + for(Index i = smalldim; i < rows; ++i) + dst.row(invp.indices().coeff(i)).setZero(); +} + +#endif + +namespace internal { + + +/***** Implementation of inverse() *****************************************************/ +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef FullPivLU LuType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); + } +}; +} // end namespace internal + +/******* MatrixBase methods *****************************************************************/ + +/** \lu_module + * + * \return the full-pivoting LU decomposition of \c *this. + * + * \sa class FullPivLU + */ +template +template +inline const FullPivLU::PlainObject, PermutationIndex> +MatrixBase::fullPivLu() const +{ + return FullPivLU(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_LU_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/InternalHeaderCheck.h new file mode 100644 index 0000000..f346b17 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_LU_MODULE_H +#error "Please include Eigen/LU instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/InverseImpl.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/InverseImpl.h new file mode 100644 index 0000000..bcfe703 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/InverseImpl.h @@ -0,0 +1,434 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Benoit Jacob +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INVERSE_IMPL_H +#define EIGEN_INVERSE_IMPL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/********************************** +*** General case implementation *** +**********************************/ + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + result = matrix.partialPivLu().inverse(); + } +}; + +template +struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; + +/**************************** +*** Size 1 implementation *** +****************************/ + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + typedef typename MatrixType::Scalar Scalar; + internal::evaluator matrixEval(matrix); + result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0); + } +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& result, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + using std::abs; + determinant = matrix.coeff(0,0); + invertible = abs(determinant) > absDeterminantThreshold; + if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; + } +}; + +/**************************** +*** Size 2 implementation *** +****************************/ + +template +EIGEN_DEVICE_FUNC +inline void compute_inverse_size2_helper( + const MatrixType& matrix, const typename ResultType::Scalar& invdet, + ResultType& result) +{ + typename ResultType::Scalar temp = matrix.coeff(0,0); + result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; + result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; + result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; + result.coeffRef(1,1) = temp * invdet; +} + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + typedef typename ResultType::Scalar Scalar; + const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); + compute_inverse_size2_helper(matrix, invdet, result); + } +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + using std::abs; + typedef typename ResultType::Scalar Scalar; + determinant = matrix.determinant(); + invertible = abs(determinant) > absDeterminantThreshold; + if(!invertible) return; + const Scalar invdet = Scalar(1) / determinant; + compute_inverse_size2_helper(matrix, invdet, inverse); + } +}; + +/**************************** +*** Size 3 implementation *** +****************************/ + +template +EIGEN_DEVICE_FUNC +inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) +{ + enum { + i1 = (i+1) % 3, + i2 = (i+2) % 3, + j1 = (j+1) % 3, + j2 = (j+2) % 3 + }; + return m.coeff(i1, j1) * m.coeff(i2, j2) + - m.coeff(i1, j2) * m.coeff(i2, j1); +} + +template +EIGEN_DEVICE_FUNC +inline void compute_inverse_size3_helper( + const MatrixType& matrix, + const typename ResultType::Scalar& invdet, + const Matrix& cofactors_col0, + ResultType& result) +{ + // Compute cofactors in a way that avoids aliasing issues. + typedef typename ResultType::Scalar Scalar; + const Scalar c01 = cofactor_3x3(matrix) * invdet; + const Scalar c11 = cofactor_3x3(matrix) * invdet; + const Scalar c02 = cofactor_3x3(matrix) * invdet; + result.coeffRef(1,2) = cofactor_3x3(matrix) * invdet; + result.coeffRef(2,1) = cofactor_3x3(matrix) * invdet; + result.coeffRef(2,2) = cofactor_3x3(matrix) * invdet; + result.coeffRef(1,0) = c01; + result.coeffRef(1,1) = c11; + result.coeffRef(2,0) = c02; + result.row(0) = cofactors_col0 * invdet; +} + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + typedef typename ResultType::Scalar Scalar; + Matrix cofactors_col0; + cofactors_col0.coeffRef(0) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(1) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(2) = cofactor_3x3(matrix); + const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); + const Scalar invdet = Scalar(1) / det; + compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); + } +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + typedef typename ResultType::Scalar Scalar; + Matrix cofactors_col0; + cofactors_col0.coeffRef(0) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(1) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(2) = cofactor_3x3(matrix); + determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); + invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold; + if(!invertible) return; + const Scalar invdet = Scalar(1) / determinant; + compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); + } +}; + +/**************************** +*** Size 4 implementation *** +****************************/ + +template +EIGEN_DEVICE_FUNC +inline const typename Derived::Scalar general_det3_helper +(const MatrixBase& matrix, int i1, int i2, int i3, int j1, int j2, int j3) +{ + return matrix.coeff(i1,j1) + * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); +} + +template +EIGEN_DEVICE_FUNC +inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) +{ + enum { + i1 = (i+1) % 4, + i2 = (i+2) % 4, + i3 = (i+3) % 4, + j1 = (j+1) % 4, + j2 = (j+2) % 4, + j3 = (j+3) % 4 + }; + return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) + + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) + + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); +} + +template +struct compute_inverse_size4 +{ + EIGEN_DEVICE_FUNC + static void run(const MatrixType& matrix, ResultType& result) + { + result.coeffRef(0,0) = cofactor_4x4(matrix); + result.coeffRef(1,0) = -cofactor_4x4(matrix); + result.coeffRef(2,0) = cofactor_4x4(matrix); + result.coeffRef(3,0) = -cofactor_4x4(matrix); + result.coeffRef(0,2) = cofactor_4x4(matrix); + result.coeffRef(1,2) = -cofactor_4x4(matrix); + result.coeffRef(2,2) = cofactor_4x4(matrix); + result.coeffRef(3,2) = -cofactor_4x4(matrix); + result.coeffRef(0,1) = -cofactor_4x4(matrix); + result.coeffRef(1,1) = cofactor_4x4(matrix); + result.coeffRef(2,1) = -cofactor_4x4(matrix); + result.coeffRef(3,1) = cofactor_4x4(matrix); + result.coeffRef(0,3) = -cofactor_4x4(matrix); + result.coeffRef(1,3) = cofactor_4x4(matrix); + result.coeffRef(2,3) = -cofactor_4x4(matrix); + result.coeffRef(3,3) = cofactor_4x4(matrix); + result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); + } +}; + +template +struct compute_inverse + : compute_inverse_size4 +{ +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + using std::abs; + determinant = matrix.determinant(); + invertible = abs(determinant) > absDeterminantThreshold; + if(invertible && extract_data(matrix) != extract_data(inverse)) { + compute_inverse::run(matrix, inverse); + } + else if(invertible) { + MatrixType matrix_t = matrix; + compute_inverse::run(matrix_t, inverse); + } + } +}; + +/************************* +*** MatrixBase methods *** +*************************/ + +} // end namespace internal + +namespace internal { + +// Specialization for "dense = dense_xpr.inverse()" +template +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Inverse SrcXprType; + EIGEN_DEVICE_FUNC + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + const int Size = plain_enum_min(XprType::ColsAtCompileTime, DstXprType::ColsAtCompileTime); + EIGEN_ONLY_USED_FOR_DEBUG(Size); + eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst))) + && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); + + typedef typename internal::nested_eval::type ActualXprType; + typedef internal::remove_all_t ActualXprTypeCleanded; + + ActualXprType actual_xpr(src.nestedExpression()); + + compute_inverse::run(actual_xpr, dst); + } +}; + + +} // end namespace internal + +/** \lu_module + * + * \returns the matrix inverse of this matrix. + * + * For small fixed sizes up to 4x4, this method uses cofactors. + * In the general case, this method uses class PartialPivLU. + * + * \note This matrix must be invertible, otherwise the result is undefined. If you need an + * invertibility check, do the following: + * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). + * \li for the general case, use class FullPivLU. + * + * Example: \include MatrixBase_inverse.cpp + * Output: \verbinclude MatrixBase_inverse.out + * + * \sa computeInverseAndDetWithCheck() + */ +template +EIGEN_DEVICE_FUNC +inline const Inverse MatrixBase::inverse() const +{ + EIGEN_STATIC_ASSERT(!NumTraits::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) + eigen_assert(rows() == cols()); + return Inverse(derived()); +} + +/** \lu_module + * + * Computation of matrix inverse and determinant, with invertibility check. + * + * This is only for fixed-size square matrices of size up to 4x4. + * + * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. + * + * \param inverse Reference to the matrix in which to store the inverse. + * \param determinant Reference to the variable in which to store the determinant. + * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. + * \param absDeterminantThreshold Optional parameter controlling the invertibility check. + * The matrix will be declared invertible if the absolute value of its + * determinant is greater than this threshold. + * + * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp + * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out + * + * \sa inverse(), computeInverseWithCheck() + */ +template +template +inline void MatrixBase::computeInverseAndDetWithCheck( + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible, + const RealScalar& absDeterminantThreshold + ) const +{ + // i'd love to put some static assertions there, but SFINAE means that they have no effect... + eigen_assert(rows() == cols()); + // for 2x2, it's worth giving a chance to avoid evaluating. + // for larger sizes, evaluating has negligible cost and limits code size. + typedef std::conditional_t< + RowsAtCompileTime == 2, + internal::remove_all_t::type>, + PlainObject + > MatrixType; + internal::compute_inverse_and_det_with_check::run + (derived(), absDeterminantThreshold, inverse, determinant, invertible); +} + +/** \lu_module + * + * Computation of matrix inverse, with invertibility check. + * + * This is only for fixed-size square matrices of size up to 4x4. + * + * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. + * + * \param inverse Reference to the matrix in which to store the inverse. + * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. + * \param absDeterminantThreshold Optional parameter controlling the invertibility check. + * The matrix will be declared invertible if the absolute value of its + * determinant is greater than this threshold. + * + * Example: \include MatrixBase_computeInverseWithCheck.cpp + * Output: \verbinclude MatrixBase_computeInverseWithCheck.out + * + * \sa inverse(), computeInverseAndDetWithCheck() + */ +template +template +inline void MatrixBase::computeInverseWithCheck( + ResultType& inverse, + bool& invertible, + const RealScalar& absDeterminantThreshold + ) const +{ + Scalar determinant; + // i'd love to put some static assertions there, but SFINAE means that they have no effect... + eigen_assert(rows() == cols()); + computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); +} + +} // end namespace Eigen + +#endif // EIGEN_INVERSE_IMPL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/PartialPivLU.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/PartialPivLU.h new file mode 100644 index 0000000..bee7437 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/PartialPivLU.h @@ -0,0 +1,623 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2009 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARTIALLU_H +#define EIGEN_PARTIALLU_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template struct traits > + : traits +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef PermutationIndex_ StorageIndex; + typedef traits BaseTraits; + enum { + Flags = BaseTraits::Flags & RowMajorBit, + CoeffReadCost = Dynamic + }; +}; + +template +struct enable_if_ref; +// { +// typedef Derived type; +// }; + +template +struct enable_if_ref,Derived> { + typedef Derived type; +}; + +} // end namespace internal + +/** \ingroup LU_Module + * + * \class PartialPivLU + * + * \brief LU decomposition of a matrix with partial pivoting, and related features + * + * \tparam MatrixType_ the type of the matrix of which we are computing the LU decomposition + * + * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A + * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P + * is a permutation matrix. + * + * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible + * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class + * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the + * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. + * + * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided + * by class FullPivLU. + * + * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, + * such as rank computation. If you need these features, use class FullPivLU. + * + * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses + * in the general case. + * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. + * + * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU + */ +template class PartialPivLU + : public SolverBase > +{ + public: + + typedef MatrixType_ MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + using PermutationIndex = PermutationIndex_; + typedef PermutationMatrix PermutationType; + typedef Transpositions TranspositionType; + typedef typename MatrixType::PlainObject PlainObject; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via PartialPivLU::compute(const MatrixType&). + */ + PartialPivLU(); + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa PartialPivLU() + */ + explicit PartialPivLU(Index size); + + /** Constructor. + * + * \param matrix the matrix of which to compute the LU decomposition. + * + * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). + * If you need to deal with non-full rank, use class FullPivLU instead. + */ + template + explicit PartialPivLU(const EigenBase& matrix); + + /** Constructor for \link InplaceDecomposition inplace decomposition \endlink + * + * \param matrix the matrix of which to compute the LU decomposition. + * + * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). + * If you need to deal with non-full rank, use class FullPivLU instead. + */ + template + explicit PartialPivLU(EigenBase& matrix); + + template + PartialPivLU& compute(const EigenBase& matrix) { + m_lu = matrix.derived(); + compute(); + return *this; + } + + /** \returns the LU decomposition matrix: the upper-triangular part is U, the + * unit-lower-triangular part is L (at least for square matrices; in the non-square + * case, special care is needed, see the documentation of class FullPivLU). + * + * \sa matrixL(), matrixU() + */ + inline const MatrixType& matrixLU() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return m_lu; + } + + /** \returns the permutation matrix P. + */ + inline const PermutationType& permutationP() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return m_p; + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** This method returns the solution x to the equation Ax=b, where A is the matrix of which + * *this is the LU decomposition. + * + * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, + * the only requirement in order for the equation to make sense is that + * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. + * + * \returns the solution. + * + * Example: \include PartialPivLU_solve.cpp + * Output: \verbinclude PartialPivLU_solve.out + * + * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution + * theoretically exists and is unique regardless of b. + * + * \sa TriangularView::solve(), inverse(), computeInverse() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is + the LU decomposition. + */ + inline RealScalar rcond() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the inverse of the matrix of which *this is the LU decomposition. + * + * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for + * invertibility, use class FullPivLU instead. + * + * \sa MatrixBase::inverse(), LU::inverse() + */ + inline const Inverse inverse() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return Inverse(*this); + } + + /** \returns the determinant of the matrix of which + * *this is the LU decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the LU decomposition has already been computed. + * + * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers + * optimized paths. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * + * \sa MatrixBase::determinant() + */ + Scalar determinant() const; + + MatrixType reconstructedMatrix() const; + + EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } + EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC + void _solve_impl(const RhsType &rhs, DstType &dst) const { + /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. + * So we proceed as follows: + * Step 1: compute c = Pb. + * Step 2: replace c by the solution x to Lx = c. + * Step 3: replace c by the solution x to Ux = c. + */ + + // Step 1 + dst = permutationP() * rhs; + + // Step 2 + m_lu.template triangularView().solveInPlace(dst); + + // Step 3 + m_lu.template triangularView().solveInPlace(dst); + } + + template + EIGEN_DEVICE_FUNC + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { + /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P. + * So we proceed as follows: + * Step 1: compute c as the solution to L^T c = b + * Step 2: replace c by the solution x to U^T x = c. + * Step 3: update c = P^-1 c. + */ + + eigen_assert(rhs.rows() == m_lu.cols()); + + // Step 1 + dst = m_lu.template triangularView().transpose() + .template conjugateIf().solve(rhs); + // Step 2 + m_lu.template triangularView().transpose() + .template conjugateIf().solveInPlace(dst); + // Step 3 + dst = permutationP().transpose() * dst; + } + #endif + + protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + void compute(); + + MatrixType m_lu; + PermutationType m_p; + TranspositionType m_rowsTranspositions; + RealScalar m_l1_norm; + signed char m_det_p; + bool m_isInitialized; +}; + +template +PartialPivLU::PartialPivLU() + : m_lu(), + m_p(), + m_rowsTranspositions(), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ +} + +template +PartialPivLU::PartialPivLU(Index size) + : m_lu(size, size), + m_p(size), + m_rowsTranspositions(size), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ +} + +template +template +PartialPivLU::PartialPivLU(const EigenBase& matrix) + : m_lu(matrix.rows(),matrix.cols()), + m_p(matrix.rows()), + m_rowsTranspositions(matrix.rows()), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ + compute(matrix.derived()); +} + +template +template +PartialPivLU::PartialPivLU(EigenBase& matrix) + : m_lu(matrix.derived()), + m_p(matrix.rows()), + m_rowsTranspositions(matrix.rows()), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ + compute(); +} + +namespace internal { + +/** \internal This is the blocked version of fullpivlu_unblocked() */ +template +struct partial_lu_impl +{ + static constexpr int UnBlockedBound = 16; + static constexpr bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound; + static constexpr int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic; + // Remaining rows and columns at compile-time: + static constexpr int RRows = SizeAtCompileTime==2 ? 1 : Dynamic; + static constexpr int RCols = SizeAtCompileTime==2 ? 1 : Dynamic; + typedef Matrix MatrixType; + typedef Ref MatrixTypeRef; + typedef Ref > BlockType; + typedef typename MatrixType::RealScalar RealScalar; + + /** \internal performs the LU decomposition in-place of the matrix \a lu + * using an unblocked algorithm. + * + * In addition, this function returns the row transpositions in the + * vector \a row_transpositions which must have a size equal to the number + * of columns of the matrix \a lu, and an integer \a nb_transpositions + * which returns the actual number of transpositions. + * + * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. + */ + static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) + { + typedef scalar_score_coeff_op Scoring; + typedef typename Scoring::result_type Score; + const Index rows = lu.rows(); + const Index cols = lu.cols(); + const Index size = (std::min)(rows,cols); + // For small compile-time matrices it is worth processing the last row separately: + // speedup: +100% for 2x2, +10% for others. + const Index endk = UnBlockedAtCompileTime ? size-1 : size; + nb_transpositions = 0; + Index first_zero_pivot = -1; + for(Index k = 0; k < endk; ++k) + { + int rrows = internal::convert_index(rows-k-1); + int rcols = internal::convert_index(cols-k-1); + + Index row_of_biggest_in_col; + Score biggest_in_corner + = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); + row_of_biggest_in_col += k; + + row_transpositions[k] = PivIndex(row_of_biggest_in_col); + + if(!numext::is_exactly_zero(biggest_in_corner)) + { + if(k != row_of_biggest_in_col) + { + lu.row(k).swap(lu.row(row_of_biggest_in_col)); + ++nb_transpositions; + } + + lu.col(k).tail(fix(rrows)) /= lu.coeff(k,k); + } + else if(first_zero_pivot==-1) + { + // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, + // and continue the factorization such we still have A = PLU + first_zero_pivot = k; + } + + if(k(rrows),fix(rcols)).noalias() -= lu.col(k).tail(fix(rrows)) * lu.row(k).tail(fix(rcols)); + } + + // special handling of the last entry + if(UnBlockedAtCompileTime) + { + Index k = endk; + row_transpositions[k] = PivIndex(k); + if (numext::is_exactly_zero(Scoring()(lu(k, k))) && first_zero_pivot == -1) + first_zero_pivot = k; + } + + return first_zero_pivot; + } + + /** \internal performs the LU decomposition in-place of the matrix represented + * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a + * recursive, blocked algorithm. + * + * In addition, this function returns the row transpositions in the + * vector \a row_transpositions which must have a size equal to the number + * of columns of the matrix \a lu, and an integer \a nb_transpositions + * which returns the actual number of transpositions. + * + * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. + * + * \note This very low level interface using pointers, etc. is to: + * 1 - reduce the number of instantiations to the strict minimum + * 2 - avoid infinite recursion of the instantiations with Block > > + */ + static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) + { + MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride)); + + const Index size = (std::min)(rows,cols); + + // if the matrix is too small, no blocking: + if(UnBlockedAtCompileTime || size<=UnBlockedBound) + { + return unblocked_lu(lu, row_transpositions, nb_transpositions); + } + + // automatically adjust the number of subdivisions to the size + // of the matrix so that there is enough sub blocks: + Index blockSize; + { + blockSize = size/8; + blockSize = (blockSize/16)*16; + blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); + } + + nb_transpositions = 0; + Index first_zero_pivot = -1; + for(Index k = 0; k < size; k+=blockSize) + { + Index bs = (std::min)(size-k,blockSize); // actual size of the block + Index trows = rows - k - bs; // trailing rows + Index tsize = size - k - bs; // trailing size + + // partition the matrix: + // A00 | A01 | A02 + // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 + // A20 | A21 | A22 + BlockType A_0 = lu.block(0,0,rows,k); + BlockType A_2 = lu.block(0,k+bs,rows,tsize); + BlockType A11 = lu.block(k,k,bs,bs); + BlockType A12 = lu.block(k,k+bs,bs,tsize); + BlockType A21 = lu.block(k+bs,k,trows,bs); + BlockType A22 = lu.block(k+bs,k+bs,trows,tsize); + + PivIndex nb_transpositions_in_panel; + // recursively call the blocked LU algorithm on [A11^T A21^T]^T + // with a very small blocking size: + Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, + row_transpositions+k, nb_transpositions_in_panel, 16); + if(ret>=0 && first_zero_pivot==-1) + first_zero_pivot = k+ret; + + nb_transpositions += nb_transpositions_in_panel; + // update permutations and apply them to A_0 + for(Index i=k; i(k)); + A_0.row(i).swap(A_0.row(piv)); + } + + if(trows) + { + // apply permutations to A_2 + for(Index i=k;i().solveInPlace(A12); + + A22.noalias() -= A21 * A12; + } + } + return first_zero_pivot; + } +}; + +/** \internal performs the LU decomposition with partial pivoting in-place. + */ +template +void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) +{ + // Special-case of zero matrix. + if (lu.rows() == 0 || lu.cols() == 0) { + nb_transpositions = 0; + return; + } + eigen_assert(lu.cols() == row_transpositions.size()); + eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); + + partial_lu_impl + < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, + typename TranspositionType::StorageIndex, + internal::min_size_prefer_fixed(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)> + ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); +} + +} // end namespace internal + +template +void PartialPivLU::compute() +{ + eigen_assert(m_lu.rows()::highest()); + + if(m_lu.cols()>0) + m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); + else + m_l1_norm = RealScalar(0); + + eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); + const Index size = m_lu.rows(); + + m_rowsTranspositions.resize(size); + + typename TranspositionType::StorageIndex nb_transpositions; + internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); + m_det_p = (nb_transpositions%2) ? -1 : 1; + + m_p = m_rowsTranspositions; + + m_isInitialized = true; +} + +template +typename PartialPivLU::Scalar PartialPivLU::determinant() const +{ + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return Scalar(m_det_p) * m_lu.diagonal().prod(); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: P^{-1} L U. + * This function is provided for debug purpose. */ +template +MatrixType PartialPivLU::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LU is not initialized."); + // LU + MatrixType res = m_lu.template triangularView().toDenseMatrix() + * m_lu.template triangularView(); + + // P^{-1}(LU) + res = m_p.inverse() * res; + + return res; +} + +/***** Implementation details *****************************************************/ + +namespace internal { + +/***** Implementation of inverse() *****************************************************/ +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef PartialPivLU LuType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); + } +}; +} // end namespace internal + +/******** MatrixBase methods *******/ + +/** \lu_module + * + * \return the partial-pivoting LU decomposition of \c *this. + * + * \sa class PartialPivLU + */ +template +template +inline const PartialPivLU::PlainObject, PermutationIndex> +MatrixBase::partialPivLu() const +{ + return PartialPivLU(eval()); +} + +/** \lu_module + * + * Synonym of partialPivLu(). + * + * \return the partial-pivoting LU decomposition of \c *this. + * + * \sa class PartialPivLU + */ +template +template +inline const PartialPivLU::PlainObject, PermutationIndex> +MatrixBase::lu() const +{ + return PartialPivLU(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_PARTIALLU_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h new file mode 100644 index 0000000..b636442 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h @@ -0,0 +1,96 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * LU decomposition with partial pivoting based on LAPACKE_?getrf function. + ******************************************************************************** +*/ + +#ifndef EIGEN_PARTIALLU_LAPACK_H +#define EIGEN_PARTIALLU_LAPACK_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +namespace lapacke_helpers { +// ------------------------------------------------------------------------------------------------------------------- +// Generic lapacke partial lu implementation that converts arguments and dispatches to the function above +// ------------------------------------------------------------------------------------------------------------------- + +template +struct lapacke_partial_lu { + /** \internal performs the LU decomposition in-place of the matrix represented */ + static lapack_int blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, lapack_int* row_transpositions, + lapack_int& nb_transpositions, lapack_int maxBlockSize=256) + { + EIGEN_UNUSED_VARIABLE(maxBlockSize); + // Set up parameters for getrf + lapack_int matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; + lapack_int lda = to_lapack(luStride); + Scalar* a = lu_data; + lapack_int* ipiv = row_transpositions; + lapack_int m = to_lapack(rows); + lapack_int n = to_lapack(cols); + nb_transpositions = 0; + + lapack_int info = getrf(matrix_order, m, n, to_lapack(a), lda, ipiv ); + eigen_assert(info >= 0); + + for(int i=0; i \ +struct partial_lu_impl : public lapacke_helpers::lapacke_partial_lu {}; + +EIGEN_LAPACKE_PARTIAL_LU(double) +EIGEN_LAPACKE_PARTIAL_LU(float) +EIGEN_LAPACKE_PARTIAL_LU(std::complex) +EIGEN_LAPACKE_PARTIAL_LU(std::complex) + +#undef EIGEN_LAPACKE_PARTIAL_LU + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PARTIALLU_LAPACK_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/arch/InverseSize4.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/arch/InverseSize4.h new file mode 100644 index 0000000..25f4601 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/LU/arch/InverseSize4.h @@ -0,0 +1,365 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2001 Intel Corporation +// Copyright (C) 2010 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +// +// The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath. +// inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M, +// adjugate of M and determinant of M respectively. M# is computed block-wise +// using specific formulae. For proof, see: +// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html +// Variable names are adopted from \src\LU\Inverse_SSE.h. +// +// The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h +// comes from the following Intel's library: +// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ +// +// Here is the respective copyright and license statement: +// +// Copyright (c) 2001 Intel Corporation. +// +// Permition is granted to use, copy, distribute and prepare derivative works +// of this library for any purpose and without fee, provided, that the above +// copyright notice and this statement appear in all copies. +// Intel makes no representations about the suitability of this software for +// any purpose, and specifically disclaims all warranties. +// See LEGAL.TXT for all the legal information. +// +// TODO: Unify implementations of different data types (i.e. float and double). +#ifndef EIGEN_INVERSE_SIZE_4_H +#define EIGEN_INVERSE_SIZE_4_H + +#include "../InternalHeaderCheck.h" + +#if EIGEN_COMP_GNUC_STRICT +// These routines requires bit manipulation of the sign, which is not compatible +// with fastmath. +#pragma GCC push_options +#pragma GCC optimize ("no-fast-math") +#endif + +namespace Eigen +{ +namespace internal +{ +template +struct compute_inverse_size4 +{ + enum + { + MatrixAlignment = traits::Alignment, + ResultAlignment = traits::Alignment, + StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit) + }; + typedef std::conditional_t<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject> ActualMatrixType; + + static void run(const MatrixType &mat, ResultType &result) + { + ActualMatrixType matrix(mat); + + const float* data = matrix.data(); + const Index stride = matrix.innerStride(); + Packet4f L1 = ploadt(data); + Packet4f L2 = ploadt(data + stride*4); + Packet4f L3 = ploadt(data + stride*8); + Packet4f L4 = ploadt(data + stride*12); + + // Four 2x2 sub-matrices of the input matrix + // input = [[A, B], + // [C, D]] + Packet4f A, B, C, D; + + if (!StorageOrdersMatch) + { + A = vec4f_unpacklo(L1, L2); + B = vec4f_unpacklo(L3, L4); + C = vec4f_unpackhi(L1, L2); + D = vec4f_unpackhi(L3, L4); + } + else + { + A = vec4f_movelh(L1, L2); + B = vec4f_movehl(L2, L1); + C = vec4f_movelh(L3, L4); + D = vec4f_movehl(L4, L3); + } + + Packet4f AB, DC; + + // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product. + AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B); + AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1))); + + // DC = D#*C + DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C); + DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1))); + + // determinants of the sub-matrices + Packet4f dA, dB, dC, dD; + + dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A); + dA = psub(dA, vec4f_movehl(dA, dA)); + + dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B); + dB = psub(dB, vec4f_movehl(dB, dB)); + + dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C); + dC = psub(dC, vec4f_movehl(dC, dC)); + + dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D); + dD = psub(dD, vec4f_movehl(dD, dD)); + + Packet4f d, d1, d2; + + d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB); + d = padd(d, vec4f_movehl(d, d)); + d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0)); + d1 = pmul(dA, dD); + d2 = pmul(dB, dC); + + // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C) + Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0); + + // reciprocal of the determinant of the input matrix, rd = 1/det + Packet4f rd = preciprocal(det); + + // Four sub-matrices of the inverse + Packet4f iA, iB, iC, iD; + + // iD = D*|A| - C*A#*B + iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB)); + iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB))); + iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD); + + // iA = A*|D| - B*D#*C + iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC)); + iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC))); + iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA); + + // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A + iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0)); + iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1))); + iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB); + + // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D + iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0)); + iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1))); + iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC); + + EIGEN_ALIGN_MAX const float sign_mask[4] = {0.0f, -0.0f, -0.0f, 0.0f}; + const Packet4f p4f_sign_PNNP = pload(sign_mask); + rd = pxor(rd, p4f_sign_PNNP); + iA = pmul(iA, rd); + iB = pmul(iB, rd); + iC = pmul(iC, rd); + iD = pmul(iD, rd); + + Index res_stride = result.outerStride(); + float *res = result.data(); + + pstoret(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1)); + pstoret(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0)); + pstoret(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1)); + pstoret(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0)); + } +}; + +#if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG)) +// same algorithm as above, except that each operand is split into +// halves for two registers to hold. +template +struct compute_inverse_size4 +{ + enum + { + MatrixAlignment = traits::Alignment, + ResultAlignment = traits::Alignment, + StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit) + }; + typedef std::conditional_t<(MatrixType::Flags & LinearAccessBit), + MatrixType const &, + typename MatrixType::PlainObject> + ActualMatrixType; + + static void run(const MatrixType &mat, ResultType &result) + { + ActualMatrixType matrix(mat); + + // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower + // row e.g. A1, upper row of A, A2, lower row of A + // input = [[A, B], = [[[A1, [B1, + // [C, D]] A2], B2]], + // [[C1, [D1, + // C2], D2]]] + + Packet2d A1, A2, B1, B2, C1, C2, D1, D2; + + const double* data = matrix.data(); + const Index stride = matrix.innerStride(); + if (StorageOrdersMatch) + { + A1 = ploadt(data + stride*0); + B1 = ploadt(data + stride*2); + A2 = ploadt(data + stride*4); + B2 = ploadt(data + stride*6); + C1 = ploadt(data + stride*8); + D1 = ploadt(data + stride*10); + C2 = ploadt(data + stride*12); + D2 = ploadt(data + stride*14); + } + else + { + Packet2d temp; + A1 = ploadt(data + stride*0); + C1 = ploadt(data + stride*2); + A2 = ploadt(data + stride*4); + C2 = ploadt(data + stride*6); + temp = A1; + A1 = vec2d_unpacklo(A1, A2); + A2 = vec2d_unpackhi(temp, A2); + + temp = C1; + C1 = vec2d_unpacklo(C1, C2); + C2 = vec2d_unpackhi(temp, C2); + + B1 = ploadt(data + stride*8); + D1 = ploadt(data + stride*10); + B2 = ploadt(data + stride*12); + D2 = ploadt(data + stride*14); + + temp = B1; + B1 = vec2d_unpacklo(B1, B2); + B2 = vec2d_unpackhi(temp, B2); + + temp = D1; + D1 = vec2d_unpacklo(D1, D2); + D2 = vec2d_unpackhi(temp, D2); + } + + // determinants of the sub-matrices + Packet2d dA, dB, dC, dD; + + dA = vec2d_swizzle2(A2, A2, 1); + dA = pmul(A1, dA); + dA = psub(dA, vec2d_duplane(dA, 1)); + + dB = vec2d_swizzle2(B2, B2, 1); + dB = pmul(B1, dB); + dB = psub(dB, vec2d_duplane(dB, 1)); + + dC = vec2d_swizzle2(C2, C2, 1); + dC = pmul(C1, dC); + dC = psub(dC, vec2d_duplane(dC, 1)); + + dD = vec2d_swizzle2(D2, D2, 1); + dD = pmul(D1, dD); + dD = psub(dD, vec2d_duplane(dD, 1)); + + Packet2d DC1, DC2, AB1, AB2; + + // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product. + AB1 = pmul(B1, vec2d_duplane(A2, 1)); + AB2 = pmul(B2, vec2d_duplane(A1, 0)); + AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1))); + AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0))); + + // DC = D#*C + DC1 = pmul(C1, vec2d_duplane(D2, 1)); + DC2 = pmul(C2, vec2d_duplane(D1, 0)); + DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1))); + DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0))); + + Packet2d d1, d2; + + // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C) + Packet2d det; + + // reciprocal of the determinant of the input matrix, rd = 1/det + Packet2d rd; + + d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0)); + d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3)); + rd = padd(d1, d2); + rd = padd(rd, vec2d_duplane(rd, 1)); + + d1 = pmul(dA, dD); + d2 = pmul(dB, dC); + + det = padd(d1, d2); + det = psub(det, rd); + det = vec2d_duplane(det, 0); + rd = pdiv(pset1(1.0), det); + + // rows of four sub-matrices of the inverse + Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2; + + // iD = D*|A| - C*A#*B + iD1 = pmul(AB1, vec2d_duplane(C1, 0)); + iD2 = pmul(AB1, vec2d_duplane(C2, 0)); + iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1))); + iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1))); + dA = vec2d_duplane(dA, 0); + iD1 = psub(pmul(D1, dA), iD1); + iD2 = psub(pmul(D2, dA), iD2); + + // iA = A*|D| - B*D#*C + iA1 = pmul(DC1, vec2d_duplane(B1, 0)); + iA2 = pmul(DC1, vec2d_duplane(B2, 0)); + iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1))); + iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1))); + dD = vec2d_duplane(dD, 0); + iA1 = psub(pmul(A1, dD), iA1); + iA2 = psub(pmul(A2, dD), iA2); + + // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A + iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1)); + iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1)); + iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2))); + iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2))); + dB = vec2d_duplane(dB, 0); + iB1 = psub(pmul(C1, dB), iB1); + iB2 = psub(pmul(C2, dB), iB2); + + // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D + iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1)); + iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1)); + iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2))); + iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2))); + dC = vec2d_duplane(dC, 0); + iC1 = psub(pmul(B1, dC), iC1); + iC2 = psub(pmul(B2, dC), iC2); + + EIGEN_ALIGN_MAX const double sign_mask1[2] = {0.0, -0.0}; + EIGEN_ALIGN_MAX const double sign_mask2[2] = {-0.0, 0.0}; + const Packet2d sign_PN = pload(sign_mask1); + const Packet2d sign_NP = pload(sign_mask2); + d1 = pxor(rd, sign_PN); + d2 = pxor(rd, sign_NP); + + Index res_stride = result.outerStride(); + double *res = result.data(); + pstoret(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1)); + pstoret(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2)); + pstoret(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1)); + pstoret(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2)); + pstoret(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1)); + pstoret(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2)); + pstoret(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1)); + pstoret(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2)); + } +}; +#endif +} // namespace internal +} // namespace Eigen + +#if EIGEN_COMP_GNUC_STRICT +#pragma GCC pop_options +#endif + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/MetisSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/MetisSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..9d34825 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/MetisSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_METISSUPPORT_MODULE_H +#error "Please include Eigen/MetisSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/MetisSupport/MetisSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/MetisSupport/MetisSupport.h new file mode 100644 index 0000000..c5e143b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/MetisSupport/MetisSupport.h @@ -0,0 +1,139 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +#ifndef METIS_SUPPORT_H +#define METIS_SUPPORT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +/** + * Get the fill-reducing ordering from the METIS package + * + * If A is the original matrix and Ap is the permuted matrix, + * the fill-reducing permutation is defined as follows : + * Row (column) i of A is the matperm(i) row (column) of Ap. + * WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm) + */ +template +class MetisOrdering +{ +public: + typedef PermutationMatrix PermutationType; + typedef Matrix IndexVector; + + template + void get_symmetrized_graph(const MatrixType& A) + { + Index m = A.cols(); + eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES"); + // Get the transpose of the input matrix + MatrixType At = A.transpose(); + // Get the number of nonzeros elements in each row/col of At+A + Index TotNz = 0; + IndexVector visited(m); + visited.setConstant(-1); + for (StorageIndex j = 0; j < m; j++) + { + // Compute the union structure of of A(j,:) and At(j,:) + visited(j) = j; // Do not include the diagonal element + // Get the nonzeros in row/column j of A + for (typename MatrixType::InnerIterator it(A, j); it; ++it) + { + Index idx = it.index(); // Get the row index (for column major) or column index (for row major) + if (visited(idx) != j ) + { + visited(idx) = j; + ++TotNz; + } + } + //Get the nonzeros in row/column j of At + for (typename MatrixType::InnerIterator it(At, j); it; ++it) + { + Index idx = it.index(); + if(visited(idx) != j) + { + visited(idx) = j; + ++TotNz; + } + } + } + // Reserve place for A + At + m_indexPtr.resize(m+1); + m_innerIndices.resize(TotNz); + + // Now compute the real adjacency list of each column/row + visited.setConstant(-1); + StorageIndex CurNz = 0; + for (StorageIndex j = 0; j < m; j++) + { + m_indexPtr(j) = CurNz; + + visited(j) = j; // Do not include the diagonal element + // Add the pattern of row/column j of A to A+At + for (typename MatrixType::InnerIterator it(A,j); it; ++it) + { + StorageIndex idx = it.index(); // Get the row index (for column major) or column index (for row major) + if (visited(idx) != j ) + { + visited(idx) = j; + m_innerIndices(CurNz) = idx; + CurNz++; + } + } + //Add the pattern of row/column j of At to A+At + for (typename MatrixType::InnerIterator it(At, j); it; ++it) + { + StorageIndex idx = it.index(); + if(visited(idx) != j) + { + visited(idx) = j; + m_innerIndices(CurNz) = idx; + ++CurNz; + } + } + } + m_indexPtr(m) = CurNz; + } + + template + void operator() (const MatrixType& A, PermutationType& matperm) + { + StorageIndex m = internal::convert_index(A.cols()); // must be StorageIndex, because it is passed by address to METIS + IndexVector perm(m),iperm(m); + // First, symmetrize the matrix graph. + get_symmetrized_graph(A); + int output_error; + + // Call the fill-reducing routine from METIS + output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data()); + + if(output_error != METIS_OK) + { + //FIXME The ordering interface should define a class of possible errors + std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n"; + return; + } + + // Get the fill-reducing permutation + //NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows + // Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap + + matperm.resize(m); + for (int j = 0; j < m; j++) + matperm.indices()(iperm(j)) = j; + + } + + protected: + IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column + IndexVector m_innerIndices; // Adjacency list +}; + +}// end namespace eigen +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Amd.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Amd.h new file mode 100644 index 0000000..5bd531c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Amd.h @@ -0,0 +1,437 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* +NOTE: this routine has been adapted from the CSparse library: + +Copyright (c) 2006, Timothy A. Davis. +http://www.suitesparse.com + +The author of CSparse, Timothy A. Davis., has executed a license with Google LLC +to permit distribution of this code and derivative works as part of Eigen under +the Mozilla Public License v. 2.0, as stated at the top of this file. +*/ + +#ifndef EIGEN_SPARSE_AMD_H +#define EIGEN_SPARSE_AMD_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template inline T amd_flip(const T& i) { return -i-2; } +template inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; } +template inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; } +template inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); } + +/* clear w */ +template +static StorageIndex cs_wclear (StorageIndex mark, StorageIndex lemax, StorageIndex *w, StorageIndex n) +{ + StorageIndex k; + if(mark < 2 || (mark + lemax < 0)) + { + for(k = 0; k < n; k++) + if(w[k] != 0) + w[k] = 1; + mark = 2; + } + return (mark); /* at this point, w[0..n-1] < mark holds */ +} + +/* depth-first search and postorder of a tree rooted at node j */ +template +StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const StorageIndex *next, StorageIndex *post, StorageIndex *stack) +{ + StorageIndex i, p, top = 0; + if(!head || !next || !post || !stack) return (-1); /* check inputs */ + stack[0] = j; /* place j on the stack */ + while (top >= 0) /* while (stack is not empty) */ + { + p = stack[top]; /* p = top of stack */ + i = head[p]; /* i = youngest child of p */ + if(i == -1) + { + top--; /* p has no unordered children left */ + post[k++] = p; /* node p is the kth postordered node */ + } + else + { + head[p] = next[i]; /* remove i from children of p */ + stack[++top] = i; /* start dfs on child node i */ + } + } + return k; +} + + +/** \internal + * \ingroup OrderingMethods_Module + * Approximate minimum degree ordering algorithm. + * + * \param[in] C the input selfadjoint matrix stored in compressed column major format. + * \param[out] perm the permutation P reducing the fill-in of the input matrix \a C + * + * Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well as the diagonal entries. + * On exit the values of C are destroyed */ +template +void minimum_degree_ordering(SparseMatrix& C, PermutationMatrix& perm) +{ + using std::sqrt; + + StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, + k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, + ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h; + + StorageIndex n = StorageIndex(C.cols()); + dense = std::max (16, StorageIndex(10 * sqrt(double(n)))); /* find dense threshold */ + dense = (std::min)(n-2, dense); + + StorageIndex cnz = StorageIndex(C.nonZeros()); + perm.resize(n+1); + t = cnz + cnz/5 + 2*n; /* add elbow room to C */ + C.resizeNonZeros(t); + + // get workspace + ei_declare_aligned_stack_constructed_variable(StorageIndex,W,8*(n+1),0); + StorageIndex* len = W; + StorageIndex* nv = W + (n+1); + StorageIndex* next = W + 2*(n+1); + StorageIndex* head = W + 3*(n+1); + StorageIndex* elen = W + 4*(n+1); + StorageIndex* degree = W + 5*(n+1); + StorageIndex* w = W + 6*(n+1); + StorageIndex* hhead = W + 7*(n+1); + StorageIndex* last = perm.indices().data(); /* use P as workspace for last */ + + /* --- Initialize quotient graph ---------------------------------------- */ + StorageIndex* Cp = C.outerIndexPtr(); + StorageIndex* Ci = C.innerIndexPtr(); + for(k = 0; k < n; k++) + len[k] = Cp[k+1] - Cp[k]; + len[n] = 0; + nzmax = t; + + for(i = 0; i <= n; i++) + { + head[i] = -1; // degree list i is empty + last[i] = -1; + next[i] = -1; + hhead[i] = -1; // hash list i is empty + nv[i] = 1; // node i is just one node + w[i] = 1; // node i is alive + elen[i] = 0; // Ek of node i is empty + degree[i] = len[i]; // degree of node i + } + mark = internal::cs_wclear(0, 0, w, n); /* clear w */ + + /* --- Initialize degree lists ------------------------------------------ */ + for(i = 0; i < n; i++) + { + bool has_diag = false; + for(p = Cp[i]; p dense || !has_diag) /* node i is dense or has no structural diagonal element */ + { + nv[i] = 0; /* absorb i into element n */ + elen[i] = -1; /* node i is dead */ + nel++; + Cp[i] = amd_flip (n); + nv[n]++; + } + else + { + if(head[d] != -1) last[head[d]] = i; + next[i] = head[d]; /* put node i in degree list d */ + head[d] = i; + } + } + + elen[n] = -2; /* n is a dead element */ + Cp[n] = -1; /* n is a root of assembly tree */ + w[n] = 0; /* n is a dead element */ + + while (nel < n) /* while (selecting pivots) do */ + { + /* --- Select node of minimum approximate degree -------------------- */ + for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {} + if(next[k] != -1) last[next[k]] = -1; + head[mindeg] = next[k]; /* remove k from degree list */ + elenk = elen[k]; /* elenk = |Ek| */ + nvk = nv[k]; /* # of nodes k represents */ + nel += nvk; /* nv[k] nodes of A eliminated */ + + /* --- Garbage collection ------------------------------------------- */ + if(elenk > 0 && cnz + mindeg >= nzmax) + { + for(j = 0; j < n; j++) + { + if((p = Cp[j]) >= 0) /* j is a live node or element */ + { + Cp[j] = Ci[p]; /* save first entry of object */ + Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */ + } + } + for(q = 0, p = 0; p < cnz; ) /* scan all of memory */ + { + if((j = amd_flip (Ci[p++])) >= 0) /* found object j */ + { + Ci[q] = Cp[j]; /* restore first entry of object */ + Cp[j] = q++; /* new pointer to object j */ + for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++]; + } + } + cnz = q; /* Ci[cnz...nzmax-1] now free */ + } + + /* --- Construct new element ---------------------------------------- */ + dk = 0; + nv[k] = -nvk; /* flag k as in Lk */ + p = Cp[k]; + pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */ + pk2 = pk1; + for(k1 = 1; k1 <= elenk + 1; k1++) + { + if(k1 > elenk) + { + e = k; /* search the nodes in k */ + pj = p; /* list of nodes starts at Ci[pj]*/ + ln = len[k] - elenk; /* length of list of nodes in k */ + } + else + { + e = Ci[p++]; /* search the nodes in e */ + pj = Cp[e]; + ln = len[e]; /* length of list of nodes in e */ + } + for(k2 = 1; k2 <= ln; k2++) + { + i = Ci[pj++]; + if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ + dk += nvi; /* degree[Lk] += size of node i */ + nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/ + Ci[pk2++] = i; /* place i in Lk */ + if(next[i] != -1) last[next[i]] = last[i]; + if(last[i] != -1) /* remove i from degree list */ + { + next[last[i]] = next[i]; + } + else + { + head[degree[i]] = next[i]; + } + } + if(e != k) + { + Cp[e] = amd_flip (k); /* absorb e into k */ + w[e] = 0; /* e is now a dead element */ + } + } + if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */ + degree[k] = dk; /* external degree of k - |Lk\i| */ + Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */ + len[k] = pk2 - pk1; + elen[k] = -2; /* k is now an element */ + + /* --- Find set differences ----------------------------------------- */ + mark = internal::cs_wclear(mark, lemax, w, n); /* clear w if necessary */ + for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */ + { + i = Ci[pk]; + if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */ + nvi = -nv[i]; /* nv[i] was negated */ + wnvi = mark - nvi; + for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */ + { + e = Ci[p]; + if(w[e] >= mark) + { + w[e] -= nvi; /* decrement |Le\Lk| */ + } + else if(w[e] != 0) /* ensure e is a live element */ + { + w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ + } + } + } + + /* --- Degree update ------------------------------------------------ */ + for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */ + { + i = Ci[pk]; /* consider node i in Lk */ + p1 = Cp[i]; + p2 = p1 + elen[i] - 1; + pn = p1; + for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */ + { + e = Ci[p]; + if(w[e] != 0) /* e is an unabsorbed element */ + { + dext = w[e] - mark; /* dext = |Le\Lk| */ + if(dext > 0) + { + d += dext; /* sum up the set differences */ + Ci[pn++] = e; /* keep e in Ei */ + h += e; /* compute the hash of node i */ + } + else + { + Cp[e] = amd_flip (k); /* aggressive absorb. e->k */ + w[e] = 0; /* e is a dead element */ + } + } + } + elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */ + p3 = pn; + p4 = p1 + len[i]; + for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */ + { + j = Ci[p]; + if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ + d += nvj; /* degree(i) += |j| */ + Ci[pn++] = j; /* place j in node list of i */ + h += j; /* compute hash for node i */ + } + if(d == 0) /* check for mass elimination */ + { + Cp[i] = amd_flip (k); /* absorb i into k */ + nvi = -nv[i]; + dk -= nvi; /* |Lk| -= |i| */ + nvk += nvi; /* |k| += nv[i] */ + nel += nvi; + nv[i] = 0; + elen[i] = -1; /* node i is dead */ + } + else + { + degree[i] = std::min (degree[i], d); /* update degree(i) */ + Ci[pn] = Ci[p3]; /* move first node to end */ + Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */ + Ci[p1] = k; /* add k as 1st element in of Ei */ + len[i] = pn - p1 + 1; /* new len of adj. list of node i */ + h %= n; /* finalize hash of i */ + next[i] = hhead[h]; /* place i in hash bucket */ + hhead[h] = i; + last[i] = h; /* save hash of i in last[i] */ + } + } /* scan2 is done */ + degree[k] = dk; /* finalize |Lk| */ + lemax = std::max(lemax, dk); + mark = internal::cs_wclear(mark+lemax, lemax, w, n); /* clear w */ + + /* --- Supernode detection ------------------------------------------ */ + for(pk = pk1; pk < pk2; pk++) + { + i = Ci[pk]; + if(nv[i] >= 0) continue; /* skip if i is dead */ + h = last[i]; /* scan hash bucket of node i */ + i = hhead[h]; + hhead[h] = -1; /* hash bucket will be empty */ + for(; i != -1 && next[i] != -1; i = next[i], mark++) + { + ln = len[i]; + eln = elen[i]; + for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark; + jlast = i; + for(j = next[i]; j != -1; ) /* compare i with all j */ + { + ok = (len[j] == ln) && (elen[j] == eln); + for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) + { + if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/ + } + if(ok) /* i and j are identical */ + { + Cp[j] = amd_flip (i); /* absorb j into i */ + nv[i] += nv[j]; + nv[j] = 0; + elen[j] = -1; /* node j is dead */ + j = next[j]; /* delete j from hash bucket */ + next[jlast] = j; + } + else + { + jlast = j; /* j and i are different */ + j = next[j]; + } + } + } + } + + /* --- Finalize new element------------------------------------------ */ + for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */ + { + i = Ci[pk]; + if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */ + nv[i] = nvi; /* restore nv[i] */ + d = degree[i] + dk - nvi; /* compute external degree(i) */ + d = std::min (d, n - nel - nvi); + if(head[d] != -1) last[head[d]] = i; + next[i] = head[d]; /* put i back in degree list */ + last[i] = -1; + head[d] = i; + mindeg = std::min (mindeg, d); /* find new minimum degree */ + degree[i] = d; + Ci[p++] = i; /* place i in Lk */ + } + nv[k] = nvk; /* # nodes absorbed into k */ + if((len[k] = p-pk1) == 0) /* length of adj list of element k*/ + { + Cp[k] = -1; /* k is a root of the tree */ + w[k] = 0; /* k is now a dead element */ + } + if(elenk != 0) cnz = p; /* free unused space in Lk */ + } + + /* --- Postordering ----------------------------------------------------- */ + for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */ + for(j = 0; j <= n; j++) head[j] = -1; + for(j = n; j >= 0; j--) /* place unordered nodes in lists */ + { + if(nv[j] > 0) continue; /* skip if j is an element */ + next[j] = head[Cp[j]]; /* place j in list of its parent */ + head[Cp[j]] = j; + } + for(e = n; e >= 0; e--) /* place elements in lists */ + { + if(nv[e] <= 0) continue; /* skip unless e is an element */ + if(Cp[e] != -1) + { + next[e] = head[Cp[e]]; /* place e in list of its parent */ + head[Cp[e]] = e; + } + } + for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */ + { + if(Cp[i] == -1) k = internal::cs_tdfs(i, k, head, next, perm.indices().data(), w); + } + + perm.indices().conservativeResize(n); +} + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_AMD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h new file mode 100644 index 0000000..8e339a7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h @@ -0,0 +1,1863 @@ +// // This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Desire Nuentsa Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is modified from the colamd/symamd library. The copyright is below + +// The authors of the code itself are Stefan I. Larimore and Timothy A. +// Davis (davis@cise.ufl.edu), University of Florida. The algorithm was +// developed in collaboration with John Gilbert, Xerox PARC, and Esmond +// Ng, Oak Ridge National Laboratory. +// +// Date: +// +// September 8, 2003. Version 2.3. +// +// Acknowledgements: +// +// This work was supported by the National Science Foundation, under +// grants DMS-9504974 and DMS-9803599. +// +// Notice: +// +// Copyright (c) 1998-2003 by the University of Florida. +// All Rights Reserved. +// +// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY +// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. +// +// Permission is hereby granted to use, copy, modify, and/or distribute +// this program, provided that the Copyright, this License, and the +// Availability of the original version is retained on all copies and made +// accessible to the end-user of any code or package that includes COLAMD +// or any modified version of COLAMD. +// +// Availability: +// +// The colamd/symamd library is available at +// +// http://www.suitesparse.com + + +#ifndef EIGEN_COLAMD_H +#define EIGEN_COLAMD_H + +namespace internal { + +namespace Colamd { + +/* Ensure that debugging is turned off: */ +#ifndef COLAMD_NDEBUG +#define COLAMD_NDEBUG +#endif /* NDEBUG */ + + +/* ========================================================================== */ +/* === Knob and statistics definitions ====================================== */ +/* ========================================================================== */ + +/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */ +const int NKnobs = 20; + +/* number of output statistics. Only stats [0..6] are currently used. */ +const int NStats = 20; + +/* Indices into knobs and stats array. */ +enum KnobsStatsIndex { + /* knobs [0] and stats [0]: dense row knob and output statistic. */ + DenseRow = 0, + + /* knobs [1] and stats [1]: dense column knob and output statistic. */ + DenseCol = 1, + + /* stats [2]: memory defragmentation count output statistic */ + DefragCount = 2, + + /* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */ + Status = 3, + + /* stats [4..6]: error info, or info on jumbled columns */ + Info1 = 4, + Info2 = 5, + Info3 = 6 +}; + +/* error codes returned in stats [3]: */ +enum Status { + Ok = 0, + OkButJumbled = 1, + ErrorANotPresent = -1, + ErrorPNotPresent = -2, + ErrorNrowNegative = -3, + ErrorNcolNegative = -4, + ErrorNnzNegative = -5, + ErrorP0Nonzero = -6, + ErrorATooSmall = -7, + ErrorColLengthNegative = -8, + ErrorRowIndexOutOfBounds = -9, + ErrorOutOfMemory = -10, + ErrorInternalError = -999 +}; +/* ========================================================================== */ +/* === Definitions ========================================================== */ +/* ========================================================================== */ + +template +IndexType ones_complement(const IndexType r) { + return (-(r)-1); +} + +/* -------------------------------------------------------------------------- */ +const int Empty = -1; + +/* Row and column status */ +enum RowColumnStatus { + Alive = 0, + Dead = -1 +}; + +/* Column status */ +enum ColumnStatus { + DeadPrincipal = -1, + DeadNonPrincipal = -2 +}; + +/* ========================================================================== */ +/* === Colamd reporting mechanism =========================================== */ +/* ========================================================================== */ + +// == Row and Column structures == +template +struct ColStructure +{ + IndexType start ; /* index for A of first row in this column, or Dead */ + /* if column is dead */ + IndexType length ; /* number of rows in this column */ + union + { + IndexType thickness ; /* number of original columns represented by this */ + /* col, if the column is alive */ + IndexType parent ; /* parent in parent tree super-column structure, if */ + /* the column is dead */ + } shared1 ; + union + { + IndexType score ; /* the score used to maintain heap, if col is alive */ + IndexType order ; /* pivot ordering of this column, if col is dead */ + } shared2 ; + union + { + IndexType headhash ; /* head of a hash bucket, if col is at the head of */ + /* a degree list */ + IndexType hash ; /* hash value, if col is not in a degree list */ + IndexType prev ; /* previous column in degree list, if col is in a */ + /* degree list (but not at the head of a degree list) */ + } shared3 ; + union + { + IndexType degree_next ; /* next column, if col is in a degree list */ + IndexType hash_next ; /* next column, if col is in a hash list */ + } shared4 ; + + inline bool is_dead() const { return start < Alive; } + + inline bool is_alive() const { return start >= Alive; } + + inline bool is_dead_principal() const { return start == DeadPrincipal; } + + inline void kill_principal() { start = DeadPrincipal; } + + inline void kill_non_principal() { start = DeadNonPrincipal; } + +}; + +template +struct RowStructure +{ + IndexType start ; /* index for A of first col in this row */ + IndexType length ; /* number of principal columns in this row */ + union + { + IndexType degree ; /* number of principal & non-principal columns in row */ + IndexType p ; /* used as a row pointer in init_rows_cols () */ + } shared1 ; + union + { + IndexType mark ; /* for computing set differences and marking dead rows*/ + IndexType first_column ;/* first column in row (used in garbage collection) */ + } shared2 ; + + inline bool is_dead() const { return shared2.mark < Alive; } + + inline bool is_alive() const { return shared2.mark >= Alive; } + + inline void kill() { shared2.mark = Dead; } + +}; + +/* ========================================================================== */ +/* === Colamd recommended memory size ======================================= */ +/* ========================================================================== */ + +/* + The recommended length Alen of the array A passed to colamd is given by + the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any + argument is negative. 2*nnz space is required for the row and column + indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is + required for the Col and Row arrays, respectively, which are internal to + colamd. An additional n_col space is the minimal amount of "elbow room", + and nnz/5 more space is recommended for run time efficiency. + + This macro is not needed when using symamd. + + Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid + gcc -pedantic warning messages. +*/ +template +inline IndexType colamd_c(IndexType n_col) +{ return IndexType( ((n_col) + 1) * sizeof (ColStructure) / sizeof (IndexType) ) ; } + +template +inline IndexType colamd_r(IndexType n_row) +{ return IndexType(((n_row) + 1) * sizeof (RowStructure) / sizeof (IndexType)); } + +// Prototypes of non-user callable routines +template +static IndexType init_rows_cols (IndexType n_row, IndexType n_col, RowStructure Row [], ColStructure col [], IndexType A [], IndexType p [], IndexType stats[NStats] ); + +template +static void init_scoring (IndexType n_row, IndexType n_col, RowStructure Row [], ColStructure Col [], IndexType A [], IndexType head [], double knobs[NKnobs], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg); + +template +static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, RowStructure Row [], ColStructure Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree); + +template +static void order_children (IndexType n_col, ColStructure Col [], IndexType p []); + +template +static void detect_super_cols (ColStructure Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ; + +template +static IndexType garbage_collection (IndexType n_row, IndexType n_col, RowStructure Row [], ColStructure Col [], IndexType A [], IndexType *pfree) ; + +template +static inline IndexType clear_mark (IndexType n_row, RowStructure Row [] ) ; + +/* === No debugging ========================================================= */ + +#define COLAMD_DEBUG0(params) ; +#define COLAMD_DEBUG1(params) ; +#define COLAMD_DEBUG2(params) ; +#define COLAMD_DEBUG3(params) ; +#define COLAMD_DEBUG4(params) ; + +#define COLAMD_ASSERT(expression) ((void) 0) + + +/** + * \brief Returns the recommended value of Alen + * + * Returns recommended value of Alen for use by colamd. + * Returns -1 if any input argument is negative. + * The use of this routine or macro is optional. + * Note that the macro uses its arguments more than once, + * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED. + * + * \param nnz nonzeros in A + * \param n_row number of rows in A + * \param n_col number of columns in A + * \return recommended value of Alen for use by colamd + */ +template +inline IndexType recommended ( IndexType nnz, IndexType n_row, IndexType n_col) +{ + if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) + return (-1); + else + return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); +} + +/** + * \brief set default parameters The use of this routine is optional. + * + * Colamd: rows with more than (knobs [DenseRow] * n_col) + * entries are removed prior to ordering. Columns with more than + * (knobs [DenseCol] * n_row) entries are removed prior to + * ordering, and placed last in the output column ordering. + * + * DenseRow and DenseCol are defined as 0 and 1, + * respectively, in colamd.h. Default values of these two knobs + * are both 0.5. Currently, only knobs [0] and knobs [1] are + * used, but future versions may use more knobs. If so, they will + * be properly set to their defaults by the future version of + * colamd_set_defaults, so that the code that calls colamd will + * not need to change, assuming that you either use + * colamd_set_defaults, or pass a (double *) NULL pointer as the + * knobs array to colamd or symamd. + * + * \param knobs parameter settings for colamd + */ + +static inline void set_defaults(double knobs[NKnobs]) +{ + /* === Local variables ================================================== */ + + int i ; + + if (!knobs) + { + return ; /* no knobs to initialize */ + } + for (i = 0 ; i < NKnobs ; i++) + { + knobs [i] = 0 ; + } + knobs [Colamd::DenseRow] = 0.5 ; /* ignore rows over 50% dense */ + knobs [Colamd::DenseCol] = 0.5 ; /* ignore columns over 50% dense */ +} + +/** + * \brief Computes a column ordering using the column approximate minimum degree ordering + * + * Computes a column ordering (Q) of A such that P(AQ)=LU or + * (AQ)'AQ=LL' have less fill-in and require fewer floating point + * operations than factorizing the unpermuted matrix A or A'A, + * respectively. + * + * + * \param n_row number of rows in A + * \param n_col number of columns in A + * \param Alen, size of the array A + * \param A row indices of the matrix, of size ALen + * \param p column pointers of A, of size n_col+1 + * \param knobs parameter settings for colamd + * \param stats colamd output statistics and error codes + */ +template +static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[NKnobs], IndexType stats[NStats]) +{ + /* === Local variables ================================================== */ + + IndexType i ; /* loop index */ + IndexType nnz ; /* nonzeros in A */ + IndexType Row_size ; /* size of Row [], in integers */ + IndexType Col_size ; /* size of Col [], in integers */ + IndexType need ; /* minimum required length of A */ + Colamd::RowStructure *Row ; /* pointer into A of Row [0..n_row] array */ + Colamd::ColStructure *Col ; /* pointer into A of Col [0..n_col] array */ + IndexType n_col2 ; /* number of non-dense, non-empty columns */ + IndexType n_row2 ; /* number of non-dense, non-empty rows */ + IndexType ngarbage ; /* number of garbage collections performed */ + IndexType max_deg ; /* maximum row degree */ + double default_knobs [NKnobs] ; /* default knobs array */ + + + /* === Check the input arguments ======================================== */ + + if (!stats) + { + COLAMD_DEBUG0 (("colamd: stats not present\n")) ; + return (false) ; + } + for (i = 0 ; i < NStats ; i++) + { + stats [i] = 0 ; + } + stats [Colamd::Status] = Colamd::Ok ; + stats [Colamd::Info1] = -1 ; + stats [Colamd::Info2] = -1 ; + + if (!A) /* A is not present */ + { + stats [Colamd::Status] = Colamd::ErrorANotPresent ; + COLAMD_DEBUG0 (("colamd: A not present\n")) ; + return (false) ; + } + + if (!p) /* p is not present */ + { + stats [Colamd::Status] = Colamd::ErrorPNotPresent ; + COLAMD_DEBUG0 (("colamd: p not present\n")) ; + return (false) ; + } + + if (n_row < 0) /* n_row must be >= 0 */ + { + stats [Colamd::Status] = Colamd::ErrorNrowNegative ; + stats [Colamd::Info1] = n_row ; + COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; + return (false) ; + } + + if (n_col < 0) /* n_col must be >= 0 */ + { + stats [Colamd::Status] = Colamd::ErrorNcolNegative ; + stats [Colamd::Info1] = n_col ; + COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; + return (false) ; + } + + nnz = p [n_col] ; + if (nnz < 0) /* nnz must be >= 0 */ + { + stats [Colamd::Status] = Colamd::ErrorNnzNegative ; + stats [Colamd::Info1] = nnz ; + COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; + return (false) ; + } + + if (p [0] != 0) + { + stats [Colamd::Status] = Colamd::ErrorP0Nonzero ; + stats [Colamd::Info1] = p [0] ; + COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; + return (false) ; + } + + /* === If no knobs, set default knobs =================================== */ + + if (!knobs) + { + set_defaults (default_knobs) ; + knobs = default_knobs ; + } + + /* === Allocate the Row and Col arrays from array A ===================== */ + + Col_size = colamd_c (n_col) ; + Row_size = colamd_r (n_row) ; + need = 2*nnz + n_col + Col_size + Row_size ; + + if (need > Alen) + { + /* not enough space in array A to perform the ordering */ + stats [Colamd::Status] = Colamd::ErrorATooSmall ; + stats [Colamd::Info1] = need ; + stats [Colamd::Info2] = Alen ; + COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); + return (false) ; + } + + Alen -= Col_size + Row_size ; + Col = (ColStructure *) &A [Alen] ; + Row = (RowStructure *) &A [Alen + Col_size] ; + + /* === Construct the row and column data structures ===================== */ + + if (!Colamd::init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) + { + /* input matrix is invalid */ + COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ; + return (false) ; + } + + /* === Initialize scores, kill dense rows/columns ======================= */ + + Colamd::init_scoring (n_row, n_col, Row, Col, A, p, knobs, + &n_row2, &n_col2, &max_deg) ; + + /* === Order the supercolumns =========================================== */ + + ngarbage = Colamd::find_ordering (n_row, n_col, Alen, Row, Col, A, p, + n_col2, max_deg, 2*nnz) ; + + /* === Order the non-principal columns ================================== */ + + Colamd::order_children (n_col, Col, p) ; + + /* === Return statistics in stats ======================================= */ + + stats [Colamd::DenseRow] = n_row - n_row2 ; + stats [Colamd::DenseCol] = n_col - n_col2 ; + stats [Colamd::DefragCount] = ngarbage ; + COLAMD_DEBUG0 (("colamd: done.\n")) ; + return (true) ; +} + +/* ========================================================================== */ +/* === NON-USER-CALLABLE ROUTINES: ========================================== */ +/* ========================================================================== */ + +/* There are no user-callable routines beyond this point in the file */ + +/* ========================================================================== */ +/* === init_rows_cols ======================================================= */ +/* ========================================================================== */ + +/* + Takes the column form of the matrix in A and creates the row form of the + matrix. Also, row and column attributes are stored in the Col and Row + structs. If the columns are un-sorted or contain duplicate row indices, + this routine will also sort and remove duplicate row indices from the + column form of the matrix. Returns false if the matrix is invalid, + true otherwise. Not user-callable. +*/ +template +static IndexType init_rows_cols /* returns true if OK, or false otherwise */ + ( + /* === Parameters ======================================================= */ + + IndexType n_row, /* number of rows of A */ + IndexType n_col, /* number of columns of A */ + RowStructure Row [], /* of size n_row+1 */ + ColStructure Col [], /* of size n_col+1 */ + IndexType A [], /* row indices of A, of size Alen */ + IndexType p [], /* pointers to columns in A, of size n_col+1 */ + IndexType stats [NStats] /* colamd statistics */ + ) +{ + /* === Local variables ================================================== */ + + IndexType col ; /* a column index */ + IndexType row ; /* a row index */ + IndexType *cp ; /* a column pointer */ + IndexType *cp_end ; /* a pointer to the end of a column */ + IndexType *rp ; /* a row pointer */ + IndexType *rp_end ; /* a pointer to the end of a row */ + IndexType last_row ; /* previous row */ + + /* === Initialize columns, and check column pointers ==================== */ + + for (col = 0 ; col < n_col ; col++) + { + Col [col].start = p [col] ; + Col [col].length = p [col+1] - p [col] ; + + if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200 + { + /* column pointers must be non-decreasing */ + stats [Colamd::Status] = Colamd::ErrorColLengthNegative ; + stats [Colamd::Info1] = col ; + stats [Colamd::Info2] = Col [col].length ; + COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; + return (false) ; + } + + Col [col].shared1.thickness = 1 ; + Col [col].shared2.score = 0 ; + Col [col].shared3.prev = Empty ; + Col [col].shared4.degree_next = Empty ; + } + + /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ + + /* === Scan columns, compute row degrees, and check row indices ========= */ + + stats [Info3] = 0 ; /* number of duplicate or unsorted row indices*/ + + for (row = 0 ; row < n_row ; row++) + { + Row [row].length = 0 ; + Row [row].shared2.mark = -1 ; + } + + for (col = 0 ; col < n_col ; col++) + { + last_row = -1 ; + + cp = &A [p [col]] ; + cp_end = &A [p [col+1]] ; + + while (cp < cp_end) + { + row = *cp++ ; + + /* make sure row indices within range */ + if (row < 0 || row >= n_row) + { + stats [Colamd::Status] = Colamd::ErrorRowIndexOutOfBounds ; + stats [Colamd::Info1] = col ; + stats [Colamd::Info2] = row ; + stats [Colamd::Info3] = n_row ; + COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; + return (false) ; + } + + if (row <= last_row || Row [row].shared2.mark == col) + { + /* row index are unsorted or repeated (or both), thus col */ + /* is jumbled. This is a notice, not an error condition. */ + stats [Colamd::Status] = Colamd::OkButJumbled ; + stats [Colamd::Info1] = col ; + stats [Colamd::Info2] = row ; + (stats [Colamd::Info3]) ++ ; + COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); + } + + if (Row [row].shared2.mark != col) + { + Row [row].length++ ; + } + else + { + /* this is a repeated entry in the column, */ + /* it will be removed */ + Col [col].length-- ; + } + + /* mark the row as having been seen in this column */ + Row [row].shared2.mark = col ; + + last_row = row ; + } + } + + /* === Compute row pointers ============================================= */ + + /* row form of the matrix starts directly after the column */ + /* form of matrix in A */ + Row [0].start = p [n_col] ; + Row [0].shared1.p = Row [0].start ; + Row [0].shared2.mark = -1 ; + for (row = 1 ; row < n_row ; row++) + { + Row [row].start = Row [row-1].start + Row [row-1].length ; + Row [row].shared1.p = Row [row].start ; + Row [row].shared2.mark = -1 ; + } + + /* === Create row form ================================================== */ + + if (stats [Status] == OkButJumbled) + { + /* if cols jumbled, watch for repeated row indices */ + for (col = 0 ; col < n_col ; col++) + { + cp = &A [p [col]] ; + cp_end = &A [p [col+1]] ; + while (cp < cp_end) + { + row = *cp++ ; + if (Row [row].shared2.mark != col) + { + A [(Row [row].shared1.p)++] = col ; + Row [row].shared2.mark = col ; + } + } + } + } + else + { + /* if cols not jumbled, we don't need the mark (this is faster) */ + for (col = 0 ; col < n_col ; col++) + { + cp = &A [p [col]] ; + cp_end = &A [p [col+1]] ; + while (cp < cp_end) + { + A [(Row [*cp++].shared1.p)++] = col ; + } + } + } + + /* === Clear the row marks and set row degrees ========================== */ + + for (row = 0 ; row < n_row ; row++) + { + Row [row].shared2.mark = 0 ; + Row [row].shared1.degree = Row [row].length ; + } + + /* === See if we need to re-create columns ============================== */ + + if (stats [Status] == OkButJumbled) + { + COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; + + + /* === Compute col pointers ========================================= */ + + /* col form of the matrix starts at A [0]. */ + /* Note, we may have a gap between the col form and the row */ + /* form if there were duplicate entries, if so, it will be */ + /* removed upon the first garbage collection */ + Col [0].start = 0 ; + p [0] = Col [0].start ; + for (col = 1 ; col < n_col ; col++) + { + /* note that the lengths here are for pruned columns, i.e. */ + /* no duplicate row indices will exist for these columns */ + Col [col].start = Col [col-1].start + Col [col-1].length ; + p [col] = Col [col].start ; + } + + /* === Re-create col form =========================================== */ + + for (row = 0 ; row < n_row ; row++) + { + rp = &A [Row [row].start] ; + rp_end = rp + Row [row].length ; + while (rp < rp_end) + { + A [(p [*rp++])++] = row ; + } + } + } + + /* === Done. Matrix is not (or no longer) jumbled ====================== */ + + return (true) ; +} + + +/* ========================================================================== */ +/* === init_scoring ========================================================= */ +/* ========================================================================== */ + +/* + Kills dense or empty columns and rows, calculates an initial score for + each column, and places all columns in the degree lists. Not user-callable. +*/ +template +static void init_scoring + ( + /* === Parameters ======================================================= */ + + IndexType n_row, /* number of rows of A */ + IndexType n_col, /* number of columns of A */ + RowStructure Row [], /* of size n_row+1 */ + ColStructure Col [], /* of size n_col+1 */ + IndexType A [], /* column form and row form of A */ + IndexType head [], /* of size n_col+1 */ + double knobs [NKnobs],/* parameters */ + IndexType *p_n_row2, /* number of non-dense, non-empty rows */ + IndexType *p_n_col2, /* number of non-dense, non-empty columns */ + IndexType *p_max_deg /* maximum row degree */ + ) +{ + /* === Local variables ================================================== */ + + IndexType c ; /* a column index */ + IndexType r, row ; /* a row index */ + IndexType *cp ; /* a column pointer */ + IndexType deg ; /* degree of a row or column */ + IndexType *cp_end ; /* a pointer to the end of a column */ + IndexType *new_cp ; /* new column pointer */ + IndexType col_length ; /* length of pruned column */ + IndexType score ; /* current column score */ + IndexType n_col2 ; /* number of non-dense, non-empty columns */ + IndexType n_row2 ; /* number of non-dense, non-empty rows */ + IndexType dense_row_count ; /* remove rows with more entries than this */ + IndexType dense_col_count ; /* remove cols with more entries than this */ + IndexType min_score ; /* smallest column score */ + IndexType max_deg ; /* maximum row degree */ + IndexType next_col ; /* Used to add to degree list.*/ + + + /* === Extract knobs ==================================================== */ + + dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [Colamd::DenseRow] * n_col), n_col)) ; + dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [Colamd::DenseCol] * n_row), n_row)) ; + COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; + max_deg = 0 ; + n_col2 = n_col ; + n_row2 = n_row ; + + /* === Kill empty columns =============================================== */ + + /* Put the empty columns at the end in their natural order, so that LU */ + /* factorization can proceed as far as possible. */ + for (c = n_col-1 ; c >= 0 ; c--) + { + deg = Col [c].length ; + if (deg == 0) + { + /* this is a empty column, kill and order it last */ + Col [c].shared2.order = --n_col2 ; + Col[c].kill_principal() ; + } + } + COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; + + /* === Kill dense columns =============================================== */ + + /* Put the dense columns at the end, in their natural order */ + for (c = n_col-1 ; c >= 0 ; c--) + { + /* skip any dead columns */ + if (Col[c].is_dead()) + { + continue ; + } + deg = Col [c].length ; + if (deg > dense_col_count) + { + /* this is a dense column, kill and order it last */ + Col [c].shared2.order = --n_col2 ; + /* decrement the row degrees */ + cp = &A [Col [c].start] ; + cp_end = cp + Col [c].length ; + while (cp < cp_end) + { + Row [*cp++].shared1.degree-- ; + } + Col[c].kill_principal() ; + } + } + COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; + + /* === Kill dense and empty rows ======================================== */ + + for (r = 0 ; r < n_row ; r++) + { + deg = Row [r].shared1.degree ; + COLAMD_ASSERT (deg >= 0 && deg <= n_col) ; + if (deg > dense_row_count || deg == 0) + { + /* kill a dense or empty row */ + Row[r].kill() ; + --n_row2 ; + } + else + { + /* keep track of max degree of remaining rows */ + max_deg = numext::maxi(max_deg, deg) ; + } + } + COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; + + /* === Compute initial column scores ==================================== */ + + /* At this point the row degrees are accurate. They reflect the number */ + /* of "live" (non-dense) columns in each row. No empty rows exist. */ + /* Some "live" columns may contain only dead rows, however. These are */ + /* pruned in the code below. */ + + /* now find the initial matlab score for each column */ + for (c = n_col-1 ; c >= 0 ; c--) + { + /* skip dead column */ + if (Col[c].is_dead()) + { + continue ; + } + score = 0 ; + cp = &A [Col [c].start] ; + new_cp = cp ; + cp_end = cp + Col [c].length ; + while (cp < cp_end) + { + /* get a row */ + row = *cp++ ; + /* skip if dead */ + if (Row[row].is_dead()) + { + continue ; + } + /* compact the column */ + *new_cp++ = row ; + /* add row's external degree */ + score += Row [row].shared1.degree - 1 ; + /* guard against integer overflow */ + score = numext::mini(score, n_col) ; + } + /* determine pruned column length */ + col_length = (IndexType) (new_cp - &A [Col [c].start]) ; + if (col_length == 0) + { + /* a newly-made null column (all rows in this col are "dense" */ + /* and have already been killed) */ + COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ; + Col [c].shared2.order = --n_col2 ; + Col[c].kill_principal() ; + } + else + { + /* set column length and set score */ + COLAMD_ASSERT (score >= 0) ; + COLAMD_ASSERT (score <= n_col) ; + Col [c].length = col_length ; + Col [c].shared2.score = score ; + } + } + COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", + n_col-n_col2)) ; + + /* At this point, all empty rows and columns are dead. All live columns */ + /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ + /* yet). Rows may contain dead columns, but all live rows contain at */ + /* least one live column. */ + + /* === Initialize degree lists ========================================== */ + + + /* clear the hash buckets */ + for (c = 0 ; c <= n_col ; c++) + { + head [c] = Empty ; + } + min_score = n_col ; + /* place in reverse order, so low column indices are at the front */ + /* of the lists. This is to encourage natural tie-breaking */ + for (c = n_col-1 ; c >= 0 ; c--) + { + /* only add principal columns to degree lists */ + if (Col[c].is_alive()) + { + COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n", + c, Col [c].shared2.score, min_score, n_col)) ; + + /* === Add columns score to DList =============================== */ + + score = Col [c].shared2.score ; + + COLAMD_ASSERT (min_score >= 0) ; + COLAMD_ASSERT (min_score <= n_col) ; + COLAMD_ASSERT (score >= 0) ; + COLAMD_ASSERT (score <= n_col) ; + COLAMD_ASSERT (head [score] >= Empty) ; + + /* now add this column to dList at proper score location */ + next_col = head [score] ; + Col [c].shared3.prev = Empty ; + Col [c].shared4.degree_next = next_col ; + + /* if there already was a column with the same score, set its */ + /* previous pointer to this new column */ + if (next_col != Empty) + { + Col [next_col].shared3.prev = c ; + } + head [score] = c ; + + /* see if this score is less than current min */ + min_score = numext::mini(min_score, score) ; + + + } + } + + + /* === Return number of remaining columns, and max row degree =========== */ + + *p_n_col2 = n_col2 ; + *p_n_row2 = n_row2 ; + *p_max_deg = max_deg ; +} + + +/* ========================================================================== */ +/* === find_ordering ======================================================== */ +/* ========================================================================== */ + +/* + Order the principal columns of the supercolumn form of the matrix + (no supercolumns on input). Uses a minimum approximate column minimum + degree ordering method. Not user-callable. +*/ +template +static IndexType find_ordering /* return the number of garbage collections */ + ( + /* === Parameters ======================================================= */ + + IndexType n_row, /* number of rows of A */ + IndexType n_col, /* number of columns of A */ + IndexType Alen, /* size of A, 2*nnz + n_col or larger */ + RowStructure Row [], /* of size n_row+1 */ + ColStructure Col [], /* of size n_col+1 */ + IndexType A [], /* column form and row form of A */ + IndexType head [], /* of size n_col+1 */ + IndexType n_col2, /* Remaining columns to order */ + IndexType max_deg, /* Maximum row degree */ + IndexType pfree /* index of first free slot (2*nnz on entry) */ + ) +{ + /* === Local variables ================================================== */ + + IndexType k ; /* current pivot ordering step */ + IndexType pivot_col ; /* current pivot column */ + IndexType *cp ; /* a column pointer */ + IndexType *rp ; /* a row pointer */ + IndexType pivot_row ; /* current pivot row */ + IndexType *new_cp ; /* modified column pointer */ + IndexType *new_rp ; /* modified row pointer */ + IndexType pivot_row_start ; /* pointer to start of pivot row */ + IndexType pivot_row_degree ; /* number of columns in pivot row */ + IndexType pivot_row_length ; /* number of supercolumns in pivot row */ + IndexType pivot_col_score ; /* score of pivot column */ + IndexType needed_memory ; /* free space needed for pivot row */ + IndexType *cp_end ; /* pointer to the end of a column */ + IndexType *rp_end ; /* pointer to the end of a row */ + IndexType row ; /* a row index */ + IndexType col ; /* a column index */ + IndexType max_score ; /* maximum possible score */ + IndexType cur_score ; /* score of current column */ + unsigned int hash ; /* hash value for supernode detection */ + IndexType head_column ; /* head of hash bucket */ + IndexType first_col ; /* first column in hash bucket */ + IndexType tag_mark ; /* marker value for mark array */ + IndexType row_mark ; /* Row [row].shared2.mark */ + IndexType set_difference ; /* set difference size of row with pivot row */ + IndexType min_score ; /* smallest column score */ + IndexType col_thickness ; /* "thickness" (no. of columns in a supercol) */ + IndexType max_mark ; /* maximum value of tag_mark */ + IndexType pivot_col_thickness ; /* number of columns represented by pivot col */ + IndexType prev_col ; /* Used by Dlist operations. */ + IndexType next_col ; /* Used by Dlist operations. */ + IndexType ngarbage ; /* number of garbage collections performed */ + + + /* === Initialization and clear mark ==================================== */ + + max_mark = INT_MAX - n_col ; /* INT_MAX defined in */ + tag_mark = Colamd::clear_mark (n_row, Row) ; + min_score = 0 ; + ngarbage = 0 ; + COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; + + /* === Order the columns ================================================ */ + + for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) + { + + /* === Select pivot column, and order it ============================ */ + + /* make sure degree list isn't empty */ + COLAMD_ASSERT (min_score >= 0) ; + COLAMD_ASSERT (min_score <= n_col) ; + COLAMD_ASSERT (head [min_score] >= Empty) ; + + /* get pivot column from head of minimum degree list */ + while (min_score < n_col && head [min_score] == Empty) + { + min_score++ ; + } + pivot_col = head [min_score] ; + COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; + next_col = Col [pivot_col].shared4.degree_next ; + head [min_score] = next_col ; + if (next_col != Empty) + { + Col [next_col].shared3.prev = Empty ; + } + + COLAMD_ASSERT (Col[pivot_col].is_alive()) ; + COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ; + + /* remember score for defrag check */ + pivot_col_score = Col [pivot_col].shared2.score ; + + /* the pivot column is the kth column in the pivot order */ + Col [pivot_col].shared2.order = k ; + + /* increment order count by column thickness */ + pivot_col_thickness = Col [pivot_col].shared1.thickness ; + k += pivot_col_thickness ; + COLAMD_ASSERT (pivot_col_thickness > 0) ; + + /* === Garbage_collection, if necessary ============================= */ + + needed_memory = numext::mini(pivot_col_score, n_col - k) ; + if (pfree + needed_memory >= Alen) + { + pfree = Colamd::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; + ngarbage++ ; + /* after garbage collection we will have enough */ + COLAMD_ASSERT (pfree + needed_memory < Alen) ; + /* garbage collection has wiped out the Row[].shared2.mark array */ + tag_mark = Colamd::clear_mark (n_row, Row) ; + + } + + /* === Compute pivot row pattern ==================================== */ + + /* get starting location for this new merged row */ + pivot_row_start = pfree ; + + /* initialize new row counts to zero */ + pivot_row_degree = 0 ; + + /* tag pivot column as having been visited so it isn't included */ + /* in merged pivot row */ + Col [pivot_col].shared1.thickness = -pivot_col_thickness ; + + /* pivot row is the union of all rows in the pivot column pattern */ + cp = &A [Col [pivot_col].start] ; + cp_end = cp + Col [pivot_col].length ; + while (cp < cp_end) + { + /* get a row */ + row = *cp++ ; + COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", Row[row].is_alive(), row)) ; + /* skip if row is dead */ + if (Row[row].is_dead()) + { + continue ; + } + rp = &A [Row [row].start] ; + rp_end = rp + Row [row].length ; + while (rp < rp_end) + { + /* get a column */ + col = *rp++ ; + /* add the column, if alive and untagged */ + col_thickness = Col [col].shared1.thickness ; + if (col_thickness > 0 && Col[col].is_alive()) + { + /* tag column in pivot row */ + Col [col].shared1.thickness = -col_thickness ; + COLAMD_ASSERT (pfree < Alen) ; + /* place column in pivot row */ + A [pfree++] = col ; + pivot_row_degree += col_thickness ; + } + } + } + + /* clear tag on pivot column */ + Col [pivot_col].shared1.thickness = pivot_col_thickness ; + max_deg = numext::maxi(max_deg, pivot_row_degree) ; + + + /* === Kill all rows used to construct pivot row ==================== */ + + /* also kill pivot row, temporarily */ + cp = &A [Col [pivot_col].start] ; + cp_end = cp + Col [pivot_col].length ; + while (cp < cp_end) + { + /* may be killing an already dead row */ + row = *cp++ ; + COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ; + Row[row].kill() ; + } + + /* === Select a row index to use as the new pivot row =============== */ + + pivot_row_length = pfree - pivot_row_start ; + if (pivot_row_length > 0) + { + /* pick the "pivot" row arbitrarily (first row in col) */ + pivot_row = A [Col [pivot_col].start] ; + COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; + } + else + { + /* there is no pivot row, since it is of zero length */ + pivot_row = Empty ; + COLAMD_ASSERT (pivot_row_length == 0) ; + } + COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; + + /* === Approximate degree computation =============================== */ + + /* Here begins the computation of the approximate degree. The column */ + /* score is the sum of the pivot row "length", plus the size of the */ + /* set differences of each row in the column minus the pattern of the */ + /* pivot row itself. The column ("thickness") itself is also */ + /* excluded from the column score (we thus use an approximate */ + /* external degree). */ + + /* The time taken by the following code (compute set differences, and */ + /* add them up) is proportional to the size of the data structure */ + /* being scanned - that is, the sum of the sizes of each column in */ + /* the pivot row. Thus, the amortized time to compute a column score */ + /* is proportional to the size of that column (where size, in this */ + /* context, is the column "length", or the number of row indices */ + /* in that column). The number of row indices in a column is */ + /* monotonically non-decreasing, from the length of the original */ + /* column on input to colamd. */ + + /* === Compute set differences ====================================== */ + + COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ; + + /* pivot row is currently dead - it will be revived later. */ + + COLAMD_DEBUG3 (("Pivot row: ")) ; + /* for each column in pivot row */ + rp = &A [pivot_row_start] ; + rp_end = rp + pivot_row_length ; + while (rp < rp_end) + { + col = *rp++ ; + COLAMD_ASSERT (Col[col].is_alive() && col != pivot_col) ; + COLAMD_DEBUG3 (("Col: %d\n", col)) ; + + /* clear tags used to construct pivot row pattern */ + col_thickness = -Col [col].shared1.thickness ; + COLAMD_ASSERT (col_thickness > 0) ; + Col [col].shared1.thickness = col_thickness ; + + /* === Remove column from degree list =========================== */ + + cur_score = Col [col].shared2.score ; + prev_col = Col [col].shared3.prev ; + next_col = Col [col].shared4.degree_next ; + COLAMD_ASSERT (cur_score >= 0) ; + COLAMD_ASSERT (cur_score <= n_col) ; + COLAMD_ASSERT (cur_score >= Empty) ; + if (prev_col == Empty) + { + head [cur_score] = next_col ; + } + else + { + Col [prev_col].shared4.degree_next = next_col ; + } + if (next_col != Empty) + { + Col [next_col].shared3.prev = prev_col ; + } + + /* === Scan the column ========================================== */ + + cp = &A [Col [col].start] ; + cp_end = cp + Col [col].length ; + while (cp < cp_end) + { + /* get a row */ + row = *cp++ ; + /* skip if dead */ + if (Row[row].is_dead()) + { + continue ; + } + row_mark = Row [row].shared2.mark ; + COLAMD_ASSERT (row != pivot_row) ; + set_difference = row_mark - tag_mark ; + /* check if the row has been seen yet */ + if (set_difference < 0) + { + COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ; + set_difference = Row [row].shared1.degree ; + } + /* subtract column thickness from this row's set difference */ + set_difference -= col_thickness ; + COLAMD_ASSERT (set_difference >= 0) ; + /* absorb this row if the set difference becomes zero */ + if (set_difference == 0) + { + COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; + Row[row].kill() ; + } + else + { + /* save the new mark */ + Row [row].shared2.mark = set_difference + tag_mark ; + } + } + } + + + /* === Add up set differences for each column ======================= */ + + COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ; + + /* for each column in pivot row */ + rp = &A [pivot_row_start] ; + rp_end = rp + pivot_row_length ; + while (rp < rp_end) + { + /* get a column */ + col = *rp++ ; + COLAMD_ASSERT (Col[col].is_alive() && col != pivot_col) ; + hash = 0 ; + cur_score = 0 ; + cp = &A [Col [col].start] ; + /* compact the column */ + new_cp = cp ; + cp_end = cp + Col [col].length ; + + COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; + + while (cp < cp_end) + { + /* get a row */ + row = *cp++ ; + COLAMD_ASSERT(row >= 0 && row < n_row) ; + /* skip if dead */ + if (Row [row].is_dead()) + { + continue ; + } + row_mark = Row [row].shared2.mark ; + COLAMD_ASSERT (row_mark > tag_mark) ; + /* compact the column */ + *new_cp++ = row ; + /* compute hash function */ + hash += row ; + /* add set difference */ + cur_score += row_mark - tag_mark ; + /* integer overflow... */ + cur_score = numext::mini(cur_score, n_col) ; + } + + /* recompute the column's length */ + Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ; + + /* === Further mass elimination ================================= */ + + if (Col [col].length == 0) + { + COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ; + /* nothing left but the pivot row in this column */ + Col[col].kill_principal() ; + pivot_row_degree -= Col [col].shared1.thickness ; + COLAMD_ASSERT (pivot_row_degree >= 0) ; + /* order it */ + Col [col].shared2.order = k ; + /* increment order count by column thickness */ + k += Col [col].shared1.thickness ; + } + else + { + /* === Prepare for supercolumn detection ==================== */ + + COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; + + /* save score so far */ + Col [col].shared2.score = cur_score ; + + /* add column to hash table, for supercolumn detection */ + hash %= n_col + 1 ; + + COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; + COLAMD_ASSERT (hash <= n_col) ; + + head_column = head [hash] ; + if (head_column > Empty) + { + /* degree list "hash" is non-empty, use prev (shared3) of */ + /* first column in degree list as head of hash bucket */ + first_col = Col [head_column].shared3.headhash ; + Col [head_column].shared3.headhash = col ; + } + else + { + /* degree list "hash" is empty, use head as hash bucket */ + first_col = - (head_column + 2) ; + head [hash] = - (col + 2) ; + } + Col [col].shared4.hash_next = first_col ; + + /* save hash function in Col [col].shared3.hash */ + Col [col].shared3.hash = (IndexType) hash ; + COLAMD_ASSERT (Col[col].is_alive()) ; + } + } + + /* The approximate external column degree is now computed. */ + + /* === Supercolumn detection ======================================== */ + + COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ; + + Colamd::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ; + + /* === Kill the pivotal column ====================================== */ + + Col[pivot_col].kill_principal() ; + + /* === Clear mark =================================================== */ + + tag_mark += (max_deg + 1) ; + if (tag_mark >= max_mark) + { + COLAMD_DEBUG2 (("clearing tag_mark\n")) ; + tag_mark = Colamd::clear_mark (n_row, Row) ; + } + + /* === Finalize the new pivot row, and column scores ================ */ + + COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ; + + /* for each column in pivot row */ + rp = &A [pivot_row_start] ; + /* compact the pivot row */ + new_rp = rp ; + rp_end = rp + pivot_row_length ; + while (rp < rp_end) + { + col = *rp++ ; + /* skip dead columns */ + if (Col[col].is_dead()) + { + continue ; + } + *new_rp++ = col ; + /* add new pivot row to column */ + A [Col [col].start + (Col [col].length++)] = pivot_row ; + + /* retrieve score so far and add on pivot row's degree. */ + /* (we wait until here for this in case the pivot */ + /* row's degree was reduced due to mass elimination). */ + cur_score = Col [col].shared2.score + pivot_row_degree ; + + /* calculate the max possible score as the number of */ + /* external columns minus the 'k' value minus the */ + /* columns thickness */ + max_score = n_col - k - Col [col].shared1.thickness ; + + /* make the score the external degree of the union-of-rows */ + cur_score -= Col [col].shared1.thickness ; + + /* make sure score is less or equal than the max score */ + cur_score = numext::mini(cur_score, max_score) ; + COLAMD_ASSERT (cur_score >= 0) ; + + /* store updated score */ + Col [col].shared2.score = cur_score ; + + /* === Place column back in degree list ========================= */ + + COLAMD_ASSERT (min_score >= 0) ; + COLAMD_ASSERT (min_score <= n_col) ; + COLAMD_ASSERT (cur_score >= 0) ; + COLAMD_ASSERT (cur_score <= n_col) ; + COLAMD_ASSERT (head [cur_score] >= Empty) ; + next_col = head [cur_score] ; + Col [col].shared4.degree_next = next_col ; + Col [col].shared3.prev = Empty ; + if (next_col != Empty) + { + Col [next_col].shared3.prev = col ; + } + head [cur_score] = col ; + + /* see if this score is less than current min */ + min_score = numext::mini(min_score, cur_score) ; + + } + + /* === Resurrect the new pivot row ================================== */ + + if (pivot_row_degree > 0) + { + /* update pivot row length to reflect any cols that were killed */ + /* during super-col detection and mass elimination */ + Row [pivot_row].start = pivot_row_start ; + Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ; + Row [pivot_row].shared1.degree = pivot_row_degree ; + Row [pivot_row].shared2.mark = 0 ; + /* pivot row is no longer dead */ + } + } + + /* === All principal columns have now been ordered ====================== */ + + return (ngarbage) ; +} + + +/* ========================================================================== */ +/* === order_children ======================================================= */ +/* ========================================================================== */ + +/* + The find_ordering routine has ordered all of the principal columns (the + representatives of the supercolumns). The non-principal columns have not + yet been ordered. This routine orders those columns by walking up the + parent tree (a column is a child of the column which absorbed it). The + final permutation vector is then placed in p [0 ... n_col-1], with p [0] + being the first column, and p [n_col-1] being the last. It doesn't look + like it at first glance, but be assured that this routine takes time linear + in the number of columns. Although not immediately obvious, the time + taken by this routine is O (n_col), that is, linear in the number of + columns. Not user-callable. +*/ +template +static inline void order_children +( + /* === Parameters ======================================================= */ + + IndexType n_col, /* number of columns of A */ + ColStructure Col [], /* of size n_col+1 */ + IndexType p [] /* p [0 ... n_col-1] is the column permutation*/ + ) +{ + /* === Local variables ================================================== */ + + IndexType i ; /* loop counter for all columns */ + IndexType c ; /* column index */ + IndexType parent ; /* index of column's parent */ + IndexType order ; /* column's order */ + + /* === Order each non-principal column ================================== */ + + for (i = 0 ; i < n_col ; i++) + { + /* find an un-ordered non-principal column */ + COLAMD_ASSERT (col_is_dead(Col, i)) ; + if (!Col[i].is_dead_principal() && Col [i].shared2.order == Empty) + { + parent = i ; + /* once found, find its principal parent */ + do + { + parent = Col [parent].shared1.parent ; + } while (!Col[parent].is_dead_principal()) ; + + /* now, order all un-ordered non-principal columns along path */ + /* to this parent. collapse tree at the same time */ + c = i ; + /* get order of parent */ + order = Col [parent].shared2.order ; + + do + { + COLAMD_ASSERT (Col [c].shared2.order == Empty) ; + + /* order this column */ + Col [c].shared2.order = order++ ; + /* collaps tree */ + Col [c].shared1.parent = parent ; + + /* get immediate parent of this column */ + c = Col [c].shared1.parent ; + + /* continue until we hit an ordered column. There are */ + /* guaranteed not to be anymore unordered columns */ + /* above an ordered column */ + } while (Col [c].shared2.order == Empty) ; + + /* re-order the super_col parent to largest order for this group */ + Col [parent].shared2.order = order ; + } + } + + /* === Generate the permutation ========================================= */ + + for (c = 0 ; c < n_col ; c++) + { + p [Col [c].shared2.order] = c ; + } +} + + +/* ========================================================================== */ +/* === detect_super_cols ==================================================== */ +/* ========================================================================== */ + +/* + Detects supercolumns by finding matches between columns in the hash buckets. + Check amongst columns in the set A [row_start ... row_start + row_length-1]. + The columns under consideration are currently *not* in the degree lists, + and have already been placed in the hash buckets. + + The hash bucket for columns whose hash function is equal to h is stored + as follows: + + if head [h] is >= 0, then head [h] contains a degree list, so: + + head [h] is the first column in degree bucket h. + Col [head [h]].headhash gives the first column in hash bucket h. + + otherwise, the degree list is empty, and: + + -(head [h] + 2) is the first column in hash bucket h. + + For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous + column" pointer. Col [c].shared3.hash is used instead as the hash number + for that column. The value of Col [c].shared4.hash_next is the next column + in the same hash bucket. + + Assuming no, or "few" hash collisions, the time taken by this routine is + linear in the sum of the sizes (lengths) of each column whose score has + just been computed in the approximate degree computation. + Not user-callable. +*/ +template +static void detect_super_cols +( + /* === Parameters ======================================================= */ + + ColStructure Col [], /* of size n_col+1 */ + IndexType A [], /* row indices of A */ + IndexType head [], /* head of degree lists and hash buckets */ + IndexType row_start, /* pointer to set of columns to check */ + IndexType row_length /* number of columns to check */ +) +{ + /* === Local variables ================================================== */ + + IndexType hash ; /* hash value for a column */ + IndexType *rp ; /* pointer to a row */ + IndexType c ; /* a column index */ + IndexType super_c ; /* column index of the column to absorb into */ + IndexType *cp1 ; /* column pointer for column super_c */ + IndexType *cp2 ; /* column pointer for column c */ + IndexType length ; /* length of column super_c */ + IndexType prev_c ; /* column preceding c in hash bucket */ + IndexType i ; /* loop counter */ + IndexType *rp_end ; /* pointer to the end of the row */ + IndexType col ; /* a column index in the row to check */ + IndexType head_column ; /* first column in hash bucket or degree list */ + IndexType first_col ; /* first column in hash bucket */ + + /* === Consider each column in the row ================================== */ + + rp = &A [row_start] ; + rp_end = rp + row_length ; + while (rp < rp_end) + { + col = *rp++ ; + if (Col[col].is_dead()) + { + continue ; + } + + /* get hash number for this column */ + hash = Col [col].shared3.hash ; + COLAMD_ASSERT (hash <= n_col) ; + + /* === Get the first column in this hash bucket ===================== */ + + head_column = head [hash] ; + if (head_column > Empty) + { + first_col = Col [head_column].shared3.headhash ; + } + else + { + first_col = - (head_column + 2) ; + } + + /* === Consider each column in the hash bucket ====================== */ + + for (super_c = first_col ; super_c != Empty ; + super_c = Col [super_c].shared4.hash_next) + { + COLAMD_ASSERT (Col [super_c].is_alive()) ; + COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ; + length = Col [super_c].length ; + + /* prev_c is the column preceding column c in the hash bucket */ + prev_c = super_c ; + + /* === Compare super_c with all columns after it ================ */ + + for (c = Col [super_c].shared4.hash_next ; + c != Empty ; c = Col [c].shared4.hash_next) + { + COLAMD_ASSERT (c != super_c) ; + COLAMD_ASSERT (Col[c].is_alive()) ; + COLAMD_ASSERT (Col [c].shared3.hash == hash) ; + + /* not identical if lengths or scores are different */ + if (Col [c].length != length || + Col [c].shared2.score != Col [super_c].shared2.score) + { + prev_c = c ; + continue ; + } + + /* compare the two columns */ + cp1 = &A [Col [super_c].start] ; + cp2 = &A [Col [c].start] ; + + for (i = 0 ; i < length ; i++) + { + /* the columns are "clean" (no dead rows) */ + COLAMD_ASSERT ( cp1->is_alive() ); + COLAMD_ASSERT ( cp2->is_alive() ); + /* row indices will same order for both supercols, */ + /* no gather scatter necessary */ + if (*cp1++ != *cp2++) + { + break ; + } + } + + /* the two columns are different if the for-loop "broke" */ + if (i != length) + { + prev_c = c ; + continue ; + } + + /* === Got it! two columns are identical =================== */ + + COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; + + Col [super_c].shared1.thickness += Col [c].shared1.thickness ; + Col [c].shared1.parent = super_c ; + Col[c].kill_non_principal() ; + /* order c later, in order_children() */ + Col [c].shared2.order = Empty ; + /* remove c from hash bucket */ + Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; + } + } + + /* === Empty this hash bucket ======================================= */ + + if (head_column > Empty) + { + /* corresponding degree list "hash" is not empty */ + Col [head_column].shared3.headhash = Empty ; + } + else + { + /* corresponding degree list "hash" is empty */ + head [hash] = Empty ; + } + } +} + + +/* ========================================================================== */ +/* === garbage_collection =================================================== */ +/* ========================================================================== */ + +/* + Defragments and compacts columns and rows in the workspace A. Used when + all available memory has been used while performing row merging. Returns + the index of the first free position in A, after garbage collection. The + time taken by this routine is linear is the size of the array A, which is + itself linear in the number of nonzeros in the input matrix. + Not user-callable. +*/ +template +static IndexType garbage_collection /* returns the new value of pfree */ + ( + /* === Parameters ======================================================= */ + + IndexType n_row, /* number of rows */ + IndexType n_col, /* number of columns */ + RowStructure Row [], /* row info */ + ColStructure Col [], /* column info */ + IndexType A [], /* A [0 ... Alen-1] holds the matrix */ + IndexType *pfree /* &A [0] ... pfree is in use */ + ) +{ + /* === Local variables ================================================== */ + + IndexType *psrc ; /* source pointer */ + IndexType *pdest ; /* destination pointer */ + IndexType j ; /* counter */ + IndexType r ; /* a row index */ + IndexType c ; /* a column index */ + IndexType length ; /* length of a row or column */ + + /* === Defragment the columns =========================================== */ + + pdest = &A[0] ; + for (c = 0 ; c < n_col ; c++) + { + if (Col[c].is_alive()) + { + psrc = &A [Col [c].start] ; + + /* move and compact the column */ + COLAMD_ASSERT (pdest <= psrc) ; + Col [c].start = (IndexType) (pdest - &A [0]) ; + length = Col [c].length ; + for (j = 0 ; j < length ; j++) + { + r = *psrc++ ; + if (Row[r].is_alive()) + { + *pdest++ = r ; + } + } + Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ; + } + } + + /* === Prepare to defragment the rows =================================== */ + + for (r = 0 ; r < n_row ; r++) + { + if (Row[r].is_alive()) + { + if (Row [r].length == 0) + { + /* this row is of zero length. cannot compact it, so kill it */ + COLAMD_DEBUG3 (("Defrag row kill\n")) ; + Row[r].kill() ; + } + else + { + /* save first column index in Row [r].shared2.first_column */ + psrc = &A [Row [r].start] ; + Row [r].shared2.first_column = *psrc ; + COLAMD_ASSERT (Row[r].is_alive()) ; + /* flag the start of the row with the one's complement of row */ + *psrc = ones_complement(r) ; + + } + } + } + + /* === Defragment the rows ============================================== */ + + psrc = pdest ; + while (psrc < pfree) + { + /* find a negative number ... the start of a row */ + if (*psrc++ < 0) + { + psrc-- ; + /* get the row index */ + r = ones_complement(*psrc) ; + COLAMD_ASSERT (r >= 0 && r < n_row) ; + /* restore first column index */ + *psrc = Row [r].shared2.first_column ; + COLAMD_ASSERT (Row[r].is_alive()) ; + + /* move and compact the row */ + COLAMD_ASSERT (pdest <= psrc) ; + Row [r].start = (IndexType) (pdest - &A [0]) ; + length = Row [r].length ; + for (j = 0 ; j < length ; j++) + { + c = *psrc++ ; + if (Col[c].is_alive()) + { + *pdest++ = c ; + } + } + Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ; + + } + } + /* ensure we found all the rows */ + COLAMD_ASSERT (debug_rows == 0) ; + + /* === Return the new value of pfree ==================================== */ + + return ((IndexType) (pdest - &A [0])) ; +} + + +/* ========================================================================== */ +/* === clear_mark =========================================================== */ +/* ========================================================================== */ + +/* + Clears the Row [].shared2.mark array, and returns the new tag_mark. + Return value is the new tag_mark. Not user-callable. +*/ +template +static inline IndexType clear_mark /* return the new value for tag_mark */ + ( + /* === Parameters ======================================================= */ + + IndexType n_row, /* number of rows in A */ + RowStructure Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ + ) +{ + /* === Local variables ================================================== */ + + IndexType r ; + + for (r = 0 ; r < n_row ; r++) + { + if (Row[r].is_alive()) + { + Row [r].shared2.mark = 0 ; + } + } + return (1) ; +} + +} // namespace Colamd + +} // namespace internal +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/InternalHeaderCheck.h new file mode 100644 index 0000000..713c447 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_ORDERINGMETHODS_MODULE_H +#error "Please include Eigen/OrderingMethods instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Ordering.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Ordering.h new file mode 100644 index 0000000..5cc4a85 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/OrderingMethods/Ordering.h @@ -0,0 +1,155 @@ + +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ORDERING_H +#define EIGEN_ORDERING_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +#include "Eigen_Colamd.h" + +namespace internal { + +/** \internal + * \ingroup OrderingMethods_Module + * \param[in] A the input non-symmetric matrix + * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A. + * FIXME: The values should not be considered here + */ +template +void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat) +{ + MatrixType C; + C = A.transpose(); // NOTE: Could be costly + for (int i = 0; i < C.rows(); i++) + { + for (typename MatrixType::InnerIterator it(C, i); it; ++it) + it.valueRef() = typename MatrixType::Scalar(0); + } + symmat = C + A; +} + +} + +/** \ingroup OrderingMethods_Module + * \class AMDOrdering + * + * Functor computing the \em approximate \em minimum \em degree ordering + * If the matrix is not structurally symmetric, an ordering of A^T+A is computed + * \tparam StorageIndex The type of indices of the matrix + * \sa COLAMDOrdering + */ +template +class AMDOrdering +{ + public: + typedef PermutationMatrix PermutationType; + + /** Compute the permutation vector from a sparse matrix + * This routine is much faster if the input matrix is column-major + */ + template + void operator()(const MatrixType& mat, PermutationType& perm) + { + // Compute the symmetric pattern + SparseMatrix symm; + internal::ordering_helper_at_plus_a(mat,symm); + + // Call the AMD routine + //m_mat.prune(keep_diag()); + internal::minimum_degree_ordering(symm, perm); + } + + /** Compute the permutation with a selfadjoint matrix */ + template + void operator()(const SparseSelfAdjointView& mat, PermutationType& perm) + { + SparseMatrix C; C = mat; + + // Call the AMD routine + // m_mat.prune(keep_diag()); //Remove the diagonal elements + internal::minimum_degree_ordering(C, perm); + } +}; + +/** \ingroup OrderingMethods_Module + * \class NaturalOrdering + * + * Functor computing the natural ordering (identity) + * + * \note Returns an empty permutation matrix + * \tparam StorageIndex The type of indices of the matrix + */ +template +class NaturalOrdering +{ + public: + typedef PermutationMatrix PermutationType; + + /** Compute the permutation vector from a column-major sparse matrix */ + template + void operator()(const MatrixType& /*mat*/, PermutationType& perm) + { + perm.resize(0); + } + +}; + +/** \ingroup OrderingMethods_Module + * \class COLAMDOrdering + * + * \tparam StorageIndex The type of indices of the matrix + * + * Functor computing the \em column \em approximate \em minimum \em degree ordering + * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). + */ +template +class COLAMDOrdering +{ + public: + typedef PermutationMatrix PermutationType; + typedef Matrix IndexVector; + + /** Compute the permutation vector \a perm form the sparse matrix \a mat + * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + */ + template + void operator() (const MatrixType& mat, PermutationType& perm) + { + eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering"); + + StorageIndex m = StorageIndex(mat.rows()); + StorageIndex n = StorageIndex(mat.cols()); + StorageIndex nnz = StorageIndex(mat.nonZeros()); + // Get the recommended value of Alen to be used by colamd + StorageIndex Alen = internal::Colamd::recommended(nnz, m, n); + // Set the default parameters + double knobs [internal::Colamd::NKnobs]; + StorageIndex stats [internal::Colamd::NStats]; + internal::Colamd::set_defaults(knobs); + + IndexVector p(n+1), A(Alen); + for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i]; + for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i]; + // Call Colamd routine to compute the ordering + StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats); + EIGEN_UNUSED_VARIABLE(info); + eigen_assert( info && "COLAMD failed " ); + + perm.resize(n); + for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i; + } +}; + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PaStiXSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PaStiXSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..f588e50 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PaStiXSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_PASTIXSUPPORT_MODULE_H +#error "Please include Eigen/PaStiXSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h new file mode 100644 index 0000000..d3126b1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h @@ -0,0 +1,680 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PASTIXSUPPORT_H +#define EIGEN_PASTIXSUPPORT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +#if defined(DCOMPLEX) + #define PASTIX_COMPLEX COMPLEX + #define PASTIX_DCOMPLEX DCOMPLEX +#else + #define PASTIX_COMPLEX std::complex + #define PASTIX_DCOMPLEX std::complex +#endif + +/** \ingroup PaStiXSupport_Module + * \brief Interface to the PaStix solver + * + * This class is used to solve the linear systems A.X = B via the PaStix library. + * The matrix can be either real or complex, symmetric or not. + * + * \sa TutorialSparseDirectSolvers + */ +template class PastixLU; +template class PastixLLT; +template class PastixLDLT; + +namespace internal +{ + + template struct pastix_traits; + + template + struct pastix_traits< PastixLU > + { + typedef MatrixType_ MatrixType; + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef typename MatrixType_::StorageIndex StorageIndex; + }; + + template + struct pastix_traits< PastixLLT > + { + typedef MatrixType_ MatrixType; + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef typename MatrixType_::StorageIndex StorageIndex; + }; + + template + struct pastix_traits< PastixLDLT > + { + typedef MatrixType_ MatrixType; + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef typename MatrixType_::StorageIndex StorageIndex; + }; + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); + } + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); + } + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex *vals, int *perm, int * invp, std::complex *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast(vals), perm, invp, reinterpret_cast(x), nbrhs, iparm, dparm); + } + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex *vals, int *perm, int * invp, std::complex *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast(vals), perm, invp, reinterpret_cast(x), nbrhs, iparm, dparm); + } + + // Convert the matrix to Fortran-style Numbering + template + void c_to_fortran_numbering (MatrixType& mat) + { + if ( !(mat.outerIndexPtr()[0]) ) + { + int i; + for(i = 0; i <= mat.rows(); ++i) + ++mat.outerIndexPtr()[i]; + for(i = 0; i < mat.nonZeros(); ++i) + ++mat.innerIndexPtr()[i]; + } + } + + // Convert to C-style Numbering + template + void fortran_to_c_numbering (MatrixType& mat) + { + // Check the Numbering + if ( mat.outerIndexPtr()[0] == 1 ) + { // Convert to C-style numbering + int i; + for(i = 0; i <= mat.rows(); ++i) + --mat.outerIndexPtr()[i]; + for(i = 0; i < mat.nonZeros(); ++i) + --mat.innerIndexPtr()[i]; + } + } +} + +// This is the base class to interface with PaStiX functions. +// Users should not used this class directly. +template +class PastixBase : public SparseSolverBase +{ + protected: + typedef SparseSolverBase Base; + using Base::derived; + using Base::m_isInitialized; + public: + using Base::_solve_impl; + + typedef typename internal::pastix_traits::MatrixType MatrixType_; + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix Vector; + typedef SparseMatrix ColSpMatrix; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0) + { + init(); + } + + ~PastixBase() + { + clean(); + } + + template + bool _solve_impl(const MatrixBase &b, MatrixBase &x) const; + + /** Returns a reference to the integer vector IPARM of PaStiX parameters + * to modify the default parameters. + * The statistics related to the different phases of factorization and solve are saved here as well + * \sa analyzePattern() factorize() + */ + Array& iparm() + { + return m_iparm; + } + + /** Return a reference to a particular index parameter of the IPARM vector + * \sa iparm() + */ + + int& iparm(int idxparam) + { + return m_iparm(idxparam); + } + + /** Returns a reference to the double vector DPARM of PaStiX parameters + * The statistics related to the different phases of factorization and solve are saved here as well + * \sa analyzePattern() factorize() + */ + Array& dparm() + { + return m_dparm; + } + + + /** Return a reference to a particular index parameter of the DPARM vector + * \sa dparm() + */ + double& dparm(int idxparam) + { + return m_dparm(idxparam); + } + + inline Index cols() const { return m_size; } + inline Index rows() const { return m_size; } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the PaStiX reports a problem + * \c InvalidInput if the input matrix is invalid + * + * \sa iparm() + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + protected: + + // Initialize the Pastix data structure, check the matrix + void init(); + + // Compute the ordering and the symbolic factorization + void analyzePattern(ColSpMatrix& mat); + + // Compute the numerical factorization + void factorize(ColSpMatrix& mat); + + // Free all the data allocated by Pastix + void clean() + { + eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); + m_iparm(IPARM_START_TASK) = API_TASK_CLEAN; + m_iparm(IPARM_END_TASK) = API_TASK_CLEAN; + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, + m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); + } + + void compute(ColSpMatrix& mat); + + int m_initisOk; + int m_analysisIsOk; + int m_factorizationIsOk; + mutable ComputationInfo m_info; + mutable pastix_data_t *m_pastixdata; // Data structure for pastix + mutable int m_comm; // The MPI communicator identifier + mutable Array m_iparm; // integer vector for the input parameters + mutable Array m_dparm; // Scalar vector for the input parameters + mutable Matrix m_perm; // Permutation vector + mutable Matrix m_invp; // Inverse permutation vector + mutable int m_size; // Size of the matrix +}; + + /** Initialize the PaStiX data structure. + *A first call to this function fills iparm and dparm with the default PaStiX parameters + * \sa iparm() dparm() + */ +template +void PastixBase::init() +{ + m_size = 0; + m_iparm.setZero(IPARM_SIZE); + m_dparm.setZero(DPARM_SIZE); + + m_iparm(IPARM_MODIFY_PARAMETER) = API_NO; + pastix(&m_pastixdata, MPI_COMM_WORLD, + 0, 0, 0, 0, + 0, 0, 0, 1, m_iparm.data(), m_dparm.data()); + + m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO; + m_iparm[IPARM_VERBOSE] = API_VERBOSE_NOT; + m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH; + m_iparm[IPARM_INCOMPLETE] = API_NO; + m_iparm[IPARM_OOC_LIMIT] = 2000; + m_iparm[IPARM_RHS_MAKING] = API_RHS_B; + m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; + + m_iparm(IPARM_START_TASK) = API_TASK_INIT; + m_iparm(IPARM_END_TASK) = API_TASK_INIT; + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, + 0, 0, 0, 0, m_iparm.data(), m_dparm.data()); + + // Check the returned error + if(m_iparm(IPARM_ERROR_NUMBER)) { + m_info = InvalidInput; + m_initisOk = false; + } + else { + m_info = Success; + m_initisOk = true; + } +} + +template +void PastixBase::compute(ColSpMatrix& mat) +{ + eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); + + analyzePattern(mat); + factorize(mat); + + m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; +} + + +template +void PastixBase::analyzePattern(ColSpMatrix& mat) +{ + eigen_assert(m_initisOk && "The initialization of PaSTiX failed"); + + // clean previous calls + if(m_size>0) + clean(); + + m_size = internal::convert_index(mat.rows()); + m_perm.resize(m_size); + m_invp.resize(m_size); + + m_iparm(IPARM_START_TASK) = API_TASK_ORDERING; + m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE; + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), + mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); + + // Check the returned error + if(m_iparm(IPARM_ERROR_NUMBER)) + { + m_info = NumericalIssue; + m_analysisIsOk = false; + } + else + { + m_info = Success; + m_analysisIsOk = true; + } +} + +template +void PastixBase::factorize(ColSpMatrix& mat) +{ +// if(&m_cpyMat != &mat) m_cpyMat = mat; + eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase"); + m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT; + m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT; + m_size = internal::convert_index(mat.rows()); + + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), + mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); + + // Check the returned error + if(m_iparm(IPARM_ERROR_NUMBER)) + { + m_info = NumericalIssue; + m_factorizationIsOk = false; + m_isInitialized = false; + } + else + { + m_info = Success; + m_factorizationIsOk = true; + m_isInitialized = true; + } +} + +/* Solve the system */ +template +template +bool PastixBase::_solve_impl(const MatrixBase &b, MatrixBase &x) const +{ + eigen_assert(m_isInitialized && "The matrix should be factorized first"); + EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, + THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + int rhs = 1; + + x = b; /* on return, x is overwritten by the computed solution */ + + for (int i = 0; i < b.cols(); i++){ + m_iparm[IPARM_START_TASK] = API_TASK_SOLVE; + m_iparm[IPARM_END_TASK] = API_TASK_REFINE; + + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index(x.rows()), 0, 0, 0, + m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data()); + } + + // Check the returned error + m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue; + + return m_iparm(IPARM_ERROR_NUMBER)==0; +} + +/** \ingroup PaStiXSupport_Module + * \class PastixLU + * \brief Sparse direct LU solver based on PaStiX library + * + * This class is used to solve the linear systems A.X = B with a supernodal LU + * factorization in the PaStiX library. The matrix A should be squared and nonsingular + * PaStiX requires that the matrix A has a symmetric structural pattern. + * This interface can symmetrize the input matrix otherwise. + * The vectors or matrices X and B can be either dense or sparse. + * + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false + * NOTE : Note that if the analysis and factorization phase are called separately, + * the input matrix will be symmetrized at each call, hence it is advised to + * symmetrize the matrix in a end-user program and set \p IsStrSym to true + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SparseLU + * + */ +template +class PastixLU : public PastixBase< PastixLU > +{ + public: + typedef MatrixType_ MatrixType; + typedef PastixBase > Base; + typedef typename Base::ColSpMatrix ColSpMatrix; + typedef typename MatrixType::StorageIndex StorageIndex; + + public: + PastixLU() : Base() + { + init(); + } + + explicit PastixLU(const MatrixType& matrix):Base() + { + init(); + compute(matrix); + } + /** Compute the LU supernodal factorization of \p matrix. + * iparm and dparm can be used to tune the PaStiX parameters. + * see the PaStiX user's manual + * \sa analyzePattern() factorize() + */ + void compute (const MatrixType& matrix) + { + m_structureIsUptodate = false; + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::compute(temp); + } + /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. + * Several ordering methods can be used at this step. See the PaStiX user's manual. + * The result of this operation can be used with successive matrices having the same pattern as \p matrix + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + m_structureIsUptodate = false; + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::analyzePattern(temp); + } + + /** Compute the LU supernodal factorization of \p matrix + * WARNING The matrix \p matrix should have the same structural pattern + * as the same used in the analysis phase. + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::factorize(temp); + } + protected: + + void init() + { + m_structureIsUptodate = false; + m_iparm(IPARM_SYM) = API_SYM_NO; + m_iparm(IPARM_FACTORIZATION) = API_FACT_LU; + } + + void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) + { + if(IsStrSym) + out = matrix; + else + { + if(!m_structureIsUptodate) + { + // update the transposed structure + m_transposedStructure = matrix.transpose(); + + // Set the elements of the matrix to zero + for (Index j=0; j + * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT + */ +template +class PastixLLT : public PastixBase< PastixLLT > +{ + public: + typedef MatrixType_ MatrixType; + typedef PastixBase > Base; + typedef typename Base::ColSpMatrix ColSpMatrix; + + public: + enum { UpLo = UpLo_ }; + PastixLLT() : Base() + { + init(); + } + + explicit PastixLLT(const MatrixType& matrix):Base() + { + init(); + compute(matrix); + } + + /** Compute the L factor of the LL^T supernodal factorization of \p matrix + * \sa analyzePattern() factorize() + */ + void compute (const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::compute(temp); + } + + /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern + * The result of this operation can be used with successive matrices having the same pattern as \p matrix + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::analyzePattern(temp); + } + /** Compute the LL^T supernodal numerical factorization of \p matrix + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::factorize(temp); + } + protected: + using Base::m_iparm; + + void init() + { + m_iparm(IPARM_SYM) = API_SYM_YES; + m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT; + } + + void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) + { + out.resize(matrix.rows(), matrix.cols()); + // Pastix supports only lower, column-major matrices + out.template selfadjointView() = matrix.template selfadjointView(); + internal::c_to_fortran_numbering(out); + } +}; + +/** \ingroup PaStiXSupport_Module + * \class PastixLDLT + * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library + * + * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization + * available in the PaStiX library. The matrix A should be symmetric and positive definite + * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX + * The vectors or matrices X and B can be either dense or sparse + * + * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT + */ +template +class PastixLDLT : public PastixBase< PastixLDLT > +{ + public: + typedef MatrixType_ MatrixType; + typedef PastixBase > Base; + typedef typename Base::ColSpMatrix ColSpMatrix; + + public: + enum { UpLo = UpLo_ }; + PastixLDLT():Base() + { + init(); + } + + explicit PastixLDLT(const MatrixType& matrix):Base() + { + init(); + compute(matrix); + } + + /** Compute the L and D factors of the LDL^T factorization of \p matrix + * \sa analyzePattern() factorize() + */ + void compute (const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::compute(temp); + } + + /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern + * The result of this operation can be used with successive matrices having the same pattern as \p matrix + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::analyzePattern(temp); + } + /** Compute the LDL^T supernodal numerical factorization of \p matrix + * + */ + void factorize(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::factorize(temp); + } + + protected: + using Base::m_iparm; + + void init() + { + m_iparm(IPARM_SYM) = API_SYM_YES; + m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT; + } + + void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) + { + // Pastix supports only lower, column-major matrices + out.resize(matrix.rows(), matrix.cols()); + out.template selfadjointView() = matrix.template selfadjointView(); + internal::c_to_fortran_numbering(out); + } +}; + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PardisoSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PardisoSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..8ef33f0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PardisoSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_PARDISOSUPPORT_MODULE_H +#error "Please include Eigen/PardisoSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PardisoSupport/PardisoSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PardisoSupport/PardisoSupport.h new file mode 100644 index 0000000..e9815e6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/PardisoSupport/PardisoSupport.h @@ -0,0 +1,547 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to Intel(R) MKL PARDISO + ******************************************************************************** +*/ + +#ifndef EIGEN_PARDISOSUPPORT_H +#define EIGEN_PARDISOSUPPORT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template class PardisoLU; +template class PardisoLLT; +template class PardisoLDLT; + +namespace internal +{ + template + struct pardiso_run_selector + { + static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a, + IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x) + { + IndexType error = 0; + ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); + return error; + } + }; + template<> + struct pardiso_run_selector + { + typedef long long int IndexType; + static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a, + IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x) + { + IndexType error = 0; + ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); + return error; + } + }; + + template struct pardiso_traits; + + template + struct pardiso_traits< PardisoLU > + { + typedef MatrixType_ MatrixType; + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef typename MatrixType_::StorageIndex StorageIndex; + }; + + template + struct pardiso_traits< PardisoLLT > + { + typedef MatrixType_ MatrixType; + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef typename MatrixType_::StorageIndex StorageIndex; + }; + + template + struct pardiso_traits< PardisoLDLT > + { + typedef MatrixType_ MatrixType; + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef typename MatrixType_::StorageIndex StorageIndex; + }; + +} // end namespace internal + +template +class PardisoImpl : public SparseSolverBase +{ + protected: + typedef SparseSolverBase Base; + using Base::derived; + using Base::m_isInitialized; + + typedef internal::pardiso_traits Traits; + public: + using Base::_solve_impl; + + typedef typename Traits::MatrixType MatrixType; + typedef typename Traits::Scalar Scalar; + typedef typename Traits::RealScalar RealScalar; + typedef typename Traits::StorageIndex StorageIndex; + typedef SparseMatrix SparseMatrixType; + typedef Matrix VectorType; + typedef Matrix IntRowVectorType; + typedef Matrix IntColVectorType; + typedef Array ParameterType; + enum { + ScalarIsComplex = NumTraits::IsComplex, + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; + + PardisoImpl() + : m_analysisIsOk(false), m_factorizationIsOk(false) + { + eigen_assert((sizeof(StorageIndex) >= sizeof(_INTEGER_t) && sizeof(StorageIndex) <= 8) && "Non-supported index type"); + m_iparm.setZero(); + m_msglvl = 0; // No output + m_isInitialized = false; + } + + ~PardisoImpl() + { + pardisoRelease(); + } + + inline Index cols() const { return m_size; } + inline Index rows() const { return m_size; } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** \warning for advanced usage only. + * \returns a reference to the parameter array controlling PARDISO. + * See the PARDISO manual to know how to use it. */ + ParameterType& pardisoParameterArray() + { + return m_iparm; + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + Derived& analyzePattern(const MatrixType& matrix); + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + Derived& factorize(const MatrixType& matrix); + + Derived& compute(const MatrixType& matrix); + + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const; + + protected: + void pardisoRelease() + { + if(m_isInitialized) // Factorization ran at least once + { + internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, -1, internal::convert_index(m_size),0, 0, 0, m_perm.data(), 0, + m_iparm.data(), m_msglvl, NULL, NULL); + m_isInitialized = false; + } + } + + void pardisoInit(int type) + { + m_type = type; + bool symmetric = std::abs(m_type) < 10; + m_iparm[0] = 1; // No solver default + m_iparm[1] = 2; // use Metis for the ordering + m_iparm[2] = 0; // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??) + m_iparm[3] = 0; // No iterative-direct algorithm + m_iparm[4] = 0; // No user fill-in reducing permutation + m_iparm[5] = 0; // Write solution into x, b is left unchanged + m_iparm[6] = 0; // Not in use + m_iparm[7] = 2; // Max numbers of iterative refinement steps + m_iparm[8] = 0; // Not in use + m_iparm[9] = 13; // Perturb the pivot elements with 1E-13 + m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS + m_iparm[11] = 0; // Not in use + m_iparm[12] = symmetric ? 0 : 1; // Maximum weighted matching algorithm is switched-off (default for symmetric). + // Try m_iparm[12] = 1 in case of inappropriate accuracy + m_iparm[13] = 0; // Output: Number of perturbed pivots + m_iparm[14] = 0; // Not in use + m_iparm[15] = 0; // Not in use + m_iparm[16] = 0; // Not in use + m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU + m_iparm[18] = -1; // Output: Mflops for LU factorization + m_iparm[19] = 0; // Output: Numbers of CG Iterations + + m_iparm[20] = 0; // 1x1 pivoting + m_iparm[26] = 0; // No matrix checker + m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0; + m_iparm[34] = 1; // C indexing + m_iparm[36] = 0; // CSR + m_iparm[59] = 0; // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core + + memset(m_pt, 0, sizeof(m_pt)); + } + + protected: + // cached data to reduce reallocation, etc. + + void manageErrorCode(Index error) const + { + switch(error) + { + case 0: + m_info = Success; + break; + case -4: + case -7: + m_info = NumericalIssue; + break; + default: + m_info = InvalidInput; + } + } + + mutable SparseMatrixType m_matrix; + mutable ComputationInfo m_info; + bool m_analysisIsOk, m_factorizationIsOk; + StorageIndex m_type, m_msglvl; + mutable void *m_pt[64]; + mutable ParameterType m_iparm; + mutable IntColVectorType m_perm; + Index m_size; + +}; + +template +Derived& PardisoImpl::compute(const MatrixType& a) +{ + m_size = a.rows(); + eigen_assert(a.rows() == a.cols()); + + pardisoRelease(); + m_perm.setZero(m_size); + derived().getMatrix(a); + + Index error; + error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 12, internal::convert_index(m_size), + m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), + m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); + manageErrorCode(error); + m_analysisIsOk = true; + m_factorizationIsOk = true; + m_isInitialized = true; + return derived(); +} + +template +Derived& PardisoImpl::analyzePattern(const MatrixType& a) +{ + m_size = a.rows(); + eigen_assert(m_size == a.cols()); + + pardisoRelease(); + m_perm.setZero(m_size); + derived().getMatrix(a); + + Index error; + error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 11, internal::convert_index(m_size), + m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), + m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); + + manageErrorCode(error); + m_analysisIsOk = true; + m_factorizationIsOk = false; + m_isInitialized = true; + return derived(); +} + +template +Derived& PardisoImpl::factorize(const MatrixType& a) +{ + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + eigen_assert(m_size == a.rows() && m_size == a.cols()); + + derived().getMatrix(a); + + Index error; + error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 22, internal::convert_index(m_size), + m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), + m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); + + manageErrorCode(error); + m_factorizationIsOk = true; + return derived(); +} + +template +template +void PardisoImpl::_solve_impl(const MatrixBase &b, MatrixBase& x) const +{ + if(m_iparm[0] == 0) // Factorization was not computed + { + m_info = InvalidInput; + return; + } + + //Index n = m_matrix.rows(); + Index nrhs = Index(b.cols()); + eigen_assert(m_size==b.rows()); + eigen_assert(((MatrixBase::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported"); + eigen_assert(((MatrixBase::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported"); + eigen_assert(((nrhs == 1) || b.outerStride() == b.rows())); + + +// switch (transposed) { +// case SvNoTrans : m_iparm[11] = 0 ; break; +// case SvTranspose : m_iparm[11] = 2 ; break; +// case SvAdjoint : m_iparm[11] = 1 ; break; +// default: +// //std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the PARDISO backend\n"; +// m_iparm[11] = 0; +// } + + Scalar* rhs_ptr = const_cast(b.derived().data()); + Matrix tmp; + + // Pardiso cannot solve in-place + if(rhs_ptr == x.derived().data()) + { + tmp = b; + rhs_ptr = tmp.data(); + } + + Index error; + error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 33, internal::convert_index(m_size), + m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), + m_perm.data(), internal::convert_index(nrhs), m_iparm.data(), m_msglvl, + rhs_ptr, x.derived().data()); + + manageErrorCode(error); +} + + +/** \ingroup PardisoSupport_Module + * \class PardisoLU + * \brief A sparse direct LU factorization and solver based on the PARDISO library + * + * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization + * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible. + * The vectors or matrices X and B can be either dense or sparse. + * + * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: + * \code solver.pardisoParameterArray()[59] = 1; \endcode + * + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SparseLU + */ +template +class PardisoLU : public PardisoImpl< PardisoLU > +{ + protected: + typedef PardisoImpl Base; + using Base::pardisoInit; + using Base::m_matrix; + friend class PardisoImpl< PardisoLU >; + + public: + + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + + using Base::compute; + using Base::solve; + + PardisoLU() + : Base() + { + pardisoInit(Base::ScalarIsComplex ? 13 : 11); + } + + explicit PardisoLU(const MatrixType& matrix) + : Base() + { + pardisoInit(Base::ScalarIsComplex ? 13 : 11); + compute(matrix); + } + protected: + void getMatrix(const MatrixType& matrix) + { + m_matrix = matrix; + m_matrix.makeCompressed(); + } +}; + +/** \ingroup PardisoSupport_Module + * \class PardisoLLT + * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library + * + * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization + * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite. + * The vectors or matrices X and B can be either dense or sparse. + * + * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: + * \code solver.pardisoParameterArray()[59] = 1; \endcode + * + * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used. + * Upper|Lower can be used to tell both triangular parts can be used as input. + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT + */ +template +class PardisoLLT : public PardisoImpl< PardisoLLT > +{ + protected: + typedef PardisoImpl< PardisoLLT > Base; + using Base::pardisoInit; + using Base::m_matrix; + friend class PardisoImpl< PardisoLLT >; + + public: + + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + typedef typename Base::StorageIndex StorageIndex; + enum { UpLo = UpLo_ }; + using Base::compute; + + PardisoLLT() + : Base() + { + pardisoInit(Base::ScalarIsComplex ? 4 : 2); + } + + explicit PardisoLLT(const MatrixType& matrix) + : Base() + { + pardisoInit(Base::ScalarIsComplex ? 4 : 2); + compute(matrix); + } + + protected: + + void getMatrix(const MatrixType& matrix) + { + // PARDISO supports only upper, row-major matrices + PermutationMatrix p_null; + m_matrix.resize(matrix.rows(), matrix.cols()); + m_matrix.template selfadjointView() = matrix.template selfadjointView().twistedBy(p_null); + m_matrix.makeCompressed(); + } +}; + +/** \ingroup PardisoSupport_Module + * \class PardisoLDLT + * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library + * + * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization + * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite. + * For complex matrices, A can also be symmetric only, see the \a Options template parameter. + * The vectors or matrices X and B can be either dense or sparse. + * + * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: + * \code solver.pardisoParameterArray()[59] = 1; \endcode + * + * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used. + * Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix. + * Upper|Lower can be used to tell both triangular parts can be used as input. + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT + */ +template +class PardisoLDLT : public PardisoImpl< PardisoLDLT > +{ + protected: + typedef PardisoImpl< PardisoLDLT > Base; + using Base::pardisoInit; + using Base::m_matrix; + friend class PardisoImpl< PardisoLDLT >; + + public: + + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + typedef typename Base::StorageIndex StorageIndex; + using Base::compute; + enum { UpLo = Options&(Upper|Lower) }; + + PardisoLDLT() + : Base() + { + pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2); + } + + explicit PardisoLDLT(const MatrixType& matrix) + : Base() + { + pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2); + compute(matrix); + } + + void getMatrix(const MatrixType& matrix) + { + // PARDISO supports only upper, row-major matrices + PermutationMatrix p_null; + m_matrix.resize(matrix.rows(), matrix.cols()); + m_matrix.template selfadjointView() = matrix.template selfadjointView().twistedBy(p_null); + m_matrix.makeCompressed(); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_PARDISOSUPPORT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/ColPivHouseholderQR.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/ColPivHouseholderQR.h new file mode 100644 index 0000000..6855893 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/ColPivHouseholderQR.h @@ -0,0 +1,680 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H +#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template struct traits > + : traits +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef PermutationIndex_ PermutationIndex; + enum { Flags = 0 }; +}; + +} // end namespace internal + +/** \ingroup QR_Module + * + * \class ColPivHouseholderQR + * + * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting + * + * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition + * + * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R + * such that + * \f[ + * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} + * \f] + * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an + * upper triangular matrix. + * + * This decomposition performs column pivoting in order to be rank-revealing and improve + * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::colPivHouseholderQr() + */ +template class ColPivHouseholderQR + : public SolverBase > +{ + public: + + typedef MatrixType_ MatrixType; + typedef SolverBase Base; + friend class SolverBase; + typedef PermutationIndex_ PermutationIndex; + EIGEN_GENERIC_PUBLIC_INTERFACE(ColPivHouseholderQR) + + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef PermutationMatrix PermutationType; + typedef typename internal::plain_row_type::type IntRowVectorType; + typedef typename internal::plain_row_type::type RowVectorType; + typedef typename internal::plain_row_type::type RealRowVectorType; + typedef HouseholderSequence> HouseholderSequenceType; + typedef typename MatrixType::PlainObject PlainObject; + +private: + void init(Index rows, Index cols) { + Index diag = numext::mini(rows, cols); + m_hCoeffs.resize(diag); + m_colsPermutation.resize(cols); + m_colsTranspositions.resize(cols); + m_temp.resize(cols); + m_colNormsUpdated.resize(cols); + m_colNormsDirect.resize(cols); + m_isInitialized = false; + m_usePrescribedThreshold = false; + } + + public: + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). + */ + ColPivHouseholderQR() + : m_qr(), + m_hCoeffs(), + m_colsPermutation(), + m_colsTranspositions(), + m_temp(), + m_colNormsUpdated(), + m_colNormsDirect(), + m_isInitialized(false), + m_usePrescribedThreshold(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa ColPivHouseholderQR() + */ + ColPivHouseholderQR(Index rows, Index cols) : m_qr(rows, cols) { init(rows, cols); } + + /** \brief Constructs a QR factorization from a given matrix + * + * This constructor computes the QR factorization of the matrix \a matrix by calling + * the method compute(). It is a short cut for: + * + * \code + * ColPivHouseholderQR qr(matrix.rows(), matrix.cols()); + * qr.compute(matrix); + * \endcode + * + * \sa compute() + */ + template + explicit ColPivHouseholderQR(const EigenBase& matrix) : m_qr(matrix.rows(), matrix.cols()) { + init(matrix.rows(), matrix.cols()); + compute(matrix.derived()); + } + + /** \brief Constructs a QR factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa ColPivHouseholderQR(const EigenBase&) + */ + template + explicit ColPivHouseholderQR(EigenBase& matrix) : m_qr(matrix.derived()) { + init(matrix.rows(), matrix.cols()); + computeInPlace(); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** This method finds a solution x to the equation Ax=b, where A is the matrix of which + * *this is the QR decomposition, if any exists. + * + * \param b the right-hand-side of the equation to solve. + * + * \returns a solution. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * + * Example: \include ColPivHouseholderQR_solve.cpp + * Output: \verbinclude ColPivHouseholderQR_solve.out + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + HouseholderSequenceType householderQ() const; + HouseholderSequenceType matrixQ() const + { + return householderQ(); + } + + /** \returns a reference to the matrix where the Householder QR decomposition is stored + */ + const MatrixType& matrixQR() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_qr; + } + + /** \returns a reference to the matrix where the result Householder QR is stored + * \warning The strict lower part of this matrix contains internal values. + * Only the upper triangular part should be referenced. To get it, use + * \code matrixR().template triangularView() \endcode + * For rank-deficient matrices, use + * \code + * matrixR().topLeftCorner(rank(), rank()).template triangularView() + * \endcode + */ + const MatrixType& matrixR() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_qr; + } + + template + ColPivHouseholderQR& compute(const EigenBase& matrix); + + /** \returns a const reference to the column permutation matrix */ + const PermutationType& colsPermutation() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_colsPermutation; + } + + /** \returns the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::Scalar determinant() const; + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow that's inherent + * to determinant computation. + * + * \sa determinant(), absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + /** \returns the rank of the matrix of which *this is the QR decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + using std::abs; + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); + Index result = 0; + for(Index i = 0; i < m_nonzero_pivots; ++i) + result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); + return result; + } + + /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return cols() - rank(); + } + + /** \returns true if the matrix of which *this is the QR decomposition represents an injective + * linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInjective() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return rank() == cols(); + } + + /** \returns true if the matrix of which *this is the QR decomposition represents a surjective + * linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isSurjective() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return rank() == rows(); + } + + /** \returns true if the matrix of which *this is the QR decomposition is invertible. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInvertible() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return isInjective() && isSurjective(); + } + + /** \returns the inverse of the matrix of which *this is the QR decomposition. + * + * \note If this matrix is not invertible, the returned matrix has undefined coefficients. + * Use isInvertible() to first determine whether this matrix is invertible. + */ + inline const Inverse inverse() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return Inverse(*this); + } + + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.cols(); } + + /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. + * + * For advanced uses only. + */ + const HCoeffsType& hCoeffs() const { return m_hCoeffs; } + + /** Allows to prescribe a threshold to be used by certain methods, such as rank(), + * who need to determine when pivots are to be considered nonzero. This is not used for the + * QR decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). By default, this + * uses a formula to automatically determine a reasonable threshold. + * Once you have called the present method setThreshold(const RealScalar&), + * your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + ColPivHouseholderQR& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code qr.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + ColPivHouseholderQR& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + return m_usePrescribedThreshold ? m_prescribedThreshold + // this formula comes from experimenting (see "LU precision tuning" thread on the list) + // and turns out to be identical to Higham's formula used already in LDLt. + : NumTraits::epsilon() * RealScalar(m_qr.diagonalSize()); + } + + /** \returns the number of nonzero pivots in the QR decomposition. + * Here nonzero is meant in the exact sense, not in a fuzzy sense. + * So that notion isn't really intrinsically interesting, but it is + * still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_nonzero_pivots; + } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of R. + */ + RealScalar maxPivot() const { return m_maxpivot; } + + /** \brief Reports whether the QR factorization was successful. + * + * \note This function always returns \c Success. It is provided for compatibility + * with other factorization routines. + * \returns \c Success + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return Success; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + friend class CompleteOrthogonalDecomposition; + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + void computeInPlace(); + + MatrixType m_qr; + HCoeffsType m_hCoeffs; + PermutationType m_colsPermutation; + IntRowVectorType m_colsTranspositions; + RowVectorType m_temp; + RealRowVectorType m_colNormsUpdated; + RealRowVectorType m_colNormsDirect; + bool m_isInitialized, m_usePrescribedThreshold; + RealScalar m_prescribedThreshold, m_maxpivot; + Index m_nonzero_pivots; + Index m_det_p; +}; + +template +typename MatrixType::Scalar ColPivHouseholderQR::determinant() const +{ + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + Scalar detQ; + internal::householder_determinant::IsComplex>::run(m_hCoeffs, detQ); + return m_qr.diagonal().prod() * detQ * Scalar(m_det_p); +} + +template +typename MatrixType::RealScalar ColPivHouseholderQR::absDeterminant() const +{ + using std::abs; + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return abs(m_qr.diagonal().prod()); +} + +template +typename MatrixType::RealScalar ColPivHouseholderQR::logAbsDeterminant() const +{ + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return m_qr.diagonal().cwiseAbs().array().log().sum(); +} + +/** Performs the QR factorization of the given matrix \a matrix. The result of + * the factorization is stored into \c *this, and a reference to \c *this + * is returned. + * + * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) + */ +template +template +ColPivHouseholderQR& ColPivHouseholderQR::compute(const EigenBase& matrix) +{ + m_qr = matrix.derived(); + computeInPlace(); + return *this; +} + +template +void ColPivHouseholderQR::computeInPlace() +{ + + eigen_assert(m_qr.cols()<=NumTraits::highest()); + + using std::abs; + + Index rows = m_qr.rows(); + Index cols = m_qr.cols(); + Index size = m_qr.diagonalSize(); + + m_hCoeffs.resize(size); + + m_temp.resize(cols); + + m_colsTranspositions.resize(m_qr.cols()); + Index number_of_transpositions = 0; + + m_colNormsUpdated.resize(cols); + m_colNormsDirect.resize(cols); + for (Index k = 0; k < cols; ++k) { + // colNormsDirect(k) caches the most recent directly computed norm of + // column k. + m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); + m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); + } + + RealScalar threshold_helper = numext::abs2(m_colNormsUpdated.maxCoeff() * NumTraits::epsilon()) / RealScalar(rows); + RealScalar norm_downdate_threshold = numext::sqrt(NumTraits::epsilon()); + + m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) + m_maxpivot = RealScalar(0); + + for(Index k = 0; k < size; ++k) + { + // first, we look up in our table m_colNormsUpdated which column has the biggest norm + Index biggest_col_index; + RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); + biggest_col_index += k; + + // Track the number of meaningful pivots but do not stop the decomposition to make + // sure that the initial matrix is properly reproduced. See bug 941. + if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) + m_nonzero_pivots = k; + + // apply the transposition to the columns + m_colsTranspositions.coeffRef(k) = static_cast(biggest_col_index); + if(k != biggest_col_index) { + m_qr.col(k).swap(m_qr.col(biggest_col_index)); + std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); + std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); + ++number_of_transpositions; + } + + // generate the householder vector, store it below the diagonal + RealScalar beta; + m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); + + // apply the householder transformation to the diagonal coefficient + m_qr.coeffRef(k,k) = beta; + + // remember the maximum absolute value of diagonal coefficients + if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); + + // apply the householder transformation + m_qr.bottomRightCorner(rows-k, cols-k-1) + .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); + + // update our table of norms of the columns + for (Index j = k + 1; j < cols; ++j) { + // The following implements the stable norm downgrade step discussed in + // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf + // and used in LAPACK routines xGEQPF and xGEQP3. + // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html + if (!numext::is_exactly_zero(m_colNormsUpdated.coeffRef(j))) { + RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); + temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); + temp = temp < RealScalar(0) ? RealScalar(0) : temp; + RealScalar temp2 = temp * numext::abs2(m_colNormsUpdated.coeffRef(j) / + m_colNormsDirect.coeffRef(j)); + if (temp2 <= norm_downdate_threshold) { + // The updated norm has become too inaccurate so re-compute the column + // norm directly. + m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); + m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); + } else { + m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); + } + } + } + } + + m_colsPermutation.setIdentity(cols); + for(Index k = 0; k < size/*m_nonzero_pivots*/; ++k) + m_colsPermutation.applyTranspositionOnTheRight(k, static_cast(m_colsTranspositions.coeff(k))); + + m_det_p = (number_of_transpositions%2) ? -1 : 1; + m_isInitialized = true; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void ColPivHouseholderQR::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + const Index nonzero_pivots = nonzeroPivots(); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(rhs); + + c.applyOnTheLeft(householderQ().setLength(nonzero_pivots).adjoint() ); + + m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .solveInPlace(c.topRows(nonzero_pivots)); + + for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); + for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); +} + +template +template +void ColPivHouseholderQR::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + const Index nonzero_pivots = nonzeroPivots(); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(m_colsPermutation.transpose()*rhs); + + m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .transpose().template conjugateIf() + .solveInPlace(c.topRows(nonzero_pivots)); + + dst.topRows(nonzero_pivots) = c.topRows(nonzero_pivots); + dst.bottomRows(rows()-nonzero_pivots).setZero(); + + dst.applyOnTheLeft(householderQ().setLength(nonzero_pivots).template conjugateIf() ); +} +#endif + +namespace internal { + +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef ColPivHouseholderQR QrType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); + } +}; + +} // end namespace internal + +/** \returns the matrix Q as a sequence of householder transformations. + * You can extract the meaningful part only by using: + * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ +template +typename ColPivHouseholderQR::HouseholderSequenceType ColPivHouseholderQR + ::householderQ() const +{ + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); +} + +/** \return the column-pivoting Householder QR decomposition of \c *this. + * + * \sa class ColPivHouseholderQR + */ +template +template +const ColPivHouseholderQR::PlainObject, PermutationIndexType> +MatrixBase::colPivHouseholderQr() const +{ + return ColPivHouseholderQR(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h new file mode 100644 index 0000000..6861ff1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h @@ -0,0 +1,149 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Householder QR decomposition of a matrix with column pivoting based on + * LAPACKE_?geqp3 function. + ******************************************************************************** +*/ + +#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H +#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +#if defined(EIGEN_USE_LAPACKE) + + template + inline lapack_int call_geqp3(int matrix_layout, lapack_int m, lapack_int n, Scalar* a, lapack_int lda, lapack_int* jpvt, Scalar* tau); + template<> + inline lapack_int call_geqp3(int matrix_layout, lapack_int m, lapack_int n, float* a, lapack_int lda, lapack_int* jpvt, float* tau) + { return LAPACKE_sgeqp3(matrix_layout, m, n, a, lda, jpvt, tau); } + template<> + inline lapack_int call_geqp3(int matrix_layout, lapack_int m, lapack_int n, double* a, lapack_int lda, lapack_int* jpvt, double* tau) + { return LAPACKE_dgeqp3(matrix_layout, m, n, a, lda, jpvt, tau); } + template<> + inline lapack_int call_geqp3(int matrix_layout, lapack_int m, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_int* jpvt, lapack_complex_float* tau) + { return LAPACKE_cgeqp3(matrix_layout, m, n, a, lda, jpvt, tau); } + template<> + inline lapack_int call_geqp3(int matrix_layout, lapack_int m, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_int* jpvt, lapack_complex_double* tau) + { return LAPACKE_zgeqp3(matrix_layout, m, n, a, lda, jpvt, tau); } + + template + struct ColPivHouseholderQR_LAPACKE_impl { + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename internal::lapacke_helpers::translate_type_imp::type LapackeType; + static constexpr int LapackeStorage = MatrixType::IsRowMajor ? (LAPACK_ROW_MAJOR) : (LAPACK_COL_MAJOR); + + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef PermutationMatrix PermutationType; + + static void run(MatrixType& qr, HCoeffsType& hCoeffs, PermutationType& colsPermutation, Index& nonzero_pivots, + RealScalar& maxpivot, bool usePrescribedThreshold, RealScalar prescribedThreshold, Index& det_p, + bool& isInitialized) { + + isInitialized = false; + hCoeffs.resize(qr.diagonalSize()); + nonzero_pivots = 0; + maxpivot = RealScalar(0); + colsPermutation.resize(qr.cols()); + colsPermutation.indices().setZero(); + + lapack_int rows = internal::lapacke_helpers::to_lapack(qr.rows()); + lapack_int cols = internal::lapacke_helpers::to_lapack(qr.cols()); + LapackeType* qr_data = (LapackeType*)(qr.data()); + lapack_int lda = internal::lapacke_helpers::to_lapack(qr.outerStride()); + lapack_int* perm_data = colsPermutation.indices().data(); + LapackeType* hCoeffs_data = (LapackeType*)(hCoeffs.data()); + + lapack_int info = call_geqp3(LapackeStorage, rows, cols, qr_data, lda, perm_data, hCoeffs_data); + if (info != 0) return; + + maxpivot = qr.diagonal().cwiseAbs().maxCoeff(); + hCoeffs.adjointInPlace(); + RealScalar defaultThreshold = NumTraits::epsilon() * RealScalar(qr.diagonalSize()); + RealScalar threshold = usePrescribedThreshold ? prescribedThreshold : defaultThreshold; + RealScalar premultiplied_threshold = maxpivot * threshold; + nonzero_pivots = (qr.diagonal().cwiseAbs().array() > premultiplied_threshold).count(); + colsPermutation.indices().array() -= 1; + det_p = colsPermutation.determinant(); + isInitialized = true; + }; + + static void init(Index rows, Index cols, HCoeffsType& hCoeffs, PermutationType& colsPermutation, + bool& usePrescribedThreshold, bool& isInitialized) { + + Index diag = numext::mini(rows, cols); + hCoeffs.resize(diag); + colsPermutation.resize(cols); + usePrescribedThreshold = false; + isInitialized = false; + } + }; + + #define COLPIVQR_LAPACKE_COMPUTEINPLACE(EIGTYPE) \ + template <> inline void ColPivHouseholderQR::computeInPlace() { \ + ColPivHouseholderQR_LAPACKE_impl::run(m_qr, m_hCoeffs, m_colsPermutation, m_nonzero_pivots, \ + m_maxpivot, m_usePrescribedThreshold, m_prescribedThreshold, \ + m_det_p, m_isInitialized); } \ + + #define COLPIVQR_LAPACKE_INIT(EIGTYPE) \ + template <> inline void ColPivHouseholderQR::init(Index rows, Index cols) { \ + ColPivHouseholderQR_LAPACKE_impl::init(rows, cols, m_hCoeffs, m_colsPermutation, m_isInitialized, \ + m_usePrescribedThreshold); } \ + + #define COLPIVQR_LAPACKE(EIGTYPE) \ + COLPIVQR_LAPACKE_COMPUTEINPLACE(EIGTYPE) \ + COLPIVQR_LAPACKE_INIT(EIGTYPE) \ + COLPIVQR_LAPACKE_COMPUTEINPLACE(Ref) \ + COLPIVQR_LAPACKE_INIT(Ref) \ + + typedef Matrix MatrixXfC; + typedef Matrix MatrixXdC; + typedef Matrix, Dynamic, Dynamic, ColMajor> MatrixXcfC; + typedef Matrix, Dynamic, Dynamic, ColMajor> MatrixXcdC; + typedef Matrix MatrixXfR; + typedef Matrix MatrixXdR; + typedef Matrix, Dynamic, Dynamic, RowMajor> MatrixXcfR; + typedef Matrix, Dynamic, Dynamic, RowMajor> MatrixXcdR; + + COLPIVQR_LAPACKE(MatrixXfC) + COLPIVQR_LAPACKE(MatrixXdC) + COLPIVQR_LAPACKE(MatrixXcfC) + COLPIVQR_LAPACKE(MatrixXcdC) + COLPIVQR_LAPACKE(MatrixXfR) + COLPIVQR_LAPACKE(MatrixXdR) + COLPIVQR_LAPACKE(MatrixXcfR) + COLPIVQR_LAPACKE(MatrixXcdR) + +#endif +} // end namespace Eigen + +#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h new file mode 100644 index 0000000..171e601 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h @@ -0,0 +1,651 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Rasmus Munk Larsen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H +#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template +struct traits > + : traits { + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef PermutationIndex_ PermutationIndex; + enum { Flags = 0 }; +}; + +} // end namespace internal + +/** \ingroup QR_Module + * + * \class CompleteOrthogonalDecomposition + * + * \brief Complete orthogonal decomposition (COD) of a matrix. + * + * \tparam MatrixType_ the type of the matrix of which we are computing the COD. + * + * This class performs a rank-revealing complete orthogonal decomposition of a + * matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that + * \f[ + * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, + * \begin{bmatrix} \mathbf{T} & \mathbf{0} \\ + * \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z} + * \f] + * by using Householder transformations. Here, \b P is a permutation matrix, + * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of + * size rank-by-rank. \b A may be rank deficient. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::completeOrthogonalDecomposition() + */ +template class CompleteOrthogonalDecomposition + : public SolverBase > +{ + public: + typedef MatrixType_ MatrixType; + typedef SolverBase Base; + + template + friend struct internal::solve_assertion; + typedef PermutationIndex_ PermutationIndex; + EIGEN_GENERIC_PUBLIC_INTERFACE(CompleteOrthogonalDecomposition) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef PermutationMatrix + PermutationType; + typedef typename internal::plain_row_type::type + IntRowVectorType; + typedef typename internal::plain_row_type::type RowVectorType; + typedef typename internal::plain_row_type::type + RealRowVectorType; + typedef HouseholderSequence< + MatrixType, internal::remove_all_t< + typename HCoeffsType::ConjugateReturnType>> + HouseholderSequenceType; + typedef typename MatrixType::PlainObject PlainObject; + + public: + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via + * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&). + */ + CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa CompleteOrthogonalDecomposition() + */ + CompleteOrthogonalDecomposition(Index rows, Index cols) + : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {} + + /** \brief Constructs a complete orthogonal decomposition from a given + * matrix. + * + * This constructor computes the complete orthogonal decomposition of the + * matrix \a matrix by calling the method compute(). The default + * threshold for rank determination will be used. It is a short cut for: + * + * \code + * CompleteOrthogonalDecomposition cod(matrix.rows(), + * matrix.cols()); + * cod.setThreshold(Default); + * cod.compute(matrix); + * \endcode + * + * \sa compute() + */ + template + explicit CompleteOrthogonalDecomposition(const EigenBase& matrix) + : m_cpqr(matrix.rows(), matrix.cols()), + m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), + m_temp(matrix.cols()) + { + compute(matrix.derived()); + } + + /** \brief Constructs a complete orthogonal decomposition from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa CompleteOrthogonalDecomposition(const EigenBase&) + */ + template + explicit CompleteOrthogonalDecomposition(EigenBase& matrix) + : m_cpqr(matrix.derived()), + m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), + m_temp(matrix.cols()) + { + computeInPlace(); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** This method computes the minimum-norm solution X to a least squares + * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of + * which \c *this is the complete orthogonal decomposition. + * + * \param b the right-hand sides of the problem to solve. + * + * \returns a solution. + * + */ + template + inline const Solve solve( + const MatrixBase& b) const; + #endif + + HouseholderSequenceType householderQ(void) const; + HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); } + + /** \returns the matrix \b Z. + */ + MatrixType matrixZ() const { + MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols()); + applyZOnTheLeftInPlace(Z); + return Z; + } + + /** \returns a reference to the matrix where the complete orthogonal + * decomposition is stored + */ + const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); } + + /** \returns a reference to the matrix where the complete orthogonal + * decomposition is stored. + * \warning The strict lower part and \code cols() - rank() \endcode right + * columns of this matrix contains internal values. + * Only the upper triangular part should be referenced. To get it, use + * \code matrixT().template triangularView() \endcode + * For rank-deficient matrices, use + * \code + * matrixT().topLeftCorner(rank(), rank()).template triangularView() + * \endcode + */ + const MatrixType& matrixT() const { return m_cpqr.matrixQR(); } + + template + CompleteOrthogonalDecomposition& compute(const EigenBase& matrix) { + // Compute the column pivoted QR factorization A P = Q R. + m_cpqr.compute(matrix); + computeInPlace(); + return *this; + } + + /** \returns a const reference to the column permutation matrix */ + const PermutationType& colsPermutation() const { + return m_cpqr.colsPermutation(); + } + + /** \returns the determinant of the matrix of which + * *this is the complete orthogonal decomposition. It has only linear + * complexity (that is, O(n) where n is the dimension of the square matrix) + * as the complete orthogonal decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::Scalar determinant() const; + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the complete orthogonal decomposition. It has only linear + * complexity (that is, O(n) where n is the dimension of the square matrix) + * as the complete orthogonal decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the + * matrix of which *this is the complete orthogonal decomposition. It has + * only linear complexity (that is, O(n) where n is the dimension of the + * square matrix) as the complete orthogonal decomposition has already been + * computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow + * that's inherent to determinant computation. + * + * \sa determinant(), absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + /** \returns the rank of the matrix of which *this is the complete orthogonal + * decomposition. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline Index rank() const { return m_cpqr.rank(); } + + /** \returns the dimension of the kernel of the matrix of which *this is the + * complete orthogonal decomposition. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); } + + /** \returns true if the matrix of which *this is the decomposition represents + * an injective linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline bool isInjective() const { return m_cpqr.isInjective(); } + + /** \returns true if the matrix of which *this is the decomposition represents + * a surjective linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline bool isSurjective() const { return m_cpqr.isSurjective(); } + + /** \returns true if the matrix of which *this is the complete orthogonal + * decomposition is invertible. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline bool isInvertible() const { return m_cpqr.isInvertible(); } + + /** \returns the pseudo-inverse of the matrix of which *this is the complete + * orthogonal decomposition. + * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems. + * It is more efficient and numerically stable to call \c this->solve(rhs). + */ + inline const Inverse pseudoInverse() const + { + eigen_assert(m_cpqr.m_isInitialized && "CompleteOrthogonalDecomposition is not initialized."); + return Inverse(*this); + } + + inline Index rows() const { return m_cpqr.rows(); } + inline Index cols() const { return m_cpqr.cols(); } + + /** \returns a const reference to the vector of Householder coefficients used + * to represent the factor \c Q. + * + * For advanced uses only. + */ + inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); } + + /** \returns a const reference to the vector of Householder coefficients + * used to represent the factor \c Z. + * + * For advanced uses only. + */ + const HCoeffsType& zCoeffs() const { return m_zCoeffs; } + + /** Allows to prescribe a threshold to be used by certain methods, such as + * rank(), who need to determine when pivots are to be considered nonzero. + * Most be called before calling compute(). + * + * When it needs to get the threshold value, Eigen calls threshold(). By + * default, this uses a formula to automatically determine a reasonable + * threshold. Once you have called the present method + * setThreshold(const RealScalar&), your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly + * greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call + * setThreshold(Default_t) + */ + CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) { + m_cpqr.setThreshold(threshold); + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default + * formula for determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code qr.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + CompleteOrthogonalDecomposition& setThreshold(Default_t) { + m_cpqr.setThreshold(Default); + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const { return m_cpqr.threshold(); } + + /** \returns the number of nonzero pivots in the complete orthogonal + * decomposition. Here nonzero is meant in the exact sense, not in a + * fuzzy sense. So that notion isn't really intrinsically interesting, + * but it is still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of R. + */ + inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); } + + /** \brief Reports whether the complete orthogonal decomposition was + * successful. + * + * \note This function always returns \c Success. It is provided for + * compatibility + * with other factorization routines. + * \returns \c Success + */ + ComputationInfo info() const { + eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized."); + return Success; + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType& rhs, DstType& dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; +#endif + + protected: + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + template + void _check_solve_assertion(const Rhs& b) const { + EIGEN_ONLY_USED_FOR_DEBUG(b); + eigen_assert(m_cpqr.m_isInitialized && "CompleteOrthogonalDecomposition is not initialized."); + eigen_assert((Transpose_?derived().cols():derived().rows())==b.rows() && "CompleteOrthogonalDecomposition::solve(): invalid number of rows of the right hand side matrix b"); + } + + void computeInPlace(); + + /** Overwrites \b rhs with \f$ \mathbf{Z} * \mathbf{rhs} \f$ or + * \f$ \mathbf{\overline Z} * \mathbf{rhs} \f$ if \c Conjugate + * is set to \c true. + */ + template + void applyZOnTheLeftInPlace(Rhs& rhs) const; + + /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$. + */ + template + void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const; + + ColPivHouseholderQR m_cpqr; + HCoeffsType m_zCoeffs; + RowVectorType m_temp; +}; + +template +typename MatrixType::Scalar +CompleteOrthogonalDecomposition::determinant() const { + return m_cpqr.determinant(); +} + +template +typename MatrixType::RealScalar +CompleteOrthogonalDecomposition::absDeterminant() const { + return m_cpqr.absDeterminant(); +} + +template +typename MatrixType::RealScalar +CompleteOrthogonalDecomposition::logAbsDeterminant() const { + return m_cpqr.logAbsDeterminant(); +} + +/** Performs the complete orthogonal decomposition of the given matrix \a + * matrix. The result of the factorization is stored into \c *this, and a + * reference to \c *this is returned. + * + * \sa class CompleteOrthogonalDecomposition, + * CompleteOrthogonalDecomposition(const MatrixType&) + */ +template +void CompleteOrthogonalDecomposition::computeInPlace() +{ + eigen_assert(m_cpqr.cols() <= NumTraits::highest()); + + const Index rank = m_cpqr.rank(); + const Index cols = m_cpqr.cols(); + const Index rows = m_cpqr.rows(); + m_zCoeffs.resize((std::min)(rows, cols)); + m_temp.resize(cols); + + if (rank < cols) { + // We have reduced the (permuted) matrix to the form + // [R11 R12] + // [ 0 R22] + // where R11 is r-by-r (r = rank) upper triangular, R12 is + // r-by-(n-r), and R22 is empty or the norm of R22 is negligible. + // We now compute the complete orthogonal decomposition by applying + // Householder transformations from the right to the upper trapezoidal + // matrix X = [R11 R12] to zero out R12 and obtain the factorization + // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and + // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix. + // We store the data representing Z in R12 and m_zCoeffs. + for (Index k = rank - 1; k >= 0; --k) { + if (k != rank - 1) { + // Given the API for Householder reflectors, it is more convenient if + // we swap the leading parts of columns k and r-1 (zero-based) to form + // the matrix X_k = [X(0:k, k), X(0:k, r:n)] + m_cpqr.m_qr.col(k).head(k + 1).swap( + m_cpqr.m_qr.col(rank - 1).head(k + 1)); + } + // Construct Householder reflector Z(k) to zero out the last row of X_k, + // i.e. choose Z(k) such that + // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0]. + RealScalar beta; + m_cpqr.m_qr.row(k) + .tail(cols - rank + 1) + .makeHouseholderInPlace(m_zCoeffs(k), beta); + m_cpqr.m_qr(k, rank - 1) = beta; + if (k > 0) { + // Apply Z(k) to the first k rows of X_k + m_cpqr.m_qr.topRightCorner(k, cols - rank + 1) + .applyHouseholderOnTheRight( + m_cpqr.m_qr.row(k).tail(cols - rank).adjoint(), m_zCoeffs(k), + &m_temp(0)); + } + if (k != rank - 1) { + // Swap X(0:k,k) back to its proper location. + m_cpqr.m_qr.col(k).head(k + 1).swap( + m_cpqr.m_qr.col(rank - 1).head(k + 1)); + } + } + } +} + +template +template +void CompleteOrthogonalDecomposition::applyZOnTheLeftInPlace( + Rhs& rhs) const { + const Index cols = this->cols(); + const Index nrhs = rhs.cols(); + const Index rank = this->rank(); + Matrix temp((std::max)(cols, nrhs)); + for (Index k = rank-1; k >= 0; --k) { + if (k != rank - 1) { + rhs.row(k).swap(rhs.row(rank - 1)); + } + rhs.middleRows(rank - 1, cols - rank + 1) + .applyHouseholderOnTheLeft( + matrixQTZ().row(k).tail(cols - rank).transpose().template conjugateIf(), zCoeffs().template conjugateIf()(k), + &temp(0)); + if (k != rank - 1) { + rhs.row(k).swap(rhs.row(rank - 1)); + } + } +} + +template +template +void CompleteOrthogonalDecomposition::applyZAdjointOnTheLeftInPlace( + Rhs& rhs) const { + const Index cols = this->cols(); + const Index nrhs = rhs.cols(); + const Index rank = this->rank(); + Matrix temp((std::max)(cols, nrhs)); + for (Index k = 0; k < rank; ++k) { + if (k != rank - 1) { + rhs.row(k).swap(rhs.row(rank - 1)); + } + rhs.middleRows(rank - 1, cols - rank + 1) + .applyHouseholderOnTheLeft( + matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k), + &temp(0)); + if (k != rank - 1) { + rhs.row(k).swap(rhs.row(rank - 1)); + } + } +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void CompleteOrthogonalDecomposition::_solve_impl( + const RhsType& rhs, DstType& dst) const { + const Index rank = this->rank(); + if (rank == 0) { + dst.setZero(); + return; + } + + // Compute c = Q^* * rhs + typename RhsType::PlainObject c(rhs); + c.applyOnTheLeft(matrixQ().setLength(rank).adjoint()); + + // Solve T z = c(1:rank, :) + dst.topRows(rank) = matrixT() + .topLeftCorner(rank, rank) + .template triangularView() + .solve(c.topRows(rank)); + + const Index cols = this->cols(); + if (rank < cols) { + // Compute y = Z^* * [ z ] + // [ 0 ] + dst.bottomRows(cols - rank).setZero(); + applyZAdjointOnTheLeftInPlace(dst); + } + + // Undo permutation to get x = P^{-1} * y. + dst = colsPermutation() * dst; +} + +template +template +void CompleteOrthogonalDecomposition::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + const Index rank = this->rank(); + + if (rank == 0) { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(colsPermutation().transpose()*rhs); + + if (rank < cols()) { + applyZOnTheLeftInPlace(c); + } + + matrixT().topLeftCorner(rank, rank) + .template triangularView() + .transpose().template conjugateIf() + .solveInPlace(c.topRows(rank)); + + dst.topRows(rank) = c.topRows(rank); + dst.bottomRows(rows()-rank).setZero(); + + dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf() ); +} +#endif + +namespace internal { + +template +struct traits > > + : traits::PlainObject> +{ + enum { Flags = 0 }; +}; + +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef CompleteOrthogonalDecomposition CodType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + typedef Matrix IdentityMatrixType; + dst = src.nestedExpression().solve(IdentityMatrixType::Identity(src.cols(), src.cols())); + } +}; + +} // end namespace internal + +/** \returns the matrix Q as a sequence of householder transformations */ +template +typename CompleteOrthogonalDecomposition::HouseholderSequenceType +CompleteOrthogonalDecomposition::householderQ() const { + return m_cpqr.householderQ(); +} + +/** \return the complete orthogonal decomposition of \c *this. + * + * \sa class CompleteOrthogonalDecomposition + */ +template +template +const CompleteOrthogonalDecomposition::PlainObject, PermutationIndex> +MatrixBase::completeOrthogonalDecomposition() const { + return CompleteOrthogonalDecomposition(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/FullPivHouseholderQR.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/FullPivHouseholderQR.h new file mode 100644 index 0000000..588f917 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/FullPivHouseholderQR.h @@ -0,0 +1,738 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H +#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template struct traits > + : traits +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef PermutationIndex_ PermutationIndex; + enum { Flags = 0 }; +}; + +template struct FullPivHouseholderQRMatrixQReturnType; + +template +struct traits > +{ + typedef typename MatrixType::PlainObject ReturnType; +}; + +} // end namespace internal + +/** \ingroup QR_Module + * + * \class FullPivHouseholderQR + * + * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting + * + * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition + * + * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R + * such that + * \f[ + * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R} + * \f] + * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix + * and \b R an upper triangular matrix. + * + * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal + * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::fullPivHouseholderQr() + */ +template class FullPivHouseholderQR + : public SolverBase > +{ + public: + + typedef MatrixType_ MatrixType; + typedef SolverBase Base; + friend class SolverBase; + typedef PermutationIndex_ PermutationIndex; + EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivHouseholderQR) + + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef internal::FullPivHouseholderQRMatrixQReturnType MatrixQReturnType; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef Matrix IntDiagSizeVectorType; + typedef PermutationMatrix PermutationType; + typedef typename internal::plain_row_type::type RowVectorType; + typedef typename internal::plain_col_type::type ColVectorType; + typedef typename MatrixType::PlainObject PlainObject; + + /** \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). + */ + FullPivHouseholderQR() + : m_qr(), + m_hCoeffs(), + m_rows_transpositions(), + m_cols_transpositions(), + m_cols_permutation(), + m_temp(), + m_isInitialized(false), + m_usePrescribedThreshold(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa FullPivHouseholderQR() + */ + FullPivHouseholderQR(Index rows, Index cols) + : m_qr(rows, cols), + m_hCoeffs((std::min)(rows,cols)), + m_rows_transpositions((std::min)(rows,cols)), + m_cols_transpositions((std::min)(rows,cols)), + m_cols_permutation(cols), + m_temp(cols), + m_isInitialized(false), + m_usePrescribedThreshold(false) {} + + /** \brief Constructs a QR factorization from a given matrix + * + * This constructor computes the QR factorization of the matrix \a matrix by calling + * the method compute(). It is a short cut for: + * + * \code + * FullPivHouseholderQR qr(matrix.rows(), matrix.cols()); + * qr.compute(matrix); + * \endcode + * + * \sa compute() + */ + template + explicit FullPivHouseholderQR(const EigenBase& matrix) + : m_qr(matrix.rows(), matrix.cols()), + m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), + m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), + m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), + m_cols_permutation(matrix.cols()), + m_temp(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a QR factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa FullPivHouseholderQR(const EigenBase&) + */ + template + explicit FullPivHouseholderQR(EigenBase& matrix) + : m_qr(matrix.derived()), + m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), + m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), + m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), + m_cols_permutation(matrix.cols()), + m_temp(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) + { + computeInPlace(); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** This method finds a solution x to the equation Ax=b, where A is the matrix of which + * \c *this is the QR decomposition. + * + * \param b the right-hand-side of the equation to solve. + * + * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, + * and an arbitrary solution otherwise. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * + * Example: \include FullPivHouseholderQR_solve.cpp + * Output: \verbinclude FullPivHouseholderQR_solve.out + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + /** \returns Expression object representing the matrix Q + */ + MatrixQReturnType matrixQ(void) const; + + /** \returns a reference to the matrix where the Householder QR decomposition is stored + */ + const MatrixType& matrixQR() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return m_qr; + } + + template + FullPivHouseholderQR& compute(const EigenBase& matrix); + + /** \returns a const reference to the column permutation matrix */ + const PermutationType& colsPermutation() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return m_cols_permutation; + } + + /** \returns a const reference to the vector of indices representing the rows transpositions */ + const IntDiagSizeVectorType& rowsTranspositions() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return m_rows_transpositions; + } + + /** \returns the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::Scalar determinant() const; + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow that's inherent + * to determinant computation. + * + * \sa determinant(), absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + /** \returns the rank of the matrix of which *this is the QR decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + using std::abs; + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); + Index result = 0; + for(Index i = 0; i < m_nonzero_pivots; ++i) + result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); + return result; + } + + /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return cols() - rank(); + } + + /** \returns true if the matrix of which *this is the QR decomposition represents an injective + * linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInjective() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return rank() == cols(); + } + + /** \returns true if the matrix of which *this is the QR decomposition represents a surjective + * linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isSurjective() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return rank() == rows(); + } + + /** \returns true if the matrix of which *this is the QR decomposition is invertible. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInvertible() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return isInjective() && isSurjective(); + } + + /** \returns the inverse of the matrix of which *this is the QR decomposition. + * + * \note If this matrix is not invertible, the returned matrix has undefined coefficients. + * Use isInvertible() to first determine whether this matrix is invertible. + */ + inline const Inverse inverse() const + { + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return Inverse(*this); + } + + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.cols(); } + + /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. + * + * For advanced uses only. + */ + const HCoeffsType& hCoeffs() const { return m_hCoeffs; } + + /** Allows to prescribe a threshold to be used by certain methods, such as rank(), + * who need to determine when pivots are to be considered nonzero. This is not used for the + * QR decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). By default, this + * uses a formula to automatically determine a reasonable threshold. + * Once you have called the present method setThreshold(const RealScalar&), + * your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + FullPivHouseholderQR& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code qr.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + FullPivHouseholderQR& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + return m_usePrescribedThreshold ? m_prescribedThreshold + // this formula comes from experimenting (see "LU precision tuning" thread on the list) + // and turns out to be identical to Higham's formula used already in LDLt. + : NumTraits::epsilon() * RealScalar(m_qr.diagonalSize()); + } + + /** \returns the number of nonzero pivots in the QR decomposition. + * Here nonzero is meant in the exact sense, not in a fuzzy sense. + * So that notion isn't really intrinsically interesting, but it is + * still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_nonzero_pivots; + } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of U. + */ + RealScalar maxPivot() const { return m_maxpivot; } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + void computeInPlace(); + + MatrixType m_qr; + HCoeffsType m_hCoeffs; + IntDiagSizeVectorType m_rows_transpositions; + IntDiagSizeVectorType m_cols_transpositions; + PermutationType m_cols_permutation; + RowVectorType m_temp; + bool m_isInitialized, m_usePrescribedThreshold; + RealScalar m_prescribedThreshold, m_maxpivot; + Index m_nonzero_pivots; + RealScalar m_precision; + Index m_det_p; +}; + +template +typename MatrixType::Scalar FullPivHouseholderQR::determinant() const +{ + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + Scalar detQ; + internal::householder_determinant::IsComplex>::run(m_hCoeffs, detQ); + return m_qr.diagonal().prod() * detQ * Scalar(m_det_p); +} + +template +typename MatrixType::RealScalar FullPivHouseholderQR::absDeterminant() const +{ + using std::abs; + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return abs(m_qr.diagonal().prod()); +} + +template +typename MatrixType::RealScalar FullPivHouseholderQR::logAbsDeterminant() const +{ + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return m_qr.diagonal().cwiseAbs().array().log().sum(); +} + +/** Performs the QR factorization of the given matrix \a matrix. The result of + * the factorization is stored into \c *this, and a reference to \c *this + * is returned. + * + * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&) + */ +template +template +FullPivHouseholderQR& FullPivHouseholderQR::compute(const EigenBase& matrix) +{ + m_qr = matrix.derived(); + computeInPlace(); + return *this; +} + +template +void FullPivHouseholderQR::computeInPlace() +{ + eigen_assert(m_qr.cols() <= NumTraits::highest()); + using std::abs; + Index rows = m_qr.rows(); + Index cols = m_qr.cols(); + Index size = (std::min)(rows,cols); + + + m_hCoeffs.resize(size); + + m_temp.resize(cols); + + m_precision = NumTraits::epsilon() * RealScalar(size); + + m_rows_transpositions.resize(size); + m_cols_transpositions.resize(size); + Index number_of_transpositions = 0; + + RealScalar biggest(0); + + m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) + m_maxpivot = RealScalar(0); + + for (Index k = 0; k < size; ++k) + { + Index row_of_biggest_in_corner, col_of_biggest_in_corner; + typedef internal::scalar_score_coeff_op Scoring; + typedef typename Scoring::result_type Score; + + Score score = m_qr.bottomRightCorner(rows-k, cols-k) + .unaryExpr(Scoring()) + .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); + row_of_biggest_in_corner += k; + col_of_biggest_in_corner += k; + RealScalar biggest_in_corner = internal::abs_knowing_score()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score); + if(k==0) biggest = biggest_in_corner; + + // if the corner is negligible, then we have less than full rank, and we can finish early + if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) + { + m_nonzero_pivots = k; + for(Index i = k; i < size; i++) + { + m_rows_transpositions.coeffRef(i) = internal::convert_index(i); + m_cols_transpositions.coeffRef(i) = internal::convert_index(i); + m_hCoeffs.coeffRef(i) = Scalar(0); + } + break; + } + + m_rows_transpositions.coeffRef(k) = internal::convert_index(row_of_biggest_in_corner); + m_cols_transpositions.coeffRef(k) = internal::convert_index(col_of_biggest_in_corner); + if(k != row_of_biggest_in_corner) { + m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); + ++number_of_transpositions; + } + if(k != col_of_biggest_in_corner) { + m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); + ++number_of_transpositions; + } + + RealScalar beta; + m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); + m_qr.coeffRef(k,k) = beta; + + // remember the maximum absolute value of diagonal coefficients + if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); + + m_qr.bottomRightCorner(rows-k, cols-k-1) + .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); + } + + m_cols_permutation.setIdentity(cols); + for(Index k = 0; k < size; ++k) + m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); + + m_det_p = (number_of_transpositions%2) ? -1 : 1; + m_isInitialized = true; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void FullPivHouseholderQR::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + const Index l_rank = rank(); + + // FIXME introduce nonzeroPivots() and use it here. and more generally, + // make the same improvements in this dec as in FullPivLU. + if(l_rank==0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(rhs); + + Matrix temp(rhs.cols()); + for (Index k = 0; k < l_rank; ++k) + { + Index remainingSize = rows()-k; + c.row(k).swap(c.row(m_rows_transpositions.coeff(k))); + c.bottomRightCorner(remainingSize, rhs.cols()) + .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1), + m_hCoeffs.coeff(k), &temp.coeffRef(0)); + } + + m_qr.topLeftCorner(l_rank, l_rank) + .template triangularView() + .solveInPlace(c.topRows(l_rank)); + + for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i); + for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero(); +} + +template +template +void FullPivHouseholderQR::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + const Index l_rank = rank(); + + if(l_rank == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(m_cols_permutation.transpose()*rhs); + + m_qr.topLeftCorner(l_rank, l_rank) + .template triangularView() + .transpose().template conjugateIf() + .solveInPlace(c.topRows(l_rank)); + + dst.topRows(l_rank) = c.topRows(l_rank); + dst.bottomRows(rows()-l_rank).setZero(); + + Matrix temp(dst.cols()); + const Index size = (std::min)(rows(), cols()); + for (Index k = size-1; k >= 0; --k) + { + Index remainingSize = rows()-k; + + dst.bottomRightCorner(remainingSize, dst.cols()) + .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1).template conjugateIf(), + m_hCoeffs.template conjugateIf().coeff(k), &temp.coeffRef(0)); + + dst.row(k).swap(dst.row(m_rows_transpositions.coeff(k))); + } +} +#endif + +namespace internal { + +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef FullPivHouseholderQR QrType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); + } +}; + +/** \ingroup QR_Module + * + * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() + * + * \tparam MatrixType type of underlying dense matrix + */ +template struct FullPivHouseholderQRMatrixQReturnType + : public ReturnByValue > +{ +public: + typedef typename FullPivHouseholderQR::IntDiagSizeVectorType IntDiagSizeVectorType; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef Matrix WorkVectorType; + + FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, + const HCoeffsType& hCoeffs, + const IntDiagSizeVectorType& rowsTranspositions) + : m_qr(qr), + m_hCoeffs(hCoeffs), + m_rowsTranspositions(rowsTranspositions) + {} + + template + void evalTo(ResultType& result) const + { + const Index rows = m_qr.rows(); + WorkVectorType workspace(rows); + evalTo(result, workspace); + } + + template + void evalTo(ResultType& result, WorkVectorType& workspace) const + { + using numext::conj; + // compute the product H'_0 H'_1 ... H'_n-1, + // where H_k is the k-th Householder transformation I - h_k v_k v_k' + // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] + const Index rows = m_qr.rows(); + const Index cols = m_qr.cols(); + const Index size = (std::min)(rows, cols); + workspace.resize(rows); + result.setIdentity(rows, rows); + for (Index k = size-1; k >= 0; k--) + { + result.block(k, k, rows-k, rows-k) + .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); + result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); + } + } + + Index rows() const { return m_qr.rows(); } + Index cols() const { return m_qr.rows(); } + +protected: + typename MatrixType::Nested m_qr; + typename HCoeffsType::Nested m_hCoeffs; + typename IntDiagSizeVectorType::Nested m_rowsTranspositions; +}; + +// template +// struct evaluator > +// : public evaluator > > +// {}; + +} // end namespace internal + +template +inline typename FullPivHouseholderQR::MatrixQReturnType FullPivHouseholderQR::matrixQ() const +{ + eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); + return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); +} + +/** \return the full-pivoting Householder QR decomposition of \c *this. + * + * \sa class FullPivHouseholderQR + */ +template +template +const FullPivHouseholderQR::PlainObject, PermutationIndex> +MatrixBase::fullPivHouseholderQr() const +{ + return FullPivHouseholderQR(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/HouseholderQR.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/HouseholderQR.h new file mode 100644 index 0000000..abfefd1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/HouseholderQR.h @@ -0,0 +1,534 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2010 Vincent Lejeune +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QR_H +#define EIGEN_QR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template struct traits > + : traits +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; +}; + +} // end namespace internal + +/** \ingroup QR_Module + * + * + * \class HouseholderQR + * + * \brief Householder QR decomposition of a matrix + * + * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition + * + * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R + * such that + * \f[ + * \mathbf{A} = \mathbf{Q} \, \mathbf{R} + * \f] + * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. + * The result is stored in a compact way compatible with LAPACK. + * + * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. + * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. + * + * This Householder QR decomposition is faster, but less numerically stable and less feature-full than + * FullPivHouseholderQR or ColPivHouseholderQR. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::householderQr() + */ +template class HouseholderQR + : public SolverBase > +{ + public: + + typedef MatrixType_ MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(HouseholderQR) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef Matrix MatrixQType; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef typename internal::plain_row_type::type RowVectorType; + typedef HouseholderSequence> HouseholderSequenceType; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via HouseholderQR::compute(const MatrixType&). + */ + HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa HouseholderQR() + */ + HouseholderQR(Index rows, Index cols) + : m_qr(rows, cols), + m_hCoeffs((std::min)(rows,cols)), + m_temp(cols), + m_isInitialized(false) {} + + /** \brief Constructs a QR factorization from a given matrix + * + * This constructor computes the QR factorization of the matrix \a matrix by calling + * the method compute(). It is a short cut for: + * + * \code + * HouseholderQR qr(matrix.rows(), matrix.cols()); + * qr.compute(matrix); + * \endcode + * + * \sa compute() + */ + template + explicit HouseholderQR(const EigenBase& matrix) + : m_qr(matrix.rows(), matrix.cols()), + m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), + m_temp(matrix.cols()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + + /** \brief Constructs a QR factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when + * \c MatrixType is a Eigen::Ref. + * + * \sa HouseholderQR(const EigenBase&) + */ + template + explicit HouseholderQR(EigenBase& matrix) + : m_qr(matrix.derived()), + m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), + m_temp(matrix.cols()), + m_isInitialized(false) + { + computeInPlace(); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** This method finds a solution x to the equation Ax=b, where A is the matrix of which + * *this is the QR decomposition, if any exists. + * + * \param b the right-hand-side of the equation to solve. + * + * \returns a solution. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * + * Example: \include HouseholderQR_solve.cpp + * Output: \verbinclude HouseholderQR_solve.out + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. + * + * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. + * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: + * + * Example: \include HouseholderQR_householderQ.cpp + * Output: \verbinclude HouseholderQR_householderQ.out + */ + HouseholderSequenceType householderQ() const + { + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); + } + + /** \returns a reference to the matrix where the Householder QR decomposition is stored + * in a LAPACK-compatible way. + */ + const MatrixType& matrixQR() const + { + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + return m_qr; + } + + template + HouseholderQR& compute(const EigenBase& matrix) { + m_qr = matrix.derived(); + computeInPlace(); + return *this; + } + + /** \returns the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::Scalar determinant() const; + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow that's inherent + * to determinant computation. + * + * \sa determinant(), absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.cols(); } + + /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. + * + * For advanced uses only. + */ + const HCoeffsType& hCoeffs() const { return m_hCoeffs; } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + void computeInPlace(); + + MatrixType m_qr; + HCoeffsType m_hCoeffs; + RowVectorType m_temp; + bool m_isInitialized; +}; + +namespace internal { + +/** \internal */ +template +struct householder_determinant +{ + static void run(const HCoeffs& hCoeffs, Scalar& out_det) + { + out_det = Scalar(1); + Index size = hCoeffs.rows(); + for (Index i = 0; i < size; i ++) + { + // For each valid reflection Q_n, + // det(Q_n) = - conj(h_n) / h_n + // where h_n is the Householder coefficient. + if (hCoeffs(i) != Scalar(0)) + out_det *= - numext::conj(hCoeffs(i)) / hCoeffs(i); + } + } +}; + +/** \internal */ +template +struct householder_determinant +{ + static void run(const HCoeffs& hCoeffs, Scalar& out_det) + { + bool negated = false; + Index size = hCoeffs.rows(); + for (Index i = 0; i < size; i ++) + { + // Each valid reflection negates the determinant. + if (hCoeffs(i) != Scalar(0)) + negated ^= true; + } + out_det = negated ? Scalar(-1) : Scalar(1); + } +}; + +} // end namespace internal + +template +typename MatrixType::Scalar HouseholderQR::determinant() const +{ + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + Scalar detQ; + internal::householder_determinant::IsComplex>::run(m_hCoeffs, detQ); + return m_qr.diagonal().prod() * detQ; +} + +template +typename MatrixType::RealScalar HouseholderQR::absDeterminant() const +{ + using std::abs; + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return abs(m_qr.diagonal().prod()); +} + +template +typename MatrixType::RealScalar HouseholderQR::logAbsDeterminant() const +{ + eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return m_qr.diagonal().cwiseAbs().array().log().sum(); +} + +namespace internal { + +/** \internal */ +template +void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) +{ + typedef typename MatrixQR::Scalar Scalar; + typedef typename MatrixQR::RealScalar RealScalar; + Index rows = mat.rows(); + Index cols = mat.cols(); + Index size = (std::min)(rows,cols); + + eigen_assert(hCoeffs.size() == size); + + typedef Matrix TempType; + TempType tempVector; + if(tempData==0) + { + tempVector.resize(cols); + tempData = tempVector.data(); + } + + for(Index k = 0; k < size; ++k) + { + Index remainingRows = rows - k; + Index remainingCols = cols - k - 1; + + RealScalar beta; + mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); + mat.coeffRef(k,k) = beta; + + // apply H to remaining part of m_qr from the left + mat.bottomRightCorner(remainingRows, remainingCols) + .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); + } +} + +// TODO: add a corresponding public API for updating a QR factorization +/** \internal + * Basically a modified copy of @c Eigen::internal::householder_qr_inplace_unblocked that + * performs a rank-1 update of the QR matrix in compact storage. This function assumes, that + * the first @c k-1 columns of the matrix @c mat contain the QR decomposition of \f$A^N\f$ up to + * column k-1. Then the QR decomposition of the k-th column (given by @c newColumn) is computed by + * applying the k-1 Householder projectors on it and finally compute the projector \f$H_k\f$ of + * it. On exit the matrix @c mat and the vector @c hCoeffs contain the QR decomposition of the + * first k columns of \f$A^N\f$. The \a tempData argument must point to at least mat.cols() scalars. */ +template +void householder_qr_inplace_update(MatrixQR& mat, HCoeffs& hCoeffs, const VectorQR& newColumn, + typename MatrixQR::Index k, typename MatrixQR::Scalar* tempData) { + typedef typename MatrixQR::Index Index; + typedef typename MatrixQR::RealScalar RealScalar; + Index rows = mat.rows(); + + eigen_assert(k < mat.cols()); + eigen_assert(k < rows); + eigen_assert(hCoeffs.size() == mat.cols()); + eigen_assert(newColumn.size() == rows); + eigen_assert(tempData); + + // Store new column in mat at column k + mat.col(k) = newColumn; + // Apply H = H_1...H_{k-1} on newColumn (skip if k=0) + for (Index i = 0; i < k; ++i) { + Index remainingRows = rows - i; + mat.col(k) + .tail(remainingRows) + .applyHouseholderOnTheLeft(mat.col(i).tail(remainingRows - 1), hCoeffs.coeffRef(i), tempData + i + 1); + } + // Construct Householder projector in-place in column k + RealScalar beta; + mat.col(k).tail(rows - k).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); + mat.coeffRef(k, k) = beta; +} + +/** \internal */ +template +struct householder_qr_inplace_blocked +{ + // This is specialized for LAPACK-supported Scalar types in HouseholderQR_LAPACKE.h + static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32, + typename MatrixQR::Scalar* tempData = 0) + { + typedef typename MatrixQR::Scalar Scalar; + typedef Block BlockType; + + Index rows = mat.rows(); + Index cols = mat.cols(); + Index size = (std::min)(rows, cols); + + typedef Matrix TempType; + TempType tempVector; + if(tempData==0) + { + tempVector.resize(cols); + tempData = tempVector.data(); + } + + Index blockSize = (std::min)(maxBlockSize,size); + + Index k = 0; + for (k = 0; k < size; k += blockSize) + { + Index bs = (std::min)(size-k,blockSize); // actual size of the block + Index tcols = cols - k - bs; // trailing columns + Index brows = rows-k; // rows of the block + + // partition the matrix: + // A00 | A01 | A02 + // mat = A10 | A11 | A12 + // A20 | A21 | A22 + // and performs the qr dec of [A11^T A12^T]^T + // and update [A21^T A22^T]^T using level 3 operations. + // Finally, the algorithm continue on A22 + + BlockType A11_21 = mat.block(k,k,brows,bs); + Block hCoeffsSegment = hCoeffs.segment(k,bs); + + householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); + + if(tcols) + { + BlockType A21_22 = mat.block(k,k+bs,brows,tcols); + apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward + } + } + } +}; + +} // end namespace internal + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void HouseholderQR::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + const Index rank = (std::min)(rows(), cols()); + + typename RhsType::PlainObject c(rhs); + + c.applyOnTheLeft(householderQ().setLength(rank).adjoint() ); + + m_qr.topLeftCorner(rank, rank) + .template triangularView() + .solveInPlace(c.topRows(rank)); + + dst.topRows(rank) = c.topRows(rank); + dst.bottomRows(cols()-rank).setZero(); +} + +template +template +void HouseholderQR::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + const Index rank = (std::min)(rows(), cols()); + + typename RhsType::PlainObject c(rhs); + + m_qr.topLeftCorner(rank, rank) + .template triangularView() + .transpose().template conjugateIf() + .solveInPlace(c.topRows(rank)); + + dst.topRows(rank) = c.topRows(rank); + dst.bottomRows(rows()-rank).setZero(); + + dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf() ); +} +#endif + +/** Performs the QR factorization of the given matrix \a matrix. The result of + * the factorization is stored into \c *this, and a reference to \c *this + * is returned. + * + * \sa class HouseholderQR, HouseholderQR(const MatrixType&) + */ +template +void HouseholderQR::computeInPlace() +{ + Index rows = m_qr.rows(); + Index cols = m_qr.cols(); + Index size = (std::min)(rows,cols); + + m_hCoeffs.resize(size); + + m_temp.resize(cols); + + internal::householder_qr_inplace_blocked::run(m_qr, m_hCoeffs, 48, m_temp.data()); + + m_isInitialized = true; +} + +/** \return the Householder QR decomposition of \c *this. + * + * \sa class HouseholderQR + */ +template +const HouseholderQR::PlainObject> +MatrixBase::householderQr() const +{ + return HouseholderQR(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_QR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h new file mode 100644 index 0000000..57c2f6a --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h @@ -0,0 +1,77 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Householder QR decomposition of a matrix w/o pivoting based on + * LAPACKE_?geqrf function. + ******************************************************************************** +*/ + +#ifndef EIGEN_QR_LAPACKE_H +#define EIGEN_QR_LAPACKE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +namespace lapacke_helpers { + +template +struct lapacke_hqr +{ + static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index = 32, typename MatrixQR::Scalar* = 0) + { + lapack_int m = to_lapack(mat.rows()); + lapack_int n = to_lapack(mat.cols()); + lapack_int lda = to_lapack(mat.outerStride()); + lapack_int matrix_order = lapack_storage_of(mat); + geqrf(matrix_order, m, n, to_lapack(mat.data()), lda, to_lapack(hCoeffs.data())); + hCoeffs.adjointInPlace(); + } +}; + +} + +/** \internal Specialization for the data types supported by LAPACKe */ +#define EIGEN_LAPACKE_HH_QR(EIGTYPE) \ +template \ +struct householder_qr_inplace_blocked : public lapacke_helpers::lapacke_hqr {}; + +EIGEN_LAPACKE_HH_QR(double) +EIGEN_LAPACKE_HH_QR(float) +EIGEN_LAPACKE_HH_QR(std::complex) +EIGEN_LAPACKE_HH_QR(std::complex) + +#undef EIGEN_LAPACKE_HH_QR + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_QR_LAPACKE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/InternalHeaderCheck.h new file mode 100644 index 0000000..bf8df01 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/QR/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_QR_MODULE_H +#error "Please include Eigen/QR instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SPQRSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SPQRSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..8d94ba4 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SPQRSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SPQRSUPPORT_MODULE_H +#error "Please include Eigen/SPQRSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h new file mode 100644 index 0000000..36e8ead --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h @@ -0,0 +1,337 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Desire Nuentsa +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SUITESPARSEQRSUPPORT_H +#define EIGEN_SUITESPARSEQRSUPPORT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + + template class SPQR; + template struct SPQRMatrixQReturnType; + template struct SPQRMatrixQTransposeReturnType; + template struct SPQR_QProduct; + namespace internal { + template struct traits > + { + typedef typename SPQRType::MatrixType ReturnType; + }; + template struct traits > + { + typedef typename SPQRType::MatrixType ReturnType; + }; + template struct traits > + { + typedef typename Derived::PlainObject ReturnType; + }; + } // End namespace internal + +/** + * \ingroup SPQRSupport_Module + * \class SPQR + * \brief Sparse QR factorization based on SuiteSparseQR library + * + * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition + * of sparse matrices. The result is then used to solve linear leasts_square systems. + * Clearly, a QR factorization is returned such that A*P = Q*R where : + * + * P is the column permutation. Use colsPermutation() to get it. + * + * Q is the orthogonal matrix represented as Householder reflectors. + * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. + * You can then apply it to a vector. + * + * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. + * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index + * + * \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<> + * + * \implsparsesolverconcept + * + * + */ +template +class SPQR : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase > Base; + using Base::m_isInitialized; + public: + typedef typename MatrixType_::Scalar Scalar; + typedef typename MatrixType_::RealScalar RealScalar; + typedef SuiteSparse_long StorageIndex ; + typedef SparseMatrix MatrixType; + typedef Map > PermutationType; + enum { + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; + public: + SPQR() + : m_analysisIsOk(false), + m_factorizationIsOk(false), + m_isRUpToDate(false), + m_ordering(SPQR_ORDERING_DEFAULT), + m_allow_tol(SPQR_DEFAULT_TOL), + m_tolerance (NumTraits::epsilon()), + m_cR(0), + m_E(0), + m_H(0), + m_HPinv(0), + m_HTau(0), + m_useDefaultThreshold(true) + { + cholmod_l_start(&m_cc); + } + + explicit SPQR(const MatrixType_& matrix) + : m_analysisIsOk(false), + m_factorizationIsOk(false), + m_isRUpToDate(false), + m_ordering(SPQR_ORDERING_DEFAULT), + m_allow_tol(SPQR_DEFAULT_TOL), + m_tolerance (NumTraits::epsilon()), + m_cR(0), + m_E(0), + m_H(0), + m_HPinv(0), + m_HTau(0), + m_useDefaultThreshold(true) + { + cholmod_l_start(&m_cc); + compute(matrix); + } + + ~SPQR() + { + SPQR_free(); + cholmod_l_finish(&m_cc); + } + void SPQR_free() + { + cholmod_l_free_sparse(&m_H, &m_cc); + cholmod_l_free_sparse(&m_cR, &m_cc); + cholmod_l_free_dense(&m_HTau, &m_cc); + std::free(m_E); + std::free(m_HPinv); + } + + void compute(const MatrixType_& matrix) + { + if(m_isInitialized) SPQR_free(); + + MatrixType mat(matrix); + + /* Compute the default threshold as in MatLab, see: + * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing + * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 + */ + RealScalar pivotThreshold = m_tolerance; + if(m_useDefaultThreshold) + { + RealScalar max2Norm = 0.0; + for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); + if(numext::is_exactly_zero(max2Norm)) + max2Norm = RealScalar(1); + pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits::epsilon(); + } + cholmod_sparse A; + A = viewAsCholmod(mat); + m_rows = matrix.rows(); + Index col = matrix.cols(); + m_rank = SuiteSparseQR(m_ordering, pivotThreshold, col, &A, + &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); + + if (!m_cR) + { + m_info = NumericalIssue; + m_isInitialized = false; + return; + } + m_info = Success; + m_isInitialized = true; + m_isRUpToDate = false; + } + /** + * Get the number of rows of the input matrix and the Q matrix + */ + inline Index rows() const {return m_rows; } + + /** + * Get the number of columns of the input matrix. + */ + inline Index cols() const { return m_cR->ncol; } + + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const + { + eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); + eigen_assert(b.cols()==1 && "This method is for vectors only"); + + //Compute Q^T * b + typename Dest::PlainObject y, y2; + y = matrixQ().transpose() * b; + + // Solves with the triangular matrix R + Index rk = this->rank(); + y2 = y; + y.resize((std::max)(cols(),Index(y.rows())),y.cols()); + y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView().solve(y2.topRows(rk)); + + // Apply the column permutation + // colsPermutation() performs a copy of the permutation, + // so let's apply it manually: + for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); + for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); + +// y.bottomRows(y.rows()-rk).setZero(); +// dest = colsPermutation() * y.topRows(cols()); + + m_info = Success; + } + + /** \returns the sparse triangular factor R. It is a sparse matrix + */ + const MatrixType matrixR() const + { + eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); + if(!m_isRUpToDate) { + m_R = viewAsEigen(*m_cR); + m_isRUpToDate = true; + } + return m_R; + } + /// Get an expression of the matrix Q + SPQRMatrixQReturnType matrixQ() const + { + return SPQRMatrixQReturnType(*this); + } + /// Get the permutation that was applied to columns of A + PermutationType colsPermutation() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return PermutationType(m_E, m_cR->ncol); + } + /** + * Gets the rank of the matrix. + * It should be equal to matrixQR().cols if the matrix is full-rank + */ + Index rank() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_cc.SPQR_istat[4]; + } + /// Set the fill-reducing ordering method to be used + void setSPQROrdering(int ord) { m_ordering = ord;} + /// Set the tolerance tol to treat columns with 2-norm < =tol as zero + void setPivotThreshold(const RealScalar& tol) + { + m_useDefaultThreshold = false; + m_tolerance = tol; + } + + /** \returns a pointer to the SPQR workspace */ + cholmod_common *cholmodCommon() const { return &m_cc; } + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the sparse QR can not be computed + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + protected: + bool m_analysisIsOk; + bool m_factorizationIsOk; + mutable bool m_isRUpToDate; + mutable ComputationInfo m_info; + int m_ordering; // Ordering method to use, see SPQR's manual + int m_allow_tol; // Allow to use some tolerance during numerical factorization. + RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero + mutable cholmod_sparse *m_cR = nullptr; // The sparse R factor in cholmod format + mutable MatrixType m_R; // The sparse matrix R in Eigen format + mutable StorageIndex *m_E = nullptr; // The permutation applied to columns + mutable cholmod_sparse *m_H = nullptr; //The householder vectors + mutable StorageIndex *m_HPinv = nullptr; // The row permutation of H + mutable cholmod_dense *m_HTau = nullptr; // The Householder coefficients + mutable Index m_rank; // The rank of the matrix + mutable cholmod_common m_cc; // Workspace and parameters + bool m_useDefaultThreshold; // Use default threshold + Index m_rows; + template friend struct SPQR_QProduct; +}; + +template +struct SPQR_QProduct : ReturnByValue > +{ + typedef typename SPQRType::Scalar Scalar; + typedef typename SPQRType::StorageIndex StorageIndex; + //Define the constructor to get reference to argument types + SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} + + inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } + inline Index cols() const { return m_other.cols(); } + // Assign to a vector + template + void evalTo(ResType& res) const + { + cholmod_dense y_cd; + cholmod_dense *x_cd; + int method = m_transpose ? SPQR_QTX : SPQR_QX; + cholmod_common *cc = m_spqr.cholmodCommon(); + y_cd = viewAsCholmod(m_other.const_cast_derived()); + x_cd = SuiteSparseQR_qmult(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); + res = Matrix::Map(reinterpret_cast(x_cd->x), x_cd->nrow, x_cd->ncol); + cholmod_l_free_dense(&x_cd, cc); + } + const SPQRType& m_spqr; + const Derived& m_other; + bool m_transpose; + +}; +template +struct SPQRMatrixQReturnType{ + + SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} + template + SPQR_QProduct operator*(const MatrixBase& other) + { + return SPQR_QProduct(m_spqr,other.derived(),false); + } + SPQRMatrixQTransposeReturnType adjoint() const + { + return SPQRMatrixQTransposeReturnType(m_spqr); + } + // To use for operations with the transpose of Q + SPQRMatrixQTransposeReturnType transpose() const + { + return SPQRMatrixQTransposeReturnType(m_spqr); + } + const SPQRType& m_spqr; +}; + +template +struct SPQRMatrixQTransposeReturnType{ + SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} + template + SPQR_QProduct operator*(const MatrixBase& other) + { + return SPQR_QProduct(m_spqr,other.derived(), true); + } + const SPQRType& m_spqr; +}; + +}// End namespace Eigen +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/BDCSVD.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/BDCSVD.h new file mode 100644 index 0000000..bb1d3db --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/BDCSVD.h @@ -0,0 +1,1494 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" +// research report written by Ming Gu and Stanley C.Eisenstat +// The code variable names correspond to the names they used in their +// report +// +// Copyright (C) 2013 Gauthier Brun +// Copyright (C) 2013 Nicolas Carre +// Copyright (C) 2013 Jean Ceccato +// Copyright (C) 2013 Pierre Zoppitelli +// Copyright (C) 2013 Jitse Niesen +// Copyright (C) 2014-2017 Gael Guennebaud +// +// Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BDCSVD_H +#define EIGEN_BDCSVD_H +// #define EIGEN_BDCSVD_DEBUG_VERBOSE +// #define EIGEN_BDCSVD_SANITY_CHECKS + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS +#undef eigen_internal_assert +#define eigen_internal_assert(X) assert(X); +#endif + +#include "./InternalHeaderCheck.h" + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE +#include +#endif + +namespace Eigen { + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE +IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]"); +#endif + +template +class BDCSVD; + +namespace internal { + +template +struct traits > : svd_traits { + typedef MatrixType_ MatrixType; +}; + +template +struct allocate_small_svd { + static void run(JacobiSVD& smallSvd, Index rows, Index cols, unsigned int computationOptions) { + (void)computationOptions; + smallSvd = JacobiSVD(rows, cols); + } +}; + +EIGEN_DIAGNOSTICS(push) +EIGEN_DISABLE_DEPRECATED_WARNING + +template +struct allocate_small_svd { + static void run(JacobiSVD& smallSvd, Index rows, Index cols, unsigned int computationOptions) { + smallSvd = JacobiSVD(rows, cols, computationOptions); + } +}; + +EIGEN_DIAGNOSTICS(pop) + +} // end namespace internal + +/** \ingroup SVD_Module + * + * + * \class BDCSVD + * + * \brief class Bidiagonal Divide and Conquer SVD + * + * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition + * + * \tparam Options_ this optional parameter allows one to specify options for computing unitaries \a U and \a V. + * Possible values are #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV, and + * #DisableQRDecomposition. It is not possible to request both the thin and full version of \a U or + * \a V. By default, unitaries are not computed. BDCSVD uses R-Bidiagonalization to improve + * performance on tall and wide matrices. For backwards compatility, the option + * #DisableQRDecomposition can be used to disable this optimization. + * + * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, + * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. + * You can control the switching size with the setSwitchSize() method, default is 16. + * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly + * recommended and can several order of magnitude faster. + * + * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. + * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless + * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will + * significantly degrade the accuracy. + * + * \sa class JacobiSVD + */ +template +class BDCSVD : public SVDBase > { + typedef SVDBase Base; + +public: + using Base::rows; + using Base::cols; + using Base::diagSize; + using Base::computeU; + using Base::computeV; + + typedef MatrixType_ MatrixType; + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + typedef typename NumTraits::Literal Literal; + typedef typename Base::Index Index; + enum { + Options = Options_, + QRDecomposition = Options & internal::QRPreconditionerBits, + ComputationOptions = Options & internal::ComputationOptionsBits, + RowsAtCompileTime = Base::RowsAtCompileTime, + ColsAtCompileTime = Base::ColsAtCompileTime, + DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime, + MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Base::MaxColsAtCompileTime, + MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime, + MatrixOptions = Base::MatrixOptions + }; + + typedef typename Base::MatrixUType MatrixUType; + typedef typename Base::MatrixVType MatrixVType; + typedef typename Base::SingularValuesType SingularValuesType; + + typedef Matrix MatrixX; + typedef Matrix MatrixXr; + typedef Matrix VectorType; + typedef Array ArrayXr; + typedef Array ArrayXi; + typedef Ref ArrayRef; + typedef Ref IndicesRef; + + /** \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via BDCSVD::compute(const MatrixType&). + */ + BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0) + {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem size and \a Options template parameter. + * \sa BDCSVD() + */ + BDCSVD(Index rows, Index cols) : m_algoswap(16), m_numIters(0) { + allocate(rows, cols, internal::get_computation_options(Options)); + } + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem size and the \a computationOptions. + * + * One \b cannot request unitiaries using both the \a Options template parameter + * and the constructor. If possible, prefer using the \a Options template parameter. + * + * \param computationOptions specifification for computing Thin/Full unitaries U/V + * \sa BDCSVD() + * + * \deprecated Will be removed in the next major Eigen version. Options should + * be specified in the \a Options template parameter. + */ + EIGEN_DEPRECATED + BDCSVD(Index rows, Index cols, unsigned int computationOptions) : m_algoswap(16), m_numIters(0) { + internal::check_svd_options_assertions(computationOptions, rows, cols); + allocate(rows, cols, computationOptions); + } + + /** \brief Constructor performing the decomposition of given matrix, using the custom options specified + * with the \a Options template paramter. + * + * \param matrix the matrix to decompose + */ + BDCSVD(const MatrixType& matrix) : m_algoswap(16), m_numIters(0) { + compute_impl(matrix, internal::get_computation_options(Options)); + } + + /** \brief Constructor performing the decomposition of given matrix using specified options + * for computing unitaries. + * + * One \b cannot request unitiaries using both the \a Options template parameter + * and the constructor. If possible, prefer using the \a Options template parameter. + * + * \param matrix the matrix to decompose + * \param computationOptions specifification for computing Thin/Full unitaries U/V + * + * \deprecated Will be removed in the next major Eigen version. Options should + * be specified in the \a Options template parameter. + */ + EIGEN_DEPRECATED + BDCSVD(const MatrixType& matrix, unsigned int computationOptions) : m_algoswap(16), m_numIters(0) { + internal::check_svd_options_assertions(computationOptions, matrix.rows(), matrix.cols()); + compute_impl(matrix, computationOptions); + } + + ~BDCSVD() {} + + /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified + * using the \a Options template parameter or the class constructor. + * + * \param matrix the matrix to decompose + */ + BDCSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); } + + /** \brief Method performing the decomposition of given matrix, as specified by + * the `computationOptions` parameter. + * + * \param matrix the matrix to decompose + * \param computationOptions specify whether to compute Thin/Full unitaries U/V + * + * \deprecated Will be removed in the next major Eigen version. Options should + * be specified in the \a Options template parameter. + */ + EIGEN_DEPRECATED + BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions) { + internal::check_svd_options_assertions(computationOptions, matrix.rows(), matrix.cols()); + return compute_impl(matrix, computationOptions); + } + + void setSwitchSize(int s) + { + eigen_assert(s>=3 && "BDCSVD the size of the algo switch has to be at least 3."); + m_algoswap = s; + } + +private: + BDCSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions); + void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); + void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); + void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus); + void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); + void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); + void deflation43(Index firstCol, Index shift, Index i, Index size); + void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); + void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); + template + void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev); + void structured_update(Block A, const MatrixXr &B, Index n1); + static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift); + template + void computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift); + + protected: + void allocate(Index rows, Index cols, unsigned int computationOptions); + MatrixXr m_naiveU, m_naiveV; + MatrixXr m_computed; + Index m_nRec; + ArrayXr m_workspace; + ArrayXi m_workspaceI; + int m_algoswap; + bool m_isTranspose, m_compU, m_compV, m_useQrDecomp; + JacobiSVD smallSvd; + HouseholderQR qrDecomp; + internal::UpperBidiagonalization bid; + MatrixX copyWorkspace; + MatrixX reducedTriangle; + + using Base::m_computationOptions; + using Base::m_computeThinU; + using Base::m_computeThinV; + using Base::m_info; + using Base::m_isInitialized; + using Base::m_matrixU; + using Base::m_matrixV; + using Base::m_nonzeroSingularValues; + using Base::m_singularValues; + + public: + int m_numIters; +}; // end class BDCSVD + +// Method to allocate and initialize matrix and attributes +template +void BDCSVD::allocate(Index rows, Index cols, unsigned int computationOptions) { + if (Base::allocate(rows, cols, computationOptions)) + return; + + if (cols < m_algoswap) + internal::allocate_small_svd::run(smallSvd, rows, cols, computationOptions); + + m_computed = MatrixXr::Zero(diagSize() + 1, diagSize() ); + m_compU = computeV(); + m_compV = computeU(); + m_isTranspose = (cols > rows); + if (m_isTranspose) + std::swap(m_compU, m_compV); + + // kMinAspectRatio is the crossover point that determines if we perform R-Bidiagonalization + // or bidiagonalize the input matrix directly. + // It is based off of LAPACK's dgesdd routine, which uses 11.0/6.0 + // we use a larger scalar to prevent a regression for relatively square matrices. + constexpr Index kMinAspectRatio = 4; + constexpr bool disableQrDecomp = static_cast(QRDecomposition) == static_cast(DisableQRDecomposition); + m_useQrDecomp = !disableQrDecomp && ((rows / kMinAspectRatio > cols) || (cols / kMinAspectRatio > rows)); + if (m_useQrDecomp) { + qrDecomp = HouseholderQR((std::max)(rows, cols), (std::min)(rows, cols)); + reducedTriangle = MatrixX(diagSize(), diagSize()); + } + + copyWorkspace = MatrixX(m_isTranspose ? cols : rows, m_isTranspose ? rows : cols); + bid = internal::UpperBidiagonalization(m_useQrDecomp ? diagSize() : copyWorkspace.rows(), + m_useQrDecomp ? diagSize() : copyWorkspace.cols()); + + if (m_compU) m_naiveU = MatrixXr::Zero(diagSize() + 1, diagSize() + 1 ); + else m_naiveU = MatrixXr::Zero(2, diagSize() + 1 ); + + if (m_compV) m_naiveV = MatrixXr::Zero(diagSize(), diagSize()); + + m_workspace.resize((diagSize()+1)*(diagSize()+1)*3); + m_workspaceI.resize(3*diagSize()); +} // end allocate + +template +BDCSVD& BDCSVD::compute_impl(const MatrixType& matrix, + unsigned int computationOptions) { +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "\n\n\n======================================================================================================================\n\n\n"; +#endif + using std::abs; + + allocate(matrix.rows(), matrix.cols(), computationOptions); + + const RealScalar considerZero = (std::numeric_limits::min)(); + + //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return + if(matrix.cols() < m_algoswap) + { + smallSvd.compute(matrix); + m_isInitialized = true; + m_info = smallSvd.info(); + if (m_info == Success || m_info == NoConvergence) { + if (computeU()) m_matrixU = smallSvd.matrixU(); + if (computeV()) m_matrixV = smallSvd.matrixV(); + m_singularValues = smallSvd.singularValues(); + m_nonzeroSingularValues = smallSvd.nonzeroSingularValues(); + } + return *this; + } + + //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows + RealScalar scale = matrix.cwiseAbs().template maxCoeff(); + if (!(numext::isfinite)(scale)) { + m_isInitialized = true; + m_info = InvalidInput; + return *this; + } + + if(numext::is_exactly_zero(scale)) scale = Literal(1); + + if (m_isTranspose) copyWorkspace = matrix.adjoint() / scale; + else copyWorkspace = matrix / scale; + + //**** step 1 - Bidiagonalization. + // If the problem is sufficiently rectangular, we perform R-Bidiagonalization: compute A = Q(R/0) + // and then bidiagonalize R. Otherwise, if the problem is relatively square, we + // bidiagonalize the input matrix directly. + if (m_useQrDecomp) { + qrDecomp.compute(copyWorkspace); + reducedTriangle = qrDecomp.matrixQR().topRows(diagSize()); + reducedTriangle.template triangularView().setZero(); + bid.compute(reducedTriangle); + } else { + bid.compute(copyWorkspace); + } + + //**** step 2 - Divide & Conquer + m_naiveU.setZero(); + m_naiveV.setZero(); + // FIXME this line involves a temporary matrix + m_computed.topRows(diagSize()) = bid.bidiagonal().toDenseMatrix().transpose(); + m_computed.template bottomRows<1>().setZero(); + divide(0, diagSize() - 1, 0, 0, 0); + if (m_info != Success && m_info != NoConvergence) { + m_isInitialized = true; + return *this; + } + + //**** step 3 - Copy singular values and vectors + for (int i=0; i +template +void BDCSVD::copyUV(const HouseholderU& householderU, const HouseholderV& householderV, + const NaiveU& naiveU, const NaiveV& naiveV) { + // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa + if (computeU()) + { + Index Ucols = m_computeThinU ? diagSize() : rows(); + m_matrixU = MatrixX::Identity(rows(), Ucols); + m_matrixU.topLeftCorner(diagSize(), diagSize()) = naiveV.template cast().topLeftCorner(diagSize(), diagSize()); + // FIXME the following conditionals involve temporary buffers + if (m_useQrDecomp) m_matrixU.topLeftCorner(householderU.cols(), diagSize()).applyOnTheLeft(householderU); + else m_matrixU.applyOnTheLeft(householderU); + } + if (computeV()) + { + Index Vcols = m_computeThinV ? diagSize() : cols(); + m_matrixV = MatrixX::Identity(cols(), Vcols); + m_matrixV.topLeftCorner(diagSize(), diagSize()) = naiveU.template cast().topLeftCorner(diagSize(), diagSize()); + // FIXME the following conditionals involve temporary buffers + if (m_useQrDecomp) m_matrixV.topLeftCorner(householderV.cols(), diagSize()).applyOnTheLeft(householderV); + else m_matrixV.applyOnTheLeft(householderV); + } +} + +/** \internal + * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: + * A = [A1] + * [A2] + * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. + * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large + * enough. + */ +template +void BDCSVD::structured_update(Block A, const MatrixXr& B, Index n1) { + Index n = A.rows(); + if(n>100) + { + // If the matrices are large enough, let's exploit the sparse structure of A by + // splitting it in half (wrt n1), and packing the non-zero columns. + Index n2 = n - n1; + Map A1(m_workspace.data() , n1, n); + Map A2(m_workspace.data()+ n1*n, n2, n); + Map B1(m_workspace.data()+ n*n, n, n); + Map B2(m_workspace.data()+2*n*n, n, n); + Index k1=0, k2=0; + for(Index j=0; j tmp(m_workspace.data(),n,n); + tmp.noalias() = A*B; + A = tmp; + } +} + +template +template +void BDCSVD::computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, + Index firstColW, Index shift) { + svd.compute(m_computed.block(firstCol, firstCol, n + 1, n)); + m_info = svd.info(); + if (m_info != Success && m_info != NoConvergence) return; + if (m_compU) + m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = svd.matrixU(); + else { + m_naiveU.row(0).segment(firstCol, n + 1).real() = svd.matrixU().row(0); + m_naiveU.row(1).segment(firstCol, n + 1).real() = svd.matrixU().row(n); + } + if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = svd.matrixV(); + m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); + m_computed.diagonal().segment(firstCol + shift, n) = svd.singularValues().head(n); +} + +// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods +// takes as argument the place of the submatrix we are currently working on. + +//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; +//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; +// lastCol + 1 - firstCol is the size of the submatrix. +//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) +//@param firstColW : Same as firstRowW with the column. +//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix +// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. +template +void BDCSVD::divide(Index firstCol, Index lastCol, Index firstRowW, + Index firstColW, Index shift) { + // requires rows = cols + 1; + using std::pow; + using std::sqrt; + using std::abs; + const Index n = lastCol - firstCol + 1; + const Index k = n/2; + const RealScalar considerZero = (std::numeric_limits::min)(); + RealScalar alphaK; + RealScalar betaK; + RealScalar r0; + RealScalar lambda, phi, c0, s0; + VectorType l, f; + // We use the other algorithm which is more efficient for small + // matrices. + if (n < m_algoswap) + { + // FIXME this block involves temporaries + if (m_compV) { + JacobiSVD baseSvd; + computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift); + } else { + JacobiSVD baseSvd; + computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift); + } + return; + } + // We use the divide and conquer algorithm + alphaK = m_computed(firstCol + k, firstCol + k); + betaK = m_computed(firstCol + k + 1, firstCol + k); + // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices + // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the + // right submatrix before the left one. + divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); + if (m_info != Success && m_info != NoConvergence) return; + divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); + if (m_info != Success && m_info != NoConvergence) return; + + if (m_compU) + { + lambda = m_naiveU(firstCol + k, firstCol + k); + phi = m_naiveU(firstCol + k + 1, lastCol + 1); + } + else + { + lambda = m_naiveU(1, firstCol + k); + phi = m_naiveU(0, lastCol + 1); + } + r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); + if (m_compU) + { + l = m_naiveU.row(firstCol + k).segment(firstCol, k); + f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); + } + else + { + l = m_naiveU.row(1).segment(firstCol, k); + f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); + } + if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1); + if (r0= firstCol; i--) + m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); + // we shift q1 at the left with a factor c0 + m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0); + // last column = q1 * - s0 + m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0)); + // first column = q2 * s0 + m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; + // q2 *= c0 + m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; + } + else + { + RealScalar q1 = m_naiveU(0, firstCol + k); + // we shift Q1 to the right + for (Index i = firstCol + k - 1; i >= firstCol; i--) + m_naiveU(0, i + 1) = m_naiveU(0, i); + // we shift q1 at the left with a factor c0 + m_naiveU(0, firstCol) = (q1 * c0); + // last column = q1 * - s0 + m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); + // first column = q2 * s0 + m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; + // q2 *= c0 + m_naiveU(1, lastCol + 1) *= c0; + m_naiveU.row(1).segment(firstCol + 1, k).setZero(); + m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); + } + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(m_naiveU.allFinite()); + eigen_internal_assert(m_naiveV.allFinite()); + eigen_internal_assert(m_computed.allFinite()); +#endif + + m_computed(firstCol + shift, firstCol + shift) = r0; + m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); + m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); +#endif + // Second part: try to deflate singular values in combined matrix + deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); + std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; + std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; + std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n"; + static int count = 0; + std::cout << "# " << ++count << "\n\n"; + eigen_internal_assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm()); +// eigen_internal_assert(count<681); +// eigen_internal_assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); +#endif + + // Third part: compute SVD of combined matrix + MatrixXr UofSVD, VofSVD; + VectorType singVals; + computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(UofSVD.allFinite()); + eigen_internal_assert(VofSVD.allFinite()); +#endif + + if (m_compU) + structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2); + else + { + Map,Aligned> tmp(m_workspace.data(),2,n+1); + tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD; + m_naiveU.middleCols(firstCol, n + 1) = tmp; + } + + if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2); + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(m_naiveU.allFinite()); + eigen_internal_assert(m_naiveV.allFinite()); + eigen_internal_assert(m_computed.allFinite()); +#endif + + m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); + m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; +} // end divide + +// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in +// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing +// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except +// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. +// +// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better +// handling of round-off errors, be consistent in ordering +// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf +template +void BDCSVD::computeSVDofM(Index firstCol, Index n, MatrixXr& U, + VectorType& singVals, MatrixXr& V) { + const RealScalar considerZero = (std::numeric_limits::min)(); + using std::abs; + ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); + m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); + ArrayRef diag = m_workspace.head(n); + diag(0) = Literal(0); + + // Allocate space for singular values and vectors + singVals.resize(n); + U.resize(n+1, n+1); + if (m_compV) V.resize(n, n); + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + if (col0.hasNaN() || diag.hasNaN()) + std::cout << "\n\nHAS NAN\n\n"; +#endif + + // Many singular values might have been deflated, the zero ones have been moved to the end, + // but others are interleaved and we must ignore them at this stage. + // To this end, let's compute a permutation skipping them: + Index actual_n = n; + while(actual_n>1 && numext::is_exactly_zero(diag(actual_n - 1))) { + --actual_n; + eigen_internal_assert(numext::is_exactly_zero(col0(actual_n))); + } + Index m = 0; // size of the deflated problem + for(Index k=0;kconsiderZero) + m_workspaceI(m++) = k; + Map perm(m_workspaceI.data(),m); + + Map shifts(m_workspace.data()+1*n, n); + Map mus(m_workspace.data()+2*n, n); + Map zhat(m_workspace.data()+3*n, n); + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "computeSVDofM using:\n"; + std::cout << " z: " << col0.transpose() << "\n"; + std::cout << " d: " << diag.transpose() << "\n"; +#endif + + // Compute singVals, shifts, and mus + computeSingVals(col0, diag, perm, singVals, shifts, mus); + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n"; + std::cout << " sing-val: " << singVals.transpose() << "\n"; + std::cout << " mu: " << mus.transpose() << "\n"; + std::cout << " shift: " << shifts.transpose() << "\n"; + + { + std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n"; + std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; + eigen_internal_assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all()); + std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n"; + eigen_internal_assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all()); + } +#endif + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(singVals.allFinite()); + eigen_internal_assert(mus.allFinite()); + eigen_internal_assert(shifts.allFinite()); +#endif + + // Compute zhat + perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << " zhat: " << zhat.transpose() << "\n"; +#endif + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(zhat.allFinite()); +#endif + + computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n"; + std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n"; +#endif + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(m_naiveU.allFinite()); + eigen_internal_assert(m_naiveV.allFinite()); + eigen_internal_assert(m_computed.allFinite()); + eigen_internal_assert(U.allFinite()); + eigen_internal_assert(V.allFinite()); +// eigen_internal_assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits::epsilon() * n); +// eigen_internal_assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits::epsilon() * n); +#endif + + // Because of deflation, the singular values might not be completely sorted. + // Fortunately, reordering them is a O(n) problem + for(Index i=0; isingVals(i+1)) + { + using std::swap; + swap(singVals(i),singVals(i+1)); + U.col(i).swap(U.col(i+1)); + if(m_compV) V.col(i).swap(V.col(i+1)); + } + } + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + { + bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all(); + if(!singular_values_sorted) + std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n"; + eigen_internal_assert(singular_values_sorted); + } +#endif + + // Reverse order so that singular values in increased order + // Because of deflation, the zeros singular-values are already at the end + singVals.head(actual_n).reverseInPlace(); + U.leftCols(actual_n).rowwise().reverseInPlace(); + if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + JacobiSVD jsvd(m_computed.block(firstCol, firstCol, n, n) ); + std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n"; + std::cout << " * sing-val: " << singVals.transpose() << "\n"; +// std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; +#endif +} + +template +typename BDCSVD::RealScalar BDCSVD::secularEq( + RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const ArrayRef& diagShifted, + RealScalar shift) { + Index m = perm.size(); + RealScalar res = Literal(1); + for(Index i=0; i +void BDCSVD::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, + VectorType& singVals, ArrayRef shifts, ArrayRef mus) { + using std::abs; + using std::swap; + using std::sqrt; + + Index n = col0.size(); + Index actual_n = n; + // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above + // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. + while(actual_n>1 && numext::is_exactly_zero(col0(actual_n - 1))) --actual_n; + + for (Index k = 0; k < n; ++k) + { + if (numext::is_exactly_zero(col0(k)) || actual_n == 1) + { + // if col0(k) == 0, then entry is deflated, so singular value is on diagonal + // if actual_n==1, then the deflated problem is already diagonalized + singVals(k) = k==0 ? col0(0) : diag(k); + mus(k) = Literal(0); + shifts(k) = k==0 ? col0(0) : diag(k); + continue; + } + + // otherwise, use secular equation to find singular value + RealScalar left = diag(k); + RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); + if(k==actual_n-1) + right = (diag(actual_n-1) + col0.matrix().norm()); + else + { + // Skip deflated singular values, + // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. + // This should be equivalent to using perm[] + Index l = k+1; + while(numext::is_exactly_zero(col0(l))) { ++l; eigen_internal_assert(l < actual_n); } + right = diag(l); + } + + // first decide whether it's closer to the left end or the right end + RealScalar mid = left + (right-left) / Literal(2); + RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "right-left = " << right-left << "\n"; +// std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left) +// << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n"; + std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0) + << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n"; +#endif + RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right; + + // measure everything relative to shift + Map diagShifted(m_workspace.data()+4*n, n); + diagShifted = diag - shift; + + if(k!=actual_n-1) + { + // check that after the shift, f(mid) is still negative: + RealScalar midShifted = (right - left) / RealScalar(2); + // we can test exact equality here, because shift comes from `... ? left : right` + if(numext::equal_strict(shift, right)) + midShifted = -midShifted; + RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift); + if(fMidShifted>0) + { + // fMid was erroneous, fix it: + shift = fMidShifted > Literal(0) ? left : right; + diagShifted = diag - shift; + } + } + + // initial guess + RealScalar muPrev, muCur; + // we can test exact equality here, because shift comes from `... ? left : right` + if (numext::equal_strict(shift, left)) + { + muPrev = (right - left) * RealScalar(0.1); + if (k == actual_n-1) muCur = right - left; + else muCur = (right - left) * RealScalar(0.5); + } + else + { + muPrev = -(right - left) * RealScalar(0.1); + muCur = -(right - left) * RealScalar(0.5); + } + + RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); + RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); + if (abs(fPrev) < abs(fCur)) + { + swap(fPrev, fCur); + swap(muPrev, muCur); + } + + // rational interpolation: fit a function of the form a / mu + b through the two previous + // iterates and use its zero to compute the next iterate + bool useBisection = fPrev*fCur>Literal(0); + while (!numext::is_exactly_zero(fCur) && abs(muCur - muPrev) > Literal(8) * NumTraits::epsilon() * numext::maxi(abs(muCur), abs(muPrev)) && abs(fCur - fPrev) > NumTraits::epsilon() && !useBisection) + { + ++m_numIters; + + // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. + RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev); + RealScalar b = fCur - a / muCur; + // And find mu such that f(mu)==0: + RealScalar muZero = -a/b; + RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert((numext::isfinite)(fZero)); +#endif + + muPrev = muCur; + fPrev = fCur; + muCur = muZero; + fCur = fZero; + + // we can test exact equality here, because shift comes from `... ? left : right` + if (numext::equal_strict(shift, left) && (muCur < Literal(0) || muCur > right - left)) useBisection = true; + if (numext::equal_strict(shift, right) && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; + if (abs(fCur)>abs(fPrev)) useBisection = true; + } + + // fall back on bisection method if rational interpolation did not work + if (useBisection) + { +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; +#endif + RealScalar leftShifted, rightShifted; + // we can test exact equality here, because shift comes from `... ? left : right` + if (numext::equal_strict(shift, left)) + { + // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), + // the factor 2 is to be more conservative + leftShifted = numext::maxi( (std::numeric_limits::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits::max)()) ); + + // check that we did it right: + eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) ); + // I don't understand why the case k==0 would be special there: + // if (k == 0) rightShifted = right - left; else + rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe + } + else + { + leftShifted = -(right - left) * RealScalar(0.51); + if(k+1( (std::numeric_limits::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits::max)()) ); + else + rightShifted = -(std::numeric_limits::min)(); + } + + RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); + eigen_internal_assert(fLeft [" << leftShifted << " " << rightShifted << "], shift=" << shift + << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift) + << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n"; + } +#endif + eigen_internal_assert(fLeft * fRight < Literal(0)); + + if(fLeft Literal(2) * NumTraits::epsilon() * numext::maxi(abs(leftShifted), abs(rightShifted))) + { + RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); + fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); + eigen_internal_assert((numext::isfinite)(fMid)); + + if (fLeft * fMid < Literal(0)) + { + rightShifted = midShifted; + } + else + { + leftShifted = midShifted; + fLeft = fMid; + } + } + muCur = (leftShifted + rightShifted) / Literal(2); + } + else + { + // We have a problem as shifting on the left or right give either a positive or negative value + // at the middle of [left,right]... + // Instead fo abbording or entering an infinite loop, + // let's just use the middle as the estimated zero-crossing: + muCur = (right - left) * RealScalar(0.5); + // we can test exact equality here, because shift comes from `... ? left : right` + if(numext::equal_strict(shift, right)) + muCur = -muCur; + } + } + + singVals[k] = shift + muCur; + shifts[k] = shift; + mus[k] = muCur; + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + if(k+1=singVals[k-1]); + eigen_internal_assert(singVals[k]>=diag(k)); +#endif + + // perturb singular value slightly if it equals diagonal entry to avoid division by zero later + // (deflation is supposed to avoid this from happening) + // - this does no seem to be necessary anymore - + // if (singVals[k] == left) singVals[k] *= 1 + NumTraits::epsilon(); + // if (singVals[k] == right) singVals[k] *= 1 - NumTraits::epsilon(); + } +} + +// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) +template +void BDCSVD::perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, + const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, + ArrayRef zhat) { + using std::sqrt; + Index n = col0.size(); + Index m = perm.size(); + if(m==0) + { + zhat.setZero(); + return; + } + Index lastIdx = perm(m-1); + // The offset permits to skip deflated entries while computing zhat + for (Index k = 0; k < n; ++k) + { + if (numext::is_exactly_zero(col0(k))) // deflated + zhat(k) = Literal(0); + else + { + // see equation (3.6) + RealScalar dk = diag(k); + RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk)); +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + if(prod<0) { + std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n"; + std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n"; + std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n"; + } + eigen_internal_assert(prod>=0); +#endif + + for(Index l = 0; l=k && (l==0 || l-1>=m)) + { + std::cout << "Error in perturbCol0\n"; + std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n"; + std::cout << " " <= k && l == 0) { + m_info = NumericalIssue; + prod = 0; + break; + } + Index j = i 0 ? perm(l-1) : i; +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + if(!(dk!=Literal(0) || diag(i)!=Literal(0))) + { + std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n"; + } + eigen_internal_assert(dk!=Literal(0) || diag(i)!=Literal(0)); +#endif + prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk))); +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(prod>=0); +#endif +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 ) + std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk)) + << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n"; +#endif + } + } +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n"; +#endif + RealScalar tmp = sqrt(prod); +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert((numext::isfinite)(tmp)); +#endif + zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp); + } + } +} + +// compute singular vectors +template +void BDCSVD::computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, + const VectorType& singVals, const ArrayRef& shifts, + const ArrayRef& mus, MatrixXr& U, MatrixXr& V) { + Index n = zhat.size(); + Index m = perm.size(); + + for (Index k = 0; k < n; ++k) + { + if (numext::is_exactly_zero(zhat(k))) + { + U.col(k) = VectorType::Unit(n+1, k); + if (m_compV) V.col(k) = VectorType::Unit(n, k); + } + else + { + U.col(k).setZero(); + for(Index l=0;l= 1, di almost null and zi non null. +// We use a rotation to zero out zi applied to the left of M +template +void BDCSVD::deflation43(Index firstCol, Index shift, Index i, + Index size) { + using std::abs; + using std::sqrt; + using std::pow; + Index start = firstCol + shift; + RealScalar c = m_computed(start, start); + RealScalar s = m_computed(start+i, start); + RealScalar r = numext::hypot(c,s); + if (numext::is_exactly_zero(r)) + { + m_computed(start+i, start+i) = Literal(0); + return; + } + m_computed(start,start) = r; + m_computed(start+i, start) = Literal(0); + m_computed(start+i, start+i) = Literal(0); + + JacobiRotation J(c/r,-s/r); + if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J); + else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J); +} // end deflation 43 + +// page 13 +// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M) +// We apply two rotations to have zj = 0; +// TODO deflation44 is still broken and not properly tested +template +void BDCSVD::deflation44(Index firstColu, Index firstColm, Index firstRowW, + Index firstColW, Index i, Index j, + Index size) { + using std::abs; + using std::sqrt; + using std::conj; + using std::pow; + RealScalar c = m_computed(firstColm+i, firstColm); + RealScalar s = m_computed(firstColm+j, firstColm); + RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s)); +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " + << m_computed(firstColm + i-1, firstColm) << " " + << m_computed(firstColm + i, firstColm) << " " + << m_computed(firstColm + i+1, firstColm) << " " + << m_computed(firstColm + i+2, firstColm) << "\n"; + std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " " + << m_computed(firstColm + i, firstColm+i) << " " + << m_computed(firstColm + i+1, firstColm+i+1) << " " + << m_computed(firstColm + i+2, firstColm+i+2) << "\n"; +#endif + if (numext::is_exactly_zero(r)) + { + m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); + return; + } + c/=r; + s/=r; + m_computed(firstColm + i, firstColm) = r; + m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); + m_computed(firstColm + j, firstColm) = Literal(0); + + JacobiRotation J(c,-s); + if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J); + else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J); + if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J); +} // end deflation 44 + +// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] +template +void BDCSVD::deflation(Index firstCol, Index lastCol, Index k, + Index firstRowW, Index firstColW, Index shift) { + using std::sqrt; + using std::abs; + const Index length = lastCol + 1 - firstCol; + + Block col0(m_computed, firstCol+shift, firstCol+shift, length, 1); + Diagonal fulldiag(m_computed); + VectorBlock,Dynamic> diag(fulldiag, firstCol+shift, length); + + const RealScalar considerZero = (std::numeric_limits::min)(); + RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff(); + RealScalar epsilon_strict = numext::maxi(considerZero,NumTraits::epsilon() * maxDiag); + RealScalar epsilon_coarse = Literal(8) * NumTraits::epsilon() * numext::maxi(col0.cwiseAbs().maxCoeff(), maxDiag); + +#ifdef EIGEN_BDCSVD_SANITY_CHECKS + eigen_internal_assert(m_naiveU.allFinite()); + eigen_internal_assert(m_naiveV.allFinite()); + eigen_internal_assert(m_computed.allFinite()); +#endif + +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n"; +#endif + + //condition 4.1 + if (diag(0) < epsilon_coarse) + { +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; +#endif + diag(0) = epsilon_coarse; + } + + //condition 4.2 + for (Index i=1;i k) permutation[p] = j++; + else if (j >= length) permutation[p] = i++; + else if (diag(i) < diag(j)) permutation[p] = j++; + else permutation[p] = i++; + } + } + + // If we have a total deflation, then we have to insert diag(0) at the right place + if(total_deflation) + { + for(Index i=1; i0 && (abs(diag(i))1;--i) + if( (diag(i) - diag(i-1)) < NumTraits::epsilon()*maxDiag ) + { +#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE + std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits::epsilon()*/*diag(i)*/maxDiag << "\n"; +#endif + eigen_internal_assert(abs(diag(i) - diag(i-1)) +template +BDCSVD::PlainObject, Options> MatrixBase::bdcSvd() const { + return BDCSVD(*this); +} + +/** \svd_module + * + * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm + * + * \sa class BDCSVD + */ +template +template +BDCSVD::PlainObject, Options> MatrixBase::bdcSvd( + unsigned int computationOptions) const { + return BDCSVD(*this, computationOptions); +} + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/BDCSVD_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/BDCSVD_LAPACKE.h new file mode 100644 index 0000000..9a1e843 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/BDCSVD_LAPACKE.h @@ -0,0 +1,163 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2022 Melven Roehrig-Zoellner +// Copyright (c) 2011, Intel Corporation. All rights reserved. +// +// This file is based on the JacobiSVD_LAPACKE.h originally from Intel - +// see license notice below: +/* + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Singular Value Decomposition - SVD (divide and conquer variant) + ******************************************************************************** +*/ +#ifndef EIGEN_BDCSVD_LAPACKE_H +#define EIGEN_BDCSVD_LAPACKE_H + +namespace Eigen { + +namespace internal { + +namespace lapacke_helpers { + +/** \internal Specialization for the data types supported by LAPACKe */ + +// defining a derived class to allow access to protected members +template +class BDCSVD_LAPACKE : public BDCSVD { + typedef BDCSVD SVD; + typedef typename SVD::MatrixType MatrixType; + typedef typename SVD::Scalar Scalar; + typedef typename SVD::RealScalar RealScalar; + +public: + // construct this by moving from a parent object + BDCSVD_LAPACKE(SVD&& svd) : SVD(std::move(svd)) {} + + void compute_impl_lapacke(const MatrixType& matrix, unsigned int computationOptions) { + + SVD::allocate(matrix.rows(), matrix.cols(), computationOptions); + + SVD::m_nonzeroSingularValues = SVD::m_diagSize; + + // prepare arguments to ?gesdd + const lapack_int matrix_order = lapack_storage_of(matrix); + const char jobz = (SVD::m_computeFullU || SVD::m_computeFullV) ? 'A' : (SVD::m_computeThinU || SVD::m_computeThinV) ? 'S' : 'N'; + const lapack_int u_cols = (jobz == 'A') ? to_lapack(SVD::rows()) : (jobz == 'S') ? to_lapack(SVD::diagSize()) : 1; + const lapack_int vt_rows = (jobz == 'A') ? to_lapack(SVD::cols()) : (jobz == 'S') ? to_lapack(SVD::diagSize()) : 1; + lapack_int ldu, ldvt; + Scalar *u, *vt, dummy; + MatrixType localU; + if (SVD::computeU() && !(SVD::m_computeThinU && SVD::m_computeFullV) ) { + ldu = to_lapack(SVD::m_matrixU.outerStride()); + u = SVD::m_matrixU.data(); + } else if (SVD::computeV()) { + localU.resize(SVD::rows(), u_cols); + ldu = to_lapack(localU.outerStride()); + u = localU.data(); + } else { ldu=1; u=&dummy; } + MatrixType localV; + if (SVD::computeU() || SVD::computeV()) { + localV.resize(vt_rows, SVD::cols()); + ldvt = to_lapack(localV.outerStride()); + vt = localV.data(); + } else { ldvt=1; vt=&dummy; } + MatrixType temp; temp = matrix; + + // actual call to ?gesdd + lapack_int info = gesdd( matrix_order, jobz, to_lapack(SVD::rows()), to_lapack(SVD::cols()), + to_lapack(temp.data()), to_lapack(temp.outerStride()), (RealScalar*)SVD::m_singularValues.data(), + to_lapack(u), ldu, to_lapack(vt), ldvt); + + // Check the result of the LAPACK call + if (info < 0 || !SVD::m_singularValues.allFinite()) { + // this includes info == -4 => NaN entry in A + SVD::m_info = InvalidInput; + } else if (info > 0 ) { + SVD::m_info = NoConvergence; + } else { + SVD::m_info = Success; + if (SVD::m_computeThinU && SVD::m_computeFullV) { + SVD::m_matrixU = localU.leftCols(SVD::m_matrixU.cols()); + } + if (SVD::computeV()) { + SVD::m_matrixV = localV.adjoint().leftCols(SVD::m_matrixV.cols()); + } + } + SVD::m_isInitialized = true; + } +}; + +template +BDCSVD& BDCSVD_wrapper(BDCSVD& svd, const MatrixType_& matrix, int computationOptions) +{ + // we need to move to the wrapper type and back + BDCSVD_LAPACKE tmpSvd(std::move(svd)); + tmpSvd.compute_impl_lapacke(matrix, computationOptions); + svd = std::move(tmpSvd); + return svd; +} + +} // end namespace lapacke_helpers + +} // end namespace internal + +#define EIGEN_LAPACKE_SDD(EIGTYPE, EIGCOLROW, OPTIONS) \ +template<> inline \ +BDCSVD, OPTIONS>& \ +BDCSVD, OPTIONS>::compute_impl(const Matrix& matrix, unsigned int computationOptions) {\ + return internal::lapacke_helpers::BDCSVD_wrapper(*this, matrix, computationOptions); \ +} + +#define EIGEN_LAPACK_SDD_OPTIONS(OPTIONS) \ + EIGEN_LAPACKE_SDD(double, ColMajor, OPTIONS) \ + EIGEN_LAPACKE_SDD(float, ColMajor, OPTIONS) \ + EIGEN_LAPACKE_SDD(dcomplex, ColMajor, OPTIONS) \ + EIGEN_LAPACKE_SDD(scomplex, ColMajor, OPTIONS) \ +\ + EIGEN_LAPACKE_SDD(double, RowMajor, OPTIONS) \ + EIGEN_LAPACKE_SDD(float, RowMajor, OPTIONS) \ + EIGEN_LAPACKE_SDD(dcomplex, RowMajor, OPTIONS) \ + EIGEN_LAPACKE_SDD(scomplex, RowMajor, OPTIONS) + +EIGEN_LAPACK_SDD_OPTIONS(0) +EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU) +EIGEN_LAPACK_SDD_OPTIONS(ComputeThinV) +EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU) +EIGEN_LAPACK_SDD_OPTIONS(ComputeFullV) +EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU | ComputeThinV) +EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU | ComputeFullV) +EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU | ComputeFullV) +EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU | ComputeThinV) + +#undef EIGEN_LAPACK_SDD_OPTIONS + +#undef EIGEN_LAPACKE_SDD + +} // end namespace Eigen + +#endif // EIGEN_BDCSVD_LAPACKE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/InternalHeaderCheck.h new file mode 100644 index 0000000..fa67b96 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SVD_MODULE_H +#error "Please include Eigen/SVD instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/JacobiSVD.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/JacobiSVD.h new file mode 100644 index 0000000..5fdb3dc --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/JacobiSVD.h @@ -0,0 +1,841 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Benoit Jacob +// Copyright (C) 2013-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_JACOBISVD_H +#define EIGEN_JACOBISVD_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +// forward declaration (needed by ICC) +// the empty body is required by MSVC +template ::IsComplex> +struct svd_precondition_2x2_block_to_be_real {}; + +/*** QR preconditioners (R-SVD) + *** + *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. + *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for + *** JacobiSVD which by itself is only able to work on square matrices. + ***/ + +enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; + +template +struct qr_preconditioner_should_do_anything +{ + enum { a = MatrixType::RowsAtCompileTime != Dynamic && + MatrixType::ColsAtCompileTime != Dynamic && + MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, + b = MatrixType::RowsAtCompileTime != Dynamic && + MatrixType::ColsAtCompileTime != Dynamic && + MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, + ret = !( (QRPreconditioner == NoQRPreconditioner) || + (Case == PreconditionIfMoreColsThanRows && bool(a)) || + (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) + }; +}; + +template ::ret> +struct qr_preconditioner_impl {}; + +template +class qr_preconditioner_impl { + public: + void allocate(const JacobiSVD&) {} + bool run(JacobiSVD&, const MatrixType&) { return false; } +}; + +/*** preconditioner using FullPivHouseholderQR ***/ + +template +class qr_preconditioner_impl { + public: + typedef typename MatrixType::Scalar Scalar; + typedef JacobiSVD SVDType; + + enum { WorkspaceSize = MatrixType::RowsAtCompileTime, MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime }; + + typedef Matrix WorkspaceType; + + void allocate(const SVDType& svd) { + if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) + { + internal::destroy_at(&m_qr); + internal::construct_at(&m_qr, svd.rows(), svd.cols()); + } + if (svd.m_computeFullU) m_workspace.resize(svd.rows()); + } + + bool run(SVDType& svd, const MatrixType& matrix) { + if(matrix.rows() > matrix.cols()) + { + m_qr.compute(matrix); + svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); + if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); + if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); + return true; + } + return false; + } + +private: + typedef FullPivHouseholderQR QRType; + QRType m_qr; + WorkspaceType m_workspace; +}; + +template +class qr_preconditioner_impl { + public: + typedef typename MatrixType::Scalar Scalar; + typedef JacobiSVD SVDType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + MatrixOptions = MatrixType::Options + }; + + typedef typename internal::make_proper_matrix_type::type + TransposeTypeWithSameStorageOrder; + + void allocate(const SVDType& svd) { + if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) + { + internal::destroy_at(&m_qr); + internal::construct_at(&m_qr, svd.cols(), svd.rows()); + } + m_adjoint.resize(svd.cols(), svd.rows()); + if (svd.m_computeFullV) m_workspace.resize(svd.cols()); + } + + bool run(SVDType& svd, const MatrixType& matrix) { + if(matrix.cols() > matrix.rows()) + { + m_adjoint = matrix.adjoint(); + m_qr.compute(m_adjoint); + svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); + if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); + if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); + return true; + } + else return false; + } + +private: + typedef FullPivHouseholderQR QRType; + QRType m_qr; + TransposeTypeWithSameStorageOrder m_adjoint; + typename plain_row_type::type m_workspace; +}; + +/*** preconditioner using ColPivHouseholderQR ***/ + +template +class qr_preconditioner_impl { + public: + typedef typename MatrixType::Scalar Scalar; + typedef JacobiSVD SVDType; + + enum { + WorkspaceSize = internal::traits::MatrixUColsAtCompileTime, + MaxWorkspaceSize = internal::traits::MatrixUMaxColsAtCompileTime + }; + + typedef Matrix WorkspaceType; + + void allocate(const SVDType& svd) { + if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) + { + internal::destroy_at(&m_qr); + internal::construct_at(&m_qr, svd.rows(), svd.cols()); + } + if (svd.m_computeFullU) m_workspace.resize(svd.rows()); + else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); + } + + bool run(SVDType& svd, const MatrixType& matrix) { + if(matrix.rows() > matrix.cols()) + { + m_qr.compute(matrix); + svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); + if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); + else if(svd.m_computeThinU) + { + svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); + m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); + } + if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); + return true; + } + return false; + } + +private: + typedef ColPivHouseholderQR QRType; + QRType m_qr; + WorkspaceType m_workspace; +}; + +template +class qr_preconditioner_impl { + public: + typedef typename MatrixType::Scalar Scalar; + typedef JacobiSVD SVDType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + MatrixOptions = MatrixType::Options, + WorkspaceSize = internal::traits::MatrixVColsAtCompileTime, + MaxWorkspaceSize = internal::traits::MatrixVMaxColsAtCompileTime + }; + + typedef Matrix WorkspaceType; + + typedef typename internal::make_proper_matrix_type::type + TransposeTypeWithSameStorageOrder; + + void allocate(const SVDType& svd) { + if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) + { + internal::destroy_at(&m_qr); + internal::construct_at(&m_qr, svd.cols(), svd.rows()); + } + if (svd.m_computeFullV) m_workspace.resize(svd.cols()); + else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); + m_adjoint.resize(svd.cols(), svd.rows()); + } + + bool run(SVDType& svd, const MatrixType& matrix) { + if(matrix.cols() > matrix.rows()) + { + m_adjoint = matrix.adjoint(); + m_qr.compute(m_adjoint); + + svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); + if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); + else if(svd.m_computeThinV) + { + svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); + m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); + } + if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); + return true; + } + else return false; + } + +private: + typedef ColPivHouseholderQR QRType; + QRType m_qr; + TransposeTypeWithSameStorageOrder m_adjoint; + WorkspaceType m_workspace; +}; + +/*** preconditioner using HouseholderQR ***/ + +template +class qr_preconditioner_impl { + public: + typedef typename MatrixType::Scalar Scalar; + typedef JacobiSVD SVDType; + + enum { + WorkspaceSize = internal::traits::MatrixUColsAtCompileTime, + MaxWorkspaceSize = internal::traits::MatrixUMaxColsAtCompileTime + }; + + typedef Matrix WorkspaceType; + + void allocate(const SVDType& svd) { + if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) + { + internal::destroy_at(&m_qr); + internal::construct_at(&m_qr, svd.rows(), svd.cols()); + } + if (svd.m_computeFullU) m_workspace.resize(svd.rows()); + else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); + } + + bool run(SVDType& svd, const MatrixType& matrix) { + if(matrix.rows() > matrix.cols()) + { + m_qr.compute(matrix); + svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); + if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); + else if(svd.m_computeThinU) + { + svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); + m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); + } + if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); + return true; + } + return false; + } + +private: + typedef HouseholderQR QRType; + QRType m_qr; + WorkspaceType m_workspace; +}; + +template +class qr_preconditioner_impl { + public: + typedef typename MatrixType::Scalar Scalar; + typedef JacobiSVD SVDType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + MatrixOptions = MatrixType::Options, + WorkspaceSize = internal::traits::MatrixVColsAtCompileTime, + MaxWorkspaceSize = internal::traits::MatrixVMaxColsAtCompileTime + }; + + typedef Matrix WorkspaceType; + + typedef typename internal::make_proper_matrix_type::type + TransposeTypeWithSameStorageOrder; + + void allocate(const SVDType& svd) { + if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) + { + internal::destroy_at(&m_qr); + internal::construct_at(&m_qr, svd.cols(), svd.rows()); + } + if (svd.m_computeFullV) m_workspace.resize(svd.cols()); + else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); + m_adjoint.resize(svd.cols(), svd.rows()); + } + + bool run(SVDType& svd, const MatrixType& matrix) { + if(matrix.cols() > matrix.rows()) + { + m_adjoint = matrix.adjoint(); + m_qr.compute(m_adjoint); + + svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); + if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); + else if(svd.m_computeThinV) + { + svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); + m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); + } + if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); + return true; + } + else return false; + } + +private: + typedef HouseholderQR QRType; + QRType m_qr; + TransposeTypeWithSameStorageOrder m_adjoint; + WorkspaceType m_workspace; +}; + +/*** 2x2 SVD implementation + *** + *** JacobiSVD consists in performing a series of 2x2 SVD subproblems + ***/ + +template +struct svd_precondition_2x2_block_to_be_real { + typedef JacobiSVD SVD; + typedef typename MatrixType::RealScalar RealScalar; + static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } +}; + +template +struct svd_precondition_2x2_block_to_be_real { + typedef JacobiSVD SVD; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) + { + using std::sqrt; + using std::abs; + Scalar z; + JacobiRotation rot; + RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); + + const RealScalar considerAsZero = (std::numeric_limits::min)(); + const RealScalar precision = NumTraits::epsilon(); + + if(numext::is_exactly_zero(n)) + { + // make sure first column is zero + work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0); + + if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) + { + // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n + z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); + work_matrix.row(p) *= z; + if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); + } + if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) + { + z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); + work_matrix.row(q) *= z; + if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); + } + // otherwise the second row is already zero, so we have nothing to do. + } + else + { + rot.c() = conj(work_matrix.coeff(p,p)) / n; + rot.s() = work_matrix.coeff(q,p) / n; + work_matrix.applyOnTheLeft(p,q,rot); + if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); + if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) + { + z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); + work_matrix.col(q) *= z; + if(svd.computeV()) svd.m_matrixV.col(q) *= z; + } + if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) + { + z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); + work_matrix.row(q) *= z; + if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); + } + } + + // update largest diagonal entry + maxDiagEntry = numext::maxi(maxDiagEntry,numext::maxi(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); + // and check whether the 2x2 block is already diagonal + RealScalar threshold = numext::maxi(considerAsZero, precision * maxDiagEntry); + return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; + } +}; + +template +struct traits > : svd_traits { + typedef MatrixType_ MatrixType; +}; + +} // end namespace internal + +/** \ingroup SVD_Module + * + * + * \class JacobiSVD + * + * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix + * + * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition + * \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used + * internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin + * or full unitaries \a U and \a V. See discussion of possible values below. + * + * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product + * \f[ A = U S V^* \f] + * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero + * outside of its main diagonal; the diagonal entries of S are known as the \em singular \em values of \a A and the + * columns of \a U and \a V are known as the left and right \em singular \em vectors of \a A respectively. + * + * Singular values are always sorted in decreasing order. + * + * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask + * for them explicitly. + * + * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p + * matrix, letting \a m be the smaller value among \a n and \a p, there are only \a m singular vectors; the remaining + * columns of \a U and \a V do not correspond to actual singular vectors. Asking for \em thin \a U or \a V means asking + * for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, and \a V is then a p-by-m matrix. + * Notice that thin \a U and \a V are all you need for (least squares) solving. + * + * Here's an example demonstrating basic usage: + * \include JacobiSVD_basic.cpp + * Output: \verbinclude JacobiSVD_basic.out + * + * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The + * downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is + * still \f$ O(n^2p) \f$ where \a n is the smaller dimension and \a p is the greater dimension, meaning that it is still + * of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it + * takes advantage of non-squareness in that its complexity is only linear in the greater dimension. + * + * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is + * guaranteed to terminate in finite (and reasonable) time. + * + * The possible QR preconditioners that can be set with Options template parameter are: + * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. + * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. + * Contrary to other QRs, it doesn't allow computing thin unitaries. + * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses + * non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing + * SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable + * than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal + * SVD iterations. \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that + * you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR + * preconditioner. Using this option will result in faster compilation and smaller executable code. It won't + * significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before + * applying it anyway. + * + * One may also use the Options template parameter to specify how the unitaries should be computed. The options are + * #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both the thin and full + * versions of a unitary. By default, unitaries will not be computed. + * + * You can set the QRPreconditioner and unitary options together: JacobiSVD + * + * \sa MatrixBase::jacobiSvd() + */ +template +class JacobiSVD : public SVDBase > { + typedef SVDBase Base; + + public: + typedef MatrixType_ MatrixType; + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + typedef typename Base::Index Index; + enum : int { + Options = Options_, + QRPreconditioner = internal::get_qr_preconditioner(Options), + RowsAtCompileTime = Base::RowsAtCompileTime, + ColsAtCompileTime = Base::ColsAtCompileTime, + DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime, + MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Base::MaxColsAtCompileTime, + MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime, + MatrixOptions = Base::MatrixOptions + }; + + typedef typename Base::MatrixUType MatrixUType; + typedef typename Base::MatrixVType MatrixVType; + typedef typename Base::SingularValuesType SingularValuesType; + typedef Matrix + WorkMatrixType; + + /** \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via JacobiSVD::compute(const MatrixType&). + */ + JacobiSVD() {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem size and \a Options template parameter. + * + * \sa JacobiSVD() + */ + JacobiSVD(Index rows, Index cols) { allocate(rows, cols, internal::get_computation_options(Options)); } + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem size. + * + * One \b cannot request unitaries using both the \a Options template parameter + * and the constructor. If possible, prefer using the \a Options template parameter. + * + * \param computationOptions specify whether to compute Thin/Full unitaries U/V + * \sa JacobiSVD() + * + * \deprecated Will be removed in the next major Eigen version. Options should + * be specified in the \a Options template parameter. + */ + EIGEN_DEPRECATED + JacobiSVD(Index rows, Index cols, unsigned int computationOptions) { + internal::check_svd_options_assertions(computationOptions, rows, cols); + allocate(rows, cols, computationOptions); + } + + /** \brief Constructor performing the decomposition of given matrix, using the custom options specified + * with the \a Options template paramter. + * + * \param matrix the matrix to decompose + */ + explicit JacobiSVD(const MatrixType& matrix) { compute_impl(matrix, internal::get_computation_options(Options)); } + + /** \brief Constructor performing the decomposition of given matrix using specified options + * for computing unitaries. + * + * One \b cannot request unitiaries using both the \a Options template parameter + * and the constructor. If possible, prefer using the \a Options template parameter. + * + * \param matrix the matrix to decompose + * \param computationOptions specify whether to compute Thin/Full unitaries U/V + * + * \deprecated Will be removed in the next major Eigen version. Options should + * be specified in the \a Options template parameter. + */ + // EIGEN_DEPRECATED // TODO(cantonios): re-enable after fixing a few 3p libraries that error on deprecation warnings. + JacobiSVD(const MatrixType& matrix, unsigned int computationOptions) { + internal::check_svd_options_assertions(computationOptions, matrix.rows(), matrix.cols()); + compute_impl(matrix, computationOptions); + } + + /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified + * using the \a Options template parameter or the class constructor. + * + * \param matrix the matrix to decompose + */ + JacobiSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); } + + /** \brief Method performing the decomposition of given matrix, as specified by + * the `computationOptions` parameter. + * + * \param matrix the matrix to decompose + * \param computationOptions specify whether to compute Thin/Full unitaries U/V + * + * \deprecated Will be removed in the next major Eigen version. Options should + * be specified in the \a Options template parameter. + */ + EIGEN_DEPRECATED + JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions) { + internal::check_svd_options_assertions(m_computationOptions, matrix.rows(), matrix.cols()); + return compute_impl(matrix, computationOptions); + } + + using Base::computeU; + using Base::computeV; + using Base::rows; + using Base::cols; + using Base::diagSize; + using Base::rank; + + private: + void allocate(Index rows, Index cols, unsigned int computationOptions); + JacobiSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions); + + protected: + using Base::m_computationOptions; + using Base::m_computeFullU; + using Base::m_computeFullV; + using Base::m_computeThinU; + using Base::m_computeThinV; + using Base::m_info; + using Base::m_isAllocated; + using Base::m_isInitialized; + using Base::m_matrixU; + using Base::m_matrixV; + using Base::m_nonzeroSingularValues; + using Base::m_prescribedThreshold; + using Base::m_singularValues; + using Base::m_usePrescribedThreshold; + using Base::ShouldComputeThinU; + using Base::ShouldComputeThinV; + + EIGEN_STATIC_ASSERT(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && + !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)), + "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " + "Use the ColPivHouseholderQR preconditioner instead.") + + template + friend struct internal::svd_precondition_2x2_block_to_be_real; + template + friend struct internal::qr_preconditioner_impl; + + internal::qr_preconditioner_impl + m_qr_precond_morecols; + internal::qr_preconditioner_impl + m_qr_precond_morerows; + WorkMatrixType m_workMatrix; + MatrixType m_scaledMatrix; +}; + +template +void JacobiSVD::allocate(Index rows_, Index cols_, unsigned int computationOptions_) { + if (Base::allocate(rows_, cols_, computationOptions_)) return; + + eigen_assert(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && + !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && + "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " + "Use the ColPivHouseholderQR preconditioner instead."); + + m_workMatrix.resize(diagSize(), diagSize()); + if(cols()>rows()) m_qr_precond_morecols.allocate(*this); + if(rows()>cols()) m_qr_precond_morerows.allocate(*this); + if(rows()!=cols()) m_scaledMatrix.resize(rows(),cols()); +} + +template +JacobiSVD& JacobiSVD::compute_impl(const MatrixType& matrix, + unsigned int computationOptions) { + using std::abs; + + allocate(matrix.rows(), matrix.cols(), computationOptions); + + // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, + // only worsening the precision of U and V as we accumulate more rotations + const RealScalar precision = RealScalar(2) * NumTraits::epsilon(); + + // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) + const RealScalar considerAsZero = (std::numeric_limits::min)(); + + // Scaling factor to reduce over/under-flows + RealScalar scale = matrix.cwiseAbs().template maxCoeff(); + if (!(numext::isfinite)(scale)) { + m_isInitialized = true; + m_info = InvalidInput; + m_nonzeroSingularValues = 0; + return *this; + } + if(numext::is_exactly_zero(scale)) scale = RealScalar(1); + + /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ + + if(rows() != cols()) + { + m_scaledMatrix = matrix / scale; + m_qr_precond_morecols.run(*this, m_scaledMatrix); + m_qr_precond_morerows.run(*this, m_scaledMatrix); + } + else + { + m_workMatrix = matrix.template topLeftCorner(diagSize(),diagSize()) / scale; + if(m_computeFullU) m_matrixU.setIdentity(rows(),rows()); + if(m_computeThinU) m_matrixU.setIdentity(rows(),diagSize()); + if(m_computeFullV) m_matrixV.setIdentity(cols(),cols()); + if(m_computeThinV) m_matrixV.setIdentity(cols(),diagSize()); + } + + /*** step 2. The main Jacobi SVD iteration. ***/ + RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); + + bool finished = false; + while(!finished) + { + finished = true; + + // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix + + for(Index p = 1; p < diagSize(); ++p) + { + for(Index q = 0; q < p; ++q) + { + // if this 2x2 sub-matrix is not diagonal already... + // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't + // keep us iterating forever. Similarly, small denormal numbers are considered zero. + RealScalar threshold = numext::maxi(considerAsZero, precision * maxDiagEntry); + if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) + { + finished = false; + // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal + // the complex to real operation returns true if the updated 2x2 block is not already diagonal + if (internal::svd_precondition_2x2_block_to_be_real::run(m_workMatrix, *this, p, q, + maxDiagEntry)) { + JacobiRotation j_left, j_right; + internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); + + // accumulate resulting Jacobi rotations + m_workMatrix.applyOnTheLeft(p,q,j_left); + if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); + + m_workMatrix.applyOnTheRight(p,q,j_right); + if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); + + // keep track of the largest diagonal coefficient + maxDiagEntry = numext::maxi(maxDiagEntry,numext::maxi(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); + } + } + } + } + } + + /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ + + for(Index i = 0; i < diagSize(); ++i) + { + // For a complex matrix, some diagonal coefficients might note have been + // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part + // of some diagonal entry might not be null. + if(NumTraits::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) + { + RealScalar a = abs(m_workMatrix.coeff(i,i)); + m_singularValues.coeffRef(i) = abs(a); + if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; + } + else + { + // m_workMatrix.coeff(i,i) is already real, no difficulty: + RealScalar a = numext::real(m_workMatrix.coeff(i,i)); + m_singularValues.coeffRef(i) = abs(a); + if(computeU() && (a +template +JacobiSVD::PlainObject, Options> MatrixBase::jacobiSvd() const { + return JacobiSVD(*this); +} + +template +template +JacobiSVD::PlainObject, Options> MatrixBase::jacobiSvd( + unsigned int computationOptions) const { + return JacobiSVD(*this, computationOptions); +} + +} // end namespace Eigen + +#endif // EIGEN_JACOBISVD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h new file mode 100644 index 0000000..11247b1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h @@ -0,0 +1,113 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Singular Value Decomposition - SVD. + ******************************************************************************** +*/ + +#ifndef EIGEN_JACOBISVD_LAPACKE_H +#define EIGEN_JACOBISVD_LAPACKE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \internal Specialization for the data types supported by LAPACKe */ + +#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW, OPTIONS) \ +template<> inline \ +JacobiSVD, OPTIONS>& \ +JacobiSVD, OPTIONS>::compute_impl(const Matrix& matrix, \ + unsigned int computationOptions) \ +{ \ + typedef Matrix MatrixType; \ + /*typedef MatrixType::Scalar Scalar;*/ \ + /*typedef MatrixType::RealScalar RealScalar;*/ \ + allocate(matrix.rows(), matrix.cols(), computationOptions); \ +\ + /*const RealScalar precision = RealScalar(2) * NumTraits::epsilon();*/ \ + m_nonzeroSingularValues = diagSize(); \ +\ + lapack_int lda = internal::convert_index(matrix.outerStride()), ldu, ldvt; \ + lapack_int matrix_order = LAPACKE_COLROW; \ + char jobu, jobvt; \ + LAPACKE_TYPE *u, *vt, dummy; \ + jobu = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \ + jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \ + if (computeU()) { \ + ldu = internal::convert_index(m_matrixU.outerStride()); \ + u = (LAPACKE_TYPE*)m_matrixU.data(); \ + } else { ldu=1; u=&dummy; }\ + MatrixType localV; \ + lapack_int vt_rows = (m_computeFullV) ? internal::convert_index(cols()) : (m_computeThinV) ? internal::convert_index(diagSize()) : 1; \ + if (computeV()) { \ + localV.resize(vt_rows, cols()); \ + ldvt = internal::convert_index(localV.outerStride()); \ + vt = (LAPACKE_TYPE*)localV.data(); \ + } else { ldvt=1; vt=&dummy; }\ + Matrix superb; superb.resize(diagSize(), 1); \ + MatrixType m_temp; m_temp = matrix; \ + lapack_int info = LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index(rows()), internal::convert_index(cols()), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \ + /* Check the result of the LAPACK call */ \ + if (info < 0 || !m_singularValues.allFinite()) { \ + m_info = InvalidInput; \ + } else if (info > 0 ) { \ + m_info = NoConvergence; \ + } else { \ + m_info = Success; \ + if (computeV()) m_matrixV = localV.adjoint(); \ + } \ + /* for(int i=0;i +// Copyright (C) 2014 Gael Guennebaud +// +// Copyright (C) 2013 Gauthier Brun +// Copyright (C) 2013 Nicolas Carre +// Copyright (C) 2013 Jean Ceccato +// Copyright (C) 2013 Pierre Zoppitelli +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SVDBASE_H +#define EIGEN_SVDBASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +enum OptionsMasks { + QRPreconditionerBits = NoQRPreconditioner | HouseholderQRPreconditioner | ColPivHouseholderQRPreconditioner | + FullPivHouseholderQRPreconditioner, + ComputationOptionsBits = ComputeThinU | ComputeFullU | ComputeThinV | ComputeFullV +}; + +constexpr int get_qr_preconditioner(int options) { return options & QRPreconditionerBits; } + +constexpr int get_computation_options(int options) { return options & ComputationOptionsBits; } + +constexpr bool should_svd_compute_thin_u(int options) { return (options & ComputeThinU) != 0; } +constexpr bool should_svd_compute_full_u(int options) { return (options & ComputeFullU) != 0; } +constexpr bool should_svd_compute_thin_v(int options) { return (options & ComputeThinV) != 0; } +constexpr bool should_svd_compute_full_v(int options) { return (options & ComputeFullV) != 0; } + +template +void check_svd_options_assertions(unsigned int computationOptions, Index rows, Index cols) { + EIGEN_STATIC_ASSERT((Options & ComputationOptionsBits) == 0, + "SVDBase: Cannot request U or V using both static and runtime options, even if they match. " + "Requesting unitaries at runtime is DEPRECATED: " + "Prefer requesting unitaries statically, using the Options template parameter."); + eigen_assert(!(should_svd_compute_thin_u(computationOptions) && cols < rows && MatrixType::RowsAtCompileTime != Dynamic) && + !(should_svd_compute_thin_v(computationOptions) && rows < cols && MatrixType::ColsAtCompileTime != Dynamic) && + "SVDBase: If thin U is requested at runtime, your matrix must have more rows than columns or a dynamic number of rows." + "Similarly, if thin V is requested at runtime, you matrix must have more columns than rows or a dynamic number of columns."); + (void)computationOptions; + (void)rows; + (void)cols; +} + +template struct traits > + : traits +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; +}; + +template +struct svd_traits : traits { + static constexpr int Options = Options_; + static constexpr bool ShouldComputeFullU = internal::should_svd_compute_full_u(Options); + static constexpr bool ShouldComputeThinU = internal::should_svd_compute_thin_u(Options); + static constexpr bool ShouldComputeFullV = internal::should_svd_compute_full_v(Options); + static constexpr bool ShouldComputeThinV = internal::should_svd_compute_thin_v(Options); + enum { + DiagSizeAtCompileTime = + internal::min_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime), + MaxDiagSizeAtCompileTime = + internal::min_size_prefer_dynamic(MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime), + MatrixUColsAtCompileTime = ShouldComputeThinU ? DiagSizeAtCompileTime + : MatrixType::RowsAtCompileTime, + MatrixVColsAtCompileTime = ShouldComputeThinV ? DiagSizeAtCompileTime + : MatrixType::ColsAtCompileTime, + MatrixUMaxColsAtCompileTime = ShouldComputeThinU ? MaxDiagSizeAtCompileTime + : MatrixType::MaxRowsAtCompileTime, + MatrixVMaxColsAtCompileTime = ShouldComputeThinV ? MaxDiagSizeAtCompileTime + : MatrixType::MaxColsAtCompileTime + }; +}; +} + +/** \ingroup SVD_Module + * + * + * \class SVDBase + * + * \brief Base class of SVD algorithms + * + * \tparam Derived the type of the actual SVD decomposition + * + * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product + * \f[ A = U S V^* \f] + * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; + * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left + * and right \em singular \em vectors of \a A respectively. + * + * Singular values are always sorted in decreasing order. + * + * + * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the + * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual + * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, + * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. + * + * The status of the computation can be retrieved using the \a info() method. Unless \a info() returns \a Success, the results should be not + * considered well defined. + * + * If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to + * terminate in finite (and reasonable) time. + * \sa class BDCSVD, class JacobiSVD + */ +template class SVDBase + : public SolverBase > +{ +public: + + template + friend struct internal::solve_assertion; + + typedef typename internal::traits::MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef typename Eigen::internal::traits::StorageIndex StorageIndex; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + static constexpr bool ShouldComputeFullU = internal::traits::ShouldComputeFullU; + static constexpr bool ShouldComputeThinU = internal::traits::ShouldComputeThinU; + static constexpr bool ShouldComputeFullV = internal::traits::ShouldComputeFullV; + static constexpr bool ShouldComputeThinV = internal::traits::ShouldComputeThinV; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + DiagSizeAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime), + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + MaxDiagSizeAtCompileTime = internal::min_size_prefer_fixed(MaxRowsAtCompileTime, MaxColsAtCompileTime), + MatrixOptions = MatrixType::Options, + MatrixUColsAtCompileTime = internal::traits::MatrixUColsAtCompileTime, + MatrixVColsAtCompileTime = internal::traits::MatrixVColsAtCompileTime, + MatrixUMaxColsAtCompileTime = internal::traits::MatrixUMaxColsAtCompileTime, + MatrixVMaxColsAtCompileTime = internal::traits::MatrixVMaxColsAtCompileTime + }; + + EIGEN_STATIC_ASSERT(!(ShouldComputeFullU && ShouldComputeThinU), "SVDBase: Cannot request both full and thin U") + EIGEN_STATIC_ASSERT(!(ShouldComputeFullV && ShouldComputeThinV), "SVDBase: Cannot request both full and thin V") + + typedef + typename internal::make_proper_matrix_type::type MatrixUType; + typedef + typename internal::make_proper_matrix_type::type MatrixVType; + + typedef typename internal::plain_diag_type::type SingularValuesType; + + Derived& derived() { return *static_cast(this); } + const Derived& derived() const { return *static_cast(this); } + + /** \returns the \a U matrix. + * + * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, + * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. + * + * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. + * + * This method asserts that you asked for \a U to be computed. + */ + const MatrixUType& matrixU() const + { + _check_compute_assertions(); + eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); + return m_matrixU; + } + + /** \returns the \a V matrix. + * + * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, + * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. + * + * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. + * + * This method asserts that you asked for \a V to be computed. + */ + const MatrixVType& matrixV() const + { + _check_compute_assertions(); + eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); + return m_matrixV; + } + + /** \returns the vector of singular values. + * + * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the + * returned vector has size \a m. Singular values are always sorted in decreasing order. + */ + const SingularValuesType& singularValues() const + { + _check_compute_assertions(); + return m_singularValues; + } + + /** \returns the number of singular values that are not exactly 0 */ + Index nonzeroSingularValues() const + { + _check_compute_assertions(); + return m_nonzeroSingularValues; + } + + /** \returns the rank of the matrix of which \c *this is the SVD. + * + * \note This method has to determine which singular values should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + using std::abs; + _check_compute_assertions(); + if(m_singularValues.size()==0) return 0; + RealScalar premultiplied_threshold = numext::maxi(m_singularValues.coeff(0) * threshold(), (std::numeric_limits::min)()); + Index i = m_nonzeroSingularValues-1; + while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; + return i+1; + } + + /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), + * which need to determine when singular values are to be considered nonzero. + * This is not used for the SVD decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). + * The default is \c NumTraits::epsilon() + * + * \param threshold The new value to use as the threshold. + * + * A singular value will be considered nonzero if its value is strictly greater than + * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + Derived& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return derived(); + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code svd.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + Derived& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return derived(); + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + // this temporary is needed to workaround a MSVC issue + Index diagSize = (std::max)(1,m_diagSize); + return m_usePrescribedThreshold ? m_prescribedThreshold + : RealScalar(diagSize)*NumTraits::epsilon(); + } + + /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ + inline bool computeU() const { return m_computeFullU || m_computeThinU; } + /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ + inline bool computeV() const { return m_computeFullV || m_computeThinV; } + + inline Index rows() const { return m_rows.value(); } + inline Index cols() const { return m_cols.value(); } + inline Index diagSize() const { return m_diagSize.value(); } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. + * + * \param b the right-hand-side of the equation to solve. + * + * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. + * + * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. + * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful. + */ + EIGEN_DEVICE_FUNC + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "SVD is not initialized."); + return m_info; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + +protected: + + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + + void _check_compute_assertions() const { + eigen_assert(m_isInitialized && "SVD is not initialized."); + } + + template + void _check_solve_assertion(const Rhs& b) const { + EIGEN_ONLY_USED_FOR_DEBUG(b); + _check_compute_assertions(); + eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice)."); + eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b"); + } + + // return true if already allocated + bool allocate(Index rows, Index cols, unsigned int computationOptions); + + MatrixUType m_matrixU; + MatrixVType m_matrixV; + SingularValuesType m_singularValues; + ComputationInfo m_info; + bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; + bool m_computeFullU, m_computeThinU; + bool m_computeFullV, m_computeThinV; + unsigned int m_computationOptions; + Index m_nonzeroSingularValues; + internal::variable_if_dynamic m_rows; + internal::variable_if_dynamic m_cols; + internal::variable_if_dynamic m_diagSize; + RealScalar m_prescribedThreshold; + + /** \brief Default Constructor. + * + * Default constructor of SVDBase + */ + SVDBase() + : m_matrixU(MatrixUType()), + m_matrixV(MatrixVType()), + m_singularValues(SingularValuesType()), + m_info(Success), + m_isInitialized(false), + m_isAllocated(false), + m_usePrescribedThreshold(false), + m_computeFullU(false), + m_computeThinU(false), + m_computeFullV(false), + m_computeThinV(false), + m_computationOptions(0), + m_nonzeroSingularValues(0), + m_rows(RowsAtCompileTime), + m_cols(ColsAtCompileTime), + m_diagSize(DiagSizeAtCompileTime), + m_prescribedThreshold(0) {} +}; + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void SVDBase::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + // A = U S V^* + // So A^{-1} = V S^{-1} U^* + + Matrix tmp; + Index l_rank = rank(); + tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; + tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; + dst = m_matrixV.leftCols(l_rank) * tmp; +} + +template +template +void SVDBase::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + // A = U S V^* + // So A^{-*} = U S^{-1} V^* + // And A^{-T} = U_conj S^{-1} V^T + Matrix tmp; + Index l_rank = rank(); + + tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf() * rhs; + tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; + dst = m_matrixU.template conjugateIf().leftCols(l_rank) * tmp; +} +#endif + +template +bool SVDBase::allocate(Index rows, Index cols, unsigned int computationOptions) { + eigen_assert(rows >= 0 && cols >= 0); + + if (m_isAllocated && + rows == m_rows.value() && + cols == m_cols.value() && + computationOptions == m_computationOptions) + { + return true; + } + + m_rows.setValue(rows); + m_cols.setValue(cols); + m_info = Success; + m_isInitialized = false; + m_isAllocated = true; + m_computationOptions = computationOptions; + m_computeFullU = ShouldComputeFullU || internal::should_svd_compute_full_u(computationOptions); + m_computeThinU = ShouldComputeThinU || internal::should_svd_compute_thin_u(computationOptions); + m_computeFullV = ShouldComputeFullV || internal::should_svd_compute_full_v(computationOptions); + m_computeThinV = ShouldComputeThinV || internal::should_svd_compute_thin_v(computationOptions); + + eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); + eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); + + m_diagSize.setValue(numext::mini(m_rows.value(), m_cols.value())); + m_singularValues.resize(m_diagSize.value()); + if(RowsAtCompileTime==Dynamic) + m_matrixU.resize(m_rows.value(), m_computeFullU ? m_rows.value() : m_computeThinU ? m_diagSize.value() : 0); + if(ColsAtCompileTime==Dynamic) + m_matrixV.resize(m_cols.value(), m_computeFullV ? m_cols.value() : m_computeThinV ? m_diagSize.value() : 0); + + return false; +} + +}// end namespace + +#endif // EIGEN_SVDBASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/UpperBidiagonalization.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/UpperBidiagonalization.h new file mode 100644 index 0000000..b51bee3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SVD/UpperBidiagonalization.h @@ -0,0 +1,426 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Benoit Jacob +// Copyright (C) 2013-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BIDIAGONALIZATION_H +#define EIGEN_BIDIAGONALIZATION_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API. +// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class. + +template class UpperBidiagonalization +{ + public: + + typedef MatrixType_ MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + ColsAtCompileTimeMinusOne = internal::decrement_size::ret + }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef Matrix RowVectorType; + typedef Matrix ColVectorType; + typedef BandMatrix BidiagonalType; + typedef Matrix DiagVectorType; + typedef Matrix SuperDiagVectorType; + typedef HouseholderSequence< + const MatrixType, + const internal::remove_all_t::ConjugateReturnType> + > HouseholderUSequenceType; + typedef HouseholderSequence< + const internal::remove_all_t, + Diagonal, + OnTheRight + > HouseholderVSequenceType; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via Bidiagonalization::compute(const MatrixType&). + */ + UpperBidiagonalization() : m_householder(), m_bidiagonal(0, 0), m_isInitialized(false) {} + + explicit UpperBidiagonalization(const MatrixType& matrix) + : m_householder(matrix.rows(), matrix.cols()), + m_bidiagonal(matrix.cols(), matrix.cols()), + m_isInitialized(false) + { + compute(matrix); + } + + UpperBidiagonalization(Index rows, Index cols) + : m_householder(rows, cols), + m_bidiagonal(cols, cols), + m_isInitialized(false) + {} + + UpperBidiagonalization& compute(const MatrixType& matrix); + UpperBidiagonalization& computeUnblocked(const MatrixType& matrix); + + const MatrixType& householder() const { return m_householder; } + const BidiagonalType& bidiagonal() const { return m_bidiagonal; } + + const HouseholderUSequenceType householderU() const + { + eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); + return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); + } + + const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy + { + eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); + return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) + .setLength(m_householder.cols()-1) + .setShift(1); + } + + protected: + MatrixType m_householder; + BidiagonalType m_bidiagonal; + bool m_isInitialized; +}; + +// Standard upper bidiagonalization without fancy optimizations +// This version should be faster for small matrix size +template +void upperbidiagonalization_inplace_unblocked(MatrixType& mat, + typename MatrixType::RealScalar *diagonal, + typename MatrixType::RealScalar *upper_diagonal, + typename MatrixType::Scalar* tempData = 0) +{ + typedef typename MatrixType::Scalar Scalar; + + Index rows = mat.rows(); + Index cols = mat.cols(); + + typedef Matrix TempType; + TempType tempVector; + if(tempData==0) + { + tempVector.resize(rows); + tempData = tempVector.data(); + } + + for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k) + { + Index remainingRows = rows - k; + Index remainingCols = cols - k - 1; + + // construct left householder transform in-place in A + mat.col(k).tail(remainingRows) + .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]); + // apply householder transform to remaining part of A on the left + mat.bottomRightCorner(remainingRows, remainingCols) + .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData); + + if(k == cols-1) break; + + // construct right householder transform in-place in mat + mat.row(k).tail(remainingCols) + .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]); + // apply householder transform to remaining part of mat on the left + mat.bottomRightCorner(remainingRows-1, remainingCols) + .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).adjoint(), mat.coeff(k,k+1), tempData); + } +} + +/** \internal + * Helper routine for the block reduction to upper bidiagonal form. + * + * Let's partition the matrix A: + * + * | A00 A01 | + * A = | | + * | A10 A11 | + * + * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10] + * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11 + * is updated using matrix-matrix products: + * A22 -= V * Y^T - X * U^T + * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01 + * respectively, and the update matrices X and Y are computed during the reduction. + * + */ +template +void upperbidiagonalization_blocked_helper(MatrixType& A, + typename MatrixType::RealScalar *diagonal, + typename MatrixType::RealScalar *upper_diagonal, + Index bs, + Ref::Flags & RowMajorBit> > X, + Ref::Flags & RowMajorBit> > Y) +{ + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename NumTraits::Literal Literal; + static constexpr int StorageOrder = (traits::Flags & RowMajorBit) ? RowMajor : ColMajor; + typedef InnerStride ColInnerStride; + typedef InnerStride RowInnerStride; + typedef Ref, 0, ColInnerStride> SubColumnType; + typedef Ref, 0, RowInnerStride> SubRowType; + typedef Ref > SubMatType; + + Index brows = A.rows(); + Index bcols = A.cols(); + + Scalar tau_u, tau_u_prev(0), tau_v; + + for(Index k = 0; k < bs; ++k) + { + Index remainingRows = brows - k; + Index remainingCols = bcols - k - 1; + + SubMatType X_k1( X.block(k,0, remainingRows,k) ); + SubMatType V_k1( A.block(k,0, remainingRows,k) ); + + // 1 - update the k-th column of A + SubColumnType v_k = A.col(k).tail(remainingRows); + v_k -= V_k1 * Y.row(k).head(k).adjoint(); + if(k) v_k -= X_k1 * A.col(k).head(k); + + // 2 - construct left Householder transform in-place + v_k.makeHouseholderInPlace(tau_v, diagonal[k]); + + if(k+10) A.coeffRef(k-1,k) = tau_u_prev; + tau_u_prev = tau_u; + } + else + A.coeffRef(k-1,k) = tau_u_prev; + + A.coeffRef(k,k) = tau_v; + } + + if(bsbs && brows>bs) + { + SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) ); + SubMatType A10( A.block(bs,0, brows-bs,bs) ); + SubMatType A01( A.block(0,bs, bs,bcols-bs) ); + Scalar tmp = A01(bs-1,0); + A01(bs-1,0) = Literal(1); + A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint(); + A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01; + A01(bs-1,0) = tmp; + } +} + +/** \internal + * + * Implementation of a block-bidiagonal reduction. + * It is based on the following paper: + * The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form. + * by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995) + * section 3.3 + */ +template +void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal, + Index maxBlockSize=32, + typename MatrixType::Scalar* /*tempData*/ = 0) +{ + typedef typename MatrixType::Scalar Scalar; + typedef Block BlockType; + + Index rows = A.rows(); + Index cols = A.cols(); + Index size = (std::min)(rows, cols); + + // X and Y are work space + static constexpr int StorageOrder = (traits::Flags & RowMajorBit) ? RowMajor : ColMajor; + Matrix X(rows,maxBlockSize); + Matrix Y(cols,maxBlockSize); + Index blockSize = (std::min)(maxBlockSize,size); + + Index k = 0; + for(k = 0; k < size; k += blockSize) + { + Index bs = (std::min)(size-k,blockSize); // actual size of the block + Index brows = rows - k; // rows of the block + Index bcols = cols - k; // columns of the block + + // partition the matrix A: + // + // | A00 A01 A02 | + // | | + // A = | A10 A11 A12 | + // | | + // | A20 A21 A22 | + // + // where A11 is a bs x bs diagonal block, + // and let: + // | A11 A12 | + // B = | | + // | A21 A22 | + + BlockType B = A.block(k,k,brows,bcols); + + // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22. + // Finally, the algorithm continue on the updated A22. + // + // However, if B is too small, or A22 empty, then let's use an unblocked strategy + + auto upper_diagonal = bidiagonal.template diagonal<1>(); + typename MatrixType::RealScalar* upper_diagonal_ptr = upper_diagonal.size() > 0 ? &upper_diagonal.coeffRef(k) : nullptr; + + if(k+bs==cols || bcols<48) // somewhat arbitrary threshold + { + upperbidiagonalization_inplace_unblocked(B, + &(bidiagonal.template diagonal<0>().coeffRef(k)), + upper_diagonal_ptr, + X.data() + ); + break; // We're done + } + else + { + upperbidiagonalization_blocked_helper( B, + &(bidiagonal.template diagonal<0>().coeffRef(k)), + upper_diagonal_ptr, + bs, + X.topLeftCorner(brows,bs), + Y.topLeftCorner(bcols,bs) + ); + } + } +} + +template +UpperBidiagonalization& UpperBidiagonalization::computeUnblocked(const MatrixType_& matrix) +{ + Index rows = matrix.rows(); + Index cols = matrix.cols(); + EIGEN_ONLY_USED_FOR_DEBUG(cols); + + eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); + + m_householder = matrix; + + ColVectorType temp(rows); + + upperbidiagonalization_inplace_unblocked(m_householder, + &(m_bidiagonal.template diagonal<0>().coeffRef(0)), + &(m_bidiagonal.template diagonal<1>().coeffRef(0)), + temp.data()); + + m_isInitialized = true; + return *this; +} + +template +UpperBidiagonalization& UpperBidiagonalization::compute(const MatrixType_& matrix) +{ + Index rows = matrix.rows(); + Index cols = matrix.cols(); + EIGEN_ONLY_USED_FOR_DEBUG(rows); + EIGEN_ONLY_USED_FOR_DEBUG(cols); + + eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); + + m_householder = matrix; + upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal); + + m_isInitialized = true; + return *this; +} + +#if 0 +/** \return the Householder QR decomposition of \c *this. + * + * \sa class Bidiagonalization + */ +template +const UpperBidiagonalization::PlainObject> +MatrixBase::bidiagonalization() const +{ + return UpperBidiagonalization(eval()); +} +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BIDIAGONALIZATION_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/InternalHeaderCheck.h new file mode 100644 index 0000000..f8d8762 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SPARSECHOLESKY_MODULE_H +#error "Please include Eigen/SparseCholesky instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h new file mode 100644 index 0000000..d90ca13 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h @@ -0,0 +1,699 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H +#define EIGEN_SIMPLICIAL_CHOLESKY_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +enum SimplicialCholeskyMode { + SimplicialCholeskyLLT, + SimplicialCholeskyLDLT +}; + +namespace internal { + template + struct simplicial_cholesky_grab_input { + typedef CholMatrixType const * ConstCholMatrixPtr; + static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp) + { + tmp = input; + pmat = &tmp; + } + }; + + template + struct simplicial_cholesky_grab_input { + typedef MatrixType const * ConstMatrixPtr; + static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/) + { + pmat = &input; + } + }; +} // end namespace internal + +/** \ingroup SparseCholesky_Module + * \brief A base class for direct sparse Cholesky factorizations + * + * This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are + * selfadjoint and positive definite. These factorizations allow for solving A.X = B where + * X and B can be either dense or sparse. + * + * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization + * such that the factorized matrix is P A P^-1. + * + * \tparam Derived the type of the derived class, that is the actual factorization type. + * + */ +template +class SimplicialCholeskyBase : public SparseSolverBase +{ + typedef SparseSolverBase Base; + using Base::m_isInitialized; + + public: + typedef typename internal::traits::MatrixType MatrixType; + typedef typename internal::traits::OrderingType OrderingType; + enum { UpLo = internal::traits::UpLo }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix CholMatrixType; + typedef CholMatrixType const * ConstCholMatrixPtr; + typedef Matrix VectorType; + typedef Matrix VectorI; + + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + using Base::derived; + + /** Default constructor */ + SimplicialCholeskyBase() + : m_info(Success), + m_factorizationIsOk(false), + m_analysisIsOk(false), + m_shiftOffset(0), + m_shiftScale(1) + {} + + explicit SimplicialCholeskyBase(const MatrixType& matrix) + : m_info(Success), + m_factorizationIsOk(false), + m_analysisIsOk(false), + m_shiftOffset(0), + m_shiftScale(1) + { + derived().compute(matrix); + } + + ~SimplicialCholeskyBase() + { + } + + Derived& derived() { return *static_cast(this); } + const Derived& derived() const { return *static_cast(this); } + + inline Index cols() const { return m_matrix.cols(); } + inline Index rows() const { return m_matrix.rows(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** \returns the permutation P + * \sa permutationPinv() */ + const PermutationMatrix& permutationP() const + { return m_P; } + + /** \returns the inverse P^-1 of the permutation P + * \sa permutationP() */ + const PermutationMatrix& permutationPinv() const + { return m_Pinv; } + + /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. + * + * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n + * \c d_ii = \a offset + \a scale * \c d_ii + * + * The default is the identity transformation with \a offset=0, and \a scale=1. + * + * \returns a reference to \c *this. + */ + Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) + { + m_shiftOffset = offset; + m_shiftScale = scale; + return derived(); + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal */ + template + void dumpMemory(Stream& s) + { + int total = 0; + s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; + s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; + s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; + s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; + s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; + s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; + s << " TOTAL: " << (total>> 20) << "Mb" << "\n"; + } + + /** \internal */ + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const + { + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + eigen_assert(m_matrix.rows()==b.rows()); + + if(m_info!=Success) + return; + + if(m_P.size()>0) + dest = m_P * b; + else + dest = b; + + if(m_matrix.nonZeros()>0) // otherwise L==I + derived().matrixL().solveInPlace(dest); + + if(m_diag.size()>0) + dest = m_diag.asDiagonal().inverse() * dest; + + if (m_matrix.nonZeros()>0) // otherwise U==I + derived().matrixU().solveInPlace(dest); + + if(m_P.size()>0) + dest = m_Pinv * dest; + } + + template + void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const + { + internal::solve_sparse_through_dense_panels(derived(), b, dest); + } + +#endif // EIGEN_PARSED_BY_DOXYGEN + + protected: + + /** Computes the sparse Cholesky decomposition of \a matrix */ + template + void compute(const MatrixType& matrix) + { + eigen_assert(matrix.rows()==matrix.cols()); + Index size = matrix.cols(); + CholMatrixType tmp(size,size); + ConstCholMatrixPtr pmat; + ordering(matrix, pmat, tmp); + analyzePattern_preordered(*pmat, DoLDLT); + factorize_preordered(*pmat); + } + + template + void factorize(const MatrixType& a) + { + eigen_assert(a.rows()==a.cols()); + Index size = a.cols(); + CholMatrixType tmp(size,size); + ConstCholMatrixPtr pmat; + + if(m_P.size() == 0 && (int(UpLo) & int(Upper)) == Upper) + { + // If there is no ordering, try to directly use the input matrix without any copy + internal::simplicial_cholesky_grab_input::run(a, pmat, tmp); + } + else + { + tmp.template selfadjointView() = a.template selfadjointView().twistedBy(m_P); + pmat = &tmp; + } + + factorize_preordered(*pmat); + } + + template + void factorize_preordered(const CholMatrixType& a); + + void analyzePattern(const MatrixType& a, bool doLDLT) + { + eigen_assert(a.rows()==a.cols()); + Index size = a.cols(); + CholMatrixType tmp(size,size); + ConstCholMatrixPtr pmat; + ordering(a, pmat, tmp); + analyzePattern_preordered(*pmat,doLDLT); + } + void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); + + void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap); + + /** keeps off-diagonal entries; drops diagonal entries */ + struct keep_diag { + inline bool operator() (const Index& row, const Index& col, const Scalar&) const + { + return row!=col; + } + }; + + mutable ComputationInfo m_info; + bool m_factorizationIsOk; + bool m_analysisIsOk; + + CholMatrixType m_matrix; + VectorType m_diag; // the diagonal coefficients (LDLT mode) + VectorI m_parent; // elimination tree + VectorI m_nonZerosPerCol; + PermutationMatrix m_P; // the permutation + PermutationMatrix m_Pinv; // the inverse permutation + + RealScalar m_shiftOffset; + RealScalar m_shiftScale; +}; + +template > class SimplicialLLT; +template > class SimplicialLDLT; +template > class SimplicialCholesky; + +namespace internal { + +template struct traits > +{ + typedef MatrixType_ MatrixType; + typedef Ordering_ OrderingType; + enum { UpLo = UpLo_ }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix CholMatrixType; + typedef TriangularView MatrixL; + typedef TriangularView MatrixU; + static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); } +}; + +template struct traits > +{ + typedef MatrixType_ MatrixType; + typedef Ordering_ OrderingType; + enum { UpLo = UpLo_ }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix CholMatrixType; + typedef TriangularView MatrixL; + typedef TriangularView MatrixU; + static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); } +}; + +template struct traits > +{ + typedef MatrixType_ MatrixType; + typedef Ordering_ OrderingType; + enum { UpLo = UpLo_ }; +}; + +} + +/** \ingroup SparseCholesky_Module + * \class SimplicialLLT + * \brief A direct sparse LLT Cholesky factorizations + * + * This class provides a LL^T Cholesky factorizations of sparse matrices that are + * selfadjoint and positive definite. The factorization allows for solving A.X = B where + * X and B can be either dense or sparse. + * + * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization + * such that the factorized matrix is P A P^-1. + * + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * \tparam Ordering_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> + * + * \implsparsesolverconcept + * + * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering + */ +template + class SimplicialLLT : public SimplicialCholeskyBase > +{ +public: + typedef MatrixType_ MatrixType; + enum { UpLo = UpLo_ }; + typedef SimplicialCholeskyBase Base; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix CholMatrixType; + typedef Matrix VectorType; + typedef internal::traits Traits; + typedef typename Traits::MatrixL MatrixL; + typedef typename Traits::MatrixU MatrixU; +public: + /** Default constructor */ + SimplicialLLT() : Base() {} + /** Constructs and performs the LLT factorization of \a matrix */ + explicit SimplicialLLT(const MatrixType& matrix) + : Base(matrix) {} + + /** \returns an expression of the factor L */ + inline const MatrixL matrixL() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); + return Traits::getL(Base::m_matrix); + } + + /** \returns an expression of the factor U (= L^*) */ + inline const MatrixU matrixU() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); + return Traits::getU(Base::m_matrix); + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + SimplicialLLT& compute(const MatrixType& matrix) + { + Base::template compute(matrix); + return *this; + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& a) + { + Base::analyzePattern(a, false); + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& a) + { + Base::template factorize(a); + } + + /** \returns the determinant of the underlying matrix from the current factorization */ + Scalar determinant() const + { + Scalar detL = Base::m_matrix.diagonal().prod(); + return numext::abs2(detL); + } +}; + +/** \ingroup SparseCholesky_Module + * \class SimplicialLDLT + * \brief A direct sparse LDLT Cholesky factorizations without square root. + * + * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are + * selfadjoint and positive definite. The factorization allows for solving A.X = B where + * X and B can be either dense or sparse. + * + * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization + * such that the factorized matrix is P A P^-1. + * + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * \tparam Ordering_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> + * + * \implsparsesolverconcept + * + * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering + */ +template + class SimplicialLDLT : public SimplicialCholeskyBase > +{ +public: + typedef MatrixType_ MatrixType; + enum { UpLo = UpLo_ }; + typedef SimplicialCholeskyBase Base; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix CholMatrixType; + typedef Matrix VectorType; + typedef internal::traits Traits; + typedef typename Traits::MatrixL MatrixL; + typedef typename Traits::MatrixU MatrixU; +public: + /** Default constructor */ + SimplicialLDLT() : Base() {} + + /** Constructs and performs the LLT factorization of \a matrix */ + explicit SimplicialLDLT(const MatrixType& matrix) + : Base(matrix) {} + + /** \returns a vector expression of the diagonal D */ + inline const VectorType vectorD() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); + return Base::m_diag; + } + /** \returns an expression of the factor L */ + inline const MatrixL matrixL() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); + return Traits::getL(Base::m_matrix); + } + + /** \returns an expression of the factor U (= L^*) */ + inline const MatrixU matrixU() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); + return Traits::getU(Base::m_matrix); + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + SimplicialLDLT& compute(const MatrixType& matrix) + { + Base::template compute(matrix); + return *this; + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& a) + { + Base::analyzePattern(a, true); + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& a) + { + Base::template factorize(a); + } + + /** \returns the determinant of the underlying matrix from the current factorization */ + Scalar determinant() const + { + return Base::m_diag.prod(); + } +}; + +/** \deprecated use SimplicialLDLT or class SimplicialLLT + * \ingroup SparseCholesky_Module + * \class SimplicialCholesky + * + * \sa class SimplicialLDLT, class SimplicialLLT + */ +template + class SimplicialCholesky : public SimplicialCholeskyBase > +{ +public: + typedef MatrixType_ MatrixType; + enum { UpLo = UpLo_ }; + typedef SimplicialCholeskyBase Base; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix CholMatrixType; + typedef Matrix VectorType; + typedef internal::traits Traits; + typedef internal::traits > LDLTTraits; + typedef internal::traits > LLTTraits; + public: + SimplicialCholesky() : Base(), m_LDLT(true) {} + + explicit SimplicialCholesky(const MatrixType& matrix) + : Base(), m_LDLT(true) + { + compute(matrix); + } + + SimplicialCholesky& setMode(SimplicialCholeskyMode mode) + { + switch(mode) + { + case SimplicialCholeskyLLT: + m_LDLT = false; + break; + case SimplicialCholeskyLDLT: + m_LDLT = true; + break; + default: + break; + } + + return *this; + } + + inline const VectorType vectorD() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); + return Base::m_diag; + } + inline const CholMatrixType rawMatrix() const { + eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); + return Base::m_matrix; + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + SimplicialCholesky& compute(const MatrixType& matrix) + { + if(m_LDLT) + Base::template compute(matrix); + else + Base::template compute(matrix); + return *this; + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& a) + { + Base::analyzePattern(a, m_LDLT); + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& a) + { + if(m_LDLT) + Base::template factorize(a); + else + Base::template factorize(a); + } + + /** \internal */ + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const + { + eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + eigen_assert(Base::m_matrix.rows()==b.rows()); + + if(Base::m_info!=Success) + return; + + if(Base::m_P.size()>0) + dest = Base::m_P * b; + else + dest = b; + + if(Base::m_matrix.nonZeros()>0) // otherwise L==I + { + if(m_LDLT) + LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); + else + LLTTraits::getL(Base::m_matrix).solveInPlace(dest); + } + + if(Base::m_diag.size()>0) + dest = Base::m_diag.real().asDiagonal().inverse() * dest; + + if (Base::m_matrix.nonZeros()>0) // otherwise I==I + { + if(m_LDLT) + LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); + else + LLTTraits::getU(Base::m_matrix).solveInPlace(dest); + } + + if(Base::m_P.size()>0) + dest = Base::m_Pinv * dest; + } + + /** \internal */ + template + void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const + { + internal::solve_sparse_through_dense_panels(*this, b, dest); + } + + Scalar determinant() const + { + if(m_LDLT) + { + return Base::m_diag.prod(); + } + else + { + Scalar detL = Diagonal(Base::m_matrix).prod(); + return numext::abs2(detL); + } + } + + protected: + bool m_LDLT; +}; + +template +void SimplicialCholeskyBase::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap) +{ + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + pmat = ≈ + // Note that ordering methods compute the inverse permutation + if(!internal::is_same >::value) + { + { + CholMatrixType C; + C = a.template selfadjointView(); + + OrderingType ordering; + ordering(C,m_Pinv); + } + + if(m_Pinv.size()>0) m_P = m_Pinv.inverse(); + else m_P.resize(0); + + ap.resize(size,size); + ap.template selfadjointView() = a.template selfadjointView().twistedBy(m_P); + } + else + { + m_Pinv.resize(0); + m_P.resize(0); + if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor) + { + // we have to transpose the lower part to to the upper one + ap.resize(size,size); + ap.template selfadjointView() = a.template selfadjointView(); + } + else + internal::simplicial_cholesky_grab_input::run(a, pmat, ap); + } +} + +} // end namespace Eigen + +#endif // EIGEN_SIMPLICIAL_CHOLESKY_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h new file mode 100644 index 0000000..3106c9b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h @@ -0,0 +1,176 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* +NOTE: these functions have been adapted from the LDL library: + +LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. + +The author of LDL, Timothy A. Davis., has executed a license with Google LLC +to permit distribution of this code and derivative works as part of Eigen under +the Mozilla Public License v. 2.0, as stated at the top of this file. + */ + +#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H +#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +void SimplicialCholeskyBase::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) +{ + const StorageIndex size = StorageIndex(ap.rows()); + m_matrix.resize(size, size); + m_parent.resize(size); + m_nonZerosPerCol.resize(size); + + ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0); + + for(StorageIndex k = 0; k < size; ++k) + { + /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ + m_parent[k] = -1; /* parent of k is not yet known */ + tags[k] = k; /* mark node k as visited */ + m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ + for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) + { + StorageIndex i = it.index(); + if(i < k) + { + /* follow path from i to root of etree, stop at flagged node */ + for(; tags[i] != k; i = m_parent[i]) + { + /* find parent of i if not yet determined */ + if (m_parent[i] == -1) + m_parent[i] = k; + m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */ + tags[i] = k; /* mark i as visited */ + } + } + } + } + + /* construct Lp index array from m_nonZerosPerCol column counts */ + StorageIndex* Lp = m_matrix.outerIndexPtr(); + Lp[0] = 0; + for(StorageIndex k = 0; k < size; ++k) + Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); + + m_matrix.resizeNonZeros(Lp[size]); + + m_isInitialized = true; + m_info = Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; +} + + +template +template +void SimplicialCholeskyBase::factorize_preordered(const CholMatrixType& ap) +{ + using std::sqrt; + + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + eigen_assert(ap.rows()==ap.cols()); + eigen_assert(m_parent.size()==ap.rows()); + eigen_assert(m_nonZerosPerCol.size()==ap.rows()); + + const StorageIndex size = StorageIndex(ap.rows()); + const StorageIndex* Lp = m_matrix.outerIndexPtr(); + StorageIndex* Li = m_matrix.innerIndexPtr(); + Scalar* Lx = m_matrix.valuePtr(); + + ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); + ei_declare_aligned_stack_constructed_variable(StorageIndex, pattern, size, 0); + ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0); + + bool ok = true; + m_diag.resize(DoLDLT ? size : 0); + + for(StorageIndex k = 0; k < size; ++k) + { + // compute nonzero pattern of kth row of L, in topological order + y[k] = Scalar(0); // Y(0:k) is now all zero + StorageIndex top = size; // stack for pattern is empty + tags[k] = k; // mark node k as visited + m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L + for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) + { + StorageIndex i = it.index(); + if(i <= k) + { + y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */ + Index len; + for(len = 0; tags[i] != k; i = m_parent[i]) + { + pattern[len++] = i; /* L(k,i) is nonzero */ + tags[i] = k; /* mark i as visited */ + } + while(len > 0) + pattern[--top] = pattern[--len]; + } + } + + /* compute numerical values kth row of L (a sparse triangular solve) */ + + RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k) + y[k] = Scalar(0); + for(; top < size; ++top) + { + Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */ + Scalar yi = y[i]; /* get and clear Y(i) */ + y[i] = Scalar(0); + + /* the nonzero entry L(k,i) */ + Scalar l_ki; + if(DoLDLT) + l_ki = yi / numext::real(m_diag[i]); + else + yi = l_ki = yi / Lx[Lp[i]]; + + Index p2 = Lp[i] + m_nonZerosPerCol[i]; + Index p; + for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) + y[Li[p]] -= numext::conj(Lx[p]) * yi; + d -= numext::real(l_ki * numext::conj(yi)); + Li[p] = k; /* store L(k,i) in column form of L */ + Lx[p] = l_ki; + ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */ + } + if(DoLDLT) + { + m_diag[k] = d; + if(d == RealScalar(0)) + { + ok = false; /* failure, D(k,k) is zero */ + break; + } + } + else + { + Index p = Lp[k] + m_nonZerosPerCol[k]++; + Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */ + if(d <= RealScalar(0)) { + ok = false; /* failure, matrix is not positive definite */ + break; + } + Lx[p] = sqrt(d) ; + } + } + + m_info = ok ? Success : NumericalIssue; + m_factorizationIsOk = true; +} + +} // end namespace Eigen + +#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/AmbiVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/AmbiVector.h new file mode 100644 index 0000000..594e91d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/AmbiVector.h @@ -0,0 +1,380 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_AMBIVECTOR_H +#define EIGEN_AMBIVECTOR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal + * Hybrid sparse/dense vector class designed for intensive read-write operations. + * + * See BasicSparseLLT and SparseProduct for usage examples. + */ +template +class AmbiVector +{ + public: + typedef Scalar_ Scalar; + typedef StorageIndex_ StorageIndex; + typedef typename NumTraits::Real RealScalar; + + explicit AmbiVector(Index size) + : m_buffer(0), m_zero(0), m_size(0), m_end(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1) + { + resize(size); + } + + void init(double estimatedDensity); + void init(int mode); + + Index nonZeros() const; + + /** Specifies a sub-vector to work on */ + void setBounds(Index start, Index end) { m_start = convert_index(start); m_end = convert_index(end); } + + void setZero(); + + void restart(); + Scalar& coeffRef(Index i); + Scalar& coeff(Index i); + + class Iterator; + + ~AmbiVector() { delete[] m_buffer; } + + void resize(Index size) + { + if (m_allocatedSize < size) + reallocate(size); + m_size = convert_index(size); + } + + StorageIndex size() const { return m_size; } + + protected: + StorageIndex convert_index(Index idx) + { + return internal::convert_index(idx); + } + + void reallocate(Index size) + { + // if the size of the matrix is not too large, let's allocate a bit more than needed such + // that we can handle dense vector even in sparse mode. + delete[] m_buffer; + if (size<1000) + { + Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar); + m_allocatedElements = convert_index((allocSize*sizeof(Scalar))/sizeof(ListEl)); + m_buffer = new Scalar[allocSize]; + } + else + { + m_allocatedElements = convert_index((size*sizeof(Scalar))/sizeof(ListEl)); + m_buffer = new Scalar[size]; + } + m_size = convert_index(size); + m_start = 0; + m_end = m_size; + } + + void reallocateSparse() + { + Index copyElements = m_allocatedElements; + m_allocatedElements = (std::min)(StorageIndex(m_allocatedElements*1.5),m_size); + Index allocSize = m_allocatedElements * sizeof(ListEl); + allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar); + Scalar* newBuffer = new Scalar[allocSize]; + std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl)); + delete[] m_buffer; + m_buffer = newBuffer; + } + + protected: + // element type of the linked list + struct ListEl + { + StorageIndex next; + StorageIndex index; + Scalar value; + }; + + // used to store data in both mode + Scalar* m_buffer; + Scalar m_zero; + StorageIndex m_size; + StorageIndex m_start; + StorageIndex m_end; + StorageIndex m_allocatedSize; + StorageIndex m_allocatedElements; + StorageIndex m_mode; + + // linked list mode + StorageIndex m_llStart; + StorageIndex m_llCurrent; + StorageIndex m_llSize; +}; + +/** \returns the number of non zeros in the current sub vector */ +template +Index AmbiVector::nonZeros() const +{ + if (m_mode==IsSparse) + return m_llSize; + else + return m_end - m_start; +} + +template +void AmbiVector::init(double estimatedDensity) +{ + if (estimatedDensity>0.1) + init(IsDense); + else + init(IsSparse); +} + +template +void AmbiVector::init(int mode) +{ + m_mode = mode; + // This is only necessary in sparse mode, but we set these unconditionally to avoid some maybe-uninitialized warnings + // if (m_mode==IsSparse) + { + m_llSize = 0; + m_llStart = -1; + } +} + +/** Must be called whenever we might perform a write access + * with an index smaller than the previous one. + * + * Don't worry, this function is extremely cheap. + */ +template +void AmbiVector::restart() +{ + m_llCurrent = m_llStart; +} + +/** Set all coefficients of current subvector to zero */ +template +void AmbiVector::setZero() +{ + if (m_mode==IsDense) + { + for (Index i=m_start; i +Scalar_& AmbiVector::coeffRef(Index i) +{ + if (m_mode==IsDense) + return m_buffer[i]; + else + { + ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_buffer); + // TODO factorize the following code to reduce code generation + eigen_assert(m_mode==IsSparse); + if (m_llSize==0) + { + // this is the first element + m_llStart = 0; + m_llCurrent = 0; + ++m_llSize; + llElements[0].value = Scalar(0); + llElements[0].index = convert_index(i); + llElements[0].next = -1; + return llElements[0].value; + } + else if (i=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index"); + while (nextel >= 0 && llElements[nextel].index<=i) + { + m_llCurrent = nextel; + nextel = llElements[nextel].next; + } + + if (llElements[m_llCurrent].index==i) + { + // the coefficient already exists and we found it ! + return llElements[m_llCurrent].value; + } + else + { + if (m_llSize>=m_allocatedElements) + { + reallocateSparse(); + llElements = reinterpret_cast(m_buffer); + } + eigen_internal_assert(m_llSize +Scalar_& AmbiVector::coeff(Index i) +{ + if (m_mode==IsDense) + return m_buffer[i]; + else + { + ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_buffer); + eigen_assert(m_mode==IsSparse); + if ((m_llSize==0) || (i= 0 && llElements[elid].index +class AmbiVector::Iterator +{ + public: + typedef Scalar_ Scalar; + typedef typename NumTraits::Real RealScalar; + + /** Default constructor + * \param vec the vector on which we iterate + * \param epsilon the minimal value used to prune zero coefficients. + * In practice, all coefficients having a magnitude smaller than \a epsilon + * are skipped. + */ + explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0) + : m_vector(vec) + { + using std::abs; + m_epsilon = epsilon; + m_isDense = m_vector.m_mode==IsDense; + if (m_isDense) + { + m_currentEl = 0; // this is to avoid a compilation warning + m_cachedValue = 0; // this is to avoid a compilation warning + m_cachedIndex = m_vector.m_start-1; + ++(*this); + } + else + { + ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_vector.m_buffer); + m_currentEl = m_vector.m_llStart; + while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon) + m_currentEl = llElements[m_currentEl].next; + if (m_currentEl<0) + { + m_cachedValue = 0; // this is to avoid a compilation warning + m_cachedIndex = -1; + } + else + { + m_cachedIndex = llElements[m_currentEl].index; + m_cachedValue = llElements[m_currentEl].value; + } + } + } + + StorageIndex index() const { return m_cachedIndex; } + Scalar value() const { return m_cachedValue; } + + operator bool() const { return m_cachedIndex>=0; } + + Iterator& operator++() + { + using std::abs; + if (m_isDense) + { + do { + ++m_cachedIndex; + } while (m_cachedIndex(m_vector.m_buffer); + do { + m_currentEl = llElements[m_currentEl].next; + } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon); + if (m_currentEl<0) + { + m_cachedIndex = -1; + } + else + { + m_cachedIndex = llElements[m_currentEl].index; + m_cachedValue = llElements[m_currentEl].value; + } + } + return *this; + } + + protected: + const AmbiVector& m_vector; // the target vector + StorageIndex m_currentEl; // the current element in sparse/linked-list mode + RealScalar m_epsilon; // epsilon used to prune zero coefficients + StorageIndex m_cachedIndex; // current coordinate + Scalar m_cachedValue; // current value + bool m_isDense; // mode of the vector +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_AMBIVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/CompressedStorage.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/CompressedStorage.h new file mode 100644 index 0000000..6b0fb4b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/CompressedStorage.h @@ -0,0 +1,225 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPRESSED_STORAGE_H +#define EIGEN_COMPRESSED_STORAGE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \internal + * Stores a sparse set of values as a list of values and a list of indices. + * + */ +template +class CompressedStorage +{ + public: + + typedef Scalar_ Scalar; + typedef StorageIndex_ StorageIndex; + + protected: + + typedef typename NumTraits::Real RealScalar; + + public: + + CompressedStorage() + : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) + {} + + explicit CompressedStorage(Index size) + : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) + { + resize(size); + } + + CompressedStorage(const CompressedStorage& other) + : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) + { + *this = other; + } + + CompressedStorage& operator=(const CompressedStorage& other) + { + resize(other.size()); + if(other.size()>0) + { + internal::smart_copy(other.m_values, other.m_values + m_size, m_values); + internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices); + } + return *this; + } + + void swap(CompressedStorage& other) + { + std::swap(m_values, other.m_values); + std::swap(m_indices, other.m_indices); + std::swap(m_size, other.m_size); + std::swap(m_allocatedSize, other.m_allocatedSize); + } + + ~CompressedStorage() + { + conditional_aligned_delete_auto(m_values, m_allocatedSize); + conditional_aligned_delete_auto(m_indices, m_allocatedSize); + } + + void reserve(Index size) + { + Index newAllocatedSize = m_size + size; + if (newAllocatedSize > m_allocatedSize) + reallocate(newAllocatedSize); + } + + void squeeze() + { + if (m_allocatedSize>m_size) + reallocate(m_size); + } + + void resize(Index size, double reserveSizeFactor = 0) + { + if (m_allocatedSize)(NumTraits::highest(), size + Index(reserveSizeFactor*double(size))); + if(realloc_size(i); + } + + inline Index size() const { return m_size; } + inline Index allocatedSize() const { return m_allocatedSize; } + inline void clear() { m_size = 0; } + + const Scalar* valuePtr() const { return m_values; } + Scalar* valuePtr() { return m_values; } + const StorageIndex* indexPtr() const { return m_indices; } + StorageIndex* indexPtr() { return m_indices; } + + inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; } + inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; } + + inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; } + inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; } + + /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ + inline Index searchLowerIndex(Index key) const + { + return searchLowerIndex(0, m_size, key); + } + + /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ + inline Index searchLowerIndex(Index start, Index end, Index key) const + { + return static_cast(std::distance(m_indices, std::lower_bound(m_indices + start, m_indices + end, key))); + } + + /** \returns the stored value at index \a key + * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ + inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const + { + if (m_size==0) + return defaultValue; + else if (key==m_indices[m_size-1]) + return m_values[m_size-1]; + // ^^ optimization: let's first check if it is the last coefficient + // (very common in high level algorithms) + const Index id = searchLowerIndex(0,m_size-1,key); + return ((id=end) + return defaultValue; + else if (end>start && key==m_indices[end-1]) + return m_values[end-1]; + // ^^ optimization: let's first check if it is the last coefficient + // (very common in high level algorithms) + const Index id = searchLowerIndex(start,end-1,key); + return ((id=m_size || m_indices[id]!=key) + { + if (m_allocatedSize(m_values, newAllocatedSize, m_allocatedSize); + m_indices = + conditional_aligned_realloc_new_auto(m_indices, newAllocatedSize, m_allocatedSize); + m_allocatedSize = newAllocatedSize; + } + if(m_size>id) + { + internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1); + internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1); + } + m_size++; + m_indices[id] = internal::convert_index(key); + m_values[id] = defaultValue; + } + return m_values[id]; + } + + inline void moveChunk(Index from, Index to, Index chunkSize) + { + eigen_internal_assert(chunkSize >= 0 && to+chunkSize <= m_size); + internal::smart_memmove(m_values + from, m_values + from + chunkSize, m_values + to); + internal::smart_memmove(m_indices + from, m_indices + from + chunkSize, m_indices + to); + } + + protected: + + inline void reallocate(Index size) + { + #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN + EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN + #endif + eigen_internal_assert(size!=m_allocatedSize); + m_values = conditional_aligned_realloc_new_auto(m_values, size, m_allocatedSize); + m_indices = conditional_aligned_realloc_new_auto(m_indices, size, m_allocatedSize); + m_allocatedSize = size; + } + + protected: + Scalar* m_values; + StorageIndex* m_indices; + Index m_size; + Index m_allocatedSize; + +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPRESSED_STORAGE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h new file mode 100644 index 0000000..f852493 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h @@ -0,0 +1,359 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H +#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false) +{ + typedef typename remove_all_t::Scalar LhsScalar; + typedef typename remove_all_t::Scalar RhsScalar; + typedef typename remove_all_t::Scalar ResScalar; + + // make sure to call innerSize/outerSize since we fake the storage order. + Index rows = lhs.innerSize(); + Index cols = rhs.outerSize(); + eigen_assert(lhs.outerSize() == rhs.innerSize()); + + ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0); + ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0); + ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0); + + std::memset(mask,0,sizeof(bool)*rows); + + evaluator lhsEval(lhs); + evaluator rhsEval(rhs); + + // estimate the number of non zero entries + // given a rhs column containing Y non zeros, we assume that the respective Y columns + // of the lhs differs in average of one non zeros, thus the number of non zeros for + // the product of a rhs column with the lhs is X+Y where X is the average number of non zero + // per column of the lhs. + // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) + Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); + + res.setZero(); + res.reserve(Index(estimated_nnz_prod)); + // we compute each column of the result, one after the other + for (Index j=0; j::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) + { + RhsScalar y = rhsIt.value(); + Index k = rhsIt.index(); + for (typename evaluator::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt) + { + Index i = lhsIt.index(); + LhsScalar x = lhsIt.value(); + if(!mask[i]) + { + mask[i] = true; + values[i] = x * y; + indices[nnz] = i; + ++nnz; + } + else + values[i] += x * y; + } + } + if(!sortedInsertion) + { + // unordered insertion + for(Index k=0; k use a quick sort + // otherwise => loop through the entire vector + // In order to avoid to perform an expensive log2 when the + // result is clearly very sparse we use a linear bound up to 200. + if((nnz<200 && nnz1) std::sort(indices,indices+nnz); + for(Index k=0; k +using WithStorageOrder = SparseMatrix; + +template::Flags&RowMajorBit) ? RowMajor : ColMajor, + int RhsStorageOrder = (traits::Flags&RowMajorBit) ? RowMajor : ColMajor, + int ResStorageOrder = (traits::Flags&RowMajorBit) ? RowMajor : ColMajor> +struct conservative_sparse_sparse_product_selector; + +template +struct conservative_sparse_sparse_product_selector +{ + typedef remove_all_t LhsCleaned; + typedef typename LhsCleaned::Scalar Scalar; + + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using RowMajorMatrix = WithStorageOrder; + using ColMajorMatrixAux = WithStorageOrder; + + // If the result is tall and thin (in the extreme case a column vector) + // then it is faster to sort the coefficients inplace instead of transposing twice. + // FIXME, the following heuristic is probably not very good. + if(lhs.rows()>rhs.cols()) + { + using ColMajorMatrix = typename sparse_eval::type; + ColMajorMatrix resCol(lhs.rows(),rhs.cols()); + // perform sorted insertion + internal::conservative_sparse_sparse_product_impl(lhs, rhs, resCol, true); + res = resCol.markAsRValue(); + } + else + { + ColMajorMatrixAux resCol(lhs.rows(),rhs.cols()); + // resort to transpose to sort the entries + internal::conservative_sparse_sparse_product_impl(lhs, rhs, resCol, false); + RowMajorMatrix resRow(resCol); + res = resRow.markAsRValue(); + } + } +}; + +template +struct conservative_sparse_sparse_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using RowMajorRhs = WithStorageOrder; + using RowMajorRes = WithStorageOrder; + RowMajorRhs rhsRow = rhs; + RowMajorRes resRow(lhs.rows(), rhs.cols()); + internal::conservative_sparse_sparse_product_impl(rhsRow, lhs, resRow); + res = resRow; + } +}; + +template +struct conservative_sparse_sparse_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using RowMajorLhs = WithStorageOrder; + using RowMajorRes = WithStorageOrder; + RowMajorLhs lhsRow = lhs; + RowMajorRes resRow(lhs.rows(), rhs.cols()); + internal::conservative_sparse_sparse_product_impl(rhs, lhsRow, resRow); + res = resRow; + } +}; + +template +struct conservative_sparse_sparse_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using RowMajorRes = WithStorageOrder; + RowMajorRes resRow(lhs.rows(), rhs.cols()); + internal::conservative_sparse_sparse_product_impl(rhs, lhs, resRow); + res = resRow; + } +}; + + +template +struct conservative_sparse_sparse_product_selector +{ + typedef typename traits>::Scalar Scalar; + + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using ColMajorRes = WithStorageOrder; + ColMajorRes resCol(lhs.rows(), rhs.cols()); + internal::conservative_sparse_sparse_product_impl(lhs, rhs, resCol); + res = resCol; + } +}; + +template +struct conservative_sparse_sparse_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using ColMajorLhs = WithStorageOrder; + using ColMajorRes = WithStorageOrder; + ColMajorLhs lhsCol = lhs; + ColMajorRes resCol(lhs.rows(), rhs.cols()); + internal::conservative_sparse_sparse_product_impl(lhsCol, rhs, resCol); + res = resCol; + } +}; + +template +struct conservative_sparse_sparse_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using ColMajorRhs = WithStorageOrder; + using ColMajorRes = WithStorageOrder; + ColMajorRhs rhsCol = rhs; + ColMajorRes resCol(lhs.rows(), rhs.cols()); + internal::conservative_sparse_sparse_product_impl(lhs, rhsCol, resCol); + res = resCol; + } +}; + +template +struct conservative_sparse_sparse_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using ColMajorRes = WithStorageOrder; + using RowMajorRes = WithStorageOrder; + RowMajorRes resRow(lhs.rows(),rhs.cols()); + internal::conservative_sparse_sparse_product_impl(rhs, lhs, resRow); + // sort the non zeros: + ColMajorRes resCol(resRow); + res = resCol; + } +}; + +} // end namespace internal + + +namespace internal { + +template +static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res) +{ + typedef typename remove_all_t::Scalar LhsScalar; + typedef typename remove_all_t::Scalar RhsScalar; + Index cols = rhs.outerSize(); + eigen_assert(lhs.outerSize() == rhs.innerSize()); + + evaluator lhsEval(lhs); + evaluator rhsEval(rhs); + + for (Index j=0; j::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) + { + RhsScalar y = rhsIt.value(); + Index k = rhsIt.index(); + for (typename evaluator::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt) + { + Index i = lhsIt.index(); + LhsScalar x = lhsIt.value(); + res.coeffRef(i,j) += x * y; + } + } + } +} + + +} // end namespace internal + +namespace internal { + +template::Flags&RowMajorBit) ? RowMajor : ColMajor, + int RhsStorageOrder = (traits::Flags&RowMajorBit) ? RowMajor : ColMajor> +struct sparse_sparse_to_dense_product_selector; + +template +struct sparse_sparse_to_dense_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + internal::sparse_sparse_to_dense_product_impl(lhs, rhs, res); + } +}; + +template +struct sparse_sparse_to_dense_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using ColMajorLhs = WithStorageOrder; + ColMajorLhs lhsCol(lhs); + internal::sparse_sparse_to_dense_product_impl(lhsCol, rhs, res); + } +}; + +template +struct sparse_sparse_to_dense_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + using ColMajorRhs = WithStorageOrder; + ColMajorRhs rhsCol(rhs); + internal::sparse_sparse_to_dense_product_impl(lhs, rhsCol, res); + } +}; + +template +struct sparse_sparse_to_dense_product_selector +{ + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) + { + Transpose trRes(res); + internal::sparse_sparse_to_dense_product_impl >(rhs, lhs, trRes); + } +}; + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/InternalHeaderCheck.h new file mode 100644 index 0000000..9de5936 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SPARSECORE_MODULE_H +#error "Please include Eigen/SparseCore instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseAssign.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseAssign.h new file mode 100644 index 0000000..f8ab457 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseAssign.h @@ -0,0 +1,278 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEASSIGN_H +#define EIGEN_SPARSEASSIGN_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +template +Derived& SparseMatrixBase::operator=(const EigenBase &other) +{ + internal::call_assignment_no_alias(derived(), other.derived()); + return derived(); +} + +template +template +Derived& SparseMatrixBase::operator=(const ReturnByValue& other) +{ + // TODO use the evaluator mechanism + other.evalTo(derived()); + return derived(); +} + +template +template +inline Derived& SparseMatrixBase::operator=(const SparseMatrixBase& other) +{ + // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine + internal::Assignment > + ::run(derived(), other.derived(), internal::assign_op()); + return derived(); +} + +template +inline Derived& SparseMatrixBase::operator=(const Derived& other) +{ + internal::call_assignment_no_alias(derived(), other.derived()); + return derived(); +} + +namespace internal { + +template<> +struct storage_kind_to_evaluator_kind { + typedef IteratorBased Kind; +}; + +template<> +struct storage_kind_to_shape { + typedef SparseShape Shape; +}; + +struct Sparse2Sparse {}; +struct Sparse2Dense {}; + +template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; +template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; +template<> struct AssignmentKind { typedef Sparse2Dense Kind; }; +template<> struct AssignmentKind { typedef Sparse2Dense Kind; }; + + +template +void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) +{ + typedef typename DstXprType::Scalar Scalar; + typedef internal::evaluator DstEvaluatorType; + typedef internal::evaluator SrcEvaluatorType; + + SrcEvaluatorType srcEvaluator(src); + + constexpr bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); + const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); + + Index reserveSize = 0; + for (Index j = 0; j < outerEvaluationSize; ++j) + for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) + reserveSize++; + + if ((!transpose) && src.isRValue()) + { + // eval without temporary + dst.resize(src.rows(), src.cols()); + dst.setZero(); + dst.reserve(reserveSize); + for (Index j=0; j::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || + (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && + "the transpose operation is supposed to be handled in SparseMatrix::operator="); + + enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; + + + DstXprType temp(src.rows(), src.cols()); + + temp.reserve(reserveSize); + for (Index j=0; j +struct Assignment +{ + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + assign_sparse_to_sparse(dst.derived(), src.derived()); + } +}; + +// Generic Sparse to Dense assignment +template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> +struct Assignment +{ + static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + if(internal::is_same >::value) + dst.setZero(); + + internal::evaluator srcEval(src); + resize_if_allowed(dst, src, func); + internal::evaluator dstEval(dst); + + const Index outerEvaluationSize = (internal::evaluator::Flags&RowMajorBit) ? src.rows() : src.cols(); + for (Index j=0; j::InnerIterator i(srcEval,j); i; ++i) + func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); + } +}; + +// Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense +template +struct assignment_from_dense_op_sparse +{ + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) + { + #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN + EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN + #endif + + call_assignment_no_alias(dst, src.lhs(), Func1()); + call_assignment_no_alias(dst, src.rhs(), Func2()); + } + + // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse; + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + std::enable_if_t::Shape,DenseShape>::value> + run(DstXprType &dst, const CwiseBinaryOp, const Lhs, const Rhs> &src, + const internal::assign_op& /*func*/) + { + #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN + EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN + #endif + + // Apply the dense matrix first, then the sparse one. + call_assignment_no_alias(dst, src.rhs(), Func1()); + call_assignment_no_alias(dst, src.lhs(), Func2()); + } + + // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse; + template + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + std::enable_if_t::Shape,DenseShape>::value> + run(DstXprType &dst, const CwiseBinaryOp, const Lhs, const Rhs> &src, + const internal::assign_op& /*func*/) + { + #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN + EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN + #endif + + // Apply the dense matrix first, then the sparse one. + call_assignment_no_alias(dst, -src.rhs(), Func1()); + call_assignment_no_alias(dst, src.lhs(), add_assign_op()); + } +}; + +#define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \ + template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \ + struct Assignment, const Lhs, const Rhs>, internal::ASSIGN_OP, \ + Sparse2Dense, \ + std::enable_if_t< internal::is_same::Shape,DenseShape>::value \ + || internal::is_same::Shape,DenseShape>::value>> \ + : assignment_from_dense_op_sparse, internal::ASSIGN_OP2 > \ + {} + +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op); + +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op); +EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op); + + +// Specialization for "dst = dec.solve(rhs)" +// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error +template +struct Assignment, internal::assign_op, Sparse2Sparse> +{ + typedef Solve SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + src.dec()._solve_impl(src.rhs(), dst); + } +}; + +struct Diagonal2Sparse {}; + +template<> struct AssignmentKind { typedef Diagonal2Sparse Kind; }; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + typedef typename DstXprType::StorageIndex StorageIndex; + typedef typename DstXprType::Scalar Scalar; + + template + static void run(SparseMatrix &dst, const SrcXprType &src, const AssignFunc &func) + { dst.assignDiagonal(src.diagonal(), func); } + + template + static void run(SparseMatrixBase &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { dst.derived().diagonal() = src.diagonal(); } + + template + static void run(SparseMatrixBase &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) + { dst.derived().diagonal() += src.diagonal(); } + + template + static void run(SparseMatrixBase &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) + { dst.derived().diagonal() -= src.diagonal(); } +}; +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSEASSIGN_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseBlock.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseBlock.h new file mode 100644 index 0000000..b3fc859 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseBlock.h @@ -0,0 +1,568 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_BLOCK_H +#define EIGEN_SPARSE_BLOCK_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// Subset of columns or rows +template +class BlockImpl + : public SparseMatrixBase > +{ + typedef internal::remove_all_t MatrixTypeNested_; + typedef Block BlockType; +public: + enum { IsRowMajor = internal::traits::IsRowMajor }; +protected: + enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; + typedef SparseMatrixBase Base; + using Base::convert_index; +public: + EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) + + inline BlockImpl(XprType& xpr, Index i) + : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) + {} + + inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) + {} + + EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } + EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } + + Index nonZeros() const + { + typedef internal::evaluator EvaluatorType; + EvaluatorType matEval(m_matrix); + Index nnz = 0; + Index end = m_outerStart + m_outerSize.value(); + for(Index j=m_outerStart; j::non_const_type m_matrix; + Index m_outerStart; + const internal::variable_if_dynamic m_outerSize; + + protected: + // Disable assignment with clear error message. + // Note that simply removing operator= yields compilation errors with ICC+MSVC + template + BlockImpl& operator=(const T&) + { + EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY); + return *this; + } +}; + + +/*************************************************************************** +* specialization for SparseMatrix +***************************************************************************/ + +namespace internal { + +template +class sparse_matrix_block_impl + : public SparseCompressedBase > +{ + typedef internal::remove_all_t MatrixTypeNested_; + typedef Block BlockType; + typedef SparseCompressedBase > Base; + using Base::convert_index; +public: + enum { IsRowMajor = internal::traits::IsRowMajor }; + EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) +protected: + typedef typename Base::IndexVector IndexVector; + enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; +public: + + inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i) + : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) + {} + + inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) + {} + + template + inline BlockType& operator=(const SparseMatrixBase& other) + { + typedef internal::remove_all_t NestedMatrixType_; + NestedMatrixType_& matrix = m_matrix; + // This assignment is slow if this vector set is not empty + // and/or it is not at the end of the nonzeros of the underlying matrix. + + // 1 - eval to a temporary to avoid transposition and/or aliasing issues + Ref > tmp(other.derived()); + eigen_internal_assert(tmp.outerSize()==m_outerSize.value()); + + // 2 - let's check whether there is enough allocated memory + Index nnz = tmp.nonZeros(); + Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block + Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block + Index block_size = end - start; // available room in the current block + Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end; + + Index free_size = m_matrix.isCompressed() + ? Index(matrix.data().allocatedSize()) + block_size + : block_size; + + Index tmp_start = tmp.outerIndexPtr()[0]; + + bool update_trailing_pointers = false; + if(nnz>free_size) + { + // realloc manually to reduce copies + typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz); + + internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr()); + internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr()); + + internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start); + internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start); + + internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz); + internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz); + + newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz); + + matrix.data().swap(newdata); + + update_trailing_pointers = true; + } + else + { + if(m_matrix.isCompressed() && nnz!=block_size) + { + // no need to realloc, simply copy the tail at its respective position and insert tmp + matrix.data().resize(start + nnz + tail_size); + + internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz); + internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz); + + update_trailing_pointers = true; + } + + internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start); + internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start); + } + + // update outer index pointers and innerNonZeros + if(IsVectorAtCompileTime) + { + if(!m_matrix.isCompressed()) + matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz); + matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start); + } + else + { + StorageIndex p = StorageIndex(start); + for(Index k=0; k(tmp.innerVector(k).nonZeros()); + if(!m_matrix.isCompressed()) + matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k; + matrix.outerIndexPtr()[m_outerStart+k] = p; + p += nnz_k; + } + } + + if(update_trailing_pointers) + { + StorageIndex offset = internal::convert_index(nnz - block_size); + for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k) + { + matrix.outerIndexPtr()[k] += offset; + } + } + + return derived(); + } + + inline BlockType& operator=(const BlockType& other) + { + return operator=(other); + } + + inline const Scalar* valuePtr() const + { return m_matrix.valuePtr(); } + inline Scalar* valuePtr() + { return m_matrix.valuePtr(); } + + inline const StorageIndex* innerIndexPtr() const + { return m_matrix.innerIndexPtr(); } + inline StorageIndex* innerIndexPtr() + { return m_matrix.innerIndexPtr(); } + + inline const StorageIndex* outerIndexPtr() const + { return m_matrix.outerIndexPtr() + m_outerStart; } + inline StorageIndex* outerIndexPtr() + { return m_matrix.outerIndexPtr() + m_outerStart; } + + inline const StorageIndex* innerNonZeroPtr() const + { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); } + inline StorageIndex* innerNonZeroPtr() + { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); } + + bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; } + + inline Scalar& coeffRef(Index row, Index col) + { + return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart)); + } + + inline const Scalar coeff(Index row, Index col) const + { + return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart)); + } + + inline const Scalar coeff(Index index) const + { + return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart); + } + + const Scalar& lastCoeff() const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl); + eigen_assert(Base::nonZeros()>0); + if(m_matrix.isCompressed()) + return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1]; + else + return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1]; + } + + EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } + EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } + + inline const SparseMatrixType& nestedExpression() const { return m_matrix; } + inline SparseMatrixType& nestedExpression() { return m_matrix; } + Index startRow() const { return IsRowMajor ? m_outerStart : 0; } + Index startCol() const { return IsRowMajor ? 0 : m_outerStart; } + Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } + Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } + + protected: + + typename internal::ref_selector::non_const_type m_matrix; + Index m_outerStart; + const internal::variable_if_dynamic m_outerSize; + +}; + +} // namespace internal + +template +class BlockImpl,BlockRows,BlockCols,true,Sparse> + : public internal::sparse_matrix_block_impl,BlockRows,BlockCols> +{ +public: + typedef StorageIndex_ StorageIndex; + typedef SparseMatrix SparseMatrixType; + typedef internal::sparse_matrix_block_impl Base; + inline BlockImpl(SparseMatrixType& xpr, Index i) + : Base(xpr, i) + {} + + inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : Base(xpr, startRow, startCol, blockRows, blockCols) + {} + + using Base::operator=; +}; + +template +class BlockImpl,BlockRows,BlockCols,true,Sparse> + : public internal::sparse_matrix_block_impl,BlockRows,BlockCols> +{ +public: + typedef StorageIndex_ StorageIndex; + typedef const SparseMatrix SparseMatrixType; + typedef internal::sparse_matrix_block_impl Base; + inline BlockImpl(SparseMatrixType& xpr, Index i) + : Base(xpr, i) + {} + + inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : Base(xpr, startRow, startCol, blockRows, blockCols) + {} + + using Base::operator=; +private: + template BlockImpl(const SparseMatrixBase& xpr, Index i); + template BlockImpl(const SparseMatrixBase& xpr); +}; + +//---------- + +/** Generic implementation of sparse Block expression. + * Real-only. + */ +template +class BlockImpl + : public SparseMatrixBase >, internal::no_assignment_operator +{ + typedef Block BlockType; + typedef SparseMatrixBase Base; + using Base::convert_index; +public: + enum { IsRowMajor = internal::traits::IsRowMajor }; + EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) + + typedef internal::remove_all_t MatrixTypeNested_; + + /** Column or Row constructor + */ + inline BlockImpl(XprType& xpr, Index i) + : m_matrix(xpr), + m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0), + m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0), + m_blockRows(BlockRows==1 ? 1 : xpr.rows()), + m_blockCols(BlockCols==1 ? 1 : xpr.cols()) + {} + + /** Dynamic-size constructor + */ + inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) + : m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols)) + {} + + inline Index rows() const { return m_blockRows.value(); } + inline Index cols() const { return m_blockCols.value(); } + + inline Scalar& coeffRef(Index row, Index col) + { + return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value()); + } + + inline const Scalar coeff(Index row, Index col) const + { + return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value()); + } + + inline Scalar& coeffRef(Index index) + { + return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); + } + + inline const Scalar coeff(Index index) const + { + return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), + m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); + } + + inline const XprType& nestedExpression() const { return m_matrix; } + inline XprType& nestedExpression() { return m_matrix; } + Index startRow() const { return m_startRow.value(); } + Index startCol() const { return m_startCol.value(); } + Index blockRows() const { return m_blockRows.value(); } + Index blockCols() const { return m_blockCols.value(); } + + protected: +// friend class internal::GenericSparseBlockInnerIteratorImpl; + friend struct internal::unary_evaluator, internal::IteratorBased, Scalar >; + + Index nonZeros() const { return Dynamic; } + + typename internal::ref_selector::non_const_type m_matrix; + const internal::variable_if_dynamic m_startRow; + const internal::variable_if_dynamic m_startCol; + const internal::variable_if_dynamic m_blockRows; + const internal::variable_if_dynamic m_blockCols; + + protected: + // Disable assignment with clear error message. + // Note that simply removing operator= yields compilation errors with ICC+MSVC + template + BlockImpl& operator=(const T&) + { + EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY); + return *this; + } + +}; + +namespace internal { + +template +struct unary_evaluator, IteratorBased > + : public evaluator_base > +{ + class InnerVectorInnerIterator; + class OuterVectorInnerIterator; + public: + typedef Block XprType; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename XprType::Scalar Scalar; + + enum { + IsRowMajor = XprType::IsRowMajor, + OuterVector = (BlockCols == 1 && ArgType::IsRowMajor) || (BlockRows == 1 && !ArgType::IsRowMajor), + CoeffReadCost = evaluator::CoeffReadCost, + Flags = XprType::Flags + }; + + typedef std::conditional_t InnerIterator; + + explicit unary_evaluator(const XprType& op) + : m_argImpl(op.nestedExpression()), m_block(op) + {} + + inline Index nonZerosEstimate() const { + const Index nnz = m_block.nonZeros(); + if(nnz < 0) { + // Scale the non-zero estimate for the underlying expression linearly with block size. + // Return zero if the underlying block is empty. + const Index nested_sz = m_block.nestedExpression().size(); + return nested_sz == 0 ? 0 : m_argImpl.nonZerosEstimate() * m_block.size() / nested_sz; + } + return nnz; + } + + protected: + typedef typename evaluator::InnerIterator EvalIterator; + + evaluator m_argImpl; + const XprType &m_block; +}; + +template +class unary_evaluator, IteratorBased>::InnerVectorInnerIterator + : public EvalIterator +{ + // NOTE MSVC fails to compile if we don't explicitly "import" IsRowMajor from unary_evaluator + // because the base class EvalIterator has a private IsRowMajor enum too. (bug #1786) + // NOTE We cannot call it IsRowMajor because it would shadow unary_evaluator::IsRowMajor + enum { XprIsRowMajor = unary_evaluator::IsRowMajor }; + const XprType& m_block; + Index m_end; +public: + + EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer) + : EvalIterator(aEval.m_argImpl, outer + (XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())), + m_block(aEval.m_block), + m_end(XprIsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()) + { + while( (EvalIterator::operator bool()) && (EvalIterator::index() < (XprIsRowMajor ? m_block.startCol() : m_block.startRow())) ) + EvalIterator::operator++(); + } + + inline StorageIndex index() const { return EvalIterator::index() - convert_index(XprIsRowMajor ? m_block.startCol() : m_block.startRow()); } + inline Index outer() const { return EvalIterator::outer() - (XprIsRowMajor ? m_block.startRow() : m_block.startCol()); } + inline Index row() const { return EvalIterator::row() - m_block.startRow(); } + inline Index col() const { return EvalIterator::col() - m_block.startCol(); } + + inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; } +}; + +template +class unary_evaluator, IteratorBased>::OuterVectorInnerIterator +{ + // NOTE see above + enum { XprIsRowMajor = unary_evaluator::IsRowMajor }; + const unary_evaluator& m_eval; + Index m_outerPos; + const Index m_innerIndex; + Index m_end; + EvalIterator m_it; +public: + + EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer) + : m_eval(aEval), + m_outerPos( (XprIsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ), + m_innerIndex(XprIsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()), + m_end(XprIsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()), + m_it(m_eval.m_argImpl, m_outerPos) + { + EIGEN_UNUSED_VARIABLE(outer); + eigen_assert(outer==0); + + while(m_it && m_it.index() < m_innerIndex) ++m_it; + if((!m_it) || (m_it.index()!=m_innerIndex)) + ++(*this); + } + + inline StorageIndex index() const { return convert_index(m_outerPos - (XprIsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); } + inline Index outer() const { return 0; } + inline Index row() const { return XprIsRowMajor ? 0 : index(); } + inline Index col() const { return XprIsRowMajor ? index() : 0; } + + inline Scalar value() const { return m_it.value(); } + inline Scalar& valueRef() { return m_it.valueRef(); } + + inline OuterVectorInnerIterator& operator++() + { + // search next non-zero entry + while(++m_outerPos +struct unary_evaluator,BlockRows,BlockCols,true>, IteratorBased> + : evaluator,BlockRows,BlockCols,true> > > +{ + typedef Block,BlockRows,BlockCols,true> XprType; + typedef evaluator > Base; + explicit unary_evaluator(const XprType &xpr) : Base(xpr) {} +}; + +template +struct unary_evaluator,BlockRows,BlockCols,true>, IteratorBased> + : evaluator,BlockRows,BlockCols,true> > > +{ + typedef Block,BlockRows,BlockCols,true> XprType; + typedef evaluator > Base; + explicit unary_evaluator(const XprType &xpr) : Base(xpr) {} +}; + +} // end namespace internal + + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_BLOCK_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseColEtree.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseColEtree.h new file mode 100644 index 0000000..ff32458 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseColEtree.h @@ -0,0 +1,208 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +/* + + * NOTE: This file is the modified version of sp_coletree.c file in SuperLU + + * -- SuperLU routine (version 3.1) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * August 1, 2008 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSE_COLETREE_H +#define SPARSE_COLETREE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** Find the root of the tree/set containing the vertex i : Use Path halving */ +template +Index etree_find (Index i, IndexVector& pp) +{ + Index p = pp(i); // Parent + Index gp = pp(p); // Grand parent + while (gp != p) + { + pp(i) = gp; // Parent pointer on find path is changed to former grand parent + i = gp; + p = pp(i); + gp = pp(p); + } + return p; +} + +/** Compute the column elimination tree of a sparse matrix + * \param mat The matrix in column-major format. + * \param parent The elimination tree + * \param firstRowElt The column index of the first element in each row + * \param perm The permutation to apply to the column of \b mat + */ +template +int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt, typename MatrixType::StorageIndex *perm=0) +{ + typedef typename MatrixType::StorageIndex StorageIndex; + StorageIndex nc = convert_index(mat.cols()); // Number of columns + StorageIndex m = convert_index(mat.rows()); + StorageIndex diagSize = (std::min)(nc,m); + IndexVector root(nc); // root of subtree of etree + root.setZero(); + IndexVector pp(nc); // disjoint sets + pp.setZero(); // Initialize disjoint sets + parent.resize(mat.cols()); + //Compute first nonzero column in each row + firstRowElt.resize(m); + firstRowElt.setConstant(nc); + firstRowElt.segment(0, diagSize).setLinSpaced(diagSize, 0, diagSize-1); + bool found_diag; + for (StorageIndex col = 0; col < nc; col++) + { + StorageIndex pcol = col; + if(perm) pcol = perm[col]; + for (typename MatrixType::InnerIterator it(mat, pcol); it; ++it) + { + Index row = it.row(); + firstRowElt(row) = (std::min)(firstRowElt(row), col); + } + } + /* Compute etree by Liu's algorithm for symmetric matrices, + except use (firstRowElt[r],c) in place of an edge (r,c) of A. + Thus each row clique in A'*A is replaced by a star + centered at its first vertex, which has the same fill. */ + StorageIndex rset, cset, rroot; + for (StorageIndex col = 0; col < nc; col++) + { + found_diag = col>=m; + pp(col) = col; + cset = col; + root(cset) = col; + parent(col) = nc; + /* The diagonal element is treated here even if it does not exist in the matrix + * hence the loop is executed once more */ + StorageIndex pcol = col; + if(perm) pcol = perm[col]; + for (typename MatrixType::InnerIterator it(mat, pcol); it||!found_diag; ++it) + { // A sequence of interleaved find and union is performed + Index i = col; + if(it) i = it.index(); + if (i == col) found_diag = true; + + StorageIndex row = firstRowElt(i); + if (row >= col) continue; + rset = internal::etree_find(row, pp); // Find the name of the set containing row + rroot = root(rset); + if (rroot != col) + { + parent(rroot) = col; + pp(cset) = rset; + cset = rset; + root(cset) = col; + } + } + } + return 0; +} + +/** + * Depth-first search from vertex n. No recursion. + * This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France. +*/ +template +void nr_etdfs (typename IndexVector::Scalar n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, typename IndexVector::Scalar postnum) +{ + typedef typename IndexVector::Scalar StorageIndex; + StorageIndex current = n, first, next; + while (postnum != n) + { + // No kid for the current node + first = first_kid(current); + + // no kid for the current node + if (first == -1) + { + // Numbering this node because it has no kid + post(current) = postnum++; + + // looking for the next kid + next = next_kid(current); + while (next == -1) + { + // No more kids : back to the parent node + current = parent(current); + // numbering the parent node + post(current) = postnum++; + + // Get the next kid + next = next_kid(current); + } + // stopping criterion + if (postnum == n+1) return; + + // Updating current node + current = next; + } + else + { + current = first; + } + } +} + + +/** + * \brief Post order a tree + * \param n the number of nodes + * \param parent Input tree + * \param post postordered tree + */ +template +void treePostorder(typename IndexVector::Scalar n, IndexVector& parent, IndexVector& post) +{ + typedef typename IndexVector::Scalar StorageIndex; + IndexVector first_kid, next_kid; // Linked list of children + StorageIndex postnum; + // Allocate storage for working arrays and results + first_kid.resize(n+1); + next_kid.setZero(n+1); + post.setZero(n+1); + + // Set up structure describing children + first_kid.setConstant(-1); + for (StorageIndex v = n-1; v >= 0; v--) + { + StorageIndex dad = parent(v); + next_kid(v) = first_kid(dad); + first_kid(dad) = v; + } + + // Depth-first search from dummy root vertex #n + postnum = 0; + internal::nr_etdfs(n, parent, first_kid, next_kid, post, postnum); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // SPARSE_COLETREE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCompressedBase.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCompressedBase.h new file mode 100644 index 0000000..c1aa426 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCompressedBase.h @@ -0,0 +1,582 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H +#define EIGEN_SPARSE_COMPRESSED_BASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template class SparseCompressedBase; + +namespace internal { + +template +struct traits > : traits +{}; + +template +struct inner_sort_impl; + +} // end namespace internal + +/** \ingroup SparseCore_Module + * \class SparseCompressedBase + * \brief Common base class for sparse [compressed]-{row|column}-storage format. + * + * This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as: + * - SparseMatrix + * - Ref + * - Map + * + */ +template +class SparseCompressedBase + : public SparseMatrixBase +{ + public: + typedef SparseMatrixBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase) + using Base::operator=; + using Base::IsRowMajor; + + class InnerIterator; + class ReverseInnerIterator; + + protected: + typedef typename Base::IndexVector IndexVector; + Eigen::Map innerNonZeros() { return Eigen::Map(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } + const Eigen::Map innerNonZeros() const { return Eigen::Map(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } + + public: + + /** \returns the number of non zero coefficients */ + inline Index nonZeros() const + { + if (Derived::IsVectorAtCompileTime && outerIndexPtr() == 0) + return derived().nonZeros(); + else if (derived().outerSize() == 0) + return 0; + else if (isCompressed()) + return outerIndexPtr()[derived().outerSize()] - outerIndexPtr()[0]; + else + return innerNonZeros().sum(); + } + + /** \returns a const pointer to the array of values. + * This function is aimed at interoperability with other libraries. + * \sa innerIndexPtr(), outerIndexPtr() */ + inline const Scalar* valuePtr() const { return derived().valuePtr(); } + /** \returns a non-const pointer to the array of values. + * This function is aimed at interoperability with other libraries. + * \sa innerIndexPtr(), outerIndexPtr() */ + inline Scalar* valuePtr() { return derived().valuePtr(); } + + /** \returns a const pointer to the array of inner indices. + * This function is aimed at interoperability with other libraries. + * \sa valuePtr(), outerIndexPtr() */ + inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); } + /** \returns a non-const pointer to the array of inner indices. + * This function is aimed at interoperability with other libraries. + * \sa valuePtr(), outerIndexPtr() */ + inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); } + + /** \returns a const pointer to the array of the starting positions of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \warning it returns the null pointer 0 for SparseVector + * \sa valuePtr(), innerIndexPtr() */ + inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); } + /** \returns a non-const pointer to the array of the starting positions of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \warning it returns the null pointer 0 for SparseVector + * \sa valuePtr(), innerIndexPtr() */ + inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); } + + /** \returns a const pointer to the array of the number of non zeros of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \warning it returns the null pointer 0 in compressed mode */ + inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); } + /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \warning it returns the null pointer 0 in compressed mode */ + inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); } + + /** \returns whether \c *this is in compressed form. */ + inline bool isCompressed() const { return innerNonZeroPtr()==0; } + + /** \returns a read-only view of the stored coefficients as a 1D array expression. + * + * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise. + * + * \sa valuePtr(), isCompressed() */ + const Map > coeffs() const { eigen_assert(isCompressed()); return Array::Map(valuePtr(),nonZeros()); } + + /** \returns a read-write view of the stored coefficients as a 1D array expression + * + * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise. + * + * Here is an example: + * \include SparseMatrix_coeffs.cpp + * and the output is: + * \include SparseMatrix_coeffs.out + * + * \sa valuePtr(), isCompressed() */ + Map > coeffs() { eigen_assert(isCompressed()); return Array::Map(valuePtr(),nonZeros()); } + + /** sorts the inner vectors in the range [begin,end) with respect to `Comp` + * \sa innerIndicesAreSorted() */ + template > + inline void sortInnerIndices(Index begin, Index end) { + eigen_assert(begin >= 0 && end <= derived().outerSize() && end >= begin); + internal::inner_sort_impl::run(*this, begin, end); + } + + /** \returns the index of the first inner vector in the range [begin,end) that is not sorted with respect to `Comp`, or `end` if the range is fully sorted + * \sa sortInnerIndices() */ + template > + inline Index innerIndicesAreSorted(Index begin, Index end) const { + eigen_assert(begin >= 0 && end <= derived().outerSize() && end >= begin); + return internal::inner_sort_impl::check(*this, begin, end); + } + + /** sorts the inner vectors in the range [0,outerSize) with respect to `Comp` + * \sa innerIndicesAreSorted() */ + template > + inline void sortInnerIndices() { + Index begin = 0; + Index end = derived().outerSize(); + internal::inner_sort_impl::run(*this, begin, end); + } + + /** \returns the index of the first inner vector in the range [0,outerSize) that is not sorted with respect to `Comp`, or `outerSize` if the range is fully sorted + * \sa sortInnerIndices() */ + template> + inline Index innerIndicesAreSorted() const { + Index begin = 0; + Index end = derived().outerSize(); + return internal::inner_sort_impl::check(*this, begin, end); + } + + protected: + /** Default constructor. Do nothing. */ + SparseCompressedBase() {} + + /** \internal return the index of the coeff at (row,col) or just before if it does not exist. + * This is an analogue of std::lower_bound. + */ + internal::LowerBoundIndex lower_bound(Index row, Index col) const + { + eigen_internal_assert(row>=0 && rowrows() && col>=0 && colcols()); + + const Index outer = Derived::IsRowMajor ? row : col; + const Index inner = Derived::IsRowMajor ? col : row; + + Index start = this->outerIndexPtr()[outer]; + Index end = this->isCompressed() ? this->outerIndexPtr()[outer+1] : this->outerIndexPtr()[outer] + this->innerNonZeroPtr()[outer]; + eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist"); + internal::LowerBoundIndex p; + p.value = std::lower_bound(this->innerIndexPtr()+start, this->innerIndexPtr()+end,inner) - this->innerIndexPtr(); + p.found = (p.valueinnerIndexPtr()[p.value]==inner); + return p; + } + + friend struct internal::evaluator >; + + private: + template explicit SparseCompressedBase(const SparseCompressedBase&); +}; + +template +class SparseCompressedBase::InnerIterator +{ + public: + InnerIterator() + : m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0) + {} + + InnerIterator(const InnerIterator& other) + : m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end) + {} + + InnerIterator& operator=(const InnerIterator& other) + { + m_values = other.m_values; + m_indices = other.m_indices; + const_cast(m_outer).setValue(other.m_outer.value()); + m_id = other.m_id; + m_end = other.m_end; + return *this; + } + + InnerIterator(const SparseCompressedBase& mat, Index outer) + : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) + { + if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) + { + m_id = 0; + m_end = mat.nonZeros(); + } + else + { + m_id = mat.outerIndexPtr()[outer]; + if(mat.isCompressed()) + m_end = mat.outerIndexPtr()[outer+1]; + else + m_end = m_id + mat.innerNonZeroPtr()[outer]; + } + } + + explicit InnerIterator(const SparseCompressedBase& mat) : InnerIterator(mat, Index(0)) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + } + + explicit InnerIterator(const internal::CompressedStorage& data) + : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size()) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + } + + inline InnerIterator& operator++() { m_id++; return *this; } + inline InnerIterator& operator+=(Index i) { m_id += i ; return *this; } + + inline InnerIterator operator+(Index i) + { + InnerIterator result = *this; + result += i; + return result; + } + + inline const Scalar& value() const { return m_values[m_id]; } + inline Scalar& valueRef() { return const_cast(m_values[m_id]); } + + inline StorageIndex index() const { return m_indices[m_id]; } + inline Index outer() const { return m_outer.value(); } + inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } + inline Index col() const { return IsRowMajor ? index() : m_outer.value(); } + + inline operator bool() const { return (m_id < m_end); } + + protected: + const Scalar* m_values; + const StorageIndex* m_indices; + typedef internal::variable_if_dynamic OuterType; + const OuterType m_outer; + Index m_id; + Index m_end; + private: + // If you get here, then you're not using the right InnerIterator type, e.g.: + // SparseMatrix A; + // SparseMatrix::InnerIterator it(A,0); + template InnerIterator(const SparseMatrixBase&, Index outer); +}; + +template +class SparseCompressedBase::ReverseInnerIterator +{ + public: + ReverseInnerIterator(const SparseCompressedBase& mat, Index outer) + : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) + { + if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) + { + m_start = 0; + m_id = mat.nonZeros(); + } + else + { + m_start = mat.outerIndexPtr()[outer]; + if(mat.isCompressed()) + m_id = mat.outerIndexPtr()[outer+1]; + else + m_id = m_start + mat.innerNonZeroPtr()[outer]; + } + } + + explicit ReverseInnerIterator(const SparseCompressedBase& mat) + : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros()) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + } + + explicit ReverseInnerIterator(const internal::CompressedStorage& data) + : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size()) + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + } + + inline ReverseInnerIterator& operator--() { --m_id; return *this; } + inline ReverseInnerIterator& operator-=(Index i) { m_id -= i; return *this; } + + inline ReverseInnerIterator operator-(Index i) + { + ReverseInnerIterator result = *this; + result -= i; + return result; + } + + inline const Scalar& value() const { return m_values[m_id-1]; } + inline Scalar& valueRef() { return const_cast(m_values[m_id-1]); } + + inline StorageIndex index() const { return m_indices[m_id-1]; } + inline Index outer() const { return m_outer.value(); } + inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } + inline Index col() const { return IsRowMajor ? index() : m_outer.value(); } + + inline operator bool() const { return (m_id > m_start); } + + protected: + const Scalar* m_values; + const StorageIndex* m_indices; + typedef internal::variable_if_dynamic OuterType; + const OuterType m_outer; + Index m_start; + Index m_id; +}; + +namespace internal { + +// modified from https://artificial-mind.net/blog/2020/11/28/std-sort-multiple-ranges + +template +class StorageVal; +template +class StorageRef; +template +class CompressedStorageIterator; + +// class to hold an index/value pair +template +class StorageVal +{ +public: + + StorageVal(const StorageIndex& innerIndex, const Scalar& value) : m_innerIndex(innerIndex), m_value(value) {} + StorageVal(const StorageVal& other) : m_innerIndex(other.m_innerIndex), m_value(other.m_value) {} + StorageVal(StorageVal&& other) = default; + + inline const StorageIndex& key() const { return m_innerIndex; } + inline StorageIndex& key() { return m_innerIndex; } + inline const Scalar& value() const { return m_value; } + inline Scalar& value() { return m_value; } + + // enables StorageVal to be compared with respect to any type that is convertible to StorageIndex + inline operator StorageIndex() const { return m_innerIndex; } + +protected: + StorageIndex m_innerIndex; + Scalar m_value; +private: + StorageVal() = delete; +}; +// class to hold an index/value iterator pair +// used to define assignment, swap, and comparison operators for CompressedStorageIterator +template +class StorageRef +{ +public: + using value_type = StorageVal; + + // StorageRef Needs to be move-able for sort on macos. + StorageRef(StorageRef&& other) = default; + + inline StorageRef& operator=(const StorageRef& other) { + key() = other.key(); + value() = other.value(); + return *this; + } + inline StorageRef& operator=(const value_type& other) { + key() = other.key(); + value() = other.value(); + return *this; + } + inline operator value_type() const { return value_type(key(), value()); } + inline friend void swap(const StorageRef& a, const StorageRef& b) { + std::iter_swap(a.keyPtr(), b.keyPtr()); + std::iter_swap(a.valuePtr(), b.valuePtr()); + } + + inline const StorageIndex& key() const { return *m_innerIndexIterator; } + inline StorageIndex& key() { return *m_innerIndexIterator; } + inline const Scalar& value() const { return *m_valueIterator; } + inline Scalar& value() { return *m_valueIterator; } + inline StorageIndex* keyPtr() const { return m_innerIndexIterator; } + inline Scalar* valuePtr() const { return m_valueIterator; } + + // enables StorageRef to be compared with respect to any type that is convertible to StorageIndex + inline operator StorageIndex() const { return *m_innerIndexIterator; } + +protected: + StorageIndex* m_innerIndexIterator; + Scalar* m_valueIterator; +private: + StorageRef() = delete; + // these constructors are called by the CompressedStorageIterator constructors for convenience only + StorageRef(StorageIndex* innerIndexIterator, Scalar* valueIterator) : m_innerIndexIterator(innerIndexIterator), m_valueIterator(valueIterator) {} + StorageRef(const StorageRef& other) : m_innerIndexIterator(other.m_innerIndexIterator), m_valueIterator(other.m_valueIterator) {} + + friend class CompressedStorageIterator; +}; + +// STL-compatible iterator class that operates on inner indices and values +template +class CompressedStorageIterator +{ +public: + using iterator_category = std::random_access_iterator_tag; + using reference = StorageRef; + using difference_type = Index; + using value_type = typename reference::value_type; + using pointer = value_type*; + + CompressedStorageIterator() = delete; + CompressedStorageIterator(difference_type index, StorageIndex* innerIndexPtr, Scalar* valuePtr) : m_index(index), m_data(innerIndexPtr, valuePtr) {} + CompressedStorageIterator(difference_type index, reference data) : m_index(index), m_data(data) {} + CompressedStorageIterator(const CompressedStorageIterator& other) : m_index(other.m_index), m_data(other.m_data) {} + CompressedStorageIterator(CompressedStorageIterator&& other) = default; + inline CompressedStorageIterator& operator=(const CompressedStorageIterator& other) { + m_index = other.m_index; + m_data = other.m_data; + return *this; + } + + inline CompressedStorageIterator operator+(difference_type offset) const { return CompressedStorageIterator(m_index + offset, m_data); } + inline CompressedStorageIterator operator-(difference_type offset) const { return CompressedStorageIterator(m_index - offset, m_data); } + inline difference_type operator-(const CompressedStorageIterator& other) const { return m_index - other.m_index; } + inline CompressedStorageIterator& operator++() { ++m_index; return *this; } + inline CompressedStorageIterator& operator--() { --m_index; return *this; } + inline CompressedStorageIterator& operator+=(difference_type offset) { m_index += offset; return *this; } + inline CompressedStorageIterator& operator-=(difference_type offset) { m_index -= offset; return *this; } + inline reference operator*() const { return reference(m_data.keyPtr() + m_index, m_data.valuePtr() + m_index); } + + #define MAKE_COMP(OP) inline bool operator OP(const CompressedStorageIterator& other) const { return m_index OP other.m_index; } + MAKE_COMP(<) + MAKE_COMP(>) + MAKE_COMP(>=) + MAKE_COMP(<=) + MAKE_COMP(!=) + MAKE_COMP(==) + #undef MAKE_COMP + +protected: + difference_type m_index; + reference m_data; +}; + +template +struct inner_sort_impl { + typedef typename Derived::Scalar Scalar; + typedef typename Derived::StorageIndex StorageIndex; + static inline void run(SparseCompressedBase& obj, Index begin, Index end) { + const bool is_compressed = obj.isCompressed(); + for (Index outer = begin; outer < end; outer++) { + Index begin_offset = obj.outerIndexPtr()[outer]; + Index end_offset = is_compressed ? obj.outerIndexPtr()[outer + 1] : (begin_offset + obj.innerNonZeroPtr()[outer]); + CompressedStorageIterator begin_it(begin_offset, obj.innerIndexPtr(), obj.valuePtr()); + CompressedStorageIterator end_it(end_offset, obj.innerIndexPtr(), obj.valuePtr()); + std::sort(begin_it, end_it, Comp()); + } + } + static inline Index check(const SparseCompressedBase& obj, Index begin, Index end) { + const bool is_compressed = obj.isCompressed(); + for (Index outer = begin; outer < end; outer++) { + Index begin_offset = obj.outerIndexPtr()[outer]; + Index end_offset = is_compressed ? obj.outerIndexPtr()[outer + 1] : (begin_offset + obj.innerNonZeroPtr()[outer]); + const StorageIndex* begin_it = obj.innerIndexPtr() + begin_offset; + const StorageIndex* end_it = obj.innerIndexPtr() + end_offset; + bool is_sorted = std::is_sorted(begin_it, end_it, Comp()); + if (!is_sorted) return outer; + } + return end; + } +}; +template +struct inner_sort_impl { + typedef typename Derived::Scalar Scalar; + typedef typename Derived::StorageIndex StorageIndex; + static inline void run(SparseCompressedBase& obj, Index, Index) { + Index begin_offset = 0; + Index end_offset = obj.nonZeros(); + CompressedStorageIterator begin_it(begin_offset, obj.innerIndexPtr(), obj.valuePtr()); + CompressedStorageIterator end_it(end_offset, obj.innerIndexPtr(), obj.valuePtr()); + std::sort(begin_it, end_it, Comp()); + } + static inline Index check(const SparseCompressedBase& obj, Index, Index) { + Index begin_offset = 0; + Index end_offset = obj.nonZeros(); + const StorageIndex* begin_it = obj.innerIndexPtr() + begin_offset; + const StorageIndex* end_it = obj.innerIndexPtr() + end_offset; + return std::is_sorted(begin_it, end_it, Comp()) ? 1 : 0; + } +}; + +template +struct evaluator > + : evaluator_base +{ + typedef typename Derived::Scalar Scalar; + typedef typename Derived::InnerIterator InnerIterator; + + enum { + CoeffReadCost = NumTraits::ReadCost, + Flags = Derived::Flags + }; + + evaluator() : m_matrix(0), m_zero(0) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_matrix->nonZeros(); + } + + operator Derived&() { return m_matrix->const_cast_derived(); } + operator const Derived&() const { return *m_matrix; } + + typedef typename DenseCoeffsBase::CoeffReturnType CoeffReturnType; + const Scalar& coeff(Index row, Index col) const + { + Index p = find(row,col); + + if(p==Dynamic) + return m_zero; + else + return m_matrix->const_cast_derived().valuePtr()[p]; + } + + Scalar& coeffRef(Index row, Index col) + { + Index p = find(row,col); + eigen_assert(p!=Dynamic && "written coefficient does not exist"); + return m_matrix->const_cast_derived().valuePtr()[p]; + } + +protected: + + Index find(Index row, Index col) const + { + internal::LowerBoundIndex p = m_matrix->lower_bound(row,col); + return p.found ? p.value : Dynamic; + } + + const Derived *m_matrix; + const Scalar m_zero; +}; + +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_COMPRESSED_BASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h new file mode 100644 index 0000000..3aea5ec --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h @@ -0,0 +1,1000 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_CWISE_BINARY_OP_H +#define EIGEN_SPARSE_CWISE_BINARY_OP_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// Here we have to handle 3 cases: +// 1 - sparse op dense +// 2 - dense op sparse +// 3 - sparse op sparse +// We also need to implement a 4th iterator for: +// 4 - dense op dense +// Finally, we also need to distinguish between the product and other operations : +// configuration returned mode +// 1 - sparse op dense product sparse +// generic dense +// 2 - dense op sparse product sparse +// generic dense +// 3 - sparse op sparse product sparse +// generic sparse +// 4 - dense op dense product dense +// generic dense +// +// TODO to ease compiler job, we could specialize product/quotient with a scalar +// and fallback to cwise-unary evaluator using bind1st_op and bind2nd_op. + +template +class CwiseBinaryOpImpl + : public SparseMatrixBase > +{ + public: + typedef CwiseBinaryOp Derived; + typedef SparseMatrixBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) + EIGEN_STATIC_ASSERT(( + (!internal::is_same::StorageKind, + typename internal::traits::StorageKind>::value) + || ((internal::evaluator::Flags&RowMajorBit) == (internal::evaluator::Flags&RowMajorBit))), + THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH) +}; + +namespace internal { + +// The default evaluator performs an "arithmetic" operation on two input arrays. +// Given input arrays 'lhs' and 'rhs' and binary functor 'func', +// the sparse destination array 'dst' is evaluated as follows: +// if lhs(i,j) and rhs(i,j) are present, dst(i,j) = func(lhs(i,j), rhs(i,j)) +// if lhs(i,j) is present and rhs(i,j) is null, dst(i,j) = func(lhs(i,j), 0) +// if lhs(i,j) is null and rhs(i,j) is present, dst(i,j) = func(0, rhs(i,j)) + +// Generic "sparse OP sparse" +template struct binary_sparse_evaluator; + +template +struct binary_evaluator, IteratorBased, IteratorBased> + : evaluator_base > +{ +protected: + typedef typename evaluator::InnerIterator LhsIterator; + typedef typename evaluator::InnerIterator RhsIterator; + typedef CwiseBinaryOp XprType; + typedef typename traits::Scalar Scalar; + typedef typename XprType::StorageIndex StorageIndex; +public: + + class InnerIterator + { + public: + + EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer) + : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_value(Scalar(0)) + { + this->operator++(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index())) + { + m_id = m_lhsIter.index(); + m_value = m_functor(m_lhsIter.value(), m_rhsIter.value()); + ++m_lhsIter; + ++m_rhsIter; + } + else if (m_lhsIter && (!m_rhsIter || (m_lhsIter.index() < m_rhsIter.index()))) + { + m_id = m_lhsIter.index(); + m_value = m_functor(m_lhsIter.value(), Scalar(0)); + ++m_lhsIter; + } + else if (m_rhsIter && (!m_lhsIter || (m_lhsIter.index() > m_rhsIter.index()))) + { + m_id = m_rhsIter.index(); + m_value = m_functor(Scalar(0), m_rhsIter.value()); + ++m_rhsIter; + } + else + { + m_id = -1; + } + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const { return m_value; } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; } + EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return Lhs::IsRowMajor ? m_lhsIter.row() : index(); } + EIGEN_STRONG_INLINE Index col() const { return Lhs::IsRowMajor ? index() : m_lhsIter.col(); } + + EIGEN_STRONG_INLINE operator bool() const { return m_id>=0; } + + protected: + LhsIterator m_lhsIter; + RhsIterator m_rhsIter; + const BinaryOp& m_functor; + Scalar m_value; + StorageIndex m_id; + }; + + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit binary_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_lhsImpl.nonZerosEstimate() + m_rhsImpl.nonZerosEstimate(); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; +}; + +// dense op sparse +template +struct binary_evaluator, IndexBased, IteratorBased> + : evaluator_base > +{ +protected: + typedef typename evaluator::InnerIterator RhsIterator; + typedef CwiseBinaryOp XprType; + typedef typename traits::Scalar Scalar; + typedef typename XprType::StorageIndex StorageIndex; +public: + + class InnerIterator + { + enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit }; + public: + + EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer) + : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.rhs().innerSize()) + { + this->operator++(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + ++m_id; + if(m_id &m_lhsEval; + RhsIterator m_rhsIter; + const BinaryOp& m_functor; + Scalar m_value; + StorageIndex m_id; + StorageIndex m_innerSize; + }; + + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit binary_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()), + m_expr(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_expr.size(); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; + const XprType &m_expr; +}; + +// sparse op dense +template +struct binary_evaluator, IteratorBased, IndexBased> + : evaluator_base > +{ +protected: + typedef typename evaluator::InnerIterator LhsIterator; + typedef CwiseBinaryOp XprType; + typedef typename traits::Scalar Scalar; + typedef typename XprType::StorageIndex StorageIndex; +public: + + class InnerIterator + { + enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit }; + public: + + EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer) + : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.lhs().innerSize()) + { + this->operator++(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + ++m_id; + if(m_id &m_rhsEval; + const BinaryOp& m_functor; + Scalar m_value; + StorageIndex m_id; + StorageIndex m_innerSize; + }; + + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit binary_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()), + m_expr(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_expr.size(); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; + const XprType &m_expr; +}; + +template::Kind, + typename RhsKind = typename evaluator_traits::Kind, + typename LhsScalar = typename traits::Scalar, + typename RhsScalar = typename traits::Scalar> struct sparse_conjunction_evaluator; + +// "sparse .* sparse" +template +struct binary_evaluator, Lhs, Rhs>, IteratorBased, IteratorBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; +// "dense .* sparse" +template +struct binary_evaluator, Lhs, Rhs>, IndexBased, IteratorBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; +// "sparse .* dense" +template +struct binary_evaluator, Lhs, Rhs>, IteratorBased, IndexBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; + +// "sparse ./ dense" +template +struct binary_evaluator, Lhs, Rhs>, IteratorBased, IndexBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; + +// "sparse && sparse" +template +struct binary_evaluator, Lhs, Rhs>, IteratorBased, IteratorBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; +// "dense && sparse" +template +struct binary_evaluator, Lhs, Rhs>, IndexBased, IteratorBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; +// "sparse && dense" +template +struct binary_evaluator, Lhs, Rhs>, IteratorBased, IndexBased> + : sparse_conjunction_evaluator, Lhs, Rhs> > +{ + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_conjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; + +// The conjunction "^" evaluator performs a logical "and" or set "intersection" operation on two input arrays. +// Given input arrays 'lhs' and 'rhs' and binary functor 'func', +// the sparse destination array 'dst' is evaluated as follows: +// if lhs(i,j) and rhs(i,j) are present, dst(i,j) = func(lhs(i,j), rhs(i,j)) +// if lhs(i,j) is present and rhs(i,j) is null, dst(i,j) is null +// if lhs(i,j) is null and rhs(i,j) is present, dst(i,j) is null + +// "sparse ^ sparse" +template +struct sparse_conjunction_evaluator + : evaluator_base +{ +protected: + typedef typename XprType::Functor BinaryOp; + typedef typename XprType::Lhs LhsArg; + typedef typename XprType::Rhs RhsArg; + typedef typename evaluator::InnerIterator LhsIterator; + typedef typename evaluator::InnerIterator RhsIterator; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename traits::Scalar Scalar; +public: + + class InnerIterator + { + public: + + EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer) + : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor) + { + while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index())) + { + if (m_lhsIter.index() < m_rhsIter.index()) + ++m_lhsIter; + else + ++m_rhsIter; + } + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + ++m_lhsIter; + ++m_rhsIter; + while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index())) + { + if (m_lhsIter.index() < m_rhsIter.index()) + ++m_lhsIter; + else + ++m_rhsIter; + } + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const { return m_functor(m_lhsIter.value(), m_rhsIter.value()); } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); } + EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); } + EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); } + + EIGEN_STRONG_INLINE operator bool() const { return (m_lhsIter && m_rhsIter); } + + protected: + LhsIterator m_lhsIter; + RhsIterator m_rhsIter; + const BinaryOp& m_functor; + }; + + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit sparse_conjunction_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return (std::min)(m_lhsImpl.nonZerosEstimate(), m_rhsImpl.nonZerosEstimate()); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; +}; + +// "dense ^ sparse" +template +struct sparse_conjunction_evaluator + : evaluator_base +{ +protected: + typedef typename XprType::Functor BinaryOp; + typedef typename XprType::Lhs LhsArg; + typedef typename XprType::Rhs RhsArg; + typedef evaluator LhsEvaluator; + typedef typename evaluator::InnerIterator RhsIterator; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename traits::Scalar Scalar; +public: + + class InnerIterator + { + enum { IsRowMajor = (int(RhsArg::Flags)&RowMajorBit)==RowMajorBit }; + + public: + + EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer) + : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_outer(outer) + {} + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + ++m_rhsIter; + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const + { return m_functor(m_lhsEval.coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_rhsIter.index(); } + EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); } + EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); } + + EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; } + + protected: + const LhsEvaluator &m_lhsEval; + RhsIterator m_rhsIter; + const BinaryOp& m_functor; + const Index m_outer; + }; + + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit sparse_conjunction_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_rhsImpl.nonZerosEstimate(); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; +}; + +// "sparse ^ dense" +template +struct sparse_conjunction_evaluator + : evaluator_base +{ +protected: + typedef typename XprType::Functor BinaryOp; + typedef typename XprType::Lhs LhsArg; + typedef typename XprType::Rhs RhsArg; + typedef typename evaluator::InnerIterator LhsIterator; + typedef evaluator RhsEvaluator; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename traits::Scalar Scalar; +public: + + class InnerIterator + { + enum { IsRowMajor = (int(LhsArg::Flags)&RowMajorBit)==RowMajorBit }; + + public: + + EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer) + : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_outer(outer) + {} + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + ++m_lhsIter; + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const + { return m_functor(m_lhsIter.value(), + m_rhsEval.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); } + EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); } + EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); } + + EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; } + + protected: + LhsIterator m_lhsIter; + const evaluator &m_rhsEval; + const BinaryOp& m_functor; + const Index m_outer; + }; + + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit sparse_conjunction_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), + m_lhsImpl(xpr.lhs()), + m_rhsImpl(xpr.rhs()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_lhsImpl.nonZerosEstimate(); + } + +protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; +}; + +template::Kind, + typename RhsKind = typename evaluator_traits::Kind, + typename LhsScalar = typename traits::Scalar, + typename RhsScalar = typename traits::Scalar> struct sparse_disjunction_evaluator; + +// The disjunction "v" evaluator performs a logical "or" or set "union" operation on two input arrays. +// Given input arrays 'lhs' and 'rhs' and binary functor 'func', +// the sparse destination array 'dst' is evaluated as follows: +// if lhs(i,j) and rhs(i,j) are present, dst(i,j) = func(lhs(i,j), rhs(i,j)) +// if lhs(i,j) is present and rhs(i,j) is null, dst(i,j) = lhs(i,j) +// if lhs(i,j) is null and rhs(i,j) is present, dst(i,j) = rhs(i,j) + +// "sparse v sparse" +template +struct sparse_disjunction_evaluator : evaluator_base { + protected: + typedef typename XprType::Functor BinaryOp; + typedef typename XprType::Lhs LhsArg; + typedef typename XprType::Rhs RhsArg; + typedef typename evaluator::InnerIterator LhsIterator; + typedef typename evaluator::InnerIterator RhsIterator; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename traits::Scalar Scalar; + + public: + class InnerIterator { + public: + EIGEN_STRONG_INLINE InnerIterator(const sparse_disjunction_evaluator& aEval, Index outer) + : m_lhsIter(aEval.m_lhsImpl, outer), + m_rhsIter(aEval.m_rhsImpl, outer), + m_functor(aEval.m_functor), + m_value(Scalar(0)) { + this->operator++(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() { + if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index())) { + m_id = m_lhsIter.index(); + m_value = m_functor(m_lhsIter.value(), m_rhsIter.value()); + ++m_lhsIter; + ++m_rhsIter; + } else if (m_lhsIter && (!m_rhsIter || (m_lhsIter.index() < m_rhsIter.index()))) { + m_id = m_lhsIter.index(); + m_value = m_lhsIter.value(); + ++m_lhsIter; + } else if (m_rhsIter && (!m_lhsIter || (m_lhsIter.index() > m_rhsIter.index()))) { + m_id = m_rhsIter.index(); + m_value = m_rhsIter.value(); + ++m_rhsIter; + } else { + m_id = -1; + } + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const { return m_value; } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; } + EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return LhsArg::IsRowMajor ? m_lhsIter.row() : index(); } + EIGEN_STRONG_INLINE Index col() const { return LhsArg::IsRowMajor ? index() : m_lhsIter.col(); } + + EIGEN_STRONG_INLINE operator bool() const { return m_id >= 0; } + + protected: + LhsIterator m_lhsIter; + RhsIterator m_rhsIter; + const BinaryOp& m_functor; + Scalar m_value; + StorageIndex m_id; + }; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit sparse_disjunction_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), m_lhsImpl(xpr.lhs()), m_rhsImpl(xpr.rhs()) { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { return m_lhsImpl.nonZerosEstimate() + m_rhsImpl.nonZerosEstimate(); } + + protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; +}; + +// "dense v sparse" +template +struct sparse_disjunction_evaluator : evaluator_base { + protected: + typedef typename XprType::Functor BinaryOp; + typedef typename XprType::Lhs LhsArg; + typedef typename XprType::Rhs RhsArg; + typedef evaluator LhsEvaluator; + typedef typename evaluator::InnerIterator RhsIterator; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename traits::Scalar Scalar; + + public: + class InnerIterator { + enum { IsRowMajor = (int(RhsArg::Flags) & RowMajorBit) == RowMajorBit }; + + public: + EIGEN_STRONG_INLINE InnerIterator(const sparse_disjunction_evaluator& aEval, Index outer) + : m_lhsEval(aEval.m_lhsImpl), + m_rhsIter(aEval.m_rhsImpl, outer), + m_functor(aEval.m_functor), + m_value(0), + m_id(-1), + m_innerSize(aEval.m_expr.rhs().innerSize()) { + this->operator++(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() { + ++m_id; + if (m_id < m_innerSize) { + Scalar lhsVal = m_lhsEval.coeff(IsRowMajor ? m_rhsIter.outer() : m_id, IsRowMajor ? m_id : m_rhsIter.outer()); + if (m_rhsIter && m_rhsIter.index() == m_id) { + m_value = m_functor(lhsVal, m_rhsIter.value()); + ++m_rhsIter; + } else + m_value = lhsVal; + } + + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const { + eigen_internal_assert(m_id < m_innerSize); + return m_value; + } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; } + EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return IsRowMajor ? m_rhsIter.outer() : m_id; } + EIGEN_STRONG_INLINE Index col() const { return IsRowMajor ? m_id : m_rhsIter.outer(); } + + EIGEN_STRONG_INLINE operator bool() const { return m_id < m_innerSize; } + + protected: + const evaluator& m_lhsEval; + RhsIterator m_rhsIter; + const BinaryOp& m_functor; + Scalar m_value; + StorageIndex m_id; + StorageIndex m_innerSize; + }; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit sparse_disjunction_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), m_lhsImpl(xpr.lhs()), m_rhsImpl(xpr.rhs()), m_expr(xpr) { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { return m_expr.size(); } + + protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; + const XprType& m_expr; +}; + +// "sparse v dense" +template +struct sparse_disjunction_evaluator : evaluator_base { + protected: + typedef typename XprType::Functor BinaryOp; + typedef typename XprType::Lhs LhsArg; + typedef typename XprType::Rhs RhsArg; + typedef typename evaluator::InnerIterator LhsIterator; + typedef evaluator RhsEvaluator; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename traits::Scalar Scalar; + + public: + class InnerIterator { + enum { IsRowMajor = (int(LhsArg::Flags) & RowMajorBit) == RowMajorBit }; + + public: + EIGEN_STRONG_INLINE InnerIterator(const sparse_disjunction_evaluator& aEval, Index outer) + : m_lhsIter(aEval.m_lhsImpl, outer), + m_rhsEval(aEval.m_rhsImpl), + m_functor(aEval.m_functor), + m_value(0), + m_id(-1), + m_innerSize(aEval.m_expr.lhs().innerSize()) { + this->operator++(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() { + ++m_id; + if (m_id < m_innerSize) { + Scalar rhsVal = m_rhsEval.coeff(IsRowMajor ? m_lhsIter.outer() : m_id, IsRowMajor ? m_id : m_lhsIter.outer()); + if (m_lhsIter && m_lhsIter.index() == m_id) { + m_value = m_functor(m_lhsIter.value(), rhsVal); + ++m_lhsIter; + } else + m_value = rhsVal; + } + + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const { + eigen_internal_assert(m_id < m_innerSize); + return m_value; + } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; } + EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } + EIGEN_STRONG_INLINE Index row() const { return IsRowMajor ? m_lhsIter.outer() : m_id; } + EIGEN_STRONG_INLINE Index col() const { return IsRowMajor ? m_id : m_lhsIter.outer(); } + + EIGEN_STRONG_INLINE operator bool() const { return m_id < m_innerSize; } + + protected: + LhsIterator m_lhsIter; + const evaluator& m_rhsEval; + const BinaryOp& m_functor; + Scalar m_value; + StorageIndex m_id; + StorageIndex m_innerSize; + }; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit sparse_disjunction_evaluator(const XprType& xpr) + : m_functor(xpr.functor()), m_lhsImpl(xpr.lhs()), m_rhsImpl(xpr.rhs()), m_expr(xpr) { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { return m_expr.size(); } + + protected: + const BinaryOp m_functor; + evaluator m_lhsImpl; + evaluator m_rhsImpl; + const XprType& m_expr; +}; + +// when DupFunc is wrapped with scalar_dup_op, use disjunction evaulator +template +struct binary_evaluator, Lhs, Rhs>, IteratorBased, IteratorBased> + : sparse_disjunction_evaluator, Lhs, Rhs> > { + typedef CwiseBinaryOp, Lhs, Rhs> XprType; + typedef sparse_disjunction_evaluator Base; + explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} +}; +} + +/*************************************************************************** +* Implementation of SparseMatrixBase and SparseCwise functions/operators +***************************************************************************/ + +template +template +Derived& SparseMatrixBase::operator+=(const EigenBase &other) +{ + call_assignment(derived(), other.derived(), internal::add_assign_op()); + return derived(); +} + +template +template +Derived& SparseMatrixBase::operator-=(const EigenBase &other) +{ + call_assignment(derived(), other.derived(), internal::assign_op()); + return derived(); +} + +template +template +EIGEN_STRONG_INLINE Derived & +SparseMatrixBase::operator-=(const SparseMatrixBase &other) +{ + return derived() = derived() - other.derived(); +} + +template +template +EIGEN_STRONG_INLINE Derived & +SparseMatrixBase::operator+=(const SparseMatrixBase& other) +{ + return derived() = derived() + other.derived(); +} + +template +template +Derived& SparseMatrixBase::operator+=(const DiagonalBase& other) +{ + call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op()); + return derived(); +} + +template +template +Derived& SparseMatrixBase::operator-=(const DiagonalBase& other) +{ + call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op()); + return derived(); +} + +template +template +EIGEN_STRONG_INLINE const typename SparseMatrixBase::template CwiseProductDenseReturnType::Type +SparseMatrixBase::cwiseProduct(const MatrixBase &other) const +{ + return typename CwiseProductDenseReturnType::Type(derived(), other.derived()); +} + +template +EIGEN_STRONG_INLINE const CwiseBinaryOp, const DenseDerived, const SparseDerived> +operator+(const MatrixBase &a, const SparseMatrixBase &b) +{ + return CwiseBinaryOp, const DenseDerived, const SparseDerived>(a.derived(), b.derived()); +} + +template +EIGEN_STRONG_INLINE const CwiseBinaryOp, const SparseDerived, const DenseDerived> +operator+(const SparseMatrixBase &a, const MatrixBase &b) +{ + return CwiseBinaryOp, const SparseDerived, const DenseDerived>(a.derived(), b.derived()); +} + +template +EIGEN_STRONG_INLINE const CwiseBinaryOp, const DenseDerived, const SparseDerived> +operator-(const MatrixBase &a, const SparseMatrixBase &b) +{ + return CwiseBinaryOp, const DenseDerived, const SparseDerived>(a.derived(), b.derived()); +} + +template +EIGEN_STRONG_INLINE const CwiseBinaryOp, const SparseDerived, const DenseDerived> +operator-(const SparseMatrixBase &a, const MatrixBase &b) +{ + return CwiseBinaryOp, const SparseDerived, const DenseDerived>(a.derived(), b.derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_CWISE_BINARY_OP_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h new file mode 100644 index 0000000..6f48fa7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h @@ -0,0 +1,152 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H +#define EIGEN_SPARSE_CWISE_UNARY_OP_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct unary_evaluator, IteratorBased> + : public evaluator_base > +{ + public: + typedef CwiseUnaryOp XprType; + + class InnerIterator; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_argImpl.nonZerosEstimate(); + } + + protected: + typedef typename evaluator::InnerIterator EvalIterator; + + const UnaryOp m_functor; + evaluator m_argImpl; +}; + +template +class unary_evaluator, IteratorBased>::InnerIterator + : public unary_evaluator, IteratorBased>::EvalIterator +{ + protected: + typedef typename XprType::Scalar Scalar; + typedef typename unary_evaluator, IteratorBased>::EvalIterator Base; + public: + + EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer) + : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor) + {} + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { Base::operator++(); return *this; } + + EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); } + + protected: + const UnaryOp m_functor; + private: + Scalar& valueRef(); +}; + +template +struct unary_evaluator, IteratorBased> + : public evaluator_base > +{ + public: + typedef CwiseUnaryView XprType; + + class InnerIterator; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + Flags = XprType::Flags + }; + + explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + protected: + typedef typename evaluator::InnerIterator EvalIterator; + + const ViewOp m_functor; + evaluator m_argImpl; +}; + +template +class unary_evaluator, IteratorBased>::InnerIterator + : public unary_evaluator, IteratorBased>::EvalIterator +{ + protected: + typedef typename XprType::Scalar Scalar; + typedef typename unary_evaluator, IteratorBased>::EvalIterator Base; + public: + + EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer) + : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor) + {} + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { Base::operator++(); return *this; } + + EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); } + EIGEN_STRONG_INLINE Scalar& valueRef() { return m_functor(Base::valueRef()); } + + protected: + const ViewOp m_functor; +}; + +} // end namespace internal + +template +EIGEN_STRONG_INLINE Derived& +SparseMatrixBase::operator*=(const Scalar& other) +{ + typedef typename internal::evaluator::InnerIterator EvalIterator; + internal::evaluator thisEval(derived()); + for (Index j=0; j +EIGEN_STRONG_INLINE Derived& +SparseMatrixBase::operator/=(const Scalar& other) +{ + typedef typename internal::evaluator::InnerIterator EvalIterator; + internal::evaluator thisEval(derived()); + for (Index j=0; j +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEDENSEPRODUCT_H +#define EIGEN_SPARSEDENSEPRODUCT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template <> struct product_promote_storage_type { typedef Sparse ret; }; +template <> struct product_promote_storage_type { typedef Sparse ret; }; + +template +struct sparse_time_dense_product_impl; + +template +struct sparse_time_dense_product_impl +{ + typedef internal::remove_all_t Lhs; + typedef internal::remove_all_t Rhs; + typedef internal::remove_all_t Res; + typedef typename evaluator::InnerIterator LhsInnerIterator; + typedef evaluator LhsEval; + static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) + { + LhsEval lhsEval(lhs); + + Index n = lhs.outerSize(); +#ifdef EIGEN_HAS_OPENMP + Eigen::initParallel(); + Index threads = Eigen::nbThreads(); +#endif + + for(Index c=0; c1 && lhsEval.nonZerosEstimate() > 20000) + { + #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads) + for(Index i=0; i let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators +// template +// struct ScalarBinaryOpTraits > +// { +// enum { +// Defined = 1 +// }; +// typedef typename CwiseUnaryOp, T2>::PlainObject ReturnType; +// }; + +template +struct sparse_time_dense_product_impl +{ + typedef internal::remove_all_t Lhs; + typedef internal::remove_all_t Rhs; + typedef internal::remove_all_t Res; + typedef evaluator LhsEval; + typedef typename LhsEval::InnerIterator LhsInnerIterator; + static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) + { + LhsEval lhsEval(lhs); + for(Index c=0; c::ReturnType rhs_j(alpha * rhs.coeff(j,c)); + for(LhsInnerIterator it(lhsEval,j); it ;++it) + res.coeffRef(it.index(),c) += it.value() * rhs_j; + } + } + } +}; + +template +struct sparse_time_dense_product_impl +{ + typedef internal::remove_all_t Lhs; + typedef internal::remove_all_t Rhs; + typedef internal::remove_all_t Res; + typedef evaluator LhsEval; + typedef typename LhsEval::InnerIterator LhsInnerIterator; + static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) + { + Index n = lhs.rows(); + LhsEval lhsEval(lhs); + +#ifdef EIGEN_HAS_OPENMP + Eigen::initParallel(); + Index threads = Eigen::nbThreads(); + // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems. + // It basically represents the minimal amount of work to be done to be worth it. + if(threads>1 && lhsEval.nonZerosEstimate()*rhs.cols() > 20000) + { + #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads) + for(Index i=0; i +struct sparse_time_dense_product_impl +{ + typedef internal::remove_all_t Lhs; + typedef internal::remove_all_t Rhs; + typedef internal::remove_all_t Res; + typedef typename evaluator::InnerIterator LhsInnerIterator; + static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) + { + evaluator lhsEval(lhs); + for(Index j=0; j +inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) +{ + sparse_time_dense_product_impl::run(lhs, rhs, res, alpha); +} + +} // end namespace internal + +namespace internal { + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(lhs); + RhsNested rhsNested(rhs); + internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha); + } +}; + +template +struct generic_product_impl + : generic_product_impl +{}; + +template +struct generic_product_impl + : generic_product_impl_base > +{ + typedef typename Product::Scalar Scalar; + + template + static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) + { + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(lhs); + RhsNested rhsNested(rhs); + + // transpose everything + Transpose dstT(dst); + internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); + } +}; + +template +struct generic_product_impl + : generic_product_impl +{}; + +template +struct sparse_dense_outer_product_evaluator +{ +protected: + typedef std::conditional_t Lhs1; + typedef std::conditional_t ActualRhs; + typedef Product ProdXprType; + + // if the actual left-hand side is a dense vector, + // then build a sparse-view so that we can seamlessly iterate over it. + typedef std::conditional_t::StorageKind,Sparse>::value, + Lhs1, SparseView > ActualLhs; + typedef std::conditional_t::StorageKind,Sparse>::value, + Lhs1 const&, SparseView > LhsArg; + + typedef evaluator LhsEval; + typedef evaluator RhsEval; + typedef typename evaluator::InnerIterator LhsIterator; + typedef typename ProdXprType::Scalar Scalar; + +public: + enum { + Flags = NeedToTranspose ? RowMajorBit : 0, + CoeffReadCost = HugeCost + }; + + class InnerIterator : public LhsIterator + { + public: + InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer) + : LhsIterator(xprEval.m_lhsXprImpl, 0), + m_outer(outer), + m_empty(false), + m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits::StorageKind() )) + {} + + EIGEN_STRONG_INLINE Index outer() const { return m_outer; } + EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); } + EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; } + + EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; } + EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); } + + protected: + Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const + { + return rhs.coeff(outer); + } + + Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse()) + { + typename RhsEval::InnerIterator it(rhs, outer); + if (it && it.index()==0 && it.value()!=Scalar(0)) + return it.value(); + m_empty = true; + return Scalar(0); + } + + Index m_outer; + bool m_empty; + Scalar m_factor; + }; + + sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs) + : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + // transpose case + sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs) + : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + +protected: + const LhsArg m_lhs; + evaluator m_lhsXprImpl; + evaluator m_rhsXprImpl; +}; + +// sparse * dense outer product +template +struct product_evaluator, OuterProduct, SparseShape, DenseShape> + : sparse_dense_outer_product_evaluator +{ + typedef sparse_dense_outer_product_evaluator Base; + + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + + explicit product_evaluator(const XprType& xpr) + : Base(xpr.lhs(), xpr.rhs()) + {} + +}; + +template +struct product_evaluator, OuterProduct, DenseShape, SparseShape> + : sparse_dense_outer_product_evaluator +{ + typedef sparse_dense_outer_product_evaluator Base; + + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + + explicit product_evaluator(const XprType& xpr) + : Base(xpr.lhs(), xpr.rhs()) + {} + +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSEDENSEPRODUCT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h new file mode 100644 index 0000000..4dc9502 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h @@ -0,0 +1,140 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_DIAGONAL_PRODUCT_H +#define EIGEN_SPARSE_DIAGONAL_PRODUCT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// The product of a diagonal matrix with a sparse matrix can be easily +// implemented using expression template. +// We have two consider very different cases: +// 1 - diag * row-major sparse +// => each inner vector <=> scalar * sparse vector product +// => so we can reuse CwiseUnaryOp::InnerIterator +// 2 - diag * col-major sparse +// => each inner vector <=> densevector * sparse vector cwise product +// => again, we can reuse specialization of CwiseBinaryOp::InnerIterator +// for that particular case +// The two other cases are symmetric. + +namespace internal { + +enum { + SDP_AsScalarProduct, + SDP_AsCwiseProduct +}; + +template +struct sparse_diagonal_product_evaluator; + +template +struct product_evaluator, ProductTag, DiagonalShape, SparseShape> + : public sparse_diagonal_product_evaluator +{ + typedef Product XprType; + enum { CoeffReadCost = HugeCost, Flags = Rhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags + + typedef sparse_diagonal_product_evaluator Base; + explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {} +}; + +template +struct product_evaluator, ProductTag, SparseShape, DiagonalShape> + : public sparse_diagonal_product_evaluator, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> +{ + typedef Product XprType; + enum { CoeffReadCost = HugeCost, Flags = Lhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags + + typedef sparse_diagonal_product_evaluator, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> Base; + explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal().transpose()) {} +}; + +template +struct sparse_diagonal_product_evaluator +{ +protected: + typedef typename evaluator::InnerIterator SparseXprInnerIterator; + typedef typename SparseXprType::Scalar Scalar; + +public: + class InnerIterator : public SparseXprInnerIterator + { + public: + InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer) + : SparseXprInnerIterator(xprEval.m_sparseXprImpl, outer), + m_coeff(xprEval.m_diagCoeffImpl.coeff(outer)) + {} + + EIGEN_STRONG_INLINE Scalar value() const { return m_coeff * SparseXprInnerIterator::value(); } + protected: + typename DiagonalCoeffType::Scalar m_coeff; + }; + + sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagonalCoeffType &diagCoeff) + : m_sparseXprImpl(sparseXpr), m_diagCoeffImpl(diagCoeff) + {} + + Index nonZerosEstimate() const { return m_sparseXprImpl.nonZerosEstimate(); } + +protected: + evaluator m_sparseXprImpl; + evaluator m_diagCoeffImpl; +}; + + +template +struct sparse_diagonal_product_evaluator +{ + typedef typename SparseXprType::Scalar Scalar; + typedef typename SparseXprType::StorageIndex StorageIndex; + + typedef typename nested_eval::type DiagCoeffNested; + + class InnerIterator + { + typedef typename evaluator::InnerIterator SparseXprIter; + public: + InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer) + : m_sparseIter(xprEval.m_sparseXprEval, outer), m_diagCoeffNested(xprEval.m_diagCoeffNested) + {} + + inline Scalar value() const { return m_sparseIter.value() * m_diagCoeffNested.coeff(index()); } + inline StorageIndex index() const { return m_sparseIter.index(); } + inline Index outer() const { return m_sparseIter.outer(); } + inline Index col() const { return SparseXprType::IsRowMajor ? m_sparseIter.index() : m_sparseIter.outer(); } + inline Index row() const { return SparseXprType::IsRowMajor ? m_sparseIter.outer() : m_sparseIter.index(); } + + EIGEN_STRONG_INLINE InnerIterator& operator++() { ++m_sparseIter; return *this; } + inline operator bool() const { return m_sparseIter; } + + protected: + SparseXprIter m_sparseIter; + DiagCoeffNested m_diagCoeffNested; + }; + + sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagCoeffType &diagCoeff) + : m_sparseXprEval(sparseXpr), m_diagCoeffNested(diagCoeff) + {} + + Index nonZerosEstimate() const { return m_sparseXprEval.nonZerosEstimate(); } + +protected: + evaluator m_sparseXprEval; + DiagCoeffNested m_diagCoeffNested; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseDot.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseDot.h new file mode 100644 index 0000000..a45ecfa --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseDot.h @@ -0,0 +1,100 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_DOT_H +#define EIGEN_SPARSE_DOT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +template +typename internal::traits::Scalar +SparseMatrixBase::dot(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + eigen_assert(size() == other.size()); + eigen_assert(other.size()>0 && "you are using a non initialized vector"); + + internal::evaluator thisEval(derived()); + typename internal::evaluator::InnerIterator i(thisEval, 0); + Scalar res(0); + while (i) + { + res += numext::conj(i.value()) * other.coeff(i.index()); + ++i; + } + return res; +} + +template +template +typename internal::traits::Scalar +SparseMatrixBase::dot(const SparseMatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) + EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + eigen_assert(size() == other.size()); + + internal::evaluator thisEval(derived()); + typename internal::evaluator::InnerIterator i(thisEval, 0); + + internal::evaluator otherEval(other.derived()); + typename internal::evaluator::InnerIterator j(otherEval, 0); + + Scalar res(0); + while (i && j) + { + if (i.index()==j.index()) + { + res += numext::conj(i.value()) * j.value(); + ++i; ++j; + } + else if (i.index() +inline typename NumTraits::Scalar>::Real +SparseMatrixBase::squaredNorm() const +{ + return numext::real((*this).cwiseAbs2().sum()); +} + +template +inline typename NumTraits::Scalar>::Real +SparseMatrixBase::norm() const +{ + using std::sqrt; + return sqrt(squaredNorm()); +} + +template +inline typename NumTraits::Scalar>::Real +SparseMatrixBase::blueNorm() const +{ + return internal::blueNorm_impl(*this); +} +} // end namespace Eigen + +#endif // EIGEN_SPARSE_DOT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseFuzzy.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseFuzzy.h new file mode 100644 index 0000000..dcfdde9 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseFuzzy.h @@ -0,0 +1,31 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_FUZZY_H +#define EIGEN_SPARSE_FUZZY_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +template +bool SparseMatrixBase::isApprox(const SparseMatrixBase& other, const RealScalar &prec) const +{ + const typename internal::nested_eval::type actualA(derived()); + std::conditional_t::type, + const PlainObject> actualB(other.derived()); + + return (actualA - actualB).squaredNorm() <= prec * prec * numext::mini(actualA.squaredNorm(), actualB.squaredNorm()); +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_FUZZY_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMap.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMap.h new file mode 100644 index 0000000..0ee3813 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMap.h @@ -0,0 +1,308 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_MAP_H +#define EIGEN_SPARSE_MAP_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct traits, Options, StrideType> > + : public traits > +{ + typedef SparseMatrix PlainObjectType; + typedef traits TraitsBase; + enum { + Flags = TraitsBase::Flags & (~NestByRefBit) + }; +}; + +template +struct traits, Options, StrideType> > + : public traits > +{ + typedef SparseMatrix PlainObjectType; + typedef traits TraitsBase; + enum { + Flags = TraitsBase::Flags & (~ (NestByRefBit | LvalueBit)) + }; +}; + +} // end namespace internal + +template::has_write_access ? WriteAccessors : ReadOnlyAccessors +> class SparseMapBase; + +/** \ingroup SparseCore_Module + * class SparseMapBase + * \brief Common base class for Map and Ref instance of sparse matrix and vector. + */ +template +class SparseMapBase + : public SparseCompressedBase +{ + public: + typedef SparseCompressedBase Base; + typedef typename Base::Scalar Scalar; + typedef typename Base::StorageIndex StorageIndex; + enum { IsRowMajor = Base::IsRowMajor }; + using Base::operator=; + protected: + + typedef std::conditional_t< + bool(internal::is_lvalue::value), + Scalar *, const Scalar *> ScalarPointer; + typedef std::conditional_t< + bool(internal::is_lvalue::value), + StorageIndex *, const StorageIndex *> IndexPointer; + + Index m_outerSize; + Index m_innerSize; + Array m_zero_nnz; + IndexPointer m_outerIndex; + IndexPointer m_innerIndices; + ScalarPointer m_values; + IndexPointer m_innerNonZeros; + + public: + + /** \copydoc SparseMatrixBase::rows() */ + inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } + /** \copydoc SparseMatrixBase::cols() */ + inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } + /** \copydoc SparseMatrixBase::innerSize() */ + inline Index innerSize() const { return m_innerSize; } + /** \copydoc SparseMatrixBase::outerSize() */ + inline Index outerSize() const { return m_outerSize; } + /** \copydoc SparseCompressedBase::nonZeros */ + inline Index nonZeros() const { return m_zero_nnz[1]; } + + /** \copydoc SparseCompressedBase::isCompressed */ + bool isCompressed() const { return m_innerNonZeros==0; } + + //---------------------------------------- + // direct access interface + /** \copydoc SparseMatrix::valuePtr */ + inline const Scalar* valuePtr() const { return m_values; } + /** \copydoc SparseMatrix::innerIndexPtr */ + inline const StorageIndex* innerIndexPtr() const { return m_innerIndices; } + /** \copydoc SparseMatrix::outerIndexPtr */ + inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } + /** \copydoc SparseMatrix::innerNonZeroPtr */ + inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } + //---------------------------------------- + + /** \copydoc SparseMatrix::coeff */ + inline Scalar coeff(Index row, Index col) const + { + const Index outer = IsRowMajor ? row : col; + const Index inner = IsRowMajor ? col : row; + + Index start = m_outerIndex[outer]; + Index end = isCompressed() ? m_outerIndex[outer+1] : start + m_innerNonZeros[outer]; + if (start==end) + return Scalar(0); + else if (end>0 && inner==m_innerIndices[end-1]) + return m_values[end-1]; + // ^^ optimization: let's first check if it is the last coefficient + // (very common in high level algorithms) + + const StorageIndex* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner); + const Index id = r-&m_innerIndices[0]; + return ((*r==inner) && (id(nnz)), m_outerIndex(outerIndexPtr), + m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(innerNonZerosPtr) + {} + + // for vectors + inline SparseMapBase(Index size, Index nnz, IndexPointer innerIndexPtr, ScalarPointer valuePtr) + : m_outerSize(1), m_innerSize(size), m_zero_nnz(0,internal::convert_index(nnz)), m_outerIndex(m_zero_nnz.data()), + m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(0) + {} + + /** Empty destructor */ + inline ~SparseMapBase() {} + + protected: + inline SparseMapBase() {} +}; + +/** \ingroup SparseCore_Module + * class SparseMapBase + * \brief Common base class for writable Map and Ref instance of sparse matrix and vector. + */ +template +class SparseMapBase + : public SparseMapBase +{ + typedef MapBase ReadOnlyMapBase; + + public: + typedef SparseMapBase Base; + typedef typename Base::Scalar Scalar; + typedef typename Base::StorageIndex StorageIndex; + enum { IsRowMajor = Base::IsRowMajor }; + + using Base::operator=; + + public: + + //---------------------------------------- + // direct access interface + using Base::valuePtr; + using Base::innerIndexPtr; + using Base::outerIndexPtr; + using Base::innerNonZeroPtr; + /** \copydoc SparseMatrix::valuePtr */ + inline Scalar* valuePtr() { return Base::m_values; } + /** \copydoc SparseMatrix::innerIndexPtr */ + inline StorageIndex* innerIndexPtr() { return Base::m_innerIndices; } + /** \copydoc SparseMatrix::outerIndexPtr */ + inline StorageIndex* outerIndexPtr() { return Base::m_outerIndex; } + /** \copydoc SparseMatrix::innerNonZeroPtr */ + inline StorageIndex* innerNonZeroPtr() { return Base::m_innerNonZeros; } + //---------------------------------------- + + /** \copydoc SparseMatrix::coeffRef */ + inline Scalar& coeffRef(Index row, Index col) + { + const Index outer = IsRowMajor ? row : col; + const Index inner = IsRowMajor ? col : row; + + Index start = Base::m_outerIndex[outer]; + Index end = Base::isCompressed() ? Base::m_outerIndex[outer+1] : start + Base::m_innerNonZeros[outer]; + eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); + eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient"); + StorageIndex* r = std::lower_bound(&Base::m_innerIndices[start],&Base::m_innerIndices[end],inner); + const Index id = r - &Base::m_innerIndices[0]; + eigen_assert((*r==inner) && (id(Base::m_values)[id]; + } + + inline SparseMapBase(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr, + Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0) + : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr) + {} + + // for vectors + inline SparseMapBase(Index size, Index nnz, StorageIndex* innerIndexPtr, Scalar* valuePtr) + : Base(size, nnz, innerIndexPtr, valuePtr) + {} + + /** Empty destructor */ + inline ~SparseMapBase() {} + + protected: + inline SparseMapBase() {} +}; + +/** \ingroup SparseCore_Module + * + * \brief Specialization of class Map for SparseMatrix-like storage. + * + * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix. + * + * \sa class Map, class SparseMatrix, class Ref + */ +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +class Map, Options, StrideType> + : public SparseMapBase, Options, StrideType> > +#else +template +class Map + : public SparseMapBase +#endif +{ + public: + typedef SparseMapBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Map) + enum { IsRowMajor = Base::IsRowMajor }; + + public: + + /** Constructs a read-write Map to a sparse matrix of size \a rows x \a cols, containing \a nnz non-zero coefficients, + * stored as a sparse format as defined by the pointers \a outerIndexPtr, \a innerIndexPtr, and \a valuePtr. + * If the optional parameter \a innerNonZerosPtr is the null pointer, then a standard compressed format is assumed. + * The inner indices must be sorted appropriately. + * + * This constructor is available only if \c SparseMatrixType is non-const. + * + * More details on the expected storage schemes are given in the \ref TutorialSparse "manual pages". + */ + inline Map(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, + StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0) + : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr) + {} +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** Empty destructor */ + inline ~Map() {} +}; + +template +class Map, Options, StrideType> + : public SparseMapBase, Options, StrideType> > +{ + public: + typedef SparseMapBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Map) + enum { IsRowMajor = Base::IsRowMajor }; + + public: +#endif + /** This is the const version of the above constructor. + * + * This constructor is available only if \c SparseMatrixType is const, e.g.: + * \code Map > \endcode + */ + inline Map(Index rows, Index cols, Index nnz, const StorageIndex* outerIndexPtr, + const StorageIndex* innerIndexPtr, const Scalar* valuePtr, const StorageIndex* innerNonZerosPtr = 0) + : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr) + {} + + /** Empty destructor */ + inline ~Map() {} +}; + +namespace internal { + +template +struct evaluator, Options, StrideType> > + : evaluator, Options, StrideType> > > +{ + typedef evaluator, Options, StrideType> > > Base; + typedef Map, Options, StrideType> XprType; + evaluator() : Base() {} + explicit evaluator(const XprType &mat) : Base(mat) {} +}; + +template +struct evaluator, Options, StrideType> > + : evaluator, Options, StrideType> > > +{ + typedef evaluator, Options, StrideType> > > Base; + typedef Map, Options, StrideType> XprType; + evaluator() : Base() {} + explicit evaluator(const XprType &mat) : Base(mat) {} +}; + +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_MAP_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMatrix.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMatrix.h new file mode 100644 index 0000000..855a5a6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMatrix.h @@ -0,0 +1,1912 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEMATRIX_H +#define EIGEN_SPARSEMATRIX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup SparseCore_Module + * + * \class SparseMatrix + * + * \brief A versatible sparse matrix representation + * + * This class implements a more versatile variants of the common \em compressed row/column storage format. + * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. + * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra + * space in between the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero + * can be done with limited memory reallocation and copies. + * + * A call to the function makeCompressed() turns the matrix into the standard \em compressed format + * compatible with many library. + * + * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". + * + * \tparam Scalar_ the scalar type, i.e. the type of the coefficients + * \tparam Options_ Union of bit flags controlling the storage scheme. Currently the only possibility + * is ColMajor or RowMajor. The default is 0 which means column-major. + * \tparam StorageIndex_ the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. + * + * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int), + * whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index. + * Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. + */ + +namespace internal { +template +struct traits > +{ + typedef Scalar_ Scalar; + typedef StorageIndex_ StorageIndex; + typedef Sparse StorageKind; + typedef MatrixXpr XprKind; + enum { + RowsAtCompileTime = Dynamic, + ColsAtCompileTime = Dynamic, + MaxRowsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic, + Flags = Options_ | NestByRefBit | LvalueBit | CompressedAccessBit, + SupportedAccessPatterns = InnerRandomAccessPattern + }; +}; + +template +struct traits, DiagIndex> > +{ + typedef SparseMatrix MatrixType; + typedef typename ref_selector::type MatrixTypeNested; + typedef std::remove_reference_t MatrixTypeNested_; + + typedef Scalar_ Scalar; + typedef Dense StorageKind; + typedef StorageIndex_ StorageIndex; + typedef MatrixXpr XprKind; + + enum { + RowsAtCompileTime = Dynamic, + ColsAtCompileTime = 1, + MaxRowsAtCompileTime = Dynamic, + MaxColsAtCompileTime = 1, + Flags = LvalueBit + }; +}; + +template +struct traits, DiagIndex> > + : public traits, DiagIndex> > +{ + enum { + Flags = 0 + }; +}; + +template +struct sparse_reserve_op { + EIGEN_DEVICE_FUNC sparse_reserve_op(Index begin, Index end, Index size) { + Index range = numext::mini(end - begin, size); + m_begin = begin; + m_end = begin + range; + m_val = StorageIndex(size / range); + m_remainder = StorageIndex(size % range); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex operator()(IndexType i) const { + if ((i >= m_begin) && (i < m_end)) + return m_val + ((i - m_begin) < m_remainder ? 1 : 0); + else + return 0; + } + StorageIndex m_val, m_remainder; + Index m_begin, m_end; +}; + +template +struct functor_traits> { + enum { Cost = 1, PacketAccess = false, IsRepeatable = true }; +}; + +} // end namespace internal + +template +class SparseMatrix + : public SparseCompressedBase > +{ + typedef SparseCompressedBase Base; + using Base::convert_index; + friend class SparseVector; + template + friend struct internal::Assignment; + public: + using Base::isCompressed; + using Base::nonZeros; + EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) + using Base::operator+=; + using Base::operator-=; + + typedef Eigen::Map> Map; + typedef Diagonal DiagonalReturnType; + typedef Diagonal ConstDiagonalReturnType; + typedef typename Base::InnerIterator InnerIterator; + typedef typename Base::ReverseInnerIterator ReverseInnerIterator; + + + using Base::IsRowMajor; + typedef internal::CompressedStorage Storage; + enum { + Options = Options_ + }; + + typedef typename Base::IndexVector IndexVector; + typedef typename Base::ScalarVector ScalarVector; + protected: + typedef SparseMatrix TransposedSparseMatrix; + + Index m_outerSize; + Index m_innerSize; + StorageIndex* m_outerIndex; + StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed + Storage m_data; + + public: + + /** \returns the number of rows of the matrix */ + inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } + /** \returns the number of columns of the matrix */ + inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } + + /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ + inline Index innerSize() const { return m_innerSize; } + /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ + inline Index outerSize() const { return m_outerSize; } + + /** \returns a const pointer to the array of values. + * This function is aimed at interoperability with other libraries. + * \sa innerIndexPtr(), outerIndexPtr() */ + inline const Scalar* valuePtr() const { return m_data.valuePtr(); } + /** \returns a non-const pointer to the array of values. + * This function is aimed at interoperability with other libraries. + * \sa innerIndexPtr(), outerIndexPtr() */ + inline Scalar* valuePtr() { return m_data.valuePtr(); } + + /** \returns a const pointer to the array of inner indices. + * This function is aimed at interoperability with other libraries. + * \sa valuePtr(), outerIndexPtr() */ + inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } + /** \returns a non-const pointer to the array of inner indices. + * This function is aimed at interoperability with other libraries. + * \sa valuePtr(), outerIndexPtr() */ + inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } + + /** \returns a const pointer to the array of the starting positions of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \sa valuePtr(), innerIndexPtr() */ + inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } + /** \returns a non-const pointer to the array of the starting positions of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \sa valuePtr(), innerIndexPtr() */ + inline StorageIndex* outerIndexPtr() { return m_outerIndex; } + + /** \returns a const pointer to the array of the number of non zeros of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \warning it returns the null pointer 0 in compressed mode */ + inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } + /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. + * This function is aimed at interoperability with other libraries. + * \warning it returns the null pointer 0 in compressed mode */ + inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; } + + /** \internal */ + inline Storage& data() { return m_data; } + /** \internal */ + inline const Storage& data() const { return m_data; } + + /** \returns the value of the matrix at position \a i, \a j + * This function returns Scalar(0) if the element is an explicit \em zero */ + inline Scalar coeff(Index row, Index col) const + { + eigen_assert(row>=0 && row=0 && col=0 && row=0 && col= start && "you probably called coeffRef on a non finalized matrix"); + Index dst = start == end ? end : m_data.searchLowerIndex(start, end, inner); + if (dst == end) { + Index capacity = m_outerIndex[outer + 1] - end; + if (capacity > 0) { + // implies uncompressed: push to back of vector + m_innerNonZeros[outer]++; + m_data.index(end) = StorageIndex(inner); + m_data.value(end) = Scalar(0); + return m_data.value(end); + } + } + if ((dst < end) && (m_data.index(dst) == inner)) + // this coefficient exists, return a refernece to it + return m_data.value(dst); + else + // insertion will require reconfiguring the buffer + return insertAtByOuterInner(outer, inner, dst); + } + + /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col. + * The non zero coefficient must \b not already exist. + * + * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed + * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier. + * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be + * inserted by increasing outer-indices. + * + * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first + * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector. + * + * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1) + * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion. + * + */ + inline Scalar& insert(Index row, Index col); + + public: + + /** Removes all non zeros but keep allocated memory + * + * This function does not free the currently allocated memory. To release as much as memory as possible, + * call \code mat.data().squeeze(); \endcode after resizing it. + * + * \sa resize(Index,Index), data() + */ + inline void setZero() + { + m_data.clear(); + std::fill_n(m_outerIndex, m_outerSize + 1, StorageIndex(0)); + if(m_innerNonZeros) { + std::fill_n(m_innerNonZeros, m_outerSize, StorageIndex(0)); + } + } + + /** Preallocates \a reserveSize non zeros. + * + * Precondition: the matrix must be in compressed mode. */ + inline void reserve(Index reserveSize) + { + eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); + m_data.reserve(reserveSize); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. + * + * This function turns the matrix in non-compressed mode. + * + * The type \c SizesType must expose the following interface: + \code + typedef value_type; + const value_type& operator[](i) const; + \endcode + * for \c i in the [0,this->outerSize()[ range. + * Typical choices include std::vector, Eigen::VectorXi, Eigen::VectorXi::Constant, etc. + */ + template + inline void reserve(const SizesType& reserveSizes); + #else + template + inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = + typename SizesType::value_type()) + { + EIGEN_UNUSED_VARIABLE(enableif); + reserveInnerVectors(reserveSizes); + } + #endif // EIGEN_PARSED_BY_DOXYGEN + protected: + template + inline void reserveInnerVectors(const SizesType& reserveSizes) + { + if(isCompressed()) + { + Index totalReserveSize = 0; + for (Index j = 0; j < m_outerSize; ++j) totalReserveSize += internal::convert_index(reserveSizes[j]); + + // if reserveSizes is empty, don't do anything! + if (totalReserveSize == 0) return; + + // turn the matrix into non-compressed mode + m_innerNonZeros = internal::conditional_aligned_new_auto(m_outerSize); + + // temporarily use m_innerSizes to hold the new starting points. + StorageIndex* newOuterIndex = m_innerNonZeros; + + Index count = 0; + for(Index j=0; j(count); + Index reserveSize = internal::convert_index(reserveSizes[j]); + count += reserveSize + internal::convert_index(m_outerIndex[j+1]-m_outerIndex[j]); + } + + m_data.reserve(totalReserveSize); + StorageIndex previousOuterIndex = m_outerIndex[m_outerSize]; + for(Index j=m_outerSize-1; j>=0; --j) + { + StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j]; + StorageIndex begin = m_outerIndex[j]; + StorageIndex end = begin + innerNNZ; + StorageIndex target = newOuterIndex[j]; + internal::smart_memmove(innerIndexPtr() + begin, innerIndexPtr() + end, innerIndexPtr() + target); + internal::smart_memmove(valuePtr() + begin, valuePtr() + end, valuePtr() + target); + previousOuterIndex = m_outerIndex[j]; + m_outerIndex[j] = newOuterIndex[j]; + m_innerNonZeros[j] = innerNNZ; + } + if(m_outerSize>0) + m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + internal::convert_index(reserveSizes[m_outerSize-1]); + + m_data.resize(m_outerIndex[m_outerSize]); + } + else + { + StorageIndex* newOuterIndex = internal::conditional_aligned_new_auto(m_outerSize + 1); + + Index count = 0; + for(Index j=0; j(count); + Index alreadyReserved = internal::convert_index(m_outerIndex[j+1] - m_outerIndex[j] - m_innerNonZeros[j]); + Index reserveSize = internal::convert_index(reserveSizes[j]); + Index toReserve = numext::maxi(reserveSize, alreadyReserved); + count += toReserve + internal::convert_index(m_innerNonZeros[j]); + } + newOuterIndex[m_outerSize] = internal::convert_index(count); + + m_data.resize(count); + for(Index j=m_outerSize-1; j>=0; --j) + { + StorageIndex innerNNZ = m_innerNonZeros[j]; + StorageIndex begin = m_outerIndex[j]; + StorageIndex target = newOuterIndex[j]; + m_data.moveChunk(begin, target, innerNNZ); + } + + std::swap(m_outerIndex, newOuterIndex); + internal::conditional_aligned_delete_auto(newOuterIndex, m_outerSize + 1); + } + + } + public: + + //--- low level purely coherent filling --- + + /** \internal + * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: + * - the nonzero does not already exist + * - the new coefficient is the last one according to the storage order + * + * Before filling a given inner vector you must call the statVec(Index) function. + * + * After an insertion session, you should call the finalize() function. + * + * \sa insert, insertBackByOuterInner, startVec */ + inline Scalar& insertBack(Index row, Index col) + { + return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); + } + + /** \internal + * \sa insertBack, startVec */ + inline Scalar& insertBackByOuterInner(Index outer, Index inner) + { + eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); + eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)(m_data.size()); + Index i = m_outerSize; + // find the last filled column + while (i>=0 && m_outerIndex[i]==0) + --i; + ++i; + while (i<=m_outerSize) + { + m_outerIndex[i] = size; + ++i; + } + } + } + + // remove outer vectors j, j+1 ... j+num-1 and resize the matrix + void removeOuterVectors(Index j, Index num = 1) { + eigen_assert(num >= 0 && j >= 0 && j + num <= m_outerSize && "Invalid parameters"); + + const Index newRows = IsRowMajor ? m_outerSize - num : rows(); + const Index newCols = IsRowMajor ? cols() : m_outerSize - num; + + const Index begin = j + num; + const Index end = m_outerSize; + const Index target = j; + + // if the removed vectors are not empty, uncompress the matrix + if (m_outerIndex[j + num] > m_outerIndex[j]) uncompress(); + + // shift m_outerIndex and m_innerNonZeros [num] to the left + internal::smart_memmove(m_outerIndex + begin, m_outerIndex + end + 1, m_outerIndex + target); + if (!isCompressed()) + internal::smart_memmove(m_innerNonZeros + begin, m_innerNonZeros + end, m_innerNonZeros + target); + + // if m_outerIndex[0] > 0, shift the data within the first vector while it is easy to do so + if (m_outerIndex[0] > StorageIndex(0)) { + uncompress(); + const Index from = internal::convert_index(m_outerIndex[0]); + const Index to = Index(0); + const Index chunkSize = internal::convert_index(m_innerNonZeros[0]); + m_data.moveChunk(from, to, chunkSize); + m_outerIndex[0] = StorageIndex(0); + } + + // truncate the matrix to the smaller size + conservativeResize(newRows, newCols); + } + + // insert empty outer vectors at indices j, j+1 ... j+num-1 and resize the matrix + void insertEmptyOuterVectors(Index j, Index num = 1) { + EIGEN_USING_STD(fill_n); + eigen_assert(num >= 0 && j >= 0 && j < m_outerSize && "Invalid parameters"); + + const Index newRows = IsRowMajor ? m_outerSize + num : rows(); + const Index newCols = IsRowMajor ? cols() : m_outerSize + num; + + const Index begin = j; + const Index end = m_outerSize; + const Index target = j + num; + + // expand the matrix to the larger size + conservativeResize(newRows, newCols); + + // shift m_outerIndex and m_innerNonZeros [num] to the right + internal::smart_memmove(m_outerIndex + begin, m_outerIndex + end + 1, m_outerIndex + target); + // m_outerIndex[begin] == m_outerIndex[target], set all indices in this range to same value + fill_n(m_outerIndex + begin, num, m_outerIndex[begin]); + + if (!isCompressed()) { + internal::smart_memmove(m_innerNonZeros + begin, m_innerNonZeros + end, m_innerNonZeros + target); + // set the nonzeros of the newly inserted vectors to 0 + fill_n(m_innerNonZeros + begin, num, StorageIndex(0)); + } + } + + template + void setFromTriplets(const InputIterators& begin, const InputIterators& end); + + template + void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); + + template + void collapseDuplicates(DenseBase& wi, DupFunctor dup_func = DupFunctor()); + + template + void setFromSortedTriplets(const InputIterators& begin, const InputIterators& end); + + template + void setFromSortedTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); + + template + void insertFromTriplets(const InputIterators& begin, const InputIterators& end); + + template + void insertFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); + + template + void insertFromSortedTriplets(const InputIterators& begin, const InputIterators& end); + + template + void insertFromSortedTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); + + //--- + + /** \internal + * same as insert(Index,Index) except that the indices are given relative to the storage order */ + Scalar& insertByOuterInner(Index j, Index i) + { + Index start = m_outerIndex[j]; + Index end = isCompressed() ? m_outerIndex[j + 1] : start + m_innerNonZeros[j]; + Index dst = start == end ? end : m_data.searchLowerIndex(start, end, i); + if (dst == end) { + Index capacity = m_outerIndex[j + 1] - end; + if (capacity > 0) { + // implies uncompressed: push to back of vector + m_innerNonZeros[j]++; + m_data.index(end) = StorageIndex(i); + m_data.value(end) = Scalar(0); + return m_data.value(end); + } + } + eigen_assert((dst == end || m_data.index(dst) != i) && + "you cannot insert an element that already exists, you must call coeffRef to this end"); + return insertAtByOuterInner(j, i, dst); + } + + /** Turns the matrix into the \em compressed format. + */ + void makeCompressed() + { + if (isCompressed()) return; + + eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0); + + StorageIndex start = m_outerIndex[1]; + m_outerIndex[1] = m_innerNonZeros[0]; + // try to move fewer, larger contiguous chunks + Index copyStart = start; + Index copyTarget = m_innerNonZeros[0]; + for (Index j = 1; j < m_outerSize; j++) + { + StorageIndex end = start + m_innerNonZeros[j]; + StorageIndex nextStart = m_outerIndex[j + 1]; + // dont forget to move the last chunk! + bool breakUpCopy = (end != nextStart) || (j == m_outerSize - 1); + if (breakUpCopy) + { + Index chunkSize = end - copyStart; + if(chunkSize > 0) m_data.moveChunk(copyStart, copyTarget, chunkSize); + copyStart = nextStart; + copyTarget += chunkSize; + } + start = nextStart; + m_outerIndex[j + 1] = m_outerIndex[j] + m_innerNonZeros[j]; + } + m_data.resize(m_outerIndex[m_outerSize]); + + // release as much memory as possible + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + m_innerNonZeros = 0; + m_data.squeeze(); + } + + /** Turns the matrix into the uncompressed mode */ + void uncompress() + { + if (!isCompressed()) return; + m_innerNonZeros = internal::conditional_aligned_new_auto(m_outerSize); + if (m_outerIndex[m_outerSize] == 0) + std::fill_n(m_innerNonZeros, m_outerSize, StorageIndex(0)); + else + for (Index j = 0; j < m_outerSize; j++) m_innerNonZeros[j] = m_outerIndex[j + 1] - m_outerIndex[j]; + } + + /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerance \a epsilon */ + void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) + { + prune(default_prunning_func(reference,epsilon)); + } + + /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. + * The functor type \a KeepFunc must implement the following function: + * \code + * bool operator() (const Index& row, const Index& col, const Scalar& value) const; + * \endcode + * \sa prune(Scalar,RealScalar) + */ + template + void prune(const KeepFunc& keep = KeepFunc()) + { + StorageIndex k = 0; + for(Index j=0; j( + m_outerIndex, newOuterSize + 1, m_outerSize + 1); + + if (!isCompressed()) + m_innerNonZeros = internal::conditional_aligned_realloc_new_auto( + m_innerNonZeros, newOuterSize, m_outerSize); + + if (outerChange > 0) { + StorageIndex lastIdx = m_outerSize == 0 ? StorageIndex(0) : m_outerIndex[m_outerSize]; + std::fill_n(m_outerIndex + m_outerSize, outerChange + 1, lastIdx); + + if (!isCompressed()) std::fill_n(m_innerNonZeros + m_outerSize, outerChange, StorageIndex(0)); + } + } + m_outerSize = newOuterSize; + + if (innerChange < 0) { + for (Index j = 0; j < m_outerSize; j++) { + Index start = m_outerIndex[j]; + Index end = isCompressed() ? m_outerIndex[j + 1] : start + m_innerNonZeros[j]; + Index lb = m_data.searchLowerIndex(start, end, newInnerSize); + if (lb != end) { + uncompress(); + m_innerNonZeros[j] = StorageIndex(lb - start); + } + } + } + m_innerSize = newInnerSize; + + Index newSize = m_outerIndex[m_outerSize]; + eigen_assert(newSize <= m_data.size()); + m_data.resize(newSize); + } + + /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero. + * + * This function does not free the currently allocated memory. To release as much as memory as possible, + * call \code mat.data().squeeze(); \endcode after resizing it. + * + * \sa reserve(), setZero() + */ + void resize(Index rows, Index cols) + { + const Index outerSize = IsRowMajor ? rows : cols; + m_innerSize = IsRowMajor ? cols : rows; + m_data.clear(); + + if ((m_outerIndex == 0) || (m_outerSize != outerSize)) { + m_outerIndex = internal::conditional_aligned_realloc_new_auto(m_outerIndex, outerSize + 1, m_outerSize + 1); + m_outerSize = outerSize; + } + + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + m_innerNonZeros = 0; + + std::fill_n(m_outerIndex, m_outerSize + 1, StorageIndex(0)); + } + + /** \internal + * Resize the nonzero vector to \a size */ + void resizeNonZeros(Index size) + { + m_data.resize(size); + } + + /** \returns a const expression of the diagonal coefficients. */ + const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); } + + /** \returns a read-write expression of the diagonal coefficients. + * \warning If the diagonal entries are written, then all diagonal + * entries \b must already exist, otherwise an assertion will be raised. + */ + DiagonalReturnType diagonal() { return DiagonalReturnType(*this); } + + /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ + inline SparseMatrix() + : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + resize(0, 0); + } + + /** Constructs a \a rows \c x \a cols empty matrix */ + inline SparseMatrix(Index rows, Index cols) + : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + resize(rows, cols); + } + + /** Constructs a sparse matrix from the sparse expression \a other */ + template + inline SparseMatrix(const SparseMatrixBase& other) + : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator::Flags & RowMajorBit); + if (needToTranspose) + *this = other.derived(); + else + { + #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + #endif + internal::call_assignment_no_alias(*this, other.derived()); + } + } + + /** Constructs a sparse matrix from the sparse selfadjoint view \a other */ + template + inline SparseMatrix(const SparseSelfAdjointView& other) + : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + Base::operator=(other); + } + + inline SparseMatrix(SparseMatrix&& other) : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + *this = other.derived().markAsRValue(); + } + + /** Copy constructor (it performs a deep copy) */ + inline SparseMatrix(const SparseMatrix& other) + : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + *this = other.derived(); + } + + /** \brief Copy constructor with in-place evaluation */ + template + SparseMatrix(const ReturnByValue& other) + : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + initAssignment(other); + other.evalTo(*this); + } + + /** \brief Copy constructor with in-place evaluation */ + template + explicit SparseMatrix(const DiagonalBase& other) + : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) + { + *this = other.derived(); + } + + /** Swaps the content of two sparse matrices of the same type. + * This is a fast operation that simply swaps the underlying pointers and parameters. */ + inline void swap(SparseMatrix& other) + { + //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); + std::swap(m_outerIndex, other.m_outerIndex); + std::swap(m_innerSize, other.m_innerSize); + std::swap(m_outerSize, other.m_outerSize); + std::swap(m_innerNonZeros, other.m_innerNonZeros); + m_data.swap(other.m_data); + } + + /** Sets *this to the identity matrix. + * This function also turns the matrix into compressed mode, and drop any reserved memory. */ + inline void setIdentity() + { + eigen_assert(m_outerSize == m_innerSize && "ONLY FOR SQUARED MATRICES"); + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + m_innerNonZeros = 0; + m_data.resize(m_outerSize); + // is it necessary to squeeze? + m_data.squeeze(); + std::iota(m_outerIndex, m_outerIndex + m_outerSize + 1, StorageIndex(0)); + std::iota(innerIndexPtr(), innerIndexPtr() + m_outerSize, StorageIndex(0)); + std::fill_n(valuePtr(), m_outerSize, Scalar(1)); + } + + inline SparseMatrix& operator=(const SparseMatrix& other) + { + if (other.isRValue()) + { + swap(other.const_cast_derived()); + } + else if(this!=&other) + { + #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + #endif + initAssignment(other); + if(other.isCompressed()) + { + internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex); + m_data = other.m_data; + } + else + { + Base::operator=(other); + } + } + return *this; + } + + inline SparseMatrix& operator=(SparseMatrix&& other) { + return *this = other.derived().markAsRValue(); + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + template + inline SparseMatrix& operator=(const EigenBase& other) + { return Base::operator=(other.derived()); } + + template + inline SparseMatrix& operator=(const Product& other); +#endif // EIGEN_PARSED_BY_DOXYGEN + + template + EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase& other); + +#ifndef EIGEN_NO_IO + friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) + { + EIGEN_DBG_SPARSE( + s << "Nonzero entries:\n"; + if(m.isCompressed()) + { + for (Index i=0; i&>(m); + return s; + } +#endif + + /** Destructor */ + inline ~SparseMatrix() + { + internal::conditional_aligned_delete_auto(m_outerIndex, m_outerSize + 1); + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + } + + /** Overloaded for performance */ + Scalar sum() const; + +# ifdef EIGEN_SPARSEMATRIX_PLUGIN +# include EIGEN_SPARSEMATRIX_PLUGIN +# endif + +protected: + + template + void initAssignment(const Other& other) + { + resize(other.rows(), other.cols()); + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + m_innerNonZeros = 0; + } + + /** \internal + * \sa insert(Index,Index) */ + EIGEN_DEPRECATED EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col); + + /** \internal + * A vector object that is equal to 0 everywhere but v at the position i */ + class SingletonVector + { + StorageIndex m_index; + StorageIndex m_value; + public: + typedef StorageIndex value_type; + SingletonVector(Index i, Index v) + : m_index(convert_index(i)), m_value(convert_index(v)) + {} + + StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; } + }; + + /** \internal + * \sa insert(Index,Index) */ + EIGEN_DEPRECATED EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col); + +public: + /** \internal + * \sa insert(Index,Index) */ + EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) + { + const Index outer = IsRowMajor ? row : col; + const Index inner = IsRowMajor ? col : row; + + eigen_assert(!isCompressed()); + eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); + + Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; + m_data.index(p) = StorageIndex(inner); + m_data.value(p) = Scalar(0); + return m_data.value(p); + } +protected: + struct IndexPosPair { + IndexPosPair(Index a_i, Index a_p) : i(a_i), p(a_p) {} + Index i; + Index p; + }; + + /** \internal assign \a diagXpr to the diagonal of \c *this + * There are different strategies: + * 1 - if *this is overwritten (Func==assign_op) or *this is empty, then we can work treat *this as a dense vector expression. + * 2 - otherwise, for each diagonal coeff, + * 2.a - if it already exists, then we update it, + * 2.b - if the correct position is at the end of the vector, and there is capacity, push to back + * 2.b - otherwise, the insertion requires a data move, record insertion locations and handle in a second pass + * 3 - at the end, if some entries failed to be updated in-place, then we alloc a new buffer, copy each chunk at the right position, and insert the new elements. + */ + template + void assignDiagonal(const DiagXpr diagXpr, const Func& assignFunc) + { + + constexpr StorageIndex kEmptyIndexVal(-1); + typedef typename ScalarVector::AlignedMapType ValueMap; + + Index n = diagXpr.size(); + + const bool overwrite = internal::is_same >::value; + if(overwrite) + { + if((m_outerSize != n) || (m_innerSize != n)) + resize(n, n); + } + + if(m_data.size()==0 || overwrite) + { + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + m_innerNonZeros = 0; + resizeNonZeros(n); + ValueMap valueMap(valuePtr(), n); + std::iota(m_outerIndex, m_outerIndex + n + 1, StorageIndex(0)); + std::iota(innerIndexPtr(), innerIndexPtr() + n, StorageIndex(0)); + valueMap.setZero(); + internal::call_assignment_no_alias(valueMap, diagXpr, assignFunc); + } + else + { + internal::evaluator diaEval(diagXpr); + + ei_declare_aligned_stack_constructed_variable(StorageIndex, tmp, n, 0); + typename IndexVector::AlignedMapType insertionLocations(tmp, n); + insertionLocations.setConstant(kEmptyIndexVal); + + Index deferredInsertions = 0; + Index shift = 0; + + for (Index j = 0; j < n; j++) { + Index begin = m_outerIndex[j]; + Index end = isCompressed() ? m_outerIndex[j + 1] : begin + m_innerNonZeros[j]; + Index capacity = m_outerIndex[j + 1] - end; + Index dst = m_data.searchLowerIndex(begin, end, j); + // the entry exists: update it now + if (dst != end && m_data.index(dst) == StorageIndex(j)) assignFunc.assignCoeff(m_data.value(dst), diaEval.coeff(j)); + // the entry belongs at the back of the vector: push to back + else if (dst == end && capacity > 0) + assignFunc.assignCoeff(insertBackUncompressed(j, j), diaEval.coeff(j)); + // the insertion requires a data move, record insertion location and handle in second pass + else { + insertionLocations.coeffRef(j) = StorageIndex(dst); + deferredInsertions++; + // if there is no capacity, all vectors to the right of this are shifted + if (capacity == 0) shift++; + } + } + + if (deferredInsertions > 0) { + + m_data.resize(m_data.size() + shift); + Index copyEnd = isCompressed() ? m_outerIndex[m_outerSize] + : m_outerIndex[m_outerSize - 1] + m_innerNonZeros[m_outerSize - 1]; + for (Index j = m_outerSize - 1; deferredInsertions > 0; j--) { + Index begin = m_outerIndex[j]; + Index end = isCompressed() ? m_outerIndex[j + 1] : begin + m_innerNonZeros[j]; + Index capacity = m_outerIndex[j + 1] - end; + + bool doInsertion = insertionLocations(j) >= 0; + bool breakUpCopy = doInsertion && (capacity > 0); + // break up copy for sorted insertion into inactive nonzeros + // optionally, add another criterium, i.e. 'breakUpCopy || (capacity > threhsold)' + // where `threshold >= 0` to skip inactive nonzeros in each vector + // this reduces the total number of copied elements, but requires more moveChunk calls + if (breakUpCopy) { + Index copyBegin = m_outerIndex[j + 1]; + Index to = copyBegin + shift; + Index chunkSize = copyEnd - copyBegin; + m_data.moveChunk(copyBegin, to, chunkSize); + copyEnd = end; + } + + m_outerIndex[j + 1] += shift; + + if (doInsertion) { + // if there is capacity, shift into the inactive nonzeros + if (capacity > 0) shift++; + Index copyBegin = insertionLocations(j); + Index to = copyBegin + shift; + Index chunkSize = copyEnd - copyBegin; + m_data.moveChunk(copyBegin, to, chunkSize); + Index dst = to - 1; + m_data.index(dst) = StorageIndex(j); + m_data.value(dst) = Scalar(0); + assignFunc.assignCoeff(m_data.value(dst), diaEval.coeff(j)); + if (!isCompressed()) m_innerNonZeros[j]++; + shift--; + deferredInsertions--; + copyEnd = copyBegin; + } + } + } + eigen_assert((shift == 0) && (deferredInsertions == 0)); + } + } + + /* These functions are used to avoid a redundant binary search operation in functions such as coeffRef() and assume `dst` is the appropriate sorted insertion point */ + EIGEN_STRONG_INLINE Scalar& insertAtByOuterInner(Index outer, Index inner, Index dst); + Scalar& insertCompressedAtByOuterInner(Index outer, Index inner, Index dst); + Scalar& insertUncompressedAtByOuterInner(Index outer, Index inner, Index dst); + +private: + EIGEN_STATIC_ASSERT(NumTraits::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE) + EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS) + + struct default_prunning_func { + default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} + inline bool operator() (const Index&, const Index&, const Scalar& value) const + { + return !internal::isMuchSmallerThan(value, reference, epsilon); + } + Scalar reference; + RealScalar epsilon; + }; +}; + +namespace internal { + +// Creates a compressed sparse matrix from a range of unsorted triplets +// Requires temporary storage to handle duplicate entries +template +void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, + DupFunctor dup_func) { + constexpr bool IsRowMajor = SparseMatrixType::IsRowMajor; + using StorageIndex = typename SparseMatrixType::StorageIndex; + using IndexMap = typename VectorX::AlignedMapType; + using TransposedSparseMatrix = SparseMatrix; + + if (begin == end) return; + + // There are two strategies to consider for constructing a matrix from unordered triplets: + // A) construct the 'mat' in its native storage order and sort in-place (less memory); or, + // B) construct the transposed matrix and use an implicit sort upon assignment to `mat` (less time). + // This routine uses B) for faster execution time. + TransposedSparseMatrix trmat(mat.rows(), mat.cols()); + + // scan triplets to determine allocation size before constructing matrix + Index nonZeros = 0; + for (InputIterator it(begin); it != end; ++it) { + eigen_assert(it->row() >= 0 && it->row() < mat.rows() && it->col() >= 0 && it->col() < mat.cols()); + StorageIndex j = convert_index(IsRowMajor ? it->col() : it->row()); + if (nonZeros == NumTraits::highest()) internal::throw_std_bad_alloc(); + trmat.outerIndexPtr()[j + 1]++; + nonZeros++; + } + + std::partial_sum(trmat.outerIndexPtr(), trmat.outerIndexPtr() + trmat.outerSize() + 1, trmat.outerIndexPtr()); + eigen_assert(nonZeros == trmat.outerIndexPtr()[trmat.outerSize()]); + trmat.resizeNonZeros(nonZeros); + + // construct temporary array to track insertions (outersize) and collapse duplicates (innersize) + ei_declare_aligned_stack_constructed_variable(StorageIndex, tmp, numext::maxi(mat.innerSize(), mat.outerSize()), 0); + smart_copy(trmat.outerIndexPtr(), trmat.outerIndexPtr() + trmat.outerSize(), tmp); + + // push triplets to back of each vector + for (InputIterator it(begin); it != end; ++it) { + StorageIndex j = convert_index(IsRowMajor ? it->col() : it->row()); + StorageIndex i = convert_index(IsRowMajor ? it->row() : it->col()); + StorageIndex k = tmp[j]; + trmat.data().index(k) = i; + trmat.data().value(k) = it->value(); + tmp[j]++; + } + + IndexMap wi(tmp, trmat.innerSize()); + trmat.collapseDuplicates(wi, dup_func); + // implicit sorting + mat = trmat; +} + +// Creates a compressed sparse matrix from a sorted range of triplets +template +void set_from_triplets_sorted(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, + DupFunctor dup_func) { + constexpr bool IsRowMajor = SparseMatrixType::IsRowMajor; + using StorageIndex = typename SparseMatrixType::StorageIndex; + + if (begin == end) return; + + constexpr StorageIndex kEmptyIndexValue(-1); + // deallocate inner nonzeros if present and zero outerIndexPtr + mat.resize(mat.rows(), mat.cols()); + // use outer indices to count non zero entries (excluding duplicate entries) + StorageIndex previous_j = kEmptyIndexValue; + StorageIndex previous_i = kEmptyIndexValue; + // scan triplets to determine allocation size before constructing matrix + Index nonZeros = 0; + for (InputIterator it(begin); it != end; ++it) { + eigen_assert(it->row() >= 0 && it->row() < mat.rows() && it->col() >= 0 && it->col() < mat.cols()); + StorageIndex j = convert_index(IsRowMajor ? it->row() : it->col()); + StorageIndex i = convert_index(IsRowMajor ? it->col() : it->row()); + eigen_assert(j > previous_j || (j == previous_j && i >= previous_i)); + // identify duplicates by examining previous location + bool duplicate = (previous_j == j) && (previous_i == i); + if (!duplicate) { + if (nonZeros == NumTraits::highest()) internal::throw_std_bad_alloc(); + nonZeros++; + mat.outerIndexPtr()[j + 1]++; + previous_j = j; + previous_i = i; + } + } + + // finalize outer indices and allocate memory + std::partial_sum(mat.outerIndexPtr(), mat.outerIndexPtr() + mat.outerSize() + 1, mat.outerIndexPtr()); + eigen_assert(nonZeros == mat.outerIndexPtr()[mat.outerSize()]); + mat.resizeNonZeros(nonZeros); + + previous_i = kEmptyIndexValue; + previous_j = kEmptyIndexValue; + Index back = 0; + for (InputIterator it(begin); it != end; ++it) { + StorageIndex j = convert_index(IsRowMajor ? it->row() : it->col()); + StorageIndex i = convert_index(IsRowMajor ? it->col() : it->row()); + bool duplicate = (previous_j == j) && (previous_i == i); + if (duplicate) { + mat.data().value(back - 1) = dup_func(mat.data().value(back - 1), it->value()); + } else { + // push triplets to back + mat.data().index(back) = i; + mat.data().value(back) = it->value(); + previous_j = j; + previous_i = i; + back++; + } + } + eigen_assert(back == nonZeros); + // matrix is finalized +} + +// thin wrapper around a generic binary functor to use the sparse disjunction evaulator instead of the default "arithmetic" evaulator +template +struct scalar_disjunction_op +{ + using result_type = typename result_of::type; + scalar_disjunction_op(const DupFunctor& op) : m_functor(op) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return m_functor(a, b); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const DupFunctor& functor() const { return m_functor; } + const DupFunctor& m_functor; +}; + +template +struct functor_traits> : public functor_traits {}; + +// Creates a compressed sparse matrix from its existing entries and those from an unsorted range of triplets +template +void insert_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, + DupFunctor dup_func) { + using Scalar = typename SparseMatrixType::Scalar; + using SrcXprType = CwiseBinaryOp, const SparseMatrixType, const SparseMatrixType>; + + // set_from_triplets is necessary to sort the inner indices and remove the duplicate entries + SparseMatrixType trips(mat.rows(), mat.cols()); + set_from_triplets(begin, end, trips, dup_func); + + SrcXprType src = mat.binaryExpr(trips, scalar_disjunction_op(dup_func)); + // the sparse assignment procedure creates a temporary matrix and swaps the final result + assign_sparse_to_sparse(mat, src); +} + +// Creates a compressed sparse matrix from its existing entries and those from an sorted range of triplets +template +void insert_from_triplets_sorted(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, + DupFunctor dup_func) { + using Scalar = typename SparseMatrixType::Scalar; + using SrcXprType = CwiseBinaryOp, const SparseMatrixType, const SparseMatrixType>; + + // TODO: process triplets without making a copy + SparseMatrixType trips(mat.rows(), mat.cols()); + set_from_triplets_sorted(begin, end, trips, dup_func); + + SrcXprType src = mat.binaryExpr(trips, scalar_disjunction_op(dup_func)); + // the sparse assignment procedure creates a temporary matrix and swaps the final result + assign_sparse_to_sparse(mat, src); +} + +} // namespace internal + +/** Fill the matrix \c *this with the list of \em triplets defined in the half-open range from \a begin to \a end. + * + * A \em triplet is a tuple (i,j,value) defining a non-zero element. + * The input list of triplets does not have to be sorted, and may contain duplicated elements. + * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. + * This is a \em O(n) operation, with \em n the number of triplet elements. + * The initial contents of \c *this are destroyed. + * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, + * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. + * + * The \a InputIterators value_type must provide the following interface: + * \code + * Scalar value() const; // the value + * IndexType row() const; // the row index i + * IndexType col() const; // the column index j + * \endcode + * See for instance the Eigen::Triplet template class. + * + * Here is a typical usage example: + * \code + typedef Triplet T; + std::vector tripletList; + tripletList.reserve(estimation_of_entries); + for(...) + { + // ... + tripletList.push_back(T(i,j,v_ij)); + } + SparseMatrixType m(rows,cols); + m.setFromTriplets(tripletList.begin(), tripletList.end()); + // m is ready to go! + * \endcode + * + * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define + * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather + * be explicitly stored into a std::vector for instance. + */ +template +template +void SparseMatrix::setFromTriplets(const InputIterators& begin, const InputIterators& end) +{ + internal::set_from_triplets >(begin, end, *this, internal::scalar_sum_op()); +} + +/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied: + * \code + * value = dup_func(OldValue, NewValue) + * \endcode + * Here is a C++11 example keeping the latest entry only: + * \code + * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); + * \endcode + */ +template +template +void SparseMatrix::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) +{ + internal::set_from_triplets, DupFunctor>(begin, end, *this, dup_func); +} + +/** The same as setFromTriplets but triplets are assumed to be pre-sorted. This is faster and requires less temporary storage. + * Two triplets `a` and `b` are appropriately ordered if: + * \code + * ColMajor: ((a.col() != b.col()) ? (a.col() < b.col()) : (a.row() < b.row()) + * RowMajor: ((a.row() != b.row()) ? (a.row() < b.row()) : (a.col() < b.col()) + * \endcode + */ +template +template +void SparseMatrix::setFromSortedTriplets(const InputIterators& begin, const InputIterators& end) +{ + internal::set_from_triplets_sorted >(begin, end, *this, internal::scalar_sum_op()); +} + +/** The same as setFromSortedTriplets but when duplicates are met the functor \a dup_func is applied: + * \code + * value = dup_func(OldValue, NewValue) + * \endcode + * Here is a C++11 example keeping the latest entry only: + * \code + * mat.setFromSortedTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); + * \endcode + */ +template +template +void SparseMatrix::setFromSortedTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) +{ + internal::set_from_triplets_sorted, DupFunctor>(begin, end, *this, dup_func); +} + +/** Insert a batch of elements into the matrix \c *this with the list of \em triplets defined in the half-open range from \a begin to \a end. + * + * A \em triplet is a tuple (i,j,value) defining a non-zero element. + * The input list of triplets does not have to be sorted, and may contain duplicated elements. + * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. + * This is a \em O(n) operation, with \em n the number of triplet elements. + * The initial contents of \c *this are preserved (except for the summation of duplicate elements). + * The matrix \c *this must be properly sized beforehand. The sizes are not extracted from the triplet list. + * + * The \a InputIterators value_type must provide the following interface: + * \code + * Scalar value() const; // the value + * IndexType row() const; // the row index i + * IndexType col() const; // the column index j + * \endcode + * See for instance the Eigen::Triplet template class. + * + * Here is a typical usage example: + * \code + SparseMatrixType m(rows,cols); // m contains nonzero entries + typedef Triplet T; + std::vector tripletList; + tripletList.reserve(estimation_of_entries); + for(...) + { + // ... + tripletList.push_back(T(i,j,v_ij)); + } + + m.insertFromTriplets(tripletList.begin(), tripletList.end()); + // m is ready to go! + * \endcode + * + * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define + * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather + * be explicitly stored into a std::vector for instance. + */ +template +template +void SparseMatrix::insertFromTriplets(const InputIterators& begin, const InputIterators& end) +{ + internal::insert_from_triplets >(begin, end, *this, internal::scalar_sum_op()); +} + +/** The same as insertFromTriplets but when duplicates are met the functor \a dup_func is applied: + * \code + * value = dup_func(OldValue, NewValue) + * \endcode + * Here is a C++11 example keeping the latest entry only: + * \code + * mat.insertFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); + * \endcode + */ +template +template +void SparseMatrix::insertFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) +{ + internal::insert_from_triplets, DupFunctor>(begin, end, *this, dup_func); +} + +/** The same as insertFromTriplets but triplets are assumed to be pre-sorted. This is faster and requires less temporary storage. + * Two triplets `a` and `b` are appropriately ordered if: + * \code + * ColMajor: ((a.col() != b.col()) ? (a.col() < b.col()) : (a.row() < b.row()) + * RowMajor: ((a.row() != b.row()) ? (a.row() < b.row()) : (a.col() < b.col()) + * \endcode + */ +template +template +void SparseMatrix::insertFromSortedTriplets(const InputIterators& begin, const InputIterators& end) +{ + internal::insert_from_triplets_sorted >(begin, end, *this, internal::scalar_sum_op()); +} + +/** The same as insertFromSortedTriplets but when duplicates are met the functor \a dup_func is applied: + * \code + * value = dup_func(OldValue, NewValue) + * \endcode + * Here is a C++11 example keeping the latest entry only: + * \code + * mat.insertFromSortedTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); + * \endcode + */ +template +template +void SparseMatrix::insertFromSortedTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) +{ + internal::insert_from_triplets_sorted, DupFunctor>(begin, end, *this, dup_func); +} + +/** \internal */ +template +template +void SparseMatrix::collapseDuplicates(DenseBase& wi, DupFunctor dup_func) { + // removes duplicate entries and compresses the matrix + // the excess allocated memory is not released + // the inner indices do not need to be sorted, nor is the matrix returned in a sorted state + eigen_assert(wi.size() == m_innerSize); + constexpr StorageIndex kEmptyIndexValue(-1); + wi.setConstant(kEmptyIndexValue); + StorageIndex count = 0; + const bool is_compressed = isCompressed(); + // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers + for (Index j = 0; j < m_outerSize; ++j) { + const StorageIndex newBegin = count; + const StorageIndex end = is_compressed ? m_outerIndex[j + 1] : m_outerIndex[j] + m_innerNonZeros[j]; + for (StorageIndex k = m_outerIndex[j]; k < end; ++k) { + StorageIndex i = m_data.index(k); + if (wi(i) >= newBegin) { + // entry at k is a duplicate + // accumulate it into the primary entry located at wi(i) + m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k)); + } else { + // k is the primary entry in j with inner index i + // shift it to the left and record its location at wi(i) + m_data.index(count) = i; + m_data.value(count) = m_data.value(k); + wi(i) = count; + ++count; + } + } + m_outerIndex[j] = newBegin; + } + m_outerIndex[m_outerSize] = count; + m_data.resize(count); + + // turn the matrix into compressed form (if it is not already) + internal::conditional_aligned_delete_auto(m_innerNonZeros, m_outerSize); + m_innerNonZeros = 0; +} + +/** \internal */ +template +template +EIGEN_DONT_INLINE SparseMatrix& SparseMatrix::operator=(const SparseMatrixBase& other) +{ + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + #endif + + const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator::Flags & RowMajorBit); + if (needToTranspose) + { + #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN + EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN + #endif + // two passes algorithm: + // 1 - compute the number of coeffs per dest inner vector + // 2 - do the actual copy/eval + // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed + typedef typename internal::nested_eval::type >::type OtherCopy; + typedef internal::remove_all_t OtherCopy_; + typedef internal::evaluator OtherCopyEval; + OtherCopy otherCopy(other.derived()); + OtherCopyEval otherCopyEval(otherCopy); + + SparseMatrix dest(other.rows(),other.cols()); + Eigen::Map (dest.m_outerIndex,dest.outerSize()).setZero(); + + // pass 1 + // FIXME the above copy could be merged with that pass + for (Index j=0; jswap(dest); + return *this; + } + else + { + if(other.isRValue()) + { + initAssignment(other.derived()); + } + // there is no special optimization + return Base::operator=(other.derived()); + } +} + +template +inline typename SparseMatrix::Scalar& +SparseMatrix::insert(Index row, Index col) { + return insertByOuterInner(IsRowMajor ? row : col, IsRowMajor ? col : row); +} + +template +EIGEN_STRONG_INLINE typename SparseMatrix::Scalar& +SparseMatrix::insertAtByOuterInner(Index outer, Index inner, Index dst) { + // random insertion into compressed matrix is very slow + uncompress(); + return insertUncompressedAtByOuterInner(outer, inner, dst); +} + +template +EIGEN_DEPRECATED EIGEN_DONT_INLINE typename SparseMatrix::Scalar& +SparseMatrix::insertUncompressed(Index row, Index col) { + eigen_assert(!isCompressed()); + Index outer = IsRowMajor ? row : col; + Index inner = IsRowMajor ? col : row; + Index start = m_outerIndex[outer]; + Index end = start + m_innerNonZeros[outer]; + Index dst = start == end ? end : m_data.searchLowerIndex(start, end, inner); + if (dst == end) { + Index capacity = m_outerIndex[outer + 1] - end; + if (capacity > 0) { + // implies uncompressed: push to back of vector + m_innerNonZeros[outer]++; + m_data.index(end) = StorageIndex(inner); + m_data.value(end) = Scalar(0); + return m_data.value(end); + } + } + eigen_assert((dst == end || m_data.index(dst) != inner) && + "you cannot insert an element that already exists, you must call coeffRef to this end"); + return insertUncompressedAtByOuterInner(outer, inner, dst); +} + +template +EIGEN_DEPRECATED EIGEN_DONT_INLINE typename SparseMatrix::Scalar& +SparseMatrix::insertCompressed(Index row, Index col) { + eigen_assert(isCompressed()); + Index outer = IsRowMajor ? row : col; + Index inner = IsRowMajor ? col : row; + Index start = m_outerIndex[outer]; + Index end = m_outerIndex[outer + 1]; + Index dst = start == end ? end : m_data.searchLowerIndex(start, end, inner); + eigen_assert((dst == end || m_data.index(dst) != inner) && + "you cannot insert an element that already exists, you must call coeffRef to this end"); + return insertCompressedAtByOuterInner(outer, inner, dst); +} + +template +typename SparseMatrix::Scalar& +SparseMatrix::insertCompressedAtByOuterInner(Index outer, Index inner, Index dst) { + eigen_assert(isCompressed()); + // compressed insertion always requires expanding the buffer + // first, check if there is adequate allocated memory + if (m_data.allocatedSize() <= m_data.size()) { + // if there is no capacity for a single insertion, double the capacity + // increase capacity by a mininum of 32 + Index minReserve = 32; + Index reserveSize = numext::maxi(minReserve, m_data.allocatedSize()); + m_data.reserve(reserveSize); + } + m_data.resize(m_data.size() + 1); + Index chunkSize = m_outerIndex[m_outerSize] - dst; + // shift the existing data to the right if necessary + m_data.moveChunk(dst, dst + 1, chunkSize); + // update nonzero counts + // potentially O(outerSize) bottleneck! + for (Index j = outer; j < m_outerSize; j++) m_outerIndex[j + 1]++; + // initialize the coefficient + m_data.index(dst) = StorageIndex(inner); + m_data.value(dst) = Scalar(0); + // return a reference to the coefficient + return m_data.value(dst); +} + +template +typename SparseMatrix::Scalar& +SparseMatrix::insertUncompressedAtByOuterInner(Index outer, Index inner, Index dst) { + eigen_assert(!isCompressed()); + // find a vector with capacity, starting at `outer` and searching to the left and right + for (Index leftTarget = outer - 1, rightTarget = outer; (leftTarget >= 0) || (rightTarget < m_outerSize);) { + if (rightTarget < m_outerSize) { + Index start = m_outerIndex[rightTarget]; + Index end = start + m_innerNonZeros[rightTarget]; + Index nextStart = m_outerIndex[rightTarget + 1]; + Index capacity = nextStart - end; + if (capacity > 0) { + // move [dst, end) to dst+1 and insert at dst + Index chunkSize = end - dst; + if (chunkSize > 0) m_data.moveChunk(dst, dst + 1, chunkSize); + m_innerNonZeros[outer]++; + for (Index j = outer; j < rightTarget; j++) m_outerIndex[j + 1]++; + m_data.index(dst) = StorageIndex(inner); + m_data.value(dst) = Scalar(0); + return m_data.value(dst); + } + rightTarget++; + } + if (leftTarget >= 0) { + Index start = m_outerIndex[leftTarget]; + Index end = start + m_innerNonZeros[leftTarget]; + Index nextStart = m_outerIndex[leftTarget + 1]; + Index capacity = nextStart - end; + if (capacity > 0) { + // tricky: dst is a lower bound, so we must insert at dst-1 when shifting left + // move [nextStart, dst) to nextStart-1 and insert at dst-1 + Index chunkSize = dst - nextStart; + if (chunkSize > 0) m_data.moveChunk(nextStart, nextStart - 1, chunkSize); + m_innerNonZeros[outer]++; + for (Index j = leftTarget; j < outer; j++) m_outerIndex[j + 1]--; + m_data.index(dst - 1) = StorageIndex(inner); + m_data.value(dst - 1) = Scalar(0); + return m_data.value(dst - 1); + } + leftTarget--; + } + } + + // no room for interior insertion + // nonZeros() == m_data.size() + // record offset as outerIndxPtr will change + Index dst_offset = dst - m_outerIndex[outer]; + // allocate space for random insertion + if (m_data.allocatedSize() == 0) { + // fast method to allocate space for one element per vector in empty matrix + m_data.resize(m_outerSize); + std::iota(m_outerIndex, m_outerIndex + m_outerSize + 1, StorageIndex(0)); + } else { + // check for integer overflow: if maxReserveSize == 0, insertion is not possible + Index maxReserveSize = static_cast(NumTraits::highest()) - m_data.allocatedSize(); + eigen_assert(maxReserveSize > 0); + if (m_outerSize <= maxReserveSize) { + // allocate space for one additional element per vector + reserveInnerVectors(IndexVector::Constant(m_outerSize, 1)); + } else { + // handle the edge case where StorageIndex is insufficient to reserve outerSize additional elements + // allocate space for one additional element in the interval [outer,maxReserveSize) + typedef internal::sparse_reserve_op ReserveSizesOp; + typedef CwiseNullaryOp ReserveSizesXpr; + ReserveSizesXpr reserveSizesXpr(m_outerSize, 1, ReserveSizesOp(outer, m_outerSize, maxReserveSize)); + reserveInnerVectors(reserveSizesXpr); + } + } + // insert element at `dst` with new outer indices + Index start = m_outerIndex[outer]; + Index end = start + m_innerNonZeros[outer]; + Index new_dst = start + dst_offset; + Index chunkSize = end - new_dst; + if (chunkSize > 0) m_data.moveChunk(new_dst, new_dst + 1, chunkSize); + m_innerNonZeros[outer]++; + m_data.index(new_dst) = StorageIndex(inner); + m_data.value(new_dst) = Scalar(0); + return m_data.value(new_dst); +} + +namespace internal { + + template + struct evaluator> + : evaluator>> { + typedef evaluator>> Base; + typedef SparseMatrix SparseMatrixType; + evaluator() : Base() {} + explicit evaluator(const SparseMatrixType& mat) : Base(mat) {} + }; + +} + +// Specialization for SparseMatrix. +// Serializes [rows, cols, isCompressed, outerSize, innerBufferSize, +// innerNonZeros, outerIndices, innerIndices, values]. +template +class Serializer, void> { + public: + typedef SparseMatrix SparseMat; + + struct Header { + typename SparseMat::Index rows; + typename SparseMat::Index cols; + bool compressed; + Index outer_size; + Index inner_buffer_size; + }; + + EIGEN_DEVICE_FUNC size_t size(const SparseMat& value) const { + // innerNonZeros. + std::size_t num_storage_indices = value.isCompressed() ? 0 : value.outerSize(); + // Outer indices. + num_storage_indices += value.outerSize() + 1; + // Inner indices. + const StorageIndex inner_buffer_size = value.outerIndexPtr()[value.outerSize()]; + num_storage_indices += inner_buffer_size; + // Values. + std::size_t num_values = inner_buffer_size; + return sizeof(Header) + sizeof(Scalar) * num_values + + sizeof(StorageIndex) * num_storage_indices; + } + + EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end, + const SparseMat& value) { + if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr; + + const size_t header_bytes = sizeof(Header); + Header header = {value.rows(), value.cols(), value.isCompressed(), + value.outerSize(), value.outerIndexPtr()[value.outerSize()]}; + EIGEN_USING_STD(memcpy) + memcpy(dest, &header, header_bytes); + dest += header_bytes; + + // innerNonZeros. + if (!header.compressed) { + std::size_t data_bytes = sizeof(StorageIndex) * header.outer_size; + memcpy(dest, value.innerNonZeroPtr(), data_bytes); + dest += data_bytes; + } + + // Outer indices. + std::size_t data_bytes = sizeof(StorageIndex) * (header.outer_size + 1); + memcpy(dest, value.outerIndexPtr(), data_bytes); + dest += data_bytes; + + // Inner indices. + data_bytes = sizeof(StorageIndex) * header.inner_buffer_size; + memcpy(dest, value.innerIndexPtr(), data_bytes); + dest += data_bytes; + + // Values. + data_bytes = sizeof(Scalar) * header.inner_buffer_size; + memcpy(dest, value.valuePtr(), data_bytes); + dest += data_bytes; + + return dest; + } + + EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src, + const uint8_t* end, + SparseMat& value) const { + if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr; + + const size_t header_bytes = sizeof(Header); + Header header; + EIGEN_USING_STD(memcpy) + memcpy(&header, src, header_bytes); + src += header_bytes; + + value.setZero(); + value.resize(header.rows, header.cols); + if (header.compressed) { + value.makeCompressed(); + } else { + value.uncompress(); + } + + // Adjust value ptr size. + value.data().resize(header.inner_buffer_size); + + // Initialize compressed state and inner non-zeros. + if (!header.compressed) { + // Inner non-zero counts. + std::size_t data_bytes = sizeof(StorageIndex) * header.outer_size; + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + memcpy(value.innerNonZeroPtr(), src, data_bytes); + src += data_bytes; + } + + // Outer indices. + std::size_t data_bytes = sizeof(StorageIndex) * (header.outer_size + 1); + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + memcpy(value.outerIndexPtr(), src, data_bytes); + src += data_bytes; + + // Inner indices. + data_bytes = sizeof(StorageIndex) * header.inner_buffer_size; + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + memcpy(value.innerIndexPtr(), src, data_bytes); + src += data_bytes; + + // Values. + data_bytes = sizeof(Scalar) * header.inner_buffer_size; + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + memcpy(value.valuePtr(), src, data_bytes); + src += data_bytes; + return src; + } +}; + +} // end namespace Eigen + +#endif // EIGEN_SPARSEMATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMatrixBase.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMatrixBase.h new file mode 100644 index 0000000..dc78c2e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseMatrixBase.h @@ -0,0 +1,399 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEMATRIXBASE_H +#define EIGEN_SPARSEMATRIXBASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup SparseCore_Module + * + * \class SparseMatrixBase + * + * \brief Base class of any sparse matrices or sparse expressions + * + * \tparam Derived is the derived type, e.g. a sparse matrix type, or an expression, etc. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN. + */ +template class SparseMatrixBase + : public EigenBase +{ + public: + + typedef typename internal::traits::Scalar Scalar; + + /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex, etc. + * + * It is an alias for the Scalar type */ + typedef Scalar value_type; + + typedef typename internal::packet_traits::type PacketScalar; + typedef typename internal::traits::StorageKind StorageKind; + + /** The integer type used to \b store indices within a SparseMatrix. + * For a \c SparseMatrix it an alias of the third template parameter \c IndexType. */ + typedef typename internal::traits::StorageIndex StorageIndex; + + typedef typename internal::add_const_on_value_type_if_arithmetic< + typename internal::packet_traits::type + >::type PacketReturnType; + + typedef SparseMatrixBase StorageBaseType; + + typedef Matrix IndexVector; + typedef Matrix ScalarVector; + + template + Derived& operator=(const EigenBase &other); + + enum { + + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + /**< The number of rows at compile-time. This is just a copy of the value provided + * by the \a Derived type. If a value is not known at compile-time, + * it is set to the \a Dynamic constant. + * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ + + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + /**< The number of columns at compile-time. This is just a copy of the value provided + * by the \a Derived type. If a value is not known at compile-time, + * it is set to the \a Dynamic constant. + * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ + + + SizeAtCompileTime = (internal::size_of_xpr_at_compile_time::ret), + /**< This is equal to the number of coefficients, i.e. the number of + * rows times the number of columns, or to \a Dynamic if this is not + * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ + + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + + MaxSizeAtCompileTime = internal::size_at_compile_time(MaxRowsAtCompileTime, MaxColsAtCompileTime), + + IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, + /**< This is set to true if either the number of rows or the number of + * columns is known at compile-time to be equal to 1. Indeed, in that case, + * we are dealing with a column-vector (if there is only one column) or with + * a row-vector (if there is only one row). */ + + NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2, + /**< This value is equal to Tensor::NumDimensions, i.e. 0 for scalars, 1 for vectors, + * and 2 for matrices. + */ + + Flags = internal::traits::Flags, + /**< This stores expression \ref flags flags which may or may not be inherited by new expressions + * constructed from this one. See the \ref flags "list of flags". + */ + + IsRowMajor = Flags&RowMajorBit ? 1 : 0, + + InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) + : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + + #ifndef EIGEN_PARSED_BY_DOXYGEN + HasDirectAccess_ = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC + #endif + }; + + /** \internal the return type of MatrixBase::adjoint() */ + typedef std::conditional_t::IsComplex, + CwiseUnaryOp, Eigen::Transpose >, + Transpose + > AdjointReturnType; + typedef Transpose TransposeReturnType; + typedef Transpose ConstTransposeReturnType; + + // FIXME storage order do not match evaluator storage order + typedef SparseMatrix PlainObject; + +#ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is the "real scalar" type; if the \a Scalar type is already real numbers + * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If + * \a Scalar is \a std::complex then RealScalar is \a T. + * + * \sa class NumTraits + */ + typedef typename NumTraits::Real RealScalar; + + /** \internal the return type of coeff() + */ + typedef std::conditional_t CoeffReturnType; + + /** \internal Represents a matrix with all coefficients equal to one another*/ + typedef CwiseNullaryOp,Matrix > ConstantReturnType; + + /** type of the equivalent dense matrix */ + typedef Matrix DenseMatrixType; + /** type of the equivalent square matrix */ + typedef Matrix SquareMatrixType; + + inline const Derived& derived() const { return *static_cast(this); } + inline Derived& derived() { return *static_cast(this); } + inline Derived& const_cast_derived() const + { return *static_cast(const_cast(this)); } + + typedef EigenBase Base; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + +#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase +#ifdef EIGEN_PARSED_BY_DOXYGEN +#define EIGEN_DOC_UNARY_ADDONS(METHOD,OP) /**

This method does not change the sparsity of \c *this: the OP is applied to explicitly stored coefficients only. \sa SparseCompressedBase::coeffs()

*/ +#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL /**

\warning This method returns a read-only expression for any sparse matrices. \sa \ref TutorialSparse_SubMatrices "Sparse block operations"

*/ +#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) /**

\warning This method returns a read-write expression for COND sparse matrices only. Otherwise, the returned expression is read-only. \sa \ref TutorialSparse_SubMatrices "Sparse block operations"

*/ +#else +#define EIGEN_DOC_UNARY_ADDONS(X,Y) +#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) +#endif +# include "../plugins/CommonCwiseUnaryOps.h" +# include "../plugins/CommonCwiseBinaryOps.h" +# include "../plugins/MatrixCwiseUnaryOps.h" +# include "../plugins/MatrixCwiseBinaryOps.h" +# include "../plugins/BlockMethods.h" +# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN +# include EIGEN_SPARSEMATRIXBASE_PLUGIN +# endif +#undef EIGEN_CURRENT_STORAGE_BASE_CLASS +#undef EIGEN_DOC_UNARY_ADDONS +#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF + + /** \returns the number of rows. \sa cols() */ + inline Index rows() const { return derived().rows(); } + /** \returns the number of columns. \sa rows() */ + inline Index cols() const { return derived().cols(); } + /** \returns the number of coefficients, which is \a rows()*cols(). + * \sa rows(), cols(). */ + inline Index size() const { return rows() * cols(); } + /** \returns true if either the number of rows or the number of columns is equal to 1. + * In other words, this function returns + * \code rows()==1 || cols()==1 \endcode + * \sa rows(), cols(), IsVectorAtCompileTime. */ + inline bool isVector() const { return rows()==1 || cols()==1; } + /** \returns the size of the storage major dimension, + * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ + Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } + /** \returns the size of the inner dimension according to the storage order, + * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ + Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } + + bool isRValue() const { return m_isRValue; } + Derived& markAsRValue() { m_isRValue = true; return derived(); } + + SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ } + + + template + Derived& operator=(const ReturnByValue& other); + + template + inline Derived& operator=(const SparseMatrixBase& other); + + inline Derived& operator=(const Derived& other); + + protected: + + template + inline Derived& assign(const OtherDerived& other); + + template + inline void assignGeneric(const OtherDerived& other); + + public: +#ifndef EIGEN_NO_IO + friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m) + { + typedef typename Derived::Nested Nested; + typedef internal::remove_all_t NestedCleaned; + + if (Flags&RowMajorBit) + { + Nested nm(m.derived()); + internal::evaluator thisEval(nm); + for (Index row=0; row::InnerIterator it(thisEval, row); it; ++it) + { + for ( ; col thisEval(nm); + if (m.cols() == 1) { + Index row = 0; + for (typename internal::evaluator::InnerIterator it(thisEval, 0); it; ++it) + { + for ( ; row trans = m; + s << static_cast >&>(trans); + } + } + return s; + } +#endif + + template + Derived& operator+=(const SparseMatrixBase& other); + template + Derived& operator-=(const SparseMatrixBase& other); + + template + Derived& operator+=(const DiagonalBase& other); + template + Derived& operator-=(const DiagonalBase& other); + + template + Derived& operator+=(const EigenBase &other); + template + Derived& operator-=(const EigenBase &other); + + Derived& operator*=(const Scalar& other); + Derived& operator/=(const Scalar& other); + + template struct CwiseProductDenseReturnType { + typedef CwiseBinaryOp::Scalar, + typename internal::traits::Scalar + >::ReturnType>, + const Derived, + const OtherDerived + > Type; + }; + + template + EIGEN_STRONG_INLINE const typename CwiseProductDenseReturnType::Type + cwiseProduct(const MatrixBase &other) const; + + // sparse * diagonal + template + const Product + operator*(const DiagonalBase &other) const + { return Product(derived(), other.derived()); } + + // diagonal * sparse + template friend + const Product + operator*(const DiagonalBase &lhs, const SparseMatrixBase& rhs) + { return Product(lhs.derived(), rhs.derived()); } + + // sparse * sparse + template + const Product + operator*(const SparseMatrixBase &other) const; + + // sparse * dense + template + const Product + operator*(const MatrixBase &other) const + { return Product(derived(), other.derived()); } + + // dense * sparse + template friend + const Product + operator*(const MatrixBase &lhs, const SparseMatrixBase& rhs) + { return Product(lhs.derived(), rhs.derived()); } + + /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */ + SparseSymmetricPermutationProduct twistedBy(const PermutationMatrix& perm) const + { + return SparseSymmetricPermutationProduct(derived(), perm); + } + + template + Derived& operator*=(const SparseMatrixBase& other); + + template + inline const TriangularView triangularView() const; + + template struct SelfAdjointViewReturnType { typedef SparseSelfAdjointView Type; }; + template struct ConstSelfAdjointViewReturnType { typedef const SparseSelfAdjointView Type; }; + + template inline + typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; + template inline + typename SelfAdjointViewReturnType::Type selfadjointView(); + + template Scalar dot(const MatrixBase& other) const; + template Scalar dot(const SparseMatrixBase& other) const; + RealScalar squaredNorm() const; + RealScalar norm() const; + RealScalar blueNorm() const; + + TransposeReturnType transpose() { return TransposeReturnType(derived()); } + const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); } + const AdjointReturnType adjoint() const { return AdjointReturnType(transpose()); } + + DenseMatrixType toDense() const + { + return DenseMatrixType(derived()); + } + + template + bool isApprox(const SparseMatrixBase& other, + const RealScalar& prec = NumTraits::dummy_precision()) const; + + template + bool isApprox(const MatrixBase& other, + const RealScalar& prec = NumTraits::dummy_precision()) const + { return toDense().isApprox(other,prec); } + + /** \returns the matrix or vector obtained by evaluating this expression. + * + * Notice that in the case of a plain matrix or vector (not an expression) this function just returns + * a const reference, in order to avoid a useless copy. + */ + inline const typename internal::eval::type eval() const + { return typename internal::eval::type(derived()); } + + Scalar sum() const; + + inline const SparseView + pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits::dummy_precision()) const; + + protected: + + bool m_isRValue; + + static inline StorageIndex convert_index(const Index idx) { + return internal::convert_index(idx); + } + private: + template void evalTo(Dest &) const; +}; + +} // end namespace Eigen + +#endif // EIGEN_SPARSEMATRIXBASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparsePermutation.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparsePermutation.h new file mode 100644 index 0000000..7e402cc --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparsePermutation.h @@ -0,0 +1,252 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_PERMUTATION_H +#define EIGEN_SPARSE_PERMUTATION_H + +// This file implements sparse * permutation products + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template::value> +struct XprHelper +{ + XprHelper(const ExpressionType& xpr) : m_xpr(xpr) {} + inline const PlainObjectType& xpr() const { return m_xpr; } + // this is a new PlainObjectType initialized by xpr + const PlainObjectType m_xpr; +}; +template +struct XprHelper +{ + XprHelper(const ExpressionType& xpr) : m_xpr(xpr) {} + inline const PlainObjectType& xpr() const { return m_xpr; } + // this is a reference to xpr + const PlainObjectType& m_xpr; +}; + +template +struct PermHelper +{ + using IndicesType = typename PermDerived::IndicesType; + using PermutationIndex = typename IndicesType::Scalar; + using type = PermutationMatrix; + PermHelper(const PermDerived& perm) : m_perm(perm.inverse()) {} + inline const type& perm() const { return m_perm; } + // this is a new PermutationMatrix initialized by perm.inverse() + const type m_perm; +}; +template +struct PermHelper +{ + using type = PermDerived; + PermHelper(const PermDerived& perm) : m_perm(perm) {} + inline const type& perm() const { return m_perm; } + // this is a reference to perm + const type& m_perm; +}; + +template +struct permutation_matrix_product +{ + using MatrixType = typename nested_eval::type; + using MatrixTypeCleaned = remove_all_t; + + using Scalar = typename MatrixTypeCleaned::Scalar; + using StorageIndex = typename MatrixTypeCleaned::StorageIndex; + + // the actual "return type" is `Dest`. this is a temporary type + using ReturnType = SparseMatrix; + using TmpHelper = XprHelper; + + static constexpr bool NeedOuterPermutation = ExpressionType::IsRowMajor ? Side == OnTheLeft : Side == OnTheRight; + static constexpr bool NeedInversePermutation = Transposed ? Side == OnTheLeft : Side == OnTheRight; + + template + static inline void permute_outer(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) { + + // if ExpressionType is not ReturnType, evaluate `xpr` (allocation) + // otherwise, just reference `xpr` + // TODO: handle trivial expressions such as CwiseBinaryOp without temporary + const TmpHelper tmpHelper(xpr); + const ReturnType& tmp = tmpHelper.xpr(); + + ReturnType result(tmp.rows(), tmp.cols()); + + for (Index j = 0; j < tmp.outerSize(); j++) { + Index jp = perm.indices().coeff(j); + Index jsrc = NeedInversePermutation ? jp : j; + Index jdst = NeedInversePermutation ? j : jp; + Index begin = tmp.outerIndexPtr()[jsrc]; + Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[jsrc + 1] : begin + tmp.innerNonZeroPtr()[jsrc]; + result.outerIndexPtr()[jdst + 1] += end - begin; + } + + std::partial_sum(result.outerIndexPtr(), result.outerIndexPtr() + result.outerSize() + 1, + result.outerIndexPtr()); + result.resizeNonZeros(result.nonZeros()); + + for (Index j = 0; j < tmp.outerSize(); j++) { + Index jp = perm.indices().coeff(j); + Index jsrc = NeedInversePermutation ? jp : j; + Index jdst = NeedInversePermutation ? j : jp; + Index begin = tmp.outerIndexPtr()[jsrc]; + Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[jsrc + 1] : begin + tmp.innerNonZeroPtr()[jsrc]; + Index target = result.outerIndexPtr()[jdst]; + smart_copy(tmp.innerIndexPtr() + begin, tmp.innerIndexPtr() + end, result.innerIndexPtr() + target); + smart_copy(tmp.valuePtr() + begin, tmp.valuePtr() + end, result.valuePtr() + target); + } + dst = std::move(result); + } + + template + static inline void permute_inner(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) { + using InnerPermHelper = PermHelper; + using InnerPermType = typename InnerPermHelper::type; + + // if ExpressionType is not ReturnType, evaluate `xpr` (allocation) + // otherwise, just reference `xpr` + // TODO: handle trivial expressions such as CwiseBinaryOp without temporary + const TmpHelper tmpHelper(xpr); + const ReturnType& tmp = tmpHelper.xpr(); + + // if inverse permutation of inner indices is requested, calculate perm.inverse() (allocation) + // otherwise, just reference `perm` + const InnerPermHelper permHelper(perm); + const InnerPermType& innerPerm = permHelper.perm(); + + ReturnType result(tmp.rows(), tmp.cols()); + + for (Index j = 0; j < tmp.outerSize(); j++) { + Index begin = tmp.outerIndexPtr()[j]; + Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[j + 1] : begin + tmp.innerNonZeroPtr()[j]; + result.outerIndexPtr()[j + 1] += end - begin; + } + + std::partial_sum(result.outerIndexPtr(), result.outerIndexPtr() + result.outerSize() + 1, result.outerIndexPtr()); + result.resizeNonZeros(result.nonZeros()); + + for (Index j = 0; j < tmp.outerSize(); j++) { + Index begin = tmp.outerIndexPtr()[j]; + Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[j + 1] : begin + tmp.innerNonZeroPtr()[j]; + Index target = result.outerIndexPtr()[j]; + std::transform(tmp.innerIndexPtr() + begin, tmp.innerIndexPtr() + end, result.innerIndexPtr() + target, + [&innerPerm](StorageIndex i) { return innerPerm.indices().coeff(i); }); + smart_copy(tmp.valuePtr() + begin, tmp.valuePtr() + end, result.valuePtr() + target); + } + // the inner indices were permuted, and must be sorted + result.sortInnerIndices(); + dst = std::move(result); + } + + template = 0> + static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) { permute_outer(dst, perm, xpr); } + + template = 0> + static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) { permute_inner(dst, perm, xpr); } +}; + +} + +namespace internal { + +template struct product_promote_storage_type { typedef Sparse ret; }; +template struct product_promote_storage_type { typedef Sparse ret; }; + +// TODO, the following two overloads are only needed to define the right temporary type through +// typename traits >::ReturnType +// whereas it should be correctly handled by traits >::PlainObject + +template +struct product_evaluator, ProductTag, PermutationShape, SparseShape> + : public evaluator::ReturnType> +{ + typedef Product XprType; + typedef typename permutation_matrix_product::ReturnType PlainObject; + typedef evaluator Base; + + enum { + Flags = Base::Flags | EvalBeforeNestingBit + }; + + explicit product_evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + internal::construct_at(this, m_result); + generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); + } + +protected: + PlainObject m_result; +}; + +template +struct product_evaluator, ProductTag, SparseShape, PermutationShape > + : public evaluator::ReturnType> +{ + typedef Product XprType; + typedef typename permutation_matrix_product::ReturnType PlainObject; + typedef evaluator Base; + + enum { + Flags = Base::Flags | EvalBeforeNestingBit + }; + + explicit product_evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); + } + +protected: + PlainObject m_result; +}; + +} // end namespace internal + +/** \returns the matrix with the permutation applied to the columns + */ +template +inline const Product operator*( + const SparseMatrixBase& matrix, const PermutationBase& perm) { + return Product(matrix.derived(), perm.derived()); +} + +/** \returns the matrix with the permutation applied to the rows + */ +template +inline const Product operator*( + const PermutationBase& perm, const SparseMatrixBase& matrix) { + return Product(perm.derived(), matrix.derived()); +} + +/** \returns the matrix with the inverse permutation applied to the columns. + */ +template +inline const Product, AliasFreeProduct> operator*( + const SparseMatrixBase& matrix, const InverseImpl& tperm) { + return Product, AliasFreeProduct>(matrix.derived(), tperm.derived()); +} + +/** \returns the matrix with the inverse permutation applied to the rows. + */ +template +inline const Product, SparseDerived, AliasFreeProduct> operator*( + const InverseImpl& tperm, const SparseMatrixBase& matrix) { + return Product, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseProduct.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseProduct.h new file mode 100644 index 0000000..85a8a10 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseProduct.h @@ -0,0 +1,183 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEPRODUCT_H +#define EIGEN_SPARSEPRODUCT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \returns an expression of the product of two sparse matrices. + * By default a conservative product preserving the symbolic non zeros is performed. + * The automatic pruning of the small values can be achieved by calling the pruned() function + * in which case a totally different product algorithm is employed: + * \code + * C = (A*B).pruned(); // suppress numerical zeros (exact) + * C = (A*B).pruned(ref); + * C = (A*B).pruned(ref,epsilon); + * \endcode + * where \c ref is a meaningful non zero reference value. + * */ +template +template +inline const Product +SparseMatrixBase::operator*(const SparseMatrixBase &other) const +{ + return Product(derived(), other.derived()); +} + +namespace internal { + +// sparse * sparse +template +struct generic_product_impl +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) + { + evalTo(dst, lhs, rhs, typename evaluator_traits::Shape()); + } + + // dense += sparse * sparse + template + static void addTo(Dest& dst, const ActualLhs& lhs, const Rhs& rhs, std::enable_if_t::Shape,DenseShape>::value,int*>* = 0) + { + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(lhs); + RhsNested rhsNested(rhs); + internal::sparse_sparse_to_dense_product_selector, + remove_all_t, Dest>::run(lhsNested,rhsNested,dst); + } + + // dense -= sparse * sparse + template + static void subTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, std::enable_if_t::Shape,DenseShape>::value,int*>* = 0) + { + addTo(dst, -lhs, rhs); + } + +protected: + + // sparse = sparse * sparse + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, SparseShape) + { + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(lhs); + RhsNested rhsNested(rhs); + internal::conservative_sparse_sparse_product_selector, + remove_all_t, Dest>::run(lhsNested,rhsNested,dst); + } + + // dense = sparse * sparse + template + static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, DenseShape) + { + dst.setZero(); + addTo(dst, lhs, rhs); + } +}; + +// sparse * sparse-triangular +template +struct generic_product_impl + : public generic_product_impl +{}; + +// sparse-triangular * sparse +template +struct generic_product_impl + : public generic_product_impl +{}; + +// dense = sparse-product (can be sparse*sparse, sparse*perm, etc.) +template< typename DstXprType, typename Lhs, typename Rhs> +struct Assignment, internal::assign_op::Scalar>, Sparse2Dense> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + generic_product_impl::evalTo(dst,src.lhs(),src.rhs()); + } +}; + +// dense += sparse-product (can be sparse*sparse, sparse*perm, etc.) +template< typename DstXprType, typename Lhs, typename Rhs> +struct Assignment, internal::add_assign_op::Scalar>, Sparse2Dense> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) + { + generic_product_impl::addTo(dst,src.lhs(),src.rhs()); + } +}; + +// dense -= sparse-product (can be sparse*sparse, sparse*perm, etc.) +template< typename DstXprType, typename Lhs, typename Rhs> +struct Assignment, internal::sub_assign_op::Scalar>, Sparse2Dense> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) + { + generic_product_impl::subTo(dst,src.lhs(),src.rhs()); + } +}; + +template +struct unary_evaluator >, IteratorBased> + : public evaluator::PlainObject> +{ + typedef SparseView > XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + + explicit unary_evaluator(const XprType& xpr) + : m_result(xpr.rows(), xpr.cols()) + { + using std::abs; + internal::construct_at(this, m_result); + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(xpr.nestedExpression().lhs()); + RhsNested rhsNested(xpr.nestedExpression().rhs()); + + internal::sparse_sparse_product_with_pruning_selector, + remove_all_t, PlainObject>::run(lhsNested,rhsNested,m_result, + abs(xpr.reference())*xpr.epsilon()); + } + +protected: + PlainObject m_result; +}; + +} // end namespace internal + +// sparse matrix = sparse-product (can be sparse*sparse, sparse*perm, etc.) +template +template +SparseMatrix& SparseMatrix::operator=(const Product& src) +{ + // std::cout << "in Assignment : " << DstOptions << "\n"; + SparseMatrix dst(src.rows(),src.cols()); + internal::generic_product_impl::evalTo(dst,src.lhs(),src.rhs()); + this->swap(dst); + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSEPRODUCT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseRedux.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseRedux.h new file mode 100644 index 0000000..6b14c58 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseRedux.h @@ -0,0 +1,51 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEREDUX_H +#define EIGEN_SPARSEREDUX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +typename internal::traits::Scalar +SparseMatrixBase::sum() const +{ + eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix"); + Scalar res(0); + internal::evaluator thisEval(derived()); + for (Index j=0; j::InnerIterator iter(thisEval,j); iter; ++iter) + res += iter.value(); + return res; +} + +template +typename internal::traits >::Scalar +SparseMatrix::sum() const +{ + eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix"); + if(this->isCompressed()) + return Matrix::Map(m_data.valuePtr(), m_data.size()).sum(); + else + return Base::sum(); +} + +template +typename internal::traits >::Scalar +SparseVector::sum() const +{ + eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix"); + return Matrix::Map(m_data.valuePtr(), m_data.size()).sum(); +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSEREDUX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseRef.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseRef.h new file mode 100644 index 0000000..9e69d93 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseRef.h @@ -0,0 +1,394 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_REF_H +#define EIGEN_SPARSE_REF_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +enum { + StandardCompressedFormat = 2 /**< used by Ref to specify whether the input storage must be in standard compressed form */ +}; + +namespace internal { + +template class SparseRefBase; + +template +struct traits, Options_, StrideType_> > + : public traits > +{ + typedef SparseMatrix PlainObjectType; + enum { + Options = Options_, + Flags = traits::Flags | CompressedAccessBit | NestByRefBit + }; + + template struct match { + enum { + StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)), + MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && StorageOrderMatch + }; + typedef std::conditional_t type; + }; + +}; + +template +struct traits, Options_, StrideType_> > + : public traits, Options_, StrideType_> > +{ + enum { + Flags = (traits >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit + }; +}; + +template +struct traits, Options_, StrideType_> > + : public traits > +{ + typedef SparseVector PlainObjectType; + enum { + Options = Options_, + Flags = traits::Flags | CompressedAccessBit | NestByRefBit + }; + + template struct match { + enum { + MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && Derived::IsVectorAtCompileTime + }; + typedef std::conditional_t type; + }; + +}; + +template +struct traits, Options_, StrideType_> > + : public traits, Options_, StrideType_> > +{ + enum { + Flags = (traits >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit + }; +}; + +template +struct traits > : public traits {}; + +template class SparseRefBase + : public SparseMapBase +{ +public: + + typedef SparseMapBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(SparseRefBase) + + SparseRefBase() + : Base(RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime, 0, 0, 0, 0, 0) + {} + +protected: + + template + void construct(Expression& expr) + { + if(expr.outerIndexPtr()==0) + internal::construct_at(this, expr.size(), expr.nonZeros(), expr.innerIndexPtr(), expr.valuePtr()); + else + internal::construct_at(this, expr.rows(), expr.cols(), expr.nonZeros(), expr.outerIndexPtr(), expr.innerIndexPtr(), expr.valuePtr(), expr.innerNonZeroPtr()); + } +}; + +} // namespace internal + + +/** + * \ingroup SparseCore_Module + * + * \brief A sparse matrix expression referencing an existing sparse expression + * + * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix. + * \tparam Options specifies whether the a standard compressed format is required \c Options is \c #StandardCompressedFormat, or \c 0. + * The default is \c 0. + * + * \sa class Ref + */ +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +class Ref, Options, StrideType > + : public internal::SparseRefBase, Options, StrideType > > +#else +template +class Ref + : public SparseMapBase // yes, that's weird to use Derived here, but that works! +#endif +{ + typedef SparseMatrix PlainObjectType; + typedef internal::traits Traits; + template + inline Ref(const SparseMatrix& expr); + template + inline Ref(const Map>& expr); + public: + + typedef internal::SparseRefBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) + + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + inline Ref(SparseMatrix& expr) + { + EIGEN_STATIC_ASSERT(bool(Traits::template match >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) ); + Base::construct(expr.derived()); + } + + template + inline Ref(Map >& expr) + { + EIGEN_STATIC_ASSERT(bool(Traits::template match >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) ); + Base::construct(expr.derived()); + } + + template + inline Ref(const SparseCompressedBase& expr) + #else + /** Implicit constructor from any sparse expression (2D matrix or 1D vector) */ + template + inline Ref(SparseCompressedBase& expr) + #endif + { + EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) ); + Base::construct(expr.const_cast_derived()); + } +}; + +// this is the const ref version +template +class Ref, Options, StrideType> + : public internal::SparseRefBase, Options, StrideType> > +{ + typedef SparseMatrix TPlainObjectType; + typedef internal::traits Traits; + public: + + typedef internal::SparseRefBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) + + template + inline Ref(const SparseMatrixBase& expr) : m_hasCopy(false) + { + construct(expr.derived(), typename Traits::template match::type()); + } + + inline Ref(const Ref& other) : Base(other), m_hasCopy(false) { + // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy + } + + template + inline Ref(const RefBase& other) : m_hasCopy(false) { + construct(other.derived(), typename Traits::template match::type()); + } + + ~Ref() { + if(m_hasCopy) { + internal::destroy_at(reinterpret_cast(&m_storage)); + } + } + + protected: + + template + void construct(const Expression& expr,internal::true_type) + { + if((Options & int(StandardCompressedFormat)) && (!expr.isCompressed())) + { + TPlainObjectType* obj = internal::construct_at(reinterpret_cast(&m_storage), expr); + m_hasCopy = true; + Base::construct(*obj); + } + else + { + Base::construct(expr); + } + } + + template + void construct(const Expression& expr, internal::false_type) + { + TPlainObjectType* obj = internal::construct_at(reinterpret_cast(&m_storage), expr); + m_hasCopy = true; + Base::construct(*obj); + } + + protected: + typename internal::aligned_storage::type m_storage; + bool m_hasCopy; +}; + + + +/** + * \ingroup SparseCore_Module + * + * \brief A sparse vector expression referencing an existing sparse vector expression + * + * \tparam SparseVectorType the equivalent sparse vector type of the referenced data, it must be a template instance of class SparseVector. + * + * \sa class Ref + */ +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +class Ref, Options, StrideType > + : public internal::SparseRefBase, Options, StrideType > > +#else +template +class Ref + : public SparseMapBase +#endif +{ + typedef SparseVector PlainObjectType; + typedef internal::traits Traits; + template + inline Ref(const SparseVector& expr); + public: + + typedef internal::SparseRefBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + inline Ref(SparseVector& expr) + { + EIGEN_STATIC_ASSERT(bool(Traits::template match >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + Base::construct(expr.derived()); + } + + template + inline Ref(const SparseCompressedBase& expr) + #else + /** Implicit constructor from any 1D sparse vector expression */ + template + inline Ref(SparseCompressedBase& expr) + #endif + { + EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); + EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); + Base::construct(expr.const_cast_derived()); + } +}; + +// this is the const ref version +template +class Ref, Options, StrideType> + : public internal::SparseRefBase, Options, StrideType> > +{ + typedef SparseVector TPlainObjectType; + typedef internal::traits Traits; + public: + + typedef internal::SparseRefBase Base; + EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) + + template + inline Ref(const SparseMatrixBase& expr) : m_hasCopy(false) + { + construct(expr.derived(), typename Traits::template match::type()); + } + + inline Ref(const Ref& other) : Base(other), m_hasCopy(false) { + // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy + } + + template + inline Ref(const RefBase& other) : m_hasCopy(false) { + construct(other.derived(), typename Traits::template match::type()); + } + + ~Ref() { + if(m_hasCopy) { + internal::destroy_at(reinterpret_cast(&m_storage)); + } + } + + protected: + + template + void construct(const Expression& expr,internal::true_type) + { + Base::construct(expr); + } + + template + void construct(const Expression& expr, internal::false_type) + { + TPlainObjectType* obj = internal::construct_at(reinterpret_cast(&m_storage), expr); + m_hasCopy = true; + Base::construct(*obj); + } + + protected: + typename internal::aligned_storage::type m_storage; + bool m_hasCopy; +}; + +namespace internal { + +// FIXME shall we introduce a general evaluatior_ref that we can specialize for any sparse object once, and thus remove this copy-pasta thing... + +template +struct evaluator, Options, StrideType> > + : evaluator, Options, StrideType> > > +{ + typedef evaluator, Options, StrideType> > > Base; + typedef Ref, Options, StrideType> XprType; + evaluator() : Base() {} + explicit evaluator(const XprType &mat) : Base(mat) {} +}; + +template +struct evaluator, Options, StrideType> > + : evaluator, Options, StrideType> > > +{ + typedef evaluator, Options, StrideType> > > Base; + typedef Ref, Options, StrideType> XprType; + evaluator() : Base() {} + explicit evaluator(const XprType &mat) : Base(mat) {} +}; + +template +struct evaluator, Options, StrideType> > + : evaluator, Options, StrideType> > > +{ + typedef evaluator, Options, StrideType> > > Base; + typedef Ref, Options, StrideType> XprType; + evaluator() : Base() {} + explicit evaluator(const XprType &mat) : Base(mat) {} +}; + +template +struct evaluator, Options, StrideType> > + : evaluator, Options, StrideType> > > +{ + typedef evaluator, Options, StrideType> > > Base; + typedef Ref, Options, StrideType> XprType; + evaluator() : Base() {} + explicit evaluator(const XprType &mat) : Base(mat) {} +}; + +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_REF_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h new file mode 100644 index 0000000..211506e --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h @@ -0,0 +1,652 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H +#define EIGEN_SPARSE_SELFADJOINTVIEW_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup SparseCore_Module + * \class SparseSelfAdjointView + * + * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. + * + * \param MatrixType the type of the dense matrix storing the coefficients + * \param Mode can be either \c #Lower or \c #Upper + * + * This class is an expression of a sefladjoint matrix from a triangular part of a matrix + * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() + * and most of the time this is the only way that it is used. + * + * \sa SparseMatrixBase::selfadjointView() + */ +namespace internal { + +template +struct traits > : traits { +}; + +template +void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm = 0); + +template +void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm = 0); + +} + +template class SparseSelfAdjointView + : public EigenBase > +{ + public: + + enum { + Mode = Mode_, + TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0), + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime + }; + + typedef EigenBase Base; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix VectorI; + typedef typename internal::ref_selector::non_const_type MatrixTypeNested; + typedef internal::remove_all_t MatrixTypeNested_; + + explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) + { + eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); + } + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + /** \internal \returns a reference to the nested matrix */ + const MatrixTypeNested_& matrix() const { return m_matrix; } + std::remove_reference_t& matrix() { return m_matrix; } + + /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. + * + * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. + * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. + */ + template + Product + operator*(const SparseMatrixBase& rhs) const + { + return Product(*this, rhs.derived()); + } + + /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. + * + * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. + * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. + */ + template friend + Product + operator*(const SparseMatrixBase& lhs, const SparseSelfAdjointView& rhs) + { + return Product(lhs.derived(), rhs); + } + + /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ + template + Product + operator*(const MatrixBase& rhs) const + { + return Product(*this, rhs.derived()); + } + + /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ + template friend + Product + operator*(const MatrixBase& lhs, const SparseSelfAdjointView& rhs) + { + return Product(lhs.derived(), rhs); + } + + /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: + * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. + * + * \returns a reference to \c *this + * + * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply + * call this function with u.adjoint(). + */ + template + SparseSelfAdjointView& rankUpdate(const SparseMatrixBase& u, const Scalar& alpha = Scalar(1)); + + /** \returns an expression of P H P^-1 */ + // TODO implement twists in a more evaluator friendly fashion + SparseSymmetricPermutationProduct twistedBy(const PermutationMatrix& perm) const + { + return SparseSymmetricPermutationProduct(m_matrix, perm); + } + + template + SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct& permutedMatrix) + { + internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); + return *this; + } + + SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) + { + PermutationMatrix pnull; + return *this = src.twistedBy(pnull); + } + + // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor + EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView) + + template + SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) + { + PermutationMatrix pnull; + return *this = src.twistedBy(pnull); + } + + void resize(Index rows, Index cols) + { + EIGEN_ONLY_USED_FOR_DEBUG(rows); + EIGEN_ONLY_USED_FOR_DEBUG(cols); + eigen_assert(rows == this->rows() && cols == this->cols() + && "SparseSelfadjointView::resize() does not actually allow to resize."); + } + + protected: + + MatrixTypeNested m_matrix; + //mutable VectorI m_countPerRow; + //mutable VectorI m_countPerCol; + private: + template void evalTo(Dest &) const; +}; + +/*************************************************************************** +* Implementation of SparseMatrixBase methods +***************************************************************************/ + +template +template +typename SparseMatrixBase::template ConstSelfAdjointViewReturnType::Type SparseMatrixBase::selfadjointView() const +{ + return SparseSelfAdjointView(derived()); +} + +template +template +typename SparseMatrixBase::template SelfAdjointViewReturnType::Type SparseMatrixBase::selfadjointView() +{ + return SparseSelfAdjointView(derived()); +} + +/*************************************************************************** +* Implementation of SparseSelfAdjointView methods +***************************************************************************/ + +template +template +SparseSelfAdjointView& +SparseSelfAdjointView::rankUpdate(const SparseMatrixBase& u, const Scalar& alpha) +{ + SparseMatrix tmp = u * u.adjoint(); + if(alpha==Scalar(0)) + m_matrix = tmp.template triangularView(); + else + m_matrix += alpha * tmp.template triangularView(); + + return *this; +} + +namespace internal { + +// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> +// in the future selfadjoint-ness should be defined by the expression traits +// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) +template +struct evaluator_traits > +{ + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef SparseSelfAdjointShape Shape; +}; + +struct SparseSelfAdjoint2Sparse {}; + +template<> struct AssignmentKind { typedef SparseSelfAdjoint2Sparse Kind; }; +template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + typedef typename DstXprType::StorageIndex StorageIndex; + typedef internal::assign_op AssignOpType; + + template + static void run(SparseMatrix &dst, const SrcXprType &src, const AssignOpType&/*func*/) + { + internal::permute_symm_to_fullsymm(src.matrix(), dst); + } + + // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to: + template + static void run(SparseMatrix &dst, const SrcXprType &src, const AssignFunc& func) + { + SparseMatrix tmp(src.rows(),src.cols()); + run(tmp, src, AssignOpType()); + call_assignment_no_alias_no_transpose(dst, tmp, func); + } + + template + static void run(SparseMatrix &dst, const SrcXprType &src, + const internal::add_assign_op& /* func */) + { + SparseMatrix tmp(src.rows(),src.cols()); + run(tmp, src, AssignOpType()); + dst += tmp; + } + + template + static void run(SparseMatrix &dst, const SrcXprType &src, + const internal::sub_assign_op& /* func */) + { + SparseMatrix tmp(src.rows(),src.cols()); + run(tmp, src, AssignOpType()); + dst -= tmp; + } +}; + +} // end namespace internal + +/*************************************************************************** +* Implementation of sparse self-adjoint time dense matrix +***************************************************************************/ + +namespace internal { + +template +inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) +{ + EIGEN_ONLY_USED_FOR_DEBUG(alpha); + + typedef typename internal::nested_eval::type SparseLhsTypeNested; + typedef internal::remove_all_t SparseLhsTypeNestedCleaned; + typedef evaluator LhsEval; + typedef typename LhsEval::InnerIterator LhsIterator; + typedef typename SparseLhsType::Scalar LhsScalar; + + enum { + LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit, + ProcessFirstHalf = + ((Mode&(Upper|Lower))==(Upper|Lower)) + || ( (Mode&Upper) && !LhsIsRowMajor) + || ( (Mode&Lower) && LhsIsRowMajor), + ProcessSecondHalf = !ProcessFirstHalf + }; + + SparseLhsTypeNested lhs_nested(lhs); + LhsEval lhsEval(lhs_nested); + + // work on one column at once + for (Index k=0; k::ReturnType rhs_j(alpha*rhs(j,k)); + // accumulator for partial scalar product + typename DenseResType::Scalar res_j(0); + for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) + { + LhsScalar lhs_ij = i.value(); + if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); + res_j += lhs_ij * rhs.coeff(i.index(),k); + res(i.index(),k) += numext::conj(lhs_ij) * rhs_j; + } + res.coeffRef(j,k) += alpha * res_j; + + // handle diagonal coeff + if (ProcessFirstHalf && i && (i.index()==j)) + res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); + } + } +} + + +template +struct generic_product_impl +: generic_product_impl_base > +{ + template + static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) + { + typedef typename LhsView::MatrixTypeNested_ Lhs; + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(lhsView.matrix()); + RhsNested rhsNested(rhs); + + internal::sparse_selfadjoint_time_dense_product(lhsNested, rhsNested, dst, alpha); + } +}; + +template +struct generic_product_impl +: generic_product_impl_base > +{ + template + static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) + { + typedef typename RhsView::MatrixTypeNested_ Rhs; + typedef typename nested_eval::type LhsNested; + typedef typename nested_eval::type RhsNested; + LhsNested lhsNested(lhs); + RhsNested rhsNested(rhsView.matrix()); + + // transpose everything + Transpose dstT(dst); + internal::sparse_selfadjoint_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); + } +}; + +// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix +// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore + +template +struct product_evaluator, ProductTag, SparseSelfAdjointShape, SparseShape> + : public evaluator::PlainObject> +{ + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + + product_evaluator(const XprType& xpr) + : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) + { + internal::construct_at(this, m_result); + generic_product_impl::evalTo(m_result, m_lhs, xpr.rhs()); + } + +protected: + typename Rhs::PlainObject m_lhs; + PlainObject m_result; +}; + +template +struct product_evaluator, ProductTag, SparseShape, SparseSelfAdjointShape> + : public evaluator::PlainObject> +{ + typedef Product XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + + product_evaluator(const XprType& xpr) + : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) + { + ::new (static_cast(this)) Base(m_result); + generic_product_impl::evalTo(m_result, xpr.lhs(), m_rhs); + } + +protected: + typename Lhs::PlainObject m_rhs; + PlainObject m_result; +}; + +} // namespace internal + +/*************************************************************************** +* Implementation of symmetric copies and permutations +***************************************************************************/ +namespace internal { + +template +void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm) +{ + typedef typename MatrixType::StorageIndex StorageIndex; + typedef typename MatrixType::Scalar Scalar; + typedef SparseMatrix Dest; + typedef Matrix VectorI; + typedef evaluator MatEval; + typedef typename evaluator::InnerIterator MatIterator; + + MatEval matEval(mat); + Dest& dest(_dest.derived()); + enum { + StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) + }; + + Index size = mat.rows(); + VectorI count; + count.resize(size); + count.setZero(); + dest.resize(size,size); + for(Index j = 0; jc) || ( Mode==Upper && r(it.index()); + Index r = it.row(); + Index c = it.col(); + + StorageIndex jp = perm ? perm[j] : j; + StorageIndex ip = perm ? perm[i] : i; + + if(Mode==int(Upper|Lower)) + { + Index k = count[StorageOrderMatch ? jp : ip]++; + dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; + dest.valuePtr()[k] = it.value(); + } + else if(r==c) + { + Index k = count[ip]++; + dest.innerIndexPtr()[k] = ip; + dest.valuePtr()[k] = it.value(); + } + else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r +void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm) +{ + typedef typename MatrixType::StorageIndex StorageIndex; + typedef typename MatrixType::Scalar Scalar; + SparseMatrix& dest(_dest.derived()); + typedef Matrix VectorI; + typedef evaluator MatEval; + typedef typename evaluator::InnerIterator MatIterator; + + enum { + SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, + StorageOrderMatch = int(SrcOrder) == int(DstOrder), + DstMode = DstOrder==RowMajor ? (DstMode_==Upper ? Lower : Upper) : DstMode_, + SrcMode = SrcOrder==RowMajor ? (SrcMode_==Upper ? Lower : Upper) : SrcMode_ + }; + + MatEval matEval(mat); + + Index size = mat.rows(); + VectorI count(size); + count.setZero(); + dest.resize(size,size); + for(StorageIndex j = 0; jj)) + continue; + + StorageIndex ip = perm ? perm[i] : i; + count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; + } + } + dest.outerIndexPtr()[0] = 0; + for(Index j=0; jj)) + continue; + + StorageIndex jp = perm ? perm[j] : j; + StorageIndex ip = perm? perm[i] : i; + + Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; + dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); + + if(!StorageOrderMatch) std::swap(ip,jp); + if( ((int(DstMode)==int(Lower) && ipjp))) + dest.valuePtr()[k] = numext::conj(it.value()); + else + dest.valuePtr()[k] = it.value(); + } + } +} + +} + +// TODO implement twists in a more evaluator friendly fashion + +namespace internal { + +template +struct traits > : traits { +}; + +} + +template +class SparseSymmetricPermutationProduct + : public EigenBase > +{ + public: + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::StorageIndex StorageIndex; + enum { + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime + }; + protected: + typedef PermutationMatrix Perm; + public: + typedef Matrix VectorI; + typedef typename MatrixType::Nested MatrixTypeNested; + typedef internal::remove_all_t NestedExpression; + + SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) + : m_matrix(mat), m_perm(perm) + {} + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + const NestedExpression& matrix() const { return m_matrix; } + const Perm& perm() const { return m_perm; } + + protected: + MatrixTypeNested m_matrix; + const Perm& m_perm; + +}; + +namespace internal { + +template +struct Assignment, internal::assign_op, Sparse2Sparse> +{ + typedef SparseSymmetricPermutationProduct SrcXprType; + typedef typename DstXprType::StorageIndex DstIndex; + template + static void run(SparseMatrix &dst, const SrcXprType &src, const internal::assign_op &) + { + // internal::permute_symm_to_fullsymm(m_matrix,_dest,m_perm.indices().data()); + SparseMatrix tmp; + internal::permute_symm_to_fullsymm(src.matrix(),tmp,src.perm().indices().data()); + dst = tmp; + } + + template + static void run(SparseSelfAdjointView& dst, const SrcXprType &src, const internal::assign_op &) + { + internal::permute_symm_to_symm(src.matrix(),dst.matrix(),src.perm().indices().data()); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSolverBase.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSolverBase.h new file mode 100644 index 0000000..8261fb5 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSolverBase.h @@ -0,0 +1,128 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSESOLVERBASE_H +#define EIGEN_SPARSESOLVERBASE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + + /** \internal + * Helper functions to solve with a sparse right-hand-side and result. + * The rhs is decomposed into small vertical panels which are solved through dense temporaries. + */ +template +std::enable_if_t +solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest) +{ + EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + typedef typename Dest::Scalar DestScalar; + // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix. + static const Index NbColsAtOnce = 4; + Index rhsCols = rhs.cols(); + Index size = rhs.rows(); + // the temporary matrices do not need more columns than NbColsAtOnce: + Index tmpCols = (std::min)(rhsCols, NbColsAtOnce); + Eigen::Matrix tmp(size,tmpCols); + Eigen::Matrix tmpX(size,tmpCols); + for(Index k=0; k(rhsCols-k, NbColsAtOnce); + tmp.leftCols(actualCols) = rhs.middleCols(k,actualCols); + tmpX.leftCols(actualCols) = dec.solve(tmp.leftCols(actualCols)); + dest.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView(); + } +} + +// Overload for vector as rhs +template +std::enable_if_t +solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest) +{ + typedef typename Dest::Scalar DestScalar; + Index size = rhs.rows(); + Eigen::Matrix rhs_dense(rhs); + Eigen::Matrix dest_dense(size); + dest_dense = dec.solve(rhs_dense); + dest = dest_dense.sparseView(); +} + +} // end namespace internal + +/** \class SparseSolverBase + * \ingroup SparseCore_Module + * \brief A base class for sparse solvers + * + * \tparam Derived the actual type of the solver. + * + */ +template +class SparseSolverBase : internal::noncopyable +{ + public: + + /** Default constructor */ + SparseSolverBase() + : m_isInitialized(false) + {} + + SparseSolverBase(SparseSolverBase&&other ) : internal::noncopyable{}, m_isInitialized{other.m_isInitialized} {} + + ~SparseSolverBase() + {} + + Derived& derived() { return *static_cast(this); } + const Derived& derived() const { return *static_cast(this); } + + /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * \sa compute() + */ + template + inline const Solve + solve(const MatrixBase& b) const + { + eigen_assert(m_isInitialized && "Solver is not initialized."); + eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); + return Solve(derived(), b.derived()); + } + + /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * \sa compute() + */ + template + inline const Solve + solve(const SparseMatrixBase& b) const + { + eigen_assert(m_isInitialized && "Solver is not initialized."); + eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); + return Solve(derived(), b.derived()); + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal default implementation of solving with a sparse rhs */ + template + void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const + { + internal::solve_sparse_through_dense_panels(derived(), b.derived(), dest.derived()); + } + #endif // EIGEN_PARSED_BY_DOXYGEN + + protected: + + mutable bool m_isInitialized; +}; + +} // end namespace Eigen + +#endif // EIGEN_SPARSESOLVERBASE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h new file mode 100644 index 0000000..ee0ec1b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h @@ -0,0 +1,200 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H +#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + + +// perform a pseudo in-place sparse * sparse product assuming all matrices are col major +template +static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance) +{ + // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res); + + typedef typename remove_all_t::Scalar RhsScalar; + typedef typename remove_all_t::Scalar ResScalar; + typedef typename remove_all_t::StorageIndex StorageIndex; + + // make sure to call innerSize/outerSize since we fake the storage order. + Index rows = lhs.innerSize(); + Index cols = rhs.outerSize(); + //Index size = lhs.outerSize(); + eigen_assert(lhs.outerSize() == rhs.innerSize()); + + // allocate a temporary buffer + AmbiVector tempVector(rows); + + // mimics a resizeByInnerOuter: + if(ResultType::IsRowMajor) + res.resize(cols, rows); + else + res.resize(rows, cols); + + evaluator lhsEval(lhs); + evaluator rhsEval(rhs); + + // estimate the number of non zero entries + // given a rhs column containing Y non zeros, we assume that the respective Y columns + // of the lhs differs in average of one non zeros, thus the number of non zeros for + // the product of a rhs column with the lhs is X+Y where X is the average number of non zero + // per column of the lhs. + // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) + Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); + + res.reserve(estimated_nnz_prod); + double ratioColRes = double(estimated_nnz_prod)/(double(lhs.rows())*double(rhs.cols())); + for (Index j=0; j::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) + { + // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index()) + tempVector.restart(); + RhsScalar x = rhsIt.value(); + for (typename evaluator::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt) + { + tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x; + } + } + res.startVec(j); + for (typename AmbiVector::Iterator it(tempVector,tolerance); it; ++it) + res.insertBackByOuterInner(j,it.index()) = it.value(); + } + res.finalize(); +} + +template::Flags&RowMajorBit, + int RhsStorageOrder = traits::Flags&RowMajorBit, + int ResStorageOrder = traits::Flags&RowMajorBit> +struct sparse_sparse_product_with_pruning_selector; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + remove_all_t _res(res.rows(), res.cols()); + internal::sparse_sparse_product_with_pruning_impl(lhs, rhs, _res, tolerance); + res.swap(_res); + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + // we need a col-major matrix to hold the result + typedef SparseMatrix SparseTemporaryType; + SparseTemporaryType _res(res.rows(), res.cols()); + internal::sparse_sparse_product_with_pruning_impl(lhs, rhs, _res, tolerance); + res = _res; + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + // let's transpose the product to get a column x column product + remove_all_t _res(res.rows(), res.cols()); + internal::sparse_sparse_product_with_pruning_impl(rhs, lhs, _res, tolerance); + res.swap(_res); + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + typedef SparseMatrix ColMajorMatrixLhs; + typedef SparseMatrix ColMajorMatrixRhs; + ColMajorMatrixLhs colLhs(lhs); + ColMajorMatrixRhs colRhs(rhs); + internal::sparse_sparse_product_with_pruning_impl(colLhs, colRhs, res, tolerance); + + // let's transpose the product to get a column x column product +// typedef SparseMatrix SparseTemporaryType; +// SparseTemporaryType _res(res.cols(), res.rows()); +// sparse_sparse_product_with_pruning_impl(rhs, lhs, _res); +// res = _res.transpose(); + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + typedef SparseMatrix RowMajorMatrixLhs; + RowMajorMatrixLhs rowLhs(lhs); + sparse_sparse_product_with_pruning_selector(rowLhs,rhs,res,tolerance); + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + typedef SparseMatrix RowMajorMatrixRhs; + RowMajorMatrixRhs rowRhs(rhs); + sparse_sparse_product_with_pruning_selector(lhs,rowRhs,res,tolerance); + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + typedef SparseMatrix ColMajorMatrixRhs; + ColMajorMatrixRhs colRhs(rhs); + internal::sparse_sparse_product_with_pruning_impl(lhs, colRhs, res, tolerance); + } +}; + +template +struct sparse_sparse_product_with_pruning_selector +{ + typedef typename ResultType::RealScalar RealScalar; + static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) + { + typedef SparseMatrix ColMajorMatrixLhs; + ColMajorMatrixLhs colLhs(lhs); + internal::sparse_sparse_product_with_pruning_impl(colLhs, rhs, res, tolerance); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseTranspose.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseTranspose.h new file mode 100644 index 0000000..cce5903 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseTranspose.h @@ -0,0 +1,94 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSETRANSPOSE_H +#define EIGEN_SPARSETRANSPOSE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + template + class SparseTransposeImpl + : public SparseMatrixBase > + {}; + + template + class SparseTransposeImpl + : public SparseCompressedBase > + { + typedef SparseCompressedBase > Base; + public: + using Base::derived; + typedef typename Base::Scalar Scalar; + typedef typename Base::StorageIndex StorageIndex; + + inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); } + + inline const Scalar* valuePtr() const { return derived().nestedExpression().valuePtr(); } + inline const StorageIndex* innerIndexPtr() const { return derived().nestedExpression().innerIndexPtr(); } + inline const StorageIndex* outerIndexPtr() const { return derived().nestedExpression().outerIndexPtr(); } + inline const StorageIndex* innerNonZeroPtr() const { return derived().nestedExpression().innerNonZeroPtr(); } + + inline Scalar* valuePtr() { return derived().nestedExpression().valuePtr(); } + inline StorageIndex* innerIndexPtr() { return derived().nestedExpression().innerIndexPtr(); } + inline StorageIndex* outerIndexPtr() { return derived().nestedExpression().outerIndexPtr(); } + inline StorageIndex* innerNonZeroPtr() { return derived().nestedExpression().innerNonZeroPtr(); } + }; +} + +template class TransposeImpl + : public internal::SparseTransposeImpl +{ + protected: + typedef internal::SparseTransposeImpl Base; +}; + +namespace internal { + +template +struct unary_evaluator, IteratorBased> + : public evaluator_base > +{ + typedef typename evaluator::InnerIterator EvalIterator; + public: + typedef Transpose XprType; + + inline Index nonZerosEstimate() const { + return m_argImpl.nonZerosEstimate(); + } + + class InnerIterator : public EvalIterator + { + public: + EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer) + : EvalIterator(unaryOp.m_argImpl,outer) + {} + + Index row() const { return EvalIterator::col(); } + Index col() const { return EvalIterator::row(); } + }; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = XprType::Flags + }; + + explicit unary_evaluator(const XprType& op) :m_argImpl(op.nestedExpression()) {} + + protected: + evaluator m_argImpl; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSETRANSPOSE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseTriangularView.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseTriangularView.h new file mode 100644 index 0000000..5e7cea7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseTriangularView.h @@ -0,0 +1,191 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2015 Gael Guennebaud +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_TRIANGULARVIEW_H +#define EIGEN_SPARSE_TRIANGULARVIEW_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup SparseCore_Module + * + * \brief Base class for a triangular part in a \b sparse matrix + * + * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated. + * It extends class TriangularView with additional methods which are available for sparse expressions only. + * + * \sa class TriangularView, SparseMatrixBase::triangularView() + */ +template class TriangularViewImpl + : public SparseMatrixBase > +{ + enum { SkipFirst = ((Mode&Lower) && !(MatrixType::Flags&RowMajorBit)) + || ((Mode&Upper) && (MatrixType::Flags&RowMajorBit)), + SkipLast = !SkipFirst, + SkipDiag = (Mode&ZeroDiag) ? 1 : 0, + HasUnitDiag = (Mode&UnitDiag) ? 1 : 0 + }; + + typedef TriangularView TriangularViewType; + + protected: + // dummy solve function to make TriangularView happy. + void solve() const; + + typedef SparseMatrixBase Base; + public: + + EIGEN_SPARSE_PUBLIC_INTERFACE(TriangularViewType) + + typedef typename MatrixType::Nested MatrixTypeNested; + typedef std::remove_reference_t MatrixTypeNestedNonRef; + typedef internal::remove_all_t MatrixTypeNestedCleaned; + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { + if(!(internal::is_same::value && internal::extract_data(dst) == internal::extract_data(rhs))) + dst = rhs; + this->solveInPlace(dst); + } + + /** Applies the inverse of \c *this to the dense vector or matrix \a other, "in-place" */ + template void solveInPlace(MatrixBase& other) const; + + /** Applies the inverse of \c *this to the sparse vector or matrix \a other, "in-place" */ + template void solveInPlace(SparseMatrixBase& other) const; + +}; + +namespace internal { + +template +struct unary_evaluator, IteratorBased> + : evaluator_base > +{ + typedef TriangularView XprType; + +protected: + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::StorageIndex StorageIndex; + typedef typename evaluator::InnerIterator EvalIterator; + + enum { SkipFirst = ((Mode&Lower) && !(ArgType::Flags&RowMajorBit)) + || ((Mode&Upper) && (ArgType::Flags&RowMajorBit)), + SkipLast = !SkipFirst, + SkipDiag = (Mode&ZeroDiag) ? 1 : 0, + HasUnitDiag = (Mode&UnitDiag) ? 1 : 0 + }; + +public: + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = XprType::Flags + }; + + explicit unary_evaluator(const XprType &xpr) : m_argImpl(xpr.nestedExpression()), m_arg(xpr.nestedExpression()) {} + + inline Index nonZerosEstimate() const { + return m_argImpl.nonZerosEstimate(); + } + + class InnerIterator : public EvalIterator + { + typedef EvalIterator Base; + public: + + EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& xprEval, Index outer) + : Base(xprEval.m_argImpl,outer), m_returnOne(false), m_containsDiag(Base::outer()index()<=outer : this->index()=Base::outer())) + { + if((!SkipFirst) && Base::operator bool()) + Base::operator++(); + m_returnOne = m_containsDiag; + } + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + if(HasUnitDiag && m_returnOne) + m_returnOne = false; + else + { + Base::operator++(); + if(HasUnitDiag && (!SkipFirst) && ((!Base::operator bool()) || Base::index()>=Base::outer())) + { + if((!SkipFirst) && Base::operator bool()) + Base::operator++(); + m_returnOne = m_containsDiag; + } + } + return *this; + } + + EIGEN_STRONG_INLINE operator bool() const + { + if(HasUnitDiag && m_returnOne) + return true; + if(SkipFirst) return Base::operator bool(); + else + { + if (SkipDiag) return (Base::operator bool() && this->index() < this->outer()); + else return (Base::operator bool() && this->index() <= this->outer()); + } + } + +// inline Index row() const { return (ArgType::Flags&RowMajorBit ? Base::outer() : this->index()); } +// inline Index col() const { return (ArgType::Flags&RowMajorBit ? this->index() : Base::outer()); } + inline StorageIndex index() const + { + if(HasUnitDiag && m_returnOne) return internal::convert_index(Base::outer()); + else return Base::index(); + } + inline Scalar value() const + { + if(HasUnitDiag && m_returnOne) return Scalar(1); + else return Base::value(); + } + + protected: + bool m_returnOne; + bool m_containsDiag; + private: + Scalar& valueRef(); + }; + +protected: + evaluator m_argImpl; + const ArgType& m_arg; +}; + +} // end namespace internal + +template +template +inline const TriangularView +SparseMatrixBase::triangularView() const +{ + return TriangularView(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_SPARSE_TRIANGULARVIEW_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseUtil.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseUtil.h new file mode 100644 index 0000000..47f5ef6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseUtil.h @@ -0,0 +1,186 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEUTIL_H +#define EIGEN_SPARSEUTIL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +#ifdef NDEBUG +#define EIGEN_DBG_SPARSE(X) +#else +#define EIGEN_DBG_SPARSE(X) X +#endif + +#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \ +template \ +EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SparseMatrixBase& other) \ +{ \ + return Base::operator Op(other.derived()); \ +} \ +EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \ +{ \ + return Base::operator Op(other); \ +} + +#define EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \ +template \ +EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \ +{ \ + return Base::operator Op(scalar); \ +} + +#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \ +EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) + + +#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \ + EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) + + +const int CoherentAccessPattern = 0x1; +const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern; +const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern; +const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern; + +template class SparseMatrix; +template class SparseVector; + +template class SparseSelfAdjointView; +template class SparseDiagonalProduct; +template class SparseView; + +template class SparseSparseProduct; +template class SparseTimeDenseProduct; +template class DenseTimeSparseProduct; +template class SparseDenseOuterProduct; + +template struct SparseSparseProductReturnType; +template::ColsAtCompileTime, internal::traits::RowsAtCompileTime)> struct DenseSparseProductReturnType; + +template::ColsAtCompileTime, internal::traits::RowsAtCompileTime)> struct SparseDenseProductReturnType; +template class SparseSymmetricPermutationProduct; + +namespace internal { + +template struct sparse_eval; + +template struct eval + : sparse_eval::RowsAtCompileTime,traits::ColsAtCompileTime,traits::Flags> +{}; + +template struct sparse_eval { + typedef typename traits::Scalar Scalar_; + typedef typename traits::StorageIndex StorageIndex_; + public: + typedef SparseVector type; +}; + +template struct sparse_eval { + typedef typename traits::Scalar Scalar_; + typedef typename traits::StorageIndex StorageIndex_; + public: + typedef SparseVector type; +}; + +// TODO this seems almost identical to plain_matrix_type +template struct sparse_eval { + typedef typename traits::Scalar Scalar_; + typedef typename traits::StorageIndex StorageIndex_; + enum { Options_ = ((Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor }; + public: + typedef SparseMatrix type; +}; + +template struct sparse_eval { + typedef typename traits::Scalar Scalar_; + public: + typedef Matrix type; +}; + +template struct plain_matrix_type +{ + typedef typename traits::Scalar Scalar_; + typedef typename traits::StorageIndex StorageIndex_; + enum { Options_ = ((evaluator::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor }; + public: + typedef SparseMatrix type; +}; + +template +struct plain_object_eval + : sparse_eval::RowsAtCompileTime,traits::ColsAtCompileTime, evaluator::Flags> +{}; + +template +struct solve_traits +{ + typedef typename sparse_eval::Flags>::type PlainObject; +}; + +template +struct generic_xpr_base +{ + typedef SparseMatrixBase type; +}; + +struct SparseTriangularShape { static std::string debugName() { return "SparseTriangularShape"; } }; +struct SparseSelfAdjointShape { static std::string debugName() { return "SparseSelfAdjointShape"; } }; + +template<> struct glue_shapes { typedef SparseSelfAdjointShape type; }; +template<> struct glue_shapes { typedef SparseTriangularShape type; }; + +// return type of SparseCompressedBase::lower_bound; +struct LowerBoundIndex { + LowerBoundIndex() : value(-1), found(false) {} + LowerBoundIndex(Index val, bool ok) : value(val), found(ok) {} + Index value; + bool found; +}; + +} // end namespace internal + +/** \ingroup SparseCore_Module + * + * \class Triplet + * + * \brief A small structure to hold a non zero as a triplet (i,j,value). + * + * \sa SparseMatrix::setFromTriplets() + */ +template::StorageIndex > +class Triplet +{ +public: + Triplet() : m_row(0), m_col(0), m_value(0) {} + + Triplet(const StorageIndex& i, const StorageIndex& j, const Scalar& v = Scalar(0)) + : m_row(i), m_col(j), m_value(v) + {} + + /** \returns the row index of the element */ + const StorageIndex& row() const { return m_row; } + + /** \returns the column index of the element */ + const StorageIndex& col() const { return m_col; } + + /** \returns the value of the element */ + const Scalar& value() const { return m_value; } +protected: + StorageIndex m_row, m_col; + Scalar m_value; +}; + +} // end namespace Eigen + +#endif // EIGEN_SPARSEUTIL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseVector.h new file mode 100644 index 0000000..3b4d7b0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseVector.h @@ -0,0 +1,572 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEVECTOR_H +#define EIGEN_SPARSEVECTOR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/** \ingroup SparseCore_Module + * \class SparseVector + * + * \brief a sparse vector class + * + * \tparam Scalar_ the scalar type, i.e. the type of the coefficients + * + * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. + */ + +namespace internal { +template +struct traits > +{ + typedef Scalar_ Scalar; + typedef StorageIndex_ StorageIndex; + typedef Sparse StorageKind; + typedef MatrixXpr XprKind; + enum { + IsColVector = (Options_ & RowMajorBit) ? 0 : 1, + + RowsAtCompileTime = IsColVector ? Dynamic : 1, + ColsAtCompileTime = IsColVector ? 1 : Dynamic, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + Flags = Options_ | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, + SupportedAccessPatterns = InnerRandomAccessPattern + }; +}; + +// Sparse-Vector-Assignment kinds: +enum { + SVA_RuntimeSwitch, + SVA_Inner, + SVA_Outer +}; + +template< typename Dest, typename Src, + int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch + : Src::InnerSizeAtCompileTime==1 ? SVA_Outer + : SVA_Inner> +struct sparse_vector_assign_selector; + +} + +template +class SparseVector + : public SparseCompressedBase > +{ + typedef SparseCompressedBase Base; + using Base::convert_index; + public: + EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) + EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) + EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) + + typedef internal::CompressedStorage Storage; + enum { IsColVector = internal::traits::IsColVector }; + + enum { + Options = Options_ + }; + + EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } + EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } + EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } + EIGEN_STRONG_INLINE Index outerSize() const { return 1; } + + EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } + EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } + + EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } + EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } + + inline const StorageIndex* outerIndexPtr() const { return 0; } + inline StorageIndex* outerIndexPtr() { return 0; } + inline const StorageIndex* innerNonZeroPtr() const { return 0; } + inline StorageIndex* innerNonZeroPtr() { return 0; } + + /** \internal */ + inline Storage& data() { return m_data; } + /** \internal */ + inline const Storage& data() const { return m_data; } + + inline Scalar coeff(Index row, Index col) const + { + eigen_assert(IsColVector ? (col==0 && row>=0 && row=0 && col=0 && i=0 && row=0 && col=0 && i=0 && row=0 && col=0 && i= startId) && (m_data.index(p) > i) ) + { + m_data.index(p+1) = m_data.index(p); + m_data.value(p+1) = m_data.value(p); + --p; + } + m_data.index(p+1) = convert_index(i); + m_data.value(p+1) = 0; + return m_data.value(p+1); + } + + /** + */ + inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } + + + inline void finalize() {} + + /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ + Index prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) { + return prune([&](const Scalar& val){ return !internal::isMuchSmallerThan(val, reference, epsilon); }); + } + + /** + * \brief Prunes the entries of the vector based on a `predicate` + * \tparam F Type of the predicate. + * \param keep_predicate The predicate that is used to test whether a value should be kept. A callable that + * gets passed om a `Scalar` value and returns a boolean. If the predicate returns true, the value is kept. + * \return The new number of structural non-zeros. + */ + template + Index prune(F&& keep_predicate) + { + Index k = 0; + Index n = m_data.size(); + for (Index i = 0; i < n; ++i) + { + if (keep_predicate(m_data.value(i))) + { + m_data.value(k) = std::move(m_data.value(i)); + m_data.index(k) = m_data.index(i); + ++k; + } + } + m_data.resize(k); + return k; + } + + /** Resizes the sparse vector to \a rows x \a cols + * + * This method is provided for compatibility with matrices. + * For a column vector, \a cols must be equal to 1. + * For a row vector, \a rows must be equal to 1. + * + * \sa resize(Index) + */ + void resize(Index rows, Index cols) + { + eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1"); + resize(IsColVector ? rows : cols); + } + + /** Resizes the sparse vector to \a newSize + * This method deletes all entries, thus leaving an empty sparse vector + * + * \sa conservativeResize(), setZero() */ + void resize(Index newSize) + { + m_size = newSize; + m_data.clear(); + } + + /** Resizes the sparse vector to \a newSize, while leaving old values untouched. + * + * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. + * Call .data().squeeze() to free extra memory. + * + * \sa reserve(), setZero() + */ + void conservativeResize(Index newSize) + { + if (newSize < m_size) + { + Index i = 0; + while (i + inline SparseVector(const SparseMatrixBase& other) + : m_size(0) + { + #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN + #endif + *this = other.derived(); + } + + inline SparseVector(const SparseVector& other) + : Base(other), m_size(0) + { + *this = other.derived(); + } + + /** Swaps the values of \c *this and \a other. + * Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only. + * \sa SparseMatrixBase::swap() + */ + inline void swap(SparseVector& other) + { + std::swap(m_size, other.m_size); + m_data.swap(other.m_data); + } + + template + inline void swap(SparseMatrix& other) + { + eigen_assert(other.outerSize()==1); + std::swap(m_size, other.m_innerSize); + m_data.swap(other.m_data); + } + + inline SparseVector& operator=(const SparseVector& other) + { + if (other.isRValue()) + { + swap(other.const_cast_derived()); + } + else + { + resize(other.size()); + m_data = other.m_data; + } + return *this; + } + + template + inline SparseVector& operator=(const SparseMatrixBase& other) + { + SparseVector tmp(other.size()); + internal::sparse_vector_assign_selector::run(tmp,other.derived()); + this->swap(tmp); + return *this; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + inline SparseVector& operator=(const SparseSparseProduct& product) + { + return Base::operator=(product); + } + #endif + +#ifndef EIGEN_NO_IO + friend std::ostream & operator << (std::ostream & s, const SparseVector& m) + { + for (Index i=0; i::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE) + EIGEN_STATIC_ASSERT((Options_&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS) + + Storage m_data; + Index m_size; +}; + +namespace internal { + +template +struct evaluator > + : evaluator_base > +{ + typedef SparseVector SparseVectorType; + typedef evaluator_base Base; + typedef typename SparseVectorType::InnerIterator InnerIterator; + typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; + + enum { + CoeffReadCost = NumTraits::ReadCost, + Flags = SparseVectorType::Flags + }; + + evaluator() : Base() {} + + explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + inline Index nonZerosEstimate() const { + return m_matrix->nonZeros(); + } + + operator SparseVectorType&() { return m_matrix->const_cast_derived(); } + operator const SparseVectorType&() const { return *m_matrix; } + + const SparseVectorType *m_matrix; +}; + +template< typename Dest, typename Src> +struct sparse_vector_assign_selector { + static void run(Dest& dst, const Src& src) { + eigen_internal_assert(src.innerSize()==src.size()); + typedef internal::evaluator SrcEvaluatorType; + SrcEvaluatorType srcEval(src); + for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) + dst.insert(it.index()) = it.value(); + } +}; + +template< typename Dest, typename Src> +struct sparse_vector_assign_selector { + static void run(Dest& dst, const Src& src) { + eigen_internal_assert(src.outerSize()==src.size()); + typedef internal::evaluator SrcEvaluatorType; + SrcEvaluatorType srcEval(src); + for(Index i=0; i +struct sparse_vector_assign_selector { + static void run(Dest& dst, const Src& src) { + if(src.outerSize()==1) sparse_vector_assign_selector::run(dst, src); + else sparse_vector_assign_selector::run(dst, src); + } +}; + +} + +// Specialization for SparseVector. +// Serializes [size, numNonZeros, innerIndices, values]. +template +class Serializer, void> { + public: + typedef SparseVector SparseMat; + + struct Header { + typename SparseMat::Index size; + Index num_non_zeros; + }; + + EIGEN_DEVICE_FUNC size_t size(const SparseMat& value) const { + return sizeof(Header) + + (sizeof(Scalar) + sizeof(StorageIndex)) * value.nonZeros(); + } + + EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end, + const SparseMat& value) { + if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr; + + const size_t header_bytes = sizeof(Header); + Header header = {value.innerSize(), value.nonZeros()}; + EIGEN_USING_STD(memcpy) + memcpy(dest, &header, header_bytes); + dest += header_bytes; + + // Inner indices. + std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros; + memcpy(dest, value.innerIndexPtr(), data_bytes); + dest += data_bytes; + + // Values. + data_bytes = sizeof(Scalar) * header.num_non_zeros; + memcpy(dest, value.valuePtr(), data_bytes); + dest += data_bytes; + + return dest; + } + + EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src, + const uint8_t* end, + SparseMat& value) const { + if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr; + if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr; + + const size_t header_bytes = sizeof(Header); + Header header; + EIGEN_USING_STD(memcpy) + memcpy(&header, src, header_bytes); + src += header_bytes; + + value.setZero(); + value.resize(header.size); + value.resizeNonZeros(header.num_non_zeros); + + // Inner indices. + std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros; + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + memcpy(value.innerIndexPtr(), src, data_bytes); + src += data_bytes; + + // Values. + data_bytes = sizeof(Scalar) * header.num_non_zeros; + if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; + memcpy(value.valuePtr(), src, data_bytes); + src += data_bytes; + return src; + } +}; + +} // end namespace Eigen + +#endif // EIGEN_SPARSEVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseView.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseView.h new file mode 100644 index 0000000..dbb4c43 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/SparseView.h @@ -0,0 +1,256 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2010 Daniel Lowengrub +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSEVIEW_H +#define EIGEN_SPARSEVIEW_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct traits > : traits +{ + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Sparse StorageKind; + enum { + Flags = int(traits::Flags) & (RowMajorBit) + }; +}; + +} // end namespace internal + +/** \ingroup SparseCore_Module + * \class SparseView + * + * \brief Expression of a dense or sparse matrix with zero or too small values removed + * + * \tparam MatrixType the type of the object of which we are removing the small entries + * + * This class represents an expression of a given dense or sparse matrix with + * entries smaller than \c reference * \c epsilon are removed. + * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned() + * and most of the time this is the only way it is used. + * + * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned() + */ +template +class SparseView : public SparseMatrixBase > +{ + typedef typename MatrixType::Nested MatrixTypeNested; + typedef internal::remove_all_t MatrixTypeNested_; + typedef SparseMatrixBase Base; +public: + EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView) + typedef internal::remove_all_t NestedExpression; + + explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0), + const RealScalar &epsilon = NumTraits::dummy_precision()) + : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {} + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + inline Index innerSize() const { return m_matrix.innerSize(); } + inline Index outerSize() const { return m_matrix.outerSize(); } + + /** \returns the nested expression */ + const internal::remove_all_t& + nestedExpression() const { return m_matrix; } + + Scalar reference() const { return m_reference; } + RealScalar epsilon() const { return m_epsilon; } + +protected: + MatrixTypeNested m_matrix; + Scalar m_reference; + RealScalar m_epsilon; +}; + +namespace internal { + +// TODO find a way to unify the two following variants +// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is +// not easy because the evaluators do not expose the sizes of the underlying expression. + +template +struct unary_evaluator, IteratorBased> + : public evaluator_base > +{ + typedef typename evaluator::InnerIterator EvalIterator; + public: + typedef SparseView XprType; + + class InnerIterator : public EvalIterator + { + protected: + typedef typename XprType::Scalar Scalar; + public: + + EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) + : EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view) + { + incrementToNonZero(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + EvalIterator::operator++(); + incrementToNonZero(); + return *this; + } + + using EvalIterator::value; + + protected: + const XprType &m_view; + + private: + void incrementToNonZero() + { + while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon())) + { + EvalIterator::operator++(); + } + } + }; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = XprType::Flags + }; + + explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} + + protected: + evaluator m_argImpl; + const XprType &m_view; +}; + +template +struct unary_evaluator, IndexBased> + : public evaluator_base > +{ + public: + typedef SparseView XprType; + protected: + enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit }; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::StorageIndex StorageIndex; + public: + + class InnerIterator + { + public: + + EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) + : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize()) + { + incrementToNonZero(); + } + + EIGEN_STRONG_INLINE InnerIterator& operator++() + { + m_inner++; + incrementToNonZero(); + return *this; + } + + EIGEN_STRONG_INLINE Scalar value() const + { + return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner) + : m_sve.m_argImpl.coeff(m_inner, m_outer); + } + + EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; } + inline Index row() const { return IsRowMajor ? m_outer : index(); } + inline Index col() const { return IsRowMajor ? index() : m_outer; } + + EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } + + protected: + const unary_evaluator &m_sve; + Index m_inner; + const Index m_outer; + const Index m_end; + + private: + void incrementToNonZero() + { + while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon())) + { + m_inner++; + } + } + }; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = XprType::Flags + }; + + explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} + + protected: + evaluator m_argImpl; + const XprType &m_view; +}; + +} // end namespace internal + +/** \ingroup SparseCore_Module + * + * \returns a sparse expression of the dense expression \c *this with values smaller than + * \a reference * \a epsilon removed. + * + * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S: + * \code + * MatrixXd D(n,m); + * SparseMatrix S; + * S = D.sparseView(); // suppress numerical zeros (exact) + * S = D.sparseView(reference); + * S = D.sparseView(reference,epsilon); + * \endcode + * where \a reference is a meaningful non zero reference value, + * and \a epsilon is a tolerance factor defaulting to NumTraits::dummy_precision(). + * + * \sa SparseMatrixBase::pruned(), class SparseView */ +template +const SparseView MatrixBase::sparseView(const Scalar& reference, + const typename NumTraits::Real& epsilon) const +{ + return SparseView(derived(), reference, epsilon); +} + +/** \returns an expression of \c *this with values smaller than + * \a reference * \a epsilon removed. + * + * This method is typically used in conjunction with the product of two sparse matrices + * to automatically prune the smallest values as follows: + * \code + * C = (A*B).pruned(); // suppress numerical zeros (exact) + * C = (A*B).pruned(ref); + * C = (A*B).pruned(ref,epsilon); + * \endcode + * where \c ref is a meaningful non zero reference value. + * */ +template +const SparseView +SparseMatrixBase::pruned(const Scalar& reference, + const RealScalar& epsilon) const +{ + return SparseView(derived(), reference, epsilon); +} + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/TriangularSolver.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/TriangularSolver.h new file mode 100644 index 0000000..a9fbeeb --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseCore/TriangularSolver.h @@ -0,0 +1,317 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSETRIANGULARSOLVER_H +#define EIGEN_SPARSETRIANGULARSOLVER_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template::Flags) & RowMajorBit> +struct sparse_solve_triangular_selector; + +// forward substitution, row-major +template +struct sparse_solve_triangular_selector +{ + typedef typename Rhs::Scalar Scalar; + typedef evaluator LhsEval; + typedef typename evaluator::InnerIterator LhsIterator; + static void run(const Lhs& lhs, Rhs& other) + { + LhsEval lhsEval(lhs); + for(Index col=0 ; col +struct sparse_solve_triangular_selector +{ + typedef typename Rhs::Scalar Scalar; + typedef evaluator LhsEval; + typedef typename evaluator::InnerIterator LhsIterator; + static void run(const Lhs& lhs, Rhs& other) + { + LhsEval lhsEval(lhs); + for(Index col=0 ; col=0 ; --i) + { + Scalar tmp = other.coeff(i,col); + Scalar l_ii(0); + LhsIterator it(lhsEval, i); + while(it && it.index() +struct sparse_solve_triangular_selector +{ + typedef typename Rhs::Scalar Scalar; + typedef evaluator LhsEval; + typedef typename evaluator::InnerIterator LhsIterator; + static void run(const Lhs& lhs, Rhs& other) + { + LhsEval lhsEval(lhs); + for(Index col=0 ; col +struct sparse_solve_triangular_selector +{ + typedef typename Rhs::Scalar Scalar; + typedef evaluator LhsEval; + typedef typename evaluator::InnerIterator LhsIterator; + static void run(const Lhs& lhs, Rhs& other) + { + LhsEval lhsEval(lhs); + for(Index col=0 ; col=0; --i) + { + Scalar& tmp = other.coeffRef(i,col); + if (!numext::is_exactly_zero(tmp)) // optimization when other is actually sparse + { + if(!(Mode & UnitDiag)) + { + // TODO replace this by a binary search. make sure the binary search is safe for partially sorted elements + LhsIterator it(lhsEval, i); + while(it && it.index()!=i) + ++it; + eigen_assert(it && it.index()==i); + other.coeffRef(i,col) /= it.value(); + } + LhsIterator it(lhsEval, i); + for(; it && it.index() +template +void TriangularViewImpl::solveInPlace(MatrixBase& other) const +{ + eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows()); + eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower))); + + enum { copy = internal::traits::Flags & RowMajorBit }; + + typedef std::conditional_t::type, OtherDerived&> OtherCopy; + OtherCopy otherCopy(other.derived()); + + internal::sparse_solve_triangular_selector, Mode>::run(derived().nestedExpression(), otherCopy); + + if (copy) + other = otherCopy; +} +#endif + +// pure sparse path + +namespace internal { + +template +struct sparse_solve_triangular_sparse_selector; + +// forward substitution, col-major +template +struct sparse_solve_triangular_sparse_selector +{ + typedef typename Rhs::Scalar Scalar; + typedef typename promote_index_type::StorageIndex, + typename traits::StorageIndex>::type StorageIndex; + static void run(const Lhs& lhs, Rhs& other) + { + const bool IsLower = (UpLo==Lower); + AmbiVector tempVector(other.rows()*2); + tempVector.setBounds(0,other.rows()); + + Rhs res(other.rows(), other.cols()); + res.reserve(other.nonZeros()); + + for(Index col=0 ; col=0; + i+=IsLower?1:-1) + { + tempVector.restart(); + Scalar& ci = tempVector.coeffRef(i); + if (!numext::is_exactly_zero(ci)) + { + // find + typename Lhs::InnerIterator it(lhs, i); + if(!(Mode & UnitDiag)) + { + if (IsLower) + { + eigen_assert(it.index()==i); + ci /= it.value(); + } + else + ci /= lhs.coeff(i,i); + } + tempVector.restart(); + if (IsLower) + { + if (it.index()==i) + ++it; + for(; it; ++it) + tempVector.coeffRef(it.index()) -= ci * it.value(); + } + else + { + for(; it && it.index()::Iterator it(tempVector/*,1e-12*/); it; ++it) + { +// ++ count; +// std::cerr << "fill " << it.index() << ", " << col << "\n"; +// std::cout << it.value() << " "; + // FIXME use insertBack + res.insert(it.index(), col) = it.value(); + } +// std::cout << "tempVector.nonZeros() == " << int(count) << " / " << (other.rows()) << "\n"; + } + res.finalize(); + other = res.markAsRValue(); + } +}; + +} // end namespace internal + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void TriangularViewImpl::solveInPlace(SparseMatrixBase& other) const +{ + eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows()); + eigen_assert( (!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower))); + +// enum { copy = internal::traits::Flags & RowMajorBit }; + +// typedef std::conditional_t::type, OtherDerived&> OtherCopy; +// OtherCopy otherCopy(other.derived()); + + internal::sparse_solve_triangular_sparse_selector::run(derived().nestedExpression(), other.derived()); + +// if (copy) +// other = otherCopy; +} +#endif + +} // end namespace Eigen + +#endif // EIGEN_SPARSETRIANGULARSOLVER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/InternalHeaderCheck.h new file mode 100644 index 0000000..78ebfcc --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SPARSELU_MODULE_H +#error "Please include Eigen/SparseLU instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU.h new file mode 100644 index 0000000..f70aab1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU.h @@ -0,0 +1,978 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2012-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_SPARSE_LU_H +#define EIGEN_SPARSE_LU_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template > class SparseLU; +template struct SparseLUMatrixLReturnType; +template struct SparseLUMatrixUReturnType; + +template +class SparseLUTransposeView : public SparseSolverBase > +{ +protected: + typedef SparseSolverBase > APIBase; + using APIBase::m_isInitialized; +public: + typedef typename SparseLUType::Scalar Scalar; + typedef typename SparseLUType::StorageIndex StorageIndex; + typedef typename SparseLUType::MatrixType MatrixType; + typedef typename SparseLUType::OrderingType OrderingType; + + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + SparseLUTransposeView() : APIBase(), m_sparseLU(NULL) {} + SparseLUTransposeView(const SparseLUTransposeView& view) : APIBase() { + this->m_sparseLU = view.m_sparseLU; + this->m_isInitialized = view.m_isInitialized; + } + void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;} + void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;} + using APIBase::_solve_impl; + template + bool _solve_impl(const MatrixBase &B, MatrixBase &X_base) const + { + Dest& X(X_base.derived()); + eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first"); + EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, + THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + + + // this ugly const_cast_derived() helps to detect aliasing when applying the permutations + for(Index j = 0; j < B.cols(); ++j){ + X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j); + } + //Forward substitution with transposed or adjoint of U + m_sparseLU->matrixU().template solveTransposedInPlace(X); + + //Backward substitution with transposed or adjoint of L + m_sparseLU->matrixL().template solveTransposedInPlace(X); + + // Permute back the solution + for (Index j = 0; j < B.cols(); ++j) + X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j); + return true; + } + inline Index rows() const { return m_sparseLU->rows(); } + inline Index cols() const { return m_sparseLU->cols(); } + +private: + SparseLUType *m_sparseLU; + SparseLUTransposeView& operator=(const SparseLUTransposeView&); +}; + + +/** \ingroup SparseLU_Module + * \class SparseLU + * + * \brief Sparse supernodal LU factorization for general matrices + * + * This class implements the supernodal LU factorization for general matrices. + * It uses the main techniques from the sequential SuperLU package + * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real + * and complex arithmetic with single and double precision, depending on the + * scalar type of your input matrix. + * The code has been optimized to provide BLAS-3 operations during supernode-panel updates. + * It benefits directly from the built-in high-performant Eigen BLAS routines. + * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to + * enable a better optimization from the compiler. For best performance, + * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors. + * + * An important parameter of this class is the ordering method. It is used to reorder the columns + * (and eventually the rows) of the matrix to reduce the number of new elements that are created during + * numerical factorization. The cheapest method available is COLAMD. + * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of + * built-in and external ordering methods. + * + * Simple example with key steps + * \code + * VectorXd x(n), b(n); + * SparseMatrix A; + * SparseLU, COLAMDOrdering > solver; + * // fill A and b; + * // Compute the ordering permutation vector from the structural pattern of A + * solver.analyzePattern(A); + * // Compute the numerical factorization + * solver.factorize(A); + * //Use the factors to solve the linear system + * x = solver.solve(b); + * \endcode + * + * \warning The input matrix A should be in a \b compressed and \b column-major form. + * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. + * + * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix. + * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization. + * If this is the case for your matrices, you can try the basic scaling method at + * "unsupported/Eigen/src/IterativeSolvers/Scaling.h" + * + * \tparam MatrixType_ The type of the sparse matrix. It must be a column-major SparseMatrix<> + * \tparam OrderingType_ The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept + * \sa \ref OrderingMethods_Module + */ +template +class SparseLU : public SparseSolverBase >, public internal::SparseLUImpl +{ + protected: + typedef SparseSolverBase > APIBase; + using APIBase::m_isInitialized; + public: + using APIBase::_solve_impl; + + typedef MatrixType_ MatrixType; + typedef OrderingType_ OrderingType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix NCMatrix; + typedef internal::MappedSuperNodalMatrix SCMatrix; + typedef Matrix ScalarVector; + typedef Matrix IndexVector; + typedef PermutationMatrix PermutationType; + typedef internal::SparseLUImpl Base; + + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) + { + initperfvalues(); + } + explicit SparseLU(const MatrixType& matrix) + : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) + { + initperfvalues(); + compute(matrix); + } + + ~SparseLU() + { + // Free all explicit dynamic pointers + } + + void analyzePattern (const MatrixType& matrix); + void factorize (const MatrixType& matrix); + void simplicialfactorize(const MatrixType& matrix); + + /** + * Compute the symbolic and numeric factorization of the input sparse matrix. + * The input matrix should be in column-major storage. + */ + void compute (const MatrixType& matrix) + { + // Analyze + analyzePattern(matrix); + //Factorize + factorize(matrix); + } + + /** \returns an expression of the transposed of the factored matrix. + * + * A typical usage is to solve for the transposed problem A^T x = b: + * \code + * solver.compute(A); + * x = solver.transpose().solve(b); + * \endcode + * + * \sa adjoint(), solve() + */ + const SparseLUTransposeView > transpose() + { + SparseLUTransposeView > transposeView; + transposeView.setSparseLU(this); + transposeView.setIsInitialized(this->m_isInitialized); + return transposeView; + } + + + /** \returns an expression of the adjoint of the factored matrix + * + * A typical usage is to solve for the adjoint problem A' x = b: + * \code + * solver.compute(A); + * x = solver.adjoint().solve(b); + * \endcode + * + * For real scalar types, this function is equivalent to transpose(). + * + * \sa transpose(), solve() + */ + const SparseLUTransposeView > adjoint() + { + SparseLUTransposeView > adjointView; + adjointView.setSparseLU(this); + adjointView.setIsInitialized(this->m_isInitialized); + return adjointView; + } + + inline Index rows() const { return m_mat.rows(); } + inline Index cols() const { return m_mat.cols(); } + /** Indicate that the pattern of the input matrix is symmetric */ + void isSymmetric(bool sym) + { + m_symmetricmode = sym; + } + + /** \returns an expression of the matrix L, internally stored as supernodes + * The only operation available with this expression is the triangular solve + * \code + * y = b; matrixL().solveInPlace(y); + * \endcode + */ + SparseLUMatrixLReturnType matrixL() const + { + return SparseLUMatrixLReturnType(m_Lstore); + } + /** \returns an expression of the matrix U, + * The only operation available with this expression is the triangular solve + * \code + * y = b; matrixU().solveInPlace(y); + * \endcode + */ + SparseLUMatrixUReturnType > > matrixU() const + { + return SparseLUMatrixUReturnType > >(m_Lstore, m_Ustore); + } + + /** + * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$ + * \sa colsPermutation() + */ + inline const PermutationType& rowsPermutation() const + { + return m_perm_r; + } + /** + * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$ + * \sa rowsPermutation() + */ + inline const PermutationType& colsPermutation() const + { + return m_perm_c; + } + /** Set the threshold used for a diagonal entry to be an acceptable pivot. */ + void setPivotThreshold(const RealScalar& thresh) + { + m_diagpivotthresh = thresh; + } + +#ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. + * + * \warning the destination matrix X in X = this->solve(B) must be colmun-major. + * + * \sa compute() + */ + template + inline const Solve solve(const MatrixBase& B) const; +#endif // EIGEN_PARSED_BY_DOXYGEN + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance + * \c InvalidInput if the input matrix is invalid + * + * \sa iparm() + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** + * \returns A string describing the type of error + */ + std::string lastErrorMessage() const + { + return m_lastError; + } + + template + bool _solve_impl(const MatrixBase &B, MatrixBase &X_base) const + { + Dest& X(X_base.derived()); + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first"); + EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, + THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + + // Permute the right hand side to form X = Pr*B + // on return, X is overwritten by the computed solution + X.resize(B.rows(),B.cols()); + + // this ugly const_cast_derived() helps to detect aliasing when applying the permutations + for(Index j = 0; j < B.cols(); ++j) + X.col(j) = rowsPermutation() * B.const_cast_derived().col(j); + + //Forward substitution with L + this->matrixL().solveInPlace(X); + this->matrixU().solveInPlace(X); + + // Permute back the solution + for (Index j = 0; j < B.cols(); ++j) + X.col(j) = colsPermutation().inverse() * X.col(j); + + return true; + } + + /** + * \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa logAbsDeterminant(), signDeterminant() + */ + Scalar absDeterminant() + { + using std::abs; + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + // Initialize with the determinant of the row matrix + Scalar det = Scalar(1.); + // Note that the diagonal blocks of U are stored in supernodes, + // which are available in the L part :) + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.index() == j) + { + det *= abs(it.value()); + break; + } + } + } + return det; + } + + /** \returns the natural log of the absolute value of the determinant of the matrix + * of which **this is the QR decomposition + * + * \note This method is useful to work around the risk of overflow/underflow that's + * inherent to the determinant computation. + * + * \sa absDeterminant(), signDeterminant() + */ + Scalar logAbsDeterminant() const + { + using std::log; + using std::abs; + + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + Scalar det = Scalar(0.); + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.row() < j) continue; + if(it.row() == j) + { + det += log(abs(it.value())); + break; + } + } + } + return det; + } + + /** \returns A number representing the sign of the determinant + * + * \sa absDeterminant(), logAbsDeterminant() + */ + Scalar signDeterminant() + { + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + // Initialize with the determinant of the row matrix + Index det = 1; + // Note that the diagonal blocks of U are stored in supernodes, + // which are available in the L part :) + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.index() == j) + { + if(it.value()<0) + det = -det; + else if(it.value()==0) + return 0; + break; + } + } + } + return det * m_detPermR * m_detPermC; + } + + /** \returns The determinant of the matrix. + * + * \sa absDeterminant(), logAbsDeterminant() + */ + Scalar determinant() + { + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + // Initialize with the determinant of the row matrix + Scalar det = Scalar(1.); + // Note that the diagonal blocks of U are stored in supernodes, + // which are available in the L part :) + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.index() == j) + { + det *= it.value(); + break; + } + } + } + return (m_detPermR * m_detPermC) > 0 ? det : -det; + } + + Index nnzL() const { return m_nnzL; } + Index nnzU() const { return m_nnzU; } + + protected: + // Functions + void initperfvalues() + { + m_perfv.panel_size = 16; + m_perfv.relax = 1; + m_perfv.maxsuper = 128; + m_perfv.rowblk = 16; + m_perfv.colblk = 8; + m_perfv.fillfactor = 20; + } + + // Variables + mutable ComputationInfo m_info; + bool m_factorizationIsOk; + bool m_analysisIsOk; + std::string m_lastError; + NCMatrix m_mat; // The input (permuted ) matrix + SCMatrix m_Lstore; // The lower triangular matrix (supernodal) + Map> m_Ustore; // The upper triangular matrix + PermutationType m_perm_c; // Column permutation + PermutationType m_perm_r ; // Row permutation + IndexVector m_etree; // Column elimination tree + + typename Base::GlobalLU_t m_glu; + + // SparseLU options + bool m_symmetricmode; + // values for performance + internal::perfvalues m_perfv; + RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot + Index m_nnzL, m_nnzU; // Nonzeros in L and U factors + Index m_detPermR, m_detPermC; // Determinants of the permutation matrices + private: + // Disable copy constructor + SparseLU (const SparseLU& ); +}; // End class SparseLU + + + +// Functions needed by the anaysis phase +/** + * Compute the column permutation to minimize the fill-in + * + * - Apply this permutation to the input matrix - + * + * - Compute the column elimination tree on the permuted matrix + * + * - Postorder the elimination tree and the column permutation + * + */ +template +void SparseLU::analyzePattern(const MatrixType& mat) +{ + + //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat. + + // Firstly, copy the whole input matrix. + m_mat = mat; + + // Compute fill-in ordering + OrderingType ord; + ord(m_mat,m_perm_c); + + // Apply the permutation to the column of the input matrix + if (m_perm_c.size()) + { + m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used. + // Then, permute only the column pointers + ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast(mat.outerIndexPtr()):0); + + // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed. + if(!mat.isCompressed()) + IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1); + + // Apply the permutation and compute the nnz per column. + for (Index i = 0; i < mat.cols(); i++) + { + m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; + m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; + } + } + + // Compute the column elimination tree of the permuted matrix + IndexVector firstRowElt; + internal::coletree(m_mat, m_etree,firstRowElt); + + // In symmetric mode, do not do postorder here + if (!m_symmetricmode) { + IndexVector post, iwork; + // Post order etree + internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post); + + + // Renumber etree in postorder + Index m = m_mat.cols(); + iwork.resize(m+1); + for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i)); + m_etree = iwork; + + // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree + PermutationType post_perm(m); + for (Index i = 0; i < m; i++) + post_perm.indices()(i) = post(i); + + // Combine the two permutations : postorder the permutation for future use + if(m_perm_c.size()) { + m_perm_c = post_perm * m_perm_c; + } + + } // end postordering + + m_analysisIsOk = true; +} + +// Functions needed by the numerical factorization phase + + +/** + * - Numerical factorization + * - Interleaved with the symbolic factorization + * On exit, info is + * + * = 0: successful factorization + * + * > 0: if info = i, and i is + * + * <= A->ncol: U(i,i) is exactly zero. The factorization has + * been completed, but the factor U is exactly singular, + * and division by zero will occur if it is used to solve a + * system of equations. + * + * > A->ncol: number of bytes allocated when memory allocation + * failure occurred, plus A->ncol. If lwork = -1, it is + * the estimated amount of space needed, plus A->ncol. + */ +template +void SparseLU::factorize(const MatrixType& matrix) +{ + using internal::emptyIdxLU; + eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); + eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices"); + + m_isInitialized = true; + + // Apply the column permutation computed in analyzepattern() + // m_mat = matrix * m_perm_c.inverse(); + m_mat = matrix; + if (m_perm_c.size()) + { + m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. + //Then, permute only the column pointers + const StorageIndex * outerIndexPtr; + if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr(); + else + { + StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1]; + for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i]; + outerIndexPtr = outerIndexPtr_t; + } + for (Index i = 0; i < matrix.cols(); i++) + { + m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; + m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; + } + if(!matrix.isCompressed()) delete[] outerIndexPtr; + } + else + { //FIXME This should not be needed if the empty permutation is handled transparently + m_perm_c.resize(matrix.cols()); + for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i; + } + + Index m = m_mat.rows(); + Index n = m_mat.cols(); + Index nnz = m_mat.nonZeros(); + Index maxpanel = m_perfv.panel_size * m; + // Allocate working storage common to the factor routines + Index lwork = 0; + Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu); + if (info) + { + m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ; + m_factorizationIsOk = false; + return ; + } + + // Set up pointers for integer working arrays + IndexVector segrep(m); segrep.setZero(); + IndexVector parent(m); parent.setZero(); + IndexVector xplore(m); xplore.setZero(); + IndexVector repfnz(maxpanel); + IndexVector panel_lsub(maxpanel); + IndexVector xprune(n); xprune.setZero(); + IndexVector marker(m*internal::LUNoMarker); marker.setZero(); + + repfnz.setConstant(-1); + panel_lsub.setConstant(-1); + + // Set up pointers for scalar working arrays + ScalarVector dense; + dense.setZero(maxpanel); + ScalarVector tempv; + tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) ); + + // Compute the inverse of perm_c + PermutationType iperm_c(m_perm_c.inverse()); + + // Identify initial relaxed snodes + IndexVector relax_end(n); + if ( m_symmetricmode == true ) + Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); + else + Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); + + + m_perm_r.resize(m); + m_perm_r.indices().setConstant(-1); + marker.setConstant(-1); + m_detPermR = 1; // Record the determinant of the row permutation + + m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0); + m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0); + + // Work on one 'panel' at a time. A panel is one of the following : + // (a) a relaxed supernode at the bottom of the etree, or + // (b) panel_size contiguous columns, defined by the user + Index jcol; + Index pivrow; // Pivotal row number in the original row matrix + Index nseg1; // Number of segments in U-column above panel row jcol + Index nseg; // Number of segments in each U-column + Index irep; + Index i, k, jj; + for (jcol = 0; jcol < n; ) + { + // Adjust panel size so that a panel won't overlap with the next relaxed snode. + Index panel_size = m_perfv.panel_size; // upper bound on panel width + for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++) + { + if (relax_end(k) != emptyIdxLU) + { + panel_size = k - jcol; + break; + } + } + if (k == n) + panel_size = n - jcol; + + // Symbolic outer factorization on a panel of columns + Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu); + + // Numeric sup-panel updates in topological order + Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu); + + // Sparse LU within the panel, and below the panel diagonal + for ( jj = jcol; jj< jcol + panel_size; jj++) + { + k = (jj - jcol) * m; // Column index for w-wide arrays + + nseg = nseg1; // begin after all the panel segments + //Depth-first-search for the current column + VectorBlock panel_lsubk(panel_lsub, k, m); + VectorBlock repfnz_k(repfnz, k, m); + info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu); + if ( info ) + { + m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() "; + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + // Numeric updates to this column + VectorBlock dense_k(dense, k, m); + VectorBlock segrep_k(segrep, nseg1, m-nseg1); + info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu); + if ( info ) + { + m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() "; + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + + // Copy the U-segments to ucol(*) + info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu); + if ( info ) + { + m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() "; + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + + // Form the L-segment + info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu); + if ( info ) + { + m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR"; +#ifndef EIGEN_NO_IO + std::ostringstream returnInfo; + returnInfo << " ... ZERO COLUMN AT "; + returnInfo << info; + m_lastError += returnInfo.str(); +#endif + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + + // Update the determinant of the row permutation matrix + // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot. + if (pivrow != jj) m_detPermR = -m_detPermR; + + // Prune columns (0:jj-1) using column jj + Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu); + + // Reset repfnz for this column + for (i = 0; i < nseg; i++) + { + irep = segrep(i); + repfnz_k(irep) = emptyIdxLU; + } + } // end SparseLU within the panel + jcol += panel_size; // Move to the next panel + } // end for -- end elimination + + m_detPermR = m_perm_r.determinant(); + m_detPermC = m_perm_c.determinant(); + + // Count the number of nonzeros in factors + Base::countnz(n, m_nnzL, m_nnzU, m_glu); + // Apply permutation to the L subscripts + Base::fixupL(n, m_perm_r.indices(), m_glu); + + // Create supernode matrix L + m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup); + // Create the column major upper sparse matrix U; + new (&m_Ustore) Map> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() ); + + m_info = Success; + m_factorizationIsOk = true; +} + +template +struct SparseLUMatrixLReturnType : internal::no_assignment_operator +{ + typedef typename MappedSupernodalType::Scalar Scalar; + explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL) + { } + Index rows() const { return m_mapL.rows(); } + Index cols() const { return m_mapL.cols(); } + template + void solveInPlace( MatrixBase &X) const + { + m_mapL.solveInPlace(X); + } + template + void solveTransposedInPlace( MatrixBase &X) const + { + m_mapL.template solveTransposedInPlace(X); + } + + SparseMatrix toSparse() const { + ArrayXi colCount = ArrayXi::Ones(cols()); + for (Index i = 0; i < cols(); i++) { + typename MappedSupernodalType::InnerIterator iter(m_mapL, i); + for (; iter; ++iter) { + if (iter.row() > iter.col()) { + colCount(iter.col())++; + } + } + } + SparseMatrix sL(rows(), cols()); + sL.reserve(colCount); + for (Index i = 0; i < cols(); i++) { + sL.insert(i, i) = 1.0; + typename MappedSupernodalType::InnerIterator iter(m_mapL, i); + for (; iter; ++iter) { + if (iter.row() > iter.col()) { + sL.insert(iter.row(), iter.col()) = iter.value(); + } + } + } + sL.makeCompressed(); + return sL; + } + + const MappedSupernodalType& m_mapL; +}; + +template +struct SparseLUMatrixUReturnType : internal::no_assignment_operator +{ + typedef typename MatrixLType::Scalar Scalar; + SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU) + : m_mapL(mapL),m_mapU(mapU) + { } + Index rows() const { return m_mapL.rows(); } + Index cols() const { return m_mapL.cols(); } + + template void solveInPlace(MatrixBase &X) const + { + Index nrhs = X.cols(); + // Backward solve with U + for (Index k = m_mapL.nsuper(); k >= 0; k--) + { + Index fsupc = m_mapL.supToCol()[k]; + Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension + Index nsupc = m_mapL.supToCol()[k+1] - fsupc; + Index luptr = m_mapL.colIndexPtr()[fsupc]; + + if (nsupc == 1) + { + for (Index j = 0; j < nrhs; j++) + { + X(fsupc, j) /= m_mapL.valuePtr()[luptr]; + } + } + else + { + // FIXME: the following lines should use Block expressions and not Map! + Map, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); + typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc); + U = A.template triangularView().solve(U); + } + + for (Index j = 0; j < nrhs; ++j) + { + for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) + { + typename MatrixUType::InnerIterator it(m_mapU, jcol); + for ( ; it; ++it) + { + Index irow = it.index(); + X(irow, j) -= X(jcol, j) * it.value(); + } + } + } + } // End For U-solve + } + + template void solveTransposedInPlace(MatrixBase &X) const + { + using numext::conj; + Index nrhs = X.cols(); + // Forward solve with U + for (Index k = 0; k <= m_mapL.nsuper(); k++) + { + Index fsupc = m_mapL.supToCol()[k]; + Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension + Index nsupc = m_mapL.supToCol()[k+1] - fsupc; + Index luptr = m_mapL.colIndexPtr()[fsupc]; + + for (Index j = 0; j < nrhs; ++j) + { + for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) + { + typename MatrixUType::InnerIterator it(m_mapU, jcol); + for ( ; it; ++it) + { + Index irow = it.index(); + X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value()); + } + } + } + if (nsupc == 1) + { + for (Index j = 0; j < nrhs; j++) + { + X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]); + } + } + else + { + Map, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); + typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc); + if(Conjugate) + U = A.adjoint().template triangularView().solve(U); + else + U = A.transpose().template triangularView().solve(U); + } + }// End For U-solve + } + + SparseMatrix toSparse() { + ArrayXi rowCount = ArrayXi::Zero(rows()); + for (Index i = 0; i < cols(); i++) { + typename MatrixLType::InnerIterator iter(m_mapL, i); + for (; iter; ++iter) { + if (iter.row() <= iter.col()) { + rowCount(iter.row())++; + } + } + } + + SparseMatrix sU(rows(), cols()); + sU.reserve(rowCount); + for (Index i = 0; i < cols(); i++) { + typename MatrixLType::InnerIterator iter(m_mapL, i); + for (; iter; ++iter) { + if (iter.row() <= iter.col()) { + sU.insert(iter.row(), iter.col()) = iter.value(); + } + } + } + sU.makeCompressed(); + const SparseMatrix u = m_mapU; // convert to RowMajor + sU += u; + return sU; + } + + const MatrixLType& m_mapL; + const MatrixUType& m_mapU; +}; + +} // End namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLUImpl.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLUImpl.h new file mode 100644 index 0000000..daec837 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLUImpl.h @@ -0,0 +1,68 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +#ifndef SPARSELU_IMPL_H +#define SPARSELU_IMPL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** \ingroup SparseLU_Module + * \class SparseLUImpl + * Base class for sparseLU + */ +template +class SparseLUImpl +{ + public: + typedef Matrix ScalarVector; + typedef Matrix IndexVector; + typedef Matrix ScalarMatrix; + typedef Map > MappedMatrixBlock; + typedef typename ScalarVector::RealScalar RealScalar; + typedef Ref > BlockScalarVector; + typedef Ref > BlockIndexVector; + typedef LU_GlobalLU_t GlobalLU_t; + typedef SparseMatrix MatrixType; + + protected: + template + Index expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions); + Index memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu); + template + Index memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions); + void heap_relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end); + void relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end); + Index snode_dfs(const Index jcol, const Index kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, GlobalLU_t& glu); + Index snode_bmod (const Index jcol, const Index fsupc, ScalarVector& dense, GlobalLU_t& glu); + Index pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu); + template + void dfs_kernel(const StorageIndex jj, IndexVector& perm_r, + Index& nseg, IndexVector& panel_lsub, IndexVector& segrep, + Ref repfnz_col, IndexVector& xprune, Ref marker, IndexVector& parent, + IndexVector& xplore, GlobalLU_t& glu, Index& nextl_col, Index krow, Traits& traits); + void panel_dfs(const Index m, const Index w, const Index jcol, MatrixType& A, IndexVector& perm_r, Index& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu); + + void panel_bmod(const Index m, const Index w, const Index jcol, const Index nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, GlobalLU_t& glu); + Index column_dfs(const Index m, const Index jcol, IndexVector& perm_r, Index maxsuper, Index& nseg, BlockIndexVector lsub_col, IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu); + Index column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu); + Index copy_to_ucol(const Index jcol, const Index nseg, IndexVector& segrep, BlockIndexVector repfnz ,IndexVector& perm_r, BlockScalarVector dense, GlobalLU_t& glu); + void pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg, const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu); + void countnz(const Index n, Index& nnzL, Index& nnzU, GlobalLU_t& glu); + void fixupL(const Index n, const IndexVector& perm_r, GlobalLU_t& glu); + + template + friend struct column_dfs_traits; +}; + +} // end namespace internal +} // namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Memory.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Memory.h new file mode 100644 index 0000000..798745f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Memory.h @@ -0,0 +1,228 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU + + * -- SuperLU routine (version 3.1) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * August 1, 2008 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ + +#ifndef EIGEN_SPARSELU_MEMORY +#define EIGEN_SPARSELU_MEMORY + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +enum { LUNoMarker = 3 }; +enum {emptyIdxLU = -1}; +inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b) +{ + return (std::max)(m, (t+b)*w); +} + +template< typename Scalar> +inline Index LUTempSpace(Index&m, Index& w) +{ + return (2*w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar); +} + + + + +/** + * Expand the existing storage to accommodate more fill-ins + * \param vec Valid pointer to the vector to allocate or expand + * \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector + * \param[in] nbElts Current number of elements in the factors + * \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand + * \param[in,out] num_expansions Number of times the memory has been expanded + */ +template +template +Index SparseLUImpl::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions) +{ + + float alpha = 1.5; // Ratio of the memory increase + Index new_len; // New size of the allocated memory + + if(num_expansions == 0 || keep_prev) + new_len = length ; // First time allocate requested + else + new_len = (std::max)(length+1,Index(alpha * length)); + + VectorType old_vec; // Temporary vector to hold the previous values + if (nbElts > 0 ) + old_vec = vec.segment(0,nbElts); + + //Allocate or expand the current vector +#ifdef EIGEN_EXCEPTIONS + try +#endif + { + vec.resize(new_len); + } +#ifdef EIGEN_EXCEPTIONS + catch(std::bad_alloc& ) +#else + if(!vec.size()) +#endif + { + if (!num_expansions) + { + // First time to allocate from LUMemInit() + // Let LUMemInit() deals with it. + return -1; + } + if (keep_prev) + { + // In this case, the memory length should not not be reduced + return new_len; + } + else + { + // Reduce the size and increase again + Index tries = 0; // Number of attempts + do + { + alpha = (alpha + 1)/2; + new_len = (std::max)(length+1,Index(alpha * length)); +#ifdef EIGEN_EXCEPTIONS + try +#endif + { + vec.resize(new_len); + } +#ifdef EIGEN_EXCEPTIONS + catch(std::bad_alloc& ) +#else + if (!vec.size()) +#endif + { + tries += 1; + if ( tries > 10) return new_len; + } + } while (!vec.size()); + } + } + //Copy the previous values to the newly allocated space + if (nbElts > 0) + vec.segment(0, nbElts) = old_vec; + + + length = new_len; + if(num_expansions) ++num_expansions; + return 0; +} + +/** + * \brief Allocate various working space for the numerical factorization phase. + * \param m number of rows of the input matrix + * \param n number of columns + * \param annz number of initial nonzeros in the matrix + * \param lwork if lwork=-1, this routine returns an estimated size of the required memory + * \param glu persistent data to facilitate multiple factors : will be deleted later ?? + * \param fillratio estimated ratio of fill in the factors + * \param panel_size Size of a panel + * \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success + * \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation + */ +template +Index SparseLUImpl::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu) +{ + Index& num_expansions = glu.num_expansions; //No memory expansions so far + num_expansions = 0; + glu.nzumax = glu.nzlumax = (std::min)(fillratio * (annz+1) / n, m) * n; // estimated number of nonzeros in U + glu.nzlmax = (std::max)(Index(4), fillratio) * (annz+1) / 4; // estimated nnz in L factor + // Return the estimated size to the user if necessary + Index tempSpace; + tempSpace = (2*panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar); + if (lwork == emptyIdxLU) + { + Index estimated_size; + estimated_size = (5 * n + 5) * sizeof(Index) + tempSpace + + (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n; + return estimated_size; + } + + // Setup the required space + + // First allocate Integer pointers for L\U factors + glu.xsup.resize(n+1); + glu.supno.resize(n+1); + glu.xlsub.resize(n+1); + glu.xlusup.resize(n+1); + glu.xusub.resize(n+1); + + // Reserve memory for L/U factors + do + { + if( (expand(glu.lusup, glu.nzlumax, 0, 0, num_expansions)<0) + || (expand(glu.ucol, glu.nzumax, 0, 0, num_expansions)<0) + || (expand (glu.lsub, glu.nzlmax, 0, 0, num_expansions)<0) + || (expand (glu.usub, glu.nzumax, 0, 1, num_expansions)<0) ) + { + //Reduce the estimated size and retry + glu.nzlumax /= 2; + glu.nzumax /= 2; + glu.nzlmax /= 2; + if (glu.nzlumax < annz ) return glu.nzlumax; + } + } while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size()); + + ++num_expansions; + return 0; + +} // end LuMemInit + +/** + * \brief Expand the existing storage + * \param vec vector to expand + * \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size + * \param nbElts current number of elements in the vector. + * \param memtype Type of the element to expand + * \param num_expansions Number of expansions + * \return 0 on success, > 0 size of the memory allocated so far + */ +template +template +Index SparseLUImpl::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions) +{ + Index failed_size; + if (memtype == USUB) + failed_size = this->expand(vec, maxlen, nbElts, 1, num_expansions); + else + failed_size = this->expand(vec, maxlen, nbElts, 0, num_expansions); + + if (failed_size) + return failed_size; + + return 0 ; +} + +} // end namespace internal + +} // end namespace Eigen +#endif // EIGEN_SPARSELU_MEMORY diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Structs.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Structs.h new file mode 100644 index 0000000..3ab0c72 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Structs.h @@ -0,0 +1,112 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + * NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h + * -- SuperLU routine (version 4.1) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * November, 2010 + * + * Global data structures used in LU factorization - + * + * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper]. + * (xsup,supno): supno[i] is the supernode no to which i belongs; + * xsup(s) points to the beginning of the s-th supernode. + * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12) + * xsup 0 1 2 4 7 12 + * Note: dfs will be performed on supernode rep. relative to the new + * row pivoting ordering + * + * (xlsub,lsub): lsub[*] contains the compressed subscript of + * rectangular supernodes; xlsub[j] points to the starting + * location of the j-th column in lsub[*]. Note that xlsub + * is indexed by column. + * Storage: original row subscripts + * + * During the course of sparse LU factorization, we also use + * (xlsub,lsub) for the purpose of symmetric pruning. For each + * supernode {s,s+1,...,t=s+r} with first column s and last + * column t, the subscript set + * lsub[j], j=xlsub[s], .., xlsub[s+1]-1 + * is the structure of column s (i.e. structure of this supernode). + * It is used for the storage of numerical values. + * Furthermore, + * lsub[j], j=xlsub[t], .., xlsub[t+1]-1 + * is the structure of the last column t of this supernode. + * It is for the purpose of symmetric pruning. Therefore, the + * structural subscripts can be rearranged without making physical + * interchanges among the numerical values. + * + * However, if the supernode has only one column, then we + * only keep one set of subscripts. For any subscript interchange + * performed, similar interchange must be done on the numerical + * values. + * + * The last column structures (for pruning) will be removed + * after the numercial LU factorization phase. + * + * (xlusup,lusup): lusup[*] contains the numerical values of the + * rectangular supernodes; xlusup[j] points to the starting + * location of the j-th column in storage vector lusup[*] + * Note: xlusup is indexed by column. + * Each rectangular supernode is stored by column-major + * scheme, consistent with Fortran 2-dim array storage. + * + * (xusub,ucol,usub): ucol[*] stores the numerical values of + * U-columns outside the rectangular supernodes. The row + * subscript of nonzero ucol[k] is stored in usub[k]. + * xusub[i] points to the starting location of column i in ucol. + * Storage: new row subscripts; that is subscripts of PA. + */ + +#ifndef EIGEN_LU_STRUCTS +#define EIGEN_LU_STRUCTS +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +enum MemType {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL}; + +template +struct LU_GlobalLU_t { + typedef typename IndexVector::Scalar StorageIndex; + IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode + IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping) + ScalarVector lusup; // nonzero values of L ordered by columns + IndexVector lsub; // Compressed row indices of L rectangular supernodes. + IndexVector xlusup; // pointers to the beginning of each column in lusup + IndexVector xlsub; // pointers to the beginning of each column in lsub + Index nzlmax; // Current max size of lsub + Index nzlumax; // Current max size of lusup + ScalarVector ucol; // nonzero values of U ordered by columns + IndexVector usub; // row indices of U columns in ucol + IndexVector xusub; // Pointers to the beginning of each column of U in ucol + Index nzumax; // Current max size of ucol + Index n; // Number of columns in the matrix + Index num_expansions; +}; + +// Values to set for performance +struct perfvalues { + Index panel_size; // a panel consists of at most consecutive columns + Index relax; // To control degree of relaxing supernodes. If the number of nodes (columns) + // in a subtree of the elimination tree is less than relax, this subtree is considered + // as one supernode regardless of the row structures of those columns + Index maxsuper; // The maximum size for a supernode in complete LU + Index rowblk; // The minimum row dimension for 2-D blocking to be used; + Index colblk; // The minimum column dimension for 2-D blocking to be used; + Index fillfactor; // The estimated fills factors for L and U, compared with A +}; + +} // end namespace internal + +} // end namespace Eigen +#endif // EIGEN_LU_STRUCTS diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h new file mode 100644 index 0000000..adfc63a --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h @@ -0,0 +1,376 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H +#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** \ingroup SparseLU_Module + * \brief a class to manipulate the L supernodal factor from the SparseLU factorization + * + * This class contain the data to easily store + * and manipulate the supernodes during the factorization and solution phase of Sparse LU. + * Only the lower triangular matrix has supernodes. + * + * NOTE : This class corresponds to the SCformat structure in SuperLU + * + */ +/* TODO + * InnerIterator as for sparsematrix + * SuperInnerIterator to iterate through all supernodes + * Function for triangular solve + */ +template +class MappedSuperNodalMatrix +{ + public: + typedef Scalar_ Scalar; + typedef StorageIndex_ StorageIndex; + typedef Matrix IndexVector; + typedef Matrix ScalarVector; + public: + MappedSuperNodalMatrix() + { + + } + MappedSuperNodalMatrix(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind, + IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col ) + { + setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col); + } + + ~MappedSuperNodalMatrix() + { + + } + /** + * Set appropriate pointers for the lower triangular supernodal matrix + * These infos are available at the end of the numerical factorization + * FIXME This class will be modified such that it can be use in the course + * of the factorization. + */ + void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind, + IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col ) + { + m_row = m; + m_col = n; + m_nzval = nzval.data(); + m_nzval_colptr = nzval_colptr.data(); + m_rowind = rowind.data(); + m_rowind_colptr = rowind_colptr.data(); + m_nsuper = col_to_sup(n); + m_col_to_sup = col_to_sup.data(); + m_sup_to_col = sup_to_col.data(); + } + + /** + * Number of rows + */ + Index rows() const { return m_row; } + + /** + * Number of columns + */ + Index cols() const { return m_col; } + + /** + * Return the array of nonzero values packed by column + * + * The size is nnz + */ + Scalar* valuePtr() { return m_nzval; } + + const Scalar* valuePtr() const + { + return m_nzval; + } + /** + * Return the pointers to the beginning of each column in \ref valuePtr() + */ + StorageIndex* colIndexPtr() + { + return m_nzval_colptr; + } + + const StorageIndex* colIndexPtr() const + { + return m_nzval_colptr; + } + + /** + * Return the array of compressed row indices of all supernodes + */ + StorageIndex* rowIndex() { return m_rowind; } + + const StorageIndex* rowIndex() const + { + return m_rowind; + } + + /** + * Return the location in \em rowvaluePtr() which starts each column + */ + StorageIndex* rowIndexPtr() { return m_rowind_colptr; } + + const StorageIndex* rowIndexPtr() const + { + return m_rowind_colptr; + } + + /** + * Return the array of column-to-supernode mapping + */ + StorageIndex* colToSup() { return m_col_to_sup; } + + const StorageIndex* colToSup() const + { + return m_col_to_sup; + } + /** + * Return the array of supernode-to-column mapping + */ + StorageIndex* supToCol() { return m_sup_to_col; } + + const StorageIndex* supToCol() const + { + return m_sup_to_col; + } + + /** + * Return the number of supernodes + */ + Index nsuper() const + { + return m_nsuper; + } + + class InnerIterator; + template + void solveInPlace( MatrixBase&X) const; + template + void solveTransposedInPlace( MatrixBase&X) const; + + + + + + protected: + Index m_row; // Number of rows + Index m_col; // Number of columns + Index m_nsuper; // Number of supernodes + Scalar* m_nzval; //array of nonzero values packed by column + StorageIndex* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j + StorageIndex* m_rowind; // Array of compressed row indices of rectangular supernodes + StorageIndex* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j + StorageIndex* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs + StorageIndex* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode + + private : +}; + +/** + * \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L + * + */ +template +class MappedSuperNodalMatrix::InnerIterator +{ + public: + InnerIterator(const MappedSuperNodalMatrix& mat, Index outer) + : m_matrix(mat), + m_outer(outer), + m_supno(mat.colToSup()[outer]), + m_idval(mat.colIndexPtr()[outer]), + m_startidval(m_idval), + m_endidval(mat.colIndexPtr()[outer+1]), + m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]), + m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1]) + {} + inline InnerIterator& operator++() + { + m_idval++; + m_idrow++; + return *this; + } + inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; } + + inline Scalar& valueRef() { return const_cast(m_matrix.valuePtr()[m_idval]); } + + inline Index index() const { return m_matrix.rowIndex()[m_idrow]; } + inline Index row() const { return index(); } + inline Index col() const { return m_outer; } + + inline Index supIndex() const { return m_supno; } + + inline operator bool() const + { + return ( (m_idval < m_endidval) && (m_idval >= m_startidval) + && (m_idrow < m_endidrow) ); + } + + protected: + const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix + const Index m_outer; // Current column + const Index m_supno; // Current SuperNode number + Index m_idval; // Index to browse the values in the current column + const Index m_startidval; // Start of the column value + const Index m_endidval; // End of the column value + Index m_idrow; // Index to browse the row indices + Index m_endidrow; // End index of row indices of the current column +}; + +/** + * \brief Solve with the supernode triangular matrix + * + */ +template +template +void MappedSuperNodalMatrix::solveInPlace( MatrixBase&X) const +{ + /* Explicit type conversion as the Index type of MatrixBase may be wider than Index */ +// eigen_assert(X.rows() <= NumTraits::highest()); +// eigen_assert(X.cols() <= NumTraits::highest()); + Index n = int(X.rows()); + Index nrhs = Index(X.cols()); + const Scalar * Lval = valuePtr(); // Nonzero values + Matrix work(n, nrhs); // working vector + work.setZero(); + for (Index k = 0; k <= nsuper(); k ++) + { + Index fsupc = supToCol()[k]; // First column of the current supernode + Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column + Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode + Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode + Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode + Index irow; //Current index row + + if (nsupc == 1 ) + { + for (Index j = 0; j < nrhs; j++) + { + InnerIterator it(*this, fsupc); + ++it; // Skip the diagonal element + for (; it; ++it) + { + irow = it.row(); + X(irow, j) -= X(fsupc, j) * it.value(); + } + } + } + else + { + // The supernode has more than one column + Index luptr = colIndexPtr()[fsupc]; + Index lda = colIndexPtr()[fsupc+1] - luptr; + + // Triangular solve + Map, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) ); + typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc); + U = A.template triangularView().solve(U); + // Matrix-vector product + new (&A) Map, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) ); + work.topRows(nrow).noalias() = A * U; + + //Begin Scatter + for (Index j = 0; j < nrhs; j++) + { + Index iptr = istart + nsupc; + for (Index i = 0; i < nrow; i++) + { + irow = rowIndex()[iptr]; + X(irow, j) -= work(i, j); // Scatter operation + work(i, j) = Scalar(0); + iptr++; + } + } + } + } +} + +template +template +void MappedSuperNodalMatrix::solveTransposedInPlace( MatrixBase&X) const +{ + using numext::conj; + Index n = int(X.rows()); + Index nrhs = Index(X.cols()); + const Scalar * Lval = valuePtr(); // Nonzero values + Matrix work(n, nrhs); // working vector + work.setZero(); + for (Index k = nsuper(); k >= 0; k--) + { + Index fsupc = supToCol()[k]; // First column of the current supernode + Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column + Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode + Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode + Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode + Index irow; //Current index row + + if (nsupc == 1 ) + { + for (Index j = 0; j < nrhs; j++) + { + InnerIterator it(*this, fsupc); + ++it; // Skip the diagonal element + for (; it; ++it) + { + irow = it.row(); + X(fsupc,j) -= X(irow, j) * (Conjugate?conj(it.value()):it.value()); + } + } + } + else + { + // The supernode has more than one column + Index luptr = colIndexPtr()[fsupc]; + Index lda = colIndexPtr()[fsupc+1] - luptr; + + //Begin Gather + for (Index j = 0; j < nrhs; j++) + { + Index iptr = istart + nsupc; + for (Index i = 0; i < nrow; i++) + { + irow = rowIndex()[iptr]; + work.topRows(nrow)(i,j)= X(irow,j); // Gather operation + iptr++; + } + } + + // Matrix-vector product with transposed submatrix + Map, 0, OuterStride<> > A( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) ); + typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc); + if(Conjugate) + U = U - A.adjoint() * work.topRows(nrow); + else + U = U - A.transpose() * work.topRows(nrow); + + // Triangular solve (of transposed diagonal block) + new (&A) Map, 0, OuterStride<> > ( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) ); + if(Conjugate) + U = A.adjoint().template triangularView().solve(U); + else + U = A.transpose().template triangularView().solve(U); + + } + + } +} + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPARSELU_MATRIX_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Utils.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Utils.h new file mode 100644 index 0000000..e399fed --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_Utils.h @@ -0,0 +1,82 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_SPARSELU_UTILS_H +#define EIGEN_SPARSELU_UTILS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** + * \brief Count Nonzero elements in the factors + */ +template +void SparseLUImpl::countnz(const Index n, Index& nnzL, Index& nnzU, GlobalLU_t& glu) +{ + nnzL = 0; + nnzU = (glu.xusub)(n); + Index nsuper = (glu.supno)(n); + Index jlen; + Index i, j, fsupc; + if (n <= 0 ) return; + // For each supernode + for (i = 0; i <= nsuper; i++) + { + fsupc = glu.xsup(i); + jlen = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); + + for (j = fsupc; j < glu.xsup(i+1); j++) + { + nnzL += jlen; + nnzU += j - fsupc + 1; + jlen--; + } + } +} + +/** + * \brief Fix up the data storage lsub for L-subscripts. + * + * It removes the subscripts sets for structural pruning, + * and applies permutation to the remaining subscripts + * + */ +template +void SparseLUImpl::fixupL(const Index n, const IndexVector& perm_r, GlobalLU_t& glu) +{ + Index fsupc, i, j, k, jstart; + + StorageIndex nextl = 0; + Index nsuper = (glu.supno)(n); + + // For each supernode + for (i = 0; i <= nsuper; i++) + { + fsupc = glu.xsup(i); + jstart = glu.xlsub(fsupc); + glu.xlsub(fsupc) = nextl; + for (j = jstart; j < glu.xlsub(fsupc + 1); j++) + { + glu.lsub(nextl) = perm_r(glu.lsub(j)); // Now indexed into P*A + nextl++; + } + for (k = fsupc+1; k < glu.xsup(i+1); k++) + glu.xlsub(k) = nextl; // other columns in supernode i + } + + glu.xlsub(n) = nextl; +} + +} // end namespace internal + +} // end namespace Eigen +#endif // EIGEN_SPARSELU_UTILS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h new file mode 100644 index 0000000..d5c29b3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h @@ -0,0 +1,183 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU + + * -- SuperLU routine (version 3.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * October 15, 2003 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_COLUMN_BMOD_H +#define SPARSELU_COLUMN_BMOD_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +/** + * \brief Performs numeric block updates (sup-col) in topological order + * + * \param jcol current column to update + * \param nseg Number of segments in the U part + * \param dense Store the full representation of the column + * \param tempv working array + * \param segrep segment representative ... + * \param repfnz ??? First nonzero column in each row ??? ... + * \param fpanelc First column in the current panel + * \param glu Global LU data. + * \return 0 - successful return + * > 0 - number of bytes allocated when run out of space + * + */ +template +Index SparseLUImpl::column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, + BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu) +{ + Index jsupno, k, ksub, krep, ksupno; + Index lptr, nrow, isub, irow, nextlu, new_next, ufirst; + Index fsupc, nsupc, nsupr, luptr, kfnz, no_zeros; + /* krep = representative of current k-th supernode + * fsupc = first supernodal column + * nsupc = number of columns in a supernode + * nsupr = number of rows in a supernode + * luptr = location of supernodal LU-block in storage + * kfnz = first nonz in the k-th supernodal segment + * no_zeros = no lf leading zeros in a supernodal U-segment + */ + + jsupno = glu.supno(jcol); + // For each nonzero supernode segment of U[*,j] in topological order + k = nseg - 1; + Index d_fsupc; // distance between the first column of the current panel and the + // first column of the current snode + Index fst_col; // First column within small LU update + Index segsize; + for (ksub = 0; ksub < nseg; ksub++) + { + krep = segrep(k); k--; + ksupno = glu.supno(krep); + if (jsupno != ksupno ) + { + // outside the rectangular supernode + fsupc = glu.xsup(ksupno); + fst_col = (std::max)(fsupc, fpanelc); + + // Distance from the current supernode to the current panel; + // d_fsupc = 0 if fsupc > fpanelc + d_fsupc = fst_col - fsupc; + + luptr = glu.xlusup(fst_col) + d_fsupc; + lptr = glu.xlsub(fsupc) + d_fsupc; + + kfnz = repfnz(krep); + kfnz = (std::max)(kfnz, fpanelc); + + segsize = krep - kfnz + 1; + nsupc = krep - fst_col + 1; + nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); + nrow = nsupr - d_fsupc - nsupc; + Index lda = glu.xlusup(fst_col+1) - glu.xlusup(fst_col); + + + // Perform a triangular solver and block update, + // then scatter the result of sup-col update to dense + no_zeros = kfnz - fst_col; + if(segsize==1) + LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); + else + LU_kernel_bmod::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); + } // end if jsupno + } // end for each segment + + // Process the supernodal portion of L\U[*,j] + nextlu = glu.xlusup(jcol); + fsupc = glu.xsup(jsupno); + + // copy the SPA dense into L\U[*,j] + Index mem; + new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc); + Index offset = internal::first_multiple(new_next, internal::packet_traits::size) - new_next; + if(offset) + new_next += offset; + while (new_next > glu.nzlumax ) + { + mem = memXpand(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions); + if (mem) return mem; + } + + for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++) + { + irow = glu.lsub(isub); + glu.lusup(nextlu) = dense(irow); + dense(irow) = Scalar(0.0); + ++nextlu; + } + + if(offset) + { + glu.lusup.segment(nextlu,offset).setZero(); + nextlu += offset; + } + glu.xlusup(jcol + 1) = StorageIndex(nextlu); // close L\U(*,jcol); + + /* For more updates within the panel (also within the current supernode), + * should start from the first column of the panel, or the first column + * of the supernode, whichever is bigger. There are two cases: + * 1) fsupc < fpanelc, then fst_col <-- fpanelc + * 2) fsupc >= fpanelc, then fst_col <-- fsupc + */ + fst_col = (std::max)(fsupc, fpanelc); + + if (fst_col < jcol) + { + // Distance between the current supernode and the current panel + // d_fsupc = 0 if fsupc >= fpanelc + d_fsupc = fst_col - fsupc; + + lptr = glu.xlsub(fsupc) + d_fsupc; + luptr = glu.xlusup(fst_col) + d_fsupc; + nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension + nsupc = jcol - fst_col; // excluding jcol + nrow = nsupr - d_fsupc - nsupc; + + // points to the beginning of jcol in snode L\U(jsupno) + ufirst = glu.xlusup(jcol) + d_fsupc; + Index lda = glu.xlusup(jcol+1) - glu.xlusup(jcol); + MappedMatrixBlock A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); + VectorBlock u(glu.lusup, ufirst, nsupc); + u = A.template triangularView().solve(u); + + new (&A) MappedMatrixBlock ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) ); + VectorBlock l(glu.lusup, ufirst+nsupc, nrow); + l.noalias() -= A * u; + + } // End if fst_col + return 0; +} + +} // end namespace internal +} // end namespace Eigen + +#endif // SPARSELU_COLUMN_BMOD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h new file mode 100644 index 0000000..be4cfd1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h @@ -0,0 +1,181 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU + + * -- SuperLU routine (version 2.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * November 15, 1997 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_COLUMN_DFS_H +#define SPARSELU_COLUMN_DFS_H + +template class SparseLUImpl; +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct column_dfs_traits : no_assignment_operator +{ + typedef typename ScalarVector::Scalar Scalar; + typedef typename IndexVector::Scalar StorageIndex; + column_dfs_traits(Index jcol, Index& jsuper, typename SparseLUImpl::GlobalLU_t& glu, SparseLUImpl& luImpl) + : m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu), m_luImpl(luImpl) + {} + bool update_segrep(Index /*krep*/, Index /*jj*/) + { + return true; + } + void mem_expand(IndexVector& lsub, Index& nextl, Index chmark) + { + if (nextl >= m_glu.nzlmax) + m_luImpl.memXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions); + if (chmark != (m_jcol-1)) m_jsuper_ref = emptyIdxLU; + } + enum { ExpandMem = true }; + + Index m_jcol; + Index& m_jsuper_ref; + typename SparseLUImpl::GlobalLU_t& m_glu; + SparseLUImpl& m_luImpl; +}; + + +/** + * \brief Performs a symbolic factorization on column jcol and decide the supernode boundary + * + * A supernode representative is the last column of a supernode. + * The nonzeros in U[*,j] are segments that end at supernodes representatives. + * The routine returns a list of the supernodal representatives + * in topological order of the dfs that generates them. + * The location of the first nonzero in each supernodal segment + * (supernodal entry location) is also returned. + * + * \param m number of rows in the matrix + * \param jcol Current column + * \param perm_r Row permutation + * \param maxsuper Maximum number of column allowed in a supernode + * \param [in,out] nseg Number of segments in current U[*,j] - new segments appended + * \param lsub_col defines the rhs vector to start the dfs + * \param [in,out] segrep Segment representatives - new segments appended + * \param repfnz First nonzero location in each row + * \param xprune + * \param marker marker[i] == jj, if i was visited during dfs of current column jj; + * \param parent + * \param xplore working array + * \param glu global LU data + * \return 0 success + * > 0 number of bytes allocated when run out of space + * + */ +template +Index SparseLUImpl::column_dfs(const Index m, const Index jcol, IndexVector& perm_r, Index maxsuper, Index& nseg, + BlockIndexVector lsub_col, IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, + IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu) +{ + + Index jsuper = glu.supno(jcol); + Index nextl = glu.xlsub(jcol); + VectorBlock marker2(marker, 2*m, m); + + + column_dfs_traits traits(jcol, jsuper, glu, *this); + + // For each nonzero in A(*,jcol) do dfs + for (Index k = 0; ((k < m) ? lsub_col[k] != emptyIdxLU : false) ; k++) + { + Index krow = lsub_col(k); + lsub_col(k) = emptyIdxLU; + Index kmark = marker2(krow); + + // krow was visited before, go to the next nonz; + if (kmark == jcol) continue; + + dfs_kernel(StorageIndex(jcol), perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent, + xplore, glu, nextl, krow, traits); + } // for each nonzero ... + + Index fsupc; + StorageIndex nsuper = glu.supno(jcol); + StorageIndex jcolp1 = StorageIndex(jcol) + 1; + Index jcolm1 = jcol - 1; + + // check to see if j belongs in the same supernode as j-1 + if ( jcol == 0 ) + { // Do nothing for column 0 + nsuper = glu.supno(0) = 0 ; + } + else + { + fsupc = glu.xsup(nsuper); + StorageIndex jptr = glu.xlsub(jcol); // Not yet compressed + StorageIndex jm1ptr = glu.xlsub(jcolm1); + + // Use supernodes of type T2 : see SuperLU paper + if ( (nextl-jptr != jptr-jm1ptr-1) ) jsuper = emptyIdxLU; + + // Make sure the number of columns in a supernode doesn't + // exceed threshold + if ( (jcol - fsupc) >= maxsuper) jsuper = emptyIdxLU; + + /* If jcol starts a new supernode, reclaim storage space in + * glu.lsub from previous supernode. Note we only store + * the subscript set of the first and last columns of + * a supernode. (first for num values, last for pruning) + */ + if (jsuper == emptyIdxLU) + { // starts a new supernode + if ( (fsupc < jcolm1-1) ) + { // >= 3 columns in nsuper + StorageIndex ito = glu.xlsub(fsupc+1); + glu.xlsub(jcolm1) = ito; + StorageIndex istop = ito + jptr - jm1ptr; + xprune(jcolm1) = istop; // initialize xprune(jcol-1) + glu.xlsub(jcol) = istop; + + for (StorageIndex ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito) + glu.lsub(ito) = glu.lsub(ifrom); + nextl = ito; // = istop + length(jcol) + } + nsuper++; + glu.supno(jcol) = nsuper; + } // if a new supernode + } // end else: jcol > 0 + + // Tidy up the pointers before exit + glu.xsup(nsuper+1) = jcolp1; + glu.supno(jcolp1) = nsuper; + xprune(jcol) = StorageIndex(nextl); // Initialize upper bound for pruning + glu.xlsub(jcolp1) = StorageIndex(nextl); + + return 0; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h new file mode 100644 index 0000000..e06b2a0 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h @@ -0,0 +1,109 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +/* + + * NOTE: This file is the modified version of [s,d,c,z]copy_to_ucol.c file in SuperLU + + * -- SuperLU routine (version 2.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * November 15, 1997 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_COPY_TO_UCOL_H +#define SPARSELU_COPY_TO_UCOL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** + * \brief Performs numeric block updates (sup-col) in topological order + * + * \param jcol current column to update + * \param nseg Number of segments in the U part + * \param segrep segment representative ... + * \param repfnz First nonzero column in each row ... + * \param perm_r Row permutation + * \param dense Store the full representation of the column + * \param glu Global LU data. + * \return 0 - successful return + * > 0 - number of bytes allocated when run out of space + * + */ +template +Index SparseLUImpl::copy_to_ucol(const Index jcol, const Index nseg, IndexVector& segrep, + BlockIndexVector repfnz ,IndexVector& perm_r, BlockScalarVector dense, GlobalLU_t& glu) +{ + Index ksub, krep, ksupno; + + Index jsupno = glu.supno(jcol); + + // For each nonzero supernode segment of U[*,j] in topological order + Index k = nseg - 1, i; + StorageIndex nextu = glu.xusub(jcol); + Index kfnz, isub, segsize; + Index new_next,irow; + Index fsupc, mem; + for (ksub = 0; ksub < nseg; ksub++) + { + krep = segrep(k); k--; + ksupno = glu.supno(krep); + if (jsupno != ksupno ) // should go into ucol(); + { + kfnz = repfnz(krep); + if (kfnz != emptyIdxLU) + { // Nonzero U-segment + fsupc = glu.xsup(ksupno); + isub = glu.xlsub(fsupc) + kfnz - fsupc; + segsize = krep - kfnz + 1; + new_next = nextu + segsize; + while (new_next > glu.nzumax) + { + mem = memXpand(glu.ucol, glu.nzumax, nextu, UCOL, glu.num_expansions); + if (mem) return mem; + mem = memXpand(glu.usub, glu.nzumax, nextu, USUB, glu.num_expansions); + if (mem) return mem; + + } + + for (i = 0; i < segsize; i++) + { + irow = glu.lsub(isub); + glu.usub(nextu) = perm_r(irow); // Unlike the L part, the U part is stored in its final order + glu.ucol(nextu) = dense(irow); + dense(irow) = Scalar(0.0); + nextu++; + isub++; + } + + } // end nonzero U-segment + + } // end if jsupno + + } // end for each segment + glu.xusub(jcol + 1) = nextu; // close U(*,jcol) + return 0; +} + +} // namespace internal +} // end namespace Eigen + +#endif // SPARSELU_COPY_TO_UCOL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h new file mode 100644 index 0000000..2a8d80b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h @@ -0,0 +1,123 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* This file is a modified version of heap_relax_snode.c file in SuperLU + * -- SuperLU routine (version 3.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * October 15, 2003 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ + +#ifndef SPARSELU_HEAP_RELAX_SNODE_H +#define SPARSELU_HEAP_RELAX_SNODE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** + * \brief Identify the initial relaxed supernodes + * + * This routine applied to a symmetric elimination tree. + * It assumes that the matrix has been reordered according to the postorder of the etree + * \param n The number of columns + * \param et elimination tree + * \param relax_columns Maximum number of columns allowed in a relaxed snode + * \param descendants Number of descendants of each node in the etree + * \param relax_end last column in a supernode + */ +template +void SparseLUImpl::heap_relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end) +{ + + // The etree may not be postordered, but its heap ordered + IndexVector post; + internal::treePostorder(StorageIndex(n), et, post); // Post order etree + IndexVector inv_post(n+1); + for (StorageIndex i = 0; i < n+1; ++i) inv_post(post(i)) = i; // inv_post = post.inverse()??? + + // Renumber etree in postorder + IndexVector iwork(n); + IndexVector et_save(n+1); + for (Index i = 0; i < n; ++i) + { + iwork(post(i)) = post(et(i)); + } + et_save = et; // Save the original etree + et = iwork; + + // compute the number of descendants of each node in the etree + relax_end.setConstant(emptyIdxLU); + Index j, parent; + descendants.setZero(); + for (j = 0; j < n; j++) + { + parent = et(j); + if (parent != n) // not the dummy root + descendants(parent) += descendants(j) + 1; + } + // Identify the relaxed supernodes by postorder traversal of the etree + Index snode_start; // beginning of a snode + StorageIndex k; + StorageIndex l; + for (j = 0; j < n; ) + { + parent = et(j); + snode_start = j; + while ( parent != n && descendants(parent) < relax_columns ) + { + j = parent; + parent = et(j); + } + // Found a supernode in postordered etree, j is the last column + k = StorageIndex(n); + for (Index i = snode_start; i <= j; ++i) + k = (std::min)(k, inv_post(i)); + l = inv_post(j); + if ( (l - k) == (j - snode_start) ) // Same number of columns in the snode + { + // This is also a supernode in the original etree + relax_end(k) = l; // Record last column + } + else + { + for (Index i = snode_start; i <= j; ++i) + { + l = inv_post(i); + if (descendants(i) == 0) + { + relax_end(l) = l; + } + } + } + j++; + // Search for a new leaf + while (descendants(j) != 0 && j < n) j++; + } // End postorder traversal of the etree + + // Recover the original etree + et = et_save; +} + +} // end namespace internal + +} // end namespace Eigen +#endif // SPARSELU_HEAP_RELAX_SNODE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h new file mode 100644 index 0000000..831b938 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h @@ -0,0 +1,131 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef SPARSELU_KERNEL_BMOD_H +#define SPARSELU_KERNEL_BMOD_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +template struct LU_kernel_bmod +{ + /** \internal + * \brief Performs numeric block updates from a given supernode to a single column + * + * \param segsize Size of the segment (and blocks ) to use for updates + * \param[in,out] dense Packed values of the original matrix + * \param tempv temporary vector to use for updates + * \param lusup array containing the supernodes + * \param lda Leading dimension in the supernode + * \param nrow Number of rows in the rectangular part of the supernode + * \param lsub compressed row subscripts of supernodes + * \param lptr pointer to the first column of the current supernode in lsub + * \param no_zeros Number of nonzeros elements before the diagonal part of the supernode + */ + template + static EIGEN_DONT_INLINE void run(const Index segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda, + const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros); +}; + +template +template +EIGEN_DONT_INLINE void LU_kernel_bmod::run(const Index segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda, + const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros) +{ + typedef typename ScalarVector::Scalar Scalar; + // First, copy U[*,j] segment from dense(*) to tempv(*) + // The result of triangular solve is in tempv[*]; + // The result of matric-vector update is in dense[*] + Index isub = lptr + no_zeros; + Index i; + Index irow; + for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++) + { + irow = lsub(isub); + tempv(i) = dense(irow); + ++isub; + } + // Dense triangular solve -- start effective triangle + luptr += lda * no_zeros + no_zeros; + // Form Eigen matrix and vector + Map, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(lda) ); + Map > u(tempv.data(), segsize); + + u = A.template triangularView().solve(u); + + // Dense matrix-vector product y <-- B*x + luptr += segsize; + const Index PacketSize = internal::packet_traits::size; + Index ldl = internal::first_multiple(nrow, PacketSize); + Map, 0, OuterStride<> > B( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(lda) ); + Index aligned_offset = internal::first_default_aligned(tempv.data()+segsize, PacketSize); + Index aligned_with_B_offset = (PacketSize-internal::first_default_aligned(B.data(), PacketSize))%PacketSize; + Map, 0, OuterStride<> > l(tempv.data()+segsize+aligned_offset+aligned_with_B_offset, nrow, OuterStride<>(ldl) ); + + l.noalias() = B * u; + + // Scatter tempv[] into SPA dense[] as a temporary storage + isub = lptr + no_zeros; + for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++) + { + irow = lsub(isub++); + dense(irow) = tempv(i); + } + + // Scatter l into SPA dense[] + for (i = 0; i < nrow; i++) + { + irow = lsub(isub++); + dense(irow) -= l(i); + } +} + +template <> struct LU_kernel_bmod<1> +{ + template + static EIGEN_DONT_INLINE void run(const Index /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, Index& luptr, + const Index lda, const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros); +}; + + +template +EIGEN_DONT_INLINE void LU_kernel_bmod<1>::run(const Index /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, Index& luptr, + const Index lda, const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros) +{ + typedef typename ScalarVector::Scalar Scalar; + typedef typename IndexVector::Scalar StorageIndex; + Scalar f = dense(lsub(lptr + no_zeros)); + luptr += lda * no_zeros + no_zeros + 1; + const Scalar* a(lusup.data() + luptr); + const StorageIndex* irow(lsub.data()+lptr + no_zeros + 1); + Index i = 0; + for (; i+1 < nrow; i+=2) + { + Index i0 = *(irow++); + Index i1 = *(irow++); + Scalar a0 = *(a++); + Scalar a1 = *(a++); + Scalar d0 = dense.coeff(i0); + Scalar d1 = dense.coeff(i1); + d0 -= f*a0; + d1 -= f*a1; + dense.coeffRef(i0) = d0; + dense.coeffRef(i1) = d1; + } + if(i +// Copyright (C) 2012 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of [s,d,c,z]panel_bmod.c file in SuperLU + + * -- SuperLU routine (version 3.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * October 15, 2003 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_PANEL_BMOD_H +#define SPARSELU_PANEL_BMOD_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** + * \brief Performs numeric block updates (sup-panel) in topological order. + * + * Before entering this routine, the original nonzeros in the panel + * were already copied into the spa[m,w] + * + * \param m number of rows in the matrix + * \param w Panel size + * \param jcol Starting column of the panel + * \param nseg Number of segments in the U part + * \param dense Store the full representation of the panel + * \param tempv working array + * \param segrep segment representative... first row in the segment + * \param repfnz First nonzero rows + * \param glu Global LU data. + * + * + */ +template +void SparseLUImpl::panel_bmod(const Index m, const Index w, const Index jcol, + const Index nseg, ScalarVector& dense, ScalarVector& tempv, + IndexVector& segrep, IndexVector& repfnz, GlobalLU_t& glu) +{ + + Index ksub,jj,nextl_col; + Index fsupc, nsupc, nsupr, nrow; + Index krep, kfnz; + Index lptr; // points to the row subscripts of a supernode + Index luptr; // ... + Index segsize,no_zeros ; + // For each nonz supernode segment of U[*,j] in topological order + Index k = nseg - 1; + const Index PacketSize = internal::packet_traits::size; + + for (ksub = 0; ksub < nseg; ksub++) + { // For each updating supernode + /* krep = representative of current k-th supernode + * fsupc = first supernodal column + * nsupc = number of columns in a supernode + * nsupr = number of rows in a supernode + */ + krep = segrep(k); k--; + fsupc = glu.xsup(glu.supno(krep)); + nsupc = krep - fsupc + 1; + nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); + nrow = nsupr - nsupc; + lptr = glu.xlsub(fsupc); + + // loop over the panel columns to detect the actual number of columns and rows + Index u_rows = 0; + Index u_cols = 0; + for (jj = jcol; jj < jcol + w; jj++) + { + nextl_col = (jj-jcol) * m; + VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row + + kfnz = repfnz_col(krep); + if ( kfnz == emptyIdxLU ) + continue; // skip any zero segment + + segsize = krep - kfnz + 1; + u_cols++; + u_rows = (std::max)(segsize,u_rows); + } + + if(nsupc >= 2) + { + Index ldu = internal::first_multiple(u_rows, PacketSize); + Map > U(tempv.data(), u_rows, u_cols, OuterStride<>(ldu)); + + // gather U + Index u_col = 0; + for (jj = jcol; jj < jcol + w; jj++) + { + nextl_col = (jj-jcol) * m; + VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row + VectorBlock dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here + + kfnz = repfnz_col(krep); + if ( kfnz == emptyIdxLU ) + continue; // skip any zero segment + + segsize = krep - kfnz + 1; + luptr = glu.xlusup(fsupc); + no_zeros = kfnz - fsupc; + + Index isub = lptr + no_zeros; + Index off = u_rows-segsize; + for (Index i = 0; i < off; i++) U(i,u_col) = 0; + for (Index i = 0; i < segsize; i++) + { + Index irow = glu.lsub(isub); + U(i+off,u_col) = dense_col(irow); + ++isub; + } + u_col++; + } + // solve U = A^-1 U + luptr = glu.xlusup(fsupc); + Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); + no_zeros = (krep - u_rows + 1) - fsupc; + luptr += lda * no_zeros + no_zeros; + MappedMatrixBlock A(glu.lusup.data()+luptr, u_rows, u_rows, OuterStride<>(lda) ); + U = A.template triangularView().solve(U); + + // update + luptr += u_rows; + MappedMatrixBlock B(glu.lusup.data()+luptr, nrow, u_rows, OuterStride<>(lda) ); + eigen_assert(tempv.size()>w*ldu + nrow*w + 1); + + Index ldl = internal::first_multiple(nrow, PacketSize); + Index offset = (PacketSize-internal::first_default_aligned(B.data(), PacketSize)) % PacketSize; + MappedMatrixBlock L(tempv.data()+w*ldu+offset, nrow, u_cols, OuterStride<>(ldl)); + + L.noalias() = B * U; + + // scatter U and L + u_col = 0; + for (jj = jcol; jj < jcol + w; jj++) + { + nextl_col = (jj-jcol) * m; + VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row + VectorBlock dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here + + kfnz = repfnz_col(krep); + if ( kfnz == emptyIdxLU ) + continue; // skip any zero segment + + segsize = krep - kfnz + 1; + no_zeros = kfnz - fsupc; + Index isub = lptr + no_zeros; + + Index off = u_rows-segsize; + for (Index i = 0; i < segsize; i++) + { + Index irow = glu.lsub(isub++); + dense_col(irow) = U.coeff(i+off,u_col); + U.coeffRef(i+off,u_col) = 0; + } + + // Scatter l into SPA dense[] + for (Index i = 0; i < nrow; i++) + { + Index irow = glu.lsub(isub++); + dense_col(irow) -= L.coeff(i,u_col); + L.coeffRef(i,u_col) = 0; + } + u_col++; + } + } + else // level 2 only + { + // Sequence through each column in the panel + for (jj = jcol; jj < jcol + w; jj++) + { + nextl_col = (jj-jcol) * m; + VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row + VectorBlock dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here + + kfnz = repfnz_col(krep); + if ( kfnz == emptyIdxLU ) + continue; // skip any zero segment + + segsize = krep - kfnz + 1; + luptr = glu.xlusup(fsupc); + + Index lda = glu.xlusup(fsupc+1)-glu.xlusup(fsupc);// nsupr + + // Perform a trianglar solve and block update, + // then scatter the result of sup-col update to dense[] + no_zeros = kfnz - fsupc; + if(segsize==1) LU_kernel_bmod<1>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); + else if(segsize==2) LU_kernel_bmod<2>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); + else if(segsize==3) LU_kernel_bmod<3>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); + else LU_kernel_bmod::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); + } // End for each column in the panel + } + + } // End for each updating supernode +} // end panel bmod + +} // end namespace internal + +} // end namespace Eigen + +#endif // SPARSELU_PANEL_BMOD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h new file mode 100644 index 0000000..c3ff013 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h @@ -0,0 +1,260 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of [s,d,c,z]panel_dfs.c file in SuperLU + + * -- SuperLU routine (version 2.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * November 15, 1997 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_PANEL_DFS_H +#define SPARSELU_PANEL_DFS_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +struct panel_dfs_traits +{ + typedef typename IndexVector::Scalar StorageIndex; + panel_dfs_traits(Index jcol, StorageIndex* marker) + : m_jcol(jcol), m_marker(marker) + {} + bool update_segrep(Index krep, StorageIndex jj) + { + if(m_marker[krep] +template +void SparseLUImpl::dfs_kernel(const StorageIndex jj, IndexVector& perm_r, + Index& nseg, IndexVector& panel_lsub, IndexVector& segrep, + Ref repfnz_col, IndexVector& xprune, Ref marker, IndexVector& parent, + IndexVector& xplore, GlobalLU_t& glu, + Index& nextl_col, Index krow, Traits& traits + ) +{ + + StorageIndex kmark = marker(krow); + + // For each unmarked krow of jj + marker(krow) = jj; + StorageIndex kperm = perm_r(krow); + if (kperm == emptyIdxLU ) { + // krow is in L : place it in structure of L(*, jj) + panel_lsub(nextl_col++) = StorageIndex(krow); // krow is indexed into A + + traits.mem_expand(panel_lsub, nextl_col, kmark); + } + else + { + // krow is in U : if its supernode-representative krep + // has been explored, update repfnz(*) + // krep = supernode representative of the current row + StorageIndex krep = glu.xsup(glu.supno(kperm)+1) - 1; + // First nonzero element in the current column: + StorageIndex myfnz = repfnz_col(krep); + + if (myfnz != emptyIdxLU ) + { + // Representative visited before + if (myfnz > kperm ) repfnz_col(krep) = kperm; + + } + else + { + // Otherwise, perform dfs starting at krep + StorageIndex oldrep = emptyIdxLU; + parent(krep) = oldrep; + repfnz_col(krep) = kperm; + StorageIndex xdfs = glu.xlsub(krep); + Index maxdfs = xprune(krep); + + StorageIndex kpar; + do + { + // For each unmarked kchild of krep + while (xdfs < maxdfs) + { + StorageIndex kchild = glu.lsub(xdfs); + xdfs++; + StorageIndex chmark = marker(kchild); + + if (chmark != jj ) + { + marker(kchild) = jj; + StorageIndex chperm = perm_r(kchild); + + if (chperm == emptyIdxLU) + { + // case kchild is in L: place it in L(*, j) + panel_lsub(nextl_col++) = kchild; + traits.mem_expand(panel_lsub, nextl_col, chmark); + } + else + { + // case kchild is in U : + // chrep = its supernode-rep. If its rep has been explored, + // update its repfnz(*) + StorageIndex chrep = glu.xsup(glu.supno(chperm)+1) - 1; + myfnz = repfnz_col(chrep); + + if (myfnz != emptyIdxLU) + { // Visited before + if (myfnz > chperm) + repfnz_col(chrep) = chperm; + } + else + { // Cont. dfs at snode-rep of kchild + xplore(krep) = xdfs; + oldrep = krep; + krep = chrep; // Go deeper down G(L) + parent(krep) = oldrep; + repfnz_col(krep) = chperm; + xdfs = glu.xlsub(krep); + maxdfs = xprune(krep); + + } // end if myfnz != -1 + } // end if chperm == -1 + + } // end if chmark !=jj + } // end while xdfs < maxdfs + + // krow has no more unexplored nbrs : + // Place snode-rep krep in postorder DFS, if this + // segment is seen for the first time. (Note that + // "repfnz(krep)" may change later.) + // Baktrack dfs to its parent + if(traits.update_segrep(krep,jj)) + //if (marker1(krep) < jcol ) + { + segrep(nseg) = krep; + ++nseg; + //marker1(krep) = jj; + } + + kpar = parent(krep); // Pop recursion, mimic recursion + if (kpar == emptyIdxLU) + break; // dfs done + krep = kpar; + xdfs = xplore(krep); + maxdfs = xprune(krep); + + } while (kpar != emptyIdxLU); // Do until empty stack + + } // end if (myfnz = -1) + + } // end if (kperm == -1) +} + +/** + * \brief Performs a symbolic factorization on a panel of columns [jcol, jcol+w) + * + * A supernode representative is the last column of a supernode. + * The nonzeros in U[*,j] are segments that end at supernodes representatives + * + * The routine returns a list of the supernodal representatives + * in topological order of the dfs that generates them. This list is + * a superset of the topological order of each individual column within + * the panel. + * The location of the first nonzero in each supernodal segment + * (supernodal entry location) is also returned. Each column has + * a separate list for this purpose. + * + * Two markers arrays are used for dfs : + * marker[i] == jj, if i was visited during dfs of current column jj; + * marker1[i] >= jcol, if i was visited by earlier columns in this panel; + * + * \param[in] m number of rows in the matrix + * \param[in] w Panel size + * \param[in] jcol Starting column of the panel + * \param[in] A Input matrix in column-major storage + * \param[in] perm_r Row permutation + * \param[out] nseg Number of U segments + * \param[out] dense Accumulate the column vectors of the panel + * \param[out] panel_lsub Subscripts of the row in the panel + * \param[out] segrep Segment representative i.e first nonzero row of each segment + * \param[out] repfnz First nonzero location in each row + * \param[out] xprune The pruned elimination tree + * \param[out] marker work vector + * \param parent The elimination tree + * \param xplore work vector + * \param glu The global data structure + * + */ + +template +void SparseLUImpl::panel_dfs(const Index m, const Index w, const Index jcol, MatrixType& A, IndexVector& perm_r, Index& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu) +{ + Index nextl_col; // Next available position in panel_lsub[*,jj] + + // Initialize pointers + VectorBlock marker1(marker, m, m); + nseg = 0; + + panel_dfs_traits traits(jcol, marker1.data()); + + // For each column in the panel + for (StorageIndex jj = StorageIndex(jcol); jj < jcol + w; jj++) + { + nextl_col = (jj - jcol) * m; + + VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero location in each row + VectorBlock dense_col(dense,nextl_col, m); // Accumulate a column vector here + + + // For each nnz in A[*, jj] do depth first search + for (typename MatrixType::InnerIterator it(A, jj); it; ++it) + { + Index krow = it.row(); + dense_col(krow) = it.value(); + + StorageIndex kmark = marker(krow); + if (kmark == jj) + continue; // krow visited before, go to the next nonzero + + dfs_kernel(jj, perm_r, nseg, panel_lsub, segrep, repfnz_col, xprune, marker, parent, + xplore, glu, nextl_col, krow, traits); + }// end for nonzeros in column jj + + } // end for column jj +} + +} // end namespace internal +} // end namespace Eigen + +#endif // SPARSELU_PANEL_DFS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_pivotL.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_pivotL.h new file mode 100644 index 0000000..6daed91 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_pivotL.h @@ -0,0 +1,139 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of xpivotL.c file in SuperLU + + * -- SuperLU routine (version 3.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * October 15, 2003 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_PIVOTL_H +#define SPARSELU_PIVOTL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** + * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation. + * + * Pivot policy : + * (1) Compute thresh = u * max_(i>=j) abs(A_ij); + * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN + * pivot row = k; + * ELSE IF abs(A_jj) >= thresh THEN + * pivot row = j; + * ELSE + * pivot row = m; + * + * Note: If you absolutely want to use a given pivot order, then set u=0.0. + * + * \param jcol The current column of L + * \param diagpivotthresh diagonal pivoting threshold + * \param[in,out] perm_r Row permutation (threshold pivoting) + * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc' + * \param[out] pivrow The pivot row + * \param glu Global LU data + * \return 0 if success, i > 0 if U(i,i) is exactly zero + * + */ +template +Index SparseLUImpl::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu) +{ + + Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol + Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0 + Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion + Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode + Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension + Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode + Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode + StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode + + // Determine the largest abs numerical value for partial pivoting + Index diagind = iperm_c(jcol); // diagonal index + RealScalar pivmax(-1.0); + Index pivptr = nsupc; + Index diag = emptyIdxLU; + RealScalar rtemp; + Index isub, icol, itemp, k; + for (isub = nsupc; isub < nsupr; ++isub) { + using std::abs; + rtemp = abs(lu_col_ptr[isub]); + if (rtemp > pivmax) { + pivmax = rtemp; + pivptr = isub; + } + if (lsub_ptr[isub] == diagind) diag = isub; + } + + // Test for singularity + if ( pivmax <= RealScalar(0.0) ) { + // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero + pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr]; + perm_r(pivrow) = StorageIndex(jcol); + return (jcol+1); + } + + RealScalar thresh = diagpivotthresh * pivmax; + + // Choose appropriate pivotal element + + { + // Test if the diagonal element can be used as a pivot (given the threshold value) + if (diag >= 0 ) + { + // Diagonal element exists + using std::abs; + rtemp = abs(lu_col_ptr[diag]); + if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag; + } + pivrow = lsub_ptr[pivptr]; + } + + // Record pivot row + perm_r(pivrow) = StorageIndex(jcol); + // Interchange row subscripts + if (pivptr != nsupc ) + { + std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] ); + // Interchange numerical values as well, for the two rows in the whole snode + // such that L is indexed the same way as A + for (icol = 0; icol <= nsupc; icol++) + { + itemp = pivptr + icol * lda; + std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]); + } + } + // cdiv operations + Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc]; + for (k = nsupc+1; k < nsupr; k++) + lu_col_ptr[k] *= temp; + return 0; +} + +} // end namespace internal +} // end namespace Eigen + +#endif // SPARSELU_PIVOTL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_pruneL.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_pruneL.h new file mode 100644 index 0000000..e5da73b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_pruneL.h @@ -0,0 +1,138 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* + + * NOTE: This file is the modified version of [s,d,c,z]pruneL.c file in SuperLU + + * -- SuperLU routine (version 2.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * November 15, 1997 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ +#ifndef SPARSELU_PRUNEL_H +#define SPARSELU_PRUNEL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { +namespace internal { + +/** + * \brief Prunes the L-structure. + * + * It prunes the L-structure of supernodes whose L-structure contains the current pivot row "pivrow" + * + * + * \param jcol The current column of L + * \param[in] perm_r Row permutation + * \param[out] pivrow The pivot row + * \param nseg Number of segments + * \param segrep + * \param repfnz + * \param[out] xprune + * \param glu Global LU data + * + */ +template +void SparseLUImpl::pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg, + const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu) +{ + // For each supernode-rep irep in U(*,j] + Index jsupno = glu.supno(jcol); + Index i,irep,irep1; + bool movnum, do_prune = false; + Index kmin = 0, kmax = 0, minloc, maxloc,krow; + for (i = 0; i < nseg; i++) + { + irep = segrep(i); + irep1 = irep + 1; + do_prune = false; + + // Don't prune with a zero U-segment + if (repfnz(irep) == emptyIdxLU) continue; + + // If a snode overlaps with the next panel, then the U-segment + // is fragmented into two parts -- irep and irep1. We should let + // pruning occur at the rep-column in irep1s snode. + if (glu.supno(irep) == glu.supno(irep1) ) continue; // don't prune + + // If it has not been pruned & it has a nonz in row L(pivrow,i) + if (glu.supno(irep) != jsupno ) + { + if ( xprune (irep) >= glu.xlsub(irep1) ) + { + kmin = glu.xlsub(irep); + kmax = glu.xlsub(irep1) - 1; + for (krow = kmin; krow <= kmax; krow++) + { + if (glu.lsub(krow) == pivrow) + { + do_prune = true; + break; + } + } + } + + if (do_prune) + { + // do a quicksort-type partition + // movnum=true means that the num values have to be exchanged + movnum = false; + if (irep == glu.xsup(glu.supno(irep)) ) // Snode of size 1 + movnum = true; + + while (kmin <= kmax) + { + if (perm_r(glu.lsub(kmax)) == emptyIdxLU) + kmax--; + else if ( perm_r(glu.lsub(kmin)) != emptyIdxLU) + kmin++; + else + { + // kmin below pivrow (not yet pivoted), and kmax + // above pivrow: interchange the two suscripts + std::swap(glu.lsub(kmin), glu.lsub(kmax)); + + // If the supernode has only one column, then we + // only keep one set of subscripts. For any subscript + // intercnahge performed, similar interchange must be + // done on the numerical values. + if (movnum) + { + minloc = glu.xlusup(irep) + ( kmin - glu.xlsub(irep) ); + maxloc = glu.xlusup(irep) + ( kmax - glu.xlsub(irep) ); + std::swap(glu.lusup(minloc), glu.lusup(maxloc)); + } + kmin++; + kmax--; + } + } // end while + + xprune(irep) = StorageIndex(kmin); //Pruning + } // end if do_prune + } // end pruning + } // End for each U-segment +} + +} // end namespace internal +} // end namespace Eigen + +#endif // SPARSELU_PRUNEL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h new file mode 100644 index 0000000..ed79532 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h @@ -0,0 +1,85 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/* This file is a modified version of heap_relax_snode.c file in SuperLU + * -- SuperLU routine (version 3.0) -- + * Univ. of California Berkeley, Xerox Palo Alto Research Center, + * and Lawrence Berkeley National Lab. + * October 15, 2003 + * + * Copyright (c) 1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY + * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program for any + * purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is + * granted, provided the above notices are retained, and a notice that + * the code was modified is included with the above copyright notice. + */ + +#ifndef SPARSELU_RELAX_SNODE_H +#define SPARSELU_RELAX_SNODE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** + * \brief Identify the initial relaxed supernodes + * + * This routine is applied to a column elimination tree. + * It assumes that the matrix has been reordered according to the postorder of the etree + * \param n the number of columns + * \param et elimination tree + * \param relax_columns Maximum number of columns allowed in a relaxed snode + * \param descendants Number of descendants of each node in the etree + * \param relax_end last column in a supernode + */ +template +void SparseLUImpl::relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end) +{ + + // compute the number of descendants of each node in the etree + Index parent; + relax_end.setConstant(emptyIdxLU); + descendants.setZero(); + for (Index j = 0; j < n; j++) + { + parent = et(j); + if (parent != n) // not the dummy root + descendants(parent) += descendants(j) + 1; + } + // Identify the relaxed supernodes by postorder traversal of the etree + Index snode_start; // beginning of a snode + for (Index j = 0; j < n; ) + { + parent = et(j); + snode_start = j; + while ( parent != n && descendants(parent) < relax_columns ) + { + j = parent; + parent = et(j); + } + // Found a supernode in postordered etree, j is the last column + relax_end(snode_start) = StorageIndex(j); // Record last column + j++; + // Search for a new leaf + while (descendants(j) != 0 && j < n) j++; + } // End postorder traversal of the etree + +} + +} // end namespace internal + +} // end namespace Eigen +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseQR/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseQR/InternalHeaderCheck.h new file mode 100644 index 0000000..0564e93 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseQR/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SPARSEQR_MODULE_H +#error "Please include Eigen/SparseQR instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseQR/SparseQR.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseQR/SparseQR.h new file mode 100644 index 0000000..f825092 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SparseQR/SparseQR.h @@ -0,0 +1,760 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012-2013 Desire Nuentsa +// Copyright (C) 2012-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_QR_H +#define EIGEN_SPARSE_QR_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template class SparseQR; +template struct SparseQRMatrixQReturnType; +template struct SparseQRMatrixQTransposeReturnType; +template struct SparseQR_QProduct; +namespace internal { + template struct traits > + { + typedef typename SparseQRType::MatrixType ReturnType; + typedef typename ReturnType::StorageIndex StorageIndex; + typedef typename ReturnType::StorageKind StorageKind; + enum { + RowsAtCompileTime = Dynamic, + ColsAtCompileTime = Dynamic + }; + }; + template struct traits > + { + typedef typename SparseQRType::MatrixType ReturnType; + }; + template struct traits > + { + typedef typename Derived::PlainObject ReturnType; + }; +} // End namespace internal + +/** + * \ingroup SparseQR_Module + * \class SparseQR + * \brief Sparse left-looking QR factorization with numerical column pivoting + * + * This class implements a left-looking QR decomposition of sparse matrices + * with numerical column pivoting. + * When a column has a norm less than a given tolerance + * it is implicitly permuted to the end. The QR factorization thus obtained is + * given by A*P = Q*R where R is upper triangular or trapezoidal. + * + * P is the column permutation which is the product of the fill-reducing and the + * numerical permutations. Use colsPermutation() to get it. + * + * Q is the orthogonal matrix represented as products of Householder reflectors. + * Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint. + * You can then apply it to a vector. + * + * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. + * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank. + * + * \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<> + * \tparam OrderingType_ The fill-reducing ordering method. See the \link OrderingMethods_Module + * OrderingMethods \endlink module for the list of built-in and external ordering methods. + * + * \implsparsesolverconcept + * + * The numerical pivoting strategy and default threshold are the same as in SuiteSparse QR, and + * detailed in the following paper: + * + * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing + * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011. + * + * Even though it is qualified as "rank-revealing", this strategy might fail for some + * rank deficient problems. When this class is used to solve linear or least-square problems + * it is thus strongly recommended to check the accuracy of the computed solution. If it + * failed, it usually helps to increase the threshold with setPivotThreshold. + * + * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()). + * \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix. + * + */ +template +class SparseQR : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase > Base; + using Base::m_isInitialized; + public: + using Base::_solve_impl; + typedef MatrixType_ MatrixType; + typedef OrderingType_ OrderingType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix QRMatrixType; + typedef Matrix IndexVector; + typedef Matrix ScalarVector; + typedef PermutationMatrix PermutationType; + + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) + { } + + /** Construct a QR factorization of the matrix \a mat. + * + * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + * + * \sa compute() + */ + explicit SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) + { + compute(mat); + } + + /** Computes the QR factorization of the sparse matrix \a mat. + * + * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + * + * \sa analyzePattern(), factorize() + */ + void compute(const MatrixType& mat) + { + analyzePattern(mat); + factorize(mat); + } + void analyzePattern(const MatrixType& mat); + void factorize(const MatrixType& mat); + + /** \returns the number of rows of the represented matrix. + */ + inline Index rows() const { return m_pmat.rows(); } + + /** \returns the number of columns of the represented matrix. + */ + inline Index cols() const { return m_pmat.cols();} + + /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization. + * \warning The entries of the returned matrix are not sorted. This means that using it in algorithms + * expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()), + * and coefficient-wise operations. Matrix products and triangular solves are fine though. + * + * To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix + * is required, you can copy it again: + * \code + * SparseMatrix R = qr.matrixR(); // column-major, not sorted! + * SparseMatrix Rr = qr.matrixR(); // row-major, sorted + * SparseMatrix Rc = Rr; // column-major, sorted + * \endcode + */ + const QRMatrixType& matrixR() const { return m_R; } + + /** \returns the number of non linearly dependent columns as determined by the pivoting threshold. + * + * \sa setPivotThreshold() + */ + Index rank() const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + return m_nonzeropivots; + } + + /** \returns an expression of the matrix Q as products of sparse Householder reflectors. + * The common usage of this function is to apply it to a dense matrix or vector + * \code + * VectorXd B1, B2; + * // Initialize B1 + * B2 = matrixQ() * B1; + * \endcode + * + * To get a plain SparseMatrix representation of Q: + * \code + * SparseMatrix Q; + * Q = SparseQR >(A).matrixQ(); + * \endcode + * Internally, this call simply performs a sparse product between the matrix Q + * and a sparse identity matrix. However, due to the fact that the sparse + * reflectors are stored unsorted, two transpositions are needed to sort + * them before performing the product. + */ + SparseQRMatrixQReturnType matrixQ() const + { return SparseQRMatrixQReturnType(*this); } + + /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R + * It is the combination of the fill-in reducing permutation and numerical column pivoting. + */ + const PermutationType& colsPermutation() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_outputPerm_c; + } + + /** \returns A string describing the type of error. + * This method is provided to ease debugging, not to handle errors. + */ + std::string lastErrorMessage() const { return m_lastError; } + + /** \internal */ + template + bool _solve_impl(const MatrixBase &B, MatrixBase &dest) const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); + + Index rank = this->rank(); + + // Compute Q^* * b; + typename Dest::PlainObject y, b; + y = this->matrixQ().adjoint() * B; + b = y; + + // Solve with the triangular matrix R + y.resize((std::max)(cols(),y.rows()),y.cols()); + y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView().solve(b.topRows(rank)); + y.bottomRows(y.rows()-rank).setZero(); + + // Apply the column permutation + if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols()); + else dest = y.topRows(cols()); + + m_info = Success; + return true; + } + + /** Sets the threshold that is used to determine linearly dependent columns during the factorization. + * + * In practice, if during the factorization the norm of the column that has to be eliminated is below + * this threshold, then the entire column is treated as zero, and it is moved at the end. + */ + void setPivotThreshold(const RealScalar& threshold) + { + m_useDefaultThreshold = false; + m_threshold = threshold; + } + + /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. + * + * \sa compute() + */ + template + inline const Solve solve(const MatrixBase& B) const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); + return Solve(*this, B.derived()); + } + template + inline const Solve solve(const SparseMatrixBase& B) const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); + return Solve(*this, B.derived()); + } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the QR factorization reports a numerical problem + * \c InvalidInput if the input matrix is invalid + * + * \sa iparm() + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + + /** \internal */ + inline void _sort_matrix_Q() + { + if(this->m_isQSorted) return; + // The matrix Q is sorted during the transposition + SparseMatrix mQrm(this->m_Q); + this->m_Q = mQrm; + this->m_isQSorted = true; + } + + + protected: + bool m_analysisIsok; + bool m_factorizationIsok; + mutable ComputationInfo m_info; + std::string m_lastError; + QRMatrixType m_pmat; // Temporary matrix + QRMatrixType m_R; // The triangular factor matrix + QRMatrixType m_Q; // The orthogonal reflectors + ScalarVector m_hcoeffs; // The Householder coefficients + PermutationType m_perm_c; // Fill-reducing Column permutation + PermutationType m_pivotperm; // The permutation for rank revealing + PermutationType m_outputPerm_c; // The final column permutation + RealScalar m_threshold; // Threshold to determine null Householder reflections + bool m_useDefaultThreshold; // Use default threshold + Index m_nonzeropivots; // Number of non zero pivots found + IndexVector m_etree; // Column elimination tree + IndexVector m_firstRowElt; // First element in each row + bool m_isQSorted; // whether Q is sorted or not + bool m_isEtreeOk; // whether the elimination tree match the initial input matrix + + template friend struct SparseQR_QProduct; + +}; + +/** \brief Preprocessing step of a QR factorization + * + * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + * + * In this step, the fill-reducing permutation is computed and applied to the columns of A + * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited. + * + * \note In this step it is assumed that there is no empty row in the matrix \a mat. + */ +template +void SparseQR::analyzePattern(const MatrixType& mat) +{ + eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR"); + // Copy to a column major matrix if the input is rowmajor + std::conditional_t matCpy(mat); + // Compute the column fill reducing ordering + OrderingType ord; + ord(matCpy, m_perm_c); + Index n = mat.cols(); + Index m = mat.rows(); + Index diagSize = (std::min)(m,n); + + if (!m_perm_c.size()) + { + m_perm_c.resize(n); + m_perm_c.indices().setLinSpaced(n, 0,StorageIndex(n-1)); + } + + // Compute the column elimination tree of the permuted matrix + m_outputPerm_c = m_perm_c.inverse(); + internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); + m_isEtreeOk = true; + + m_R.resize(m, n); + m_Q.resize(m, diagSize); + + // Allocate space for nonzero elements: rough estimation + m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree + m_Q.reserve(2*mat.nonZeros()); + m_hcoeffs.resize(diagSize); + m_analysisIsok = true; +} + +/** \brief Performs the numerical QR factorization of the input matrix + * + * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with + * a matrix having the same sparsity pattern than \a mat. + * + * \param mat The sparse column-major matrix + */ +template +void SparseQR::factorize(const MatrixType& mat) +{ + using std::abs; + + eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step"); + StorageIndex m = StorageIndex(mat.rows()); + StorageIndex n = StorageIndex(mat.cols()); + StorageIndex diagSize = (std::min)(m,n); + IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes + IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q + Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q + ScalarVector tval(m); // The dense vector used to compute the current column + RealScalar pivotThreshold = m_threshold; + + m_R.setZero(); + m_Q.setZero(); + m_pmat = mat; + if(!m_isEtreeOk) + { + m_outputPerm_c = m_perm_c.inverse(); + internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); + m_isEtreeOk = true; + } + + m_pmat.uncompress(); // To have the innerNonZeroPtr allocated + + // Apply the fill-in reducing permutation lazily: + { + // If the input is row major, copy the original column indices, + // otherwise directly use the input matrix + // + IndexVector originalOuterIndicesCpy; + const StorageIndex *originalOuterIndices = mat.outerIndexPtr(); + if(MatrixType::IsRowMajor) + { + originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1); + originalOuterIndices = originalOuterIndicesCpy.data(); + } + + for (int i = 0; i < n; i++) + { + Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i; + m_pmat.outerIndexPtr()[p] = originalOuterIndices[i]; + m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i]; + } + } + + /* Compute the default threshold as in MatLab, see: + * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing + * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 + */ + if(m_useDefaultThreshold) + { + RealScalar max2Norm = 0.0; + for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm()); + if(max2Norm==RealScalar(0)) + max2Norm = RealScalar(1); + pivotThreshold = 20 * (m + n) * max2Norm * NumTraits::epsilon(); + } + + // Initialize the numerical permutation + m_pivotperm.setIdentity(n); + + StorageIndex nonzeroCol = 0; // Record the number of valid pivots + m_Q.startVec(0); + + // Left looking rank-revealing QR factorization: compute a column of R and Q at a time + for (StorageIndex col = 0; col < n; ++col) + { + mark.setConstant(-1); + m_R.startVec(col); + mark(nonzeroCol) = col; + Qidx(0) = nonzeroCol; + nzcolR = 0; nzcolQ = 1; + bool found_diag = nonzeroCol>=m; + tval.setZero(); + + // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e., + // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k. + // Note: if the diagonal entry does not exist, then its contribution must be explicitly added, + // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found. + for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp) + { + StorageIndex curIdx = nonzeroCol; + if(itp) curIdx = StorageIndex(itp.row()); + if(curIdx == nonzeroCol) found_diag = true; + + // Get the nonzeros indexes of the current column of R + StorageIndex st = m_firstRowElt(curIdx); // The traversal of the etree starts here + if (st < 0 ) + { + m_lastError = "Empty row found during numerical factorization"; + m_info = InvalidInput; + return; + } + + // Traverse the etree + Index bi = nzcolR; + for (; mark(st) != col; st = m_etree(st)) + { + Ridx(nzcolR) = st; // Add this row to the list, + mark(st) = col; // and mark this row as visited + nzcolR++; + } + + // Reverse the list to get the topological ordering + Index nt = nzcolR-bi; + for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1)); + + // Copy the current (curIdx,pcol) value of the input matrix + if(itp) tval(curIdx) = itp.value(); + else tval(curIdx) = Scalar(0); + + // Compute the pattern of Q(:,k) + if(curIdx > nonzeroCol && mark(curIdx) != col ) + { + Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q, + mark(curIdx) = col; // and mark it as visited + nzcolQ++; + } + } + + // Browse all the indexes of R(:,col) in reverse order + for (Index i = nzcolR-1; i >= 0; i--) + { + Index curIdx = Ridx(i); + + // Apply the curIdx-th householder vector to the current column (temporarily stored into tval) + Scalar tdot(0); + + // First compute q' * tval + tdot = m_Q.col(curIdx).dot(tval); + + tdot *= m_hcoeffs(curIdx); + + // Then update tval = tval - q * tau + // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse") + for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) + tval(itq.row()) -= itq.value() * tdot; + + // Detect fill-in for the current column of Q + if(m_etree(Ridx(i)) == nonzeroCol) + { + for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) + { + StorageIndex iQ = StorageIndex(itq.row()); + if (mark(iQ) != col) + { + Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q, + mark(iQ) = col; // and mark it as visited + } + } + } + } // End update current column + + Scalar tau = RealScalar(0); + RealScalar beta = 0; + + if(nonzeroCol < diagSize) + { + // Compute the Householder reflection that eliminate the current column + // FIXME this step should call the Householder module. + Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0); + + // First, the squared norm of Q((col+1):m, col) + RealScalar sqrNorm = 0.; + for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq))); + if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0)) + { + beta = numext::real(c0); + tval(Qidx(0)) = 1; + } + else + { + using std::sqrt; + beta = sqrt(numext::abs2(c0) + sqrNorm); + if(numext::real(c0) >= RealScalar(0)) + beta = -beta; + tval(Qidx(0)) = 1; + for (Index itq = 1; itq < nzcolQ; ++itq) + tval(Qidx(itq)) /= (c0 - beta); + tau = numext::conj((beta-c0) / beta); + + } + } + + // Insert values in R + for (Index i = nzcolR-1; i >= 0; i--) + { + Index curIdx = Ridx(i); + if(curIdx < nonzeroCol) + { + m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx); + tval(curIdx) = Scalar(0.); + } + } + + if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold) + { + m_R.insertBackByOuterInner(col, nonzeroCol) = beta; + // The householder coefficient + m_hcoeffs(nonzeroCol) = tau; + // Record the householder reflections + for (Index itq = 0; itq < nzcolQ; ++itq) + { + Index iQ = Qidx(itq); + m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ); + tval(iQ) = Scalar(0.); + } + nonzeroCol++; + if(nonzeroCol +struct SparseQR_QProduct : ReturnByValue > +{ + typedef typename SparseQRType::QRMatrixType MatrixType; + typedef typename SparseQRType::Scalar Scalar; + // Get the references + SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) : + m_qr(qr),m_other(other),m_transpose(transpose) {} + inline Index rows() const { return m_qr.matrixQ().rows(); } + inline Index cols() const { return m_other.cols(); } + + // Assign to a vector + template + void evalTo(DesType& res) const + { + Index m = m_qr.rows(); + Index n = m_qr.cols(); + Index diagSize = (std::min)(m,n); + res = m_other; + if (m_transpose) + { + eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes"); + //Compute res = Q' * other column by column + for(Index j = 0; j < res.cols(); j++){ + for (Index k = 0; k < diagSize; k++) + { + Scalar tau = Scalar(0); + tau = m_qr.m_Q.col(k).dot(res.col(j)); + if(tau==Scalar(0)) continue; + tau = tau * m_qr.m_hcoeffs(k); + res.col(j) -= tau * m_qr.m_Q.col(k); + } + } + } + else + { + eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes"); + + res.conservativeResize(rows(), cols()); + + // Compute res = Q * other column by column + for(Index j = 0; j < res.cols(); j++) + { + Index start_k = internal::is_identity::value ? numext::mini(j,diagSize-1) : diagSize-1; + for (Index k = start_k; k >=0; k--) + { + Scalar tau = Scalar(0); + tau = m_qr.m_Q.col(k).dot(res.col(j)); + if(tau==Scalar(0)) continue; + tau = tau * numext::conj(m_qr.m_hcoeffs(k)); + res.col(j) -= tau * m_qr.m_Q.col(k); + } + } + } + } + + const SparseQRType& m_qr; + const Derived& m_other; + bool m_transpose; // TODO this actually means adjoint +}; + +template +struct SparseQRMatrixQReturnType : public EigenBase > +{ + typedef typename SparseQRType::Scalar Scalar; + typedef Matrix DenseMatrix; + enum { + RowsAtCompileTime = Dynamic, + ColsAtCompileTime = Dynamic + }; + explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {} + template + SparseQR_QProduct operator*(const MatrixBase& other) + { + return SparseQR_QProduct(m_qr,other.derived(),false); + } + // To use for operations with the adjoint of Q + SparseQRMatrixQTransposeReturnType adjoint() const + { + return SparseQRMatrixQTransposeReturnType(m_qr); + } + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.rows(); } + // To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment + SparseQRMatrixQTransposeReturnType transpose() const + { + return SparseQRMatrixQTransposeReturnType(m_qr); + } + const SparseQRType& m_qr; +}; + +// TODO this actually represents the adjoint of Q +template +struct SparseQRMatrixQTransposeReturnType +{ + explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {} + template + SparseQR_QProduct operator*(const MatrixBase& other) + { + return SparseQR_QProduct(m_qr,other.derived(), true); + } + const SparseQRType& m_qr; +}; + +namespace internal { + +template +struct evaluator_traits > +{ + typedef typename SparseQRType::MatrixType MatrixType; + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef SparseShape Shape; +}; + +template< typename DstXprType, typename SparseQRType> +struct Assignment, internal::assign_op, Sparse2Sparse> +{ + typedef SparseQRMatrixQReturnType SrcXprType; + typedef typename DstXprType::Scalar Scalar; + typedef typename DstXprType::StorageIndex StorageIndex; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + typename DstXprType::PlainObject idMat(src.rows(), src.cols()); + idMat.setIdentity(); + // Sort the sparse householder reflectors if needed + const_cast(&src.m_qr)->_sort_matrix_Q(); + dst = SparseQR_QProduct(src.m_qr, idMat, false); + } +}; + +template< typename DstXprType, typename SparseQRType> +struct Assignment, internal::assign_op, Sparse2Dense> +{ + typedef SparseQRMatrixQReturnType SrcXprType; + typedef typename DstXprType::Scalar Scalar; + typedef typename DstXprType::StorageIndex StorageIndex; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows()); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdDeque.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdDeque.h new file mode 100644 index 0000000..1e95182 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdDeque.h @@ -0,0 +1,51 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STDDEQUE_H +#define EIGEN_STDDEQUE_H + +#ifndef EIGEN_STDDEQUE_MODULE_H +#error "Please include Eigen/StdDeque instead of including this file directly." +#endif + +#include "details.h" + +/** + * This section contains a convenience MACRO which allows an easy specialization of + * std::deque such that for data types with alignment issues the correct allocator + * is used automatically. + */ +#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) \ +namespace std \ +{ \ + template<> \ + class deque<__VA_ARGS__, std::allocator<__VA_ARGS__> > \ + : public deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \ + { \ + typedef deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > deque_base; \ + public: \ + typedef __VA_ARGS__ value_type; \ + typedef deque_base::allocator_type allocator_type; \ + typedef deque_base::size_type size_type; \ + typedef deque_base::iterator iterator; \ + explicit deque(const allocator_type& a = allocator_type()) : deque_base(a) {} \ + template \ + deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : deque_base(first, last, a) {} \ + deque(const deque& c) : deque_base(c) {} \ + explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \ + deque(iterator start_, iterator end_) : deque_base(start_, end_) {} \ + deque& operator=(const deque& x) { \ + deque_base::operator=(x); \ + return *this; \ + } \ + }; \ +} + +#endif // EIGEN_STDDEQUE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdList.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdList.h new file mode 100644 index 0000000..da36677 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdList.h @@ -0,0 +1,50 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STDLIST_H +#define EIGEN_STDLIST_H + +#ifndef EIGEN_STDLIST_MODULE_H +#error "Please include Eigen/StdList instead of including this file directly." +#endif + +#include "details.h" + +/** + * This section contains a convenience MACRO which allows an easy specialization of + * std::list such that for data types with alignment issues the correct allocator + * is used automatically. + */ +#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) \ +namespace std \ +{ \ + template<> \ + class list<__VA_ARGS__, std::allocator<__VA_ARGS__> > \ + : public list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \ + { \ + typedef list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > list_base; \ + public: \ + typedef __VA_ARGS__ value_type; \ + typedef list_base::allocator_type allocator_type; \ + typedef list_base::size_type size_type; \ + typedef list_base::iterator iterator; \ + explicit list(const allocator_type& a = allocator_type()) : list_base(a) {} \ + template \ + list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : list_base(first, last, a) {} \ + list(const list& c) : list_base(c) {} \ + explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \ + list(iterator start_, iterator end_) : list_base(start_, end_) {} \ + list& operator=(const list& x) { \ + list_base::operator=(x); \ + return *this; \ + } \ + }; \ +} + +#endif // EIGEN_STDLIST_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdVector.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdVector.h new file mode 100644 index 0000000..02dfb39 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/StdVector.h @@ -0,0 +1,51 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STDVECTOR_H +#define EIGEN_STDVECTOR_H + +#ifndef EIGEN_STDVECTOR_MODULE_H +#error "Please include Eigen/StdVector instead of including this file directly." +#endif + +#include "details.h" + +/** + * This section contains a convenience MACRO which allows an easy specialization of + * std::vector such that for data types with alignment issues the correct allocator + * is used automatically. + */ +#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...) \ +namespace std \ +{ \ + template<> \ + class vector<__VA_ARGS__, std::allocator<__VA_ARGS__> > \ + : public vector<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \ + { \ + typedef vector<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > vector_base; \ + public: \ + typedef __VA_ARGS__ value_type; \ + typedef vector_base::allocator_type allocator_type; \ + typedef vector_base::size_type size_type; \ + typedef vector_base::iterator iterator; \ + explicit vector(const allocator_type& a = allocator_type()) : vector_base(a) {} \ + template \ + vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : vector_base(first, last, a) {} \ + vector(const vector& c) : vector_base(c) {} \ + explicit vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \ + vector(iterator start_, iterator end_) : vector_base(start_, end_) {} \ + vector& operator=(const vector& x) { \ + vector_base::operator=(x); \ + return *this; \ + } \ + }; \ +} + +#endif // EIGEN_STDVECTOR_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/details.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/details.h new file mode 100644 index 0000000..29fd871 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/StlSupport/details.h @@ -0,0 +1,80 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_STL_DETAILS_H +#define EIGEN_STL_DETAILS_H + +#ifndef EIGEN_ALIGNED_ALLOCATOR + #define EIGEN_ALIGNED_ALLOCATOR Eigen::aligned_allocator +#endif + +namespace Eigen { + + // This one is needed to prevent reimplementing the whole std::vector. + template + class aligned_allocator_indirection : public EIGEN_ALIGNED_ALLOCATOR + { + public: + typedef std::size_t size_type; + typedef std::ptrdiff_t difference_type; + typedef T* pointer; + typedef const T* const_pointer; + typedef T& reference; + typedef const T& const_reference; + typedef T value_type; + + template + struct rebind + { + typedef aligned_allocator_indirection other; + }; + + aligned_allocator_indirection() {} + aligned_allocator_indirection(const aligned_allocator_indirection& ) : EIGEN_ALIGNED_ALLOCATOR() {} + aligned_allocator_indirection(const EIGEN_ALIGNED_ALLOCATOR& ) {} + template + aligned_allocator_indirection(const aligned_allocator_indirection& ) {} + template + aligned_allocator_indirection(const EIGEN_ALIGNED_ALLOCATOR& ) {} + ~aligned_allocator_indirection() {} + }; + +#if EIGEN_COMP_MSVC + + // sometimes, MSVC detects, at compile time, that the argument x + // in std::vector::resize(size_t s,T x) won't be aligned and generate an error + // even if this function is never called. Whence this little wrapper. +#define EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T) \ + std::conditional_t::value, T, Eigen::internal::workaround_msvc_stl_support > + + namespace internal { + template struct workaround_msvc_stl_support : public T + { + inline workaround_msvc_stl_support() : T() {} + inline workaround_msvc_stl_support(const T& other) : T(other) {} + inline operator T& () { return *static_cast(this); } + inline operator const T& () const { return *static_cast(this); } + template + inline T& operator=(const OtherT& other) + { T::operator=(other); return *this; } + inline workaround_msvc_stl_support& operator=(const workaround_msvc_stl_support& other) + { T::operator=(other); return *this; } + }; + } + +#else + +#define EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T) T + +#endif + +} + +#endif // EIGEN_STL_DETAILS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SuperLUSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SuperLUSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..94a62b5 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SuperLUSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H +#error "Please include Eigen/SuperLUSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h new file mode 100644 index 0000000..4bac22d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h @@ -0,0 +1,1027 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SUPERLUSUPPORT_H +#define EIGEN_SUPERLUSUPPORT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +#if defined(SUPERLU_MAJOR_VERSION) && (SUPERLU_MAJOR_VERSION >= 5) +#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \ + extern "C" { \ + extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \ + char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \ + void *, int, SuperMatrix *, SuperMatrix *, \ + FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \ + GlobalLU_t *, mem_usage_t *, SuperLUStat_t *, int *); \ + } \ + inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \ + int *perm_c, int *perm_r, int *etree, char *equed, \ + FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \ + SuperMatrix *U, void *work, int lwork, \ + SuperMatrix *B, SuperMatrix *X, \ + FLOATTYPE *recip_pivot_growth, \ + FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \ + SuperLUStat_t *stats, int *info, KEYTYPE) { \ + mem_usage_t mem_usage; \ + GlobalLU_t gLU; \ + PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \ + U, work, lwork, B, X, recip_pivot_growth, rcond, \ + ferr, berr, &gLU, &mem_usage, stats, info); \ + return mem_usage.for_lu; /* bytes used by the factor storage */ \ + } +#else // version < 5.0 +#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \ + extern "C" { \ + extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \ + char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \ + void *, int, SuperMatrix *, SuperMatrix *, \ + FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \ + mem_usage_t *, SuperLUStat_t *, int *); \ + } \ + inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \ + int *perm_c, int *perm_r, int *etree, char *equed, \ + FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \ + SuperMatrix *U, void *work, int lwork, \ + SuperMatrix *B, SuperMatrix *X, \ + FLOATTYPE *recip_pivot_growth, \ + FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \ + SuperLUStat_t *stats, int *info, KEYTYPE) { \ + mem_usage_t mem_usage; \ + PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \ + U, work, lwork, B, X, recip_pivot_growth, rcond, \ + ferr, berr, &mem_usage, stats, info); \ + return mem_usage.for_lu; /* bytes used by the factor storage */ \ + } +#endif + +DECL_GSSVX(s,float,float) +DECL_GSSVX(c,float,std::complex) +DECL_GSSVX(d,double,double) +DECL_GSSVX(z,double,std::complex) + +#ifdef MILU_ALPHA +#define EIGEN_SUPERLU_HAS_ILU +#endif + +#ifdef EIGEN_SUPERLU_HAS_ILU + +// similarly for the incomplete factorization using gsisx +#define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE) \ + extern "C" { \ + extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \ + char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \ + void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *, \ + mem_usage_t *, SuperLUStat_t *, int *); \ + } \ + inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A, \ + int *perm_c, int *perm_r, int *etree, char *equed, \ + FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \ + SuperMatrix *U, void *work, int lwork, \ + SuperMatrix *B, SuperMatrix *X, \ + FLOATTYPE *recip_pivot_growth, \ + FLOATTYPE *rcond, \ + SuperLUStat_t *stats, int *info, KEYTYPE) { \ + mem_usage_t mem_usage; \ + PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L, \ + U, work, lwork, B, X, recip_pivot_growth, rcond, \ + &mem_usage, stats, info); \ + return mem_usage.for_lu; /* bytes used by the factor storage */ \ + } + +DECL_GSISX(s,float,float) +DECL_GSISX(c,float,std::complex) +DECL_GSISX(d,double,double) +DECL_GSISX(z,double,std::complex) + +#endif + +template +struct SluMatrixMapHelper; + +/** \internal + * + * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices + * and dense matrices. Supernodal and other fancy format are not supported by this wrapper. + * + * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure. + */ +struct SluMatrix : SuperMatrix +{ + SluMatrix() + { + Store = &storage; + } + + SluMatrix(const SluMatrix& other) + : SuperMatrix(other) + { + Store = &storage; + storage = other.storage; + } + + SluMatrix& operator=(const SluMatrix& other) + { + SuperMatrix::operator=(static_cast(other)); + Store = &storage; + storage = other.storage; + return *this; + } + + struct + { + union {int nnz;int lda;}; + void *values; + int *innerInd; + int *outerInd; + } storage; + + void setStorageType(Stype_t t) + { + Stype = t; + if (t==SLU_NC || t==SLU_NR || t==SLU_DN) + Store = &storage; + else + { + eigen_assert(false && "storage type not supported"); + Store = 0; + } + } + + template + void setScalarType() + { + if (internal::is_same::value) + Dtype = SLU_S; + else if (internal::is_same::value) + Dtype = SLU_D; + else if (internal::is_same >::value) + Dtype = SLU_C; + else if (internal::is_same >::value) + Dtype = SLU_Z; + else + { + eigen_assert(false && "Scalar type not supported by SuperLU"); + } + } + + template + static SluMatrix Map(MatrixBase& _mat) + { + MatrixType& mat(_mat.derived()); + eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU"); + SluMatrix res; + res.setStorageType(SLU_DN); + res.setScalarType(); + res.Mtype = SLU_GE; + + res.nrow = internal::convert_index(mat.rows()); + res.ncol = internal::convert_index(mat.cols()); + + res.storage.lda = internal::convert_index(MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride()); + res.storage.values = (void*)(mat.data()); + return res; + } + + template + static SluMatrix Map(SparseMatrixBase& a_mat) + { + MatrixType &mat(a_mat.derived()); + SluMatrix res; + if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) + { + res.setStorageType(SLU_NR); + res.nrow = internal::convert_index(mat.cols()); + res.ncol = internal::convert_index(mat.rows()); + } + else + { + res.setStorageType(SLU_NC); + res.nrow = internal::convert_index(mat.rows()); + res.ncol = internal::convert_index(mat.cols()); + } + + res.Mtype = SLU_GE; + + res.storage.nnz = internal::convert_index(mat.nonZeros()); + res.storage.values = mat.valuePtr(); + res.storage.innerInd = mat.innerIndexPtr(); + res.storage.outerInd = mat.outerIndexPtr(); + + res.setScalarType(); + + // FIXME the following is not very accurate + if (int(MatrixType::Flags) & int(Upper)) + res.Mtype = SLU_TRU; + if (int(MatrixType::Flags) & int(Lower)) + res.Mtype = SLU_TRL; + + eigen_assert(((int(MatrixType::Flags) & int(SelfAdjoint))==0) && "SelfAdjoint matrix shape not supported by SuperLU"); + + return res; + } +}; + +template +struct SluMatrixMapHelper > +{ + typedef Matrix MatrixType; + static void run(MatrixType& mat, SluMatrix& res) + { + eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU"); + res.setStorageType(SLU_DN); + res.setScalarType(); + res.Mtype = SLU_GE; + + res.nrow = mat.rows(); + res.ncol = mat.cols(); + + res.storage.lda = mat.outerStride(); + res.storage.values = mat.data(); + } +}; + +template +struct SluMatrixMapHelper > +{ + typedef Derived MatrixType; + static void run(MatrixType& mat, SluMatrix& res) + { + if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) + { + res.setStorageType(SLU_NR); + res.nrow = mat.cols(); + res.ncol = mat.rows(); + } + else + { + res.setStorageType(SLU_NC); + res.nrow = mat.rows(); + res.ncol = mat.cols(); + } + + res.Mtype = SLU_GE; + + res.storage.nnz = mat.nonZeros(); + res.storage.values = mat.valuePtr(); + res.storage.innerInd = mat.innerIndexPtr(); + res.storage.outerInd = mat.outerIndexPtr(); + + res.setScalarType(); + + // FIXME the following is not very accurate + if (MatrixType::Flags & Upper) + res.Mtype = SLU_TRU; + if (MatrixType::Flags & Lower) + res.Mtype = SLU_TRL; + + eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU"); + } +}; + +namespace internal { + +template +SluMatrix asSluMatrix(MatrixType& mat) +{ + return SluMatrix::Map(mat); +} + +/** View a Super LU matrix as an Eigen expression */ +template +Map > map_superlu(SluMatrix& sluMat) +{ + eigen_assert(((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR) + || ((Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC)); + + Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow; + + return Map >( + sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize], + sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast(sluMat.storage.values) ); +} + +} // end namespace internal + +/** \ingroup SuperLUSupport_Module + * \class SuperLUBase + * \brief The base class for the direct and incomplete LU factorization of SuperLU + */ +template +class SuperLUBase : public SparseSolverBase +{ + protected: + typedef SparseSolverBase Base; + using Base::derived; + using Base::m_isInitialized; + public: + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix Vector; + typedef Matrix IntRowVectorType; + typedef Matrix IntColVectorType; + typedef Map > PermutationMap; + typedef SparseMatrix LUMatrixType; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + SuperLUBase() {} + + ~SuperLUBase() + { + clearFactors(); + } + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + /** \returns a reference to the Super LU option object to configure the Super LU algorithms. */ + inline superlu_options_t& options() { return m_sluOptions; } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + void compute(const MatrixType& matrix) + { + derived().analyzePattern(matrix); + derived().factorize(matrix); + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& /*matrix*/) + { + m_isInitialized = true; + m_info = Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; + } + + template + void dumpMemory(Stream& /*s*/) + {} + + protected: + + void initFactorization(const MatrixType& a) + { + set_default_options(&this->m_sluOptions); + + const Index size = a.rows(); + m_matrix = a; + + m_sluA = internal::asSluMatrix(m_matrix); + clearFactors(); + + m_p.resize(size); + m_q.resize(size); + m_sluRscale.resize(size); + m_sluCscale.resize(size); + m_sluEtree.resize(size); + + // set empty B and X + m_sluB.setStorageType(SLU_DN); + m_sluB.setScalarType(); + m_sluB.Mtype = SLU_GE; + m_sluB.storage.values = 0; + m_sluB.nrow = 0; + m_sluB.ncol = 0; + m_sluB.storage.lda = internal::convert_index(size); + m_sluX = m_sluB; + + m_extractedDataAreDirty = true; + } + + void init() + { + m_info = InvalidInput; + m_isInitialized = false; + m_sluL.Store = 0; + m_sluU.Store = 0; + } + + void extractData() const; + + void clearFactors() + { + if(m_sluL.Store) + Destroy_SuperNode_Matrix(&m_sluL); + if(m_sluU.Store) + Destroy_CompCol_Matrix(&m_sluU); + + m_sluL.Store = 0; + m_sluU.Store = 0; + + memset(&m_sluL,0,sizeof m_sluL); + memset(&m_sluU,0,sizeof m_sluU); + } + + // cached data to reduce reallocation, etc. + mutable LUMatrixType m_l; + mutable LUMatrixType m_u; + mutable IntColVectorType m_p; + mutable IntRowVectorType m_q; + + mutable LUMatrixType m_matrix; // copy of the factorized matrix + mutable SluMatrix m_sluA; + mutable SuperMatrix m_sluL, m_sluU; + mutable SluMatrix m_sluB, m_sluX; + mutable SuperLUStat_t m_sluStat; + mutable superlu_options_t m_sluOptions; + mutable std::vector m_sluEtree; + mutable Matrix m_sluRscale, m_sluCscale; + mutable Matrix m_sluFerr, m_sluBerr; + mutable char m_sluEqued; + + mutable ComputationInfo m_info; + int m_factorizationIsOk; + int m_analysisIsOk; + mutable bool m_extractedDataAreDirty; + + private: + SuperLUBase(SuperLUBase& ) { } +}; + + +/** \ingroup SuperLUSupport_Module + * \class SuperLU + * \brief A sparse direct LU factorization and solver based on the SuperLU library + * + * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization + * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * + * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported. + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SparseLU + */ +template +class SuperLU : public SuperLUBase > +{ + public: + typedef SuperLUBase Base; + typedef MatrixType_ MatrixType; + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + typedef typename Base::StorageIndex StorageIndex; + typedef typename Base::IntRowVectorType IntRowVectorType; + typedef typename Base::IntColVectorType IntColVectorType; + typedef typename Base::PermutationMap PermutationMap; + typedef typename Base::LUMatrixType LUMatrixType; + typedef TriangularView LMatrixType; + typedef TriangularView UMatrixType; + + public: + using Base::_solve_impl; + + SuperLU() : Base() { init(); } + + explicit SuperLU(const MatrixType& matrix) : Base() + { + init(); + Base::compute(matrix); + } + + ~SuperLU() + { + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + m_info = InvalidInput; + m_isInitialized = false; + Base::analyzePattern(matrix); + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix); + + /** \internal */ + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const; + + inline const LMatrixType& matrixL() const + { + if (m_extractedDataAreDirty) this->extractData(); + return m_l; + } + + inline const UMatrixType& matrixU() const + { + if (m_extractedDataAreDirty) this->extractData(); + return m_u; + } + + inline const IntColVectorType& permutationP() const + { + if (m_extractedDataAreDirty) this->extractData(); + return m_p; + } + + inline const IntRowVectorType& permutationQ() const + { + if (m_extractedDataAreDirty) this->extractData(); + return m_q; + } + + Scalar determinant() const; + + protected: + + using Base::m_matrix; + using Base::m_sluOptions; + using Base::m_sluA; + using Base::m_sluB; + using Base::m_sluX; + using Base::m_p; + using Base::m_q; + using Base::m_sluEtree; + using Base::m_sluEqued; + using Base::m_sluRscale; + using Base::m_sluCscale; + using Base::m_sluL; + using Base::m_sluU; + using Base::m_sluStat; + using Base::m_sluFerr; + using Base::m_sluBerr; + using Base::m_l; + using Base::m_u; + + using Base::m_analysisIsOk; + using Base::m_factorizationIsOk; + using Base::m_extractedDataAreDirty; + using Base::m_isInitialized; + using Base::m_info; + + void init() + { + Base::init(); + + set_default_options(&this->m_sluOptions); + m_sluOptions.PrintStat = NO; + m_sluOptions.ConditionNumber = NO; + m_sluOptions.Trans = NOTRANS; + m_sluOptions.ColPerm = COLAMD; + } + + + private: + SuperLU(SuperLU& ) { } +}; + +template +void SuperLU::factorize(const MatrixType& a) +{ + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + if(!m_analysisIsOk) + { + m_info = InvalidInput; + return; + } + + this->initFactorization(a); + + m_sluOptions.ColPerm = COLAMD; + int info = 0; + RealScalar recip_pivot_growth, rcond; + RealScalar ferr, berr; + + StatInit(&m_sluStat); + SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], + &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], + &m_sluL, &m_sluU, + NULL, 0, + &m_sluB, &m_sluX, + &recip_pivot_growth, &rcond, + &ferr, &berr, + &m_sluStat, &info, Scalar()); + StatFree(&m_sluStat); + + m_extractedDataAreDirty = true; + + // FIXME how to better check for errors ??? + m_info = info == 0 ? Success : NumericalIssue; + m_factorizationIsOk = true; +} + +template +template +void SuperLU::_solve_impl(const MatrixBase &b, MatrixBase& x) const +{ + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); + + const Index rhsCols = b.cols(); + eigen_assert(m_matrix.rows()==b.rows()); + + m_sluOptions.Trans = NOTRANS; + m_sluOptions.Fact = FACTORED; + m_sluOptions.IterRefine = NOREFINE; + + + m_sluFerr.resize(rhsCols); + m_sluBerr.resize(rhsCols); + + Ref > b_ref(b); + Ref > x_ref(x); + + m_sluB = SluMatrix::Map(b_ref.const_cast_derived()); + m_sluX = SluMatrix::Map(x_ref.const_cast_derived()); + + typename Rhs::PlainObject b_cpy; + if(m_sluEqued!='N') + { + b_cpy = b; + m_sluB = SluMatrix::Map(b_cpy.const_cast_derived()); + } + + StatInit(&m_sluStat); + int info = 0; + RealScalar recip_pivot_growth, rcond; + SuperLU_gssvx(&m_sluOptions, &m_sluA, + m_q.data(), m_p.data(), + &m_sluEtree[0], &m_sluEqued, + &m_sluRscale[0], &m_sluCscale[0], + &m_sluL, &m_sluU, + NULL, 0, + &m_sluB, &m_sluX, + &recip_pivot_growth, &rcond, + &m_sluFerr[0], &m_sluBerr[0], + &m_sluStat, &info, Scalar()); + StatFree(&m_sluStat); + + if(x.derived().data() != x_ref.data()) + x = x_ref; + + m_info = info==0 ? Success : NumericalIssue; +} + +// the code of this extractData() function has been adapted from the SuperLU's Matlab support code, +// +// Copyright (c) 1994 by Xerox Corporation. All rights reserved. +// +// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY +// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. +// +template +void SuperLUBase::extractData() const +{ + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()"); + if (m_extractedDataAreDirty) + { + int upper; + int fsupc, istart, nsupr; + int lastl = 0, lastu = 0; + SCformat *Lstore = static_cast(m_sluL.Store); + NCformat *Ustore = static_cast(m_sluU.Store); + Scalar *SNptr; + + const Index size = m_matrix.rows(); + m_l.resize(size,size); + m_l.resizeNonZeros(Lstore->nnz); + m_u.resize(size,size); + m_u.resizeNonZeros(Ustore->nnz); + + int* Lcol = m_l.outerIndexPtr(); + int* Lrow = m_l.innerIndexPtr(); + Scalar* Lval = m_l.valuePtr(); + + int* Ucol = m_u.outerIndexPtr(); + int* Urow = m_u.innerIndexPtr(); + Scalar* Uval = m_u.valuePtr(); + + Ucol[0] = 0; + Ucol[0] = 0; + + /* for each supernode */ + for (int k = 0; k <= Lstore->nsuper; ++k) + { + fsupc = L_FST_SUPC(k); + istart = L_SUB_START(fsupc); + nsupr = L_SUB_START(fsupc+1) - istart; + upper = 1; + + /* for each column in the supernode */ + for (int j = fsupc; j < L_FST_SUPC(k+1); ++j) + { + SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)]; + + /* Extract U */ + for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i) + { + Uval[lastu] = ((Scalar*)Ustore->nzval)[i]; + /* Matlab doesn't like explicit zero. */ + if (Uval[lastu] != 0.0) + Urow[lastu++] = U_SUB(i); + } + for (int i = 0; i < upper; ++i) + { + /* upper triangle in the supernode */ + Uval[lastu] = SNptr[i]; + /* Matlab doesn't like explicit zero. */ + if (Uval[lastu] != 0.0) + Urow[lastu++] = L_SUB(istart+i); + } + Ucol[j+1] = lastu; + + /* Extract L */ + Lval[lastl] = 1.0; /* unit diagonal */ + Lrow[lastl++] = L_SUB(istart + upper - 1); + for (int i = upper; i < nsupr; ++i) + { + Lval[lastl] = SNptr[i]; + /* Matlab doesn't like explicit zero. */ + if (Lval[lastl] != 0.0) + Lrow[lastl++] = L_SUB(istart+i); + } + Lcol[j+1] = lastl; + + ++upper; + } /* for j ... */ + + } /* for k ... */ + + // squeeze the matrices : + m_l.resizeNonZeros(lastl); + m_u.resizeNonZeros(lastu); + + m_extractedDataAreDirty = false; + } +} + +template +typename SuperLU::Scalar SuperLU::determinant() const +{ + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()"); + + if (m_extractedDataAreDirty) + this->extractData(); + + Scalar det = Scalar(1); + for (int j=0; j 0) + { + int lastId = m_u.outerIndexPtr()[j+1]-1; + eigen_assert(m_u.innerIndexPtr()[lastId]<=j); + if (m_u.innerIndexPtr()[lastId]==j) + det *= m_u.valuePtr()[lastId]; + } + } + if(PermutationMap(m_p.data(),m_p.size()).determinant()*PermutationMap(m_q.data(),m_q.size()).determinant()<0) + det = -det; + if(m_sluEqued!='N') + return det/m_sluRscale.prod()/m_sluCscale.prod(); + else + return det; +} + +#ifdef EIGEN_PARSED_BY_DOXYGEN +#define EIGEN_SUPERLU_HAS_ILU +#endif + +#ifdef EIGEN_SUPERLU_HAS_ILU + +/** \ingroup SuperLUSupport_Module + * \class SuperILU + * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library + * + * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization + * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers. + * + * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported. + * + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class IncompleteLUT, class ConjugateGradient, class BiCGSTAB + */ + +template +class SuperILU : public SuperLUBase > +{ + public: + typedef SuperLUBase Base; + typedef MatrixType_ MatrixType; + typedef typename Base::Scalar Scalar; + typedef typename Base::RealScalar RealScalar; + + public: + using Base::_solve_impl; + + SuperILU() : Base() { init(); } + + SuperILU(const MatrixType& matrix) : Base() + { + init(); + Base::compute(matrix); + } + + ~SuperILU() + { + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + Base::analyzePattern(matrix); + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix); + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal */ + template + void _solve_impl(const MatrixBase &b, MatrixBase &dest) const; + #endif // EIGEN_PARSED_BY_DOXYGEN + + protected: + + using Base::m_matrix; + using Base::m_sluOptions; + using Base::m_sluA; + using Base::m_sluB; + using Base::m_sluX; + using Base::m_p; + using Base::m_q; + using Base::m_sluEtree; + using Base::m_sluEqued; + using Base::m_sluRscale; + using Base::m_sluCscale; + using Base::m_sluL; + using Base::m_sluU; + using Base::m_sluStat; + using Base::m_sluFerr; + using Base::m_sluBerr; + using Base::m_l; + using Base::m_u; + + using Base::m_analysisIsOk; + using Base::m_factorizationIsOk; + using Base::m_extractedDataAreDirty; + using Base::m_isInitialized; + using Base::m_info; + + void init() + { + Base::init(); + + ilu_set_default_options(&m_sluOptions); + m_sluOptions.PrintStat = NO; + m_sluOptions.ConditionNumber = NO; + m_sluOptions.Trans = NOTRANS; + m_sluOptions.ColPerm = MMD_AT_PLUS_A; + + // no attempt to preserve column sum + m_sluOptions.ILU_MILU = SILU; + // only basic ILU(k) support -- no direct control over memory consumption + // better to use ILU_DropRule = DROP_BASIC | DROP_AREA + // and set ILU_FillFactor to max memory growth + m_sluOptions.ILU_DropRule = DROP_BASIC; + m_sluOptions.ILU_DropTol = NumTraits::dummy_precision()*10; + } + + private: + SuperILU(SuperILU& ) { } +}; + +template +void SuperILU::factorize(const MatrixType& a) +{ + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + if(!m_analysisIsOk) + { + m_info = InvalidInput; + return; + } + + this->initFactorization(a); + + int info = 0; + RealScalar recip_pivot_growth, rcond; + + StatInit(&m_sluStat); + SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], + &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], + &m_sluL, &m_sluU, + NULL, 0, + &m_sluB, &m_sluX, + &recip_pivot_growth, &rcond, + &m_sluStat, &info, Scalar()); + StatFree(&m_sluStat); + + // FIXME how to better check for errors ??? + m_info = info == 0 ? Success : NumericalIssue; + m_factorizationIsOk = true; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void SuperILU::_solve_impl(const MatrixBase &b, MatrixBase& x) const +{ + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); + + const int rhsCols = b.cols(); + eigen_assert(m_matrix.rows()==b.rows()); + + m_sluOptions.Trans = NOTRANS; + m_sluOptions.Fact = FACTORED; + m_sluOptions.IterRefine = NOREFINE; + + m_sluFerr.resize(rhsCols); + m_sluBerr.resize(rhsCols); + + Ref > b_ref(b); + Ref > x_ref(x); + + m_sluB = SluMatrix::Map(b_ref.const_cast_derived()); + m_sluX = SluMatrix::Map(x_ref.const_cast_derived()); + + typename Rhs::PlainObject b_cpy; + if(m_sluEqued!='N') + { + b_cpy = b; + m_sluB = SluMatrix::Map(b_cpy.const_cast_derived()); + } + + int info = 0; + RealScalar recip_pivot_growth, rcond; + + StatInit(&m_sluStat); + SuperLU_gsisx(&m_sluOptions, &m_sluA, + m_q.data(), m_p.data(), + &m_sluEtree[0], &m_sluEqued, + &m_sluRscale[0], &m_sluCscale[0], + &m_sluL, &m_sluU, + NULL, 0, + &m_sluB, &m_sluX, + &recip_pivot_growth, &rcond, + &m_sluStat, &info, Scalar()); + StatFree(&m_sluStat); + + if(x.derived().data() != x_ref.data()) + x = x_ref; + + m_info = info==0 ? Success : NumericalIssue; +} +#endif + +#endif + +} // end namespace Eigen + +#endif // EIGEN_SUPERLUSUPPORT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/Barrier.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/Barrier.h new file mode 100644 index 0000000..df58d87 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/Barrier.h @@ -0,0 +1,69 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Rasmus Munk Larsen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// Barrier is an object that allows one or more threads to wait until +// Notify has been called a specified number of times. + +#ifndef EIGEN_CXX11_THREADPOOL_BARRIER_H +#define EIGEN_CXX11_THREADPOOL_BARRIER_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +class Barrier { + public: + Barrier(unsigned int count) : state_(count << 1), notified_(false) { + eigen_plain_assert(((count << 1) >> 1) == count); + } + ~Barrier() { eigen_plain_assert((state_ >> 1) == 0); } + + void Notify() { + unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2; + if (v != 1) { + // Clear the lowest bit (waiter flag) and check that the original state + // value was not zero. If it was zero, it means that notify was called + // more times than the original count. + eigen_plain_assert(((v + 2) & ~1) != 0); + return; // either count has not dropped to 0, or waiter is not waiting + } + EIGEN_MUTEX_LOCK l(mu_); + eigen_plain_assert(!notified_); + notified_ = true; + cv_.notify_all(); + } + + void Wait() { + unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel); + if ((v >> 1) == 0) return; + EIGEN_MUTEX_LOCK l(mu_); + while (!notified_) { + cv_.wait(l); + } + } + + private: + EIGEN_MUTEX mu_; + EIGEN_CONDVAR cv_; + std::atomic state_; // low bit is waiter flag + bool notified_; +}; + +// Notification is an object that allows a user to to wait for another +// thread to signal a notification that an event has occurred. +// +// Multiple threads can wait on the same Notification object, +// but only one caller must call Notify() on the object. +struct Notification : Barrier { + Notification() : Barrier(1){}; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_BARRIER_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/EventCount.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/EventCount.h new file mode 100644 index 0000000..3b57d27 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/EventCount.h @@ -0,0 +1,251 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Dmitry Vyukov +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H +#define EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// EventCount allows to wait for arbitrary predicates in non-blocking +// algorithms. Think of condition variable, but wait predicate does not need to +// be protected by a mutex. Usage: +// Waiting thread does: +// +// if (predicate) +// return act(); +// EventCount::Waiter& w = waiters[my_index]; +// ec.Prewait(&w); +// if (predicate) { +// ec.CancelWait(&w); +// return act(); +// } +// ec.CommitWait(&w); +// +// Notifying thread does: +// +// predicate = true; +// ec.Notify(true); +// +// Notify is cheap if there are no waiting threads. Prewait/CommitWait are not +// cheap, but they are executed only if the preceding predicate check has +// failed. +// +// Algorithm outline: +// There are two main variables: predicate (managed by user) and state_. +// Operation closely resembles Dekker mutual algorithm: +// https://en.wikipedia.org/wiki/Dekker%27s_algorithm +// Waiting thread sets state_ then checks predicate, Notifying thread sets +// predicate then checks state_. Due to seq_cst fences in between these +// operations it is guaranteed than either waiter will see predicate change +// and won't block, or notifying thread will see state_ change and will unblock +// the waiter, or both. But it can't happen that both threads don't see each +// other changes, which would lead to deadlock. +class EventCount { + public: + class Waiter; + + EventCount(MaxSizeVector& waiters) + : state_(kStackMask), waiters_(waiters) { + eigen_plain_assert(waiters.size() < (1 << kWaiterBits) - 1); + } + + ~EventCount() { + // Ensure there are no waiters. + eigen_plain_assert(state_.load() == kStackMask); + } + + // Prewait prepares for waiting. + // After calling Prewait, the thread must re-check the wait predicate + // and then call either CancelWait or CommitWait. + void Prewait() { + uint64_t state = state_.load(std::memory_order_relaxed); + for (;;) { + CheckState(state); + uint64_t newstate = state + kWaiterInc; + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_seq_cst)) + return; + } + } + + // CommitWait commits waiting after Prewait. + void CommitWait(Waiter* w) { + eigen_plain_assert((w->epoch & ~kEpochMask) == 0); + w->state = Waiter::kNotSignaled; + const uint64_t me = (w - &waiters_[0]) | w->epoch; + uint64_t state = state_.load(std::memory_order_seq_cst); + for (;;) { + CheckState(state, true); + uint64_t newstate; + if ((state & kSignalMask) != 0) { + // Consume the signal and return immediately. + newstate = state - kWaiterInc - kSignalInc; + } else { + // Remove this thread from pre-wait counter and add to the waiter stack. + newstate = ((state & kWaiterMask) - kWaiterInc) | me; + w->next.store(state & (kStackMask | kEpochMask), + std::memory_order_relaxed); + } + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_acq_rel)) { + if ((state & kSignalMask) == 0) { + w->epoch += kEpochInc; + Park(w); + } + return; + } + } + } + + // CancelWait cancels effects of the previous Prewait call. + void CancelWait() { + uint64_t state = state_.load(std::memory_order_relaxed); + for (;;) { + CheckState(state, true); + uint64_t newstate = state - kWaiterInc; + // We don't know if the thread was also notified or not, + // so we should not consume a signal unconditionally. + // Only if number of waiters is equal to number of signals, + // we know that the thread was notified and we must take away the signal. + if (((state & kWaiterMask) >> kWaiterShift) == + ((state & kSignalMask) >> kSignalShift)) + newstate -= kSignalInc; + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_acq_rel)) + return; + } + } + + // Notify wakes one or all waiting threads. + // Must be called after changing the associated wait predicate. + void Notify(bool notifyAll) { + std::atomic_thread_fence(std::memory_order_seq_cst); + uint64_t state = state_.load(std::memory_order_acquire); + for (;;) { + CheckState(state); + const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift; + const uint64_t signals = (state & kSignalMask) >> kSignalShift; + // Easy case: no waiters. + if ((state & kStackMask) == kStackMask && waiters == signals) return; + uint64_t newstate; + if (notifyAll) { + // Empty wait stack and set signal to number of pre-wait threads. + newstate = + (state & kWaiterMask) | (waiters << kSignalShift) | kStackMask; + } else if (signals < waiters) { + // There is a thread in pre-wait state, unblock it. + newstate = state + kSignalInc; + } else { + // Pop a waiter from list and unpark it. + Waiter* w = &waiters_[state & kStackMask]; + uint64_t next = w->next.load(std::memory_order_relaxed); + newstate = (state & (kWaiterMask | kSignalMask)) | next; + } + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_acq_rel)) { + if (!notifyAll && (signals < waiters)) + return; // unblocked pre-wait thread + if ((state & kStackMask) == kStackMask) return; + Waiter* w = &waiters_[state & kStackMask]; + if (!notifyAll) w->next.store(kStackMask, std::memory_order_relaxed); + Unpark(w); + return; + } + } + } + + class Waiter { + friend class EventCount; + // Align to 128 byte boundary to prevent false sharing with other Waiter + // objects in the same vector. + EIGEN_ALIGN_TO_BOUNDARY(128) std::atomic next; + EIGEN_MUTEX mu; + EIGEN_CONDVAR cv; + uint64_t epoch = 0; + unsigned state = kNotSignaled; + enum { + kNotSignaled, + kWaiting, + kSignaled, + }; + }; + + private: + // State_ layout: + // - low kWaiterBits is a stack of waiters committed wait + // (indexes in waiters_ array are used as stack elements, + // kStackMask means empty stack). + // - next kWaiterBits is count of waiters in prewait state. + // - next kWaiterBits is count of pending signals. + // - remaining bits are ABA counter for the stack. + // (stored in Waiter node and incremented on push). + static const uint64_t kWaiterBits = 14; + static const uint64_t kStackMask = (1ull << kWaiterBits) - 1; + static const uint64_t kWaiterShift = kWaiterBits; + static const uint64_t kWaiterMask = ((1ull << kWaiterBits) - 1) + << kWaiterShift; + static const uint64_t kWaiterInc = 1ull << kWaiterShift; + static const uint64_t kSignalShift = 2 * kWaiterBits; + static const uint64_t kSignalMask = ((1ull << kWaiterBits) - 1) + << kSignalShift; + static const uint64_t kSignalInc = 1ull << kSignalShift; + static const uint64_t kEpochShift = 3 * kWaiterBits; + static const uint64_t kEpochBits = 64 - kEpochShift; + static const uint64_t kEpochMask = ((1ull << kEpochBits) - 1) << kEpochShift; + static const uint64_t kEpochInc = 1ull << kEpochShift; + std::atomic state_; + MaxSizeVector& waiters_; + + static void CheckState(uint64_t state, bool waiter = false) { + static_assert(kEpochBits >= 20, "not enough bits to prevent ABA problem"); + const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift; + const uint64_t signals = (state & kSignalMask) >> kSignalShift; + eigen_plain_assert(waiters >= signals); + eigen_plain_assert(waiters < (1 << kWaiterBits) - 1); + eigen_plain_assert(!waiter || waiters > 0); + (void)waiters; + (void)signals; + } + + void Park(Waiter* w) { + EIGEN_MUTEX_LOCK lock(w->mu); + while (w->state != Waiter::kSignaled) { + w->state = Waiter::kWaiting; + w->cv.wait(lock); + } + } + + void Unpark(Waiter* w) { + for (Waiter* next; w; w = next) { + uint64_t wnext = w->next.load(std::memory_order_relaxed) & kStackMask; + next = wnext == kStackMask ? nullptr : &waiters_[internal::convert_index(wnext)]; + unsigned state; + { + EIGEN_MUTEX_LOCK lock(w->mu); + state = w->state; + w->state = Waiter::kSignaled; + } + // Avoid notifying if it wasn't waiting. + if (state == Waiter::kWaiting) w->cv.notify_one(); + } + } + + EventCount(const EventCount&) = delete; + void operator=(const EventCount&) = delete; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/InternalHeaderCheck.h new file mode 100644 index 0000000..44c0fca --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_THREADPOOL_MODULE_H +#error "Please include unsupported/Eigen/CXX11/ThreadPool instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/NonBlockingThreadPool.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/NonBlockingThreadPool.h new file mode 100644 index 0000000..40f2f3f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/NonBlockingThreadPool.h @@ -0,0 +1,488 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Dmitry Vyukov +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H +#define EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +template +class ThreadPoolTempl : public Eigen::ThreadPoolInterface { + public: + typedef typename Environment::Task Task; + typedef RunQueue Queue; + + ThreadPoolTempl(int num_threads, Environment env = Environment()) + : ThreadPoolTempl(num_threads, true, env) {} + + ThreadPoolTempl(int num_threads, bool allow_spinning, + Environment env = Environment()) + : env_(env), + num_threads_(num_threads), + allow_spinning_(allow_spinning), + thread_data_(num_threads), + all_coprimes_(num_threads), + waiters_(num_threads), + global_steal_partition_(EncodePartition(0, num_threads_)), + blocked_(0), + spinning_(0), + done_(false), + cancelled_(false), + ec_(waiters_) { + waiters_.resize(num_threads_); + // Calculate coprimes of all numbers [1, num_threads]. + // Coprimes are used for random walks over all threads in Steal + // and NonEmptyQueueIndex. Iteration is based on the fact that if we take + // a random starting thread index t and calculate num_threads - 1 subsequent + // indices as (t + coprime) % num_threads, we will cover all threads without + // repetitions (effectively getting a presudo-random permutation of thread + // indices). + eigen_plain_assert(num_threads_ < kMaxThreads); + for (int i = 1; i <= num_threads_; ++i) { + all_coprimes_.emplace_back(i); + ComputeCoprimes(i, &all_coprimes_.back()); + } +#ifndef EIGEN_THREAD_LOCAL + init_barrier_.reset(new Barrier(num_threads_)); +#endif + thread_data_.resize(num_threads_); + for (int i = 0; i < num_threads_; i++) { + SetStealPartition(i, EncodePartition(0, num_threads_)); + thread_data_[i].thread.reset( + env_.CreateThread([this, i]() { WorkerLoop(i); })); + } +#ifndef EIGEN_THREAD_LOCAL + // Wait for workers to initialize per_thread_map_. Otherwise we might race + // with them in Schedule or CurrentThreadId. + init_barrier_->Wait(); +#endif + } + + ~ThreadPoolTempl() { + done_ = true; + + // Now if all threads block without work, they will start exiting. + // But note that threads can continue to work arbitrary long, + // block, submit new work, unblock and otherwise live full life. + if (!cancelled_) { + ec_.Notify(true); + } else { + // Since we were cancelled, there might be entries in the queues. + // Empty them to prevent their destructor from asserting. + for (size_t i = 0; i < thread_data_.size(); i++) { + thread_data_[i].queue.Flush(); + } + } + // Join threads explicitly (by destroying) to avoid destruction order within + // this class. + for (size_t i = 0; i < thread_data_.size(); ++i) + thread_data_[i].thread.reset(); + } + + void SetStealPartitions(const std::vector>& partitions) { + eigen_plain_assert(partitions.size() == static_cast(num_threads_)); + + // Pass this information to each thread queue. + for (int i = 0; i < num_threads_; i++) { + const auto& pair = partitions[i]; + unsigned start = pair.first, end = pair.second; + AssertBounds(start, end); + unsigned val = EncodePartition(start, end); + SetStealPartition(i, val); + } + } + + void Schedule(std::function fn) EIGEN_OVERRIDE { + ScheduleWithHint(std::move(fn), 0, num_threads_); + } + + void ScheduleWithHint(std::function fn, int start, + int limit) override { + Task t = env_.CreateTask(std::move(fn)); + PerThread* pt = GetPerThread(); + if (pt->pool == this) { + // Worker thread of this pool, push onto the thread's queue. + Queue& q = thread_data_[pt->thread_id].queue; + t = q.PushFront(std::move(t)); + } else { + // A free-standing thread (or worker of another pool), push onto a random + // queue. + eigen_plain_assert(start < limit); + eigen_plain_assert(limit <= num_threads_); + int num_queues = limit - start; + int rnd = Rand(&pt->rand) % num_queues; + eigen_plain_assert(start + rnd < limit); + Queue& q = thread_data_[start + rnd].queue; + t = q.PushBack(std::move(t)); + } + // Note: below we touch this after making w available to worker threads. + // Strictly speaking, this can lead to a racy-use-after-free. Consider that + // Schedule is called from a thread that is neither main thread nor a worker + // thread of this pool. Then, execution of w directly or indirectly + // completes overall computations, which in turn leads to destruction of + // this. We expect that such scenario is prevented by program, that is, + // this is kept alive while any threads can potentially be in Schedule. + if (!t.f) { + ec_.Notify(false); + } else { + env_.ExecuteTask(t); // Push failed, execute directly. + } + } + + void Cancel() EIGEN_OVERRIDE { + cancelled_ = true; + done_ = true; + + // Let each thread know it's been cancelled. +#ifdef EIGEN_THREAD_ENV_SUPPORTS_CANCELLATION + for (size_t i = 0; i < thread_data_.size(); i++) { + thread_data_[i].thread->OnCancel(); + } +#endif + + // Wake up the threads without work to let them exit on their own. + ec_.Notify(true); + } + + int NumThreads() const EIGEN_FINAL { return num_threads_; } + + int CurrentThreadId() const EIGEN_FINAL { + const PerThread* pt = const_cast(this)->GetPerThread(); + if (pt->pool == this) { + return pt->thread_id; + } else { + return -1; + } + } + + private: + // Create a single atomic that encodes start and limit information for + // each thread. + // We expect num_threads_ < 65536, so we can store them in a single + // std::atomic. + // Exposed publicly as static functions so that external callers can reuse + // this encode/decode logic for maintaining their own thread-safe copies of + // scheduling and steal domain(s). + static const int kMaxPartitionBits = 16; + static const int kMaxThreads = 1 << kMaxPartitionBits; + + inline unsigned EncodePartition(unsigned start, unsigned limit) { + return (start << kMaxPartitionBits) | limit; + } + + inline void DecodePartition(unsigned val, unsigned* start, unsigned* limit) { + *limit = val & (kMaxThreads - 1); + val >>= kMaxPartitionBits; + *start = val; + } + + void AssertBounds(int start, int end) { + eigen_plain_assert(start >= 0); + eigen_plain_assert(start < end); // non-zero sized partition + eigen_plain_assert(end <= num_threads_); + } + + inline void SetStealPartition(size_t i, unsigned val) { + thread_data_[i].steal_partition.store(val, std::memory_order_relaxed); + } + + inline unsigned GetStealPartition(int i) { + return thread_data_[i].steal_partition.load(std::memory_order_relaxed); + } + + void ComputeCoprimes(int N, MaxSizeVector* coprimes) { + for (int i = 1; i <= N; i++) { + unsigned a = i; + unsigned b = N; + // If GCD(a, b) == 1, then a and b are coprimes. + while (b != 0) { + unsigned tmp = a; + a = b; + b = tmp % b; + } + if (a == 1) { + coprimes->push_back(i); + } + } + } + + typedef typename Environment::EnvThread Thread; + + struct PerThread { + constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) {} + ThreadPoolTempl* pool; // Parent pool, or null for normal threads. + uint64_t rand; // Random generator state. + int thread_id; // Worker thread index in pool. +#ifndef EIGEN_THREAD_LOCAL + // Prevent false sharing. + char pad_[128]; +#endif + }; + + struct ThreadData { + constexpr ThreadData() : thread(), steal_partition(0), queue() {} + std::unique_ptr thread; + std::atomic steal_partition; + Queue queue; + }; + + Environment env_; + const int num_threads_; + const bool allow_spinning_; + MaxSizeVector thread_data_; + MaxSizeVector> all_coprimes_; + MaxSizeVector waiters_; + unsigned global_steal_partition_; + std::atomic blocked_; + std::atomic spinning_; + std::atomic done_; + std::atomic cancelled_; + EventCount ec_; +#ifndef EIGEN_THREAD_LOCAL + std::unique_ptr init_barrier_; + EIGEN_MUTEX per_thread_map_mutex_; // Protects per_thread_map_. + std::unordered_map> per_thread_map_; +#endif + + // Main worker thread loop. + void WorkerLoop(int thread_id) { +#ifndef EIGEN_THREAD_LOCAL + std::unique_ptr new_pt(new PerThread()); + per_thread_map_mutex_.lock(); + bool insertOK = per_thread_map_.emplace(GlobalThreadIdHash(), std::move(new_pt)).second; + eigen_plain_assert(insertOK); + EIGEN_UNUSED_VARIABLE(insertOK); + per_thread_map_mutex_.unlock(); + init_barrier_->Notify(); + init_barrier_->Wait(); +#endif + PerThread* pt = GetPerThread(); + pt->pool = this; + pt->rand = GlobalThreadIdHash(); + pt->thread_id = thread_id; + Queue& q = thread_data_[thread_id].queue; + EventCount::Waiter* waiter = &waiters_[thread_id]; + // TODO(dvyukov,rmlarsen): The time spent in NonEmptyQueueIndex() is + // proportional to num_threads_ and we assume that new work is scheduled at + // a constant rate, so we set spin_count to 5000 / num_threads_. The + // constant was picked based on a fair dice roll, tune it. + const int spin_count = + allow_spinning_ && num_threads_ > 0 ? 5000 / num_threads_ : 0; + if (num_threads_ == 1) { + // For num_threads_ == 1 there is no point in going through the expensive + // steal loop. Moreover, since NonEmptyQueueIndex() calls PopBack() on the + // victim queues it might reverse the order in which ops are executed + // compared to the order in which they are scheduled, which tends to be + // counter-productive for the types of I/O workloads the single thread + // pools tend to be used for. + while (!cancelled_) { + Task t = q.PopFront(); + for (int i = 0; i < spin_count && !t.f; i++) { + if (!cancelled_.load(std::memory_order_relaxed)) { + t = q.PopFront(); + } + } + if (!t.f) { + if (!WaitForWork(waiter, &t)) { + return; + } + } + if (t.f) { + env_.ExecuteTask(t); + } + } + } else { + while (!cancelled_) { + Task t = q.PopFront(); + if (!t.f) { + t = LocalSteal(); + if (!t.f) { + t = GlobalSteal(); + if (!t.f) { + // Leave one thread spinning. This reduces latency. + if (allow_spinning_ && !spinning_ && !spinning_.exchange(true)) { + for (int i = 0; i < spin_count && !t.f; i++) { + if (!cancelled_.load(std::memory_order_relaxed)) { + t = GlobalSteal(); + } else { + return; + } + } + spinning_ = false; + } + if (!t.f) { + if (!WaitForWork(waiter, &t)) { + return; + } + } + } + } + } + if (t.f) { + env_.ExecuteTask(t); + } + } + } + } + + // Steal tries to steal work from other worker threads in the range [start, + // limit) in best-effort manner. + Task Steal(unsigned start, unsigned limit) { + PerThread* pt = GetPerThread(); + const size_t size = limit - start; + unsigned r = Rand(&pt->rand); + // Reduce r into [0, size) range, this utilizes trick from + // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ + eigen_plain_assert(all_coprimes_[size - 1].size() < (1<<30)); + unsigned victim = ((uint64_t)r * (uint64_t)size) >> 32; + unsigned index = ((uint64_t) all_coprimes_[size - 1].size() * (uint64_t)r) >> 32; + unsigned inc = all_coprimes_[size - 1][index]; + + for (unsigned i = 0; i < size; i++) { + eigen_plain_assert(start + victim < limit); + Task t = thread_data_[start + victim].queue.PopBack(); + if (t.f) { + return t; + } + victim += inc; + if (victim >= size) { + victim -= size; + } + } + return Task(); + } + + // Steals work within threads belonging to the partition. + Task LocalSteal() { + PerThread* pt = GetPerThread(); + unsigned partition = GetStealPartition(pt->thread_id); + // If thread steal partition is the same as global partition, there is no + // need to go through the steal loop twice. + if (global_steal_partition_ == partition) return Task(); + unsigned start, limit; + DecodePartition(partition, &start, &limit); + AssertBounds(start, limit); + + return Steal(start, limit); + } + + // Steals work from any other thread in the pool. + Task GlobalSteal() { + return Steal(0, num_threads_); + } + + + // WaitForWork blocks until new work is available (returns true), or if it is + // time to exit (returns false). Can optionally return a task to execute in t + // (in such case t.f != nullptr on return). + bool WaitForWork(EventCount::Waiter* waiter, Task* t) { + eigen_plain_assert(!t->f); + // We already did best-effort emptiness check in Steal, so prepare for + // blocking. + ec_.Prewait(); + // Now do a reliable emptiness check. + int victim = NonEmptyQueueIndex(); + if (victim != -1) { + ec_.CancelWait(); + if (cancelled_) { + return false; + } else { + *t = thread_data_[victim].queue.PopBack(); + return true; + } + } + // Number of blocked threads is used as termination condition. + // If we are shutting down and all worker threads blocked without work, + // that's we are done. + blocked_++; + // TODO is blocked_ required to be unsigned? + if (done_ && blocked_ == static_cast(num_threads_)) { + ec_.CancelWait(); + // Almost done, but need to re-check queues. + // Consider that all queues are empty and all worker threads are preempted + // right after incrementing blocked_ above. Now a free-standing thread + // submits work and calls destructor (which sets done_). If we don't + // re-check queues, we will exit leaving the work unexecuted. + if (NonEmptyQueueIndex() != -1) { + // Note: we must not pop from queues before we decrement blocked_, + // otherwise the following scenario is possible. Consider that instead + // of checking for emptiness we popped the only element from queues. + // Now other worker threads can start exiting, which is bad if the + // work item submits other work. So we just check emptiness here, + // which ensures that all worker threads exit at the same time. + blocked_--; + return true; + } + // Reached stable termination state. + ec_.Notify(true); + return false; + } + ec_.CommitWait(waiter); + blocked_--; + return true; + } + + int NonEmptyQueueIndex() { + PerThread* pt = GetPerThread(); + // We intentionally design NonEmptyQueueIndex to steal work from + // anywhere in the queue so threads don't block in WaitForWork() forever + // when all threads in their partition go to sleep. Steal is still local. + const size_t size = thread_data_.size(); + unsigned r = Rand(&pt->rand); + unsigned inc = all_coprimes_[size - 1][r % all_coprimes_[size - 1].size()]; + unsigned victim = r % size; + for (unsigned i = 0; i < size; i++) { + if (!thread_data_[victim].queue.Empty()) { + return victim; + } + victim += inc; + if (victim >= size) { + victim -= size; + } + } + return -1; + } + + static EIGEN_STRONG_INLINE uint64_t GlobalThreadIdHash() { + return std::hash()(std::this_thread::get_id()); + } + + EIGEN_STRONG_INLINE PerThread* GetPerThread() { +#ifndef EIGEN_THREAD_LOCAL + static PerThread dummy; + auto it = per_thread_map_.find(GlobalThreadIdHash()); + if (it == per_thread_map_.end()) { + return &dummy; + } else { + return it->second.get(); + } +#else + EIGEN_THREAD_LOCAL PerThread per_thread_; + PerThread* pt = &per_thread_; + return pt; +#endif + } + + static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) { + uint64_t current = *state; + // Update the internal state + *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; + // Generate the random output (using the PCG-XSH-RS scheme) + return static_cast((current ^ (current >> 22)) >> + (22 + (current >> 61))); + } +}; + +typedef ThreadPoolTempl ThreadPool; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/RunQueue.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/RunQueue.h new file mode 100644 index 0000000..2005fb2 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/RunQueue.h @@ -0,0 +1,238 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Dmitry Vyukov +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_RUNQUEUE_H +#define EIGEN_CXX11_THREADPOOL_RUNQUEUE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// RunQueue is a fixed-size, partially non-blocking deque or Work items. +// Operations on front of the queue must be done by a single thread (owner), +// operations on back of the queue can be done by multiple threads concurrently. +// +// Algorithm outline: +// All remote threads operating on the queue back are serialized by a mutex. +// This ensures that at most two threads access state: owner and one remote +// thread (Size aside). The algorithm ensures that the occupied region of the +// underlying array is logically continuous (can wraparound, but no stray +// occupied elements). Owner operates on one end of this region, remote thread +// operates on the other end. Synchronization between these threads +// (potential consumption of the last element and take up of the last empty +// element) happens by means of state variable in each element. States are: +// empty, busy (in process of insertion of removal) and ready. Threads claim +// elements (empty->busy and ready->busy transitions) by means of a CAS +// operation. The finishing transition (busy->empty and busy->ready) are done +// with plain store as the element is exclusively owned by the current thread. +// +// Note: we could permit only pointers as elements, then we would not need +// separate state variable as null/non-null pointer value would serve as state, +// but that would require malloc/free per operation for large, complex values +// (and this is designed to store std::function<()>). +template +class RunQueue { + public: + RunQueue() : front_(0), back_(0) { + // require power-of-two for fast masking + eigen_plain_assert((kSize & (kSize - 1)) == 0); + eigen_plain_assert(kSize > 2); // why would you do this? + eigen_plain_assert(kSize <= (64 << 10)); // leave enough space for counter + for (unsigned i = 0; i < kSize; i++) + array_[i].state.store(kEmpty, std::memory_order_relaxed); + } + + ~RunQueue() { eigen_plain_assert(Size() == 0); } + + // PushFront inserts w at the beginning of the queue. + // If queue is full returns w, otherwise returns default-constructed Work. + Work PushFront(Work w) { + unsigned front = front_.load(std::memory_order_relaxed); + Elem* e = &array_[front & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kEmpty || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return w; + front_.store(front + 1 + (kSize << 1), std::memory_order_relaxed); + e->w = std::move(w); + e->state.store(kReady, std::memory_order_release); + return Work(); + } + + // PopFront removes and returns the first element in the queue. + // If the queue was empty returns default-constructed Work. + Work PopFront() { + unsigned front = front_.load(std::memory_order_relaxed); + Elem* e = &array_[(front - 1) & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kReady || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return Work(); + Work w = std::move(e->w); + e->state.store(kEmpty, std::memory_order_release); + front = ((front - 1) & kMask2) | (front & ~kMask2); + front_.store(front, std::memory_order_relaxed); + return w; + } + + // PushBack adds w at the end of the queue. + // If queue is full returns w, otherwise returns default-constructed Work. + Work PushBack(Work w) { + EIGEN_MUTEX_LOCK lock(mutex_); + unsigned back = back_.load(std::memory_order_relaxed); + Elem* e = &array_[(back - 1) & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kEmpty || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return w; + back = ((back - 1) & kMask2) | (back & ~kMask2); + back_.store(back, std::memory_order_relaxed); + e->w = std::move(w); + e->state.store(kReady, std::memory_order_release); + return Work(); + } + + // PopBack removes and returns the last elements in the queue. + Work PopBack() { + if (Empty()) return Work(); + EIGEN_MUTEX_LOCK lock(mutex_); + unsigned back = back_.load(std::memory_order_relaxed); + Elem* e = &array_[back & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kReady || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return Work(); + Work w = std::move(e->w); + e->state.store(kEmpty, std::memory_order_release); + back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed); + return w; + } + + // PopBackHalf removes and returns half last elements in the queue. + // Returns number of elements removed. + unsigned PopBackHalf(std::vector* result) { + if (Empty()) return 0; + EIGEN_MUTEX_LOCK lock(mutex_); + unsigned back = back_.load(std::memory_order_relaxed); + unsigned size = Size(); + unsigned mid = back; + if (size > 1) mid = back + (size - 1) / 2; + unsigned n = 0; + unsigned start = 0; + for (; static_cast(mid - back) >= 0; mid--) { + Elem* e = &array_[mid & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (n == 0) { + if (s != kReady || !e->state.compare_exchange_strong( + s, kBusy, std::memory_order_acquire)) + continue; + start = mid; + } else { + // Note: no need to store temporal kBusy, we exclusively own these + // elements. + eigen_plain_assert(s == kReady); + } + result->push_back(std::move(e->w)); + e->state.store(kEmpty, std::memory_order_release); + n++; + } + if (n != 0) + back_.store(start + 1 + (kSize << 1), std::memory_order_relaxed); + return n; + } + + // Size returns current queue size. + // Can be called by any thread at any time. + unsigned Size() const { return SizeOrNotEmpty(); } + + // Empty tests whether container is empty. + // Can be called by any thread at any time. + bool Empty() const { return SizeOrNotEmpty() == 0; } + + // Delete all the elements from the queue. + void Flush() { + while (!Empty()) { + PopFront(); + } + } + + private: + static const unsigned kMask = kSize - 1; + static const unsigned kMask2 = (kSize << 1) - 1; + struct Elem { + std::atomic state; + Work w; + }; + enum { + kEmpty, + kBusy, + kReady, + }; + EIGEN_MUTEX mutex_; + // Low log(kSize) + 1 bits in front_ and back_ contain rolling index of + // front/back, respectively. The remaining bits contain modification counters + // that are incremented on Push operations. This allows us to (1) distinguish + // between empty and full conditions (if we would use log(kSize) bits for + // position, these conditions would be indistinguishable); (2) obtain + // consistent snapshot of front_/back_ for Size operation using the + // modification counters. + std::atomic front_; + std::atomic back_; + Elem array_[kSize]; + + // SizeOrNotEmpty returns current queue size; if NeedSizeEstimate is false, + // only whether the size is 0 is guaranteed to be correct. + // Can be called by any thread at any time. + template + unsigned SizeOrNotEmpty() const { + // Emptiness plays critical role in thread pool blocking. So we go to great + // effort to not produce false positives (claim non-empty queue as empty). + unsigned front = front_.load(std::memory_order_acquire); + for (;;) { + // Capture a consistent snapshot of front/tail. + unsigned back = back_.load(std::memory_order_acquire); + unsigned front1 = front_.load(std::memory_order_relaxed); + if (front != front1) { + front = front1; + std::atomic_thread_fence(std::memory_order_acquire); + continue; + } + if (NeedSizeEstimate) { + return CalculateSize(front, back); + } else { + // This value will be 0 if the queue is empty, and undefined otherwise. + unsigned maybe_zero = ((front ^ back) & kMask2); + // Queue size estimate must agree with maybe zero check on the queue + // empty/non-empty state. + eigen_assert((CalculateSize(front, back) == 0) == (maybe_zero == 0)); + return maybe_zero; + } + } + } + + EIGEN_ALWAYS_INLINE + unsigned CalculateSize(unsigned front, unsigned back) const { + int size = (front & kMask2) - (back & kMask2); + // Fix overflow. + if (size < 0) size += 2 * kSize; + // Order of modification in push/pop is crafted to make the queue look + // larger than it is during concurrent modifications. E.g. push can + // increment size before the corresponding pop has decremented it. + // So the computed size can be up to kSize + 1, fix it. + if (size > static_cast(kSize)) size = kSize; + return static_cast(size); + } + + RunQueue(const RunQueue&) = delete; + void operator=(const RunQueue&) = delete; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_RUNQUEUE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadCancel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadCancel.h new file mode 100644 index 0000000..a05685f --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadCancel.h @@ -0,0 +1,23 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_CANCEL_H +#define EIGEN_CXX11_THREADPOOL_THREAD_CANCEL_H + +// Try to come up with a portable way to cancel a thread +#if EIGEN_OS_GNULINUX + #define EIGEN_THREAD_CANCEL(t) \ + pthread_cancel(t.native_handle()); + #define EIGEN_SUPPORTS_THREAD_CANCELLATION 1 +#else +#define EIGEN_THREAD_CANCEL(t) +#endif + + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_CANCEL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadEnvironment.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadEnvironment.h new file mode 100644 index 0000000..02ec366 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadEnvironment.h @@ -0,0 +1,42 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H +#define EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +struct StlThreadEnvironment { + struct Task { + std::function f; + }; + + // EnvThread constructor must start the thread, + // destructor must join the thread. + class EnvThread { + public: + EnvThread(std::function f) : thr_(std::move(f)) {} + ~EnvThread() { thr_.join(); } + // This function is called when the threadpool is cancelled. + void OnCancel() { } + + private: + std::thread thr_; + }; + + EnvThread* CreateThread(std::function f) { return new EnvThread(std::move(f)); } + Task CreateTask(std::function f) { return Task{std::move(f)}; } + void ExecuteTask(const Task& t) { t.f(); } +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadLocal.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadLocal.h new file mode 100644 index 0000000..ff3f834 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadLocal.h @@ -0,0 +1,299 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H +#define EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H + +#ifdef EIGEN_AVOID_THREAD_LOCAL + +#ifdef EIGEN_THREAD_LOCAL +#undef EIGEN_THREAD_LOCAL +#endif + +#else + +#if ((EIGEN_COMP_GNUC) || __has_feature(cxx_thread_local) || EIGEN_COMP_MSVC ) +#define EIGEN_THREAD_LOCAL static thread_local +#endif + +// Disable TLS for Apple and Android builds with older toolchains. +#if defined(__APPLE__) +// Included for TARGET_OS_IPHONE, __IPHONE_OS_VERSION_MIN_REQUIRED, +// __IPHONE_8_0. +#include +#include +#endif +// Checks whether C++11's `thread_local` storage duration specifier is +// supported. +#if EIGEN_COMP_CLANGAPPLE && ((EIGEN_COMP_CLANGAPPLE < 8000042) || \ + (TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED < __IPHONE_9_0)) +// Notes: Xcode's clang did not support `thread_local` until version +// 8, and even then not for all iOS < 9.0. +#undef EIGEN_THREAD_LOCAL + +#elif defined(__ANDROID__) && EIGEN_COMP_CLANG +// There are platforms for which TLS should not be used even though the compiler +// makes it seem like it's supported (Android NDK < r12b for example). +// This is primarily because of linker problems and toolchain misconfiguration: +// TLS isn't supported until NDK r12b per +// https://developer.android.com/ndk/downloads/revision_history.html +// Since NDK r16, `__NDK_MAJOR__` and `__NDK_MINOR__` are defined in +// . For NDK < r16, users should define these macros, +// e.g. `-D__NDK_MAJOR__=11 -D__NKD_MINOR__=0` for NDK r11. +#if __has_include() +#include +#endif // __has_include() +#if defined(__ANDROID__) && defined(__clang__) && defined(__NDK_MAJOR__) && \ + defined(__NDK_MINOR__) && \ + ((__NDK_MAJOR__ < 12) || ((__NDK_MAJOR__ == 12) && (__NDK_MINOR__ < 1))) +#undef EIGEN_THREAD_LOCAL +#endif +#endif // defined(__ANDROID__) && defined(__clang__) + +#endif // EIGEN_AVOID_THREAD_LOCAL + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { +template +struct ThreadLocalNoOpInitialize { + void operator()(T&) const {} +}; + +template +struct ThreadLocalNoOpRelease { + void operator()(T&) const {} +}; + +} // namespace internal + +// Thread local container for elements of type T, that does not use thread local +// storage. As long as the number of unique threads accessing this storage +// is smaller than `capacity_`, it is lock-free and wait-free. Otherwise it will +// use a mutex for synchronization. +// +// Type `T` has to be default constructible, and by default each thread will get +// a default constructed value. It is possible to specify custom `initialize` +// callable, that will be called lazily from each thread accessing this object, +// and will be passed a default initialized object of type `T`. Also it's +// possible to pass a custom `release` callable, that will be invoked before +// calling ~T(). +// +// Example: +// +// struct Counter { +// int value = 0; +// } +// +// Eigen::ThreadLocal counter(10); +// +// // Each thread will have access to it's own counter object. +// Counter& cnt = counter.local(); +// cnt++; +// +// WARNING: Eigen::ThreadLocal uses the OS-specific value returned by +// std::this_thread::get_id() to identify threads. This value is not guaranteed +// to be unique except for the life of the thread. A newly created thread may +// get an OS-specific ID equal to that of an already destroyed thread. +// +// Somewhat similar to TBB thread local storage, with similar restrictions: +// https://www.threadingbuildingblocks.org/docs/help/reference/thread_local_storage/enumerable_thread_specific_cls.html +// +template , + typename Release = internal::ThreadLocalNoOpRelease> +class ThreadLocal { + // We preallocate default constructed elements in MaxSizedVector. + static_assert(std::is_default_constructible::value, + "ThreadLocal data type must be default constructible"); + + public: + explicit ThreadLocal(int capacity) + : ThreadLocal(capacity, internal::ThreadLocalNoOpInitialize(), + internal::ThreadLocalNoOpRelease()) {} + + ThreadLocal(int capacity, Initialize initialize) + : ThreadLocal(capacity, std::move(initialize), + internal::ThreadLocalNoOpRelease()) {} + + ThreadLocal(int capacity, Initialize initialize, Release release) + : initialize_(std::move(initialize)), + release_(std::move(release)), + capacity_(capacity), + data_(capacity_), + ptr_(capacity_), + filled_records_(0) { + eigen_assert(capacity_ >= 0); + data_.resize(capacity_); + for (int i = 0; i < capacity_; ++i) { + ptr_.emplace_back(nullptr); + } + } + + T& local() { + std::thread::id this_thread = std::this_thread::get_id(); + if (capacity_ == 0) return SpilledLocal(this_thread); + + std::size_t h = std::hash()(this_thread); + const int start_idx = h % capacity_; + + // NOTE: From the definition of `std::this_thread::get_id()` it is + // guaranteed that we never can have concurrent insertions with the same key + // to our hash-map like data structure. If we didn't find an element during + // the initial traversal, it's guaranteed that no one else could have + // inserted it while we are in this function. This allows to massively + // simplify out lock-free insert-only hash map. + + // Check if we already have an element for `this_thread`. + int idx = start_idx; + while (ptr_[idx].load() != nullptr) { + ThreadIdAndValue& record = *(ptr_[idx].load()); + if (record.thread_id == this_thread) return record.value; + + idx += 1; + if (idx >= capacity_) idx -= capacity_; + if (idx == start_idx) break; + } + + // If we are here, it means that we found an insertion point in lookup + // table at `idx`, or we did a full traversal and table is full. + + // If lock-free storage is full, fallback on mutex. + if (filled_records_.load() >= capacity_) return SpilledLocal(this_thread); + + // We double check that we still have space to insert an element into a lock + // free storage. If old value in `filled_records_` is larger than the + // records capacity, it means that some other thread added an element while + // we were traversing lookup table. + int insertion_index = + filled_records_.fetch_add(1, std::memory_order_relaxed); + if (insertion_index >= capacity_) return SpilledLocal(this_thread); + + // At this point it's guaranteed that we can access to + // data_[insertion_index_] without a data race. + data_[insertion_index].thread_id = this_thread; + initialize_(data_[insertion_index].value); + + // That's the pointer we'll put into the lookup table. + ThreadIdAndValue* inserted = &data_[insertion_index]; + + // We'll use nullptr pointer to ThreadIdAndValue in a compare-and-swap loop. + ThreadIdAndValue* empty = nullptr; + + // Now we have to find an insertion point into the lookup table. We start + // from the `idx` that was identified as an insertion point above, it's + // guaranteed that we will have an empty record somewhere in a lookup table + // (because we created a record in the `data_`). + const int insertion_idx = idx; + + do { + // Always start search from the original insertion candidate. + idx = insertion_idx; + while (ptr_[idx].load() != nullptr) { + idx += 1; + if (idx >= capacity_) idx -= capacity_; + // If we did a full loop, it means that we don't have any free entries + // in the lookup table, and this means that something is terribly wrong. + eigen_assert(idx != insertion_idx); + } + // Atomic CAS of the pointer guarantees that any other thread, that will + // follow this pointer will see all the mutations in the `data_`. + } while (!ptr_[idx].compare_exchange_weak(empty, inserted)); + + return inserted->value; + } + + // WARN: It's not thread safe to call it concurrently with `local()`. + void ForEach(std::function f) { + // Reading directly from `data_` is unsafe, because only CAS to the + // record in `ptr_` makes all changes visible to other threads. + for (auto& ptr : ptr_) { + ThreadIdAndValue* record = ptr.load(); + if (record == nullptr) continue; + f(record->thread_id, record->value); + } + + // We did not spill into the map based storage. + if (filled_records_.load(std::memory_order_relaxed) < capacity_) return; + + // Adds a happens before edge from the last call to SpilledLocal(). + EIGEN_MUTEX_LOCK lock(mu_); + for (auto& kv : per_thread_map_) { + f(kv.first, kv.second); + } + } + + // WARN: It's not thread safe to call it concurrently with `local()`. + ~ThreadLocal() { + // Reading directly from `data_` is unsafe, because only CAS to the record + // in `ptr_` makes all changes visible to other threads. + for (auto& ptr : ptr_) { + ThreadIdAndValue* record = ptr.load(); + if (record == nullptr) continue; + release_(record->value); + } + + // We did not spill into the map based storage. + if (filled_records_.load(std::memory_order_relaxed) < capacity_) return; + + // Adds a happens before edge from the last call to SpilledLocal(). + EIGEN_MUTEX_LOCK lock(mu_); + for (auto& kv : per_thread_map_) { + release_(kv.second); + } + } + + private: + struct ThreadIdAndValue { + std::thread::id thread_id; + T value; + }; + + // Use unordered map guarded by a mutex when lock free storage is full. + T& SpilledLocal(std::thread::id this_thread) { + EIGEN_MUTEX_LOCK lock(mu_); + + auto it = per_thread_map_.find(this_thread); + if (it == per_thread_map_.end()) { + auto result = per_thread_map_.emplace(this_thread, T()); + eigen_assert(result.second); + initialize_((*result.first).second); + return (*result.first).second; + } else { + return it->second; + } + } + + Initialize initialize_; + Release release_; + const int capacity_; + + // Storage that backs lock-free lookup table `ptr_`. Records stored in this + // storage contiguously starting from index 0. + MaxSizeVector data_; + + // Atomic pointers to the data stored in `data_`. Used as a lookup table for + // linear probing hash map (https://en.wikipedia.org/wiki/Linear_probing). + MaxSizeVector> ptr_; + + // Number of records stored in the `data_`. + std::atomic filled_records_; + + // We fallback on per thread map if lock-free storage is full. In practice + // this should never happen, if `capacity_` is a reasonable estimate of the + // number of threads running in a system. + EIGEN_MUTEX mu_; // Protects per_thread_map_. + std::unordered_map per_thread_map_; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadPoolInterface.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadPoolInterface.h new file mode 100644 index 0000000..e6750a9 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadPoolInterface.h @@ -0,0 +1,50 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H +#define EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +// This defines an interface that ThreadPoolDevice can take to use +// custom thread pools underneath. +class ThreadPoolInterface { + public: + // Submits a closure to be run by a thread in the pool. + virtual void Schedule(std::function fn) = 0; + + // Submits a closure to be run by threads in the range [start, end) in the + // pool. + virtual void ScheduleWithHint(std::function fn, int /*start*/, + int /*end*/) { + // Just defer to Schedule in case sub-classes aren't interested in + // overriding this functionality. + Schedule(fn); + } + + // If implemented, stop processing the closures that have been enqueued. + // Currently running closures may still be processed. + // If not implemented, does nothing. + virtual void Cancel() {} + + // Returns the number of threads in the pool. + virtual int NumThreads() const = 0; + + // Returns a logical thread index between 0 and NumThreads() - 1 if called + // from one of the threads in the pool. Returns -1 otherwise. + virtual int CurrentThreadId() const = 0; + + virtual ~ThreadPoolInterface() {} +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadYield.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadYield.h new file mode 100644 index 0000000..f556ff6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/ThreadPool/ThreadYield.h @@ -0,0 +1,16 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H +#define EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H + +// Try to come up with a portable way to yield +#define EIGEN_THREAD_YIELD() std::this_thread::yield() + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/UmfPackSupport/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/UmfPackSupport/InternalHeaderCheck.h new file mode 100644 index 0000000..64112f1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/UmfPackSupport/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H +#error "Please include Eigen/UmfPackSupport instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h new file mode 100644 index 0000000..d9a8d38 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h @@ -0,0 +1,644 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_UMFPACKSUPPORT_H +#define EIGEN_UMFPACKSUPPORT_H + +// for compatibility with super old version of umfpack, +// not sure this is really needed, but this is harmless. +#ifndef SuiteSparse_long +#ifdef UF_long +#define SuiteSparse_long UF_long +#else +#error neither SuiteSparse_long nor UF_long are defined +#endif +#endif + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +/* TODO extract L, extract U, compute det, etc... */ + +// generic double/complex wrapper functions: + + + // Defaults +inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, int) +{ umfpack_di_defaults(control); } + +inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex, int) +{ umfpack_zi_defaults(control); } + +inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, SuiteSparse_long) +{ umfpack_dl_defaults(control); } + +inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex, SuiteSparse_long) +{ umfpack_zl_defaults(control); } + +// Report info +inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int) +{ umfpack_di_report_info(control, info);} + +inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex, int) +{ umfpack_zi_report_info(control, info);} + +inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long) +{ umfpack_dl_report_info(control, info);} + +inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex, SuiteSparse_long) +{ umfpack_zl_report_info(control, info);} + +// Report status +inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, int) +{ umfpack_di_report_status(control, status);} + +inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex, int) +{ umfpack_zi_report_status(control, status);} + +inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long) +{ umfpack_dl_report_status(control, status);} + +inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex, SuiteSparse_long) +{ umfpack_zl_report_status(control, status);} + +// report control +inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, int) +{ umfpack_di_report_control(control);} + +inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex, int) +{ umfpack_zi_report_control(control);} + +inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, SuiteSparse_long) +{ umfpack_dl_report_control(control);} + +inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex, SuiteSparse_long) +{ umfpack_zl_report_control(control);} + +// Free numeric +inline void umfpack_free_numeric(void **Numeric, double, int) +{ umfpack_di_free_numeric(Numeric); *Numeric = 0; } + +inline void umfpack_free_numeric(void **Numeric, std::complex, int) +{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; } + +inline void umfpack_free_numeric(void **Numeric, double, SuiteSparse_long) +{ umfpack_dl_free_numeric(Numeric); *Numeric = 0; } + +inline void umfpack_free_numeric(void **Numeric, std::complex, SuiteSparse_long) +{ umfpack_zl_free_numeric(Numeric); *Numeric = 0; } + +// Free symbolic +inline void umfpack_free_symbolic(void **Symbolic, double, int) +{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } + +inline void umfpack_free_symbolic(void **Symbolic, std::complex, int) +{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } + +inline void umfpack_free_symbolic(void **Symbolic, double, SuiteSparse_long) +{ umfpack_dl_free_symbolic(Symbolic); *Symbolic = 0; } + +inline void umfpack_free_symbolic(void **Symbolic, std::complex, SuiteSparse_long) +{ umfpack_zl_free_symbolic(Symbolic); *Symbolic = 0; } + +// Symbolic +inline int umfpack_symbolic(int n_row,int n_col, + const int Ap[], const int Ai[], const double Ax[], void **Symbolic, + const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) +{ + return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); +} + +inline int umfpack_symbolic(int n_row,int n_col, + const int Ap[], const int Ai[], const std::complex Ax[], void **Symbolic, + const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) +{ + return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); +} +inline SuiteSparse_long umfpack_symbolic( SuiteSparse_long n_row,SuiteSparse_long n_col, + const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, + const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) +{ + return umfpack_dl_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); +} + +inline SuiteSparse_long umfpack_symbolic( SuiteSparse_long n_row,SuiteSparse_long n_col, + const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex Ax[], void **Symbolic, + const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) +{ + return umfpack_zl_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); +} + +// Numeric +inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], + void *Symbolic, void **Numeric, + const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) +{ + return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); +} + +inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex Ax[], + void *Symbolic, void **Numeric, + const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) +{ + return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); +} +inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], + void *Symbolic, void **Numeric, + const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) +{ + return umfpack_dl_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); +} + +inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex Ax[], + void *Symbolic, void **Numeric, + const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) +{ + return umfpack_zl_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); +} + +// solve +inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], + double X[], const double B[], void *Numeric, + const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) +{ + return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); +} + +inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex Ax[], + std::complex X[], const std::complex B[], void *Numeric, + const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) +{ + return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); +} + +inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], + double X[], const double B[], void *Numeric, + const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) +{ + return umfpack_dl_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); +} + +inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex Ax[], + std::complex X[], const std::complex B[], void *Numeric, + const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) +{ + return umfpack_zl_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); +} + +// Get Lunz +inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) +{ + return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); +} + +inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex) +{ + return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); +} + +inline SuiteSparse_long umfpack_get_lunz( SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, + SuiteSparse_long *nz_udiag, void *Numeric, double) +{ + return umfpack_dl_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); +} + +inline SuiteSparse_long umfpack_get_lunz( SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, + SuiteSparse_long *nz_udiag, void *Numeric, std::complex) +{ + return umfpack_zl_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); +} + +// Get Numeric +inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], + int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) +{ + return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); +} + +inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex Lx[], int Up[], int Ui[], std::complex Ux[], + int P[], int Q[], std::complex Dx[], int *do_recip, double Rs[], void *Numeric) +{ + double& lx0_real = numext::real_ref(Lx[0]); + double& ux0_real = numext::real_ref(Ux[0]); + double& dx0_real = numext::real_ref(Dx[0]); + return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, + Dx?&dx0_real:0,0,do_recip,Rs,Numeric); +} +inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], + SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric) +{ + return umfpack_dl_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); +} + +inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex Ux[], + SuiteSparse_long P[], SuiteSparse_long Q[], std::complex Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric) +{ + double& lx0_real = numext::real_ref(Lx[0]); + double& ux0_real = numext::real_ref(Ux[0]); + double& dx0_real = numext::real_ref(Dx[0]); + return umfpack_zl_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, + Dx?&dx0_real:0,0,do_recip,Rs,Numeric); +} + +// Get Determinant +inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], int) +{ + return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); +} + +inline int umfpack_get_determinant(std::complex *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], int) +{ + double& mx_real = numext::real_ref(*Mx); + return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); +} + +inline SuiteSparse_long umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], SuiteSparse_long) +{ + return umfpack_dl_get_determinant(Mx,Ex,NumericHandle,User_Info); +} + +inline SuiteSparse_long umfpack_get_determinant(std::complex *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], SuiteSparse_long) +{ + double& mx_real = numext::real_ref(*Mx); + return umfpack_zl_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); +} + + +/** \ingroup UmfPackSupport_Module + * \brief A sparse LU factorization and solver based on UmfPack + * + * This class allows to solve for A.X = B sparse linear problems via a LU factorization + * using the UmfPack library. The sparse matrix A must be squared and full rank. + * The vectors or matrices X and B can be either dense or sparse. + * + * \warning The input matrix A should be in a \b compressed and \b column-major form. + * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. + * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SparseLU + */ +template +class UmfPackLU : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase > Base; + using Base::m_isInitialized; + public: + using Base::_solve_impl; + typedef MatrixType_ MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix Vector; + typedef Matrix IntRowVectorType; + typedef Matrix IntColVectorType; + typedef SparseMatrix LUMatrixType; + typedef SparseMatrix UmfpackMatrixType; + typedef Ref UmfpackMatrixRef; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + typedef Array UmfpackControl; + typedef Array UmfpackInfo; + + UmfPackLU() + : m_dummy(0,0), mp_matrix(m_dummy) + { + init(); + } + + template + explicit UmfPackLU(const InputMatrixType& matrix) + : mp_matrix(matrix) + { + init(); + compute(matrix); + } + + ~UmfPackLU() + { + if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(), StorageIndex()); + if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar(), StorageIndex()); + } + + inline Index rows() const { return mp_matrix.rows(); } + inline Index cols() const { return mp_matrix.cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + inline const LUMatrixType& matrixL() const + { + if (m_extractedDataAreDirty) extractData(); + return m_l; + } + + inline const LUMatrixType& matrixU() const + { + if (m_extractedDataAreDirty) extractData(); + return m_u; + } + + inline const IntColVectorType& permutationP() const + { + if (m_extractedDataAreDirty) extractData(); + return m_p; + } + + inline const IntRowVectorType& permutationQ() const + { + if (m_extractedDataAreDirty) extractData(); + return m_q; + } + + /** Computes the sparse Cholesky decomposition of \a matrix + * Note that the matrix should be column-major, and in compressed format for best performance. + * \sa SparseMatrix::makeCompressed(). + */ + template + void compute(const InputMatrixType& matrix) + { + if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(),StorageIndex()); + if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex()); + grab(matrix.derived()); + analyzePattern_impl(); + factorize_impl(); + } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize(), compute() + */ + template + void analyzePattern(const InputMatrixType& matrix) + { + if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(),StorageIndex()); + if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex()); + + grab(matrix.derived()); + + analyzePattern_impl(); + } + + /** Provides the return status code returned by UmfPack during the numeric + * factorization. + * + * \sa factorize(), compute() + */ + inline int umfpackFactorizeReturncode() const + { + eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()"); + return m_fact_errorCode; + } + + /** Provides access to the control settings array used by UmfPack. + * + * If this array contains NaN's, the default values are used. + * + * See UMFPACK documentation for details. + */ + inline const UmfpackControl& umfpackControl() const + { + return m_control; + } + + /** Provides access to the control settings array used by UmfPack. + * + * If this array contains NaN's, the default values are used. + * + * See UMFPACK documentation for details. + */ + inline UmfpackControl& umfpackControl() + { + return m_control; + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. + * + * \sa analyzePattern(), compute() + */ + template + void factorize(const InputMatrixType& matrix) + { + eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); + if(m_numeric) + umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex()); + + grab(matrix.derived()); + + factorize_impl(); + } + + /** Prints the current UmfPack control settings. + * + * \sa umfpackControl() + */ + void printUmfpackControl() + { + umfpack_report_control(m_control.data(), Scalar(),StorageIndex()); + } + + /** Prints statistics collected by UmfPack. + * + * \sa analyzePattern(), compute() + */ + void printUmfpackInfo() + { + eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); + umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar(),StorageIndex()); + } + + /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization). + * + * \sa analyzePattern(), compute() + */ + void printUmfpackStatus() { + eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); + umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar(),StorageIndex()); + } + + /** \internal */ + template + bool _solve_impl(const MatrixBase &b, MatrixBase &x) const; + + Scalar determinant() const; + + void extractData() const; + + protected: + + void init() + { + m_info = InvalidInput; + m_isInitialized = false; + m_numeric = 0; + m_symbolic = 0; + m_extractedDataAreDirty = true; + + umfpack_defaults(m_control.data(), Scalar(),StorageIndex()); + } + + void analyzePattern_impl() + { + m_fact_errorCode = umfpack_symbolic(internal::convert_index(mp_matrix.rows()), + internal::convert_index(mp_matrix.cols()), + mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), + &m_symbolic, m_control.data(), m_umfpackInfo.data()); + + m_isInitialized = true; + m_info = m_fact_errorCode ? InvalidInput : Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; + m_extractedDataAreDirty = true; + } + + void factorize_impl() + { + + m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), + m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data()); + + m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue; + m_factorizationIsOk = true; + m_extractedDataAreDirty = true; + } + + template + void grab(const EigenBase &A) + { + internal::destroy_at(&mp_matrix); + internal::construct_at(&mp_matrix, A.derived()); + } + + void grab(const UmfpackMatrixRef &A) + { + if(&(A.derived()) != &mp_matrix) + { + internal::destroy_at(&mp_matrix); + internal::construct_at(&mp_matrix, A); + } + } + + // cached data to reduce reallocation, etc. + mutable LUMatrixType m_l; + StorageIndex m_fact_errorCode; + UmfpackControl m_control; + mutable UmfpackInfo m_umfpackInfo; + + mutable LUMatrixType m_u; + mutable IntColVectorType m_p; + mutable IntRowVectorType m_q; + + UmfpackMatrixType m_dummy; + UmfpackMatrixRef mp_matrix; + + void* m_numeric; + void* m_symbolic; + + mutable ComputationInfo m_info; + int m_factorizationIsOk; + int m_analysisIsOk; + mutable bool m_extractedDataAreDirty; + + private: + UmfPackLU(const UmfPackLU& ) { } +}; + + +template +void UmfPackLU::extractData() const +{ + if (m_extractedDataAreDirty) + { + // get size of the data + StorageIndex lnz, unz, rows, cols, nz_udiag; + umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); + + // allocate data + m_l.resize(rows,(std::min)(rows,cols)); + m_l.resizeNonZeros(lnz); + + m_u.resize((std::min)(rows,cols),cols); + m_u.resizeNonZeros(unz); + + m_p.resize(rows); + m_q.resize(cols); + + // extract + umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), + m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), + m_p.data(), m_q.data(), 0, 0, 0, m_numeric); + + m_extractedDataAreDirty = false; + } +} + +template +typename UmfPackLU::Scalar UmfPackLU::determinant() const +{ + Scalar det; + umfpack_get_determinant(&det, 0, m_numeric, 0, StorageIndex()); + return det; +} + +template +template +bool UmfPackLU::_solve_impl(const MatrixBase &b, MatrixBase &x) const +{ + Index rhsCols = b.cols(); + eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); + eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); + eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); + + Scalar* x_ptr = 0; + Matrix x_tmp; + if(x.innerStride()!=1) + { + x_tmp.resize(x.rows()); + x_ptr = x_tmp.data(); + } + for (int j=0; j +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MISC_IMAGE_H +#define EIGEN_MISC_IMAGE_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \class image_retval_base + * + */ +template +struct traits > +{ + typedef typename DecompositionType::MatrixType MatrixType; + typedef Matrix< + typename MatrixType::Scalar, + MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose + // dimension is the number of rows of the original matrix + Dynamic, // we don't know at compile time the dimension of the image (the rank) + MatrixType::Options, + MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix, + MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns. + > ReturnType; +}; + +template struct image_retval_base + : public ReturnByValue > +{ + typedef DecompositionType_ DecompositionType; + typedef typename DecompositionType::MatrixType MatrixType; + typedef ReturnByValue Base; + + image_retval_base(const DecompositionType& dec, const MatrixType& originalMatrix) + : m_dec(dec), m_rank(dec.rank()), + m_cols(m_rank == 0 ? 1 : m_rank), + m_originalMatrix(originalMatrix) + {} + + inline Index rows() const { return m_dec.rows(); } + inline Index cols() const { return m_cols; } + inline Index rank() const { return m_rank; } + inline const DecompositionType& dec() const { return m_dec; } + inline const MatrixType& originalMatrix() const { return m_originalMatrix; } + + template inline void evalTo(Dest& dst) const + { + static_cast*>(this)->evalTo(dst); + } + + protected: + const DecompositionType& m_dec; + Index m_rank, m_cols; + const MatrixType& m_originalMatrix; +}; + +} // end namespace internal + +#define EIGEN_MAKE_IMAGE_HELPERS(DecompositionType) \ + typedef typename DecompositionType::MatrixType MatrixType; \ + typedef typename MatrixType::Scalar Scalar; \ + typedef typename MatrixType::RealScalar RealScalar; \ + typedef Eigen::internal::image_retval_base Base; \ + using Base::dec; \ + using Base::originalMatrix; \ + using Base::rank; \ + using Base::rows; \ + using Base::cols; \ + image_retval(const DecompositionType& dec, const MatrixType& originalMatrix) \ + : Base(dec, originalMatrix) {} + +} // end namespace Eigen + +#endif // EIGEN_MISC_IMAGE_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/InternalHeaderCheck.h new file mode 100644 index 0000000..1cea572 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_CORE_MODULE_H +#error "Please include Eigen/Core instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/Kernel.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/Kernel.h new file mode 100644 index 0000000..7abfbb7 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/Kernel.h @@ -0,0 +1,81 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MISC_KERNEL_H +#define EIGEN_MISC_KERNEL_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +/** \class kernel_retval_base + * + */ +template +struct traits > +{ + typedef typename DecompositionType::MatrixType MatrixType; + typedef Matrix< + typename MatrixType::Scalar, + MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" + // is the number of cols of the original matrix + // so that the product "matrix * kernel = zero" makes sense + Dynamic, // we don't know at compile-time the dimension of the kernel + MatrixType::Options, + MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter + MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, + // whose dimension is the number of columns of the original matrix + > ReturnType; +}; + +template struct kernel_retval_base + : public ReturnByValue > +{ + typedef DecompositionType_ DecompositionType; + typedef ReturnByValue Base; + + explicit kernel_retval_base(const DecompositionType& dec) + : m_dec(dec), + m_rank(dec.rank()), + m_cols(m_rank==dec.cols() ? 1 : dec.cols() - m_rank) + {} + + inline Index rows() const { return m_dec.cols(); } + inline Index cols() const { return m_cols; } + inline Index rank() const { return m_rank; } + inline const DecompositionType& dec() const { return m_dec; } + + template inline void evalTo(Dest& dst) const + { + static_cast*>(this)->evalTo(dst); + } + + protected: + const DecompositionType& m_dec; + Index m_rank, m_cols; +}; + +} // end namespace internal + +#define EIGEN_MAKE_KERNEL_HELPERS(DecompositionType) \ + typedef typename DecompositionType::MatrixType MatrixType; \ + typedef typename MatrixType::Scalar Scalar; \ + typedef typename MatrixType::RealScalar RealScalar; \ + typedef Eigen::internal::kernel_retval_base Base; \ + using Base::dec; \ + using Base::rank; \ + using Base::rows; \ + using Base::cols; \ + kernel_retval(const DecompositionType& dec) : Base(dec) {} + +} // end namespace Eigen + +#endif // EIGEN_MISC_KERNEL_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/RealSvd2x2.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/RealSvd2x2.h new file mode 100644 index 0000000..5dd75f3 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/RealSvd2x2.h @@ -0,0 +1,57 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Benoit Jacob +// Copyright (C) 2013-2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REALSVD2X2_H +#define EIGEN_REALSVD2X2_H + +#include "./InternalHeaderCheck.h" + +namespace Eigen { + +namespace internal { + +template +void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, + JacobiRotation *j_left, + JacobiRotation *j_right) +{ + using std::sqrt; + using std::abs; + Matrix m; + m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), + numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); + JacobiRotation rot1; + RealScalar t = m.coeff(0,0) + m.coeff(1,1); + RealScalar d = m.coeff(1,0) - m.coeff(0,1); + + if(abs(d) < (std::numeric_limits::min)()) + { + rot1.s() = RealScalar(0); + rot1.c() = RealScalar(1); + } + else + { + // If d!=0, then t/d cannot overflow because the magnitude of the + // entries forming d are not too small compared to the ones forming t. + RealScalar u = t / d; + RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u)); + rot1.s() = RealScalar(1) / tmp; + rot1.c() = u / tmp; + } + m.applyOnTheLeft(0,1,rot1); + j_right->makeJacobi(m,0,1); + *j_left = rot1 * j_right->transpose(); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_REALSVD2X2_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/blas.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/blas.h new file mode 100644 index 0000000..0170eef --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/blas.h @@ -0,0 +1,66 @@ +#ifndef EIGEN_MISC_BLAS_H +#define EIGEN_MISC_BLAS_H + +extern "C" { + +#define BLASFUNC(FUNC) FUNC##_ + +/* Level 1 routines */ + +int BLASFUNC(saxpy)(const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(daxpy)(const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(caxpy)(const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(zaxpy)(const int *, const double *, const double *, const int *, double *, const int *); + +/* Level 2 routines */ + +int BLASFUNC(sgemv)(const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(cgemv)(const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(strmv)(const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrmv)(const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrmv)(const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrmv)(const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); + +int BLASFUNC(ssymv)(const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsymv)(const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(chemv)(const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zhemv)(const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +/* Level 3 routines */ + +int BLASFUNC(sgemm)(const char *, const char *, const int *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(cgemm)(const char *, const char *, const int *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(strsm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); + +int BLASFUNC(strmm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); + +int BLASFUNC(ssymm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(ssyrk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(chemm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zhemm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(cherk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zherk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); + +#undef BLASFUNC + +} + +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke.h new file mode 100644 index 0000000..c20204c --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke.h @@ -0,0 +1,16294 @@ +/***************************************************************************** + Copyright (c) 2010, Intel Corp. + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + THE POSSIBILITY OF SUCH DAMAGE. +****************************************************************************** +* Contents: Native C interface to LAPACK +* Author: Intel Corporation +* Generated November, 2011 +*****************************************************************************/ + +#ifndef _MKL_LAPACKE_H_ + +#ifndef _LAPACKE_H_ +#define _LAPACKE_H_ + +/* +* Turn on HAVE_LAPACK_CONFIG_H to redefine C-LAPACK datatypes +*/ +#ifdef HAVE_LAPACK_CONFIG_H +#include "lapacke_config.h" +#endif + +#include + +#ifndef lapack_int + #ifdef LAPACK_ILP64 + #define lapack_int int64_t + #else + #define lapack_int int + #endif +#endif + +#ifndef lapack_logical +#define lapack_logical lapack_int +#endif + +/* Complex types are structures equivalent to the +* Fortran complex types COMPLEX(4) and COMPLEX(8). +* +* One can also redefine the types with his own types +* for example by including in the code definitions like +* +* #define lapack_complex_float std::complex +* #define lapack_complex_double std::complex +* +* or define these types in the command line: +* +* -Dlapack_complex_float="std::complex" +* -Dlapack_complex_double="std::complex" +*/ + +#ifndef LAPACK_COMPLEX_CUSTOM + +/* Complex type (single precision) */ +#ifndef lapack_complex_float +#define lapack_complex_float std::complex +#endif + +#ifndef lapack_complex_float_real +#define lapack_complex_float_real(z) (creal(z)) +#endif + +#ifndef lapack_complex_float_imag +#define lapack_complex_float_imag(z) (cimag(z)) +#endif + +lapack_complex_float lapack_make_complex_float( float re, float im ); + +/* Complex type (double precision) */ +#ifndef lapack_complex_double +#define lapack_complex_double std::complex +#endif + +#ifndef lapack_complex_double_real +#define lapack_complex_double_real(z) (creal(z)) +#endif + +#ifndef lapack_complex_double_imag +#define lapack_complex_double_imag(z) (cimag(z)) +#endif + +lapack_complex_double lapack_make_complex_double( double re, double im ); + +#endif + + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +#ifndef LAPACKE_malloc +#define LAPACKE_malloc( size ) malloc( size ) +#endif +#ifndef LAPACKE_free +#define LAPACKE_free( p ) free( p ) +#endif + +#define LAPACK_C2INT( x ) (lapack_int)(*((float*)&x )) +#define LAPACK_Z2INT( x ) (lapack_int)(*((double*)&x )) + +#define LAPACK_ROW_MAJOR 101 +#define LAPACK_COL_MAJOR 102 + +#define LAPACK_WORK_MEMORY_ERROR -1010 +#define LAPACK_TRANSPOSE_MEMORY_ERROR -1011 + +/* Callback logical functions of one, two, or three arguments are used +* to select eigenvalues to sort to the top left of the Schur form. +* The value is selected if function returns TRUE (non-zero). */ + +typedef lapack_logical (*LAPACK_S_SELECT2) ( const float*, const float* ); +typedef lapack_logical (*LAPACK_S_SELECT3) + ( const float*, const float*, const float* ); +typedef lapack_logical (*LAPACK_D_SELECT2) ( const double*, const double* ); +typedef lapack_logical (*LAPACK_D_SELECT3) + ( const double*, const double*, const double* ); + +typedef lapack_logical (*LAPACK_C_SELECT1) ( const lapack_complex_float* ); +typedef lapack_logical (*LAPACK_C_SELECT2) + ( const lapack_complex_float*, const lapack_complex_float* ); +typedef lapack_logical (*LAPACK_Z_SELECT1) ( const lapack_complex_double* ); +typedef lapack_logical (*LAPACK_Z_SELECT2) + ( const lapack_complex_double*, const lapack_complex_double* ); + +#include "lapacke_mangling.h" + +#define LAPACK_lsame LAPACK_GLOBAL(lsame,LSAME) +lapack_logical LAPACK_lsame( char* ca, char* cb, + lapack_int lca, lapack_int lcb ); + +/* C-LAPACK function prototypes */ + +lapack_int LAPACKE_sbdsdc( int matrix_order, char uplo, char compq, + lapack_int n, float* d, float* e, float* u, + lapack_int ldu, float* vt, lapack_int ldvt, float* q, + lapack_int* iq ); +lapack_int LAPACKE_dbdsdc( int matrix_order, char uplo, char compq, + lapack_int n, double* d, double* e, double* u, + lapack_int ldu, double* vt, lapack_int ldvt, + double* q, lapack_int* iq ); + +lapack_int LAPACKE_sbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, float* vt, lapack_int ldvt, + float* u, lapack_int ldu, float* c, lapack_int ldc ); +lapack_int LAPACKE_dbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, double* vt, lapack_int ldvt, + double* u, lapack_int ldu, double* c, + lapack_int ldc ); +lapack_int LAPACKE_cbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, lapack_complex_float* vt, + lapack_int ldvt, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* c, + lapack_int ldc ); +lapack_int LAPACKE_zbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, lapack_complex_double* vt, + lapack_int ldvt, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* c, + lapack_int ldc ); + +lapack_int LAPACKE_sdisna( char job, lapack_int m, lapack_int n, const float* d, + float* sep ); +lapack_int LAPACKE_ddisna( char job, lapack_int m, lapack_int n, + const double* d, double* sep ); + +lapack_int LAPACKE_sgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, float* ab, lapack_int ldab, float* d, + float* e, float* q, lapack_int ldq, float* pt, + lapack_int ldpt, float* c, lapack_int ldc ); +lapack_int LAPACKE_dgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, double* ab, lapack_int ldab, + double* d, double* e, double* q, lapack_int ldq, + double* pt, lapack_int ldpt, double* c, + lapack_int ldc ); +lapack_int LAPACKE_cgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_float* ab, + lapack_int ldab, float* d, float* e, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* pt, lapack_int ldpt, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_double* ab, + lapack_int ldab, double* d, double* e, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* pt, lapack_int ldpt, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_sgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, const lapack_int* ipiv, float anorm, + float* rcond ); +lapack_int LAPACKE_dgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, const lapack_int* ipiv, + double anorm, double* rcond ); +lapack_int LAPACKE_cgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_sgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, lapack_int ldab, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax ); + +lapack_int LAPACKE_sgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, lapack_int ldab, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, const float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, const double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, lapack_int ldafb, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* afb, lapack_int ldafb, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const float* ab, lapack_int ldab, + const float* afb, lapack_int ldafb, + const lapack_int* ipiv, const float* r, + const float* c, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const double* ab, lapack_int ldab, + const double* afb, lapack_int ldafb, + const lapack_int* ipiv, const double* r, + const double* c, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const lapack_complex_float* ab, + lapack_int ldab, const lapack_complex_float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* r, const float* c, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const lapack_complex_double* ab, + lapack_int ldab, const lapack_complex_double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* r, const double* c, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_sgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, float* ab, + lapack_int ldab, lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, double* ab, + lapack_int ldab, lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* rpivot ); +lapack_int LAPACKE_dgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* rpivot ); +lapack_int LAPACKE_cgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + float* r, float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, float* rpivot ); +lapack_int LAPACKE_zgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + double* r, double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* rpivot ); + +lapack_int LAPACKE_sgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); +lapack_int LAPACKE_cgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + float* r, float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + double* r, double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_sgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, float* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_dgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, double* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_cgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv ); +lapack_int LAPACKE_zgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* scale, + lapack_int m, float* v, lapack_int ldv ); +lapack_int LAPACKE_dgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* scale, + lapack_int m, double* v, lapack_int ldv ); +lapack_int LAPACKE_cgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* scale, + lapack_int m, lapack_complex_float* v, + lapack_int ldv ); +lapack_int LAPACKE_zgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* scale, + lapack_int m, lapack_complex_double* v, + lapack_int ldv ); + +lapack_int LAPACKE_sgebal( int matrix_order, char job, lapack_int n, float* a, + lapack_int lda, lapack_int* ilo, lapack_int* ihi, + float* scale ); +lapack_int LAPACKE_dgebal( int matrix_order, char job, lapack_int n, double* a, + lapack_int lda, lapack_int* ilo, lapack_int* ihi, + double* scale ); +lapack_int LAPACKE_cgebal( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, float* scale ); +lapack_int LAPACKE_zgebal( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, double* scale ); + +lapack_int LAPACKE_sgebrd( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* d, float* e, + float* tauq, float* taup ); +lapack_int LAPACKE_dgebrd( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* d, double* e, + double* tauq, double* taup ); +lapack_int LAPACKE_cgebrd( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* d, + float* e, lapack_complex_float* tauq, + lapack_complex_float* taup ); +lapack_int LAPACKE_zgebrd( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, double* d, + double* e, lapack_complex_double* tauq, + lapack_complex_double* taup ); + +lapack_int LAPACKE_sgecon( int matrix_order, char norm, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond ); +lapack_int LAPACKE_dgecon( int matrix_order, char norm, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond ); +lapack_int LAPACKE_cgecon( int matrix_order, char norm, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond ); +lapack_int LAPACKE_zgecon( int matrix_order, char norm, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond ); + +lapack_int LAPACKE_sgeequ( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgeequ( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequ( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgeequ( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax ); + +lapack_int LAPACKE_sgeequb( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgeequb( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequb( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgeequb( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgees( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, lapack_int n, float* a, + lapack_int lda, lapack_int* sdim, float* wr, + float* wi, float* vs, lapack_int ldvs ); +lapack_int LAPACKE_dgees( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, lapack_int n, double* a, + lapack_int lda, lapack_int* sdim, double* wr, + double* wi, double* vs, lapack_int ldvs ); +lapack_int LAPACKE_cgees( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs ); +lapack_int LAPACKE_zgees( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs ); + +lapack_int LAPACKE_sgeesx( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, char sense, lapack_int n, + float* a, lapack_int lda, lapack_int* sdim, + float* wr, float* wi, float* vs, lapack_int ldvs, + float* rconde, float* rcondv ); +lapack_int LAPACKE_dgeesx( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, char sense, lapack_int n, + double* a, lapack_int lda, lapack_int* sdim, + double* wr, double* wi, double* vs, lapack_int ldvs, + double* rconde, double* rcondv ); +lapack_int LAPACKE_cgeesx( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs, + float* rconde, float* rcondv ); +lapack_int LAPACKE_zgeesx( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs, + double* rconde, double* rcondv ); + +lapack_int LAPACKE_sgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, float* wr, + float* wi, float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_dgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, double* wr, + double* wi, double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr ); +lapack_int LAPACKE_cgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, lapack_int lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_zgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr ); + +lapack_int LAPACKE_sgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* wr, float* wi, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* scale, + float* abnrm, float* rconde, float* rcondv ); +lapack_int LAPACKE_dgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* wr, double* wi, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, double* scale, + double* abnrm, double* rconde, double* rcondv ); +lapack_int LAPACKE_cgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + float* scale, float* abnrm, float* rconde, + float* rcondv ); +lapack_int LAPACKE_zgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int ldvl, lapack_complex_double* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + double* scale, double* abnrm, double* rconde, + double* rcondv ); + +lapack_int LAPACKE_sgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + float* tau ); +lapack_int LAPACKE_dgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + double* tau ); +lapack_int LAPACKE_cgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* tau ); +lapack_int LAPACKE_zgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* tau ); + +lapack_int LAPACKE_sgejsv( int matrix_order, char joba, char jobu, char jobv, + char jobr, char jobt, char jobp, lapack_int m, + lapack_int n, float* a, lapack_int lda, float* sva, + float* u, lapack_int ldu, float* v, lapack_int ldv, + float* stat, lapack_int* istat ); +lapack_int LAPACKE_dgejsv( int matrix_order, char joba, char jobu, char jobv, + char jobr, char jobt, char jobp, lapack_int m, + lapack_int n, double* a, lapack_int lda, double* sva, + double* u, lapack_int ldu, double* v, lapack_int ldv, + double* stat, lapack_int* istat ); + +lapack_int LAPACKE_sgelq2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgelq2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgelq2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgelq2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgelqf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgelqf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgelqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgelqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_dgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, double rcond, + lapack_int* rank ); +lapack_int LAPACKE_cgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_zgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank ); + +lapack_int LAPACKE_sgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_dgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, double rcond, + lapack_int* rank ); +lapack_int LAPACKE_cgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_zgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank ); + +lapack_int LAPACKE_sgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* jpvt, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_dgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, lapack_int* jpvt, + double rcond, lapack_int* rank ); +lapack_int LAPACKE_cgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* jpvt, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_zgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* jpvt, double rcond, + lapack_int* rank ); + +lapack_int LAPACKE_sgeqlf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqlf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqlf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqlf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqp3( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau ); +lapack_int LAPACKE_dgeqp3( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau ); +lapack_int LAPACKE_cgeqp3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqp3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqpf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau ); +lapack_int LAPACKE_dgeqpf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau ); +lapack_int LAPACKE_cgeqpf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqpf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqr2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqr2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqr2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqr2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqrf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqrf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqrfp( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqrfp( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqrfp( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqrfp( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_cgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* r, + const float* c, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* r, + const double* c, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* r, + const float* c, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* r, + const double* c, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_sgerqf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgerqf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgerqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgerqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, float* a, lapack_int lda, float* s, + float* u, lapack_int ldu, float* vt, + lapack_int ldvt ); +lapack_int LAPACKE_dgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, double* a, lapack_int lda, double* s, + double* u, lapack_int ldu, double* vt, + lapack_int ldvt ); +lapack_int LAPACKE_cgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* s, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* vt, + lapack_int ldvt ); +lapack_int LAPACKE_zgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* s, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* vt, + lapack_int ldvt ); + +lapack_int LAPACKE_sgesv( int matrix_order, lapack_int n, lapack_int nrhs, + float* a, lapack_int lda, lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgesv( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgesv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgesv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsgesv( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb, double* x, lapack_int ldx, + lapack_int* iter ); +lapack_int LAPACKE_zcgesv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_int* iter ); + +lapack_int LAPACKE_sgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, float* a, lapack_int lda, + float* s, float* u, lapack_int ldu, float* vt, + lapack_int ldvt, float* superb ); +lapack_int LAPACKE_dgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* s, double* u, lapack_int ldu, + double* vt, lapack_int ldvt, double* superb ); +lapack_int LAPACKE_cgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, lapack_complex_float* a, + lapack_int lda, float* s, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* vt, + lapack_int ldvt, float* superb ); +lapack_int LAPACKE_zgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, lapack_complex_double* a, + lapack_int lda, double* s, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* vt, + lapack_int ldvt, double* superb ); + +lapack_int LAPACKE_sgesvj( int matrix_order, char joba, char jobu, char jobv, + lapack_int m, lapack_int n, float* a, lapack_int lda, + float* sva, lapack_int mv, float* v, lapack_int ldv, + float* stat ); +lapack_int LAPACKE_dgesvj( int matrix_order, char joba, char jobu, char jobv, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* sva, lapack_int mv, + double* v, lapack_int ldv, double* stat ); + +lapack_int LAPACKE_sgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* rpivot ); +lapack_int LAPACKE_dgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* rpivot ); +lapack_int LAPACKE_cgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* rpivot ); +lapack_int LAPACKE_zgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* rpivot ); + +lapack_int LAPACKE_sgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_sgetf2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetf2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetf2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetf2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetrf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetrf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetri( int matrix_order, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dgetri( int matrix_order, lapack_int n, double* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_cgetri( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zgetri( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); + +lapack_int LAPACKE_sgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* lscale, + const float* rscale, lapack_int m, float* v, + lapack_int ldv ); +lapack_int LAPACKE_dggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* lscale, + const double* rscale, lapack_int m, double* v, + lapack_int ldv ); +lapack_int LAPACKE_cggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* lscale, + const float* rscale, lapack_int m, + lapack_complex_float* v, lapack_int ldv ); +lapack_int LAPACKE_zggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* lscale, + const double* rscale, lapack_int m, + lapack_complex_double* v, lapack_int ldv ); + +lapack_int LAPACKE_sggbal( int matrix_order, char job, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale ); +lapack_int LAPACKE_dggbal( int matrix_order, char job, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale ); +lapack_int LAPACKE_cggbal( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale ); +lapack_int LAPACKE_zggbal( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale ); + +lapack_int LAPACKE_sgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_S_SELECT3 selctg, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + lapack_int* sdim, float* alphar, float* alphai, + float* beta, float* vsl, lapack_int ldvsl, float* vsr, + lapack_int ldvsr ); +lapack_int LAPACKE_dgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_D_SELECT3 selctg, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + lapack_int* sdim, double* alphar, double* alphai, + double* beta, double* vsl, lapack_int ldvsl, + double* vsr, lapack_int ldvsr ); +lapack_int LAPACKE_cgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_C_SELECT2 selctg, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* vsl, + lapack_int ldvsl, lapack_complex_float* vsr, + lapack_int ldvsr ); +lapack_int LAPACKE_zgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_Z_SELECT2 selctg, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr ); + +lapack_int LAPACKE_sggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_S_SELECT3 selctg, char sense, + lapack_int n, float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* sdim, float* alphar, + float* alphai, float* beta, float* vsl, + lapack_int ldvsl, float* vsr, lapack_int ldvsr, + float* rconde, float* rcondv ); +lapack_int LAPACKE_dggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_D_SELECT3 selctg, char sense, + lapack_int n, double* a, lapack_int lda, double* b, + lapack_int ldb, lapack_int* sdim, double* alphar, + double* alphai, double* beta, double* vsl, + lapack_int ldvsl, double* vsr, lapack_int ldvsr, + double* rconde, double* rcondv ); +lapack_int LAPACKE_cggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_C_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int ldvsl, + lapack_complex_float* vsr, lapack_int ldvsr, + float* rconde, float* rcondv ); +lapack_int LAPACKE_zggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_Z_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr, + double* rconde, double* rcondv ); + +lapack_int LAPACKE_sggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, float* b, + lapack_int ldb, float* alphar, float* alphai, + float* beta, float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_dggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, double* b, + lapack_int ldb, double* alphar, double* alphai, + double* beta, double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr ); +lapack_int LAPACKE_cggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_zggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr ); + +lapack_int LAPACKE_sggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alphar, float* alphai, float* beta, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* abnrm, float* bbnrm, + float* rconde, float* rcondv ); +lapack_int LAPACKE_dggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* alphar, double* alphai, double* beta, + double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* abnrm, + double* bbnrm, double* rconde, double* rcondv ); +lapack_int LAPACKE_cggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + float* lscale, float* rscale, float* abnrm, + float* bbnrm, float* rconde, float* rcondv ); +lapack_int LAPACKE_zggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale, double* abnrm, double* bbnrm, + double* rconde, double* rcondv ); + +lapack_int LAPACKE_sggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, float* b, + lapack_int ldb, float* d, float* x, float* y ); +lapack_int LAPACKE_dggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, double* b, + lapack_int ldb, double* d, double* x, double* y ); +lapack_int LAPACKE_cggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* d, + lapack_complex_float* x, lapack_complex_float* y ); +lapack_int LAPACKE_zggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* d, + lapack_complex_double* x, lapack_complex_double* y ); + +lapack_int LAPACKE_sgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* a, lapack_int lda, float* b, lapack_int ldb, + float* q, lapack_int ldq, float* z, lapack_int ldz ); +lapack_int LAPACKE_dgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* a, lapack_int lda, double* b, lapack_int ldb, + double* q, lapack_int ldq, double* z, + lapack_int ldz ); +lapack_int LAPACKE_cgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_sgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, float* a, lapack_int lda, float* b, + lapack_int ldb, float* c, float* d, float* x ); +lapack_int LAPACKE_dgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, double* a, lapack_int lda, double* b, + lapack_int ldb, double* c, double* d, double* x ); +lapack_int LAPACKE_cgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* c, + lapack_complex_float* d, lapack_complex_float* x ); +lapack_int LAPACKE_zgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* c, + lapack_complex_double* d, lapack_complex_double* x ); + +lapack_int LAPACKE_sggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, float* taua, + float* b, lapack_int ldb, float* taub ); +lapack_int LAPACKE_dggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub ); +lapack_int LAPACKE_cggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub ); +lapack_int LAPACKE_zggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub ); + +lapack_int LAPACKE_sggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, float* a, lapack_int lda, float* taua, + float* b, lapack_int ldb, float* taub ); +lapack_int LAPACKE_dggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub ); +lapack_int LAPACKE_cggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub ); +lapack_int LAPACKE_zggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub ); + +lapack_int LAPACKE_sggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alpha, float* beta, float* u, lapack_int ldu, + float* v, lapack_int ldv, float* q, lapack_int ldq, + lapack_int* iwork ); +lapack_int LAPACKE_dggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* alpha, double* beta, double* u, + lapack_int ldu, double* v, lapack_int ldv, double* q, + lapack_int ldq, lapack_int* iwork ); +lapack_int LAPACKE_cggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float* alpha, float* beta, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* v, + lapack_int ldv, lapack_complex_float* q, + lapack_int ldq, lapack_int* iwork ); +lapack_int LAPACKE_zggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* alpha, double* beta, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_int* iwork ); + +lapack_int LAPACKE_sggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, float tola, + float tolb, lapack_int* k, lapack_int* l, float* u, + lapack_int ldu, float* v, lapack_int ldv, float* q, + lapack_int ldq ); +lapack_int LAPACKE_dggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double tola, double tolb, lapack_int* k, + lapack_int* l, double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq ); +lapack_int LAPACKE_cggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, float tola, + float tolb, lapack_int* k, lapack_int* l, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq ); +lapack_int LAPACKE_zggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double tola, double tolb, lapack_int* k, + lapack_int* l, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* v, + lapack_int ldv, lapack_complex_double* q, + lapack_int ldq ); + +lapack_int LAPACKE_sgtcon( char norm, lapack_int n, const float* dl, + const float* d, const float* du, const float* du2, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_dgtcon( char norm, lapack_int n, const double* dl, + const double* d, const double* du, const double* du2, + const lapack_int* ipiv, double anorm, + double* rcond ); +lapack_int LAPACKE_cgtcon( char norm, lapack_int n, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zgtcon( char norm, lapack_int n, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_sgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, const float* d, + const float* du, const float* dlf, const float* df, + const float* duf, const float* du2, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, const double* d, + const double* du, const double* dlf, + const double* df, const double* duf, + const double* du2, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* dlf, + const lapack_complex_float* df, + const lapack_complex_float* duf, + const lapack_complex_float* du2, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* dlf, + const lapack_complex_double* df, + const lapack_complex_double* duf, + const lapack_complex_double* du2, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + float* dl, float* d, float* du, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + double* dl, double* d, double* du, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* dl, lapack_complex_float* d, + lapack_complex_float* du, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* dl, lapack_complex_double* d, + lapack_complex_double* du, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const float* dl, + const float* d, const float* du, float* dlf, + float* df, float* duf, float* du2, lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const double* dl, + const double* d, const double* du, double* dlf, + double* df, double* duf, double* du2, + lapack_int* ipiv, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + lapack_complex_float* dlf, lapack_complex_float* df, + lapack_complex_float* duf, lapack_complex_float* du2, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_zgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + lapack_complex_double* dlf, + lapack_complex_double* df, + lapack_complex_double* duf, + lapack_complex_double* du2, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_sgttrf( lapack_int n, float* dl, float* d, float* du, + float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_dgttrf( lapack_int n, double* dl, double* d, double* du, + double* du2, lapack_int* ipiv ); +lapack_int LAPACKE_cgttrf( lapack_int n, lapack_complex_float* dl, + lapack_complex_float* d, lapack_complex_float* du, + lapack_complex_float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_zgttrf( lapack_int n, lapack_complex_double* dl, + lapack_complex_double* d, lapack_complex_double* du, + lapack_complex_double* du2, lapack_int* ipiv ); + +lapack_int LAPACKE_sgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, const float* d, + const float* du, const float* du2, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, const double* d, + const double* du, const double* du2, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab, float* w, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab, double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_chbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab, float* w, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab, double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_chbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* q, lapack_int ldq, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* bb, lapack_int ldbb, + lapack_complex_float* x, lapack_int ldx ); +lapack_int LAPACKE_zhbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* bb, lapack_int ldbb, + lapack_complex_double* x, lapack_int ldx ); + +lapack_int LAPACKE_chbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_chbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, + lapack_complex_float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + lapack_complex_double* q, lapack_int ldq, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab, float* d, float* e, + lapack_complex_float* q, lapack_int ldq ); +lapack_int LAPACKE_zhbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab, double* d, double* e, + lapack_complex_double* q, lapack_int ldq ); + +lapack_int LAPACKE_checon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zhecon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_cheequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zheequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_cheev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_zheev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, double* w ); + +lapack_int LAPACKE_cheevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_zheevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* w ); + +lapack_int LAPACKE_cheevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_zheevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, lapack_int ldz, + lapack_int* isuppz ); + +lapack_int LAPACKE_cheevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_zheevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chegst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhegst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chegv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* w ); +lapack_int LAPACKE_zhegv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* w ); + +lapack_int LAPACKE_chegvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* w ); +lapack_int LAPACKE_zhegvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* w ); + +lapack_int LAPACKE_chegvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhegvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_cherfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zherfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_cherfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zherfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_chesv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zhesv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chesvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zhesvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_chesvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zhesvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_chetrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* d, + float* e, lapack_complex_float* tau ); +lapack_int LAPACKE_zhetrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, double* d, + double* e, lapack_complex_double* tau ); + +lapack_int LAPACKE_chetrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zhetrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_chetri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zhetri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); + +lapack_int LAPACKE_chetrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zhetrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, float alpha, + const lapack_complex_float* a, lapack_int lda, + float beta, lapack_complex_float* c ); +lapack_int LAPACKE_zhfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, double alpha, + const lapack_complex_double* a, lapack_int lda, + double beta, lapack_complex_double* c ); + +lapack_int LAPACKE_shgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* h, lapack_int ldh, float* t, lapack_int ldt, + float* alphar, float* alphai, float* beta, float* q, + lapack_int ldq, float* z, lapack_int ldz ); +lapack_int LAPACKE_dhgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* h, lapack_int ldh, double* t, lapack_int ldt, + double* alphar, double* alphai, double* beta, + double* q, lapack_int ldq, double* z, + lapack_int ldz ); +lapack_int LAPACKE_chgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zhpcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_chpev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* ap, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* ap, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_float* ap, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhpevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_double* ap, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chpgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* ap, + const lapack_complex_float* bp ); +lapack_int LAPACKE_zhpgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* ap, + const lapack_complex_double* bp ); + +lapack_int LAPACKE_chpgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_complex_float* bp, + float vl, float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_zhpgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_complex_double* bp, + double vl, double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zhprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_chpsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhpsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chpsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zhpsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_chptrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, float* d, float* e, + lapack_complex_float* tau ); +lapack_int LAPACKE_zhptrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, double* d, double* e, + lapack_complex_double* tau ); + +lapack_int LAPACKE_chptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zhptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_chptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, const lapack_int* ipiv ); +lapack_int LAPACKE_zhptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, const lapack_int* ipiv ); + +lapack_int LAPACKE_chptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_shsein( int matrix_order, char job, char eigsrc, char initv, + lapack_logical* select, lapack_int n, const float* h, + lapack_int ldh, float* wr, const float* wi, + float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr, lapack_int mm, lapack_int* m, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_dhsein( int matrix_order, char job, char eigsrc, char initv, + lapack_logical* select, lapack_int n, + const double* h, lapack_int ldh, double* wr, + const double* wi, double* vl, lapack_int ldvl, + double* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m, lapack_int* ifaill, + lapack_int* ifailr ); +lapack_int LAPACKE_chsein( int matrix_order, char job, char eigsrc, char initv, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr, lapack_int mm, lapack_int* m, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_zhsein( int matrix_order, char job, char eigsrc, char initv, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int ldvl, lapack_complex_double* vr, + lapack_int ldvr, lapack_int mm, lapack_int* m, + lapack_int* ifaill, lapack_int* ifailr ); + +lapack_int LAPACKE_shseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, float* h, + lapack_int ldh, float* wr, float* wi, float* z, + lapack_int ldz ); +lapack_int LAPACKE_dhseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, double* h, + lapack_int ldh, double* wr, double* wi, double* z, + lapack_int ldz ); +lapack_int LAPACKE_chseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, + lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* w, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, + lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_clacgv( lapack_int n, lapack_complex_float* x, + lapack_int incx ); +lapack_int LAPACKE_zlacgv( lapack_int n, lapack_complex_double* x, + lapack_int incx ); + +lapack_int LAPACKE_slacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dlacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_clacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zlacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_zlag2c( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_float* sa, lapack_int ldsa ); + +lapack_int LAPACKE_slag2d( int matrix_order, lapack_int m, lapack_int n, + const float* sa, lapack_int ldsa, double* a, + lapack_int lda ); + +lapack_int LAPACKE_dlag2s( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, float* sa, + lapack_int ldsa ); + +lapack_int LAPACKE_clag2z( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* sa, lapack_int ldsa, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + float* a, lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_dlagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + double* a, lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_clagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + lapack_complex_float* a, lapack_int lda, + lapack_int* iseed ); +lapack_int LAPACKE_zlagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + lapack_complex_double* a, lapack_int lda, + lapack_int* iseed ); + +float LAPACKE_slamch( char cmach ); +double LAPACKE_dlamch( char cmach ); + +float LAPACKE_slange( int matrix_order, char norm, lapack_int m, + lapack_int n, const float* a, lapack_int lda ); +double LAPACKE_dlange( int matrix_order, char norm, lapack_int m, + lapack_int n, const double* a, lapack_int lda ); +float LAPACKE_clange( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda ); +double LAPACKE_zlange( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda ); + +float LAPACKE_clanhe( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda ); +double LAPACKE_zlanhe( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda ); + +float LAPACKE_slansy( int matrix_order, char norm, char uplo, lapack_int n, + const float* a, lapack_int lda ); +double LAPACKE_dlansy( int matrix_order, char norm, char uplo, lapack_int n, + const double* a, lapack_int lda ); +float LAPACKE_clansy( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda ); +double LAPACKE_zlansy( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda ); + +float LAPACKE_slantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const float* a, + lapack_int lda ); +double LAPACKE_dlantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const double* a, + lapack_int lda ); +float LAPACKE_clantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const lapack_complex_float* a, + lapack_int lda ); +double LAPACKE_zlantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const lapack_complex_double* a, + lapack_int lda ); + + +lapack_int LAPACKE_slarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const float* v, lapack_int ldv, + const float* t, lapack_int ldt, float* c, + lapack_int ldc ); +lapack_int LAPACKE_dlarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* c, + lapack_int ldc ); +lapack_int LAPACKE_clarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_float* v, + lapack_int ldv, const lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* c, + lapack_int ldc ); +lapack_int LAPACKE_zlarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_double* v, + lapack_int ldv, const lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* c, + lapack_int ldc ); + +lapack_int LAPACKE_slarfg( lapack_int n, float* alpha, float* x, + lapack_int incx, float* tau ); +lapack_int LAPACKE_dlarfg( lapack_int n, double* alpha, double* x, + lapack_int incx, double* tau ); +lapack_int LAPACKE_clarfg( lapack_int n, lapack_complex_float* alpha, + lapack_complex_float* x, lapack_int incx, + lapack_complex_float* tau ); +lapack_int LAPACKE_zlarfg( lapack_int n, lapack_complex_double* alpha, + lapack_complex_double* x, lapack_int incx, + lapack_complex_double* tau ); + +lapack_int LAPACKE_slarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const float* v, + lapack_int ldv, const float* tau, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dlarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const double* v, + lapack_int ldv, const double* tau, double* t, + lapack_int ldt ); +lapack_int LAPACKE_clarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* tau, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zlarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* tau, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_slarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const float* v, float tau, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dlarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const double* v, double tau, double* c, + lapack_int ldc, double* work ); +lapack_int LAPACKE_clarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_float* v, + lapack_complex_float tau, lapack_complex_float* c, + lapack_int ldc, lapack_complex_float* work ); +lapack_int LAPACKE_zlarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_double* v, + lapack_complex_double tau, lapack_complex_double* c, + lapack_int ldc, lapack_complex_double* work ); + +lapack_int LAPACKE_slarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + float* x ); +lapack_int LAPACKE_dlarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + double* x ); +lapack_int LAPACKE_clarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + lapack_complex_float* x ); +lapack_int LAPACKE_zlarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + lapack_complex_double* x ); + +lapack_int LAPACKE_slaset( int matrix_order, char uplo, lapack_int m, + lapack_int n, float alpha, float beta, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlaset( int matrix_order, char uplo, lapack_int m, + lapack_int n, double alpha, double beta, double* a, + lapack_int lda ); +lapack_int LAPACKE_claset( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_float alpha, + lapack_complex_float beta, lapack_complex_float* a, + lapack_int lda ); +lapack_int LAPACKE_zlaset( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_double alpha, + lapack_complex_double beta, lapack_complex_double* a, + lapack_int lda ); + +lapack_int LAPACKE_slasrt( char id, lapack_int n, float* d ); +lapack_int LAPACKE_dlasrt( char id, lapack_int n, double* d ); + +lapack_int LAPACKE_slaswp( int matrix_order, lapack_int n, float* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_dlaswp( int matrix_order, lapack_int n, double* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_claswp( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int k1, lapack_int k2, const lapack_int* ipiv, + lapack_int incx ); +lapack_int LAPACKE_zlaswp( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int k1, lapack_int k2, const lapack_int* ipiv, + lapack_int incx ); + +lapack_int LAPACKE_slatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, float* d, + lapack_int mode, float cond, float dmax, + lapack_int kl, lapack_int ku, char pack, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, double* d, + lapack_int mode, double cond, double dmax, + lapack_int kl, lapack_int ku, char pack, double* a, + lapack_int lda ); +lapack_int LAPACKE_clatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, float* d, + lapack_int mode, float cond, float dmax, + lapack_int kl, lapack_int ku, char pack, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, double* d, + lapack_int mode, double cond, double dmax, + lapack_int kl, lapack_int ku, char pack, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slauum( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlauum( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda ); +lapack_int LAPACKE_clauum( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlauum( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_sopgtr( int matrix_order, char uplo, lapack_int n, + const float* ap, const float* tau, float* q, + lapack_int ldq ); +lapack_int LAPACKE_dopgtr( int matrix_order, char uplo, lapack_int n, + const double* ap, const double* tau, double* q, + lapack_int ldq ); + +lapack_int LAPACKE_sopmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const float* ap, + const float* tau, float* c, lapack_int ldc ); +lapack_int LAPACKE_dopmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const double* ap, + const double* tau, double* c, lapack_int ldc ); + +lapack_int LAPACKE_sorgbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, double* a, + lapack_int lda, const double* tau ); + +lapack_int LAPACKE_sorghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgtr( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, const float* tau ); +lapack_int LAPACKE_dorgtr( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, const double* tau ); + +lapack_int LAPACKE_sormbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc ); +lapack_int LAPACKE_dormhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc ); +lapack_int LAPACKE_dormrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const float* a, + lapack_int lda, const float* tau, float* c, + lapack_int ldc ); +lapack_int LAPACKE_dormtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const double* a, + lapack_int lda, const double* tau, double* c, + lapack_int ldc ); + +lapack_int LAPACKE_spbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float anorm, float* rcond ); +lapack_int LAPACKE_dpbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, lapack_int ldab, + double anorm, double* rcond ); +lapack_int LAPACKE_cpbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float anorm, float* rcond ); +lapack_int LAPACKE_zpbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double anorm, double* rcond ); + +lapack_int LAPACKE_spbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_dpbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, lapack_int ldab, + double* s, double* scond, double* amax ); +lapack_int LAPACKE_cpbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_zpbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double* s, double* scond, + double* amax ); + +lapack_int LAPACKE_spbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, const float* afb, lapack_int ldafb, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dpbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const double* ab, + lapack_int ldab, const double* afb, lapack_int ldafb, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cpbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, lapack_int ldafb, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zpbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* afb, lapack_int ldafb, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_spbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, float* bb, lapack_int ldbb ); +lapack_int LAPACKE_dpbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, double* bb, lapack_int ldbb ); +lapack_int LAPACKE_cpbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_float* bb, + lapack_int ldbb ); +lapack_int LAPACKE_zpbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_double* bb, + lapack_int ldbb ); + +lapack_int LAPACKE_spbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, float* ab, + lapack_int ldab, float* afb, lapack_int ldafb, + char* equed, float* s, float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dpbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, double* ab, + lapack_int ldab, double* afb, lapack_int ldafb, + char* equed, double* s, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cpbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* afb, lapack_int ldafb, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_zpbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* afb, lapack_int ldafb, + char* equed, double* s, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr ); + +lapack_int LAPACKE_spbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab ); +lapack_int LAPACKE_dpbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab ); +lapack_int LAPACKE_cpbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab ); +lapack_int LAPACKE_zpbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab ); + +lapack_int LAPACKE_spbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spftrf( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftrf( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftrf( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftrf( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftri( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftri( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftri( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftri( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const float* a, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const double* a, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cpftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spocon( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond ); +lapack_int LAPACKE_dpocon( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond ); +lapack_int LAPACKE_cpocon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond ); +lapack_int LAPACKE_zpocon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond ); + +lapack_int LAPACKE_spoequ( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequ( int matrix_order, lapack_int n, const double* a, + lapack_int lda, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpoequ( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequ( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_spoequb( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequb( int matrix_order, lapack_int n, const double* a, + lapack_int lda, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpoequb( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequb( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_sporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const double* af, lapack_int ldaf, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_cporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_zporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* ferr, double* berr ); + +lapack_int LAPACKE_sporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, lapack_int ldaf, + const float* s, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, lapack_int ldaf, + const double* s, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const float* s, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const double* s, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_sposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* x, lapack_int ldx, + lapack_int* iter ); +lapack_int LAPACKE_zcposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_int* iter ); + +lapack_int LAPACKE_sposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* af, + lapack_int ldaf, char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_dposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* af, lapack_int ldaf, char* equed, double* s, + double* b, lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); +lapack_int LAPACKE_cposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* af, + lapack_int ldaf, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* af, + lapack_int ldaf, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_sposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + char* equed, float* s, float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_dposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + char* equed, double* s, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + char* equed, double* s, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_spotrf( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda ); +lapack_int LAPACKE_dpotrf( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda ); +lapack_int LAPACKE_cpotrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotri( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda ); +lapack_int LAPACKE_dpotri( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda ); +lapack_int LAPACKE_cpotri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cpotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zpotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sppcon( int matrix_order, char uplo, lapack_int n, + const float* ap, float anorm, float* rcond ); +lapack_int LAPACKE_dppcon( int matrix_order, char uplo, lapack_int n, + const double* ap, double anorm, double* rcond ); +lapack_int LAPACKE_cppcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float anorm, + float* rcond ); +lapack_int LAPACKE_zppcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double anorm, + double* rcond ); + +lapack_int LAPACKE_sppequ( int matrix_order, char uplo, lapack_int n, + const float* ap, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dppequ( int matrix_order, char uplo, lapack_int n, + const double* ap, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cppequ( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float* s, + float* scond, float* amax ); +lapack_int LAPACKE_zppequ( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double* s, + double* scond, double* amax ); + +lapack_int LAPACKE_spprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, const float* afp, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dpprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, const double* afp, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cpprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zpprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, float* ap, float* afp, char* equed, + float* s, float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, double* ap, double* afp, + char* equed, double* s, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_complex_float* afp, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_complex_double* afp, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_spptrf( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptrf( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptri( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptri( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spstrf( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, lapack_int* piv, lapack_int* rank, + float tol ); +lapack_int LAPACKE_dpstrf( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, lapack_int* piv, lapack_int* rank, + double tol ); +lapack_int LAPACKE_cpstrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, float tol ); +lapack_int LAPACKE_zpstrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, double tol ); + +lapack_int LAPACKE_sptcon( lapack_int n, const float* d, const float* e, + float anorm, float* rcond ); +lapack_int LAPACKE_dptcon( lapack_int n, const double* d, const double* e, + double anorm, double* rcond ); +lapack_int LAPACKE_cptcon( lapack_int n, const float* d, + const lapack_complex_float* e, float anorm, + float* rcond ); +lapack_int LAPACKE_zptcon( lapack_int n, const double* d, + const lapack_complex_double* e, double anorm, + double* rcond ); + +lapack_int LAPACKE_spteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dpteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz ); +lapack_int LAPACKE_cpteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zpteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_sptrfs( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, const float* df, + const float* ef, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dptrfs( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, const double* df, + const double* ef, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* ferr, + double* berr ); +lapack_int LAPACKE_cptrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, const float* df, + const lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zptrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, const double* df, + const lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sptsv( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, float* e, float* b, lapack_int ldb ); +lapack_int LAPACKE_dptsv( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, double* e, double* b, lapack_int ldb ); +lapack_int LAPACKE_cptsv( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zptsv( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, const float* e, + float* df, float* ef, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, const double* e, + double* df, double* ef, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); +lapack_int LAPACKE_cptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, float* df, + lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, double* df, + lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_spttrf( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dpttrf( lapack_int n, double* d, double* e ); +lapack_int LAPACKE_cpttrf( lapack_int n, float* d, lapack_complex_float* e ); +lapack_int LAPACKE_zpttrf( lapack_int n, double* d, lapack_complex_double* e ); + +lapack_int LAPACKE_spttrs( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpttrs( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpttrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpttrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab, float* w, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab, double* w, + double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab, float* w, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* q, lapack_int ldq, + double vl, double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, float* ab, + lapack_int ldab, const float* bb, lapack_int ldbb, + float* x, lapack_int ldx ); +lapack_int LAPACKE_dsbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, double* ab, + lapack_int ldab, const double* bb, lapack_int ldbb, + double* x, lapack_int ldx ); + +lapack_int LAPACKE_ssbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, float* ab, + lapack_int ldab, float* bb, lapack_int ldbb, float* w, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, double* ab, + lapack_int ldab, double* bb, lapack_int ldbb, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, float* ab, + lapack_int ldab, float* bb, lapack_int ldbb, + float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, double* ab, + lapack_int ldab, double* bb, lapack_int ldbb, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, float* bb, + lapack_int ldbb, float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, double* bb, + lapack_int ldbb, double* q, lapack_int ldq, + double vl, double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab, float* d, + float* e, float* q, lapack_int ldq ); +lapack_int LAPACKE_dsbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab, + double* d, double* e, double* q, lapack_int ldq ); + +lapack_int LAPACKE_ssfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, float alpha, + const float* a, lapack_int lda, float beta, + float* c ); +lapack_int LAPACKE_dsfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, double alpha, + const double* a, lapack_int lda, double beta, + double* c ); + +lapack_int LAPACKE_sspcon( int matrix_order, char uplo, lapack_int n, + const float* ap, const lapack_int* ipiv, float anorm, + float* rcond ); +lapack_int LAPACKE_dspcon( int matrix_order, char uplo, lapack_int n, + const double* ap, const lapack_int* ipiv, + double anorm, double* rcond ); +lapack_int LAPACKE_cspcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zspcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_sspev( int matrix_order, char jobz, char uplo, lapack_int n, + float* ap, float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspev( int matrix_order, char jobz, char uplo, lapack_int n, + double* ap, double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspevd( int matrix_order, char jobz, char uplo, lapack_int n, + float* ap, float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspevd( int matrix_order, char jobz, char uplo, lapack_int n, + double* ap, double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, float* ap, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dspevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, double* ap, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_sspgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* ap, const float* bp ); +lapack_int LAPACKE_dspgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* ap, const double* bp ); + +lapack_int LAPACKE_sspgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* ap, + float* bp, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, float* w, + float* z, lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_dspgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* ap, + double* bp, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_ssprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, const float* afp, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dsprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, const double* afp, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_csprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zsprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, float* afp, + lapack_int* ipiv, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, double* afp, + lapack_int* ipiv, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_ssptrd( int matrix_order, char uplo, lapack_int n, float* ap, + float* d, float* e, float* tau ); +lapack_int LAPACKE_dsptrd( int matrix_order, char uplo, lapack_int n, + double* ap, double* d, double* e, double* tau ); + +lapack_int LAPACKE_ssptrf( int matrix_order, char uplo, lapack_int n, float* ap, + lapack_int* ipiv ); +lapack_int LAPACKE_dsptrf( int matrix_order, char uplo, lapack_int n, + double* ap, lapack_int* ipiv ); +lapack_int LAPACKE_csptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zsptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_ssptri( int matrix_order, char uplo, lapack_int n, float* ap, + const lapack_int* ipiv ); +lapack_int LAPACKE_dsptri( int matrix_order, char uplo, lapack_int n, + double* ap, const lapack_int* ipiv ); +lapack_int LAPACKE_csptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, const lapack_int* ipiv ); +lapack_int LAPACKE_zsptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, const lapack_int* ipiv ); + +lapack_int LAPACKE_ssptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dsptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_csptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zsptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sstebz( char range, char order, lapack_int n, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + const float* d, const float* e, lapack_int* m, + lapack_int* nsplit, float* w, lapack_int* iblock, + lapack_int* isplit ); +lapack_int LAPACKE_dstebz( char range, char order, lapack_int n, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, const double* d, const double* e, + lapack_int* m, lapack_int* nsplit, double* w, + lapack_int* iblock, lapack_int* isplit ); + +lapack_int LAPACKE_sstedc( int matrix_order, char compz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dstedc( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz ); +lapack_int LAPACKE_cstedc( int matrix_order, char compz, lapack_int n, float* d, + float* e, lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zstedc( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_sstegr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_dstegr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz ); +lapack_int LAPACKE_cstegr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* isuppz ); +lapack_int LAPACKE_zstegr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* isuppz ); + +lapack_int LAPACKE_sstein( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, const lapack_int* isplit, + float* z, lapack_int ldz, lapack_int* ifailv ); +lapack_int LAPACKE_dstein( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, const lapack_int* isplit, + double* z, lapack_int ldz, lapack_int* ifailv ); +lapack_int LAPACKE_cstein( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, const lapack_int* isplit, + lapack_complex_float* z, lapack_int ldz, + lapack_int* ifailv ); +lapack_int LAPACKE_zstein( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, const lapack_int* isplit, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifailv ); + +lapack_int LAPACKE_sstemr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, lapack_int* m, + float* w, float* z, lapack_int ldz, lapack_int nzc, + lapack_int* isuppz, lapack_logical* tryrac ); +lapack_int LAPACKE_dstemr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, double* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac ); +lapack_int LAPACKE_cstemr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, lapack_int* m, + float* w, lapack_complex_float* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac ); +lapack_int LAPACKE_zstemr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int ldz, lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac ); + +lapack_int LAPACKE_ssteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dsteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz ); +lapack_int LAPACKE_csteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zsteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_ssterf( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dsterf( lapack_int n, double* d, double* e ); + +lapack_int LAPACKE_sstev( int matrix_order, char jobz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dstev( int matrix_order, char jobz, lapack_int n, double* d, + double* e, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sstevd( int matrix_order, char jobz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dstevd( int matrix_order, char jobz, lapack_int n, double* d, + double* e, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sstevr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_dstevr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz ); + +lapack_int LAPACKE_sstevx( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dstevx( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssycon( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_dsycon( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond ); +lapack_int LAPACKE_csycon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zsycon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_ssyequb( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* s, + float* scond, float* amax ); +lapack_int LAPACKE_dsyequb( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* s, + double* scond, double* amax ); +lapack_int LAPACKE_csyequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zsyequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_ssyev( int matrix_order, char jobz, char uplo, lapack_int n, + float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_dsyev( int matrix_order, char jobz, char uplo, lapack_int n, + double* a, lapack_int lda, double* w ); + +lapack_int LAPACKE_ssyevd( int matrix_order, char jobz, char uplo, lapack_int n, + float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_dsyevd( int matrix_order, char jobz, char uplo, lapack_int n, + double* a, lapack_int lda, double* w ); + +lapack_int LAPACKE_ssyevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, float* a, lapack_int lda, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_dsyevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, double* a, lapack_int lda, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz ); + +lapack_int LAPACKE_ssyevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, float* a, lapack_int lda, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsyevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, double* a, lapack_int lda, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssygst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* a, lapack_int lda, + const float* b, lapack_int ldb ); +lapack_int LAPACKE_dsygst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* a, lapack_int lda, + const double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssygv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, float* w ); +lapack_int LAPACKE_dsygv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double* w ); + +lapack_int LAPACKE_ssygvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, float* w ); +lapack_int LAPACKE_dsygvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double* w ); + +lapack_int LAPACKE_ssygvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsygvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dsyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_csyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zsyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_ssyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* s, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dsyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* s, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); +lapack_int LAPACKE_csyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zsyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_ssysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dsysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_csysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zsysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + float* af, lapack_int ldaf, lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dsysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + double* af, lapack_int ldaf, lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr ); +lapack_int LAPACKE_csysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zsysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_ssysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dsysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); +lapack_int LAPACKE_csysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zsysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_ssytrd( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, float* d, float* e, float* tau ); +lapack_int LAPACKE_dsytrd( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, double* d, double* e, double* tau ); + +lapack_int LAPACKE_ssytrf( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dsytrf( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_csytrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zsytrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_ssytri( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dsytri( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_csytri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zsytri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); + +lapack_int LAPACKE_ssytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dsytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_csytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zsytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, const float* ab, + lapack_int ldab, float* rcond ); +lapack_int LAPACKE_dtbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, const double* ab, + lapack_int ldab, double* rcond ); +lapack_int LAPACKE_ctbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, + const lapack_complex_float* ab, lapack_int ldab, + float* rcond ); +lapack_int LAPACKE_ztbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, + const lapack_complex_double* ab, lapack_int ldab, + double* rcond ); + +lapack_int LAPACKE_stbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const float* ab, lapack_int ldab, const float* b, + lapack_int ldb, const float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dtbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, const double* b, + lapack_int ldb, const double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_ctbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_ztbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_stbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const float* ab, lapack_int ldab, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + float alpha, const float* a, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + double alpha, const double* a, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + lapack_complex_float alpha, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + lapack_complex_double alpha, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, float* a ); +lapack_int LAPACKE_dtftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, double* a ); +lapack_int LAPACKE_ctftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_ztftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_stfttp( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* ap ); +lapack_int LAPACKE_dtfttp( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* ap ); +lapack_int LAPACKE_ctfttp( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztfttp( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stfttr( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* a, + lapack_int lda ); +lapack_int LAPACKE_dtfttr( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* a, + lapack_int lda ); +lapack_int LAPACKE_ctfttr( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztfttr( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_stgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const float* s, lapack_int lds, const float* p, + lapack_int ldp, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_dtgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const double* s, lapack_int lds, const double* p, + lapack_int ldp, double* vl, lapack_int ldvl, + double* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_ctgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* s, lapack_int lds, + const lapack_complex_float* p, lapack_int ldp, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* s, lapack_int lds, + const lapack_complex_double* p, lapack_int ldp, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); + +lapack_int LAPACKE_stgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, float* q, + lapack_int ldq, float* z, lapack_int ldz, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_dtgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, double* q, + lapack_int ldq, double* z, lapack_int ldz, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_ctgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_stgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alphar, float* alphai, float* beta, float* q, + lapack_int ldq, float* z, lapack_int ldz, + lapack_int* m, float* pl, float* pr, float* dif ); +lapack_int LAPACKE_dtgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + double* a, lapack_int lda, double* b, lapack_int ldb, + double* alphar, double* alphai, double* beta, + double* q, lapack_int ldq, double* z, lapack_int ldz, + lapack_int* m, double* pl, double* pr, double* dif ); +lapack_int LAPACKE_ctgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* z, + lapack_int ldz, lapack_int* m, float* pl, float* pr, + float* dif ); +lapack_int LAPACKE_ztgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int* m, double* pl, double* pr, double* dif ); + +lapack_int LAPACKE_stgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, float* a, lapack_int lda, + float* b, lapack_int ldb, float tola, float tolb, + float* alpha, float* beta, float* u, lapack_int ldu, + float* v, lapack_int ldv, float* q, lapack_int ldq, + lapack_int* ncycle ); +lapack_int LAPACKE_dtgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, double* a, + lapack_int lda, double* b, lapack_int ldb, + double tola, double tolb, double* alpha, + double* beta, double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq, + lapack_int* ncycle ); +lapack_int LAPACKE_ctgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float tola, float tolb, float* alpha, + float* beta, lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq, + lapack_int* ncycle ); +lapack_int LAPACKE_ztgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double tola, double tolb, + double* alpha, double* beta, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_int* ncycle ); + +lapack_int LAPACKE_stgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, const float* vl, lapack_int ldvl, + const float* vr, lapack_int ldvr, float* s, + float* dif, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_dtgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* a, lapack_int lda, const double* b, + lapack_int ldb, const double* vl, lapack_int ldvl, + const double* vr, lapack_int ldvr, double* s, + double* dif, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ctgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* dif, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* vl, lapack_int ldvl, + const lapack_complex_double* vr, lapack_int ldvr, + double* s, double* dif, lapack_int mm, + lapack_int* m ); + +lapack_int LAPACKE_stgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const float* a, + lapack_int lda, const float* b, lapack_int ldb, + float* c, lapack_int ldc, const float* d, + lapack_int ldd, const float* e, lapack_int lde, + float* f, lapack_int ldf, float* scale, float* dif ); +lapack_int LAPACKE_dtgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const double* a, + lapack_int lda, const double* b, lapack_int ldb, + double* c, lapack_int ldc, const double* d, + lapack_int ldd, const double* e, lapack_int lde, + double* f, lapack_int ldf, double* scale, + double* dif ); +lapack_int LAPACKE_ctgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + const lapack_complex_float* d, lapack_int ldd, + const lapack_complex_float* e, lapack_int lde, + lapack_complex_float* f, lapack_int ldf, + float* scale, float* dif ); +lapack_int LAPACKE_ztgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + const lapack_complex_double* d, lapack_int ldd, + const lapack_complex_double* e, lapack_int lde, + lapack_complex_double* f, lapack_int ldf, + double* scale, double* dif ); + +lapack_int LAPACKE_stpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const float* ap, float* rcond ); +lapack_int LAPACKE_dtpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const double* ap, double* rcond ); +lapack_int LAPACKE_ctpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_float* ap, + float* rcond ); +lapack_int LAPACKE_ztpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_double* ap, + double* rcond ); + +lapack_int LAPACKE_stprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* ap, + const float* b, lapack_int ldb, const float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dtprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* ap, + const double* b, lapack_int ldb, const double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_ctprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_ztprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_stptri( int matrix_order, char uplo, char diag, lapack_int n, + float* ap ); +lapack_int LAPACKE_dtptri( int matrix_order, char uplo, char diag, lapack_int n, + double* ap ); +lapack_int LAPACKE_ctptri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztptri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* ap, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dtptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* ap, + double* b, lapack_int ldb ); +lapack_int LAPACKE_ctptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stpttf( int matrix_order, char transr, char uplo, + lapack_int n, const float* ap, float* arf ); +lapack_int LAPACKE_dtpttf( int matrix_order, char transr, char uplo, + lapack_int n, const double* ap, double* arf ); +lapack_int LAPACKE_ctpttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* ap, + lapack_complex_float* arf ); +lapack_int LAPACKE_ztpttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* ap, + lapack_complex_double* arf ); + +lapack_int LAPACKE_stpttr( int matrix_order, char uplo, lapack_int n, + const float* ap, float* a, lapack_int lda ); +lapack_int LAPACKE_dtpttr( int matrix_order, char uplo, lapack_int n, + const double* ap, double* a, lapack_int lda ); +lapack_int LAPACKE_ctpttr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztpttr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_strcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const float* a, lapack_int lda, + float* rcond ); +lapack_int LAPACKE_dtrcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const double* a, lapack_int lda, + double* rcond ); +lapack_int LAPACKE_ctrcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* rcond ); +lapack_int LAPACKE_ztrcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* rcond ); + +lapack_int LAPACKE_strevc( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, const float* t, + lapack_int ldt, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_dtrevc( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ctrevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztrevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); + +lapack_int LAPACKE_strexc( int matrix_order, char compq, lapack_int n, float* t, + lapack_int ldt, float* q, lapack_int ldq, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_dtrexc( int matrix_order, char compq, lapack_int n, + double* t, lapack_int ldt, double* q, lapack_int ldq, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_ctrexc( int matrix_order, char compq, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztrexc( int matrix_order, char compq, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_strrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* b, lapack_int ldb, + const float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_dtrrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* b, lapack_int ldb, + const double* x, lapack_int ldx, double* ferr, + double* berr ); +lapack_int LAPACKE_ctrrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_ztrrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_strsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, float* t, + lapack_int ldt, float* q, lapack_int ldq, float* wr, + float* wi, lapack_int* m, float* s, float* sep ); +lapack_int LAPACKE_dtrsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + double* t, lapack_int ldt, double* q, lapack_int ldq, + double* wr, double* wi, lapack_int* m, double* s, + double* sep ); +lapack_int LAPACKE_ctrsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* w, lapack_int* m, float* s, + float* sep ); +lapack_int LAPACKE_ztrsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* w, lapack_int* m, double* s, + double* sep ); + +lapack_int LAPACKE_strsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* t, lapack_int ldt, const float* vl, + lapack_int ldvl, const float* vr, lapack_int ldvr, + float* s, float* sep, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_dtrsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, const double* vl, + lapack_int ldvl, const double* vr, lapack_int ldvr, + double* s, double* sep, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_ctrsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* t, lapack_int ldt, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* sep, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztrsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* t, lapack_int ldt, + const lapack_complex_double* vl, lapack_int ldvl, + const lapack_complex_double* vr, lapack_int ldvr, + double* s, double* sep, lapack_int mm, + lapack_int* m ); + +lapack_int LAPACKE_strsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_dtrsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const double* a, lapack_int lda, const double* b, + lapack_int ldb, double* c, lapack_int ldc, + double* scale ); +lapack_int LAPACKE_ctrsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_ztrsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + double* scale ); + +lapack_int LAPACKE_strtri( int matrix_order, char uplo, char diag, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dtrtri( int matrix_order, char uplo, char diag, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_ctrtri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztrtri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_strtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, float* b, lapack_int ldb ); +lapack_int LAPACKE_dtrtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, double* b, lapack_int ldb ); +lapack_int LAPACKE_ctrtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztrtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_strttf( int matrix_order, char transr, char uplo, + lapack_int n, const float* a, lapack_int lda, + float* arf ); +lapack_int LAPACKE_dtrttf( int matrix_order, char transr, char uplo, + lapack_int n, const double* a, lapack_int lda, + double* arf ); +lapack_int LAPACKE_ctrttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* arf ); +lapack_int LAPACKE_ztrttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* arf ); + +lapack_int LAPACKE_strttp( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* ap ); +lapack_int LAPACKE_dtrttp( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* ap ); +lapack_int LAPACKE_ctrttp( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztrttp( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stzrzf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dtzrzf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_ctzrzf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_ztzrzf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_cungbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cunghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zunghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cunglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zunglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungtr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau ); +lapack_int LAPACKE_zungtr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau ); + +lapack_int LAPACKE_cunmbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cupgtr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* q, lapack_int ldq ); +lapack_int LAPACKE_zupgtr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* q, lapack_int ldq ); + +lapack_int LAPACKE_cupmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zupmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_sbdsdc_work( int matrix_order, char uplo, char compq, + lapack_int n, float* d, float* e, float* u, + lapack_int ldu, float* vt, lapack_int ldvt, + float* q, lapack_int* iq, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dbdsdc_work( int matrix_order, char uplo, char compq, + lapack_int n, double* d, double* e, double* u, + lapack_int ldu, double* vt, lapack_int ldvt, + double* q, lapack_int* iq, double* work, + lapack_int* iwork ); + +lapack_int LAPACKE_sbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, float* vt, lapack_int ldvt, + float* u, lapack_int ldu, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, double* vt, + lapack_int ldvt, double* u, lapack_int ldu, + double* c, lapack_int ldc, double* work ); +lapack_int LAPACKE_cbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, lapack_complex_float* vt, + lapack_int ldvt, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_zbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, lapack_complex_double* vt, + lapack_int ldvt, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* c, + lapack_int ldc, double* work ); + +lapack_int LAPACKE_sdisna_work( char job, lapack_int m, lapack_int n, + const float* d, float* sep ); +lapack_int LAPACKE_ddisna_work( char job, lapack_int m, lapack_int n, + const double* d, double* sep ); + +lapack_int LAPACKE_sgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, float* ab, lapack_int ldab, + float* d, float* e, float* q, lapack_int ldq, + float* pt, lapack_int ldpt, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, double* ab, lapack_int ldab, + double* d, double* e, double* q, lapack_int ldq, + double* pt, lapack_int ldpt, double* c, + lapack_int ldc, double* work ); +lapack_int LAPACKE_cgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_float* ab, + lapack_int ldab, float* d, float* e, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* pt, lapack_int ldpt, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_double* ab, + lapack_int ldab, double* d, double* e, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* pt, lapack_int ldpt, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, const lapack_int* ipiv, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, const lapack_int* ipiv, + double anorm, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, + lapack_int ldab, const lapack_int* ipiv, + double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_zgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); + +lapack_int LAPACKE_sgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, + lapack_int ldab, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_zgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); + +lapack_int LAPACKE_sgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, + const float* afb, lapack_int ldafb, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, + const double* afb, lapack_int ldafb, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, + const lapack_complex_double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const float* ab, + lapack_int ldab, const float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* r, const float* c, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const double* ab, + lapack_int ldab, const double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* r, const double* c, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, + const lapack_complex_float* ab, + lapack_int ldab, + const lapack_complex_float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* r, const float* c, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, + const lapack_complex_double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* r, const double* c, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, float* ab, + lapack_int ldab, lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, double* ab, + lapack_int ldab, lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + float* r, float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + double* r, double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, + lapack_int* ipiv, char* equed, double* r, + double* c, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, float* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_dgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, double* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_cgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv ); +lapack_int LAPACKE_zgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, + const lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* scale, lapack_int m, float* v, + lapack_int ldv ); +lapack_int LAPACKE_dgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* scale, lapack_int m, double* v, + lapack_int ldv ); +lapack_int LAPACKE_cgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* scale, lapack_int m, + lapack_complex_float* v, lapack_int ldv ); +lapack_int LAPACKE_zgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* scale, lapack_int m, + lapack_complex_double* v, lapack_int ldv ); + +lapack_int LAPACKE_sgebal_work( int matrix_order, char job, lapack_int n, + float* a, lapack_int lda, lapack_int* ilo, + lapack_int* ihi, float* scale ); +lapack_int LAPACKE_dgebal_work( int matrix_order, char job, lapack_int n, + double* a, lapack_int lda, lapack_int* ilo, + lapack_int* ihi, double* scale ); +lapack_int LAPACKE_cgebal_work( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, + float* scale ); +lapack_int LAPACKE_zgebal_work( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, + double* scale ); + +lapack_int LAPACKE_sgebrd_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* d, float* e, + float* tauq, float* taup, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgebrd_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* d, double* e, + double* tauq, double* taup, double* work, + lapack_int lwork ); +lapack_int LAPACKE_cgebrd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float* d, float* e, lapack_complex_float* tauq, + lapack_complex_float* taup, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgebrd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* d, double* e, + lapack_complex_double* tauq, + lapack_complex_double* taup, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgecon_work( int matrix_order, char norm, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgecon_work( int matrix_order, char norm, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgecon_work( int matrix_order, char norm, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgecon_work( int matrix_order, char norm, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, + float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_dgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_zgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, + float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_dgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_zgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgees_work( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, lapack_int n, float* a, + lapack_int lda, lapack_int* sdim, float* wr, + float* wi, float* vs, lapack_int ldvs, + float* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dgees_work( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, lapack_int n, double* a, + lapack_int lda, lapack_int* sdim, double* wr, + double* wi, double* vs, lapack_int ldvs, + double* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cgees_work( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_logical* bwork ); +lapack_int LAPACKE_zgees_work( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, char sense, + lapack_int n, float* a, lapack_int lda, + lapack_int* sdim, float* wr, float* wi, + float* vs, lapack_int ldvs, float* rconde, + float* rcondv, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, char sense, + lapack_int n, double* a, lapack_int lda, + lapack_int* sdim, double* wr, double* wi, + double* vs, lapack_int ldvs, double* rconde, + double* rcondv, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, char sense, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_int* sdim, + lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs, + float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_logical* bwork ); +lapack_int LAPACKE_zgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, char sense, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_int* sdim, + lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs, + double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, + float* wr, float* wi, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, + double* wr, double* wi, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* w, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* wr, float* wi, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* scale, + float* abnrm, float* rconde, float* rcondv, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* wr, double* wi, + double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr, lapack_int* ilo, + lapack_int* ihi, double* scale, double* abnrm, + double* rconde, double* rcondv, double* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_cgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* w, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* scale, + float* abnrm, float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, double* scale, + double* abnrm, double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + float* tau, float* work, lapack_int lwork ); +lapack_int LAPACKE_dgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + double* tau, double* work, lapack_int lwork ); +lapack_int LAPACKE_cgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgejsv_work( int matrix_order, char joba, char jobu, + char jobv, char jobr, char jobt, char jobp, + lapack_int m, lapack_int n, float* a, + lapack_int lda, float* sva, float* u, + lapack_int ldu, float* v, lapack_int ldv, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgejsv_work( int matrix_order, char joba, char jobu, + char jobv, char jobr, char jobt, char jobp, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* sva, double* u, + lapack_int ldu, double* v, lapack_int ldv, + double* work, lapack_int lwork, + lapack_int* iwork ); + +lapack_int LAPACKE_sgelq2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work ); +lapack_int LAPACKE_dgelq2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work ); +lapack_int LAPACKE_cgelq2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work ); +lapack_int LAPACKE_zgelq2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work ); + +lapack_int LAPACKE_sgelqf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgelqf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgelqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgelqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb, float* s, float rcond, + lapack_int* rank, float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, + double rcond, lapack_int* rank, double* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_cgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int* iwork ); +lapack_int LAPACKE_zgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int* iwork ); + +lapack_int LAPACKE_sgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb, float* s, float rcond, + lapack_int* rank, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, + double rcond, lapack_int* rank, double* work, + lapack_int lwork ); +lapack_int LAPACKE_cgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_sgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb, lapack_int* jpvt, + float rcond, lapack_int* rank, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, lapack_int* jpvt, + double rcond, lapack_int* rank, double* work, + lapack_int lwork ); +lapack_int LAPACKE_cgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* jpvt, float rcond, + lapack_int* rank, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* jpvt, double rcond, + lapack_int* rank, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_sgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau, float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau, double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau, float* work ); +lapack_int LAPACKE_dgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau, double* work ); +lapack_int LAPACKE_cgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work ); +lapack_int LAPACKE_dgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work ); +lapack_int LAPACKE_cgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work ); +lapack_int LAPACKE_zgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work ); + +lapack_int LAPACKE_sgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* r, const float* c, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* r, const double* c, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* r, const float* c, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* r, const double* c, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgerqf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgerqf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgerqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgerqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, float* a, lapack_int lda, + float* s, float* u, lapack_int ldu, float* vt, + lapack_int ldvt, float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, double* a, lapack_int lda, + double* s, double* u, lapack_int ldu, + double* vt, lapack_int ldvt, double* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_cgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* s, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* vt, lapack_int ldvt, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int* iwork ); +lapack_int LAPACKE_zgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* s, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* vt, lapack_int ldvt, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int* iwork ); + +lapack_int LAPACKE_sgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* a, lapack_int lda, lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* work, float* swork, + lapack_int* iter ); +lapack_int LAPACKE_zcgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_complex_double* work, + lapack_complex_float* swork, double* rwork, + lapack_int* iter ); + +lapack_int LAPACKE_sgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, float* a, + lapack_int lda, float* s, float* u, + lapack_int ldu, float* vt, lapack_int ldvt, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* s, double* u, + lapack_int ldu, double* vt, lapack_int ldvt, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float* s, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* vt, + lapack_int ldvt, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* s, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* vt, + lapack_int ldvt, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_sgesvj_work( int matrix_order, char joba, char jobu, + char jobv, lapack_int m, lapack_int n, float* a, + lapack_int lda, float* sva, lapack_int mv, + float* v, lapack_int ldv, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgesvj_work( int matrix_order, char joba, char jobu, + char jobv, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* sva, + lapack_int mv, double* v, lapack_int ldv, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgetf2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetf2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetf2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetf2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetrf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetrf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetri_work( int matrix_order, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgetri_work( int matrix_order, lapack_int n, double* a, + lapack_int lda, const lapack_int* ipiv, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgetri_work( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgetri_work( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* lscale, const float* rscale, + lapack_int m, float* v, lapack_int ldv ); +lapack_int LAPACKE_dggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* lscale, const double* rscale, + lapack_int m, double* v, lapack_int ldv ); +lapack_int LAPACKE_cggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* lscale, const float* rscale, + lapack_int m, lapack_complex_float* v, + lapack_int ldv ); +lapack_int LAPACKE_zggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* lscale, const double* rscale, + lapack_int m, lapack_complex_double* v, + lapack_int ldv ); + +lapack_int LAPACKE_sggbal_work( int matrix_order, char job, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* ilo, + lapack_int* ihi, float* lscale, float* rscale, + float* work ); +lapack_int LAPACKE_dggbal_work( int matrix_order, char job, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, lapack_int* ilo, + lapack_int* ihi, double* lscale, double* rscale, + double* work ); +lapack_int LAPACKE_cggbal_work( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* work ); +lapack_int LAPACKE_zggbal_work( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* work ); + +lapack_int LAPACKE_sgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_S_SELECT3 selctg, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* sdim, float* alphar, + float* alphai, float* beta, float* vsl, + lapack_int ldvsl, float* vsr, lapack_int ldvsr, + float* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_D_SELECT3 selctg, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, lapack_int* sdim, double* alphar, + double* alphai, double* beta, double* vsl, + lapack_int ldvsl, double* vsr, lapack_int ldvsr, + double* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_C_SELECT2 selctg, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int ldvsl, + lapack_complex_float* vsr, lapack_int ldvsr, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_logical* bwork ); +lapack_int LAPACKE_zgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_Z_SELECT2 selctg, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_S_SELECT3 selctg, char sense, + lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, lapack_int* sdim, + float* alphar, float* alphai, float* beta, + float* vsl, lapack_int ldvsl, float* vsr, + lapack_int ldvsr, float* rconde, float* rcondv, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_D_SELECT3 selctg, char sense, + lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, lapack_int* sdim, + double* alphar, double* alphai, double* beta, + double* vsl, lapack_int ldvsl, double* vsr, + lapack_int ldvsr, double* rconde, + double* rcondv, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_C_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int ldvsl, + lapack_complex_float* vsr, lapack_int ldvsr, + float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int* iwork, + lapack_int liwork, lapack_logical* bwork ); +lapack_int LAPACKE_zggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_Z_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr, + double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int* iwork, + lapack_int liwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, float* b, + lapack_int ldb, float* alphar, float* alphai, + float* beta, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double* alphar, + double* alphai, double* beta, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alphar, float* alphai, float* beta, + float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr, lapack_int* ilo, + lapack_int* ihi, float* lscale, float* rscale, + float* abnrm, float* bbnrm, float* rconde, + float* rcondv, float* work, lapack_int lwork, + lapack_int* iwork, lapack_logical* bwork ); +lapack_int LAPACKE_dggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* alphar, double* alphai, double* beta, + double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr, lapack_int* ilo, + lapack_int* ihi, double* lscale, double* rscale, + double* abnrm, double* bbnrm, double* rconde, + double* rcondv, double* work, lapack_int lwork, + lapack_int* iwork, lapack_logical* bwork ); +lapack_int LAPACKE_cggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* abnrm, float* bbnrm, + float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int* iwork, + lapack_logical* bwork ); +lapack_int LAPACKE_zggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* abnrm, + double* bbnrm, double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int* iwork, + lapack_logical* bwork ); + +lapack_int LAPACKE_sggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, + float* b, lapack_int ldb, float* d, float* x, + float* y, float* work, lapack_int lwork ); +lapack_int LAPACKE_dggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, + double* b, lapack_int ldb, double* d, double* x, + double* y, double* work, lapack_int lwork ); +lapack_int LAPACKE_cggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* d, + lapack_complex_float* x, + lapack_complex_float* y, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* d, + lapack_complex_double* x, + lapack_complex_double* y, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* q, lapack_int ldq, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* q, lapack_int ldq, + double* z, lapack_int ldz ); +lapack_int LAPACKE_cgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_sgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, float* a, lapack_int lda, + float* b, lapack_int ldb, float* c, float* d, + float* x, float* work, lapack_int lwork ); +lapack_int LAPACKE_dgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, double* a, lapack_int lda, + double* b, lapack_int ldb, double* c, double* d, + double* x, double* work, lapack_int lwork ); +lapack_int LAPACKE_cgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* c, + lapack_complex_float* d, + lapack_complex_float* x, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* c, + lapack_complex_double* d, + lapack_complex_double* x, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, + float* taua, float* b, lapack_int ldb, + float* taub, float* work, lapack_int lwork ); +lapack_int LAPACKE_dggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub, double* work, lapack_int lwork ); +lapack_int LAPACKE_cggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, float* a, lapack_int lda, + float* taua, float* b, lapack_int ldb, + float* taub, float* work, lapack_int lwork ); +lapack_int LAPACKE_dggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub, double* work, lapack_int lwork ); +lapack_int LAPACKE_cggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* alpha, float* beta, + float* u, lapack_int ldu, float* v, + lapack_int ldv, float* q, lapack_int ldq, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* alpha, double* beta, + double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float* alpha, float* beta, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* work, float* rwork, + lapack_int* iwork ); +lapack_int LAPACKE_zggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* alpha, double* beta, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* work, double* rwork, + lapack_int* iwork ); + +lapack_int LAPACKE_sggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, float tola, + float tolb, lapack_int* k, lapack_int* l, + float* u, lapack_int ldu, float* v, + lapack_int ldv, float* q, lapack_int ldq, + lapack_int* iwork, float* tau, float* work ); +lapack_int LAPACKE_dggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double tola, + double tolb, lapack_int* k, lapack_int* l, + double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq, + lapack_int* iwork, double* tau, double* work ); +lapack_int LAPACKE_cggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float tola, float tolb, + lapack_int* k, lapack_int* l, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq, + lapack_int* iwork, float* rwork, + lapack_complex_float* tau, + lapack_complex_float* work ); +lapack_int LAPACKE_zggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double tola, double tolb, + lapack_int* k, lapack_int* l, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_int* iwork, double* rwork, + lapack_complex_double* tau, + lapack_complex_double* work ); + +lapack_int LAPACKE_sgtcon_work( char norm, lapack_int n, const float* dl, + const float* d, const float* du, + const float* du2, const lapack_int* ipiv, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgtcon_work( char norm, lapack_int n, const double* dl, + const double* d, const double* du, + const double* du2, const lapack_int* ipiv, + double anorm, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgtcon_work( char norm, lapack_int n, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zgtcon_work( char norm, lapack_int n, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_sgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, + const float* d, const float* du, + const float* dlf, const float* df, + const float* duf, const float* du2, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, + const double* d, const double* du, + const double* dlf, const double* df, + const double* duf, const double* du2, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* dlf, + const lapack_complex_float* df, + const lapack_complex_float* duf, + const lapack_complex_float* du2, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* dlf, + const lapack_complex_double* df, + const lapack_complex_double* duf, + const lapack_complex_double* du2, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* dl, float* d, float* du, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* dl, double* d, double* du, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* dl, + lapack_complex_float* d, + lapack_complex_float* du, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* dl, + lapack_complex_double* d, + lapack_complex_double* du, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const float* dl, + const float* d, const float* du, float* dlf, + float* df, float* duf, float* du2, + lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const double* dl, + const double* d, const double* du, double* dlf, + double* df, double* duf, double* du2, + lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + lapack_complex_float* dlf, + lapack_complex_float* df, + lapack_complex_float* duf, + lapack_complex_float* du2, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + lapack_complex_double* dlf, + lapack_complex_double* df, + lapack_complex_double* duf, + lapack_complex_double* du2, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgttrf_work( lapack_int n, float* dl, float* d, float* du, + float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_dgttrf_work( lapack_int n, double* dl, double* d, double* du, + double* du2, lapack_int* ipiv ); +lapack_int LAPACKE_cgttrf_work( lapack_int n, lapack_complex_float* dl, + lapack_complex_float* d, + lapack_complex_float* du, + lapack_complex_float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_zgttrf_work( lapack_int n, lapack_complex_double* dl, + lapack_complex_double* d, + lapack_complex_double* du, + lapack_complex_double* du2, lapack_int* ipiv ); + +lapack_int LAPACKE_sgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, + const float* d, const float* du, + const float* du2, const lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, + const double* d, const double* du, + const double* du2, const lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zhbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* q, lapack_int ldq, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + float* rwork, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_zhbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* q, lapack_int ldq, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_chbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* bb, lapack_int ldbb, + lapack_complex_float* x, lapack_int ldx, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* bb, + lapack_int ldbb, lapack_complex_double* x, + lapack_int ldx, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zhbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* bb, + lapack_int ldbb, lapack_complex_float* q, + lapack_int ldq, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* bb, + lapack_int ldbb, lapack_complex_double* q, + lapack_int ldq, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + float* d, float* e, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* work ); +lapack_int LAPACKE_zhbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + double* d, double* e, lapack_complex_double* q, + lapack_int ldq, lapack_complex_double* work ); + +lapack_int LAPACKE_checon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zhecon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_cheequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax, + lapack_complex_float* work ); +lapack_int LAPACKE_zheequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax, + lapack_complex_double* work ); + +lapack_int LAPACKE_cheev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* w, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zheev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* w, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_cheevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* w, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_zheevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* w, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_cheevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* isuppz, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_zheevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_int* isuppz, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_cheevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zheevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chegst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhegst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chegv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* w, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zhegv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* w, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_chegvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float* w, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhegvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* w, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chegvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhegvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_cherfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zherfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_cherfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* s, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zherfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chesv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zhesv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_chesvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zhesvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_chesvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zhesvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chetrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float* d, float* e, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zhetrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* d, double* e, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_chetrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* work, + lapack_int lwork ); +lapack_int LAPACKE_zhetrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* work, + lapack_int lwork ); + +lapack_int LAPACKE_chetri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zhetri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_chetrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zhetrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + float alpha, const lapack_complex_float* a, + lapack_int lda, float beta, + lapack_complex_float* c ); +lapack_int LAPACKE_zhfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + double alpha, const lapack_complex_double* a, + lapack_int lda, double beta, + lapack_complex_double* c ); + +lapack_int LAPACKE_shgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, float* h, lapack_int ldh, + float* t, lapack_int ldt, float* alphar, + float* alphai, float* beta, float* q, + lapack_int ldq, float* z, lapack_int ldz, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dhgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, double* h, lapack_int ldh, + double* t, lapack_int ldt, double* alphar, + double* alphai, double* beta, double* q, + lapack_int ldq, double* z, lapack_int ldz, + double* work, lapack_int lwork ); +lapack_int LAPACKE_chgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* h, + lapack_int ldh, lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zhgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* h, + lapack_int ldh, lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_chpcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zhpcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_chpev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* ap, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhpev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* ap, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chpevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* ap, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhpevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* ap, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chpevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_float* ap, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhpevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_double* ap, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chpgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* ap, + const lapack_complex_float* bp ); +lapack_int LAPACKE_zhpgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* ap, + const lapack_complex_double* bp ); + +lapack_int LAPACKE_chpgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhpgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_chpgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_zhpgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_chpgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* ap, + lapack_complex_float* bp, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhpgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* ap, + lapack_complex_double* bp, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_chpsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhpsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chpsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhpsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_chptrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, float* d, float* e, + lapack_complex_float* tau ); +lapack_int LAPACKE_zhptrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, double* d, double* e, + lapack_complex_double* tau ); + +lapack_int LAPACKE_chptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zhptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_chptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zhptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_chptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_shsein_work( int matrix_order, char job, char eigsrc, + char initv, lapack_logical* select, + lapack_int n, const float* h, lapack_int ldh, + float* wr, const float* wi, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, float* work, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_dhsein_work( int matrix_order, char job, char eigsrc, + char initv, lapack_logical* select, + lapack_int n, const double* h, lapack_int ldh, + double* wr, const double* wi, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, double* work, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_chsein_work( int matrix_order, char job, char eigsrc, + char initv, const lapack_logical* select, + lapack_int n, const lapack_complex_float* h, + lapack_int ldh, lapack_complex_float* w, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_float* work, float* rwork, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_zhsein_work( int matrix_order, char job, char eigsrc, + char initv, const lapack_logical* select, + lapack_int n, const lapack_complex_double* h, + lapack_int ldh, lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, double* rwork, + lapack_int* ifaill, lapack_int* ifailr ); + +lapack_int LAPACKE_shseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* h, lapack_int ldh, float* wr, float* wi, + float* z, lapack_int ldz, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dhseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* h, lapack_int ldh, double* wr, + double* wi, double* z, lapack_int ldz, + double* work, lapack_int lwork ); +lapack_int LAPACKE_chseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zhseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_clacgv_work( lapack_int n, lapack_complex_float* x, + lapack_int incx ); +lapack_int LAPACKE_zlacgv_work( lapack_int n, lapack_complex_double* x, + lapack_int incx ); + +lapack_int LAPACKE_slacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dlacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const double* a, lapack_int lda, + double* b, lapack_int ldb ); +lapack_int LAPACKE_clacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zlacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_zlag2c_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_float* sa, lapack_int ldsa ); + +lapack_int LAPACKE_slag2d_work( int matrix_order, lapack_int m, lapack_int n, + const float* sa, lapack_int ldsa, double* a, + lapack_int lda ); + +lapack_int LAPACKE_dlag2s_work( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, float* sa, + lapack_int ldsa ); + +lapack_int LAPACKE_clag2z_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* sa, lapack_int ldsa, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + float* a, lapack_int lda, lapack_int* iseed, + float* work ); +lapack_int LAPACKE_dlagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + double* a, lapack_int lda, lapack_int* iseed, + double* work ); +lapack_int LAPACKE_clagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + lapack_complex_float* a, lapack_int lda, + lapack_int* iseed, lapack_complex_float* work ); +lapack_int LAPACKE_zlagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + lapack_complex_double* a, lapack_int lda, + lapack_int* iseed, + lapack_complex_double* work ); + +lapack_int LAPACKE_claghe_work( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_float* work ); +lapack_int LAPACKE_zlaghe_work( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_double* work ); + +lapack_int LAPACKE_slagsy_work( int matrix_order, lapack_int n, lapack_int k, + const float* d, float* a, lapack_int lda, + lapack_int* iseed, float* work ); +lapack_int LAPACKE_dlagsy_work( int matrix_order, lapack_int n, lapack_int k, + const double* d, double* a, lapack_int lda, + lapack_int* iseed, double* work ); +lapack_int LAPACKE_clagsy_work( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_float* work ); +lapack_int LAPACKE_zlagsy_work( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_double* work ); + +lapack_int LAPACKE_slapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, float* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_dlapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, double* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_clapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, + lapack_complex_float* x, lapack_int ldx, + lapack_int* k ); +lapack_int LAPACKE_zlapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, + lapack_complex_double* x, lapack_int ldx, + lapack_int* k ); + +lapack_int LAPACKE_slartgp_work( float f, float g, float* cs, float* sn, + float* r ); +lapack_int LAPACKE_dlartgp_work( double f, double g, double* cs, double* sn, + double* r ); + +lapack_int LAPACKE_slartgs_work( float x, float y, float sigma, float* cs, + float* sn ); +lapack_int LAPACKE_dlartgs_work( double x, double y, double sigma, double* cs, + double* sn ); + +float LAPACKE_slapy2_work( float x, float y ); +double LAPACKE_dlapy2_work( double x, double y ); + +float LAPACKE_slapy3_work( float x, float y, float z ); +double LAPACKE_dlapy3_work( double x, double y, double z ); + +float LAPACKE_slamch_work( char cmach ); +double LAPACKE_dlamch_work( char cmach ); + +float LAPACKE_slange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const float* a, lapack_int lda, + float* work ); +double LAPACKE_dlange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const double* a, lapack_int lda, + double* work ); +float LAPACKE_clange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* work ); +double LAPACKE_zlange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* work ); + +float LAPACKE_clanhe_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* work ); +double LAPACKE_zlanhe_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* work ); + +float LAPACKE_slansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const float* a, lapack_int lda, + float* work ); +double LAPACKE_dlansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const double* a, lapack_int lda, + double* work ); +float LAPACKE_clansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* work ); +double LAPACKE_zlansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* work ); + +float LAPACKE_slantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, const float* a, + lapack_int lda, float* work ); +double LAPACKE_dlantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* work ); +float LAPACKE_clantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* work ); +double LAPACKE_zlantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* work ); + +lapack_int LAPACKE_slarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* c, lapack_int ldc, float* work, + lapack_int ldwork ); +lapack_int LAPACKE_dlarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, const double* v, + lapack_int ldv, const double* t, lapack_int ldt, + double* c, lapack_int ldc, double* work, + lapack_int ldwork ); +lapack_int LAPACKE_clarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int ldwork ); +lapack_int LAPACKE_zlarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, + lapack_int ldwork ); + +lapack_int LAPACKE_slarfg_work( lapack_int n, float* alpha, float* x, + lapack_int incx, float* tau ); +lapack_int LAPACKE_dlarfg_work( lapack_int n, double* alpha, double* x, + lapack_int incx, double* tau ); +lapack_int LAPACKE_clarfg_work( lapack_int n, lapack_complex_float* alpha, + lapack_complex_float* x, lapack_int incx, + lapack_complex_float* tau ); +lapack_int LAPACKE_zlarfg_work( lapack_int n, lapack_complex_double* alpha, + lapack_complex_double* x, lapack_int incx, + lapack_complex_double* tau ); + +lapack_int LAPACKE_slarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const float* v, + lapack_int ldv, const float* tau, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dlarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const double* v, + lapack_int ldv, const double* tau, double* t, + lapack_int ldt ); +lapack_int LAPACKE_clarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* tau, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zlarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* tau, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_slarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const float* v, float tau, + float* c, lapack_int ldc, float* work ); +lapack_int LAPACKE_dlarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const double* v, double tau, + double* c, lapack_int ldc, double* work ); +lapack_int LAPACKE_clarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_float* v, + lapack_complex_float tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work ); +lapack_int LAPACKE_zlarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_double* v, + lapack_complex_double tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work ); + +lapack_int LAPACKE_slarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, float* x ); +lapack_int LAPACKE_dlarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, double* x ); +lapack_int LAPACKE_clarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, lapack_complex_float* x ); +lapack_int LAPACKE_zlarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, lapack_complex_double* x ); + +lapack_int LAPACKE_slaset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, float alpha, float beta, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlaset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, double alpha, double beta, + double* a, lapack_int lda ); +lapack_int LAPACKE_claset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_float alpha, + lapack_complex_float beta, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlaset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_double alpha, + lapack_complex_double beta, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slasrt_work( char id, lapack_int n, float* d ); +lapack_int LAPACKE_dlasrt_work( char id, lapack_int n, double* d ); + +lapack_int LAPACKE_slaswp_work( int matrix_order, lapack_int n, float* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_dlaswp_work( int matrix_order, lapack_int n, double* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_claswp_work( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_zlaswp_work( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); + +lapack_int LAPACKE_slatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + float* d, lapack_int mode, float cond, + float dmax, lapack_int kl, lapack_int ku, + char pack, float* a, lapack_int lda, + float* work ); +lapack_int LAPACKE_dlatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + double* d, lapack_int mode, double cond, + double dmax, lapack_int kl, lapack_int ku, + char pack, double* a, lapack_int lda, + double* work ); +lapack_int LAPACKE_clatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + float* d, lapack_int mode, float cond, + float dmax, lapack_int kl, lapack_int ku, + char pack, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* work ); +lapack_int LAPACKE_zlatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + double* d, lapack_int mode, double cond, + double dmax, lapack_int kl, lapack_int ku, + char pack, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* work ); + +lapack_int LAPACKE_slauum_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dlauum_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_clauum_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlauum_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_sopgtr_work( int matrix_order, char uplo, lapack_int n, + const float* ap, const float* tau, float* q, + lapack_int ldq, float* work ); +lapack_int LAPACKE_dopgtr_work( int matrix_order, char uplo, lapack_int n, + const double* ap, const double* tau, double* q, + lapack_int ldq, double* work ); + +lapack_int LAPACKE_sopmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const float* ap, const float* tau, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dopmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const double* ap, const double* tau, double* c, + lapack_int ldc, double* work ); + +lapack_int LAPACKE_sorgbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, float* a, + lapack_int lda, const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, double* a, + lapack_int lda, const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgtr_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, const float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dorgtr_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, const double* tau, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_spbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dpbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, + lapack_int ldab, double anorm, double* rcond, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cpbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float anorm, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_dpbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, + lapack_int ldab, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_zpbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double* s, double* scond, + double* amax ); + +lapack_int LAPACKE_spbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, const float* afb, + lapack_int ldafb, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dpbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, + const double* afb, lapack_int ldafb, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cpbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, + lapack_int ldafb, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, + const lapack_complex_double* afb, + lapack_int ldafb, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, float* bb, lapack_int ldbb ); +lapack_int LAPACKE_dpbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, double* bb, lapack_int ldbb ); +lapack_int LAPACKE_cpbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_float* bb, + lapack_int ldbb ); +lapack_int LAPACKE_zpbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_double* bb, + lapack_int ldbb ); + +lapack_int LAPACKE_spbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + float* ab, lapack_int ldab, float* afb, + lapack_int ldafb, char* equed, float* s, + float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dpbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + double* ab, lapack_int ldab, double* afb, + lapack_int ldafb, char* equed, double* s, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork ); +lapack_int LAPACKE_cpbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* afb, lapack_int ldafb, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zpbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* afb, lapack_int ldafb, + char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab ); +lapack_int LAPACKE_dpbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab ); +lapack_int LAPACKE_cpbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab ); +lapack_int LAPACKE_zpbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab ); + +lapack_int LAPACKE_spbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_spftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftri_work( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftri_work( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftri_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftri_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const float* a, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const double* a, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cpftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spocon_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dpocon_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cpocon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpocon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spoequ_work( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequ_work( int matrix_order, lapack_int n, const double* a, + lapack_int lda, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpoequ_work( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequ_work( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_spoequb_work( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequb_work( int matrix_order, lapack_int n, + const double* a, lapack_int lda, double* s, + double* scond, double* amax ); +lapack_int LAPACKE_cpoequb_work( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequb_work( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_sporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, + lapack_int ldaf, const float* s, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const double* s, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const float* s, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* work, float* swork, + lapack_int* iter ); +lapack_int LAPACKE_zcposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_complex_double* work, + lapack_complex_float* swork, double* rwork, + lapack_int* iter ); + +lapack_int LAPACKE_sposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + char* equed, float* s, float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_spotrf_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dpotrf_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_cpotrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotri_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dpotri_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_cpotri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zpotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sppcon_work( int matrix_order, char uplo, lapack_int n, + const float* ap, float anorm, float* rcond, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dppcon_work( int matrix_order, char uplo, lapack_int n, + const double* ap, double anorm, double* rcond, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cppcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float anorm, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zppcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double anorm, + double* rcond, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sppequ_work( int matrix_order, char uplo, lapack_int n, + const float* ap, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dppequ_work( int matrix_order, char uplo, lapack_int n, + const double* ap, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cppequ_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float* s, + float* scond, float* amax ); +lapack_int LAPACKE_zppequ_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double* s, + double* scond, double* amax ); + +lapack_int LAPACKE_spprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const float* afp, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dpprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const double* afp, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cpprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* ap, + float* afp, char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* ap, + double* afp, char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* ap, + lapack_complex_float* afp, char* equed, + float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* ap, + lapack_complex_double* afp, char* equed, + double* s, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_spptrf_work( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptrf_work( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptri_work( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptri_work( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spstrf_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, lapack_int* piv, + lapack_int* rank, float tol, float* work ); +lapack_int LAPACKE_dpstrf_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, lapack_int* piv, + lapack_int* rank, double tol, double* work ); +lapack_int LAPACKE_cpstrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, float tol, + float* work ); +lapack_int LAPACKE_zpstrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, double tol, + double* work ); + +lapack_int LAPACKE_sptcon_work( lapack_int n, const float* d, const float* e, + float anorm, float* rcond, float* work ); +lapack_int LAPACKE_dptcon_work( lapack_int n, const double* d, const double* e, + double anorm, double* rcond, double* work ); +lapack_int LAPACKE_cptcon_work( lapack_int n, const float* d, + const lapack_complex_float* e, float anorm, + float* rcond, float* work ); +lapack_int LAPACKE_zptcon_work( lapack_int n, const double* d, + const lapack_complex_double* e, double anorm, + double* rcond, double* work ); + +lapack_int LAPACKE_spteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dpteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work ); +lapack_int LAPACKE_cpteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, lapack_complex_float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_zpteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_sptrfs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, const float* df, + const float* ef, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* ferr, + float* berr, float* work ); +lapack_int LAPACKE_dptrfs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, + const double* df, const double* ef, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work ); +lapack_int LAPACKE_cptrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, const float* df, + const lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zptrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, + const double* df, + const lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, float* e, float* b, lapack_int ldb ); +lapack_int LAPACKE_dptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, double* e, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, const float* e, + float* df, float* ef, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work ); +lapack_int LAPACKE_dptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, + const double* e, double* df, double* ef, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* work ); +lapack_int LAPACKE_cptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, float* df, + lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, double* df, + lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spttrf_work( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dpttrf_work( lapack_int n, double* d, double* e ); +lapack_int LAPACKE_cpttrf_work( lapack_int n, float* d, + lapack_complex_float* e ); +lapack_int LAPACKE_zpttrf_work( lapack_int n, double* d, + lapack_complex_double* e ); + +lapack_int LAPACKE_spttrs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpttrs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpttrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpttrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* w, float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_dsbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* w, double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_ssbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + float* ab, lapack_int ldab, float* q, + lapack_int ldq, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dsbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + double* ab, lapack_int ldab, double* q, + lapack_int ldq, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, double* work, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_ssbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, const float* bb, + lapack_int ldbb, float* x, lapack_int ldx, + float* work ); +lapack_int LAPACKE_dsbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, const double* bb, + lapack_int ldbb, double* x, lapack_int ldx, + double* work ); + +lapack_int LAPACKE_ssbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, float* bb, + lapack_int ldbb, float* w, float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_dsbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, double* bb, + lapack_int ldbb, double* w, double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_ssbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, float* bb, + lapack_int ldbb, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, double* bb, + lapack_int ldbb, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, float* ab, lapack_int ldab, + float* bb, lapack_int ldbb, float* q, + lapack_int ldq, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dsbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, double* ab, lapack_int ldab, + double* bb, lapack_int ldbb, double* q, + lapack_int ldq, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, double* work, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_ssbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* d, float* e, float* q, + lapack_int ldq, float* work ); +lapack_int LAPACKE_dsbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* d, double* e, + double* q, lapack_int ldq, double* work ); + +lapack_int LAPACKE_ssfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + float alpha, const float* a, lapack_int lda, + float beta, float* c ); +lapack_int LAPACKE_dsfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + double alpha, const double* a, lapack_int lda, + double beta, double* c ); + +lapack_int LAPACKE_sspcon_work( int matrix_order, char uplo, lapack_int n, + const float* ap, const lapack_int* ipiv, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dspcon_work( int matrix_order, char uplo, lapack_int n, + const double* ap, const lapack_int* ipiv, + double anorm, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cspcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zspcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_sspev_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* ap, float* w, float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_dspev_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* ap, double* w, double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_sspevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* ap, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dspevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* ap, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sspevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, float* ap, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dspevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, double* ap, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, double* work, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_sspgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* ap, const float* bp ); +lapack_int LAPACKE_dspgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* ap, const double* bp ); + +lapack_int LAPACKE_sspgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dspgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz, + double* work ); + +lapack_int LAPACKE_sspgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dspgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sspgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* ap, + float* bp, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, float* z, lapack_int ldz, float* work, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_dspgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* ap, + double* bp, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, double* z, lapack_int ldz, + double* work, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_ssprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const float* afp, const lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dsprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const double* afp, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_csprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zsprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const float* ap, + float* afp, lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const double* ap, + double* afp, lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_ssptrd_work( int matrix_order, char uplo, lapack_int n, + float* ap, float* d, float* e, float* tau ); +lapack_int LAPACKE_dsptrd_work( int matrix_order, char uplo, lapack_int n, + double* ap, double* d, double* e, double* tau ); + +lapack_int LAPACKE_ssptrf_work( int matrix_order, char uplo, lapack_int n, + float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_dsptrf_work( int matrix_order, char uplo, lapack_int n, + double* ap, lapack_int* ipiv ); +lapack_int LAPACKE_csptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zsptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_ssptri_work( int matrix_order, char uplo, lapack_int n, + float* ap, const lapack_int* ipiv, + float* work ); +lapack_int LAPACKE_dsptri_work( int matrix_order, char uplo, lapack_int n, + double* ap, const lapack_int* ipiv, + double* work ); +lapack_int LAPACKE_csptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zsptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_ssptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dsptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_csptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zsptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sstebz_work( char range, char order, lapack_int n, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, const float* d, const float* e, + lapack_int* m, lapack_int* nsplit, float* w, + lapack_int* iblock, lapack_int* isplit, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dstebz_work( char range, char order, lapack_int n, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, const double* d, const double* e, + lapack_int* m, lapack_int* nsplit, double* w, + lapack_int* iblock, lapack_int* isplit, + double* work, lapack_int* iwork ); + +lapack_int LAPACKE_sstedc_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dstedc_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_cstedc_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zstedc_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_sstegr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dstegr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, lapack_int* isuppz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_cstegr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zstegr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* isuppz, double* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_sstein_work( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, + const lapack_int* isplit, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifailv ); +lapack_int LAPACKE_dstein_work( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, + const lapack_int* isplit, double* z, + lapack_int ldz, double* work, lapack_int* iwork, + lapack_int* ifailv ); +lapack_int LAPACKE_cstein_work( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, + const lapack_int* isplit, + lapack_complex_float* z, lapack_int ldz, + float* work, lapack_int* iwork, + lapack_int* ifailv ); +lapack_int LAPACKE_zstein_work( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, + const lapack_int* isplit, + lapack_complex_double* z, lapack_int ldz, + double* work, lapack_int* iwork, + lapack_int* ifailv ); + +lapack_int LAPACKE_sstemr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int nzc, + lapack_int* isuppz, lapack_logical* tryrac, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dstemr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int nzc, + lapack_int* isuppz, lapack_logical* tryrac, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_cstemr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zstemr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac, double* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_ssteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dsteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work ); +lapack_int LAPACKE_csteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, lapack_complex_float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_zsteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_ssterf_work( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dsterf_work( lapack_int n, double* d, double* e ); + +lapack_int LAPACKE_sstev_work( int matrix_order, char jobz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dstev_work( int matrix_order, char jobz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work ); + +lapack_int LAPACKE_sstevd_work( int matrix_order, char jobz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dstevd_work( int matrix_order, char jobz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sstevr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dstevr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, lapack_int* isuppz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sstevx_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dstevx_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, double* work, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_ssycon_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dsycon_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_csycon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zsycon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_ssyequb_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* s, + float* scond, float* amax, float* work ); +lapack_int LAPACKE_dsyequb_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* s, + double* scond, double* amax, double* work ); +lapack_int LAPACKE_csyequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax, + lapack_complex_float* work ); +lapack_int LAPACKE_zsyequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax, + lapack_complex_double* work ); + +lapack_int LAPACKE_ssyev_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* a, lapack_int lda, float* w, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dsyev_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* a, lapack_int lda, + double* w, double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssyevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* a, lapack_int lda, + float* w, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsyevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* a, lapack_int lda, + double* w, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssyevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, float* a, + lapack_int lda, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dsyevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, double* a, + lapack_int lda, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssyevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, float* a, + lapack_int lda, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_dsyevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, double* a, + lapack_int lda, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_ssygst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* a, lapack_int lda, + const float* b, lapack_int ldb ); +lapack_int LAPACKE_dsygst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* a, lapack_int lda, + const double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssygv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* w, float* work, lapack_int lwork ); +lapack_int LAPACKE_dsygv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* w, double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssygvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* w, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsygvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* w, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssygvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, float* z, lapack_int ldz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dsygvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_ssyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dsyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_csyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zsyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_ssyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* s, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dsyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* s, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_csyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* s, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zsyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_ssysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + lapack_int* ipiv, float* b, lapack_int ldb, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dsysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + lapack_int* ipiv, double* b, lapack_int ldb, + double* work, lapack_int lwork ); +lapack_int LAPACKE_csysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zsysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dsysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_csysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zsysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_ssysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dsysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_csysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zsysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_ssytrd_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, float* d, float* e, + float* tau, float* work, lapack_int lwork ); +lapack_int LAPACKE_dsytrd_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, double* d, double* e, + double* tau, double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssytrf_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dsytrf_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv, + double* work, lapack_int lwork ); +lapack_int LAPACKE_csytrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* work, + lapack_int lwork ); +lapack_int LAPACKE_zsytrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* work, + lapack_int lwork ); + +lapack_int LAPACKE_ssytri_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, + const lapack_int* ipiv, float* work ); +lapack_int LAPACKE_dsytri_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, + const lapack_int* ipiv, double* work ); +lapack_int LAPACKE_csytri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zsytri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_ssytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dsytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_csytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zsytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const float* ab, lapack_int ldab, float* rcond, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const double* ab, lapack_int ldab, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const lapack_complex_float* ab, lapack_int ldab, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_ztbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const lapack_complex_double* ab, + lapack_int ldab, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const float* ab, + lapack_int ldab, const float* b, lapack_int ldb, + const float* x, lapack_int ldx, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const double* ab, + lapack_int ldab, const double* b, + lapack_int ldb, const double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const lapack_complex_float* ab, + lapack_int ldab, const lapack_complex_float* b, + lapack_int ldb, const lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, const lapack_complex_double* b, + lapack_int ldb, const lapack_complex_double* x, + lapack_int ldx, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dtbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_ctbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_ztbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_stfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, float alpha, const float* a, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dtfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, double alpha, const double* a, + double* b, lapack_int ldb ); +lapack_int LAPACKE_ctfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, lapack_complex_float alpha, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, lapack_complex_double alpha, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, float* a ); +lapack_int LAPACKE_dtftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, double* a ); +lapack_int LAPACKE_ctftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, + lapack_complex_float* a ); +lapack_int LAPACKE_ztftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, + lapack_complex_double* a ); + +lapack_int LAPACKE_stfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* ap ); +lapack_int LAPACKE_dtfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* ap ); +lapack_int LAPACKE_ctfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* a, + lapack_int lda ); +lapack_int LAPACKE_dtfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* a, + lapack_int lda ); +lapack_int LAPACKE_ctfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_stgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const float* s, lapack_int lds, const float* p, + lapack_int ldp, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m, float* work ); +lapack_int LAPACKE_dtgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const double* s, lapack_int lds, + const double* p, lapack_int ldp, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, double* work ); +lapack_int LAPACKE_ctgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* s, lapack_int lds, + const lapack_complex_float* p, lapack_int ldp, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* s, lapack_int lds, + const lapack_complex_double* p, lapack_int ldp, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* q, lapack_int ldq, float* z, + lapack_int ldz, lapack_int* ifst, + lapack_int* ilst, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dtgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* q, lapack_int ldq, double* z, + lapack_int ldz, lapack_int* ifst, + lapack_int* ilst, double* work, + lapack_int lwork ); +lapack_int LAPACKE_ctgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_stgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* alphar, float* alphai, + float* beta, float* q, lapack_int ldq, float* z, + lapack_int ldz, lapack_int* m, float* pl, + float* pr, float* dif, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dtgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* alphar, double* alphai, + double* beta, double* q, lapack_int ldq, + double* z, lapack_int ldz, lapack_int* m, + double* pl, double* pr, double* dif, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_ctgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_int* m, float* pl, float* pr, float* dif, + lapack_complex_float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_ztgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int* m, double* pl, double* pr, + double* dif, lapack_complex_double* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_stgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + float* a, lapack_int lda, float* b, + lapack_int ldb, float tola, float tolb, + float* alpha, float* beta, float* u, + lapack_int ldu, float* v, lapack_int ldv, + float* q, lapack_int ldq, float* work, + lapack_int* ncycle ); +lapack_int LAPACKE_dtgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + double* a, lapack_int lda, double* b, + lapack_int ldb, double tola, double tolb, + double* alpha, double* beta, double* u, + lapack_int ldu, double* v, lapack_int ldv, + double* q, lapack_int ldq, double* work, + lapack_int* ncycle ); +lapack_int LAPACKE_ctgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float tola, float tolb, float* alpha, + float* beta, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* v, + lapack_int ldv, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* work, + lapack_int* ncycle ); +lapack_int LAPACKE_ztgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double tola, double tolb, double* alpha, + double* beta, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* v, + lapack_int ldv, lapack_complex_double* q, + lapack_int ldq, lapack_complex_double* work, + lapack_int* ncycle ); + +lapack_int LAPACKE_stgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, const float* vl, + lapack_int ldvl, const float* vr, + lapack_int ldvr, float* s, float* dif, + lapack_int mm, lapack_int* m, float* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_dtgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* a, lapack_int lda, + const double* b, lapack_int ldb, + const double* vl, lapack_int ldvl, + const double* vr, lapack_int ldvr, double* s, + double* dif, lapack_int mm, lapack_int* m, + double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ctgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* dif, lapack_int mm, + lapack_int* m, lapack_complex_float* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_ztgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* vl, + lapack_int ldvl, + const lapack_complex_double* vr, + lapack_int ldvr, double* s, double* dif, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, lapack_int lwork, + lapack_int* iwork ); + +lapack_int LAPACKE_stgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const float* a, + lapack_int lda, const float* b, lapack_int ldb, + float* c, lapack_int ldc, const float* d, + lapack_int ldd, const float* e, lapack_int lde, + float* f, lapack_int ldf, float* scale, + float* dif, float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dtgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const double* a, + lapack_int lda, const double* b, lapack_int ldb, + double* c, lapack_int ldc, const double* d, + lapack_int ldd, const double* e, lapack_int lde, + double* f, lapack_int ldf, double* scale, + double* dif, double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ctgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + const lapack_complex_float* d, lapack_int ldd, + const lapack_complex_float* e, lapack_int lde, + lapack_complex_float* f, lapack_int ldf, + float* scale, float* dif, + lapack_complex_float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ztgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + const lapack_complex_double* d, lapack_int ldd, + const lapack_complex_double* e, lapack_int lde, + lapack_complex_double* f, lapack_int ldf, + double* scale, double* dif, + lapack_complex_double* work, lapack_int lwork, + lapack_int* iwork ); + +lapack_int LAPACKE_stpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const float* ap, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const double* ap, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_float* ap, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_double* ap, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* ap, const float* b, lapack_int ldb, + const float* x, lapack_int ldx, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* ap, const double* b, + lapack_int ldb, const double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stptri_work( int matrix_order, char uplo, char diag, + lapack_int n, float* ap ); +lapack_int LAPACKE_dtptri_work( int matrix_order, char uplo, char diag, + lapack_int n, double* ap ); +lapack_int LAPACKE_ctptri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_float* ap ); +lapack_int LAPACKE_ztptri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_double* ap ); + +lapack_int LAPACKE_stptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* ap, float* b, lapack_int ldb ); +lapack_int LAPACKE_dtptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* ap, double* b, lapack_int ldb ); +lapack_int LAPACKE_ctptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* ap, float* arf ); +lapack_int LAPACKE_dtpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* ap, double* arf ); +lapack_int LAPACKE_ctpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* ap, + lapack_complex_float* arf ); +lapack_int LAPACKE_ztpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* ap, + lapack_complex_double* arf ); + +lapack_int LAPACKE_stpttr_work( int matrix_order, char uplo, lapack_int n, + const float* ap, float* a, lapack_int lda ); +lapack_int LAPACKE_dtpttr_work( int matrix_order, char uplo, lapack_int n, + const double* ap, double* a, lapack_int lda ); +lapack_int LAPACKE_ctpttr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztpttr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_strcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const float* a, + lapack_int lda, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dtrcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const double* a, + lapack_int lda, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctrcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_ztrcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* rcond, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_strevc_work( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, + const float* t, lapack_int ldt, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, float* work ); +lapack_int LAPACKE_dtrevc_work( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, double* work ); +lapack_int LAPACKE_ctrevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztrevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_strexc_work( int matrix_order, char compq, lapack_int n, + float* t, lapack_int ldt, float* q, + lapack_int ldq, lapack_int* ifst, + lapack_int* ilst, float* work ); +lapack_int LAPACKE_dtrexc_work( int matrix_order, char compq, lapack_int n, + double* t, lapack_int ldt, double* q, + lapack_int ldq, lapack_int* ifst, + lapack_int* ilst, double* work ); +lapack_int LAPACKE_ctrexc_work( int matrix_order, char compq, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztrexc_work( int matrix_order, char compq, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_strrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, const float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dtrrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* a, lapack_int lda, + const double* b, lapack_int ldb, + const double* x, lapack_int ldx, double* ferr, + double* berr, double* work, lapack_int* iwork ); +lapack_int LAPACKE_ctrrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztrrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_strsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + float* t, lapack_int ldt, float* q, + lapack_int ldq, float* wr, float* wi, + lapack_int* m, float* s, float* sep, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dtrsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + double* t, lapack_int ldt, double* q, + lapack_int ldq, double* wr, double* wi, + lapack_int* m, double* s, double* sep, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_ctrsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* w, lapack_int* m, + float* s, float* sep, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_ztrsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* w, lapack_int* m, + double* s, double* sep, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_strsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* t, lapack_int ldt, const float* vl, + lapack_int ldvl, const float* vr, + lapack_int ldvr, float* s, float* sep, + lapack_int mm, lapack_int* m, float* work, + lapack_int ldwork, lapack_int* iwork ); +lapack_int LAPACKE_dtrsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, + const double* vl, lapack_int ldvl, + const double* vr, lapack_int ldvr, double* s, + double* sep, lapack_int mm, lapack_int* m, + double* work, lapack_int ldwork, + lapack_int* iwork ); +lapack_int LAPACKE_ctrsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* t, lapack_int ldt, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* sep, lapack_int mm, + lapack_int* m, lapack_complex_float* work, + lapack_int ldwork, float* rwork ); +lapack_int LAPACKE_ztrsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* t, lapack_int ldt, + const lapack_complex_double* vl, + lapack_int ldvl, + const lapack_complex_double* vr, + lapack_int ldvr, double* s, double* sep, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, lapack_int ldwork, + double* rwork ); + +lapack_int LAPACKE_strsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_dtrsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const double* a, lapack_int lda, + const double* b, lapack_int ldb, double* c, + lapack_int ldc, double* scale ); +lapack_int LAPACKE_ctrsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_ztrsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + double* scale ); + +lapack_int LAPACKE_strtri_work( int matrix_order, char uplo, char diag, + lapack_int n, float* a, lapack_int lda ); +lapack_int LAPACKE_dtrtri_work( int matrix_order, char uplo, char diag, + lapack_int n, double* a, lapack_int lda ); +lapack_int LAPACKE_ctrtri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_float* a, + lapack_int lda ); +lapack_int LAPACKE_ztrtri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_double* a, + lapack_int lda ); + +lapack_int LAPACKE_strtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtrtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctrtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztrtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_strttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* a, lapack_int lda, + float* arf ); +lapack_int LAPACKE_dtrttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* a, lapack_int lda, + double* arf ); +lapack_int LAPACKE_ctrttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* arf ); +lapack_int LAPACKE_ztrttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* arf ); + +lapack_int LAPACKE_strttp_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* ap ); +lapack_int LAPACKE_dtrttp_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* ap ); +lapack_int LAPACKE_ctrttp_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztrttp_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stzrzf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dtzrzf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_ctzrzf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_ztzrzf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, + lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, + lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungtr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungtr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cupgtr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* work ); +lapack_int LAPACKE_zupgtr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* work ); + +lapack_int LAPACKE_cupmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work ); +lapack_int LAPACKE_zupmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work ); + +lapack_int LAPACKE_claghe( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_zlaghe( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed ); + +lapack_int LAPACKE_slagsy( int matrix_order, lapack_int n, lapack_int k, + const float* d, float* a, lapack_int lda, + lapack_int* iseed ); +lapack_int LAPACKE_dlagsy( int matrix_order, lapack_int n, lapack_int k, + const double* d, double* a, lapack_int lda, + lapack_int* iseed ); +lapack_int LAPACKE_clagsy( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_zlagsy( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed ); + +lapack_int LAPACKE_slapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, float* x, lapack_int ldx, + lapack_int* k ); +lapack_int LAPACKE_dlapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, double* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_clapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, lapack_complex_float* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_zlapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, lapack_complex_double* x, + lapack_int ldx, lapack_int* k ); + + +float LAPACKE_slapy2( float x, float y ); +double LAPACKE_dlapy2( double x, double y ); + +float LAPACKE_slapy3( float x, float y, float z ); +double LAPACKE_dlapy3( double x, double y, double z ); + +lapack_int LAPACKE_slartgp( float f, float g, float* cs, float* sn, float* r ); +lapack_int LAPACKE_dlartgp( double f, double g, double* cs, double* sn, + double* r ); + +lapack_int LAPACKE_slartgs( float x, float y, float sigma, float* cs, + float* sn ); +lapack_int LAPACKE_dlartgs( double x, double y, double sigma, double* cs, + double* sn ); + + +//LAPACK 3.3.0 +lapack_int LAPACKE_cbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, float* theta, float* phi, + lapack_complex_float* u1, lapack_int ldu1, + lapack_complex_float* u2, lapack_int ldu2, + lapack_complex_float* v1t, lapack_int ldv1t, + lapack_complex_float* v2t, lapack_int ldv2t, + float* b11d, float* b11e, float* b12d, float* b12e, + float* b21d, float* b21e, float* b22d, float* b22e ); +lapack_int LAPACKE_cbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + float* theta, float* phi, + lapack_complex_float* u1, lapack_int ldu1, + lapack_complex_float* u2, lapack_int ldu2, + lapack_complex_float* v1t, lapack_int ldv1t, + lapack_complex_float* v2t, lapack_int ldv2t, + float* b11d, float* b11e, float* b12d, + float* b12e, float* b21d, float* b21e, + float* b22d, float* b22e, float* rwork, + lapack_int lrwork ); +lapack_int LAPACKE_cheswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_cheswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_chetri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_chetri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_chetri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_chetri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int nb ); +lapack_int LAPACKE_chetrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_chetrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work ); +lapack_int LAPACKE_csyconv( int matrix_order, char uplo, char way, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_csyconv_work( int matrix_order, char uplo, char way, + lapack_int n, lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_csyswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_csyswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_csytri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_csytri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_csytri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_csytri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int nb ); +lapack_int LAPACKE_csytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_csytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work ); +lapack_int LAPACKE_cunbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_float* x11, lapack_int ldx11, + lapack_complex_float* x12, lapack_int ldx12, + lapack_complex_float* x21, lapack_int ldx21, + lapack_complex_float* x22, lapack_int ldx22, + float* theta, float* phi, + lapack_complex_float* taup1, + lapack_complex_float* taup2, + lapack_complex_float* tauq1, + lapack_complex_float* tauq2 ); +lapack_int LAPACKE_cunbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_float* x11, lapack_int ldx11, + lapack_complex_float* x12, lapack_int ldx12, + lapack_complex_float* x21, lapack_int ldx21, + lapack_complex_float* x22, lapack_int ldx22, + float* theta, float* phi, + lapack_complex_float* taup1, + lapack_complex_float* taup2, + lapack_complex_float* tauq1, + lapack_complex_float* tauq2, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_cuncsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_float* x11, lapack_int ldx11, + lapack_complex_float* x12, lapack_int ldx12, + lapack_complex_float* x21, lapack_int ldx21, + lapack_complex_float* x22, lapack_int ldx22, + float* theta, lapack_complex_float* u1, + lapack_int ldu1, lapack_complex_float* u2, + lapack_int ldu2, lapack_complex_float* v1t, + lapack_int ldv1t, lapack_complex_float* v2t, + lapack_int ldv2t ); +lapack_int LAPACKE_cuncsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, lapack_complex_float* x11, + lapack_int ldx11, lapack_complex_float* x12, + lapack_int ldx12, lapack_complex_float* x21, + lapack_int ldx21, lapack_complex_float* x22, + lapack_int ldx22, float* theta, + lapack_complex_float* u1, lapack_int ldu1, + lapack_complex_float* u2, lapack_int ldu2, + lapack_complex_float* v1t, lapack_int ldv1t, + lapack_complex_float* v2t, lapack_int ldv2t, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork ); +lapack_int LAPACKE_dbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, double* theta, + double* phi, double* u1, lapack_int ldu1, double* u2, + lapack_int ldu2, double* v1t, lapack_int ldv1t, + double* v2t, lapack_int ldv2t, double* b11d, + double* b11e, double* b12d, double* b12e, + double* b21d, double* b21e, double* b22d, + double* b22e ); +lapack_int LAPACKE_dbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + double* theta, double* phi, double* u1, + lapack_int ldu1, double* u2, lapack_int ldu2, + double* v1t, lapack_int ldv1t, double* v2t, + lapack_int ldv2t, double* b11d, double* b11e, + double* b12d, double* b12e, double* b21d, + double* b21e, double* b22d, double* b22e, + double* work, lapack_int lwork ); +lapack_int LAPACKE_dorbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + double* x11, lapack_int ldx11, double* x12, + lapack_int ldx12, double* x21, lapack_int ldx21, + double* x22, lapack_int ldx22, double* theta, + double* phi, double* taup1, double* taup2, + double* tauq1, double* tauq2 ); +lapack_int LAPACKE_dorbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + double* x11, lapack_int ldx11, double* x12, + lapack_int ldx12, double* x21, lapack_int ldx21, + double* x22, lapack_int ldx22, double* theta, + double* phi, double* taup1, double* taup2, + double* tauq1, double* tauq2, double* work, + lapack_int lwork ); +lapack_int LAPACKE_dorcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + double* x11, lapack_int ldx11, double* x12, + lapack_int ldx12, double* x21, lapack_int ldx21, + double* x22, lapack_int ldx22, double* theta, + double* u1, lapack_int ldu1, double* u2, + lapack_int ldu2, double* v1t, lapack_int ldv1t, + double* v2t, lapack_int ldv2t ); +lapack_int LAPACKE_dorcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, double* x11, lapack_int ldx11, + double* x12, lapack_int ldx12, double* x21, + lapack_int ldx21, double* x22, lapack_int ldx22, + double* theta, double* u1, lapack_int ldu1, + double* u2, lapack_int ldu2, double* v1t, + lapack_int ldv1t, double* v2t, lapack_int ldv2t, + double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dsyconv( int matrix_order, char uplo, char way, lapack_int n, + double* a, lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dsyconv_work( int matrix_order, char uplo, char way, + lapack_int n, double* a, lapack_int lda, + const lapack_int* ipiv, double* work ); +lapack_int LAPACKE_dsyswapr( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_dsyswapr_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_dsytri2( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dsytri2_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_dsytri2x( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, const lapack_int* ipiv, + lapack_int nb ); +lapack_int LAPACKE_dsytri2x_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, + const lapack_int* ipiv, double* work, + lapack_int nb ); +lapack_int LAPACKE_dsytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_dsytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const lapack_int* ipiv, + double* b, lapack_int ldb, double* work ); +lapack_int LAPACKE_sbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, float* theta, float* phi, + float* u1, lapack_int ldu1, float* u2, + lapack_int ldu2, float* v1t, lapack_int ldv1t, + float* v2t, lapack_int ldv2t, float* b11d, + float* b11e, float* b12d, float* b12e, float* b21d, + float* b21e, float* b22d, float* b22e ); +lapack_int LAPACKE_sbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + float* theta, float* phi, float* u1, + lapack_int ldu1, float* u2, lapack_int ldu2, + float* v1t, lapack_int ldv1t, float* v2t, + lapack_int ldv2t, float* b11d, float* b11e, + float* b12d, float* b12e, float* b21d, + float* b21e, float* b22d, float* b22e, + float* work, lapack_int lwork ); +lapack_int LAPACKE_sorbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, float* x11, + lapack_int ldx11, float* x12, lapack_int ldx12, + float* x21, lapack_int ldx21, float* x22, + lapack_int ldx22, float* theta, float* phi, + float* taup1, float* taup2, float* tauq1, + float* tauq2 ); +lapack_int LAPACKE_sorbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + float* x11, lapack_int ldx11, float* x12, + lapack_int ldx12, float* x21, lapack_int ldx21, + float* x22, lapack_int ldx22, float* theta, + float* phi, float* taup1, float* taup2, + float* tauq1, float* tauq2, float* work, + lapack_int lwork ); +lapack_int LAPACKE_sorcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, float* x11, + lapack_int ldx11, float* x12, lapack_int ldx12, + float* x21, lapack_int ldx21, float* x22, + lapack_int ldx22, float* theta, float* u1, + lapack_int ldu1, float* u2, lapack_int ldu2, + float* v1t, lapack_int ldv1t, float* v2t, + lapack_int ldv2t ); +lapack_int LAPACKE_sorcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, float* x11, lapack_int ldx11, + float* x12, lapack_int ldx12, float* x21, + lapack_int ldx21, float* x22, lapack_int ldx22, + float* theta, float* u1, lapack_int ldu1, + float* u2, lapack_int ldu2, float* v1t, + lapack_int ldv1t, float* v2t, lapack_int ldv2t, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ssyconv( int matrix_order, char uplo, char way, lapack_int n, + float* a, lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_ssyconv_work( int matrix_order, char uplo, char way, + lapack_int n, float* a, lapack_int lda, + const lapack_int* ipiv, float* work ); +lapack_int LAPACKE_ssyswapr( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_ssyswapr_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_ssytri2( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_ssytri2_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_ssytri2x( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, const lapack_int* ipiv, + lapack_int nb ); +lapack_int LAPACKE_ssytri2x_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, + const lapack_int* ipiv, float* work, + lapack_int nb ); +lapack_int LAPACKE_ssytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_ssytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, + lapack_int lda, const lapack_int* ipiv, + float* b, lapack_int ldb, float* work ); +lapack_int LAPACKE_zbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, double* theta, + double* phi, lapack_complex_double* u1, + lapack_int ldu1, lapack_complex_double* u2, + lapack_int ldu2, lapack_complex_double* v1t, + lapack_int ldv1t, lapack_complex_double* v2t, + lapack_int ldv2t, double* b11d, double* b11e, + double* b12d, double* b12e, double* b21d, + double* b21e, double* b22d, double* b22e ); +lapack_int LAPACKE_zbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + double* theta, double* phi, + lapack_complex_double* u1, lapack_int ldu1, + lapack_complex_double* u2, lapack_int ldu2, + lapack_complex_double* v1t, lapack_int ldv1t, + lapack_complex_double* v2t, lapack_int ldv2t, + double* b11d, double* b11e, double* b12d, + double* b12e, double* b21d, double* b21e, + double* b22d, double* b22e, double* rwork, + lapack_int lrwork ); +lapack_int LAPACKE_zheswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zheswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zhetri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zhetri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_zhetri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_zhetri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int nb ); +lapack_int LAPACKE_zhetrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); +lapack_int LAPACKE_zhetrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work ); +lapack_int LAPACKE_zsyconv( int matrix_order, char uplo, char way, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zsyconv_work( int matrix_order, char uplo, char way, + lapack_int n, lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* work ); +lapack_int LAPACKE_zsyswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zsyswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zsytri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zsytri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_zsytri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_zsytri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int nb ); +lapack_int LAPACKE_zsytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); +lapack_int LAPACKE_zsytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work ); +lapack_int LAPACKE_zunbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_double* x11, lapack_int ldx11, + lapack_complex_double* x12, lapack_int ldx12, + lapack_complex_double* x21, lapack_int ldx21, + lapack_complex_double* x22, lapack_int ldx22, + double* theta, double* phi, + lapack_complex_double* taup1, + lapack_complex_double* taup2, + lapack_complex_double* tauq1, + lapack_complex_double* tauq2 ); +lapack_int LAPACKE_zunbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_double* x11, lapack_int ldx11, + lapack_complex_double* x12, lapack_int ldx12, + lapack_complex_double* x21, lapack_int ldx21, + lapack_complex_double* x22, lapack_int ldx22, + double* theta, double* phi, + lapack_complex_double* taup1, + lapack_complex_double* taup2, + lapack_complex_double* tauq1, + lapack_complex_double* tauq2, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_zuncsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_double* x11, lapack_int ldx11, + lapack_complex_double* x12, lapack_int ldx12, + lapack_complex_double* x21, lapack_int ldx21, + lapack_complex_double* x22, lapack_int ldx22, + double* theta, lapack_complex_double* u1, + lapack_int ldu1, lapack_complex_double* u2, + lapack_int ldu2, lapack_complex_double* v1t, + lapack_int ldv1t, lapack_complex_double* v2t, + lapack_int ldv2t ); +lapack_int LAPACKE_zuncsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, lapack_complex_double* x11, + lapack_int ldx11, lapack_complex_double* x12, + lapack_int ldx12, lapack_complex_double* x21, + lapack_int ldx21, lapack_complex_double* x22, + lapack_int ldx22, double* theta, + lapack_complex_double* u1, lapack_int ldu1, + lapack_complex_double* u2, lapack_int ldu2, + lapack_complex_double* v1t, lapack_int ldv1t, + lapack_complex_double* v2t, lapack_int ldv2t, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork ); +//LAPACK 3.4.0 +lapack_int LAPACKE_sgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const float* v, lapack_int ldv, + const float* t, lapack_int ldt, float* c, + lapack_int ldc ); +lapack_int LAPACKE_dgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* c, + lapack_int ldc ); +lapack_int LAPACKE_cgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_float* v, + lapack_int ldv, const lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* c, + lapack_int ldc ); +lapack_int LAPACKE_zgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_double* v, + lapack_int ldv, const lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* c, + lapack_int ldc ); + +lapack_int LAPACKE_sgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* t, + lapack_int ldt ); +lapack_int LAPACKE_zgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* t, + lapack_int ldt ); + +lapack_int LAPACKE_sgeqrt2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_sgeqrt3( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt3( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const double* v, + lapack_int ldv, const double* t, lapack_int ldt, + double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_dtpqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, double* a, + lapack_int lda, double* b, lapack_int ldb, double* t, + lapack_int ldt ); +lapack_int LAPACKE_ctpqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* t, + lapack_complex_float* b, lapack_int ldb, + lapack_int ldt ); +lapack_int LAPACKE_ztpqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stpqrt2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* b, lapack_int ldb, + float* t, lapack_int ldt ); +lapack_int LAPACKE_dtpqrt2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* t, lapack_int ldt ); +lapack_int LAPACKE_ctpqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_ztpqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* a, lapack_int lda, float* b, lapack_int ldb, + lapack_int myldwork ); +lapack_int LAPACKE_dtprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, const double* v, + lapack_int ldv, const double* t, lapack_int ldt, + double* a, lapack_int lda, double* b, lapack_int ldb, + lapack_int myldwork ); +lapack_int LAPACKE_ctprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int myldwork ); +lapack_int LAPACKE_ztprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int myldwork ); + +lapack_int LAPACKE_sgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const float* v, lapack_int ldv, + const float* t, lapack_int ldt, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* c, + lapack_int ldc, double* work ); +lapack_int LAPACKE_cgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_float* v, + lapack_int ldv, const lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* c, + lapack_int ldc, lapack_complex_float* work ); +lapack_int LAPACKE_zgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_double* v, + lapack_int ldv, const lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* c, + lapack_int ldc, lapack_complex_double* work ); + +lapack_int LAPACKE_sgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, float* a, lapack_int lda, + float* t, lapack_int ldt, float* work ); +lapack_int LAPACKE_dgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, double* a, lapack_int lda, + double* t, lapack_int ldt, double* work ); +lapack_int LAPACKE_cgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* work ); +lapack_int LAPACKE_zgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* work ); + +lapack_int LAPACKE_sgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_sgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* work ); +lapack_int LAPACKE_dtpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const double* v, + lapack_int ldv, const double* t, + lapack_int ldt, double* a, lapack_int lda, + double* b, lapack_int ldb, double* work ); +lapack_int LAPACKE_ctpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work ); +lapack_int LAPACKE_ztpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work ); + +lapack_int LAPACKE_dtpqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* t, lapack_int ldt, double* work ); +lapack_int LAPACKE_ctpqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, + lapack_complex_float* b, lapack_int ldb, + lapack_int ldt, lapack_complex_float* work ); +lapack_int LAPACKE_ztpqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* work ); + +lapack_int LAPACKE_stpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* t, lapack_int ldt ); +lapack_int LAPACKE_dtpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* t, lapack_int ldt ); +lapack_int LAPACKE_ctpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_ztpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const float* v, lapack_int ldv, const float* t, + lapack_int ldt, float* a, lapack_int lda, + float* b, lapack_int ldb, const float* mywork, + lapack_int myldwork ); +lapack_int LAPACKE_dtprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* a, + lapack_int lda, double* b, lapack_int ldb, + const double* mywork, lapack_int myldwork ); +lapack_int LAPACKE_ctprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + const float* mywork, lapack_int myldwork ); +lapack_int LAPACKE_ztprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + const double* mywork, lapack_int myldwork ); +//LAPACK 3.X.X +lapack_int LAPACKE_csyr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float alpha, + const lapack_complex_float* x, lapack_int incx, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zsyr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double alpha, + const lapack_complex_double* x, lapack_int incx, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_csyr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float alpha, + const lapack_complex_float* x, + lapack_int incx, lapack_complex_float* a, + lapack_int lda ); +lapack_int LAPACKE_zsyr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double alpha, + const lapack_complex_double* x, + lapack_int incx, lapack_complex_double* a, + lapack_int lda ); + + + +#define LAPACK_sgetrf LAPACK_GLOBAL(sgetrf,SGETRF) +#define LAPACK_dgetrf LAPACK_GLOBAL(dgetrf,DGETRF) +#define LAPACK_cgetrf LAPACK_GLOBAL(cgetrf,CGETRF) +#define LAPACK_zgetrf LAPACK_GLOBAL(zgetrf,ZGETRF) +#define LAPACK_sgbtrf LAPACK_GLOBAL(sgbtrf,SGBTRF) +#define LAPACK_dgbtrf LAPACK_GLOBAL(dgbtrf,DGBTRF) +#define LAPACK_cgbtrf LAPACK_GLOBAL(cgbtrf,CGBTRF) +#define LAPACK_zgbtrf LAPACK_GLOBAL(zgbtrf,ZGBTRF) +#define LAPACK_sgttrf LAPACK_GLOBAL(sgttrf,SGTTRF) +#define LAPACK_dgttrf LAPACK_GLOBAL(dgttrf,DGTTRF) +#define LAPACK_cgttrf LAPACK_GLOBAL(cgttrf,CGTTRF) +#define LAPACK_zgttrf LAPACK_GLOBAL(zgttrf,ZGTTRF) +#define LAPACK_spotrf LAPACK_GLOBAL(spotrf,SPOTRF) +#define LAPACK_dpotrf LAPACK_GLOBAL(dpotrf,DPOTRF) +#define LAPACK_cpotrf LAPACK_GLOBAL(cpotrf,CPOTRF) +#define LAPACK_zpotrf LAPACK_GLOBAL(zpotrf,ZPOTRF) +#define LAPACK_dpstrf LAPACK_GLOBAL(dpstrf,DPSTRF) +#define LAPACK_spstrf LAPACK_GLOBAL(spstrf,SPSTRF) +#define LAPACK_zpstrf LAPACK_GLOBAL(zpstrf,ZPSTRF) +#define LAPACK_cpstrf LAPACK_GLOBAL(cpstrf,CPSTRF) +#define LAPACK_dpftrf LAPACK_GLOBAL(dpftrf,DPFTRF) +#define LAPACK_spftrf LAPACK_GLOBAL(spftrf,SPFTRF) +#define LAPACK_zpftrf LAPACK_GLOBAL(zpftrf,ZPFTRF) +#define LAPACK_cpftrf LAPACK_GLOBAL(cpftrf,CPFTRF) +#define LAPACK_spptrf LAPACK_GLOBAL(spptrf,SPPTRF) +#define LAPACK_dpptrf LAPACK_GLOBAL(dpptrf,DPPTRF) +#define LAPACK_cpptrf LAPACK_GLOBAL(cpptrf,CPPTRF) +#define LAPACK_zpptrf LAPACK_GLOBAL(zpptrf,ZPPTRF) +#define LAPACK_spbtrf LAPACK_GLOBAL(spbtrf,SPBTRF) +#define LAPACK_dpbtrf LAPACK_GLOBAL(dpbtrf,DPBTRF) +#define LAPACK_cpbtrf LAPACK_GLOBAL(cpbtrf,CPBTRF) +#define LAPACK_zpbtrf LAPACK_GLOBAL(zpbtrf,ZPBTRF) +#define LAPACK_spttrf LAPACK_GLOBAL(spttrf,SPTTRF) +#define LAPACK_dpttrf LAPACK_GLOBAL(dpttrf,DPTTRF) +#define LAPACK_cpttrf LAPACK_GLOBAL(cpttrf,CPTTRF) +#define LAPACK_zpttrf LAPACK_GLOBAL(zpttrf,ZPTTRF) +#define LAPACK_ssytrf LAPACK_GLOBAL(ssytrf,SSYTRF) +#define LAPACK_dsytrf LAPACK_GLOBAL(dsytrf,DSYTRF) +#define LAPACK_csytrf LAPACK_GLOBAL(csytrf,CSYTRF) +#define LAPACK_zsytrf LAPACK_GLOBAL(zsytrf,ZSYTRF) +#define LAPACK_chetrf LAPACK_GLOBAL(chetrf,CHETRF) +#define LAPACK_zhetrf LAPACK_GLOBAL(zhetrf,ZHETRF) +#define LAPACK_ssptrf LAPACK_GLOBAL(ssptrf,SSPTRF) +#define LAPACK_dsptrf LAPACK_GLOBAL(dsptrf,DSPTRF) +#define LAPACK_csptrf LAPACK_GLOBAL(csptrf,CSPTRF) +#define LAPACK_zsptrf LAPACK_GLOBAL(zsptrf,ZSPTRF) +#define LAPACK_chptrf LAPACK_GLOBAL(chptrf,CHPTRF) +#define LAPACK_zhptrf LAPACK_GLOBAL(zhptrf,ZHPTRF) +#define LAPACK_sgetrs LAPACK_GLOBAL(sgetrs,SGETRS) +#define LAPACK_dgetrs LAPACK_GLOBAL(dgetrs,DGETRS) +#define LAPACK_cgetrs LAPACK_GLOBAL(cgetrs,CGETRS) +#define LAPACK_zgetrs LAPACK_GLOBAL(zgetrs,ZGETRS) +#define LAPACK_sgbtrs LAPACK_GLOBAL(sgbtrs,SGBTRS) +#define LAPACK_dgbtrs LAPACK_GLOBAL(dgbtrs,DGBTRS) +#define LAPACK_cgbtrs LAPACK_GLOBAL(cgbtrs,CGBTRS) +#define LAPACK_zgbtrs LAPACK_GLOBAL(zgbtrs,ZGBTRS) +#define LAPACK_sgttrs LAPACK_GLOBAL(sgttrs,SGTTRS) +#define LAPACK_dgttrs LAPACK_GLOBAL(dgttrs,DGTTRS) +#define LAPACK_cgttrs LAPACK_GLOBAL(cgttrs,CGTTRS) +#define LAPACK_zgttrs LAPACK_GLOBAL(zgttrs,ZGTTRS) +#define LAPACK_spotrs LAPACK_GLOBAL(spotrs,SPOTRS) +#define LAPACK_dpotrs LAPACK_GLOBAL(dpotrs,DPOTRS) +#define LAPACK_cpotrs LAPACK_GLOBAL(cpotrs,CPOTRS) +#define LAPACK_zpotrs LAPACK_GLOBAL(zpotrs,ZPOTRS) +#define LAPACK_dpftrs LAPACK_GLOBAL(dpftrs,DPFTRS) +#define LAPACK_spftrs LAPACK_GLOBAL(spftrs,SPFTRS) +#define LAPACK_zpftrs LAPACK_GLOBAL(zpftrs,ZPFTRS) +#define LAPACK_cpftrs LAPACK_GLOBAL(cpftrs,CPFTRS) +#define LAPACK_spptrs LAPACK_GLOBAL(spptrs,SPPTRS) +#define LAPACK_dpptrs LAPACK_GLOBAL(dpptrs,DPPTRS) +#define LAPACK_cpptrs LAPACK_GLOBAL(cpptrs,CPPTRS) +#define LAPACK_zpptrs LAPACK_GLOBAL(zpptrs,ZPPTRS) +#define LAPACK_spbtrs LAPACK_GLOBAL(spbtrs,SPBTRS) +#define LAPACK_dpbtrs LAPACK_GLOBAL(dpbtrs,DPBTRS) +#define LAPACK_cpbtrs LAPACK_GLOBAL(cpbtrs,CPBTRS) +#define LAPACK_zpbtrs LAPACK_GLOBAL(zpbtrs,ZPBTRS) +#define LAPACK_spttrs LAPACK_GLOBAL(spttrs,SPTTRS) +#define LAPACK_dpttrs LAPACK_GLOBAL(dpttrs,DPTTRS) +#define LAPACK_cpttrs LAPACK_GLOBAL(cpttrs,CPTTRS) +#define LAPACK_zpttrs LAPACK_GLOBAL(zpttrs,ZPTTRS) +#define LAPACK_ssytrs LAPACK_GLOBAL(ssytrs,SSYTRS) +#define LAPACK_dsytrs LAPACK_GLOBAL(dsytrs,DSYTRS) +#define LAPACK_csytrs LAPACK_GLOBAL(csytrs,CSYTRS) +#define LAPACK_zsytrs LAPACK_GLOBAL(zsytrs,ZSYTRS) +#define LAPACK_chetrs LAPACK_GLOBAL(chetrs,CHETRS) +#define LAPACK_zhetrs LAPACK_GLOBAL(zhetrs,ZHETRS) +#define LAPACK_ssptrs LAPACK_GLOBAL(ssptrs,SSPTRS) +#define LAPACK_dsptrs LAPACK_GLOBAL(dsptrs,DSPTRS) +#define LAPACK_csptrs LAPACK_GLOBAL(csptrs,CSPTRS) +#define LAPACK_zsptrs LAPACK_GLOBAL(zsptrs,ZSPTRS) +#define LAPACK_chptrs LAPACK_GLOBAL(chptrs,CHPTRS) +#define LAPACK_zhptrs LAPACK_GLOBAL(zhptrs,ZHPTRS) +#define LAPACK_strtrs LAPACK_GLOBAL(strtrs,STRTRS) +#define LAPACK_dtrtrs LAPACK_GLOBAL(dtrtrs,DTRTRS) +#define LAPACK_ctrtrs LAPACK_GLOBAL(ctrtrs,CTRTRS) +#define LAPACK_ztrtrs LAPACK_GLOBAL(ztrtrs,ZTRTRS) +#define LAPACK_stptrs LAPACK_GLOBAL(stptrs,STPTRS) +#define LAPACK_dtptrs LAPACK_GLOBAL(dtptrs,DTPTRS) +#define LAPACK_ctptrs LAPACK_GLOBAL(ctptrs,CTPTRS) +#define LAPACK_ztptrs LAPACK_GLOBAL(ztptrs,ZTPTRS) +#define LAPACK_stbtrs LAPACK_GLOBAL(stbtrs,STBTRS) +#define LAPACK_dtbtrs LAPACK_GLOBAL(dtbtrs,DTBTRS) +#define LAPACK_ctbtrs LAPACK_GLOBAL(ctbtrs,CTBTRS) +#define LAPACK_ztbtrs LAPACK_GLOBAL(ztbtrs,ZTBTRS) +#define LAPACK_sgecon LAPACK_GLOBAL(sgecon,SGECON) +#define LAPACK_dgecon LAPACK_GLOBAL(dgecon,DGECON) +#define LAPACK_cgecon LAPACK_GLOBAL(cgecon,CGECON) +#define LAPACK_zgecon LAPACK_GLOBAL(zgecon,ZGECON) +#define LAPACK_sgbcon LAPACK_GLOBAL(sgbcon,SGBCON) +#define LAPACK_dgbcon LAPACK_GLOBAL(dgbcon,DGBCON) +#define LAPACK_cgbcon LAPACK_GLOBAL(cgbcon,CGBCON) +#define LAPACK_zgbcon LAPACK_GLOBAL(zgbcon,ZGBCON) +#define LAPACK_sgtcon LAPACK_GLOBAL(sgtcon,SGTCON) +#define LAPACK_dgtcon LAPACK_GLOBAL(dgtcon,DGTCON) +#define LAPACK_cgtcon LAPACK_GLOBAL(cgtcon,CGTCON) +#define LAPACK_zgtcon LAPACK_GLOBAL(zgtcon,ZGTCON) +#define LAPACK_spocon LAPACK_GLOBAL(spocon,SPOCON) +#define LAPACK_dpocon LAPACK_GLOBAL(dpocon,DPOCON) +#define LAPACK_cpocon LAPACK_GLOBAL(cpocon,CPOCON) +#define LAPACK_zpocon LAPACK_GLOBAL(zpocon,ZPOCON) +#define LAPACK_sppcon LAPACK_GLOBAL(sppcon,SPPCON) +#define LAPACK_dppcon LAPACK_GLOBAL(dppcon,DPPCON) +#define LAPACK_cppcon LAPACK_GLOBAL(cppcon,CPPCON) +#define LAPACK_zppcon LAPACK_GLOBAL(zppcon,ZPPCON) +#define LAPACK_spbcon LAPACK_GLOBAL(spbcon,SPBCON) +#define LAPACK_dpbcon LAPACK_GLOBAL(dpbcon,DPBCON) +#define LAPACK_cpbcon LAPACK_GLOBAL(cpbcon,CPBCON) +#define LAPACK_zpbcon LAPACK_GLOBAL(zpbcon,ZPBCON) +#define LAPACK_sptcon LAPACK_GLOBAL(sptcon,SPTCON) +#define LAPACK_dptcon LAPACK_GLOBAL(dptcon,DPTCON) +#define LAPACK_cptcon LAPACK_GLOBAL(cptcon,CPTCON) +#define LAPACK_zptcon LAPACK_GLOBAL(zptcon,ZPTCON) +#define LAPACK_ssycon LAPACK_GLOBAL(ssycon,SSYCON) +#define LAPACK_dsycon LAPACK_GLOBAL(dsycon,DSYCON) +#define LAPACK_csycon LAPACK_GLOBAL(csycon,CSYCON) +#define LAPACK_zsycon LAPACK_GLOBAL(zsycon,ZSYCON) +#define LAPACK_checon LAPACK_GLOBAL(checon,CHECON) +#define LAPACK_zhecon LAPACK_GLOBAL(zhecon,ZHECON) +#define LAPACK_sspcon LAPACK_GLOBAL(sspcon,SSPCON) +#define LAPACK_dspcon LAPACK_GLOBAL(dspcon,DSPCON) +#define LAPACK_cspcon LAPACK_GLOBAL(cspcon,CSPCON) +#define LAPACK_zspcon LAPACK_GLOBAL(zspcon,ZSPCON) +#define LAPACK_chpcon LAPACK_GLOBAL(chpcon,CHPCON) +#define LAPACK_zhpcon LAPACK_GLOBAL(zhpcon,ZHPCON) +#define LAPACK_strcon LAPACK_GLOBAL(strcon,STRCON) +#define LAPACK_dtrcon LAPACK_GLOBAL(dtrcon,DTRCON) +#define LAPACK_ctrcon LAPACK_GLOBAL(ctrcon,CTRCON) +#define LAPACK_ztrcon LAPACK_GLOBAL(ztrcon,ZTRCON) +#define LAPACK_stpcon LAPACK_GLOBAL(stpcon,STPCON) +#define LAPACK_dtpcon LAPACK_GLOBAL(dtpcon,DTPCON) +#define LAPACK_ctpcon LAPACK_GLOBAL(ctpcon,CTPCON) +#define LAPACK_ztpcon LAPACK_GLOBAL(ztpcon,ZTPCON) +#define LAPACK_stbcon LAPACK_GLOBAL(stbcon,STBCON) +#define LAPACK_dtbcon LAPACK_GLOBAL(dtbcon,DTBCON) +#define LAPACK_ctbcon LAPACK_GLOBAL(ctbcon,CTBCON) +#define LAPACK_ztbcon LAPACK_GLOBAL(ztbcon,ZTBCON) +#define LAPACK_sgerfs LAPACK_GLOBAL(sgerfs,SGERFS) +#define LAPACK_dgerfs LAPACK_GLOBAL(dgerfs,DGERFS) +#define LAPACK_cgerfs LAPACK_GLOBAL(cgerfs,CGERFS) +#define LAPACK_zgerfs LAPACK_GLOBAL(zgerfs,ZGERFS) +#define LAPACK_dgerfsx LAPACK_GLOBAL(dgerfsx,DGERFSX) +#define LAPACK_sgerfsx LAPACK_GLOBAL(sgerfsx,SGERFSX) +#define LAPACK_zgerfsx LAPACK_GLOBAL(zgerfsx,ZGERFSX) +#define LAPACK_cgerfsx LAPACK_GLOBAL(cgerfsx,CGERFSX) +#define LAPACK_sgbrfs LAPACK_GLOBAL(sgbrfs,SGBRFS) +#define LAPACK_dgbrfs LAPACK_GLOBAL(dgbrfs,DGBRFS) +#define LAPACK_cgbrfs LAPACK_GLOBAL(cgbrfs,CGBRFS) +#define LAPACK_zgbrfs LAPACK_GLOBAL(zgbrfs,ZGBRFS) +#define LAPACK_dgbrfsx LAPACK_GLOBAL(dgbrfsx,DGBRFSX) +#define LAPACK_sgbrfsx LAPACK_GLOBAL(sgbrfsx,SGBRFSX) +#define LAPACK_zgbrfsx LAPACK_GLOBAL(zgbrfsx,ZGBRFSX) +#define LAPACK_cgbrfsx LAPACK_GLOBAL(cgbrfsx,CGBRFSX) +#define LAPACK_sgtrfs LAPACK_GLOBAL(sgtrfs,SGTRFS) +#define LAPACK_dgtrfs LAPACK_GLOBAL(dgtrfs,DGTRFS) +#define LAPACK_cgtrfs LAPACK_GLOBAL(cgtrfs,CGTRFS) +#define LAPACK_zgtrfs LAPACK_GLOBAL(zgtrfs,ZGTRFS) +#define LAPACK_sporfs LAPACK_GLOBAL(sporfs,SPORFS) +#define LAPACK_dporfs LAPACK_GLOBAL(dporfs,DPORFS) +#define LAPACK_cporfs LAPACK_GLOBAL(cporfs,CPORFS) +#define LAPACK_zporfs LAPACK_GLOBAL(zporfs,ZPORFS) +#define LAPACK_dporfsx LAPACK_GLOBAL(dporfsx,DPORFSX) +#define LAPACK_sporfsx LAPACK_GLOBAL(sporfsx,SPORFSX) +#define LAPACK_zporfsx LAPACK_GLOBAL(zporfsx,ZPORFSX) +#define LAPACK_cporfsx LAPACK_GLOBAL(cporfsx,CPORFSX) +#define LAPACK_spprfs LAPACK_GLOBAL(spprfs,SPPRFS) +#define LAPACK_dpprfs LAPACK_GLOBAL(dpprfs,DPPRFS) +#define LAPACK_cpprfs LAPACK_GLOBAL(cpprfs,CPPRFS) +#define LAPACK_zpprfs LAPACK_GLOBAL(zpprfs,ZPPRFS) +#define LAPACK_spbrfs LAPACK_GLOBAL(spbrfs,SPBRFS) +#define LAPACK_dpbrfs LAPACK_GLOBAL(dpbrfs,DPBRFS) +#define LAPACK_cpbrfs LAPACK_GLOBAL(cpbrfs,CPBRFS) +#define LAPACK_zpbrfs LAPACK_GLOBAL(zpbrfs,ZPBRFS) +#define LAPACK_sptrfs LAPACK_GLOBAL(sptrfs,SPTRFS) +#define LAPACK_dptrfs LAPACK_GLOBAL(dptrfs,DPTRFS) +#define LAPACK_cptrfs LAPACK_GLOBAL(cptrfs,CPTRFS) +#define LAPACK_zptrfs LAPACK_GLOBAL(zptrfs,ZPTRFS) +#define LAPACK_ssyrfs LAPACK_GLOBAL(ssyrfs,SSYRFS) +#define LAPACK_dsyrfs LAPACK_GLOBAL(dsyrfs,DSYRFS) +#define LAPACK_csyrfs LAPACK_GLOBAL(csyrfs,CSYRFS) +#define LAPACK_zsyrfs LAPACK_GLOBAL(zsyrfs,ZSYRFS) +#define LAPACK_dsyrfsx LAPACK_GLOBAL(dsyrfsx,DSYRFSX) +#define LAPACK_ssyrfsx LAPACK_GLOBAL(ssyrfsx,SSYRFSX) +#define LAPACK_zsyrfsx LAPACK_GLOBAL(zsyrfsx,ZSYRFSX) +#define LAPACK_csyrfsx LAPACK_GLOBAL(csyrfsx,CSYRFSX) +#define LAPACK_cherfs LAPACK_GLOBAL(cherfs,CHERFS) +#define LAPACK_zherfs LAPACK_GLOBAL(zherfs,ZHERFS) +#define LAPACK_zherfsx LAPACK_GLOBAL(zherfsx,ZHERFSX) +#define LAPACK_cherfsx LAPACK_GLOBAL(cherfsx,CHERFSX) +#define LAPACK_ssprfs LAPACK_GLOBAL(ssprfs,SSPRFS) +#define LAPACK_dsprfs LAPACK_GLOBAL(dsprfs,DSPRFS) +#define LAPACK_csprfs LAPACK_GLOBAL(csprfs,CSPRFS) +#define LAPACK_zsprfs LAPACK_GLOBAL(zsprfs,ZSPRFS) +#define LAPACK_chprfs LAPACK_GLOBAL(chprfs,CHPRFS) +#define LAPACK_zhprfs LAPACK_GLOBAL(zhprfs,ZHPRFS) +#define LAPACK_strrfs LAPACK_GLOBAL(strrfs,STRRFS) +#define LAPACK_dtrrfs LAPACK_GLOBAL(dtrrfs,DTRRFS) +#define LAPACK_ctrrfs LAPACK_GLOBAL(ctrrfs,CTRRFS) +#define LAPACK_ztrrfs LAPACK_GLOBAL(ztrrfs,ZTRRFS) +#define LAPACK_stprfs LAPACK_GLOBAL(stprfs,STPRFS) +#define LAPACK_dtprfs LAPACK_GLOBAL(dtprfs,DTPRFS) +#define LAPACK_ctprfs LAPACK_GLOBAL(ctprfs,CTPRFS) +#define LAPACK_ztprfs LAPACK_GLOBAL(ztprfs,ZTPRFS) +#define LAPACK_stbrfs LAPACK_GLOBAL(stbrfs,STBRFS) +#define LAPACK_dtbrfs LAPACK_GLOBAL(dtbrfs,DTBRFS) +#define LAPACK_ctbrfs LAPACK_GLOBAL(ctbrfs,CTBRFS) +#define LAPACK_ztbrfs LAPACK_GLOBAL(ztbrfs,ZTBRFS) +#define LAPACK_sgetri LAPACK_GLOBAL(sgetri,SGETRI) +#define LAPACK_dgetri LAPACK_GLOBAL(dgetri,DGETRI) +#define LAPACK_cgetri LAPACK_GLOBAL(cgetri,CGETRI) +#define LAPACK_zgetri LAPACK_GLOBAL(zgetri,ZGETRI) +#define LAPACK_spotri LAPACK_GLOBAL(spotri,SPOTRI) +#define LAPACK_dpotri LAPACK_GLOBAL(dpotri,DPOTRI) +#define LAPACK_cpotri LAPACK_GLOBAL(cpotri,CPOTRI) +#define LAPACK_zpotri LAPACK_GLOBAL(zpotri,ZPOTRI) +#define LAPACK_dpftri LAPACK_GLOBAL(dpftri,DPFTRI) +#define LAPACK_spftri LAPACK_GLOBAL(spftri,SPFTRI) +#define LAPACK_zpftri LAPACK_GLOBAL(zpftri,ZPFTRI) +#define LAPACK_cpftri LAPACK_GLOBAL(cpftri,CPFTRI) +#define LAPACK_spptri LAPACK_GLOBAL(spptri,SPPTRI) +#define LAPACK_dpptri LAPACK_GLOBAL(dpptri,DPPTRI) +#define LAPACK_cpptri LAPACK_GLOBAL(cpptri,CPPTRI) +#define LAPACK_zpptri LAPACK_GLOBAL(zpptri,ZPPTRI) +#define LAPACK_ssytri LAPACK_GLOBAL(ssytri,SSYTRI) +#define LAPACK_dsytri LAPACK_GLOBAL(dsytri,DSYTRI) +#define LAPACK_csytri LAPACK_GLOBAL(csytri,CSYTRI) +#define LAPACK_zsytri LAPACK_GLOBAL(zsytri,ZSYTRI) +#define LAPACK_chetri LAPACK_GLOBAL(chetri,CHETRI) +#define LAPACK_zhetri LAPACK_GLOBAL(zhetri,ZHETRI) +#define LAPACK_ssptri LAPACK_GLOBAL(ssptri,SSPTRI) +#define LAPACK_dsptri LAPACK_GLOBAL(dsptri,DSPTRI) +#define LAPACK_csptri LAPACK_GLOBAL(csptri,CSPTRI) +#define LAPACK_zsptri LAPACK_GLOBAL(zsptri,ZSPTRI) +#define LAPACK_chptri LAPACK_GLOBAL(chptri,CHPTRI) +#define LAPACK_zhptri LAPACK_GLOBAL(zhptri,ZHPTRI) +#define LAPACK_strtri LAPACK_GLOBAL(strtri,STRTRI) +#define LAPACK_dtrtri LAPACK_GLOBAL(dtrtri,DTRTRI) +#define LAPACK_ctrtri LAPACK_GLOBAL(ctrtri,CTRTRI) +#define LAPACK_ztrtri LAPACK_GLOBAL(ztrtri,ZTRTRI) +#define LAPACK_dtftri LAPACK_GLOBAL(dtftri,DTFTRI) +#define LAPACK_stftri LAPACK_GLOBAL(stftri,STFTRI) +#define LAPACK_ztftri LAPACK_GLOBAL(ztftri,ZTFTRI) +#define LAPACK_ctftri LAPACK_GLOBAL(ctftri,CTFTRI) +#define LAPACK_stptri LAPACK_GLOBAL(stptri,STPTRI) +#define LAPACK_dtptri LAPACK_GLOBAL(dtptri,DTPTRI) +#define LAPACK_ctptri LAPACK_GLOBAL(ctptri,CTPTRI) +#define LAPACK_ztptri LAPACK_GLOBAL(ztptri,ZTPTRI) +#define LAPACK_sgeequ LAPACK_GLOBAL(sgeequ,SGEEQU) +#define LAPACK_dgeequ LAPACK_GLOBAL(dgeequ,DGEEQU) +#define LAPACK_cgeequ LAPACK_GLOBAL(cgeequ,CGEEQU) +#define LAPACK_zgeequ LAPACK_GLOBAL(zgeequ,ZGEEQU) +#define LAPACK_dgeequb LAPACK_GLOBAL(dgeequb,DGEEQUB) +#define LAPACK_sgeequb LAPACK_GLOBAL(sgeequb,SGEEQUB) +#define LAPACK_zgeequb LAPACK_GLOBAL(zgeequb,ZGEEQUB) +#define LAPACK_cgeequb LAPACK_GLOBAL(cgeequb,CGEEQUB) +#define LAPACK_sgbequ LAPACK_GLOBAL(sgbequ,SGBEQU) +#define LAPACK_dgbequ LAPACK_GLOBAL(dgbequ,DGBEQU) +#define LAPACK_cgbequ LAPACK_GLOBAL(cgbequ,CGBEQU) +#define LAPACK_zgbequ LAPACK_GLOBAL(zgbequ,ZGBEQU) +#define LAPACK_dgbequb LAPACK_GLOBAL(dgbequb,DGBEQUB) +#define LAPACK_sgbequb LAPACK_GLOBAL(sgbequb,SGBEQUB) +#define LAPACK_zgbequb LAPACK_GLOBAL(zgbequb,ZGBEQUB) +#define LAPACK_cgbequb LAPACK_GLOBAL(cgbequb,CGBEQUB) +#define LAPACK_spoequ LAPACK_GLOBAL(spoequ,SPOEQU) +#define LAPACK_dpoequ LAPACK_GLOBAL(dpoequ,DPOEQU) +#define LAPACK_cpoequ LAPACK_GLOBAL(cpoequ,CPOEQU) +#define LAPACK_zpoequ LAPACK_GLOBAL(zpoequ,ZPOEQU) +#define LAPACK_dpoequb LAPACK_GLOBAL(dpoequb,DPOEQUB) +#define LAPACK_spoequb LAPACK_GLOBAL(spoequb,SPOEQUB) +#define LAPACK_zpoequb LAPACK_GLOBAL(zpoequb,ZPOEQUB) +#define LAPACK_cpoequb LAPACK_GLOBAL(cpoequb,CPOEQUB) +#define LAPACK_sppequ LAPACK_GLOBAL(sppequ,SPPEQU) +#define LAPACK_dppequ LAPACK_GLOBAL(dppequ,DPPEQU) +#define LAPACK_cppequ LAPACK_GLOBAL(cppequ,CPPEQU) +#define LAPACK_zppequ LAPACK_GLOBAL(zppequ,ZPPEQU) +#define LAPACK_spbequ LAPACK_GLOBAL(spbequ,SPBEQU) +#define LAPACK_dpbequ LAPACK_GLOBAL(dpbequ,DPBEQU) +#define LAPACK_cpbequ LAPACK_GLOBAL(cpbequ,CPBEQU) +#define LAPACK_zpbequ LAPACK_GLOBAL(zpbequ,ZPBEQU) +#define LAPACK_dsyequb LAPACK_GLOBAL(dsyequb,DSYEQUB) +#define LAPACK_ssyequb LAPACK_GLOBAL(ssyequb,SSYEQUB) +#define LAPACK_zsyequb LAPACK_GLOBAL(zsyequb,ZSYEQUB) +#define LAPACK_csyequb LAPACK_GLOBAL(csyequb,CSYEQUB) +#define LAPACK_zheequb LAPACK_GLOBAL(zheequb,ZHEEQUB) +#define LAPACK_cheequb LAPACK_GLOBAL(cheequb,CHEEQUB) +#define LAPACK_sgesv LAPACK_GLOBAL(sgesv,SGESV) +#define LAPACK_dgesv LAPACK_GLOBAL(dgesv,DGESV) +#define LAPACK_cgesv LAPACK_GLOBAL(cgesv,CGESV) +#define LAPACK_zgesv LAPACK_GLOBAL(zgesv,ZGESV) +#define LAPACK_dsgesv LAPACK_GLOBAL(dsgesv,DSGESV) +#define LAPACK_zcgesv LAPACK_GLOBAL(zcgesv,ZCGESV) +#define LAPACK_sgesvx LAPACK_GLOBAL(sgesvx,SGESVX) +#define LAPACK_dgesvx LAPACK_GLOBAL(dgesvx,DGESVX) +#define LAPACK_cgesvx LAPACK_GLOBAL(cgesvx,CGESVX) +#define LAPACK_zgesvx LAPACK_GLOBAL(zgesvx,ZGESVX) +#define LAPACK_dgesvxx LAPACK_GLOBAL(dgesvxx,DGESVXX) +#define LAPACK_sgesvxx LAPACK_GLOBAL(sgesvxx,SGESVXX) +#define LAPACK_zgesvxx LAPACK_GLOBAL(zgesvxx,ZGESVXX) +#define LAPACK_cgesvxx LAPACK_GLOBAL(cgesvxx,CGESVXX) +#define LAPACK_sgbsv LAPACK_GLOBAL(sgbsv,SGBSV) +#define LAPACK_dgbsv LAPACK_GLOBAL(dgbsv,DGBSV) +#define LAPACK_cgbsv LAPACK_GLOBAL(cgbsv,CGBSV) +#define LAPACK_zgbsv LAPACK_GLOBAL(zgbsv,ZGBSV) +#define LAPACK_sgbsvx LAPACK_GLOBAL(sgbsvx,SGBSVX) +#define LAPACK_dgbsvx LAPACK_GLOBAL(dgbsvx,DGBSVX) +#define LAPACK_cgbsvx LAPACK_GLOBAL(cgbsvx,CGBSVX) +#define LAPACK_zgbsvx LAPACK_GLOBAL(zgbsvx,ZGBSVX) +#define LAPACK_dgbsvxx LAPACK_GLOBAL(dgbsvxx,DGBSVXX) +#define LAPACK_sgbsvxx LAPACK_GLOBAL(sgbsvxx,SGBSVXX) +#define LAPACK_zgbsvxx LAPACK_GLOBAL(zgbsvxx,ZGBSVXX) +#define LAPACK_cgbsvxx LAPACK_GLOBAL(cgbsvxx,CGBSVXX) +#define LAPACK_sgtsv LAPACK_GLOBAL(sgtsv,SGTSV) +#define LAPACK_dgtsv LAPACK_GLOBAL(dgtsv,DGTSV) +#define LAPACK_cgtsv LAPACK_GLOBAL(cgtsv,CGTSV) +#define LAPACK_zgtsv LAPACK_GLOBAL(zgtsv,ZGTSV) +#define LAPACK_sgtsvx LAPACK_GLOBAL(sgtsvx,SGTSVX) +#define LAPACK_dgtsvx LAPACK_GLOBAL(dgtsvx,DGTSVX) +#define LAPACK_cgtsvx LAPACK_GLOBAL(cgtsvx,CGTSVX) +#define LAPACK_zgtsvx LAPACK_GLOBAL(zgtsvx,ZGTSVX) +#define LAPACK_sposv LAPACK_GLOBAL(sposv,SPOSV) +#define LAPACK_dposv LAPACK_GLOBAL(dposv,DPOSV) +#define LAPACK_cposv LAPACK_GLOBAL(cposv,CPOSV) +#define LAPACK_zposv LAPACK_GLOBAL(zposv,ZPOSV) +#define LAPACK_dsposv LAPACK_GLOBAL(dsposv,DSPOSV) +#define LAPACK_zcposv LAPACK_GLOBAL(zcposv,ZCPOSV) +#define LAPACK_sposvx LAPACK_GLOBAL(sposvx,SPOSVX) +#define LAPACK_dposvx LAPACK_GLOBAL(dposvx,DPOSVX) +#define LAPACK_cposvx LAPACK_GLOBAL(cposvx,CPOSVX) +#define LAPACK_zposvx LAPACK_GLOBAL(zposvx,ZPOSVX) +#define LAPACK_dposvxx LAPACK_GLOBAL(dposvxx,DPOSVXX) +#define LAPACK_sposvxx LAPACK_GLOBAL(sposvxx,SPOSVXX) +#define LAPACK_zposvxx LAPACK_GLOBAL(zposvxx,ZPOSVXX) +#define LAPACK_cposvxx LAPACK_GLOBAL(cposvxx,CPOSVXX) +#define LAPACK_sppsv LAPACK_GLOBAL(sppsv,SPPSV) +#define LAPACK_dppsv LAPACK_GLOBAL(dppsv,DPPSV) +#define LAPACK_cppsv LAPACK_GLOBAL(cppsv,CPPSV) +#define LAPACK_zppsv LAPACK_GLOBAL(zppsv,ZPPSV) +#define LAPACK_sppsvx LAPACK_GLOBAL(sppsvx,SPPSVX) +#define LAPACK_dppsvx LAPACK_GLOBAL(dppsvx,DPPSVX) +#define LAPACK_cppsvx LAPACK_GLOBAL(cppsvx,CPPSVX) +#define LAPACK_zppsvx LAPACK_GLOBAL(zppsvx,ZPPSVX) +#define LAPACK_spbsv LAPACK_GLOBAL(spbsv,SPBSV) +#define LAPACK_dpbsv LAPACK_GLOBAL(dpbsv,DPBSV) +#define LAPACK_cpbsv LAPACK_GLOBAL(cpbsv,CPBSV) +#define LAPACK_zpbsv LAPACK_GLOBAL(zpbsv,ZPBSV) +#define LAPACK_spbsvx LAPACK_GLOBAL(spbsvx,SPBSVX) +#define LAPACK_dpbsvx LAPACK_GLOBAL(dpbsvx,DPBSVX) +#define LAPACK_cpbsvx LAPACK_GLOBAL(cpbsvx,CPBSVX) +#define LAPACK_zpbsvx LAPACK_GLOBAL(zpbsvx,ZPBSVX) +#define LAPACK_sptsv LAPACK_GLOBAL(sptsv,SPTSV) +#define LAPACK_dptsv LAPACK_GLOBAL(dptsv,DPTSV) +#define LAPACK_cptsv LAPACK_GLOBAL(cptsv,CPTSV) +#define LAPACK_zptsv LAPACK_GLOBAL(zptsv,ZPTSV) +#define LAPACK_sptsvx LAPACK_GLOBAL(sptsvx,SPTSVX) +#define LAPACK_dptsvx LAPACK_GLOBAL(dptsvx,DPTSVX) +#define LAPACK_cptsvx LAPACK_GLOBAL(cptsvx,CPTSVX) +#define LAPACK_zptsvx LAPACK_GLOBAL(zptsvx,ZPTSVX) +#define LAPACK_ssysv LAPACK_GLOBAL(ssysv,SSYSV) +#define LAPACK_dsysv LAPACK_GLOBAL(dsysv,DSYSV) +#define LAPACK_csysv LAPACK_GLOBAL(csysv,CSYSV) +#define LAPACK_zsysv LAPACK_GLOBAL(zsysv,ZSYSV) +#define LAPACK_ssysvx LAPACK_GLOBAL(ssysvx,SSYSVX) +#define LAPACK_dsysvx LAPACK_GLOBAL(dsysvx,DSYSVX) +#define LAPACK_csysvx LAPACK_GLOBAL(csysvx,CSYSVX) +#define LAPACK_zsysvx LAPACK_GLOBAL(zsysvx,ZSYSVX) +#define LAPACK_dsysvxx LAPACK_GLOBAL(dsysvxx,DSYSVXX) +#define LAPACK_ssysvxx LAPACK_GLOBAL(ssysvxx,SSYSVXX) +#define LAPACK_zsysvxx LAPACK_GLOBAL(zsysvxx,ZSYSVXX) +#define LAPACK_csysvxx LAPACK_GLOBAL(csysvxx,CSYSVXX) +#define LAPACK_chesv LAPACK_GLOBAL(chesv,CHESV) +#define LAPACK_zhesv LAPACK_GLOBAL(zhesv,ZHESV) +#define LAPACK_chesvx LAPACK_GLOBAL(chesvx,CHESVX) +#define LAPACK_zhesvx LAPACK_GLOBAL(zhesvx,ZHESVX) +#define LAPACK_zhesvxx LAPACK_GLOBAL(zhesvxx,ZHESVXX) +#define LAPACK_chesvxx LAPACK_GLOBAL(chesvxx,CHESVXX) +#define LAPACK_sspsv LAPACK_GLOBAL(sspsv,SSPSV) +#define LAPACK_dspsv LAPACK_GLOBAL(dspsv,DSPSV) +#define LAPACK_cspsv LAPACK_GLOBAL(cspsv,CSPSV) +#define LAPACK_zspsv LAPACK_GLOBAL(zspsv,ZSPSV) +#define LAPACK_sspsvx LAPACK_GLOBAL(sspsvx,SSPSVX) +#define LAPACK_dspsvx LAPACK_GLOBAL(dspsvx,DSPSVX) +#define LAPACK_cspsvx LAPACK_GLOBAL(cspsvx,CSPSVX) +#define LAPACK_zspsvx LAPACK_GLOBAL(zspsvx,ZSPSVX) +#define LAPACK_chpsv LAPACK_GLOBAL(chpsv,CHPSV) +#define LAPACK_zhpsv LAPACK_GLOBAL(zhpsv,ZHPSV) +#define LAPACK_chpsvx LAPACK_GLOBAL(chpsvx,CHPSVX) +#define LAPACK_zhpsvx LAPACK_GLOBAL(zhpsvx,ZHPSVX) +#define LAPACK_sgeqrf LAPACK_GLOBAL(sgeqrf,SGEQRF) +#define LAPACK_dgeqrf LAPACK_GLOBAL(dgeqrf,DGEQRF) +#define LAPACK_cgeqrf LAPACK_GLOBAL(cgeqrf,CGEQRF) +#define LAPACK_zgeqrf LAPACK_GLOBAL(zgeqrf,ZGEQRF) +#define LAPACK_sgeqpf LAPACK_GLOBAL(sgeqpf,SGEQPF) +#define LAPACK_dgeqpf LAPACK_GLOBAL(dgeqpf,DGEQPF) +#define LAPACK_cgeqpf LAPACK_GLOBAL(cgeqpf,CGEQPF) +#define LAPACK_zgeqpf LAPACK_GLOBAL(zgeqpf,ZGEQPF) +#define LAPACK_sgeqp3 LAPACK_GLOBAL(sgeqp3,SGEQP3) +#define LAPACK_dgeqp3 LAPACK_GLOBAL(dgeqp3,DGEQP3) +#define LAPACK_cgeqp3 LAPACK_GLOBAL(cgeqp3,CGEQP3) +#define LAPACK_zgeqp3 LAPACK_GLOBAL(zgeqp3,ZGEQP3) +#define LAPACK_sorgqr LAPACK_GLOBAL(sorgqr,SORGQR) +#define LAPACK_dorgqr LAPACK_GLOBAL(dorgqr,DORGQR) +#define LAPACK_sormqr LAPACK_GLOBAL(sormqr,SORMQR) +#define LAPACK_dormqr LAPACK_GLOBAL(dormqr,DORMQR) +#define LAPACK_cungqr LAPACK_GLOBAL(cungqr,CUNGQR) +#define LAPACK_zungqr LAPACK_GLOBAL(zungqr,ZUNGQR) +#define LAPACK_cunmqr LAPACK_GLOBAL(cunmqr,CUNMQR) +#define LAPACK_zunmqr LAPACK_GLOBAL(zunmqr,ZUNMQR) +#define LAPACK_sgelqf LAPACK_GLOBAL(sgelqf,SGELQF) +#define LAPACK_dgelqf LAPACK_GLOBAL(dgelqf,DGELQF) +#define LAPACK_cgelqf LAPACK_GLOBAL(cgelqf,CGELQF) +#define LAPACK_zgelqf LAPACK_GLOBAL(zgelqf,ZGELQF) +#define LAPACK_sorglq LAPACK_GLOBAL(sorglq,SORGLQ) +#define LAPACK_dorglq LAPACK_GLOBAL(dorglq,DORGLQ) +#define LAPACK_sormlq LAPACK_GLOBAL(sormlq,SORMLQ) +#define LAPACK_dormlq LAPACK_GLOBAL(dormlq,DORMLQ) +#define LAPACK_cunglq LAPACK_GLOBAL(cunglq,CUNGLQ) +#define LAPACK_zunglq LAPACK_GLOBAL(zunglq,ZUNGLQ) +#define LAPACK_cunmlq LAPACK_GLOBAL(cunmlq,CUNMLQ) +#define LAPACK_zunmlq LAPACK_GLOBAL(zunmlq,ZUNMLQ) +#define LAPACK_sgeqlf LAPACK_GLOBAL(sgeqlf,SGEQLF) +#define LAPACK_dgeqlf LAPACK_GLOBAL(dgeqlf,DGEQLF) +#define LAPACK_cgeqlf LAPACK_GLOBAL(cgeqlf,CGEQLF) +#define LAPACK_zgeqlf LAPACK_GLOBAL(zgeqlf,ZGEQLF) +#define LAPACK_sorgql LAPACK_GLOBAL(sorgql,SORGQL) +#define LAPACK_dorgql LAPACK_GLOBAL(dorgql,DORGQL) +#define LAPACK_cungql LAPACK_GLOBAL(cungql,CUNGQL) +#define LAPACK_zungql LAPACK_GLOBAL(zungql,ZUNGQL) +#define LAPACK_sormql LAPACK_GLOBAL(sormql,SORMQL) +#define LAPACK_dormql LAPACK_GLOBAL(dormql,DORMQL) +#define LAPACK_cunmql LAPACK_GLOBAL(cunmql,CUNMQL) +#define LAPACK_zunmql LAPACK_GLOBAL(zunmql,ZUNMQL) +#define LAPACK_sgerqf LAPACK_GLOBAL(sgerqf,SGERQF) +#define LAPACK_dgerqf LAPACK_GLOBAL(dgerqf,DGERQF) +#define LAPACK_cgerqf LAPACK_GLOBAL(cgerqf,CGERQF) +#define LAPACK_zgerqf LAPACK_GLOBAL(zgerqf,ZGERQF) +#define LAPACK_sorgrq LAPACK_GLOBAL(sorgrq,SORGRQ) +#define LAPACK_dorgrq LAPACK_GLOBAL(dorgrq,DORGRQ) +#define LAPACK_cungrq LAPACK_GLOBAL(cungrq,CUNGRQ) +#define LAPACK_zungrq LAPACK_GLOBAL(zungrq,ZUNGRQ) +#define LAPACK_sormrq LAPACK_GLOBAL(sormrq,SORMRQ) +#define LAPACK_dormrq LAPACK_GLOBAL(dormrq,DORMRQ) +#define LAPACK_cunmrq LAPACK_GLOBAL(cunmrq,CUNMRQ) +#define LAPACK_zunmrq LAPACK_GLOBAL(zunmrq,ZUNMRQ) +#define LAPACK_stzrzf LAPACK_GLOBAL(stzrzf,STZRZF) +#define LAPACK_dtzrzf LAPACK_GLOBAL(dtzrzf,DTZRZF) +#define LAPACK_ctzrzf LAPACK_GLOBAL(ctzrzf,CTZRZF) +#define LAPACK_ztzrzf LAPACK_GLOBAL(ztzrzf,ZTZRZF) +#define LAPACK_sormrz LAPACK_GLOBAL(sormrz,SORMRZ) +#define LAPACK_dormrz LAPACK_GLOBAL(dormrz,DORMRZ) +#define LAPACK_cunmrz LAPACK_GLOBAL(cunmrz,CUNMRZ) +#define LAPACK_zunmrz LAPACK_GLOBAL(zunmrz,ZUNMRZ) +#define LAPACK_sggqrf LAPACK_GLOBAL(sggqrf,SGGQRF) +#define LAPACK_dggqrf LAPACK_GLOBAL(dggqrf,DGGQRF) +#define LAPACK_cggqrf LAPACK_GLOBAL(cggqrf,CGGQRF) +#define LAPACK_zggqrf LAPACK_GLOBAL(zggqrf,ZGGQRF) +#define LAPACK_sggrqf LAPACK_GLOBAL(sggrqf,SGGRQF) +#define LAPACK_dggrqf LAPACK_GLOBAL(dggrqf,DGGRQF) +#define LAPACK_cggrqf LAPACK_GLOBAL(cggrqf,CGGRQF) +#define LAPACK_zggrqf LAPACK_GLOBAL(zggrqf,ZGGRQF) +#define LAPACK_sgebrd LAPACK_GLOBAL(sgebrd,SGEBRD) +#define LAPACK_dgebrd LAPACK_GLOBAL(dgebrd,DGEBRD) +#define LAPACK_cgebrd LAPACK_GLOBAL(cgebrd,CGEBRD) +#define LAPACK_zgebrd LAPACK_GLOBAL(zgebrd,ZGEBRD) +#define LAPACK_sgbbrd LAPACK_GLOBAL(sgbbrd,SGBBRD) +#define LAPACK_dgbbrd LAPACK_GLOBAL(dgbbrd,DGBBRD) +#define LAPACK_cgbbrd LAPACK_GLOBAL(cgbbrd,CGBBRD) +#define LAPACK_zgbbrd LAPACK_GLOBAL(zgbbrd,ZGBBRD) +#define LAPACK_sorgbr LAPACK_GLOBAL(sorgbr,SORGBR) +#define LAPACK_dorgbr LAPACK_GLOBAL(dorgbr,DORGBR) +#define LAPACK_sormbr LAPACK_GLOBAL(sormbr,SORMBR) +#define LAPACK_dormbr LAPACK_GLOBAL(dormbr,DORMBR) +#define LAPACK_cungbr LAPACK_GLOBAL(cungbr,CUNGBR) +#define LAPACK_zungbr LAPACK_GLOBAL(zungbr,ZUNGBR) +#define LAPACK_cunmbr LAPACK_GLOBAL(cunmbr,CUNMBR) +#define LAPACK_zunmbr LAPACK_GLOBAL(zunmbr,ZUNMBR) +#define LAPACK_sbdsqr LAPACK_GLOBAL(sbdsqr,SBDSQR) +#define LAPACK_dbdsqr LAPACK_GLOBAL(dbdsqr,DBDSQR) +#define LAPACK_cbdsqr LAPACK_GLOBAL(cbdsqr,CBDSQR) +#define LAPACK_zbdsqr LAPACK_GLOBAL(zbdsqr,ZBDSQR) +#define LAPACK_sbdsdc LAPACK_GLOBAL(sbdsdc,SBDSDC) +#define LAPACK_dbdsdc LAPACK_GLOBAL(dbdsdc,DBDSDC) +#define LAPACK_ssytrd LAPACK_GLOBAL(ssytrd,SSYTRD) +#define LAPACK_dsytrd LAPACK_GLOBAL(dsytrd,DSYTRD) +#define LAPACK_sorgtr LAPACK_GLOBAL(sorgtr,SORGTR) +#define LAPACK_dorgtr LAPACK_GLOBAL(dorgtr,DORGTR) +#define LAPACK_sormtr LAPACK_GLOBAL(sormtr,SORMTR) +#define LAPACK_dormtr LAPACK_GLOBAL(dormtr,DORMTR) +#define LAPACK_chetrd LAPACK_GLOBAL(chetrd,CHETRD) +#define LAPACK_zhetrd LAPACK_GLOBAL(zhetrd,ZHETRD) +#define LAPACK_cungtr LAPACK_GLOBAL(cungtr,CUNGTR) +#define LAPACK_zungtr LAPACK_GLOBAL(zungtr,ZUNGTR) +#define LAPACK_cunmtr LAPACK_GLOBAL(cunmtr,CUNMTR) +#define LAPACK_zunmtr LAPACK_GLOBAL(zunmtr,ZUNMTR) +#define LAPACK_ssptrd LAPACK_GLOBAL(ssptrd,SSPTRD) +#define LAPACK_dsptrd LAPACK_GLOBAL(dsptrd,DSPTRD) +#define LAPACK_sopgtr LAPACK_GLOBAL(sopgtr,SOPGTR) +#define LAPACK_dopgtr LAPACK_GLOBAL(dopgtr,DOPGTR) +#define LAPACK_sopmtr LAPACK_GLOBAL(sopmtr,SOPMTR) +#define LAPACK_dopmtr LAPACK_GLOBAL(dopmtr,DOPMTR) +#define LAPACK_chptrd LAPACK_GLOBAL(chptrd,CHPTRD) +#define LAPACK_zhptrd LAPACK_GLOBAL(zhptrd,ZHPTRD) +#define LAPACK_cupgtr LAPACK_GLOBAL(cupgtr,CUPGTR) +#define LAPACK_zupgtr LAPACK_GLOBAL(zupgtr,ZUPGTR) +#define LAPACK_cupmtr LAPACK_GLOBAL(cupmtr,CUPMTR) +#define LAPACK_zupmtr LAPACK_GLOBAL(zupmtr,ZUPMTR) +#define LAPACK_ssbtrd LAPACK_GLOBAL(ssbtrd,SSBTRD) +#define LAPACK_dsbtrd LAPACK_GLOBAL(dsbtrd,DSBTRD) +#define LAPACK_chbtrd LAPACK_GLOBAL(chbtrd,CHBTRD) +#define LAPACK_zhbtrd LAPACK_GLOBAL(zhbtrd,ZHBTRD) +#define LAPACK_ssterf LAPACK_GLOBAL(ssterf,SSTERF) +#define LAPACK_dsterf LAPACK_GLOBAL(dsterf,DSTERF) +#define LAPACK_ssteqr LAPACK_GLOBAL(ssteqr,SSTEQR) +#define LAPACK_dsteqr LAPACK_GLOBAL(dsteqr,DSTEQR) +#define LAPACK_csteqr LAPACK_GLOBAL(csteqr,CSTEQR) +#define LAPACK_zsteqr LAPACK_GLOBAL(zsteqr,ZSTEQR) +#define LAPACK_sstemr LAPACK_GLOBAL(sstemr,SSTEMR) +#define LAPACK_dstemr LAPACK_GLOBAL(dstemr,DSTEMR) +#define LAPACK_cstemr LAPACK_GLOBAL(cstemr,CSTEMR) +#define LAPACK_zstemr LAPACK_GLOBAL(zstemr,ZSTEMR) +#define LAPACK_sstedc LAPACK_GLOBAL(sstedc,SSTEDC) +#define LAPACK_dstedc LAPACK_GLOBAL(dstedc,DSTEDC) +#define LAPACK_cstedc LAPACK_GLOBAL(cstedc,CSTEDC) +#define LAPACK_zstedc LAPACK_GLOBAL(zstedc,ZSTEDC) +#define LAPACK_sstegr LAPACK_GLOBAL(sstegr,SSTEGR) +#define LAPACK_dstegr LAPACK_GLOBAL(dstegr,DSTEGR) +#define LAPACK_cstegr LAPACK_GLOBAL(cstegr,CSTEGR) +#define LAPACK_zstegr LAPACK_GLOBAL(zstegr,ZSTEGR) +#define LAPACK_spteqr LAPACK_GLOBAL(spteqr,SPTEQR) +#define LAPACK_dpteqr LAPACK_GLOBAL(dpteqr,DPTEQR) +#define LAPACK_cpteqr LAPACK_GLOBAL(cpteqr,CPTEQR) +#define LAPACK_zpteqr LAPACK_GLOBAL(zpteqr,ZPTEQR) +#define LAPACK_sstebz LAPACK_GLOBAL(sstebz,SSTEBZ) +#define LAPACK_dstebz LAPACK_GLOBAL(dstebz,DSTEBZ) +#define LAPACK_sstein LAPACK_GLOBAL(sstein,SSTEIN) +#define LAPACK_dstein LAPACK_GLOBAL(dstein,DSTEIN) +#define LAPACK_cstein LAPACK_GLOBAL(cstein,CSTEIN) +#define LAPACK_zstein LAPACK_GLOBAL(zstein,ZSTEIN) +#define LAPACK_sdisna LAPACK_GLOBAL(sdisna,SDISNA) +#define LAPACK_ddisna LAPACK_GLOBAL(ddisna,DDISNA) +#define LAPACK_ssygst LAPACK_GLOBAL(ssygst,SSYGST) +#define LAPACK_dsygst LAPACK_GLOBAL(dsygst,DSYGST) +#define LAPACK_chegst LAPACK_GLOBAL(chegst,CHEGST) +#define LAPACK_zhegst LAPACK_GLOBAL(zhegst,ZHEGST) +#define LAPACK_sspgst LAPACK_GLOBAL(sspgst,SSPGST) +#define LAPACK_dspgst LAPACK_GLOBAL(dspgst,DSPGST) +#define LAPACK_chpgst LAPACK_GLOBAL(chpgst,CHPGST) +#define LAPACK_zhpgst LAPACK_GLOBAL(zhpgst,ZHPGST) +#define LAPACK_ssbgst LAPACK_GLOBAL(ssbgst,SSBGST) +#define LAPACK_dsbgst LAPACK_GLOBAL(dsbgst,DSBGST) +#define LAPACK_chbgst LAPACK_GLOBAL(chbgst,CHBGST) +#define LAPACK_zhbgst LAPACK_GLOBAL(zhbgst,ZHBGST) +#define LAPACK_spbstf LAPACK_GLOBAL(spbstf,SPBSTF) +#define LAPACK_dpbstf LAPACK_GLOBAL(dpbstf,DPBSTF) +#define LAPACK_cpbstf LAPACK_GLOBAL(cpbstf,CPBSTF) +#define LAPACK_zpbstf LAPACK_GLOBAL(zpbstf,ZPBSTF) +#define LAPACK_sgehrd LAPACK_GLOBAL(sgehrd,SGEHRD) +#define LAPACK_dgehrd LAPACK_GLOBAL(dgehrd,DGEHRD) +#define LAPACK_cgehrd LAPACK_GLOBAL(cgehrd,CGEHRD) +#define LAPACK_zgehrd LAPACK_GLOBAL(zgehrd,ZGEHRD) +#define LAPACK_sorghr LAPACK_GLOBAL(sorghr,SORGHR) +#define LAPACK_dorghr LAPACK_GLOBAL(dorghr,DORGHR) +#define LAPACK_sormhr LAPACK_GLOBAL(sormhr,SORMHR) +#define LAPACK_dormhr LAPACK_GLOBAL(dormhr,DORMHR) +#define LAPACK_cunghr LAPACK_GLOBAL(cunghr,CUNGHR) +#define LAPACK_zunghr LAPACK_GLOBAL(zunghr,ZUNGHR) +#define LAPACK_cunmhr LAPACK_GLOBAL(cunmhr,CUNMHR) +#define LAPACK_zunmhr LAPACK_GLOBAL(zunmhr,ZUNMHR) +#define LAPACK_sgebal LAPACK_GLOBAL(sgebal,SGEBAL) +#define LAPACK_dgebal LAPACK_GLOBAL(dgebal,DGEBAL) +#define LAPACK_cgebal LAPACK_GLOBAL(cgebal,CGEBAL) +#define LAPACK_zgebal LAPACK_GLOBAL(zgebal,ZGEBAL) +#define LAPACK_sgebak LAPACK_GLOBAL(sgebak,SGEBAK) +#define LAPACK_dgebak LAPACK_GLOBAL(dgebak,DGEBAK) +#define LAPACK_cgebak LAPACK_GLOBAL(cgebak,CGEBAK) +#define LAPACK_zgebak LAPACK_GLOBAL(zgebak,ZGEBAK) +#define LAPACK_shseqr LAPACK_GLOBAL(shseqr,SHSEQR) +#define LAPACK_dhseqr LAPACK_GLOBAL(dhseqr,DHSEQR) +#define LAPACK_chseqr LAPACK_GLOBAL(chseqr,CHSEQR) +#define LAPACK_zhseqr LAPACK_GLOBAL(zhseqr,ZHSEQR) +#define LAPACK_shsein LAPACK_GLOBAL(shsein,SHSEIN) +#define LAPACK_dhsein LAPACK_GLOBAL(dhsein,DHSEIN) +#define LAPACK_chsein LAPACK_GLOBAL(chsein,CHSEIN) +#define LAPACK_zhsein LAPACK_GLOBAL(zhsein,ZHSEIN) +#define LAPACK_strevc LAPACK_GLOBAL(strevc,STREVC) +#define LAPACK_dtrevc LAPACK_GLOBAL(dtrevc,DTREVC) +#define LAPACK_ctrevc LAPACK_GLOBAL(ctrevc,CTREVC) +#define LAPACK_ztrevc LAPACK_GLOBAL(ztrevc,ZTREVC) +#define LAPACK_strsna LAPACK_GLOBAL(strsna,STRSNA) +#define LAPACK_dtrsna LAPACK_GLOBAL(dtrsna,DTRSNA) +#define LAPACK_ctrsna LAPACK_GLOBAL(ctrsna,CTRSNA) +#define LAPACK_ztrsna LAPACK_GLOBAL(ztrsna,ZTRSNA) +#define LAPACK_strexc LAPACK_GLOBAL(strexc,STREXC) +#define LAPACK_dtrexc LAPACK_GLOBAL(dtrexc,DTREXC) +#define LAPACK_ctrexc LAPACK_GLOBAL(ctrexc,CTREXC) +#define LAPACK_ztrexc LAPACK_GLOBAL(ztrexc,ZTREXC) +#define LAPACK_strsen LAPACK_GLOBAL(strsen,STRSEN) +#define LAPACK_dtrsen LAPACK_GLOBAL(dtrsen,DTRSEN) +#define LAPACK_ctrsen LAPACK_GLOBAL(ctrsen,CTRSEN) +#define LAPACK_ztrsen LAPACK_GLOBAL(ztrsen,ZTRSEN) +#define LAPACK_strsyl LAPACK_GLOBAL(strsyl,STRSYL) +#define LAPACK_dtrsyl LAPACK_GLOBAL(dtrsyl,DTRSYL) +#define LAPACK_ctrsyl LAPACK_GLOBAL(ctrsyl,CTRSYL) +#define LAPACK_ztrsyl LAPACK_GLOBAL(ztrsyl,ZTRSYL) +#define LAPACK_sgghrd LAPACK_GLOBAL(sgghrd,SGGHRD) +#define LAPACK_dgghrd LAPACK_GLOBAL(dgghrd,DGGHRD) +#define LAPACK_cgghrd LAPACK_GLOBAL(cgghrd,CGGHRD) +#define LAPACK_zgghrd LAPACK_GLOBAL(zgghrd,ZGGHRD) +#define LAPACK_sggbal LAPACK_GLOBAL(sggbal,SGGBAL) +#define LAPACK_dggbal LAPACK_GLOBAL(dggbal,DGGBAL) +#define LAPACK_cggbal LAPACK_GLOBAL(cggbal,CGGBAL) +#define LAPACK_zggbal LAPACK_GLOBAL(zggbal,ZGGBAL) +#define LAPACK_sggbak LAPACK_GLOBAL(sggbak,SGGBAK) +#define LAPACK_dggbak LAPACK_GLOBAL(dggbak,DGGBAK) +#define LAPACK_cggbak LAPACK_GLOBAL(cggbak,CGGBAK) +#define LAPACK_zggbak LAPACK_GLOBAL(zggbak,ZGGBAK) +#define LAPACK_shgeqz LAPACK_GLOBAL(shgeqz,SHGEQZ) +#define LAPACK_dhgeqz LAPACK_GLOBAL(dhgeqz,DHGEQZ) +#define LAPACK_chgeqz LAPACK_GLOBAL(chgeqz,CHGEQZ) +#define LAPACK_zhgeqz LAPACK_GLOBAL(zhgeqz,ZHGEQZ) +#define LAPACK_stgevc LAPACK_GLOBAL(stgevc,STGEVC) +#define LAPACK_dtgevc LAPACK_GLOBAL(dtgevc,DTGEVC) +#define LAPACK_ctgevc LAPACK_GLOBAL(ctgevc,CTGEVC) +#define LAPACK_ztgevc LAPACK_GLOBAL(ztgevc,ZTGEVC) +#define LAPACK_stgexc LAPACK_GLOBAL(stgexc,STGEXC) +#define LAPACK_dtgexc LAPACK_GLOBAL(dtgexc,DTGEXC) +#define LAPACK_ctgexc LAPACK_GLOBAL(ctgexc,CTGEXC) +#define LAPACK_ztgexc LAPACK_GLOBAL(ztgexc,ZTGEXC) +#define LAPACK_stgsen LAPACK_GLOBAL(stgsen,STGSEN) +#define LAPACK_dtgsen LAPACK_GLOBAL(dtgsen,DTGSEN) +#define LAPACK_ctgsen LAPACK_GLOBAL(ctgsen,CTGSEN) +#define LAPACK_ztgsen LAPACK_GLOBAL(ztgsen,ZTGSEN) +#define LAPACK_stgsyl LAPACK_GLOBAL(stgsyl,STGSYL) +#define LAPACK_dtgsyl LAPACK_GLOBAL(dtgsyl,DTGSYL) +#define LAPACK_ctgsyl LAPACK_GLOBAL(ctgsyl,CTGSYL) +#define LAPACK_ztgsyl LAPACK_GLOBAL(ztgsyl,ZTGSYL) +#define LAPACK_stgsna LAPACK_GLOBAL(stgsna,STGSNA) +#define LAPACK_dtgsna LAPACK_GLOBAL(dtgsna,DTGSNA) +#define LAPACK_ctgsna LAPACK_GLOBAL(ctgsna,CTGSNA) +#define LAPACK_ztgsna LAPACK_GLOBAL(ztgsna,ZTGSNA) +#define LAPACK_sggsvp LAPACK_GLOBAL(sggsvp,SGGSVP) +#define LAPACK_dggsvp LAPACK_GLOBAL(dggsvp,DGGSVP) +#define LAPACK_cggsvp LAPACK_GLOBAL(cggsvp,CGGSVP) +#define LAPACK_zggsvp LAPACK_GLOBAL(zggsvp,ZGGSVP) +#define LAPACK_stgsja LAPACK_GLOBAL(stgsja,STGSJA) +#define LAPACK_dtgsja LAPACK_GLOBAL(dtgsja,DTGSJA) +#define LAPACK_ctgsja LAPACK_GLOBAL(ctgsja,CTGSJA) +#define LAPACK_ztgsja LAPACK_GLOBAL(ztgsja,ZTGSJA) +#define LAPACK_sgels LAPACK_GLOBAL(sgels,SGELS) +#define LAPACK_dgels LAPACK_GLOBAL(dgels,DGELS) +#define LAPACK_cgels LAPACK_GLOBAL(cgels,CGELS) +#define LAPACK_zgels LAPACK_GLOBAL(zgels,ZGELS) +#define LAPACK_sgelsy LAPACK_GLOBAL(sgelsy,SGELSY) +#define LAPACK_dgelsy LAPACK_GLOBAL(dgelsy,DGELSY) +#define LAPACK_cgelsy LAPACK_GLOBAL(cgelsy,CGELSY) +#define LAPACK_zgelsy LAPACK_GLOBAL(zgelsy,ZGELSY) +#define LAPACK_sgelss LAPACK_GLOBAL(sgelss,SGELSS) +#define LAPACK_dgelss LAPACK_GLOBAL(dgelss,DGELSS) +#define LAPACK_cgelss LAPACK_GLOBAL(cgelss,CGELSS) +#define LAPACK_zgelss LAPACK_GLOBAL(zgelss,ZGELSS) +#define LAPACK_sgelsd LAPACK_GLOBAL(sgelsd,SGELSD) +#define LAPACK_dgelsd LAPACK_GLOBAL(dgelsd,DGELSD) +#define LAPACK_cgelsd LAPACK_GLOBAL(cgelsd,CGELSD) +#define LAPACK_zgelsd LAPACK_GLOBAL(zgelsd,ZGELSD) +#define LAPACK_sgglse LAPACK_GLOBAL(sgglse,SGGLSE) +#define LAPACK_dgglse LAPACK_GLOBAL(dgglse,DGGLSE) +#define LAPACK_cgglse LAPACK_GLOBAL(cgglse,CGGLSE) +#define LAPACK_zgglse LAPACK_GLOBAL(zgglse,ZGGLSE) +#define LAPACK_sggglm LAPACK_GLOBAL(sggglm,SGGGLM) +#define LAPACK_dggglm LAPACK_GLOBAL(dggglm,DGGGLM) +#define LAPACK_cggglm LAPACK_GLOBAL(cggglm,CGGGLM) +#define LAPACK_zggglm LAPACK_GLOBAL(zggglm,ZGGGLM) +#define LAPACK_ssyev LAPACK_GLOBAL(ssyev,SSYEV) +#define LAPACK_dsyev LAPACK_GLOBAL(dsyev,DSYEV) +#define LAPACK_cheev LAPACK_GLOBAL(cheev,CHEEV) +#define LAPACK_zheev LAPACK_GLOBAL(zheev,ZHEEV) +#define LAPACK_ssyevd LAPACK_GLOBAL(ssyevd,SSYEVD) +#define LAPACK_dsyevd LAPACK_GLOBAL(dsyevd,DSYEVD) +#define LAPACK_cheevd LAPACK_GLOBAL(cheevd,CHEEVD) +#define LAPACK_zheevd LAPACK_GLOBAL(zheevd,ZHEEVD) +#define LAPACK_ssyevx LAPACK_GLOBAL(ssyevx,SSYEVX) +#define LAPACK_dsyevx LAPACK_GLOBAL(dsyevx,DSYEVX) +#define LAPACK_cheevx LAPACK_GLOBAL(cheevx,CHEEVX) +#define LAPACK_zheevx LAPACK_GLOBAL(zheevx,ZHEEVX) +#define LAPACK_ssyevr LAPACK_GLOBAL(ssyevr,SSYEVR) +#define LAPACK_dsyevr LAPACK_GLOBAL(dsyevr,DSYEVR) +#define LAPACK_cheevr LAPACK_GLOBAL(cheevr,CHEEVR) +#define LAPACK_zheevr LAPACK_GLOBAL(zheevr,ZHEEVR) +#define LAPACK_sspev LAPACK_GLOBAL(sspev,SSPEV) +#define LAPACK_dspev LAPACK_GLOBAL(dspev,DSPEV) +#define LAPACK_chpev LAPACK_GLOBAL(chpev,CHPEV) +#define LAPACK_zhpev LAPACK_GLOBAL(zhpev,ZHPEV) +#define LAPACK_sspevd LAPACK_GLOBAL(sspevd,SSPEVD) +#define LAPACK_dspevd LAPACK_GLOBAL(dspevd,DSPEVD) +#define LAPACK_chpevd LAPACK_GLOBAL(chpevd,CHPEVD) +#define LAPACK_zhpevd LAPACK_GLOBAL(zhpevd,ZHPEVD) +#define LAPACK_sspevx LAPACK_GLOBAL(sspevx,SSPEVX) +#define LAPACK_dspevx LAPACK_GLOBAL(dspevx,DSPEVX) +#define LAPACK_chpevx LAPACK_GLOBAL(chpevx,CHPEVX) +#define LAPACK_zhpevx LAPACK_GLOBAL(zhpevx,ZHPEVX) +#define LAPACK_ssbev LAPACK_GLOBAL(ssbev,SSBEV) +#define LAPACK_dsbev LAPACK_GLOBAL(dsbev,DSBEV) +#define LAPACK_chbev LAPACK_GLOBAL(chbev,CHBEV) +#define LAPACK_zhbev LAPACK_GLOBAL(zhbev,ZHBEV) +#define LAPACK_ssbevd LAPACK_GLOBAL(ssbevd,SSBEVD) +#define LAPACK_dsbevd LAPACK_GLOBAL(dsbevd,DSBEVD) +#define LAPACK_chbevd LAPACK_GLOBAL(chbevd,CHBEVD) +#define LAPACK_zhbevd LAPACK_GLOBAL(zhbevd,ZHBEVD) +#define LAPACK_ssbevx LAPACK_GLOBAL(ssbevx,SSBEVX) +#define LAPACK_dsbevx LAPACK_GLOBAL(dsbevx,DSBEVX) +#define LAPACK_chbevx LAPACK_GLOBAL(chbevx,CHBEVX) +#define LAPACK_zhbevx LAPACK_GLOBAL(zhbevx,ZHBEVX) +#define LAPACK_sstev LAPACK_GLOBAL(sstev,SSTEV) +#define LAPACK_dstev LAPACK_GLOBAL(dstev,DSTEV) +#define LAPACK_sstevd LAPACK_GLOBAL(sstevd,SSTEVD) +#define LAPACK_dstevd LAPACK_GLOBAL(dstevd,DSTEVD) +#define LAPACK_sstevx LAPACK_GLOBAL(sstevx,SSTEVX) +#define LAPACK_dstevx LAPACK_GLOBAL(dstevx,DSTEVX) +#define LAPACK_sstevr LAPACK_GLOBAL(sstevr,SSTEVR) +#define LAPACK_dstevr LAPACK_GLOBAL(dstevr,DSTEVR) +#define LAPACK_sgees LAPACK_GLOBAL(sgees,SGEES) +#define LAPACK_dgees LAPACK_GLOBAL(dgees,DGEES) +#define LAPACK_cgees LAPACK_GLOBAL(cgees,CGEES) +#define LAPACK_zgees LAPACK_GLOBAL(zgees,ZGEES) +#define LAPACK_sgeesx LAPACK_GLOBAL(sgeesx,SGEESX) +#define LAPACK_dgeesx LAPACK_GLOBAL(dgeesx,DGEESX) +#define LAPACK_cgeesx LAPACK_GLOBAL(cgeesx,CGEESX) +#define LAPACK_zgeesx LAPACK_GLOBAL(zgeesx,ZGEESX) +#define LAPACK_sgeev LAPACK_GLOBAL(sgeev,SGEEV) +#define LAPACK_dgeev LAPACK_GLOBAL(dgeev,DGEEV) +#define LAPACK_cgeev LAPACK_GLOBAL(cgeev,CGEEV) +#define LAPACK_zgeev LAPACK_GLOBAL(zgeev,ZGEEV) +#define LAPACK_sgeevx LAPACK_GLOBAL(sgeevx,SGEEVX) +#define LAPACK_dgeevx LAPACK_GLOBAL(dgeevx,DGEEVX) +#define LAPACK_cgeevx LAPACK_GLOBAL(cgeevx,CGEEVX) +#define LAPACK_zgeevx LAPACK_GLOBAL(zgeevx,ZGEEVX) +#define LAPACK_sgesvd LAPACK_GLOBAL(sgesvd,SGESVD) +#define LAPACK_dgesvd LAPACK_GLOBAL(dgesvd,DGESVD) +#define LAPACK_cgesvd LAPACK_GLOBAL(cgesvd,CGESVD) +#define LAPACK_zgesvd LAPACK_GLOBAL(zgesvd,ZGESVD) +#define LAPACK_sgesdd LAPACK_GLOBAL(sgesdd,SGESDD) +#define LAPACK_dgesdd LAPACK_GLOBAL(dgesdd,DGESDD) +#define LAPACK_cgesdd LAPACK_GLOBAL(cgesdd,CGESDD) +#define LAPACK_zgesdd LAPACK_GLOBAL(zgesdd,ZGESDD) +#define LAPACK_dgejsv LAPACK_GLOBAL(dgejsv,DGEJSV) +#define LAPACK_sgejsv LAPACK_GLOBAL(sgejsv,SGEJSV) +#define LAPACK_dgesvj LAPACK_GLOBAL(dgesvj,DGESVJ) +#define LAPACK_sgesvj LAPACK_GLOBAL(sgesvj,SGESVJ) +#define LAPACK_sggsvd LAPACK_GLOBAL(sggsvd,SGGSVD) +#define LAPACK_dggsvd LAPACK_GLOBAL(dggsvd,DGGSVD) +#define LAPACK_cggsvd LAPACK_GLOBAL(cggsvd,CGGSVD) +#define LAPACK_zggsvd LAPACK_GLOBAL(zggsvd,ZGGSVD) +#define LAPACK_ssygv LAPACK_GLOBAL(ssygv,SSYGV) +#define LAPACK_dsygv LAPACK_GLOBAL(dsygv,DSYGV) +#define LAPACK_chegv LAPACK_GLOBAL(chegv,CHEGV) +#define LAPACK_zhegv LAPACK_GLOBAL(zhegv,ZHEGV) +#define LAPACK_ssygvd LAPACK_GLOBAL(ssygvd,SSYGVD) +#define LAPACK_dsygvd LAPACK_GLOBAL(dsygvd,DSYGVD) +#define LAPACK_chegvd LAPACK_GLOBAL(chegvd,CHEGVD) +#define LAPACK_zhegvd LAPACK_GLOBAL(zhegvd,ZHEGVD) +#define LAPACK_ssygvx LAPACK_GLOBAL(ssygvx,SSYGVX) +#define LAPACK_dsygvx LAPACK_GLOBAL(dsygvx,DSYGVX) +#define LAPACK_chegvx LAPACK_GLOBAL(chegvx,CHEGVX) +#define LAPACK_zhegvx LAPACK_GLOBAL(zhegvx,ZHEGVX) +#define LAPACK_sspgv LAPACK_GLOBAL(sspgv,SSPGV) +#define LAPACK_dspgv LAPACK_GLOBAL(dspgv,DSPGV) +#define LAPACK_chpgv LAPACK_GLOBAL(chpgv,CHPGV) +#define LAPACK_zhpgv LAPACK_GLOBAL(zhpgv,ZHPGV) +#define LAPACK_sspgvd LAPACK_GLOBAL(sspgvd,SSPGVD) +#define LAPACK_dspgvd LAPACK_GLOBAL(dspgvd,DSPGVD) +#define LAPACK_chpgvd LAPACK_GLOBAL(chpgvd,CHPGVD) +#define LAPACK_zhpgvd LAPACK_GLOBAL(zhpgvd,ZHPGVD) +#define LAPACK_sspgvx LAPACK_GLOBAL(sspgvx,SSPGVX) +#define LAPACK_dspgvx LAPACK_GLOBAL(dspgvx,DSPGVX) +#define LAPACK_chpgvx LAPACK_GLOBAL(chpgvx,CHPGVX) +#define LAPACK_zhpgvx LAPACK_GLOBAL(zhpgvx,ZHPGVX) +#define LAPACK_ssbgv LAPACK_GLOBAL(ssbgv,SSBGV) +#define LAPACK_dsbgv LAPACK_GLOBAL(dsbgv,DSBGV) +#define LAPACK_chbgv LAPACK_GLOBAL(chbgv,CHBGV) +#define LAPACK_zhbgv LAPACK_GLOBAL(zhbgv,ZHBGV) +#define LAPACK_ssbgvd LAPACK_GLOBAL(ssbgvd,SSBGVD) +#define LAPACK_dsbgvd LAPACK_GLOBAL(dsbgvd,DSBGVD) +#define LAPACK_chbgvd LAPACK_GLOBAL(chbgvd,CHBGVD) +#define LAPACK_zhbgvd LAPACK_GLOBAL(zhbgvd,ZHBGVD) +#define LAPACK_ssbgvx LAPACK_GLOBAL(ssbgvx,SSBGVX) +#define LAPACK_dsbgvx LAPACK_GLOBAL(dsbgvx,DSBGVX) +#define LAPACK_chbgvx LAPACK_GLOBAL(chbgvx,CHBGVX) +#define LAPACK_zhbgvx LAPACK_GLOBAL(zhbgvx,ZHBGVX) +#define LAPACK_sgges LAPACK_GLOBAL(sgges,SGGES) +#define LAPACK_dgges LAPACK_GLOBAL(dgges,DGGES) +#define LAPACK_cgges LAPACK_GLOBAL(cgges,CGGES) +#define LAPACK_zgges LAPACK_GLOBAL(zgges,ZGGES) +#define LAPACK_sggesx LAPACK_GLOBAL(sggesx,SGGESX) +#define LAPACK_dggesx LAPACK_GLOBAL(dggesx,DGGESX) +#define LAPACK_cggesx LAPACK_GLOBAL(cggesx,CGGESX) +#define LAPACK_zggesx LAPACK_GLOBAL(zggesx,ZGGESX) +#define LAPACK_sggev LAPACK_GLOBAL(sggev,SGGEV) +#define LAPACK_dggev LAPACK_GLOBAL(dggev,DGGEV) +#define LAPACK_cggev LAPACK_GLOBAL(cggev,CGGEV) +#define LAPACK_zggev LAPACK_GLOBAL(zggev,ZGGEV) +#define LAPACK_sggevx LAPACK_GLOBAL(sggevx,SGGEVX) +#define LAPACK_dggevx LAPACK_GLOBAL(dggevx,DGGEVX) +#define LAPACK_cggevx LAPACK_GLOBAL(cggevx,CGGEVX) +#define LAPACK_zggevx LAPACK_GLOBAL(zggevx,ZGGEVX) +#define LAPACK_dsfrk LAPACK_GLOBAL(dsfrk,DSFRK) +#define LAPACK_ssfrk LAPACK_GLOBAL(ssfrk,SSFRK) +#define LAPACK_zhfrk LAPACK_GLOBAL(zhfrk,ZHFRK) +#define LAPACK_chfrk LAPACK_GLOBAL(chfrk,CHFRK) +#define LAPACK_dtfsm LAPACK_GLOBAL(dtfsm,DTFSM) +#define LAPACK_stfsm LAPACK_GLOBAL(stfsm,STFSM) +#define LAPACK_ztfsm LAPACK_GLOBAL(ztfsm,ZTFSM) +#define LAPACK_ctfsm LAPACK_GLOBAL(ctfsm,CTFSM) +#define LAPACK_dtfttp LAPACK_GLOBAL(dtfttp,DTFTTP) +#define LAPACK_stfttp LAPACK_GLOBAL(stfttp,STFTTP) +#define LAPACK_ztfttp LAPACK_GLOBAL(ztfttp,ZTFTTP) +#define LAPACK_ctfttp LAPACK_GLOBAL(ctfttp,CTFTTP) +#define LAPACK_dtfttr LAPACK_GLOBAL(dtfttr,DTFTTR) +#define LAPACK_stfttr LAPACK_GLOBAL(stfttr,STFTTR) +#define LAPACK_ztfttr LAPACK_GLOBAL(ztfttr,ZTFTTR) +#define LAPACK_ctfttr LAPACK_GLOBAL(ctfttr,CTFTTR) +#define LAPACK_dtpttf LAPACK_GLOBAL(dtpttf,DTPTTF) +#define LAPACK_stpttf LAPACK_GLOBAL(stpttf,STPTTF) +#define LAPACK_ztpttf LAPACK_GLOBAL(ztpttf,ZTPTTF) +#define LAPACK_ctpttf LAPACK_GLOBAL(ctpttf,CTPTTF) +#define LAPACK_dtpttr LAPACK_GLOBAL(dtpttr,DTPTTR) +#define LAPACK_stpttr LAPACK_GLOBAL(stpttr,STPTTR) +#define LAPACK_ztpttr LAPACK_GLOBAL(ztpttr,ZTPTTR) +#define LAPACK_ctpttr LAPACK_GLOBAL(ctpttr,CTPTTR) +#define LAPACK_dtrttf LAPACK_GLOBAL(dtrttf,DTRTTF) +#define LAPACK_strttf LAPACK_GLOBAL(strttf,STRTTF) +#define LAPACK_ztrttf LAPACK_GLOBAL(ztrttf,ZTRTTF) +#define LAPACK_ctrttf LAPACK_GLOBAL(ctrttf,CTRTTF) +#define LAPACK_dtrttp LAPACK_GLOBAL(dtrttp,DTRTTP) +#define LAPACK_strttp LAPACK_GLOBAL(strttp,STRTTP) +#define LAPACK_ztrttp LAPACK_GLOBAL(ztrttp,ZTRTTP) +#define LAPACK_ctrttp LAPACK_GLOBAL(ctrttp,CTRTTP) +#define LAPACK_sgeqrfp LAPACK_GLOBAL(sgeqrfp,SGEQRFP) +#define LAPACK_dgeqrfp LAPACK_GLOBAL(dgeqrfp,DGEQRFP) +#define LAPACK_cgeqrfp LAPACK_GLOBAL(cgeqrfp,CGEQRFP) +#define LAPACK_zgeqrfp LAPACK_GLOBAL(zgeqrfp,ZGEQRFP) +#define LAPACK_clacgv LAPACK_GLOBAL(clacgv,CLACGV) +#define LAPACK_zlacgv LAPACK_GLOBAL(zlacgv,ZLACGV) +#define LAPACK_slarnv LAPACK_GLOBAL(slarnv,SLARNV) +#define LAPACK_dlarnv LAPACK_GLOBAL(dlarnv,DLARNV) +#define LAPACK_clarnv LAPACK_GLOBAL(clarnv,CLARNV) +#define LAPACK_zlarnv LAPACK_GLOBAL(zlarnv,ZLARNV) +#define LAPACK_sgeqr2 LAPACK_GLOBAL(sgeqr2,SGEQR2) +#define LAPACK_dgeqr2 LAPACK_GLOBAL(dgeqr2,DGEQR2) +#define LAPACK_cgeqr2 LAPACK_GLOBAL(cgeqr2,CGEQR2) +#define LAPACK_zgeqr2 LAPACK_GLOBAL(zgeqr2,ZGEQR2) +#define LAPACK_slacpy LAPACK_GLOBAL(slacpy,SLACPY) +#define LAPACK_dlacpy LAPACK_GLOBAL(dlacpy,DLACPY) +#define LAPACK_clacpy LAPACK_GLOBAL(clacpy,CLACPY) +#define LAPACK_zlacpy LAPACK_GLOBAL(zlacpy,ZLACPY) +#define LAPACK_sgetf2 LAPACK_GLOBAL(sgetf2,SGETF2) +#define LAPACK_dgetf2 LAPACK_GLOBAL(dgetf2,DGETF2) +#define LAPACK_cgetf2 LAPACK_GLOBAL(cgetf2,CGETF2) +#define LAPACK_zgetf2 LAPACK_GLOBAL(zgetf2,ZGETF2) +#define LAPACK_slaswp LAPACK_GLOBAL(slaswp,SLASWP) +#define LAPACK_dlaswp LAPACK_GLOBAL(dlaswp,DLASWP) +#define LAPACK_claswp LAPACK_GLOBAL(claswp,CLASWP) +#define LAPACK_zlaswp LAPACK_GLOBAL(zlaswp,ZLASWP) +#define LAPACK_slange LAPACK_GLOBAL(slange,SLANGE) +#define LAPACK_dlange LAPACK_GLOBAL(dlange,DLANGE) +#define LAPACK_clange LAPACK_GLOBAL(clange,CLANGE) +#define LAPACK_zlange LAPACK_GLOBAL(zlange,ZLANGE) +#define LAPACK_clanhe LAPACK_GLOBAL(clanhe,CLANHE) +#define LAPACK_zlanhe LAPACK_GLOBAL(zlanhe,ZLANHE) +#define LAPACK_slansy LAPACK_GLOBAL(slansy,SLANSY) +#define LAPACK_dlansy LAPACK_GLOBAL(dlansy,DLANSY) +#define LAPACK_clansy LAPACK_GLOBAL(clansy,CLANSY) +#define LAPACK_zlansy LAPACK_GLOBAL(zlansy,ZLANSY) +#define LAPACK_slantr LAPACK_GLOBAL(slantr,SLANTR) +#define LAPACK_dlantr LAPACK_GLOBAL(dlantr,DLANTR) +#define LAPACK_clantr LAPACK_GLOBAL(clantr,CLANTR) +#define LAPACK_zlantr LAPACK_GLOBAL(zlantr,ZLANTR) +#define LAPACK_slamch LAPACK_GLOBAL(slamch,SLAMCH) +#define LAPACK_dlamch LAPACK_GLOBAL(dlamch,DLAMCH) +#define LAPACK_sgelq2 LAPACK_GLOBAL(sgelq2,SGELQ2) +#define LAPACK_dgelq2 LAPACK_GLOBAL(dgelq2,DGELQ2) +#define LAPACK_cgelq2 LAPACK_GLOBAL(cgelq2,CGELQ2) +#define LAPACK_zgelq2 LAPACK_GLOBAL(zgelq2,ZGELQ2) +#define LAPACK_slarfb LAPACK_GLOBAL(slarfb,SLARFB) +#define LAPACK_dlarfb LAPACK_GLOBAL(dlarfb,DLARFB) +#define LAPACK_clarfb LAPACK_GLOBAL(clarfb,CLARFB) +#define LAPACK_zlarfb LAPACK_GLOBAL(zlarfb,ZLARFB) +#define LAPACK_slarfg LAPACK_GLOBAL(slarfg,SLARFG) +#define LAPACK_dlarfg LAPACK_GLOBAL(dlarfg,DLARFG) +#define LAPACK_clarfg LAPACK_GLOBAL(clarfg,CLARFG) +#define LAPACK_zlarfg LAPACK_GLOBAL(zlarfg,ZLARFG) +#define LAPACK_slarft LAPACK_GLOBAL(slarft,SLARFT) +#define LAPACK_dlarft LAPACK_GLOBAL(dlarft,DLARFT) +#define LAPACK_clarft LAPACK_GLOBAL(clarft,CLARFT) +#define LAPACK_zlarft LAPACK_GLOBAL(zlarft,ZLARFT) +#define LAPACK_slarfx LAPACK_GLOBAL(slarfx,SLARFX) +#define LAPACK_dlarfx LAPACK_GLOBAL(dlarfx,DLARFX) +#define LAPACK_clarfx LAPACK_GLOBAL(clarfx,CLARFX) +#define LAPACK_zlarfx LAPACK_GLOBAL(zlarfx,ZLARFX) +#define LAPACK_slatms LAPACK_GLOBAL(slatms,SLATMS) +#define LAPACK_dlatms LAPACK_GLOBAL(dlatms,DLATMS) +#define LAPACK_clatms LAPACK_GLOBAL(clatms,CLATMS) +#define LAPACK_zlatms LAPACK_GLOBAL(zlatms,ZLATMS) +#define LAPACK_slag2d LAPACK_GLOBAL(slag2d,SLAG2D) +#define LAPACK_dlag2s LAPACK_GLOBAL(dlag2s,DLAG2S) +#define LAPACK_clag2z LAPACK_GLOBAL(clag2z,CLAG2Z) +#define LAPACK_zlag2c LAPACK_GLOBAL(zlag2c,ZLAG2C) +#define LAPACK_slauum LAPACK_GLOBAL(slauum,SLAUUM) +#define LAPACK_dlauum LAPACK_GLOBAL(dlauum,DLAUUM) +#define LAPACK_clauum LAPACK_GLOBAL(clauum,CLAUUM) +#define LAPACK_zlauum LAPACK_GLOBAL(zlauum,ZLAUUM) +#define LAPACK_slagge LAPACK_GLOBAL(slagge,SLAGGE) +#define LAPACK_dlagge LAPACK_GLOBAL(dlagge,DLAGGE) +#define LAPACK_clagge LAPACK_GLOBAL(clagge,CLAGGE) +#define LAPACK_zlagge LAPACK_GLOBAL(zlagge,ZLAGGE) +#define LAPACK_slaset LAPACK_GLOBAL(slaset,SLASET) +#define LAPACK_dlaset LAPACK_GLOBAL(dlaset,DLASET) +#define LAPACK_claset LAPACK_GLOBAL(claset,CLASET) +#define LAPACK_zlaset LAPACK_GLOBAL(zlaset,ZLASET) +#define LAPACK_slasrt LAPACK_GLOBAL(slasrt,SLASRT) +#define LAPACK_dlasrt LAPACK_GLOBAL(dlasrt,DLASRT) +#define LAPACK_slagsy LAPACK_GLOBAL(slagsy,SLAGSY) +#define LAPACK_dlagsy LAPACK_GLOBAL(dlagsy,DLAGSY) +#define LAPACK_clagsy LAPACK_GLOBAL(clagsy,CLAGSY) +#define LAPACK_zlagsy LAPACK_GLOBAL(zlagsy,ZLAGSY) +#define LAPACK_claghe LAPACK_GLOBAL(claghe,CLAGHE) +#define LAPACK_zlaghe LAPACK_GLOBAL(zlaghe,ZLAGHE) +#define LAPACK_slapmr LAPACK_GLOBAL(slapmr,SLAPMR) +#define LAPACK_dlapmr LAPACK_GLOBAL(dlapmr,DLAPMR) +#define LAPACK_clapmr LAPACK_GLOBAL(clapmr,CLAPMR) +#define LAPACK_zlapmr LAPACK_GLOBAL(zlapmr,ZLAPMR) +#define LAPACK_slapy2 LAPACK_GLOBAL(slapy2,SLAPY2) +#define LAPACK_dlapy2 LAPACK_GLOBAL(dlapy2,DLAPY2) +#define LAPACK_slapy3 LAPACK_GLOBAL(slapy3,SLAPY3) +#define LAPACK_dlapy3 LAPACK_GLOBAL(dlapy3,DLAPY3) +#define LAPACK_slartgp LAPACK_GLOBAL(slartgp,SLARTGP) +#define LAPACK_dlartgp LAPACK_GLOBAL(dlartgp,DLARTGP) +#define LAPACK_slartgs LAPACK_GLOBAL(slartgs,SLARTGS) +#define LAPACK_dlartgs LAPACK_GLOBAL(dlartgs,DLARTGS) +// LAPACK 3.3.0 +#define LAPACK_cbbcsd LAPACK_GLOBAL(cbbcsd,CBBCSD) +#define LAPACK_cheswapr LAPACK_GLOBAL(cheswapr,CHESWAPR) +#define LAPACK_chetri2 LAPACK_GLOBAL(chetri2,CHETRI2) +#define LAPACK_chetri2x LAPACK_GLOBAL(chetri2x,CHETRI2X) +#define LAPACK_chetrs2 LAPACK_GLOBAL(chetrs2,CHETRS2) +#define LAPACK_csyconv LAPACK_GLOBAL(csyconv,CSYCONV) +#define LAPACK_csyswapr LAPACK_GLOBAL(csyswapr,CSYSWAPR) +#define LAPACK_csytri2 LAPACK_GLOBAL(csytri2,CSYTRI2) +#define LAPACK_csytri2x LAPACK_GLOBAL(csytri2x,CSYTRI2X) +#define LAPACK_csytrs2 LAPACK_GLOBAL(csytrs2,CSYTRS2) +#define LAPACK_cunbdb LAPACK_GLOBAL(cunbdb,CUNBDB) +#define LAPACK_cuncsd LAPACK_GLOBAL(cuncsd,CUNCSD) +#define LAPACK_dbbcsd LAPACK_GLOBAL(dbbcsd,DBBCSD) +#define LAPACK_dorbdb LAPACK_GLOBAL(dorbdb,DORBDB) +#define LAPACK_dorcsd LAPACK_GLOBAL(dorcsd,DORCSD) +#define LAPACK_dsyconv LAPACK_GLOBAL(dsyconv,DSYCONV) +#define LAPACK_dsyswapr LAPACK_GLOBAL(dsyswapr,DSYSWAPR) +#define LAPACK_dsytri2 LAPACK_GLOBAL(dsytri2,DSYTRI2) +#define LAPACK_dsytri2x LAPACK_GLOBAL(dsytri2x,DSYTRI2X) +#define LAPACK_dsytrs2 LAPACK_GLOBAL(dsytrs2,DSYTRS2) +#define LAPACK_sbbcsd LAPACK_GLOBAL(sbbcsd,SBBCSD) +#define LAPACK_sorbdb LAPACK_GLOBAL(sorbdb,SORBDB) +#define LAPACK_sorcsd LAPACK_GLOBAL(sorcsd,SORCSD) +#define LAPACK_ssyconv LAPACK_GLOBAL(ssyconv,SSYCONV) +#define LAPACK_ssyswapr LAPACK_GLOBAL(ssyswapr,SSYSWAPR) +#define LAPACK_ssytri2 LAPACK_GLOBAL(ssytri2,SSYTRI2) +#define LAPACK_ssytri2x LAPACK_GLOBAL(ssytri2x,SSYTRI2X) +#define LAPACK_ssytrs2 LAPACK_GLOBAL(ssytrs2,SSYTRS2) +#define LAPACK_zbbcsd LAPACK_GLOBAL(zbbcsd,ZBBCSD) +#define LAPACK_zheswapr LAPACK_GLOBAL(zheswapr,ZHESWAPR) +#define LAPACK_zhetri2 LAPACK_GLOBAL(zhetri2,ZHETRI2) +#define LAPACK_zhetri2x LAPACK_GLOBAL(zhetri2x,ZHETRI2X) +#define LAPACK_zhetrs2 LAPACK_GLOBAL(zhetrs2,ZHETRS2) +#define LAPACK_zsyconv LAPACK_GLOBAL(zsyconv,ZSYCONV) +#define LAPACK_zsyswapr LAPACK_GLOBAL(zsyswapr,ZSYSWAPR) +#define LAPACK_zsytri2 LAPACK_GLOBAL(zsytri2,ZSYTRI2) +#define LAPACK_zsytri2x LAPACK_GLOBAL(zsytri2x,ZSYTRI2X) +#define LAPACK_zsytrs2 LAPACK_GLOBAL(zsytrs2,ZSYTRS2) +#define LAPACK_zunbdb LAPACK_GLOBAL(zunbdb,ZUNBDB) +#define LAPACK_zuncsd LAPACK_GLOBAL(zuncsd,ZUNCSD) +// LAPACK 3.4.0 +#define LAPACK_sgemqrt LAPACK_GLOBAL(sgemqrt,SGEMQRT) +#define LAPACK_dgemqrt LAPACK_GLOBAL(dgemqrt,DGEMQRT) +#define LAPACK_cgemqrt LAPACK_GLOBAL(cgemqrt,CGEMQRT) +#define LAPACK_zgemqrt LAPACK_GLOBAL(zgemqrt,ZGEMQRT) +#define LAPACK_sgeqrt LAPACK_GLOBAL(sgeqrt,SGEQRT) +#define LAPACK_dgeqrt LAPACK_GLOBAL(dgeqrt,DGEQRT) +#define LAPACK_cgeqrt LAPACK_GLOBAL(cgeqrt,CGEQRT) +#define LAPACK_zgeqrt LAPACK_GLOBAL(zgeqrt,ZGEQRT) +#define LAPACK_sgeqrt2 LAPACK_GLOBAL(sgeqrt2,SGEQRT2) +#define LAPACK_dgeqrt2 LAPACK_GLOBAL(dgeqrt2,DGEQRT2) +#define LAPACK_cgeqrt2 LAPACK_GLOBAL(cgeqrt2,CGEQRT2) +#define LAPACK_zgeqrt2 LAPACK_GLOBAL(zgeqrt2,ZGEQRT2) +#define LAPACK_sgeqrt3 LAPACK_GLOBAL(sgeqrt3,SGEQRT3) +#define LAPACK_dgeqrt3 LAPACK_GLOBAL(dgeqrt3,DGEQRT3) +#define LAPACK_cgeqrt3 LAPACK_GLOBAL(cgeqrt3,CGEQRT3) +#define LAPACK_zgeqrt3 LAPACK_GLOBAL(zgeqrt3,ZGEQRT3) +#define LAPACK_stpmqrt LAPACK_GLOBAL(stpmqrt,STPMQRT) +#define LAPACK_dtpmqrt LAPACK_GLOBAL(dtpmqrt,DTPMQRT) +#define LAPACK_ctpmqrt LAPACK_GLOBAL(ctpmqrt,CTPMQRT) +#define LAPACK_ztpmqrt LAPACK_GLOBAL(ztpmqrt,ZTPMQRT) +#define LAPACK_dtpqrt LAPACK_GLOBAL(dtpqrt,DTPQRT) +#define LAPACK_ctpqrt LAPACK_GLOBAL(ctpqrt,CTPQRT) +#define LAPACK_ztpqrt LAPACK_GLOBAL(ztpqrt,ZTPQRT) +#define LAPACK_stpqrt2 LAPACK_GLOBAL(stpqrt2,STPQRT2) +#define LAPACK_dtpqrt2 LAPACK_GLOBAL(dtpqrt2,DTPQRT2) +#define LAPACK_ctpqrt2 LAPACK_GLOBAL(ctpqrt2,CTPQRT2) +#define LAPACK_ztpqrt2 LAPACK_GLOBAL(ztpqrt2,ZTPQRT2) +#define LAPACK_stprfb LAPACK_GLOBAL(stprfb,STPRFB) +#define LAPACK_dtprfb LAPACK_GLOBAL(dtprfb,DTPRFB) +#define LAPACK_ctprfb LAPACK_GLOBAL(ctprfb,CTPRFB) +#define LAPACK_ztprfb LAPACK_GLOBAL(ztprfb,ZTPRFB) +// LAPACK 3.X.X +#define LAPACK_csyr LAPACK_GLOBAL(csyr,CSYR) +#define LAPACK_zsyr LAPACK_GLOBAL(zsyr,ZSYR) + + +void LAPACK_sgetrf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgetrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgetrf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_zgetrf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_sgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, float* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, double* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_complex_float* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_zgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_complex_double* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_sgttrf( lapack_int* n, float* dl, float* d, float* du, float* du2, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgttrf( lapack_int* n, double* dl, double* d, double* du, + double* du2, lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgttrf( lapack_int* n, lapack_complex_float* dl, + lapack_complex_float* d, lapack_complex_float* du, + lapack_complex_float* du2, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_zgttrf( lapack_int* n, lapack_complex_double* dl, + lapack_complex_double* d, lapack_complex_double* du, + lapack_complex_double* du2, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_spotrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dpotrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_cpotrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_zpotrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dpstrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int* piv, lapack_int* rank, double* tol, + double* work, lapack_int *info ); +void LAPACK_spstrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int* piv, lapack_int* rank, float* tol, float* work, + lapack_int *info ); +void LAPACK_zpstrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* piv, lapack_int* rank, + double* tol, double* work, lapack_int *info ); +void LAPACK_cpstrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* piv, lapack_int* rank, + float* tol, float* work, lapack_int *info ); +void LAPACK_dpftrf( char* transr, char* uplo, lapack_int* n, double* a, + lapack_int *info ); +void LAPACK_spftrf( char* transr, char* uplo, lapack_int* n, float* a, + lapack_int *info ); +void LAPACK_zpftrf( char* transr, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int *info ); +void LAPACK_cpftrf( char* transr, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int *info ); +void LAPACK_spptrf( char* uplo, lapack_int* n, float* ap, lapack_int *info ); +void LAPACK_dpptrf( char* uplo, lapack_int* n, double* ap, lapack_int *info ); +void LAPACK_cpptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_zpptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_spbtrf( char* uplo, lapack_int* n, lapack_int* kd, float* ab, + lapack_int* ldab, lapack_int *info ); +void LAPACK_dpbtrf( char* uplo, lapack_int* n, lapack_int* kd, double* ab, + lapack_int* ldab, lapack_int *info ); +void LAPACK_cpbtrf( char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, + lapack_int *info ); +void LAPACK_zpbtrf( char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, + lapack_int *info ); +void LAPACK_spttrf( lapack_int* n, float* d, float* e, lapack_int *info ); +void LAPACK_dpttrf( lapack_int* n, double* d, double* e, lapack_int *info ); +void LAPACK_cpttrf( lapack_int* n, float* d, lapack_complex_float* e, + lapack_int *info ); +void LAPACK_zpttrf( lapack_int* n, double* d, lapack_complex_double* e, + lapack_int *info ); +void LAPACK_ssytrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ipiv, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dsytrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ipiv, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_csytrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zsytrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chetrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zhetrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ssptrf( char* uplo, lapack_int* n, float* ap, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_dsptrf( char* uplo, lapack_int* n, double* ap, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_csptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_zsptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_chptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_zhptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_sgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const lapack_int* ipiv, + float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const lapack_int* ipiv, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const float* ab, lapack_int* ldab, + const lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const double* ab, lapack_int* ldab, + const lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_float* ab, + lapack_int* ldab, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_double* ab, + lapack_int* ldab, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* dl, const float* d, const float* du, + const float* du2, const lapack_int* ipiv, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* dl, const double* d, const double* du, + const double* du2, const lapack_int* ipiv, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spotrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const float* a, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_spptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_spbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const float* ab, lapack_int* ldab, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const double* ab, lapack_int* ldab, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spttrs( lapack_int* n, lapack_int* nrhs, const float* d, + const float* e, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpttrs( lapack_int* n, lapack_int* nrhs, const double* d, + const double* e, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cpttrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* d, + const lapack_complex_float* e, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zpttrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* d, const lapack_complex_double* e, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ssytrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, const lapack_int* ipiv, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dsytrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const lapack_int* ipiv, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_csytrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zsytrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_chetrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zhetrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_ssptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, const lapack_int* ipiv, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dsptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, const lapack_int* ipiv, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_csptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zsptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_chptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zhptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_strtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* a, lapack_int* lda, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dtrtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* a, lapack_int* lda, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_ctrtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ztrtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_stptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* ap, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dtptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* ap, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_ctptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ztptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_stbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const float* ab, + lapack_int* ldab, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dtbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const double* ab, + lapack_int* ldab, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ctbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ztbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sgecon( char* norm, lapack_int* n, const float* a, lapack_int* lda, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgecon( char* norm, lapack_int* n, const double* a, lapack_int* lda, + double* anorm, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgecon( char* norm, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* anorm, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgecon( char* norm, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* anorm, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const float* ab, lapack_int* ldab, const lapack_int* ipiv, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const double* ab, lapack_int* ldab, const lapack_int* ipiv, + double* anorm, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_int* ipiv, float* anorm, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_int* ipiv, double* anorm, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgtcon( char* norm, lapack_int* n, const float* dl, const float* d, + const float* du, const float* du2, const lapack_int* ipiv, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgtcon( char* norm, lapack_int* n, const double* dl, + const double* d, const double* du, const double* du2, + const lapack_int* ipiv, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgtcon( char* norm, lapack_int* n, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, const lapack_int* ipiv, + float* anorm, float* rcond, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zgtcon( char* norm, lapack_int* n, const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, const lapack_int* ipiv, + double* anorm, double* rcond, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_spocon( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dpocon( char* uplo, lapack_int* n, const double* a, lapack_int* lda, + double* anorm, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cpocon( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* anorm, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zpocon( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* anorm, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sppcon( char* uplo, lapack_int* n, const float* ap, float* anorm, + float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dppcon( char* uplo, lapack_int* n, const double* ap, double* anorm, + double* rcond, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cppcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, + float* anorm, float* rcond, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zppcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, + double* anorm, double* rcond, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_spbcon( char* uplo, lapack_int* n, lapack_int* kd, const float* ab, + lapack_int* ldab, float* anorm, float* rcond, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dpbcon( char* uplo, lapack_int* n, lapack_int* kd, const double* ab, + lapack_int* ldab, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cpbcon( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_float* ab, lapack_int* ldab, + float* anorm, float* rcond, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zpbcon( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_double* ab, lapack_int* ldab, + double* anorm, double* rcond, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sptcon( lapack_int* n, const float* d, const float* e, float* anorm, + float* rcond, float* work, lapack_int *info ); +void LAPACK_dptcon( lapack_int* n, const double* d, const double* e, + double* anorm, double* rcond, double* work, + lapack_int *info ); +void LAPACK_cptcon( lapack_int* n, const float* d, + const lapack_complex_float* e, float* anorm, float* rcond, + float* work, lapack_int *info ); +void LAPACK_zptcon( lapack_int* n, const double* d, + const lapack_complex_double* e, double* anorm, + double* rcond, double* work, lapack_int *info ); +void LAPACK_ssycon( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + const lapack_int* ipiv, float* anorm, float* rcond, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dsycon( char* uplo, lapack_int* n, const double* a, lapack_int* lda, + const lapack_int* ipiv, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_csycon( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, float* anorm, + float* rcond, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zsycon( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, double* anorm, + double* rcond, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_checon( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, float* anorm, + float* rcond, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zhecon( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, double* anorm, + double* rcond, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_sspcon( char* uplo, lapack_int* n, const float* ap, + const lapack_int* ipiv, float* anorm, float* rcond, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dspcon( char* uplo, lapack_int* n, const double* ap, + const lapack_int* ipiv, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cspcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, + const lapack_int* ipiv, float* anorm, float* rcond, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zspcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, + const lapack_int* ipiv, double* anorm, double* rcond, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_chpcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, + const lapack_int* ipiv, float* anorm, float* rcond, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zhpcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, + const lapack_int* ipiv, double* anorm, double* rcond, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_strcon( char* norm, char* uplo, char* diag, lapack_int* n, + const float* a, lapack_int* lda, float* rcond, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtrcon( char* norm, char* uplo, char* diag, lapack_int* n, + const double* a, lapack_int* lda, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_ctrcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + float* rcond, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztrcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + double* rcond, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const float* ap, float* rcond, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const double* ap, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_float* ap, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_double* ap, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const float* ab, lapack_int* ldab, + float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dtbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const double* ab, lapack_int* ldab, + double* rcond, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const lapack_complex_float* ab, + lapack_int* ldab, float* rcond, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_ztbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const lapack_complex_double* ab, + lapack_int* ldab, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const lapack_int* ipiv, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, + float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* r, + const double* c, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const lapack_int* ipiv, const float* r, + const float* c, const float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const double* r, const double* c, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* r, const float* c, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const float* ab, lapack_int* ldab, + const float* afb, lapack_int* ldafb, const lapack_int* ipiv, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const double* ab, lapack_int* ldab, + const double* afb, lapack_int* ldafb, + const lapack_int* ipiv, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_float* ab, + lapack_int* ldab, const lapack_complex_float* afb, + lapack_int* ldafb, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_double* ab, + lapack_int* ldab, const lapack_complex_double* afb, + lapack_int* ldafb, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_dgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, const double* ab, + lapack_int* ldab, const double* afb, lapack_int* ldafb, + const lapack_int* ipiv, const double* r, const double* c, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, const float* ab, + lapack_int* ldab, const float* afb, lapack_int* ldafb, + const lapack_int* ipiv, const float* r, const float* c, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* afb, lapack_int* ldafb, + const lapack_int* ipiv, const double* r, const double* c, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* afb, lapack_int* ldafb, + const lapack_int* ipiv, const float* r, const float* c, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* dl, const float* d, const float* du, + const float* dlf, const float* df, const float* duf, + const float* du2, const lapack_int* ipiv, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, + float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* dl, const double* d, const double* du, + const double* dlf, const double* df, const double* duf, + const double* du2, const lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* dlf, + const lapack_complex_float* df, + const lapack_complex_float* duf, + const lapack_complex_float* du2, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* dlf, + const lapack_complex_double* df, + const lapack_complex_double* duf, + const lapack_complex_double* du2, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sporfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, const float* af, lapack_int* ldaf, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dporfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cporfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zporfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_dporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const double* s, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_sporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const float* s, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const double* s, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const float* s, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_spprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, const float* afp, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, + float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, const double* afp, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_spbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const float* ab, lapack_int* ldab, const float* afb, + lapack_int* ldafb, const float* b, lapack_int* ldb, + float* x, lapack_int* ldx, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const double* ab, lapack_int* ldab, const double* afb, + lapack_int* ldafb, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* afb, lapack_int* ldafb, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* afb, lapack_int* ldafb, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sptrfs( lapack_int* n, lapack_int* nrhs, const float* d, + const float* e, const float* df, const float* ef, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int *info ); +void LAPACK_dptrfs( lapack_int* n, lapack_int* nrhs, const double* d, + const double* e, const double* df, const double* ef, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* ferr, double* berr, double* work, + lapack_int *info ); +void LAPACK_cptrfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* d, + const lapack_complex_float* e, const float* df, + const lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zptrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* d, const lapack_complex_double* e, + const double* df, const lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, const float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* b, lapack_int* ldb, + float* x, lapack_int* ldx, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dsyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_csyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zsyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dsyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* s, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_ssyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const lapack_int* ipiv, const float* s, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zsyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_csyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_cherfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zherfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_zherfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cherfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ssprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, const float* afp, const lapack_int* ipiv, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dsprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, const double* afp, const lapack_int* ipiv, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_csprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* afp, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zsprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_chprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* afp, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_strrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* a, lapack_int* lda, + const float* b, lapack_int* ldb, const float* x, + lapack_int* ldx, float* ferr, float* berr, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtrrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* a, lapack_int* lda, + const double* b, lapack_int* ldb, const double* x, + lapack_int* ldx, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctrrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* b, + lapack_int* ldb, const lapack_complex_float* x, + lapack_int* ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztrrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* b, + lapack_int* ldb, const lapack_complex_double* x, + lapack_int* ldx, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* ap, const float* b, + lapack_int* ldb, const float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dtprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* ap, const double* b, + lapack_int* ldb, const double* x, lapack_int* ldx, + double* ferr, double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* ap, + const lapack_complex_float* b, lapack_int* ldb, + const lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* ap, + const lapack_complex_double* b, lapack_int* ldb, + const lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_stbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const float* ab, + lapack_int* ldab, const float* b, lapack_int* ldb, + const float* x, lapack_int* ldx, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dtbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const double* ab, + lapack_int* ldab, const double* b, lapack_int* ldb, + const double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* b, lapack_int* ldb, + const lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* b, lapack_int* ldb, + const lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sgetri( lapack_int* n, float* a, lapack_int* lda, + const lapack_int* ipiv, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgetri( lapack_int* n, double* a, lapack_int* lda, + const lapack_int* ipiv, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgetri( lapack_int* n, lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zgetri( lapack_int* n, lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_spotri( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dpotri( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_cpotri( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_zpotri( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dpftri( char* transr, char* uplo, lapack_int* n, double* a, + lapack_int *info ); +void LAPACK_spftri( char* transr, char* uplo, lapack_int* n, float* a, + lapack_int *info ); +void LAPACK_zpftri( char* transr, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int *info ); +void LAPACK_cpftri( char* transr, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int *info ); +void LAPACK_spptri( char* uplo, lapack_int* n, float* ap, lapack_int *info ); +void LAPACK_dpptri( char* uplo, lapack_int* n, double* ap, lapack_int *info ); +void LAPACK_cpptri( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_zpptri( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_ssytri( char* uplo, lapack_int* n, float* a, lapack_int* lda, + const lapack_int* ipiv, float* work, lapack_int *info ); +void LAPACK_dsytri( char* uplo, lapack_int* n, double* a, lapack_int* lda, + const lapack_int* ipiv, double* work, lapack_int *info ); +void LAPACK_csytri( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zsytri( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_chetri( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zhetri( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_ssptri( char* uplo, lapack_int* n, float* ap, + const lapack_int* ipiv, float* work, lapack_int *info ); +void LAPACK_dsptri( char* uplo, lapack_int* n, double* ap, + const lapack_int* ipiv, double* work, lapack_int *info ); +void LAPACK_csptri( char* uplo, lapack_int* n, lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zsptri( char* uplo, lapack_int* n, lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_chptri( char* uplo, lapack_int* n, lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zhptri( char* uplo, lapack_int* n, lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_strtri( char* uplo, char* diag, lapack_int* n, float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dtrtri( char* uplo, char* diag, lapack_int* n, double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_ctrtri( char* uplo, char* diag, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_ztrtri( char* uplo, char* diag, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dtftri( char* transr, char* uplo, char* diag, lapack_int* n, + double* a, lapack_int *info ); +void LAPACK_stftri( char* transr, char* uplo, char* diag, lapack_int* n, + float* a, lapack_int *info ); +void LAPACK_ztftri( char* transr, char* uplo, char* diag, lapack_int* n, + lapack_complex_double* a, lapack_int *info ); +void LAPACK_ctftri( char* transr, char* uplo, char* diag, lapack_int* n, + lapack_complex_float* a, lapack_int *info ); +void LAPACK_stptri( char* uplo, char* diag, lapack_int* n, float* ap, + lapack_int *info ); +void LAPACK_dtptri( char* uplo, char* diag, lapack_int* n, double* ap, + lapack_int *info ); +void LAPACK_ctptri( char* uplo, char* diag, lapack_int* n, + lapack_complex_float* ap, lapack_int *info ); +void LAPACK_ztptri( char* uplo, char* diag, lapack_int* n, + lapack_complex_double* ap, lapack_int *info ); +void LAPACK_sgeequ( lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_dgeequ( lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_cgeequ( lapack_int* m, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_zgeequ( lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* r, + double* c, double* rowcnd, double* colcnd, double* amax, + lapack_int *info ); +void LAPACK_dgeequb( lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_sgeequb( lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_zgeequb( lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* r, + double* c, double* rowcnd, double* colcnd, double* amax, + lapack_int *info ); +void LAPACK_cgeequb( lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* r, + float* c, float* rowcnd, float* colcnd, float* amax, + lapack_int *info ); +void LAPACK_sgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* ab, lapack_int* ldab, float* r, + float* c, float* rowcnd, float* colcnd, float* amax, + lapack_int *info ); +void LAPACK_dgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* ab, lapack_int* ldab, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax, lapack_int *info ); +void LAPACK_cgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_float* ab, + lapack_int* ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_zgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_double* ab, + lapack_int* ldab, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_dgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* ab, lapack_int* ldab, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax, lapack_int *info ); +void LAPACK_sgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* ab, lapack_int* ldab, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax, lapack_int *info ); +void LAPACK_zgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_double* ab, + lapack_int* ldab, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_cgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_float* ab, + lapack_int* ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_spoequ( lapack_int* n, const float* a, lapack_int* lda, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_dpoequ( lapack_int* n, const double* a, lapack_int* lda, double* s, + double* scond, double* amax, lapack_int *info ); +void LAPACK_cpoequ( lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_int *info ); +void LAPACK_zpoequ( lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_int *info ); +void LAPACK_dpoequb( lapack_int* n, const double* a, lapack_int* lda, double* s, + double* scond, double* amax, lapack_int *info ); +void LAPACK_spoequb( lapack_int* n, const float* a, lapack_int* lda, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_zpoequb( lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_int *info ); +void LAPACK_cpoequb( lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_int *info ); +void LAPACK_sppequ( char* uplo, lapack_int* n, const float* ap, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_dppequ( char* uplo, lapack_int* n, const double* ap, double* s, + double* scond, double* amax, lapack_int *info ); +void LAPACK_cppequ( char* uplo, lapack_int* n, const lapack_complex_float* ap, + float* s, float* scond, float* amax, lapack_int *info ); +void LAPACK_zppequ( char* uplo, lapack_int* n, const lapack_complex_double* ap, + double* s, double* scond, double* amax, lapack_int *info ); +void LAPACK_spbequ( char* uplo, lapack_int* n, lapack_int* kd, const float* ab, + lapack_int* ldab, float* s, float* scond, float* amax, + lapack_int *info ); +void LAPACK_dpbequ( char* uplo, lapack_int* n, lapack_int* kd, const double* ab, + lapack_int* ldab, double* s, double* scond, double* amax, + lapack_int *info ); +void LAPACK_cpbequ( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_float* ab, lapack_int* ldab, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_zpbequ( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_double* ab, lapack_int* ldab, + double* s, double* scond, double* amax, lapack_int *info ); +void LAPACK_dsyequb( char* uplo, lapack_int* n, const double* a, + lapack_int* lda, double* s, double* scond, double* amax, + double* work, lapack_int *info ); +void LAPACK_ssyequb( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + float* s, float* scond, float* amax, float* work, + lapack_int *info ); +void LAPACK_zsyequb( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_csyequb( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zheequb( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_cheequb( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_sgesv( lapack_int* n, lapack_int* nrhs, float* a, lapack_int* lda, + lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dgesv( lapack_int* n, lapack_int* nrhs, double* a, lapack_int* lda, + lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dsgesv( lapack_int* n, lapack_int* nrhs, double* a, lapack_int* lda, + lapack_int* ipiv, double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* work, float* swork, + lapack_int* iter, lapack_int *info ); +void LAPACK_zcgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + lapack_complex_double* work, lapack_complex_float* swork, + double* rwork, lapack_int* iter, lapack_int *info ); +void LAPACK_sgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, float* ab, lapack_int* ldab, + lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, double* ab, lapack_int* ldab, + lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, lapack_complex_float* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, lapack_complex_double* ab, + lapack_int* ldab, lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, float* ab, + lapack_int* ldab, float* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, float* r, float* c, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, double* ab, + lapack_int* ldab, double* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* afb, + lapack_int* ldafb, lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, lapack_complex_double* ab, + lapack_int* ldab, lapack_complex_double* afb, + lapack_int* ldafb, lapack_int* ipiv, char* equed, double* r, + double* c, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, double* ab, + lapack_int* ldab, double* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, float* ab, + lapack_int* ldab, float* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, + lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* afb, + lapack_int* ldafb, lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgtsv( lapack_int* n, lapack_int* nrhs, float* dl, float* d, + float* du, float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dgtsv( lapack_int* n, lapack_int* nrhs, double* dl, double* d, + double* du, double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cgtsv( lapack_int* n, lapack_int* nrhs, lapack_complex_float* dl, + lapack_complex_float* d, lapack_complex_float* du, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zgtsv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* dl, + lapack_complex_double* d, lapack_complex_double* du, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const float* dl, const float* d, const float* du, + float* dlf, float* df, float* duf, float* du2, + lapack_int* ipiv, const float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const double* dl, const double* d, const double* du, + double* dlf, double* df, double* duf, double* du2, + lapack_int* ipiv, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, lapack_complex_float* dlf, + lapack_complex_float* df, lapack_complex_float* duf, + lapack_complex_float* du2, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, lapack_complex_double* dlf, + lapack_complex_double* df, lapack_complex_double* duf, + lapack_complex_double* du2, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sposv( char* uplo, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dposv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cposv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zposv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dsposv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* work, float* swork, + lapack_int* iter, lapack_int *info ); +void LAPACK_zcposv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, + lapack_complex_double* work, lapack_complex_float* swork, + double* rwork, lapack_int* iter, lapack_int *info ); +void LAPACK_sposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + char* equed, float* s, float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + char* equed, double* s, double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, char* equed, + float* s, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, char* equed, + double* s, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + char* equed, double* s, double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_sposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + char* equed, float* s, float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* rpvgrw, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, char* equed, + double* s, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, char* equed, + float* s, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sppsv( char* uplo, lapack_int* n, lapack_int* nrhs, float* ap, + float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dppsv( char* uplo, lapack_int* n, lapack_int* nrhs, double* ap, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cppsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zppsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* ap, float* afp, char* equed, float* s, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* ap, double* afp, char* equed, double* s, double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_complex_float* afp, + char* equed, float* s, lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_complex_double* afp, + char* equed, double* s, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_spbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + float* ab, lapack_int* ldab, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + double* ab, lapack_int* ldab, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, float* ab, lapack_int* ldab, float* afb, + lapack_int* ldafb, char* equed, float* s, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, double* ab, lapack_int* ldab, double* afb, + lapack_int* ldafb, char* equed, double* s, double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* afb, + lapack_int* ldafb, char* equed, float* s, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, lapack_complex_double* ab, + lapack_int* ldab, lapack_complex_double* afb, + lapack_int* ldafb, char* equed, double* s, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sptsv( lapack_int* n, lapack_int* nrhs, float* d, float* e, + float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dptsv( lapack_int* n, lapack_int* nrhs, double* d, double* e, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cptsv( lapack_int* n, lapack_int* nrhs, float* d, + lapack_complex_float* e, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zptsv( lapack_int* n, lapack_int* nrhs, double* d, + lapack_complex_double* e, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sptsvx( char* fact, lapack_int* n, lapack_int* nrhs, const float* d, + const float* e, float* df, float* ef, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int *info ); +void LAPACK_dptsvx( char* fact, lapack_int* n, lapack_int* nrhs, + const double* d, const double* e, double* df, double* ef, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* ferr, double* berr, + double* work, lapack_int *info ); +void LAPACK_cptsvx( char* fact, lapack_int* n, lapack_int* nrhs, const float* d, + const lapack_complex_float* e, float* df, + lapack_complex_float* ef, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zptsvx( char* fact, lapack_int* n, lapack_int* nrhs, + const double* d, const lapack_complex_double* e, double* df, + lapack_complex_double* ef, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssysv( char* uplo, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, lapack_int* ipiv, float* b, lapack_int* ldb, + float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dsysv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, lapack_int* ipiv, double* b, + lapack_int* ldb, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_csysv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zsysv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ssysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, float* af, + lapack_int* ldaf, lapack_int* ipiv, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dsysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, double* af, + lapack_int* ldaf, lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_csysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zsysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_dsysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* s, double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ssysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* s, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zsysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_csysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_chesv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zhesv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chesvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zhesvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_zhesvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_chesvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sspsv( char* uplo, lapack_int* n, lapack_int* nrhs, float* ap, + lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dspsv( char* uplo, lapack_int* n, lapack_int* nrhs, double* ap, + lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cspsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zspsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, float* afp, lapack_int* ipiv, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, double* afp, lapack_int* ipiv, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, lapack_complex_float* afp, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, lapack_complex_double* afp, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_chpsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zhpsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_chpsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, lapack_complex_float* afp, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhpsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, lapack_complex_double* afp, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgeqrf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgeqrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgeqrf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgeqrf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgeqpf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* jpvt, float* tau, float* work, + lapack_int *info ); +void LAPACK_dgeqpf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* jpvt, double* tau, double* work, + lapack_int *info ); +void LAPACK_cgeqpf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_float* tau, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgeqpf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_double* tau, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sgeqp3( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* jpvt, float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgeqp3( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* jpvt, double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgeqp3( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int *info ); +void LAPACK_zgeqp3( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int *info ); +void LAPACK_sorgqr( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgqr( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungqr( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungqr( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgelqf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgelqf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgelqf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgelqf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sorglq( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorglq( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cunglq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zunglq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgeqlf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgeqlf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgeqlf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgeqlf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sorgql( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgql( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungql( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungql( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cunmql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgerqf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgerqf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgerqf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgerqf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sorgrq( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgrq( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungrq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungrq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cunmrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_stzrzf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dtzrzf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ctzrzf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ztzrzf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, const float* a, + lapack_int* lda, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dormrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, const double* a, + lapack_int* lda, const double* tau, double* c, + lapack_int* ldc, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sggqrf( lapack_int* n, lapack_int* m, lapack_int* p, float* a, + lapack_int* lda, float* taua, float* b, lapack_int* ldb, + float* taub, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggqrf( lapack_int* n, lapack_int* m, lapack_int* p, double* a, + lapack_int* lda, double* taua, double* b, lapack_int* ldb, + double* taub, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cggqrf( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* taua, lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* taub, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zggqrf( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* taua, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* taub, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sggrqf( lapack_int* m, lapack_int* p, lapack_int* n, float* a, + lapack_int* lda, float* taua, float* b, lapack_int* ldb, + float* taub, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggrqf( lapack_int* m, lapack_int* p, lapack_int* n, double* a, + lapack_int* lda, double* taua, double* b, lapack_int* ldb, + double* taub, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cggrqf( lapack_int* m, lapack_int* p, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* taua, lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* taub, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zggrqf( lapack_int* m, lapack_int* p, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* taua, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* taub, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgebrd( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* d, float* e, float* tauq, float* taup, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgebrd( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* d, double* e, double* tauq, double* taup, + double* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_cgebrd( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, float* d, float* e, + lapack_complex_float* tauq, lapack_complex_float* taup, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgebrd( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, double* d, double* e, + lapack_complex_double* tauq, lapack_complex_double* taup, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, float* ab, lapack_int* ldab, + float* d, float* e, float* q, lapack_int* ldq, float* pt, + lapack_int* ldpt, float* c, lapack_int* ldc, float* work, + lapack_int *info ); +void LAPACK_dgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, double* ab, + lapack_int* ldab, double* d, double* e, double* q, + lapack_int* ldq, double* pt, lapack_int* ldpt, double* c, + lapack_int* ldc, double* work, lapack_int *info ); +void LAPACK_cgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, lapack_complex_float* ab, + lapack_int* ldab, float* d, float* e, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* pt, lapack_int* ldpt, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, lapack_complex_double* ab, + lapack_int* ldab, double* d, double* e, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* pt, lapack_int* ldpt, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sorgbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + float* a, lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + double* a, lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, const float* a, + lapack_int* lda, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dormbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, const double* a, + lapack_int* lda, const double* tau, double* c, + lapack_int* ldc, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cungbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, float* d, float* e, + float* vt, lapack_int* ldvt, float* u, lapack_int* ldu, + float* c, lapack_int* ldc, float* work, lapack_int *info ); +void LAPACK_dbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, double* d, double* e, + double* vt, lapack_int* ldvt, double* u, lapack_int* ldu, + double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_cbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, float* d, float* e, + lapack_complex_float* vt, lapack_int* ldvt, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* c, lapack_int* ldc, float* work, + lapack_int *info ); +void LAPACK_zbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, double* d, double* e, + lapack_complex_double* vt, lapack_int* ldvt, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_sbdsdc( char* uplo, char* compq, lapack_int* n, float* d, float* e, + float* u, lapack_int* ldu, float* vt, lapack_int* ldvt, + float* q, lapack_int* iq, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dbdsdc( char* uplo, char* compq, lapack_int* n, double* d, + double* e, double* u, lapack_int* ldu, double* vt, + lapack_int* ldvt, double* q, lapack_int* iq, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ssytrd( char* uplo, lapack_int* n, float* a, lapack_int* lda, + float* d, float* e, float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dsytrd( char* uplo, lapack_int* n, double* a, lapack_int* lda, + double* d, double* e, double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sorgtr( char* uplo, lapack_int* n, float* a, lapack_int* lda, + const float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dorgtr( char* uplo, lapack_int* n, double* a, lapack_int* lda, + const double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_chetrd( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, float* d, float* e, + lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zhetrd( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, double* d, double* e, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungtr( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zungtr( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ssptrd( char* uplo, lapack_int* n, float* ap, float* d, float* e, + float* tau, lapack_int *info ); +void LAPACK_dsptrd( char* uplo, lapack_int* n, double* ap, double* d, double* e, + double* tau, lapack_int *info ); +void LAPACK_sopgtr( char* uplo, lapack_int* n, const float* ap, + const float* tau, float* q, lapack_int* ldq, float* work, + lapack_int *info ); +void LAPACK_dopgtr( char* uplo, lapack_int* n, const double* ap, + const double* tau, double* q, lapack_int* ldq, double* work, + lapack_int *info ); +void LAPACK_sopmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const float* ap, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int *info ); +void LAPACK_dopmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const double* ap, const double* tau, + double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_chptrd( char* uplo, lapack_int* n, lapack_complex_float* ap, + float* d, float* e, lapack_complex_float* tau, + lapack_int *info ); +void LAPACK_zhptrd( char* uplo, lapack_int* n, lapack_complex_double* ap, + double* d, double* e, lapack_complex_double* tau, + lapack_int *info ); +void LAPACK_cupgtr( char* uplo, lapack_int* n, const lapack_complex_float* ap, + const lapack_complex_float* tau, lapack_complex_float* q, + lapack_int* ldq, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zupgtr( char* uplo, lapack_int* n, const lapack_complex_double* ap, + const lapack_complex_double* tau, lapack_complex_double* q, + lapack_int* ldq, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_cupmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_float* ap, + const lapack_complex_float* tau, lapack_complex_float* c, + lapack_int* ldc, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zupmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_double* ap, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_ssbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + float* ab, lapack_int* ldab, float* d, float* e, float* q, + lapack_int* ldq, float* work, lapack_int *info ); +void LAPACK_dsbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + double* ab, lapack_int* ldab, double* d, double* e, + double* q, lapack_int* ldq, double* work, + lapack_int *info ); +void LAPACK_chbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, float* d, + float* e, lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zhbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, double* d, + double* e, lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_ssterf( lapack_int* n, float* d, float* e, lapack_int *info ); +void LAPACK_dsterf( lapack_int* n, double* d, double* e, lapack_int *info ); +void LAPACK_ssteqr( char* compz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dsteqr( char* compz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_csteqr( char* compz, lapack_int* n, float* d, float* e, + lapack_complex_float* z, lapack_int* ldz, float* work, + lapack_int *info ); +void LAPACK_zsteqr( char* compz, lapack_int* n, double* d, double* e, + lapack_complex_double* z, lapack_int* ldz, double* work, + lapack_int *info ); +void LAPACK_sstemr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + lapack_int* m, float* w, float* z, lapack_int* ldz, + lapack_int* nzc, lapack_int* isuppz, lapack_logical* tryrac, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dstemr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, lapack_int* m, double* w, double* z, + lapack_int* ldz, lapack_int* nzc, lapack_int* isuppz, + lapack_logical* tryrac, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cstemr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_int* nzc, lapack_int* isuppz, + lapack_logical* tryrac, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_zstemr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int* ldz, lapack_int* nzc, + lapack_int* isuppz, lapack_logical* tryrac, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_sstedc( char* compz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dstedc( char* compz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cstedc( char* compz, lapack_int* n, float* d, float* e, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zstedc( char* compz, lapack_int* n, double* d, double* e, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sstegr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, lapack_int* isuppz, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_dstegr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, lapack_int* isuppz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_cstegr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_int* isuppz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_zstegr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_int* isuppz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_spteqr( char* compz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dpteqr( char* compz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_cpteqr( char* compz, lapack_int* n, float* d, float* e, + lapack_complex_float* z, lapack_int* ldz, float* work, + lapack_int *info ); +void LAPACK_zpteqr( char* compz, lapack_int* n, double* d, double* e, + lapack_complex_double* z, lapack_int* ldz, double* work, + lapack_int *info ); +void LAPACK_sstebz( char* range, char* order, lapack_int* n, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + const float* d, const float* e, lapack_int* m, + lapack_int* nsplit, float* w, lapack_int* iblock, + lapack_int* isplit, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dstebz( char* range, char* order, lapack_int* n, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + const double* d, const double* e, lapack_int* m, + lapack_int* nsplit, double* w, lapack_int* iblock, + lapack_int* isplit, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_sstein( lapack_int* n, const float* d, const float* e, + lapack_int* m, const float* w, const lapack_int* iblock, + const lapack_int* isplit, float* z, lapack_int* ldz, + float* work, lapack_int* iwork, lapack_int* ifailv, + lapack_int *info ); +void LAPACK_dstein( lapack_int* n, const double* d, const double* e, + lapack_int* m, const double* w, const lapack_int* iblock, + const lapack_int* isplit, double* z, lapack_int* ldz, + double* work, lapack_int* iwork, lapack_int* ifailv, + lapack_int *info ); +void LAPACK_cstein( lapack_int* n, const float* d, const float* e, + lapack_int* m, const float* w, const lapack_int* iblock, + const lapack_int* isplit, lapack_complex_float* z, + lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifailv, lapack_int *info ); +void LAPACK_zstein( lapack_int* n, const double* d, const double* e, + lapack_int* m, const double* w, const lapack_int* iblock, + const lapack_int* isplit, lapack_complex_double* z, + lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifailv, lapack_int *info ); +void LAPACK_sdisna( char* job, lapack_int* m, lapack_int* n, const float* d, + float* sep, lapack_int *info ); +void LAPACK_ddisna( char* job, lapack_int* m, lapack_int* n, const double* d, + double* sep, lapack_int *info ); +void LAPACK_ssygst( lapack_int* itype, char* uplo, lapack_int* n, float* a, + lapack_int* lda, const float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dsygst( lapack_int* itype, char* uplo, lapack_int* n, double* a, + lapack_int* lda, const double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_chegst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zhegst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sspgst( lapack_int* itype, char* uplo, lapack_int* n, float* ap, + const float* bp, lapack_int *info ); +void LAPACK_dspgst( lapack_int* itype, char* uplo, lapack_int* n, double* ap, + const double* bp, lapack_int *info ); +void LAPACK_chpgst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_float* ap, const lapack_complex_float* bp, + lapack_int *info ); +void LAPACK_zhpgst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_double* ap, const lapack_complex_double* bp, + lapack_int *info ); +void LAPACK_ssbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, float* ab, lapack_int* ldab, + const float* bb, lapack_int* ldbb, float* x, + lapack_int* ldx, float* work, lapack_int *info ); +void LAPACK_dsbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, double* ab, lapack_int* ldab, + const double* bb, lapack_int* ldbb, double* x, + lapack_int* ldx, double* work, lapack_int *info ); +void LAPACK_chbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* bb, lapack_int* ldbb, + lapack_complex_float* x, lapack_int* ldx, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* bb, lapack_int* ldbb, + lapack_complex_double* x, lapack_int* ldx, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_spbstf( char* uplo, lapack_int* n, lapack_int* kb, float* bb, + lapack_int* ldbb, lapack_int *info ); +void LAPACK_dpbstf( char* uplo, lapack_int* n, lapack_int* kb, double* bb, + lapack_int* ldbb, lapack_int *info ); +void LAPACK_cpbstf( char* uplo, lapack_int* n, lapack_int* kb, + lapack_complex_float* bb, lapack_int* ldbb, + lapack_int *info ); +void LAPACK_zpbstf( char* uplo, lapack_int* n, lapack_int* kb, + lapack_complex_double* bb, lapack_int* ldbb, + lapack_int *info ); +void LAPACK_sgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, float* a, + lapack_int* lda, float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, double* a, + lapack_int* lda, double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sorghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, const float* a, + lapack_int* lda, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dormhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, const double* a, + lapack_int* lda, const double* tau, double* c, + lapack_int* ldc, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zunghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* c, + lapack_int* ldc, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zunmhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sgebal( char* job, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ilo, lapack_int* ihi, float* scale, + lapack_int *info ); +void LAPACK_dgebal( char* job, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ilo, lapack_int* ihi, double* scale, + lapack_int *info ); +void LAPACK_cgebal( char* job, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ilo, lapack_int* ihi, + float* scale, lapack_int *info ); +void LAPACK_zgebal( char* job, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ilo, lapack_int* ihi, + double* scale, lapack_int *info ); +void LAPACK_sgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* scale, lapack_int* m, + float* v, lapack_int* ldv, lapack_int *info ); +void LAPACK_dgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* scale, lapack_int* m, + double* v, lapack_int* ldv, lapack_int *info ); +void LAPACK_cgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* scale, lapack_int* m, + lapack_complex_float* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_zgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* scale, lapack_int* m, + lapack_complex_double* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_shseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, float* h, lapack_int* ldh, float* wr, + float* wi, float* z, lapack_int* ldz, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dhseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, double* h, lapack_int* ldh, double* wr, + double* wi, double* z, lapack_int* ldz, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_chseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_float* h, lapack_int* ldh, + lapack_complex_float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zhseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_double* h, lapack_int* ldh, + lapack_complex_double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_shsein( char* job, char* eigsrc, char* initv, + lapack_logical* select, lapack_int* n, const float* h, + lapack_int* ldh, float* wr, const float* wi, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, float* work, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_dhsein( char* job, char* eigsrc, char* initv, + lapack_logical* select, lapack_int* n, const double* h, + lapack_int* ldh, double* wr, const double* wi, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, double* work, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_chsein( char* job, char* eigsrc, char* initv, + const lapack_logical* select, lapack_int* n, + const lapack_complex_float* h, lapack_int* ldh, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int* ldvl, lapack_complex_float* vr, + lapack_int* ldvr, lapack_int* mm, lapack_int* m, + lapack_complex_float* work, float* rwork, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_zhsein( char* job, char* eigsrc, char* initv, + const lapack_logical* select, lapack_int* n, + const lapack_complex_double* h, lapack_int* ldh, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_int* mm, lapack_int* m, + lapack_complex_double* work, double* rwork, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_strevc( char* side, char* howmny, lapack_logical* select, + lapack_int* n, const float* t, lapack_int* ldt, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, float* work, + lapack_int *info ); +void LAPACK_dtrevc( char* side, char* howmny, lapack_logical* select, + lapack_int* n, const double* t, lapack_int* ldt, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, double* work, + lapack_int *info ); +void LAPACK_ctrevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztrevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* vl, lapack_int* ldvl, + lapack_complex_double* vr, lapack_int* ldvr, lapack_int* mm, + lapack_int* m, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_strsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const float* t, lapack_int* ldt, + const float* vl, lapack_int* ldvl, const float* vr, + lapack_int* ldvr, float* s, float* sep, lapack_int* mm, + lapack_int* m, float* work, lapack_int* ldwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtrsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const double* t, lapack_int* ldt, + const double* vl, lapack_int* ldvl, const double* vr, + lapack_int* ldvr, double* s, double* sep, lapack_int* mm, + lapack_int* m, double* work, lapack_int* ldwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctrsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_float* t, + lapack_int* ldt, const lapack_complex_float* vl, + lapack_int* ldvl, const lapack_complex_float* vr, + lapack_int* ldvr, float* s, float* sep, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, + lapack_int* ldwork, float* rwork, lapack_int *info ); +void LAPACK_ztrsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_double* t, + lapack_int* ldt, const lapack_complex_double* vl, + lapack_int* ldvl, const lapack_complex_double* vr, + lapack_int* ldvr, double* s, double* sep, lapack_int* mm, + lapack_int* m, lapack_complex_double* work, + lapack_int* ldwork, double* rwork, lapack_int *info ); +void LAPACK_strexc( char* compq, lapack_int* n, float* t, lapack_int* ldt, + float* q, lapack_int* ldq, lapack_int* ifst, + lapack_int* ilst, float* work, lapack_int *info ); +void LAPACK_dtrexc( char* compq, lapack_int* n, double* t, lapack_int* ldt, + double* q, lapack_int* ldq, lapack_int* ifst, + lapack_int* ilst, double* work, lapack_int *info ); +void LAPACK_ctrexc( char* compq, lapack_int* n, lapack_complex_float* t, + lapack_int* ldt, lapack_complex_float* q, lapack_int* ldq, + lapack_int* ifst, lapack_int* ilst, lapack_int *info ); +void LAPACK_ztrexc( char* compq, lapack_int* n, lapack_complex_double* t, + lapack_int* ldt, lapack_complex_double* q, lapack_int* ldq, + lapack_int* ifst, lapack_int* ilst, lapack_int *info ); +void LAPACK_strsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, float* t, lapack_int* ldt, float* q, + lapack_int* ldq, float* wr, float* wi, lapack_int* m, + float* s, float* sep, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dtrsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, double* t, lapack_int* ldt, double* q, + lapack_int* ldq, double* wr, double* wi, lapack_int* m, + double* s, double* sep, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_ctrsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* w, lapack_int* m, float* s, + float* sep, lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ztrsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* w, lapack_int* m, double* s, + double* sep, lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_strsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const float* a, lapack_int* lda, + const float* b, lapack_int* ldb, float* c, lapack_int* ldc, + float* scale, lapack_int *info ); +void LAPACK_dtrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const double* a, lapack_int* lda, + const double* b, lapack_int* ldb, double* c, + lapack_int* ldc, double* scale, lapack_int *info ); +void LAPACK_ctrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* c, lapack_int* ldc, + float* scale, lapack_int *info ); +void LAPACK_ztrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* c, lapack_int* ldc, + double* scale, lapack_int *info ); +void LAPACK_sgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* q, lapack_int* ldq, float* z, + lapack_int* ldz, lapack_int *info ); +void LAPACK_dgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* q, lapack_int* ldq, double* z, + lapack_int* ldz, lapack_int *info ); +void LAPACK_cgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, + lapack_int *info ); +void LAPACK_zgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, + lapack_int *info ); +void LAPACK_sggbal( char* job, lapack_int* n, float* a, lapack_int* lda, + float* b, lapack_int* ldb, lapack_int* ilo, lapack_int* ihi, + float* lscale, float* rscale, float* work, + lapack_int *info ); +void LAPACK_dggbal( char* job, lapack_int* n, double* a, lapack_int* lda, + double* b, lapack_int* ldb, lapack_int* ilo, + lapack_int* ihi, double* lscale, double* rscale, + double* work, lapack_int *info ); +void LAPACK_cggbal( char* job, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* work, lapack_int *info ); +void LAPACK_zggbal( char* job, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale, double* work, lapack_int *info ); +void LAPACK_sggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* lscale, const float* rscale, + lapack_int* m, float* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_dggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* lscale, const double* rscale, + lapack_int* m, double* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_cggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* lscale, const float* rscale, + lapack_int* m, lapack_complex_float* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_zggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* lscale, const double* rscale, + lapack_int* m, lapack_complex_double* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_shgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, float* h, lapack_int* ldh, + float* t, lapack_int* ldt, float* alphar, float* alphai, + float* beta, float* q, lapack_int* ldq, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dhgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, double* h, + lapack_int* ldh, double* t, lapack_int* ldt, double* alphar, + double* alphai, double* beta, double* q, lapack_int* ldq, + double* z, lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, lapack_complex_float* h, + lapack_int* ldh, lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zhgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, lapack_complex_double* h, + lapack_int* ldh, lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_stgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const float* s, lapack_int* lds, + const float* p, lapack_int* ldp, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, float* work, + lapack_int *info ); +void LAPACK_dtgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const double* s, lapack_int* lds, + const double* p, lapack_int* ldp, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, double* work, + lapack_int *info ); +void LAPACK_ctgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_float* s, + lapack_int* lds, const lapack_complex_float* p, + lapack_int* ldp, lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_double* s, + lapack_int* lds, const lapack_complex_double* p, + lapack_int* ldp, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_int* mm, lapack_int* m, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* q, lapack_int* ldq, float* z, lapack_int* ldz, + lapack_int* ifst, lapack_int* ilst, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dtgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* q, lapack_int* ldq, double* z, lapack_int* ldz, + lapack_int* ifst, lapack_int* ilst, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_ctgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, lapack_int* ifst, + lapack_int* ilst, lapack_int *info ); +void LAPACK_ztgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, lapack_int* ifst, + lapack_int* ilst, lapack_int *info ); +void LAPACK_stgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* alphar, float* alphai, float* beta, + float* q, lapack_int* ldq, float* z, lapack_int* ldz, + lapack_int* m, float* pl, float* pr, float* dif, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dtgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* alphar, double* alphai, + double* beta, double* q, lapack_int* ldq, double* z, + lapack_int* ldz, lapack_int* m, double* pl, double* pr, + double* dif, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_ctgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, lapack_int* m, + float* pl, float* pr, float* dif, + lapack_complex_float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_ztgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, lapack_int* m, + double* pl, double* pr, double* dif, + lapack_complex_double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_stgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const float* a, lapack_int* lda, const float* b, + lapack_int* ldb, float* c, lapack_int* ldc, const float* d, + lapack_int* ldd, const float* e, lapack_int* lde, float* f, + lapack_int* ldf, float* scale, float* dif, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_dtgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const double* a, lapack_int* lda, const double* b, + lapack_int* ldb, double* c, lapack_int* ldc, + const double* d, lapack_int* ldd, const double* e, + lapack_int* lde, double* f, lapack_int* ldf, double* scale, + double* dif, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* c, lapack_int* ldc, + const lapack_complex_float* d, lapack_int* ldd, + const lapack_complex_float* e, lapack_int* lde, + lapack_complex_float* f, lapack_int* ldf, float* scale, + float* dif, lapack_complex_float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ztgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* c, lapack_int* ldc, + const lapack_complex_double* d, lapack_int* ldd, + const lapack_complex_double* e, lapack_int* lde, + lapack_complex_double* f, lapack_int* ldf, double* scale, + double* dif, lapack_complex_double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_stgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const float* a, lapack_int* lda, + const float* b, lapack_int* ldb, const float* vl, + lapack_int* ldvl, const float* vr, lapack_int* ldvr, + float* s, float* dif, lapack_int* mm, lapack_int* m, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dtgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const double* a, lapack_int* lda, + const double* b, lapack_int* ldb, const double* vl, + lapack_int* ldvl, const double* vr, lapack_int* ldvr, + double* s, double* dif, lapack_int* mm, lapack_int* m, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* b, + lapack_int* ldb, const lapack_complex_float* vl, + lapack_int* ldvl, const lapack_complex_float* vr, + lapack_int* ldvr, float* s, float* dif, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_ztgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* b, + lapack_int* ldb, const lapack_complex_double* vl, + lapack_int* ldvl, const lapack_complex_double* vr, + lapack_int* ldvr, double* s, double* dif, lapack_int* mm, + lapack_int* m, lapack_complex_double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_sggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, float* a, lapack_int* lda, + float* b, lapack_int* ldb, float* tola, float* tolb, + lapack_int* k, lapack_int* l, float* u, lapack_int* ldu, + float* v, lapack_int* ldv, float* q, lapack_int* ldq, + lapack_int* iwork, float* tau, float* work, + lapack_int *info ); +void LAPACK_dggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, double* a, lapack_int* lda, + double* b, lapack_int* ldb, double* tola, double* tolb, + lapack_int* k, lapack_int* l, double* u, lapack_int* ldu, + double* v, lapack_int* ldv, double* q, lapack_int* ldq, + lapack_int* iwork, double* tau, double* work, + lapack_int *info ); +void LAPACK_cggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + float* tola, float* tolb, lapack_int* k, lapack_int* l, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* v, lapack_int* ldv, + lapack_complex_float* q, lapack_int* ldq, lapack_int* iwork, + float* rwork, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + double* tola, double* tolb, lapack_int* k, lapack_int* l, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* v, lapack_int* ldv, + lapack_complex_double* q, lapack_int* ldq, + lapack_int* iwork, double* rwork, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_stgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* tola, float* tolb, float* alpha, float* beta, + float* u, lapack_int* ldu, float* v, lapack_int* ldv, + float* q, lapack_int* ldq, float* work, lapack_int* ncycle, + lapack_int *info ); +void LAPACK_dtgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* tola, double* tolb, double* alpha, double* beta, + double* u, lapack_int* ldu, double* v, lapack_int* ldv, + double* q, lapack_int* ldq, double* work, + lapack_int* ncycle, lapack_int *info ); +void LAPACK_ctgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* tola, + float* tolb, float* alpha, float* beta, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* v, lapack_int* ldv, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* work, lapack_int* ncycle, + lapack_int *info ); +void LAPACK_ztgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* tola, + double* tolb, double* alpha, double* beta, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* v, lapack_int* ldv, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* work, lapack_int* ncycle, + lapack_int *info ); +void LAPACK_sgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_cgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, + lapack_int* jpvt, float* rcond, lapack_int* rank, + float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, + lapack_int* jpvt, double* rcond, lapack_int* rank, + double* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_cgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int* jpvt, + float* rcond, lapack_int* rank, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int *info ); +void LAPACK_zgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, lapack_int* jpvt, + double* rcond, lapack_int* rank, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int *info ); +void LAPACK_zgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_dgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_zgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgglse( lapack_int* m, lapack_int* n, lapack_int* p, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* c, + float* d, float* x, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgglse( lapack_int* m, lapack_int* n, lapack_int* p, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* c, + double* d, double* x, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgglse( lapack_int* m, lapack_int* n, lapack_int* p, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* c, lapack_complex_float* d, + lapack_complex_float* x, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zgglse( lapack_int* m, lapack_int* n, lapack_int* p, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* c, lapack_complex_double* d, + lapack_complex_double* x, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sggglm( lapack_int* n, lapack_int* m, lapack_int* p, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* d, + float* x, float* y, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggglm( lapack_int* n, lapack_int* m, lapack_int* p, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* d, + double* x, double* y, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cggglm( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* d, lapack_complex_float* x, + lapack_complex_float* y, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zggglm( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* d, lapack_complex_double* x, + lapack_complex_double* y, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_ssyev( char* jobz, char* uplo, lapack_int* n, float* a, + lapack_int* lda, float* w, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dsyev( char* jobz, char* uplo, lapack_int* n, double* a, + lapack_int* lda, double* w, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cheev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zheev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_ssyevd( char* jobz, char* uplo, lapack_int* n, float* a, + lapack_int* lda, float* w, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dsyevd( char* jobz, char* uplo, lapack_int* n, double* a, + lapack_int* lda, double* w, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cheevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zheevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssyevx( char* jobz, char* range, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dsyevx( char* jobz, char* range, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, double* z, lapack_int* ldz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_cheevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_zheevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_ssyevr( char* jobz, char* range, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, float* z, lapack_int* ldz, + lapack_int* isuppz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dsyevr( char* jobz, char* range, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, double* z, lapack_int* ldz, + lapack_int* isuppz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cheevr( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_int* isuppz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zheevr( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_int* isuppz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sspev( char* jobz, char* uplo, lapack_int* n, float* ap, float* w, + float* z, lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dspev( char* jobz, char* uplo, lapack_int* n, double* ap, double* w, + double* z, lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_chpev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhpev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sspevd( char* jobz, char* uplo, lapack_int* n, float* ap, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dspevd( char* jobz, char* uplo, lapack_int* n, double* ap, + double* w, double* z, lapack_int* ldz, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_chpevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* lrwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_zhpevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sspevx( char* jobz, char* range, char* uplo, lapack_int* n, + float* ap, float* vl, float* vu, lapack_int* il, + lapack_int* iu, float* abstol, lapack_int* m, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dspevx( char* jobz, char* range, char* uplo, lapack_int* n, + double* ap, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_chpevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_float* ap, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_zhpevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_double* ap, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_ssbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + float* ab, lapack_int* ldab, float* w, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dsbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + double* ab, lapack_int* ldab, double* w, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_chbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int *info ); +void LAPACK_zhbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + float* ab, lapack_int* ldab, float* w, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dsbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + double* ab, lapack_int* ldab, double* w, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_chbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, float* ab, lapack_int* ldab, float* q, + lapack_int* ldq, float* vl, float* vu, lapack_int* il, + lapack_int* iu, float* abstol, lapack_int* m, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dsbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, double* ab, lapack_int* ldab, double* q, + lapack_int* ldq, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_chbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* q, lapack_int* ldq, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_zhbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* q, lapack_int* ldq, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_sstev( char* jobz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dstev( char* jobz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_sstevd( char* jobz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dstevd( char* jobz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_sstevx( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dstevx( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_sstevr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, lapack_int* isuppz, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_dstevr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, lapack_int* isuppz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sgees( char* jobvs, char* sort, LAPACK_S_SELECT2 select, + lapack_int* n, float* a, lapack_int* lda, lapack_int* sdim, + float* wr, float* wi, float* vs, lapack_int* ldvs, + float* work, lapack_int* lwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dgees( char* jobvs, char* sort, LAPACK_D_SELECT2 select, + lapack_int* n, double* a, lapack_int* lda, lapack_int* sdim, + double* wr, double* wi, double* vs, lapack_int* ldvs, + double* work, lapack_int* lwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cgees( char* jobvs, char* sort, LAPACK_C_SELECT1 select, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int* ldvs, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_zgees( char* jobvs, char* sort, LAPACK_Z_SELECT1 select, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int* ldvs, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_logical* bwork, lapack_int *info ); +void LAPACK_sgeesx( char* jobvs, char* sort, LAPACK_S_SELECT2 select, + char* sense, lapack_int* n, float* a, lapack_int* lda, + lapack_int* sdim, float* wr, float* wi, float* vs, + lapack_int* ldvs, float* rconde, float* rcondv, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_dgeesx( char* jobvs, char* sort, LAPACK_D_SELECT2 select, + char* sense, lapack_int* n, double* a, lapack_int* lda, + lapack_int* sdim, double* wr, double* wi, double* vs, + lapack_int* ldvs, double* rconde, double* rcondv, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cgeesx( char* jobvs, char* sort, LAPACK_C_SELECT1 select, + char* sense, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int* ldvs, float* rconde, + float* rcondv, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_zgeesx( char* jobvs, char* sort, LAPACK_Z_SELECT1 select, + char* sense, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int* ldvs, double* rconde, + double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_sgeev( char* jobvl, char* jobvr, lapack_int* n, float* a, + lapack_int* lda, float* wr, float* wi, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgeev( char* jobvl, char* jobvr, lapack_int* n, double* a, + lapack_int* lda, double* wr, double* wi, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgeev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int* ldvl, lapack_complex_float* vr, lapack_int* ldvr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zgeev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int *info ); +void LAPACK_sgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, float* a, lapack_int* lda, float* wr, + float* wi, float* vl, lapack_int* ldvl, float* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + float* scale, float* abnrm, float* rconde, float* rcondv, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, double* a, lapack_int* lda, double* wr, + double* wi, double* vl, lapack_int* ldvl, double* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + double* scale, double* abnrm, double* rconde, + double* rcondv, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int* ldvl, lapack_complex_float* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + float* scale, float* abnrm, float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + double* scale, double* abnrm, double* rconde, + double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int *info ); +void LAPACK_sgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + float* a, lapack_int* lda, float* s, float* u, + lapack_int* ldu, float* vt, lapack_int* ldvt, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + double* a, lapack_int* lda, double* s, double* u, + lapack_int* ldu, double* vt, lapack_int* ldvt, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* s, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* vt, lapack_int* ldvt, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* s, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* vt, lapack_int* ldvt, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sgesdd( char* jobz, lapack_int* m, lapack_int* n, float* a, + lapack_int* lda, float* s, float* u, lapack_int* ldu, + float* vt, lapack_int* ldvt, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dgesdd( char* jobz, lapack_int* m, lapack_int* n, double* a, + lapack_int* lda, double* s, double* u, lapack_int* ldu, + double* vt, lapack_int* ldvt, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgesdd( char* jobz, lapack_int* m, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* s, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* vt, lapack_int* ldvt, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zgesdd( char* jobz, lapack_int* m, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* s, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* vt, lapack_int* ldvt, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_dgejsv( char* joba, char* jobu, char* jobv, char* jobr, char* jobt, + char* jobp, lapack_int* m, lapack_int* n, double* a, + lapack_int* lda, double* sva, double* u, lapack_int* ldu, + double* v, lapack_int* ldv, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_sgejsv( char* joba, char* jobu, char* jobv, char* jobr, char* jobt, + char* jobp, lapack_int* m, lapack_int* n, float* a, + lapack_int* lda, float* sva, float* u, lapack_int* ldu, + float* v, lapack_int* ldv, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dgesvj( char* joba, char* jobu, char* jobv, lapack_int* m, + lapack_int* n, double* a, lapack_int* lda, double* sva, + lapack_int* mv, double* v, lapack_int* ldv, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sgesvj( char* joba, char* jobu, char* jobv, lapack_int* m, + lapack_int* n, float* a, lapack_int* lda, float* sva, + lapack_int* mv, float* v, lapack_int* ldv, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* alpha, float* beta, float* u, lapack_int* ldu, + float* v, lapack_int* ldv, float* q, lapack_int* ldq, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* alpha, double* beta, double* u, lapack_int* ldu, + double* v, lapack_int* ldv, double* q, lapack_int* ldq, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* alpha, + float* beta, lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* v, lapack_int* ldv, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* work, float* rwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_zggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* alpha, + double* beta, lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* v, lapack_int* ldv, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ssygv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* w, float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dsygv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* w, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chegv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zhegv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_ssygvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* w, float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dsygvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* w, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_chegvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhegvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssygvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* vl, float* vu, lapack_int* il, + lapack_int* iu, float* abstol, lapack_int* m, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_dsygvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_chegvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_zhegvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_sspgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* ap, float* bp, float* w, float* z, lapack_int* ldz, + float* work, lapack_int *info ); +void LAPACK_dspgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* ap, double* bp, double* w, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_chpgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int *info ); +void LAPACK_zhpgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, lapack_complex_double* bp, + double* w, lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sspgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* ap, float* bp, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dspgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* ap, double* bp, double* w, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_chpgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, lapack_complex_float* bp, + float* w, lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhpgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, lapack_complex_double* bp, + double* w, lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sspgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, float* ap, float* bp, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* iwork, lapack_int* ifail, + lapack_int *info ); +void LAPACK_dspgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, double* ap, double* bp, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, double* z, lapack_int* ldz, + double* work, lapack_int* iwork, lapack_int* ifail, + lapack_int *info ); +void LAPACK_chpgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_float* ap, + lapack_complex_float* bp, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_zhpgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_double* ap, + lapack_complex_double* bp, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_ssbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, float* ab, lapack_int* ldab, float* bb, + lapack_int* ldbb, float* w, float* z, lapack_int* ldz, + float* work, lapack_int *info ); +void LAPACK_dsbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, double* ab, lapack_int* ldab, double* bb, + lapack_int* ldbb, double* w, double* z, lapack_int* ldz, + double* work, lapack_int *info ); +void LAPACK_chbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* bb, lapack_int* ldbb, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int *info ); +void LAPACK_zhbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* bb, lapack_int* ldbb, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, float* ab, lapack_int* ldab, float* bb, + lapack_int* ldbb, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dsbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, double* ab, lapack_int* ldab, double* bb, + lapack_int* ldbb, double* w, double* z, lapack_int* ldz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_chbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* bb, lapack_int* ldbb, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* bb, lapack_int* ldbb, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, float* ab, lapack_int* ldab, + float* bb, lapack_int* ldbb, float* q, lapack_int* ldq, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dsbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, double* ab, + lapack_int* ldab, double* bb, lapack_int* ldbb, double* q, + lapack_int* ldq, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_chbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* bb, + lapack_int* ldbb, lapack_complex_float* q, lapack_int* ldq, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_zhbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, lapack_complex_double* ab, + lapack_int* ldab, lapack_complex_double* bb, + lapack_int* ldbb, lapack_complex_double* q, lapack_int* ldq, + double* vl, double* vu, lapack_int* il, lapack_int* iu, + double* abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_sgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_S_SELECT3 selctg, lapack_int* n, float* a, + lapack_int* lda, float* b, lapack_int* ldb, lapack_int* sdim, + float* alphar, float* alphai, float* beta, float* vsl, + lapack_int* ldvsl, float* vsr, lapack_int* ldvsr, + float* work, lapack_int* lwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_D_SELECT3 selctg, lapack_int* n, double* a, + lapack_int* lda, double* b, lapack_int* ldb, + lapack_int* sdim, double* alphar, double* alphai, + double* beta, double* vsl, lapack_int* ldvsl, double* vsr, + lapack_int* ldvsr, double* work, lapack_int* lwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_cgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_C_SELECT2 selctg, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int* ldvsl, + lapack_complex_float* vsr, lapack_int* ldvsr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_zgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_Z_SELECT2 selctg, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int* ldvsl, + lapack_complex_double* vsr, lapack_int* ldvsr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_logical* bwork, lapack_int *info ); +void LAPACK_sggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_S_SELECT3 selctg, char* sense, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + lapack_int* sdim, float* alphar, float* alphai, float* beta, + float* vsl, lapack_int* ldvsl, float* vsr, + lapack_int* ldvsr, float* rconde, float* rcondv, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_D_SELECT3 selctg, char* sense, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + lapack_int* sdim, double* alphar, double* alphai, + double* beta, double* vsl, lapack_int* ldvsl, double* vsr, + lapack_int* ldvsr, double* rconde, double* rcondv, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_C_SELECT2 selctg, char* sense, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int* ldvsl, + lapack_complex_float* vsr, lapack_int* ldvsr, float* rconde, + float* rcondv, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_zggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_Z_SELECT2 selctg, char* sense, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int* ldvsl, + lapack_complex_double* vsr, lapack_int* ldvsr, + double* rconde, double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_sggev( char* jobvl, char* jobvr, lapack_int* n, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* alphar, + float* alphai, float* beta, float* vl, lapack_int* ldvl, + float* vr, lapack_int* ldvr, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggev( char* jobvl, char* jobvr, lapack_int* n, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* alphar, + double* alphai, double* beta, double* vl, lapack_int* ldvl, + double* vr, lapack_int* ldvr, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cggev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zggev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int* ldvl, + lapack_complex_double* vr, lapack_int* ldvr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* alphar, float* alphai, float* beta, + float* vl, lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* abnrm, float* bbnrm, float* rconde, + float* rcondv, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* alphar, double* alphai, + double* beta, double* vl, lapack_int* ldvl, double* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* abnrm, + double* bbnrm, double* rconde, double* rcondv, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, lapack_int* ilo, + lapack_int* ihi, float* lscale, float* rscale, float* abnrm, + float* bbnrm, float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* iwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_zggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int* ldvl, + lapack_complex_double* vr, lapack_int* ldvr, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale, double* abnrm, double* bbnrm, + double* rconde, double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_dsfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, double* alpha, const double* a, + lapack_int* lda, double* beta, double* c ); +void LAPACK_ssfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, float* alpha, const float* a, lapack_int* lda, + float* beta, float* c ); +void LAPACK_zhfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, double* alpha, const lapack_complex_double* a, + lapack_int* lda, double* beta, lapack_complex_double* c ); +void LAPACK_chfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, float* alpha, const lapack_complex_float* a, + lapack_int* lda, float* beta, lapack_complex_float* c ); +void LAPACK_dtfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, double* alpha, + const double* a, double* b, lapack_int* ldb ); +void LAPACK_stfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, float* alpha, + const float* a, float* b, lapack_int* ldb ); +void LAPACK_ztfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, + lapack_complex_double* alpha, const lapack_complex_double* a, + lapack_complex_double* b, lapack_int* ldb ); +void LAPACK_ctfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, + lapack_complex_float* alpha, const lapack_complex_float* a, + lapack_complex_float* b, lapack_int* ldb ); +void LAPACK_dtfttp( char* transr, char* uplo, lapack_int* n, const double* arf, + double* ap, lapack_int *info ); +void LAPACK_stfttp( char* transr, char* uplo, lapack_int* n, const float* arf, + float* ap, lapack_int *info ); +void LAPACK_ztfttp( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* arf, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_ctfttp( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* arf, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_dtfttr( char* transr, char* uplo, lapack_int* n, const double* arf, + double* a, lapack_int* lda, lapack_int *info ); +void LAPACK_stfttr( char* transr, char* uplo, lapack_int* n, const float* arf, + float* a, lapack_int* lda, lapack_int *info ); +void LAPACK_ztfttr( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* arf, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_ctfttr( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* arf, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dtpttf( char* transr, char* uplo, lapack_int* n, const double* ap, + double* arf, lapack_int *info ); +void LAPACK_stpttf( char* transr, char* uplo, lapack_int* n, const float* ap, + float* arf, lapack_int *info ); +void LAPACK_ztpttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* ap, lapack_complex_double* arf, + lapack_int *info ); +void LAPACK_ctpttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* ap, lapack_complex_float* arf, + lapack_int *info ); +void LAPACK_dtpttr( char* uplo, lapack_int* n, const double* ap, double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_stpttr( char* uplo, lapack_int* n, const float* ap, float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_ztpttr( char* uplo, lapack_int* n, const lapack_complex_double* ap, + lapack_complex_double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_ctpttr( char* uplo, lapack_int* n, const lapack_complex_float* ap, + lapack_complex_float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dtrttf( char* transr, char* uplo, lapack_int* n, const double* a, + lapack_int* lda, double* arf, lapack_int *info ); +void LAPACK_strttf( char* transr, char* uplo, lapack_int* n, const float* a, + lapack_int* lda, float* arf, lapack_int *info ); +void LAPACK_ztrttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* arf, lapack_int *info ); +void LAPACK_ctrttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* arf, lapack_int *info ); +void LAPACK_dtrttp( char* uplo, lapack_int* n, const double* a, lapack_int* lda, + double* ap, lapack_int *info ); +void LAPACK_strttp( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + float* ap, lapack_int *info ); +void LAPACK_ztrttp( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_ctrttp( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_sgeqrfp( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgeqrfp( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgeqrfp( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgeqrfp( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_clacgv( lapack_int* n, lapack_complex_float* x, lapack_int* incx ); +void LAPACK_zlacgv( lapack_int* n, lapack_complex_double* x, lapack_int* incx ); +void LAPACK_slarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + float* x ); +void LAPACK_dlarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + double* x ); +void LAPACK_clarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + lapack_complex_float* x ); +void LAPACK_zlarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + lapack_complex_double* x ); +void LAPACK_sgeqr2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int *info ); +void LAPACK_dgeqr2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int *info ); +void LAPACK_cgeqr2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgeqr2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slacpy( char* uplo, lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* b, lapack_int* ldb ); +void LAPACK_dlacpy( char* uplo, lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* b, lapack_int* ldb ); +void LAPACK_clacpy( char* uplo, lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb ); +void LAPACK_zlacpy( char* uplo, lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb ); +void LAPACK_sgetf2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgetf2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgetf2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_zgetf2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_slaswp( lapack_int* n, float* a, lapack_int* lda, lapack_int* k1, + lapack_int* k2, const lapack_int* ipiv, lapack_int* incx ); +void LAPACK_dlaswp( lapack_int* n, double* a, lapack_int* lda, lapack_int* k1, + lapack_int* k2, const lapack_int* ipiv, lapack_int* incx ); +void LAPACK_claswp( lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_int* k1, lapack_int* k2, const lapack_int* ipiv, + lapack_int* incx ); +void LAPACK_zlaswp( lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_int* k1, lapack_int* k2, const lapack_int* ipiv, + lapack_int* incx ); +float LAPACK_slange( char* norm, lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* work ); +double LAPACK_dlange( char* norm, lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* work ); +float LAPACK_clange( char* norm, lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* work ); +double LAPACK_zlange( char* norm, lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* work ); +float LAPACK_clanhe( char* norm, char* uplo, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* work ); +double LAPACK_zlanhe( char* norm, char* uplo, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* work ); +float LAPACK_slansy( char* norm, char* uplo, lapack_int* n, const float* a, + lapack_int* lda, float* work ); +double LAPACK_dlansy( char* norm, char* uplo, lapack_int* n, const double* a, + lapack_int* lda, double* work ); +float LAPACK_clansy( char* norm, char* uplo, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* work ); +double LAPACK_zlansy( char* norm, char* uplo, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* work ); +float LAPACK_slantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const float* a, lapack_int* lda, float* work ); +double LAPACK_dlantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const double* a, lapack_int* lda, double* work ); +float LAPACK_clantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const lapack_complex_float* a, lapack_int* lda, + float* work ); +double LAPACK_zlantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const lapack_complex_double* a, lapack_int* lda, + double* work ); +float LAPACK_slamch( char* cmach ); +double LAPACK_dlamch( char* cmach ); +void LAPACK_sgelq2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int *info ); +void LAPACK_dgelq2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int *info ); +void LAPACK_cgelq2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgelq2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, const float* v, + lapack_int* ldv, const float* t, lapack_int* ldt, float* c, + lapack_int* ldc, float* work, lapack_int* ldwork ); +void LAPACK_dlarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, + const double* v, lapack_int* ldv, const double* t, + lapack_int* ldt, double* c, lapack_int* ldc, double* work, + lapack_int* ldwork ); +void LAPACK_clarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* ldwork ); +void LAPACK_zlarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* ldwork ); +void LAPACK_slarfg( lapack_int* n, float* alpha, float* x, lapack_int* incx, + float* tau ); +void LAPACK_dlarfg( lapack_int* n, double* alpha, double* x, lapack_int* incx, + double* tau ); +void LAPACK_clarfg( lapack_int* n, lapack_complex_float* alpha, + lapack_complex_float* x, lapack_int* incx, + lapack_complex_float* tau ); +void LAPACK_zlarfg( lapack_int* n, lapack_complex_double* alpha, + lapack_complex_double* x, lapack_int* incx, + lapack_complex_double* tau ); +void LAPACK_slarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const float* v, lapack_int* ldv, const float* tau, float* t, + lapack_int* ldt ); +void LAPACK_dlarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const double* v, lapack_int* ldv, const double* tau, + double* t, lapack_int* ldt ); +void LAPACK_clarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* tau, lapack_complex_float* t, + lapack_int* ldt ); +void LAPACK_zlarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* tau, lapack_complex_double* t, + lapack_int* ldt ); +void LAPACK_slarfx( char* side, lapack_int* m, lapack_int* n, const float* v, + float* tau, float* c, lapack_int* ldc, float* work ); +void LAPACK_dlarfx( char* side, lapack_int* m, lapack_int* n, const double* v, + double* tau, double* c, lapack_int* ldc, double* work ); +void LAPACK_clarfx( char* side, lapack_int* m, lapack_int* n, + const lapack_complex_float* v, lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work ); +void LAPACK_zlarfx( char* side, lapack_int* m, lapack_int* n, + const lapack_complex_double* v, lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work ); +void LAPACK_slatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, float* d, lapack_int* mode, float* cond, + float* dmax, lapack_int* kl, lapack_int* ku, char* pack, + float* a, lapack_int* lda, float* work, lapack_int *info ); +void LAPACK_dlatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, double* d, lapack_int* mode, double* cond, + double* dmax, lapack_int* kl, lapack_int* ku, char* pack, + double* a, lapack_int* lda, double* work, + lapack_int *info ); +void LAPACK_clatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, float* d, lapack_int* mode, float* cond, + float* dmax, lapack_int* kl, lapack_int* ku, char* pack, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, double* d, lapack_int* mode, double* cond, + double* dmax, lapack_int* kl, lapack_int* ku, char* pack, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slag2d( lapack_int* m, lapack_int* n, const float* sa, + lapack_int* ldsa, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dlag2s( lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, float* sa, lapack_int* ldsa, + lapack_int *info ); +void LAPACK_clag2z( lapack_int* m, lapack_int* n, + const lapack_complex_float* sa, lapack_int* ldsa, + lapack_complex_double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_zlag2c( lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_float* sa, lapack_int* ldsa, + lapack_int *info ); +void LAPACK_slauum( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dlauum( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_clauum( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_zlauum( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_slagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* d, float* a, lapack_int* lda, + lapack_int* iseed, float* work, lapack_int *info ); +void LAPACK_dlagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* d, double* a, lapack_int* lda, + lapack_int* iseed, double* work, lapack_int *info ); +void LAPACK_clagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* d, lapack_complex_float* a, + lapack_int* lda, lapack_int* iseed, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* d, lapack_complex_double* a, + lapack_int* lda, lapack_int* iseed, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slaset( char* uplo, lapack_int* m, lapack_int* n, float* alpha, + float* beta, float* a, lapack_int* lda ); +void LAPACK_dlaset( char* uplo, lapack_int* m, lapack_int* n, double* alpha, + double* beta, double* a, lapack_int* lda ); +void LAPACK_claset( char* uplo, lapack_int* m, lapack_int* n, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* a, lapack_int* lda ); +void LAPACK_zlaset( char* uplo, lapack_int* m, lapack_int* n, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* a, lapack_int* lda ); +void LAPACK_slasrt( char* id, lapack_int* n, float* d, lapack_int *info ); +void LAPACK_dlasrt( char* id, lapack_int* n, double* d, lapack_int *info ); +void LAPACK_claghe( lapack_int* n, lapack_int* k, const float* d, + lapack_complex_float* a, lapack_int* lda, lapack_int* iseed, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlaghe( lapack_int* n, lapack_int* k, const double* d, + lapack_complex_double* a, lapack_int* lda, + lapack_int* iseed, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_slagsy( lapack_int* n, lapack_int* k, const float* d, float* a, + lapack_int* lda, lapack_int* iseed, float* work, + lapack_int *info ); +void LAPACK_dlagsy( lapack_int* n, lapack_int* k, const double* d, double* a, + lapack_int* lda, lapack_int* iseed, double* work, + lapack_int *info ); +void LAPACK_clagsy( lapack_int* n, lapack_int* k, const float* d, + lapack_complex_float* a, lapack_int* lda, lapack_int* iseed, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlagsy( lapack_int* n, lapack_int* k, const double* d, + lapack_complex_double* a, lapack_int* lda, + lapack_int* iseed, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_slapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + float* x, lapack_int* ldx, lapack_int* k ); +void LAPACK_dlapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + double* x, lapack_int* ldx, lapack_int* k ); +void LAPACK_clapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + lapack_complex_float* x, lapack_int* ldx, lapack_int* k ); +void LAPACK_zlapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + lapack_complex_double* x, lapack_int* ldx, lapack_int* k ); +float LAPACK_slapy2( float* x, float* y ); +double LAPACK_dlapy2( double* x, double* y ); +float LAPACK_slapy3( float* x, float* y, float* z ); +double LAPACK_dlapy3( double* x, double* y, double* z ); +void LAPACK_slartgp( float* f, float* g, float* cs, float* sn, float* r ); +void LAPACK_dlartgp( double* f, double* g, double* cs, double* sn, double* r ); +void LAPACK_slartgs( float* x, float* y, float* sigma, float* cs, float* sn ); +void LAPACK_dlartgs( double* x, double* y, double* sigma, double* cs, + double* sn ); +// LAPACK 3.3.0 +void LAPACK_cbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + float* theta, float* phi, + lapack_complex_float* u1, lapack_int* ldu1, + lapack_complex_float* u2, lapack_int* ldu2, + lapack_complex_float* v1t, lapack_int* ldv1t, + lapack_complex_float* v2t, lapack_int* ldv2t, + float* b11d, float* b11e, float* b12d, + float* b12e, float* b21d, float* b21e, + float* b22d, float* b22e, float* rwork, + lapack_int* lrwork , lapack_int *info ); +void LAPACK_cheswapr( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_chetri2( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_chetri2x( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* nb , lapack_int *info ); +void LAPACK_chetrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work , lapack_int *info ); +void LAPACK_csyconv( char* uplo, char* way, + lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* work , lapack_int *info ); +void LAPACK_csyswapr( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_csytri2( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_csytri2x( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* nb , lapack_int *info ); +void LAPACK_csytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work , lapack_int *info ); +void LAPACK_cunbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + lapack_complex_float* x11, lapack_int* ldx11, + lapack_complex_float* x12, lapack_int* ldx12, + lapack_complex_float* x21, lapack_int* ldx21, + lapack_complex_float* x22, lapack_int* ldx22, + float* theta, float* phi, + lapack_complex_float* taup1, + lapack_complex_float* taup2, + lapack_complex_float* tauq1, + lapack_complex_float* tauq2, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_cuncsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, lapack_complex_float* x11, + lapack_int* ldx11, lapack_complex_float* x12, + lapack_int* ldx12, lapack_complex_float* x21, + lapack_int* ldx21, lapack_complex_float* x22, + lapack_int* ldx22, float* theta, + lapack_complex_float* u1, lapack_int* ldu1, + lapack_complex_float* u2, lapack_int* ldu2, + lapack_complex_float* v1t, lapack_int* ldv1t, + lapack_complex_float* v2t, lapack_int* ldv2t, + lapack_complex_float* work, lapack_int* lwork, + float* rwork, lapack_int* lrwork, + lapack_int* iwork , lapack_int *info ); +void LAPACK_dbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + double* theta, double* phi, double* u1, + lapack_int* ldu1, double* u2, lapack_int* ldu2, + double* v1t, lapack_int* ldv1t, double* v2t, + lapack_int* ldv2t, double* b11d, double* b11e, + double* b12d, double* b12e, double* b21d, + double* b21e, double* b22d, double* b22e, + double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_dorbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + double* x11, lapack_int* ldx11, double* x12, + lapack_int* ldx12, double* x21, lapack_int* ldx21, + double* x22, lapack_int* ldx22, double* theta, + double* phi, double* taup1, double* taup2, + double* tauq1, double* tauq2, double* work, + lapack_int* lwork , lapack_int *info ); +void LAPACK_dorcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, double* x11, lapack_int* ldx11, + double* x12, lapack_int* ldx12, double* x21, + lapack_int* ldx21, double* x22, lapack_int* ldx22, + double* theta, double* u1, lapack_int* ldu1, + double* u2, lapack_int* ldu2, double* v1t, + lapack_int* ldv1t, double* v2t, lapack_int* ldv2t, + double* work, lapack_int* lwork, + lapack_int* iwork , lapack_int *info ); +void LAPACK_dsyconv( char* uplo, char* way, + lapack_int* n, double* a, lapack_int* lda, + const lapack_int* ipiv, double* work , lapack_int *info ); +void LAPACK_dsyswapr( char* uplo, lapack_int* n, + double* a, lapack_int* i1, lapack_int* i2 ); +void LAPACK_dsytri2( char* uplo, lapack_int* n, + double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_dsytri2x( char* uplo, lapack_int* n, + double* a, lapack_int* lda, + const lapack_int* ipiv, double* work, + lapack_int* nb , lapack_int *info ); +void LAPACK_dsytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const double* a, + lapack_int* lda, const lapack_int* ipiv, + double* b, lapack_int* ldb, double* work , lapack_int *info ); +void LAPACK_sbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + float* theta, float* phi, float* u1, + lapack_int* ldu1, float* u2, lapack_int* ldu2, + float* v1t, lapack_int* ldv1t, float* v2t, + lapack_int* ldv2t, float* b11d, float* b11e, + float* b12d, float* b12e, float* b21d, + float* b21e, float* b22d, float* b22e, + float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_sorbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + float* x11, lapack_int* ldx11, float* x12, + lapack_int* ldx12, float* x21, lapack_int* ldx21, + float* x22, lapack_int* ldx22, float* theta, + float* phi, float* taup1, float* taup2, + float* tauq1, float* tauq2, float* work, + lapack_int* lwork , lapack_int *info ); +void LAPACK_sorcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, float* x11, lapack_int* ldx11, + float* x12, lapack_int* ldx12, float* x21, + lapack_int* ldx21, float* x22, lapack_int* ldx22, + float* theta, float* u1, lapack_int* ldu1, + float* u2, lapack_int* ldu2, float* v1t, + lapack_int* ldv1t, float* v2t, lapack_int* ldv2t, + float* work, lapack_int* lwork, + lapack_int* iwork , lapack_int *info ); +void LAPACK_ssyconv( char* uplo, char* way, + lapack_int* n, float* a, lapack_int* lda, + const lapack_int* ipiv, float* work , lapack_int *info ); +void LAPACK_ssyswapr( char* uplo, lapack_int* n, + float* a, lapack_int* i1, lapack_int* i2 ); +void LAPACK_ssytri2( char* uplo, lapack_int* n, + float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_ssytri2x( char* uplo, lapack_int* n, + float* a, lapack_int* lda, + const lapack_int* ipiv, float* work, + lapack_int* nb , lapack_int *info ); +void LAPACK_ssytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const float* a, + lapack_int* lda, const lapack_int* ipiv, + float* b, lapack_int* ldb, float* work , lapack_int *info ); +void LAPACK_zbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + double* theta, double* phi, + lapack_complex_double* u1, lapack_int* ldu1, + lapack_complex_double* u2, lapack_int* ldu2, + lapack_complex_double* v1t, lapack_int* ldv1t, + lapack_complex_double* v2t, lapack_int* ldv2t, + double* b11d, double* b11e, double* b12d, + double* b12e, double* b21d, double* b21e, + double* b22d, double* b22e, double* rwork, + lapack_int* lrwork , lapack_int *info ); +void LAPACK_zheswapr( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_zhetri2( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_zhetri2x( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* nb , lapack_int *info ); +void LAPACK_zhetrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work , lapack_int *info ); +void LAPACK_zsyconv( char* uplo, char* way, + lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_double* work , lapack_int *info ); +void LAPACK_zsyswapr( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_zsytri2( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_zsytri2x( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* nb , lapack_int *info ); +void LAPACK_zsytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work , lapack_int *info ); +void LAPACK_zunbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + lapack_complex_double* x11, lapack_int* ldx11, + lapack_complex_double* x12, lapack_int* ldx12, + lapack_complex_double* x21, lapack_int* ldx21, + lapack_complex_double* x22, lapack_int* ldx22, + double* theta, double* phi, + lapack_complex_double* taup1, + lapack_complex_double* taup2, + lapack_complex_double* tauq1, + lapack_complex_double* tauq2, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_zuncsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, lapack_complex_double* x11, + lapack_int* ldx11, lapack_complex_double* x12, + lapack_int* ldx12, lapack_complex_double* x21, + lapack_int* ldx21, lapack_complex_double* x22, + lapack_int* ldx22, double* theta, + lapack_complex_double* u1, lapack_int* ldu1, + lapack_complex_double* u2, lapack_int* ldu2, + lapack_complex_double* v1t, lapack_int* ldv1t, + lapack_complex_double* v2t, lapack_int* ldv2t, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, + lapack_int* iwork , lapack_int *info ); +// LAPACK 3.4.0 +void LAPACK_sgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, const float* v, + lapack_int* ldv, const float* t, lapack_int* ldt, float* c, + lapack_int* ldc, float* work, lapack_int *info ); +void LAPACK_dgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, const double* v, + lapack_int* ldv, const double* t, lapack_int* ldt, + double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_cgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_sgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, float* a, + lapack_int* lda, float* t, lapack_int* ldt, float* work, + lapack_int *info ); +void LAPACK_dgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, double* a, + lapack_int* lda, double* t, lapack_int* ldt, double* work, + lapack_int *info ); +void LAPACK_cgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_sgeqrt2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_dgeqrt2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_cgeqrt2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_zgeqrt2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_sgeqrt3( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_dgeqrt3( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_cgeqrt3( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_zgeqrt3( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_stpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const float* v, lapack_int* ldv, const float* t, + lapack_int* ldt, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* work, lapack_int *info ); +void LAPACK_dtpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const double* v, lapack_int* ldv, const double* t, + lapack_int* ldt, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* work, lapack_int *info ); +void LAPACK_ctpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_ztpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_dtpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* t, lapack_int* ldt, double* work, + lapack_int *info ); +void LAPACK_ctpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* t, lapack_complex_float* b, + lapack_int* ldb, lapack_int* ldt, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_ztpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_stpqrt2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* b, lapack_int* ldb, float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_dtpqrt2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* b, lapack_int* ldb, double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_ctpqrt2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_ztpqrt2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_stprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const float* v, lapack_int* ldv, const float* t, + lapack_int* ldt, float* a, lapack_int* lda, float* b, + lapack_int* ldb, const float* mywork, + lapack_int* myldwork ); +void LAPACK_dtprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const double* v, lapack_int* ldv, const double* t, + lapack_int* ldt, double* a, lapack_int* lda, double* b, + lapack_int* ldb, const double* mywork, + lapack_int* myldwork ); +void LAPACK_ctprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + const float* mywork, lapack_int* myldwork ); +void LAPACK_ztprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + const double* mywork, lapack_int* myldwork ); +// LAPACK 3.X.X +void LAPACK_csyr( char* uplo, lapack_int* n, lapack_complex_float* alpha, + const lapack_complex_float* x, lapack_int* incx, + lapack_complex_float* a, lapack_int* lda ); +void LAPACK_zsyr( char* uplo, lapack_int* n, lapack_complex_double* alpha, + const lapack_complex_double* x, lapack_int* incx, + lapack_complex_double* a, lapack_int* lda ); + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* _LAPACKE_H_ */ + +#endif /* _MKL_LAPACKE_H_ */ diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke_helpers.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke_helpers.h new file mode 100644 index 0000000..0703c2b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke_helpers.h @@ -0,0 +1,154 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2021 Erik Schultheis +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LAPACKE_HELPERS_H +#define EIGEN_LAPACKE_HELPERS_H + +#include "./InternalHeaderCheck.h" + +#ifdef EIGEN_USE_MKL +#include "mkl_lapacke.h" +#else +#include "lapacke.h" +#endif + +namespace Eigen { +namespace internal { +/** + * \internal + * \brief Implementation details and helper functions for the lapacke glue code. + */ +namespace lapacke_helpers { + +// --------------------------------------------------------------------------------------------------------------------- +// Translation from Eigen to Lapacke for types and constants +// --------------------------------------------------------------------------------------------------------------------- + +// For complex numbers, the types in Eigen and Lapacke are different, but layout compatible. +template +struct translate_type_imp; +template<> +struct translate_type_imp { + using type = float; +}; +template<> +struct translate_type_imp { + using type = double; +}; +template<> +struct translate_type_imp> { + using type = lapack_complex_double; +}; +template<> +struct translate_type_imp> { + using type = lapack_complex_float; +}; + +/// Given an Eigen types, this is defined to be the corresponding, layout-compatible lapack type +template +using translated_type = typename translate_type_imp::type; + +/// These functions convert their arguments from Eigen to Lapack types +/// This function performs conversion for any of the translations defined above. +template> +EIGEN_ALWAYS_INLINE auto to_lapack(Source value) { return static_cast(value); } + +/// This function performs conversions for pointer types corresponding to the translations abovce. +/// This is valid because the translations are between layout-compatible types. +template> +EIGEN_ALWAYS_INLINE auto to_lapack(Source *value) { return reinterpret_cast(value); } + +/// This function converts the Eigen Index to a lapack index, with possible range checks +/// \sa internal::convert_index +EIGEN_ALWAYS_INLINE lapack_int to_lapack(Index index) { + return convert_index(index); +} + +/// translates storage order of the given Eigen object to the corresponding lapack constant +template +EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR lapack_int lapack_storage_of(const EigenBase &) { + return Derived::IsRowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; +} + +// --------------------------------------------------------------------------------------------------------------------- +// Automatic generation of low-level wrappers +// --------------------------------------------------------------------------------------------------------------------- + +/*! + * \internal + * \brief Helper type to facilitate the wrapping of raw LAPACKE functions for different types into a single, overloaded C++ function. + * This is achieved in combination with \r EIGEN_MAKE_LAPACKE_WRAPPER + * \details This implementation works by providing an overloaded call function that just forwards its arguments to the + * underlying lapack function. Each of these overloads is enabled only if the call is actually well formed. + * Because these lapack functions take pointers to the underlying scalar type as arguments, even though the actual Scalars + * would be implicitly convertible, the pointers are not and therefore only a single overload can be valid at the same time. + * Thus, despite all functions taking fully generic `Args&&... args` as arguments, there is never any ambiguity. + */ +template +struct WrappingHelper { + // The naming of double, single, double complex and single complex is purely for readability + // and doesn't actually affect the workings of this class. In principle, the arguments can + // be supplied in any permuted order. + DoubleFn double_; SingleFn single_; DoubleCpxFn double_cpx_; SingleCpxFn single_cpx_; + + template + auto call(Args&&... args) -> decltype(double_(std::forward(args)...)) { + return double_(std::forward(args)...); + } + + template + auto call(Args&&... args) -> decltype(single_(std::forward(args)...)){ + return single_(std::forward(args)...); + } + + template + auto call(Args&&... args) -> decltype(double_cpx_(std::forward(args)...)){ + return double_cpx_(std::forward(args)...); + } + + template + auto call(Args&&... args) -> decltype(single_cpx_(std::forward(args)...)){ + return single_cpx_(std::forward(args)...); + } +}; + +/** \internal Helper function that generates a `WrappingHelper` object with the given function pointers and + * invokes its `call` method, thus selecting one of the overloads. + * \sa EIGEN_MAKE_LAPACKE_WRAPPER + */ +template +EIGEN_ALWAYS_INLINE auto call_wrapper(DoubleFn df, SingleFn sf, DoubleCpxFn dcf, SingleCpxFn scf, Args&&... args) { + WrappingHelper helper{df, sf, dcf, scf}; + return helper.call(std::forward(args)...); +} + +/** + * \internal + * Generates a new function `Function` that dispatches to the corresponding LAPACKE_? prefixed functions. + * \sa WrappingHelper + */ +#define EIGEN_MAKE_LAPACKE_WRAPPER(FUNCTION) \ +template \ +EIGEN_ALWAYS_INLINE auto FUNCTION(Args&&... args) { return call_wrapper(LAPACKE_d##FUNCTION, LAPACKE_s##FUNCTION, LAPACKE_z##FUNCTION, LAPACKE_c##FUNCTION, std::forward(args)...); } + +// Now with this macro and the helper wrappers, we can generate the dispatch for all the lapacke functions that are +// used in Eigen. +// We define these here instead of in the files where they are used because this allows us to #undef the macro again +// right here +EIGEN_MAKE_LAPACKE_WRAPPER(potrf) +EIGEN_MAKE_LAPACKE_WRAPPER(getrf) +EIGEN_MAKE_LAPACKE_WRAPPER(geqrf) +EIGEN_MAKE_LAPACKE_WRAPPER(gesdd) + +#undef EIGEN_MAKE_LAPACKE_WRAPPER +} +} +} + +#endif // EIGEN_LAPACKE_HELPERS_H diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke_mangling.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke_mangling.h new file mode 100644 index 0000000..6211fd1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/misc/lapacke_mangling.h @@ -0,0 +1,17 @@ +#ifndef LAPACK_HEADER_INCLUDED +#define LAPACK_HEADER_INCLUDED + +#ifndef LAPACK_GLOBAL +#if defined(LAPACK_GLOBAL_PATTERN_LC) || defined(ADD_) +#define LAPACK_GLOBAL(lcname,UCNAME) lcname##_ +#elif defined(LAPACK_GLOBAL_PATTERN_UC) || defined(UPPER) +#define LAPACK_GLOBAL(lcname,UCNAME) UCNAME +#elif defined(LAPACK_GLOBAL_PATTERN_MC) || defined(NOCHANGE) +#define LAPACK_GLOBAL(lcname,UCNAME) lcname +#else +#define LAPACK_GLOBAL(lcname,UCNAME) lcname##_ +#endif +#endif + +#endif + diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h new file mode 100644 index 0000000..35461da --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h @@ -0,0 +1,351 @@ + +/** \returns an expression of the coefficient wise product of \c *this and \a other + * + * \sa MatrixBase::cwiseProduct + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) +operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); +} + +/** \returns an expression of the coefficient wise quotient of \c *this and \a other + * + * \sa MatrixBase::cwiseQuotient + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise min of \c *this and \a other + * + * Example: \include Cwise_min.cpp + * Output: \verbinclude Cwise_min.out + * + * \sa max() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +#ifdef EIGEN_PARSED_BY_DOXYGEN +min +#else +(min) +#endif +(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise min of \c *this and scalar \a other + * + * \sa max() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +min +#else +(min) +#endif +(const Scalar &other) const +{ + return (min)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise max of \c *this and \a other + * + * Example: \include Cwise_max.cpp + * Output: \verbinclude Cwise_max.out + * + * \sa min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +#ifdef EIGEN_PARSED_BY_DOXYGEN +max +#else +(max) +#endif +(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise max of \c *this and scalar \a other + * + * \sa min() + */ +template +EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +max +#else +(max) +#endif +(const Scalar &other) const +{ + return (max)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise absdiff of \c *this and \a other + * + * Example: \include Cwise_absolute_difference.cpp + * Output: \verbinclude Cwise_absolute_difference.out + * + * \sa absolute_difference() + */ +EIGEN_MAKE_CWISE_BINARY_OP(absolute_difference,absolute_difference) + +/** \returns an expression of the coefficient-wise absolute_difference of \c *this and scalar \a other + * + * \sa absolute_difference() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +absolute_difference +#else +(absolute_difference) +#endif +(const Scalar &other) const +{ + return (absolute_difference)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise power of \c *this to the given array of \a exponents. + * + * This function computes the coefficient-wise power. + * + * Example: \include Cwise_array_power_array.cpp + * Output: \verbinclude Cwise_array_power_array.out + */ +EIGEN_MAKE_CWISE_BINARY_OP(pow,pow) + +/** \returns an expression of the coefficient-wise atan2(\c *this, \a y), where \a y is the given array argument. + * + * This function computes the coefficient-wise atan2. + * + */ +EIGEN_MAKE_CWISE_BINARY_OP(atan2,atan2) + + +// TODO code generating macros could be moved to Macros.h and could include generation of documentation +#define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \ +template \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> \ +OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ +{ \ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); \ +}\ +typedef CwiseBinaryOp, const Derived, const CwiseNullaryOp, PlainObject> > Cmp ## COMPARATOR ## ReturnType; \ +typedef CwiseBinaryOp, const CwiseNullaryOp, PlainObject>, const Derived > RCmp ## COMPARATOR ## ReturnType; \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Cmp ## COMPARATOR ## ReturnType \ +OP(const Scalar& s) const { \ + return this->OP(Derived::PlainObject::Constant(rows(), cols(), s)); \ +} \ +EIGEN_DEVICE_FUNC friend EIGEN_STRONG_INLINE const RCmp ## COMPARATOR ## ReturnType \ +OP(const Scalar& s, const EIGEN_CURRENT_STORAGE_BASE_CLASS& d) { \ + return Derived::PlainObject::Constant(d.rows(), d.cols(), s).OP(d); \ +} + +#define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \ +template \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const OtherDerived, const Derived> \ +OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ +{ \ + return CwiseBinaryOp, const OtherDerived, const Derived>(other.derived(), derived()); \ +} \ +EIGEN_DEVICE_FUNC \ +inline const RCmp ## RCOMPARATOR ## ReturnType \ +OP(const Scalar& s) const { \ + return Derived::PlainObject::Constant(rows(), cols(), s).R_OP(*this); \ +} \ +friend inline const Cmp ## RCOMPARATOR ## ReturnType \ +OP(const Scalar& s, const Derived& d) { \ + return d.R_OP(Derived::PlainObject::Constant(d.rows(), d.cols(), s)); \ +} + + + +/** \returns an expression of the coefficient-wise \< operator of *this and \a other + * + * Example: \include Cwise_less.cpp + * Output: \verbinclude Cwise_less.out + * + * \sa all(), any(), operator>(), operator<=() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator<, LT) + +/** \returns an expression of the coefficient-wise \<= operator of *this and \a other + * + * Example: \include Cwise_less_equal.cpp + * Output: \verbinclude Cwise_less_equal.out + * + * \sa all(), any(), operator>=(), operator<() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE) + +/** \returns an expression of the coefficient-wise \> operator of *this and \a other + * + * Example: \include Cwise_greater.cpp + * Output: \verbinclude Cwise_greater.out + * + * \sa all(), any(), operator>=(), operator<() + */ +EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT) + +/** \returns an expression of the coefficient-wise \>= operator of *this and \a other + * + * Example: \include Cwise_greater_equal.cpp + * Output: \verbinclude Cwise_greater_equal.out + * + * \sa all(), any(), operator>(), operator<=() + */ +EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE) + +/** \returns an expression of the coefficient-wise == operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include Cwise_equal_equal.cpp + * Output: \verbinclude Cwise_equal_equal.out + * + * \sa all(), any(), isApprox(), isMuchSmallerThan() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ) + +/** \returns an expression of the coefficient-wise != operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include Cwise_not_equal.cpp + * Output: \verbinclude Cwise_not_equal.out + * + * \sa all(), any(), isApprox(), isMuchSmallerThan() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ) + + +#undef EIGEN_MAKE_CWISE_COMP_OP +#undef EIGEN_MAKE_CWISE_COMP_R_OP + +// scalar addition +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP(operator+,sum) +#else +/** \returns an expression of \c *this with each coeff incremented by the constant \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + * + * Example: \include Cwise_plus.cpp + * Output: \verbinclude Cwise_plus.out + * + * \sa operator+=(), operator-() + */ +template +const CwiseBinaryOp,Derived,Constant > operator+(const T& scalar) const; +/** \returns an expression of \a expr with each coeff incremented by the constant \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template friend +const CwiseBinaryOp,Constant,Derived> operator+(const T& scalar, const StorageBaseType& expr); +#endif + +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP(operator-,difference) +#else +/** \returns an expression of \c *this with each coeff decremented by the constant \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + * + * Example: \include Cwise_minus.cpp + * Output: \verbinclude Cwise_minus.out + * + * \sa operator+=(), operator-() + */ +template +const CwiseBinaryOp,Derived,Constant > operator-(const T& scalar) const; +/** \returns an expression of the constant matrix of value \a scalar decremented by the coefficients of \a expr + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template friend +const CwiseBinaryOp,Constant,Derived> operator-(const T& scalar, const StorageBaseType& expr); +#endif + + +#ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(operator/,quotient) +#else + /** + * \brief Component-wise division of the scalar \a s by array elements of \a a. + * + * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar). + */ + template friend + inline const CwiseBinaryOp,Constant,Derived> + operator/(const T& s,const StorageBaseType& a); +#endif + +// NOTE disabled until we agree on argument order +#if 0 +/** \cpp11 \returns an expression of the coefficient-wise polygamma function. + * + * \specialfunctions_module + * + * It returns the \a n -th derivative of the digamma(psi) evaluated at \c *this. + * + * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) + * + * \sa Eigen::polygamma() + */ +template +inline const CwiseBinaryOp, const DerivedN, const Derived> +polygamma(const EIGEN_CURRENT_STORAGE_BASE_CLASS &n) const +{ + return CwiseBinaryOp, const DerivedN, const Derived>(n.derived(), this->derived()); +} +#endif + +/** \returns an expression of the coefficient-wise zeta function. + * + * \specialfunctions_module + * + * It returns the Riemann zeta function of two arguments \c *this and \a q: + * + * \param q is the shift, it must be > 0 + * + * \note *this is the exponent, it must be > 1. + * \note This function supports only float and double scalar types. To support other scalar types, the user has + * to provide implementations of zeta(T,T) for any scalar type T to be supported. + * + * This method is an alias for zeta(*this,q); + * + * \sa Eigen::zeta() + */ +template +inline const CwiseBinaryOp, const Derived, const DerivedQ> +zeta(const EIGEN_CURRENT_STORAGE_BASE_CLASS &q) const +{ + return CwiseBinaryOp, const Derived, const DerivedQ>(this->derived(), q.derived()); +} diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h new file mode 100644 index 0000000..301a900 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h @@ -0,0 +1,732 @@ + + +typedef CwiseUnaryOp, const Derived> AbsReturnType; +typedef CwiseUnaryOp, const Derived> ArgReturnType; +typedef CwiseUnaryOp, const Derived> CArgReturnType; +typedef CwiseUnaryOp, const Derived> Abs2ReturnType; +typedef CwiseUnaryOp, const Derived> SqrtReturnType; +typedef CwiseUnaryOp, const Derived> RsqrtReturnType; +typedef CwiseUnaryOp, const Derived> SignReturnType; +typedef CwiseUnaryOp, const Derived> InverseReturnType; +typedef CwiseUnaryOp, const Derived> BooleanNotReturnType; +typedef CwiseUnaryOp, const Derived> BitwiseNotReturnType; + +typedef CwiseUnaryOp, const Derived> ExpReturnType; +typedef CwiseUnaryOp, const Derived> Expm1ReturnType; +typedef CwiseUnaryOp, const Derived> LogReturnType; +typedef CwiseUnaryOp, const Derived> Log1pReturnType; +typedef CwiseUnaryOp, const Derived> Log10ReturnType; +typedef CwiseUnaryOp, const Derived> Log2ReturnType; +typedef CwiseUnaryOp, const Derived> CosReturnType; +typedef CwiseUnaryOp, const Derived> SinReturnType; +typedef CwiseUnaryOp, const Derived> TanReturnType; +typedef CwiseUnaryOp, const Derived> AcosReturnType; +typedef CwiseUnaryOp, const Derived> AsinReturnType; +typedef CwiseUnaryOp, const Derived> AtanReturnType; +typedef CwiseUnaryOp, const Derived> TanhReturnType; +typedef CwiseUnaryOp, const Derived> LogisticReturnType; +typedef CwiseUnaryOp, const Derived> SinhReturnType; +typedef CwiseUnaryOp, const Derived> AtanhReturnType; +typedef CwiseUnaryOp, const Derived> AsinhReturnType; +typedef CwiseUnaryOp, const Derived> AcoshReturnType; +typedef CwiseUnaryOp, const Derived> CoshReturnType; +typedef CwiseUnaryOp, const Derived> SquareReturnType; +typedef CwiseUnaryOp, const Derived> CubeReturnType; +typedef CwiseUnaryOp, const Derived> RoundReturnType; +typedef CwiseUnaryOp, const Derived> RintReturnType; +typedef CwiseUnaryOp, const Derived> FloorReturnType; +typedef CwiseUnaryOp, const Derived> CeilReturnType; +typedef CwiseUnaryOp, const Derived> IsNaNReturnType; +typedef CwiseUnaryOp, const Derived> IsInfReturnType; +typedef CwiseUnaryOp, const Derived> IsFiniteReturnType; + +/** \returns an expression of the coefficient-wise absolute value of \c *this + * + * Example: \include Cwise_abs.cpp + * Output: \verbinclude Cwise_abs.out + * + * \sa Math functions, abs2() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const AbsReturnType +abs() const +{ + return AbsReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise phase angle of \c *this + * + * Example: \include Cwise_arg.cpp + * Output: \verbinclude Cwise_arg.out + * + * \sa abs() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const ArgReturnType +arg() const +{ + return ArgReturnType(derived()); +} + +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CArgReturnType +carg() const { return CArgReturnType(derived()); } + +/** \returns an expression of the coefficient-wise squared absolute value of \c *this + * + * Example: \include Cwise_abs2.cpp + * Output: \verbinclude Cwise_abs2.out + * + * \sa Math functions, abs(), square() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const Abs2ReturnType +abs2() const +{ + return Abs2ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise exponential of *this. + * + * This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the + * unsupported module MatrixFunctions computes the matrix exponential. + * + * Example: \include Cwise_exp.cpp + * Output: \verbinclude Cwise_exp.out + * + * \sa Math functions, pow(), log(), sin(), cos() + */ +EIGEN_DEVICE_FUNC +inline const ExpReturnType +exp() const +{ + return ExpReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise exponential of *this minus 1. + * + * In exact arithmetic, \c x.expm1() is equivalent to \c x.exp() - 1, + * however, with finite precision, this function is much more accurate when \c x is close to zero. + * + * \sa Math functions, exp() + */ +EIGEN_DEVICE_FUNC +inline const Expm1ReturnType +expm1() const +{ + return Expm1ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise logarithm of *this. + * + * This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the + * unsupported module MatrixFunctions computes the matrix logarithm. + * + * Example: \include Cwise_log.cpp + * Output: \verbinclude Cwise_log.out + * + * \sa Math functions, log() + */ +EIGEN_DEVICE_FUNC +inline const LogReturnType +log() const +{ + return LogReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise logarithm of 1 plus \c *this. + * + * In exact arithmetic, \c x.log() is equivalent to \c (x+1).log(), + * however, with finite precision, this function is much more accurate when \c x is close to zero. + * + * \sa Math functions, log() + */ +EIGEN_DEVICE_FUNC +inline const Log1pReturnType +log1p() const +{ + return Log1pReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise base-10 logarithm of *this. + * + * This function computes the coefficient-wise base-10 logarithm. + * + * Example: \include Cwise_log10.cpp + * Output: \verbinclude Cwise_log10.out + * + * \sa Math functions, log() + */ +EIGEN_DEVICE_FUNC +inline const Log10ReturnType +log10() const +{ + return Log10ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise base-2 logarithm of *this. + * + * This function computes the coefficient-wise base-2 logarithm. + * + */ +EIGEN_DEVICE_FUNC +inline const Log2ReturnType +log2() const +{ + return Log2ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise square root of *this. + * + * This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the + * unsupported module MatrixFunctions computes the matrix square root. + * + * Example: \include Cwise_sqrt.cpp + * Output: \verbinclude Cwise_sqrt.out + * + * \sa Math functions, pow(), square() + */ +EIGEN_DEVICE_FUNC +inline const SqrtReturnType +sqrt() const +{ + return SqrtReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse square root of *this. + * + * This function computes the coefficient-wise inverse square root. + * + * Example: \include Cwise_sqrt.cpp + * Output: \verbinclude Cwise_sqrt.out + * + * \sa pow(), square() + */ +EIGEN_DEVICE_FUNC +inline const RsqrtReturnType +rsqrt() const +{ + return RsqrtReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise signum of *this. + * + * This function computes the coefficient-wise signum. + * + * Example: \include Cwise_sign.cpp + * Output: \verbinclude Cwise_sign.out + * + * \sa pow(), square() + */ +EIGEN_DEVICE_FUNC +inline const SignReturnType +sign() const +{ + return SignReturnType(derived()); +} + + +/** \returns an expression of the coefficient-wise cosine of *this. + * + * This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the + * unsupported module MatrixFunctions computes the matrix cosine. + * + * Example: \include Cwise_cos.cpp + * Output: \verbinclude Cwise_cos.out + * + * \sa Math functions, sin(), acos() + */ +EIGEN_DEVICE_FUNC +inline const CosReturnType +cos() const +{ + return CosReturnType(derived()); +} + + +/** \returns an expression of the coefficient-wise sine of *this. + * + * This function computes the coefficient-wise sine. The function MatrixBase::sin() in the + * unsupported module MatrixFunctions computes the matrix sine. + * + * Example: \include Cwise_sin.cpp + * Output: \verbinclude Cwise_sin.out + * + * \sa Math functions, cos(), asin() + */ +EIGEN_DEVICE_FUNC +inline const SinReturnType +sin() const +{ + return SinReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise tan of *this. + * + * Example: \include Cwise_tan.cpp + * Output: \verbinclude Cwise_tan.out + * + * \sa Math functions, cos(), sin() + */ +EIGEN_DEVICE_FUNC +inline const TanReturnType +tan() const +{ + return TanReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise arc tan of *this. + * + * Example: \include Cwise_atan.cpp + * Output: \verbinclude Cwise_atan.out + * + * \sa Math functions, tan(), asin(), acos() + */ +EIGEN_DEVICE_FUNC +inline const AtanReturnType +atan() const +{ + return AtanReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise arc cosine of *this. + * + * Example: \include Cwise_acos.cpp + * Output: \verbinclude Cwise_acos.out + * + * \sa Math functions, cos(), asin() + */ +EIGEN_DEVICE_FUNC +inline const AcosReturnType +acos() const +{ + return AcosReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise arc sine of *this. + * + * Example: \include Cwise_asin.cpp + * Output: \verbinclude Cwise_asin.out + * + * \sa Math functions, sin(), acos() + */ +EIGEN_DEVICE_FUNC +inline const AsinReturnType +asin() const +{ + return AsinReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise hyperbolic tan of *this. + * + * Example: \include Cwise_tanh.cpp + * Output: \verbinclude Cwise_tanh.out + * + * \sa Math functions, tan(), sinh(), cosh() + */ +EIGEN_DEVICE_FUNC +inline const TanhReturnType +tanh() const +{ + return TanhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise hyperbolic sin of *this. + * + * Example: \include Cwise_sinh.cpp + * Output: \verbinclude Cwise_sinh.out + * + * \sa Math functions, sin(), tanh(), cosh() + */ +EIGEN_DEVICE_FUNC +inline const SinhReturnType +sinh() const +{ + return SinhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise hyperbolic cos of *this. + * + * Example: \include Cwise_cosh.cpp + * Output: \verbinclude Cwise_cosh.out + * + * \sa Math functions, tanh(), sinh(), cosh() + */ +EIGEN_DEVICE_FUNC +inline const CoshReturnType +cosh() const +{ + return CoshReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse hyperbolic tan of *this. + * + * \sa Math functions, atanh(), asinh(), acosh() + */ +EIGEN_DEVICE_FUNC +inline const AtanhReturnType +atanh() const +{ + return AtanhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse hyperbolic sin of *this. + * + * \sa Math functions, atanh(), asinh(), acosh() + */ +EIGEN_DEVICE_FUNC +inline const AsinhReturnType +asinh() const +{ + return AsinhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse hyperbolic cos of *this. + * + * \sa Math functions, atanh(), asinh(), acosh() + */ +EIGEN_DEVICE_FUNC +inline const AcoshReturnType +acosh() const +{ + return AcoshReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise logistic of *this. + */ +EIGEN_DEVICE_FUNC +inline const LogisticReturnType +logistic() const +{ + return LogisticReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse of *this. + * + * Example: \include Cwise_inverse.cpp + * Output: \verbinclude Cwise_inverse.out + * + * \sa operator/(), operator*() + */ +EIGEN_DEVICE_FUNC +inline const InverseReturnType +inverse() const +{ + return InverseReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise square of *this. + * + * Example: \include Cwise_square.cpp + * Output: \verbinclude Cwise_square.out + * + * \sa Math functions, abs2(), cube(), pow() + */ +EIGEN_DEVICE_FUNC +inline const SquareReturnType +square() const +{ + return SquareReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise cube of *this. + * + * Example: \include Cwise_cube.cpp + * Output: \verbinclude Cwise_cube.out + * + * \sa Math functions, square(), pow() + */ +EIGEN_DEVICE_FUNC +inline const CubeReturnType +cube() const +{ + return CubeReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise rint of *this. + * + * Example: \include Cwise_rint.cpp + * Output: \verbinclude Cwise_rint.out + * + * \sa Math functions, ceil(), floor() + */ +EIGEN_DEVICE_FUNC +inline const RintReturnType +rint() const +{ + return RintReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise round of *this. + * + * Example: \include Cwise_round.cpp + * Output: \verbinclude Cwise_round.out + * + * \sa Math functions, ceil(), floor() + */ +EIGEN_DEVICE_FUNC +inline const RoundReturnType +round() const +{ + return RoundReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise floor of *this. + * + * Example: \include Cwise_floor.cpp + * Output: \verbinclude Cwise_floor.out + * + * \sa Math functions, ceil(), round() + */ +EIGEN_DEVICE_FUNC +inline const FloorReturnType +floor() const +{ + return FloorReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise ceil of *this. + * + * Example: \include Cwise_ceil.cpp + * Output: \verbinclude Cwise_ceil.out + * + * \sa Math functions, floor(), round() + */ +EIGEN_DEVICE_FUNC +inline const CeilReturnType +ceil() const +{ + return CeilReturnType(derived()); +} + +template struct ShiftRightXpr { + typedef CwiseUnaryOp, const Derived> Type; +}; + +/** \returns an expression of \c *this with the \a Scalar type arithmetically + * shifted right by \a N bit positions. + * + * The template parameter \a N specifies the number of bit positions to shift. + * + * \sa shiftLeft() + */ +template +EIGEN_DEVICE_FUNC +typename ShiftRightXpr::Type +shiftRight() const +{ + return typename ShiftRightXpr::Type(derived()); +} + + +template struct ShiftLeftXpr { + typedef CwiseUnaryOp, const Derived> Type; +}; + +/** \returns an expression of \c *this with the \a Scalar type logically + * shifted left by \a N bit positions. + * + * The template parameter \a N specifies the number of bit positions to shift. + * + * \sa shiftRight() + */ +template +EIGEN_DEVICE_FUNC +typename ShiftLeftXpr::Type +shiftLeft() const +{ + return typename ShiftLeftXpr::Type(derived()); +} + +/** \returns an expression of the coefficient-wise isnan of *this. + * + * Example: \include Cwise_isNaN.cpp + * Output: \verbinclude Cwise_isNaN.out + * + * \sa isfinite(), isinf() + */ +EIGEN_DEVICE_FUNC +inline const IsNaNReturnType +isNaN() const +{ + return IsNaNReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise isinf of *this. + * + * Example: \include Cwise_isInf.cpp + * Output: \verbinclude Cwise_isInf.out + * + * \sa isnan(), isfinite() + */ +EIGEN_DEVICE_FUNC +inline const IsInfReturnType +isInf() const +{ + return IsInfReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise isfinite of *this. + * + * Example: \include Cwise_isFinite.cpp + * Output: \verbinclude Cwise_isFinite.out + * + * \sa isnan(), isinf() + */ +EIGEN_DEVICE_FUNC +inline const IsFiniteReturnType +isFinite() const +{ + return IsFiniteReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise ! operator of *this + * + * Example: \include Cwise_boolean_not.cpp + * Output: \verbinclude Cwise_boolean_not.out + * + * \sa operator!=() + */ +EIGEN_DEVICE_FUNC +inline const BooleanNotReturnType +operator!() const +{ + return BooleanNotReturnType(derived()); +} + +/** \returns an expression of the bitwise ~ operator of *this + */ +EIGEN_DEVICE_FUNC +inline const BitwiseNotReturnType +operator~() const +{ + return BitwiseNotReturnType(derived()); +} + + +// --- SpecialFunctions module --- + +typedef CwiseUnaryOp, const Derived> LgammaReturnType; +typedef CwiseUnaryOp, const Derived> DigammaReturnType; +typedef CwiseUnaryOp, const Derived> ErfReturnType; +typedef CwiseUnaryOp, const Derived> ErfcReturnType; +typedef CwiseUnaryOp, const Derived> NdtriReturnType; + +/** \cpp11 \returns an expression of the coefficient-wise ln(|gamma(*this)|). + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of lgamma(T) for any scalar + * type T to be supported. + * + * \sa Math functions, digamma() + */ +EIGEN_DEVICE_FUNC +inline const LgammaReturnType +lgamma() const +{ + return LgammaReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise digamma (psi, derivative of lgamma). + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types. To support other scalar types, + * the user has to provide implementations of digamma(T) for any scalar + * type T to be supported. + * + * \sa Math functions, Eigen::digamma(), Eigen::polygamma(), lgamma() + */ +EIGEN_DEVICE_FUNC +inline const DigammaReturnType +digamma() const +{ + return DigammaReturnType(derived()); +} + +/** \cpp11 \returns an expression of the coefficient-wise Gauss error + * function of *this. + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of erf(T) for any scalar + * type T to be supported. + * + * \sa Math functions, erfc() + */ +EIGEN_DEVICE_FUNC +inline const ErfReturnType +erf() const +{ + return ErfReturnType(derived()); +} + +/** \cpp11 \returns an expression of the coefficient-wise Complementary error + * function of *this. + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of erfc(T) for any scalar + * type T to be supported. + * + * \sa Math functions, erf() + */ +EIGEN_DEVICE_FUNC +inline const ErfcReturnType +erfc() const +{ + return ErfcReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse of the CDF of the Normal distribution function + * function of *this. + * + * \specialfunctions_module + * + * In other words, considering `x = ndtri(y)`, it returns the argument, x, for which the area under the + * Gaussian probability density function (integrated from minus infinity to x) is equal to y. + * + * \note This function supports only float and double scalar types. To support other scalar types, + * the user has to provide implementations of ndtri(T) for any scalar type T to be supported. + * + * \sa Math functions + */ +EIGEN_DEVICE_FUNC +inline const NdtriReturnType +ndtri() const +{ + return NdtriReturnType(derived()); +} + +template +using UnaryPowReturnType = + std::enable_if_t::Real>::value, + CwiseUnaryOp, const Derived>>; + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const UnaryPowReturnType pow( + const ScalarExponent& exponent) const { + return UnaryPowReturnType(derived(), internal::scalar_unary_pow_op(exponent)); +#else +/** \returns an expression of the coefficients of \c *this rasied to the constant power \a exponent + * + * \tparam T is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression. + * + * This function computes the coefficient-wise power. The function MatrixBase::pow() in the + * unsupported module MatrixFunctions computes the matrix power. + * + * Example: \include Cwise_pow.cpp + * Output: \verbinclude Cwise_pow.out + * + * \sa ArrayBase::pow(ArrayBase), square(), cube(), exp(), log() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const UnaryPowReturnType pow( + const ScalarExponent& exponent) const; +#endif +} diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/BlockMethods.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/BlockMethods.h new file mode 100644 index 0000000..68b9413 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/BlockMethods.h @@ -0,0 +1,1442 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +/// \internal expression type of a column */ +typedef Block::RowsAtCompileTime, 1, !IsRowMajor> ColXpr; +typedef const Block::RowsAtCompileTime, 1, !IsRowMajor> ConstColXpr; +/// \internal expression type of a row */ +typedef Block::ColsAtCompileTime, IsRowMajor> RowXpr; +typedef const Block::ColsAtCompileTime, IsRowMajor> ConstRowXpr; +/// \internal expression type of a block of whole columns */ +typedef Block::RowsAtCompileTime, Dynamic, !IsRowMajor> ColsBlockXpr; +typedef const Block::RowsAtCompileTime, Dynamic, !IsRowMajor> ConstColsBlockXpr; +/// \internal expression type of a block of whole rows */ +typedef Block::ColsAtCompileTime, IsRowMajor> RowsBlockXpr; +typedef const Block::ColsAtCompileTime, IsRowMajor> ConstRowsBlockXpr; +/// \internal expression type of a block of whole columns */ +template struct NColsBlockXpr { typedef Block::RowsAtCompileTime, N, !IsRowMajor> Type; }; +template struct ConstNColsBlockXpr { typedef const Block::RowsAtCompileTime, N, !IsRowMajor> Type; }; +/// \internal expression type of a block of whole rows */ +template struct NRowsBlockXpr { typedef Block::ColsAtCompileTime, IsRowMajor> Type; }; +template struct ConstNRowsBlockXpr { typedef const Block::ColsAtCompileTime, IsRowMajor> Type; }; +/// \internal expression of a block */ +typedef Block BlockXpr; +typedef const Block ConstBlockXpr; +/// \internal expression of a block of fixed sizes */ +template struct FixedBlockXpr { typedef Block Type; }; +template struct ConstFixedBlockXpr { typedef Block Type; }; + +typedef VectorBlock SegmentReturnType; +typedef const VectorBlock ConstSegmentReturnType; +template struct FixedSegmentReturnType { typedef VectorBlock Type; }; +template struct ConstFixedSegmentReturnType { typedef const VectorBlock Type; }; + +/// \internal inner-vector +typedef Block InnerVectorReturnType; +typedef Block ConstInnerVectorReturnType; + +/// \internal set of inner-vectors +typedef Block InnerVectorsReturnType; +typedef Block ConstInnerVectorsReturnType; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + +/// \returns an expression of a block in \c *this with either dynamic or fixed sizes. +/// +/// \param startRow the first row in the block +/// \param startCol the first column in the block +/// \param blockRows number of rows in the block, specified at either run-time or compile-time +/// \param blockCols number of columns in the block, specified at either run-time or compile-time +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example using runtime (aka dynamic) sizes: \include MatrixBase_block_int_int_int_int.cpp +/// Output: \verbinclude MatrixBase_block_int_int_int_int.out +/// +/// \newin{3.4}: +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. In the later case, \c n plays the role of a runtime fallback value in case \c N equals Eigen::Dynamic. +/// Here is an example with a fixed number of rows \c NRows and dynamic number of columns \c cols: +/// \code +/// mat.block(i,j,fix,cols) +/// \endcode +/// +/// This function thus fully covers the features offered by the following overloads block(Index, Index), +/// and block(Index, Index, Index, Index) that are thus obsolete. Indeed, this generic version avoids +/// redundancy, it preserves the argument order, and prevents the need to rely on the template keyword in templated code. +/// +/// but with less redundancy and more consistency as it does not modify the argument order +/// and seamlessly enable hybrid fixed/dynamic sizes. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size matrix, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block, fix, fix(int) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type( + derived(), startRow, startCol, internal::get_runtime_value(blockRows), internal::get_runtime_value(blockCols)); +} + +/// This is the const version of block(Index,Index,NRowsType,NColsType) +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type( + derived(), startRow, startCol, internal::get_runtime_value(blockRows), internal::get_runtime_value(blockCols)); +} + + + +/// \returns a expression of a top-right corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example with dynamic sizes: \include MatrixBase_topRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_topRightCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +topRightCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(cCols), internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of topRightCorner(NRowsType, NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +topRightCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(cCols), internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size top-right corner of \c *this. +/// +/// \tparam CRows the number of rows in the corner +/// \tparam CCols the number of columns in the corner +/// +/// Example: \include MatrixBase_template_int_int_topRightCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topRightCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block, block(Index,Index) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topRightCorner() +{ + return typename FixedBlockXpr::Type(derived(), 0, cols() - CCols); +} + +/// This is the const version of topRightCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topRightCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, cols() - CCols); +} + +/// \returns an expression of a top-right corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_topRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topRightCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topRightCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), 0, cols() - cCols, cRows, cCols); +} + +/// This is the const version of topRightCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topRightCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, cols() - cCols, cRows, cCols); +} + + + +/// \returns an expression of a top-left corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_topLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_topLeftCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +topLeftCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, 0, internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of topLeftCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +topLeftCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, 0, internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size top-left corner of \c *this. +/// +/// The template parameters CRows and CCols are the number of rows and columns in the corner. +/// +/// Example: \include MatrixBase_template_int_int_topLeftCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topLeftCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topLeftCorner() +{ + return typename FixedBlockXpr::Type(derived(), 0, 0); +} + +/// This is the const version of topLeftCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topLeftCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, 0); +} + +/// \returns an expression of a top-left corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_topLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topLeftCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topLeftCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), 0, 0, cRows, cCols); +} + +/// This is the const version of topLeftCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topLeftCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, 0, cRows, cCols); +} + + + +/// \returns an expression of a bottom-right corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_bottomRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_bottomRightCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +bottomRightCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), cols() - internal::get_runtime_value(cCols), + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of bottomRightCorner(NRowsType, NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +bottomRightCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), cols() - internal::get_runtime_value(cCols), + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size bottom-right corner of \c *this. +/// +/// The template parameters CRows and CCols are the number of rows and columns in the corner. +/// +/// Example: \include MatrixBase_template_int_int_bottomRightCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomRightCorner() +{ + return typename FixedBlockXpr::Type(derived(), rows() - CRows, cols() - CCols); +} + +/// This is the const version of bottomRightCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomRightCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - CRows, cols() - CCols); +} + +/// \returns an expression of a bottom-right corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_bottomRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomRightCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols); +} + +/// This is the const version of bottomRightCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomRightCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols); +} + + + +/// \returns an expression of a bottom-left corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_bottomLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_bottomLeftCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +bottomLeftCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), 0, + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of bottomLeftCorner(NRowsType, NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename ConstFixedBlockXpr<...,...>::Type +#endif +bottomLeftCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), 0, + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size bottom-left corner of \c *this. +/// +/// The template parameters CRows and CCols are the number of rows and columns in the corner. +/// +/// Example: \include MatrixBase_template_int_int_bottomLeftCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomLeftCorner() +{ + return typename FixedBlockXpr::Type(derived(), rows() - CRows, 0); +} + +/// This is the const version of bottomLeftCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomLeftCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - CRows, 0); +} + +/// \returns an expression of a bottom-left corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_bottomLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomLeftCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), rows() - cRows, 0, cRows, cCols); +} + +/// This is the const version of bottomLeftCorner(Index, Index). +template +EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomLeftCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - cRows, 0, cRows, cCols); +} + + + +/// \returns a block consisting of the top rows of \c *this. +/// +/// \param n the number of rows in the block +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// +/// Example: \include MatrixBase_topRows_int.cpp +/// Output: \verbinclude MatrixBase_topRows_int.out +/// +/// The number of rows \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NRowsBlockXpr::value>::Type +#else +typename NRowsBlockXpr<...>::Type +#endif +topRows(NRowsType n) +{ + return typename NRowsBlockXpr::value>::Type + (derived(), 0, 0, internal::get_runtime_value(n), cols()); +} + +/// This is the const version of topRows(NRowsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNRowsBlockXpr::value>::Type +#else +const typename ConstNRowsBlockXpr<...>::Type +#endif +topRows(NRowsType n) const +{ + return typename ConstNRowsBlockXpr::value>::Type + (derived(), 0, 0, internal::get_runtime_value(n), cols()); +} + +/// \returns a block consisting of the top rows of \c *this. +/// +/// \tparam N the number of rows in the block as specified at compile-time +/// \param n the number of rows in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_topRows.cpp +/// Output: \verbinclude MatrixBase_template_int_topRows.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NRowsBlockXpr::Type topRows(Index n = N) +{ + return typename NRowsBlockXpr::Type(derived(), 0, 0, n, cols()); +} + +/// This is the const version of topRows(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNRowsBlockXpr::Type topRows(Index n = N) const +{ + return typename ConstNRowsBlockXpr::Type(derived(), 0, 0, n, cols()); +} + + + +/// \returns a block consisting of the bottom rows of \c *this. +/// +/// \param n the number of rows in the block +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// +/// Example: \include MatrixBase_bottomRows_int.cpp +/// Output: \verbinclude MatrixBase_bottomRows_int.out +/// +/// The number of rows \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NRowsBlockXpr::value>::Type +#else +typename NRowsBlockXpr<...>::Type +#endif +bottomRows(NRowsType n) +{ + return typename NRowsBlockXpr::value>::Type + (derived(), rows() - internal::get_runtime_value(n), 0, internal::get_runtime_value(n), cols()); +} + +/// This is the const version of bottomRows(NRowsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNRowsBlockXpr::value>::Type +#else +const typename ConstNRowsBlockXpr<...>::Type +#endif +bottomRows(NRowsType n) const +{ + return typename ConstNRowsBlockXpr::value>::Type + (derived(), rows() - internal::get_runtime_value(n), 0, internal::get_runtime_value(n), cols()); +} + +/// \returns a block consisting of the bottom rows of \c *this. +/// +/// \tparam N the number of rows in the block as specified at compile-time +/// \param n the number of rows in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_bottomRows.cpp +/// Output: \verbinclude MatrixBase_template_int_bottomRows.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NRowsBlockXpr::Type bottomRows(Index n = N) +{ + return typename NRowsBlockXpr::Type(derived(), rows() - n, 0, n, cols()); +} + +/// This is the const version of bottomRows(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNRowsBlockXpr::Type bottomRows(Index n = N) const +{ + return typename ConstNRowsBlockXpr::Type(derived(), rows() - n, 0, n, cols()); +} + + + +/// \returns a block consisting of a range of rows of \c *this. +/// +/// \param startRow the index of the first row in the block +/// \param n the number of rows in the block +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// +/// Example: \include DenseBase_middleRows_int.cpp +/// Output: \verbinclude DenseBase_middleRows_int.out +/// +/// The number of rows \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NRowsBlockXpr::value>::Type +#else +typename NRowsBlockXpr<...>::Type +#endif +middleRows(Index startRow, NRowsType n) +{ + return typename NRowsBlockXpr::value>::Type + (derived(), startRow, 0, internal::get_runtime_value(n), cols()); +} + +/// This is the const version of middleRows(Index,NRowsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNRowsBlockXpr::value>::Type +#else +const typename ConstNRowsBlockXpr<...>::Type +#endif +middleRows(Index startRow, NRowsType n) const +{ + return typename ConstNRowsBlockXpr::value>::Type + (derived(), startRow, 0, internal::get_runtime_value(n), cols()); +} + +/// \returns a block consisting of a range of rows of \c *this. +/// +/// \tparam N the number of rows in the block as specified at compile-time +/// \param startRow the index of the first row in the block +/// \param n the number of rows in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include DenseBase_template_int_middleRows.cpp +/// Output: \verbinclude DenseBase_template_int_middleRows.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NRowsBlockXpr::Type middleRows(Index startRow, Index n = N) +{ + return typename NRowsBlockXpr::Type(derived(), startRow, 0, n, cols()); +} + +/// This is the const version of middleRows(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNRowsBlockXpr::Type middleRows(Index startRow, Index n = N) const +{ + return typename ConstNRowsBlockXpr::Type(derived(), startRow, 0, n, cols()); +} + + + +/// \returns a block consisting of the left columns of \c *this. +/// +/// \param n the number of columns in the block +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_leftCols_int.cpp +/// Output: \verbinclude MatrixBase_leftCols_int.out +/// +/// The number of columns \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NColsBlockXpr::value>::Type +#else +typename NColsBlockXpr<...>::Type +#endif +leftCols(NColsType n) +{ + return typename NColsBlockXpr::value>::Type + (derived(), 0, 0, rows(), internal::get_runtime_value(n)); +} + +/// This is the const version of leftCols(NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNColsBlockXpr::value>::Type +#else +const typename ConstNColsBlockXpr<...>::Type +#endif +leftCols(NColsType n) const +{ + return typename ConstNColsBlockXpr::value>::Type + (derived(), 0, 0, rows(), internal::get_runtime_value(n)); +} + +/// \returns a block consisting of the left columns of \c *this. +/// +/// \tparam N the number of columns in the block as specified at compile-time +/// \param n the number of columns in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_leftCols.cpp +/// Output: \verbinclude MatrixBase_template_int_leftCols.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NColsBlockXpr::Type leftCols(Index n = N) +{ + return typename NColsBlockXpr::Type(derived(), 0, 0, rows(), n); +} + +/// This is the const version of leftCols(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNColsBlockXpr::Type leftCols(Index n = N) const +{ + return typename ConstNColsBlockXpr::Type(derived(), 0, 0, rows(), n); +} + + + +/// \returns a block consisting of the right columns of \c *this. +/// +/// \param n the number of columns in the block +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_rightCols_int.cpp +/// Output: \verbinclude MatrixBase_rightCols_int.out +/// +/// The number of columns \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NColsBlockXpr::value>::Type +#else +typename NColsBlockXpr<...>::Type +#endif +rightCols(NColsType n) +{ + return typename NColsBlockXpr::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(n), rows(), internal::get_runtime_value(n)); +} + +/// This is the const version of rightCols(NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNColsBlockXpr::value>::Type +#else +const typename ConstNColsBlockXpr<...>::Type +#endif +rightCols(NColsType n) const +{ + return typename ConstNColsBlockXpr::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(n), rows(), internal::get_runtime_value(n)); +} + +/// \returns a block consisting of the right columns of \c *this. +/// +/// \tparam N the number of columns in the block as specified at compile-time +/// \param n the number of columns in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_rightCols.cpp +/// Output: \verbinclude MatrixBase_template_int_rightCols.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NColsBlockXpr::Type rightCols(Index n = N) +{ + return typename NColsBlockXpr::Type(derived(), 0, cols() - n, rows(), n); +} + +/// This is the const version of rightCols(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNColsBlockXpr::Type rightCols(Index n = N) const +{ + return typename ConstNColsBlockXpr::Type(derived(), 0, cols() - n, rows(), n); +} + + + +/// \returns a block consisting of a range of columns of \c *this. +/// +/// \param startCol the index of the first column in the block +/// \param numCols the number of columns in the block +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include DenseBase_middleCols_int.cpp +/// Output: \verbinclude DenseBase_middleCols_int.out +/// +/// The number of columns \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NColsBlockXpr::value>::Type +#else +typename NColsBlockXpr<...>::Type +#endif +middleCols(Index startCol, NColsType numCols) +{ + return typename NColsBlockXpr::value>::Type + (derived(), 0, startCol, rows(), internal::get_runtime_value(numCols)); +} + +/// This is the const version of middleCols(Index,NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNColsBlockXpr::value>::Type +#else +const typename ConstNColsBlockXpr<...>::Type +#endif +middleCols(Index startCol, NColsType numCols) const +{ + return typename ConstNColsBlockXpr::value>::Type + (derived(), 0, startCol, rows(), internal::get_runtime_value(numCols)); +} + +/// \returns a block consisting of a range of columns of \c *this. +/// +/// \tparam N the number of columns in the block as specified at compile-time +/// \param startCol the index of the first column in the block +/// \param n the number of columns in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include DenseBase_template_int_middleCols.cpp +/// Output: \verbinclude DenseBase_template_int_middleCols.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NColsBlockXpr::Type middleCols(Index startCol, Index n = N) +{ + return typename NColsBlockXpr::Type(derived(), 0, startCol, rows(), n); +} + +/// This is the const version of middleCols(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNColsBlockXpr::Type middleCols(Index startCol, Index n = N) const +{ + return typename ConstNColsBlockXpr::Type(derived(), 0, startCol, rows(), n); +} + + + +/// \returns a fixed-size expression of a block of \c *this. +/// +/// The template parameters \a NRows and \a NCols are the number of +/// rows and columns in the block. +/// +/// \param startRow the first row in the block +/// \param startCol the first column in the block +/// +/// Example: \include MatrixBase_block_int_int.cpp +/// Output: \verbinclude MatrixBase_block_int_int.out +/// +/// \note The usage of of this overload is discouraged from %Eigen 3.4, better used the generic +/// block(Index,Index,NRowsType,NColsType), here is the one-to-one equivalence: +/// \code +/// mat.template block(i,j) <--> mat.block(i,j,fix,fix) +/// \endcode +/// +/// \note since block is a templated member, the keyword template has to be used +/// if the matrix type is also a template parameter: \code m.template block<3,3>(1,1); \endcode +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type block(Index startRow, Index startCol) +{ + return typename FixedBlockXpr::Type(derived(), startRow, startCol); +} + +/// This is the const version of block<>(Index, Index). */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type block(Index startRow, Index startCol) const +{ + return typename ConstFixedBlockXpr::Type(derived(), startRow, startCol); +} + +/// \returns an expression of a block of \c *this. +/// +/// \tparam NRows number of rows in block as specified at compile-time +/// \tparam NCols number of columns in block as specified at compile-time +/// \param startRow the first row in the block +/// \param startCol the first column in the block +/// \param blockRows number of rows in block as specified at run-time +/// \param blockCols number of columns in block as specified at run-time +/// +/// This function is mainly useful for blocks where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a blockRows should equal \a NRows unless +/// \a NRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_block_int_int_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_block_int_int_int_int.out +/// +/// \note The usage of of this overload is discouraged from %Eigen 3.4, better used the generic +/// block(Index,Index,NRowsType,NColsType), here is the one-to-one complete equivalence: +/// \code +/// mat.template block(i,j,rows,cols) <--> mat.block(i,j,fix(rows),fix(cols)) +/// \endcode +/// If we known that, e.g., NRows==Dynamic and NCols!=Dynamic, then the equivalence becomes: +/// \code +/// mat.template block(i,j,rows,NCols) <--> mat.block(i,j,rows,fix) +/// \endcode +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type block(Index startRow, Index startCol, + Index blockRows, Index blockCols) +{ + return typename FixedBlockXpr::Type(derived(), startRow, startCol, blockRows, blockCols); +} + +/// This is the const version of block<>(Index, Index, Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type block(Index startRow, Index startCol, + Index blockRows, Index blockCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), startRow, startCol, blockRows, blockCols); +} + +/// \returns an expression of the \a i-th column of \c *this. Note that the numbering starts at 0. +/// +/// Example: \include MatrixBase_col.cpp +/// Output: \verbinclude MatrixBase_col.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/** + * \sa row(), class Block */ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ColXpr col(Index i) +{ + return ColXpr(derived(), i); +} + +/// This is the const version of col(). +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ConstColXpr col(Index i) const +{ + return ConstColXpr(derived(), i); +} + +/// \returns an expression of the \a i-th row of \c *this. Note that the numbering starts at 0. +/// +/// Example: \include MatrixBase_row.cpp +/// Output: \verbinclude MatrixBase_row.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/** + * \sa col(), class Block */ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +RowXpr row(Index i) +{ + return RowXpr(derived(), i); +} + +/// This is the const version of row(). */ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ConstRowXpr row(Index i) const +{ + return ConstRowXpr(derived(), i); +} + +/// \returns an expression of a segment (i.e. a vector block) in \c *this with either dynamic or fixed sizes. +/// +/// \only_for_vectors +/// +/// \param start the first coefficient in the segment +/// \param n the number of coefficients in the segment +/// \tparam NType the type of the value handling the number of coefficients in the segment, typically Index. +/// +/// Example: \include MatrixBase_segment_int_int.cpp +/// Output: \verbinclude MatrixBase_segment_int_int.out +/// +/// The number of coefficients \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +/// \sa block(Index,Index,NRowsType,NColsType), fix, fix(int), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedSegmentReturnType::value>::Type +#else +typename FixedSegmentReturnType<...>::Type +#endif +segment(Index start, NType n) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::value>::Type + (derived(), start, internal::get_runtime_value(n)); +} + + +/// This is the const version of segment(Index,NType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedSegmentReturnType::value>::Type +#else +const typename ConstFixedSegmentReturnType<...>::Type +#endif +segment(Index start, NType n) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::value>::Type + (derived(), start, internal::get_runtime_value(n)); +} + +/// \returns an expression of the first coefficients of \c *this with either dynamic or fixed sizes. +/// +/// \only_for_vectors +/// +/// \param n the number of coefficients in the segment +/// \tparam NType the type of the value handling the number of coefficients in the segment, typically Index. +/// +/// Example: \include MatrixBase_start_int.cpp +/// Output: \verbinclude MatrixBase_start_int.out +/// +/// The number of coefficients \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +/// \sa class Block, block(Index,Index) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedSegmentReturnType::value>::Type +#else +typename FixedSegmentReturnType<...>::Type +#endif +head(NType n) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::value>::Type + (derived(), 0, internal::get_runtime_value(n)); +} + +/// This is the const version of head(NType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedSegmentReturnType::value>::Type +#else +const typename ConstFixedSegmentReturnType<...>::Type +#endif +head(NType n) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::value>::Type + (derived(), 0, internal::get_runtime_value(n)); +} + +/// \returns an expression of a last coefficients of \c *this with either dynamic or fixed sizes. +/// +/// \only_for_vectors +/// +/// \param n the number of coefficients in the segment +/// \tparam NType the type of the value handling the number of coefficients in the segment, typically Index. +/// +/// Example: \include MatrixBase_end_int.cpp +/// Output: \verbinclude MatrixBase_end_int.out +/// +/// The number of coefficients \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +/// \sa class Block, block(Index,Index) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedSegmentReturnType::value>::Type +#else +typename FixedSegmentReturnType<...>::Type +#endif +tail(NType n) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::value>::Type + (derived(), this->size() - internal::get_runtime_value(n), internal::get_runtime_value(n)); +} + +/// This is the const version of tail(Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedSegmentReturnType::value>::Type +#else +const typename ConstFixedSegmentReturnType<...>::Type +#endif +tail(NType n) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::value>::Type + (derived(), this->size() - internal::get_runtime_value(n), internal::get_runtime_value(n)); +} + +/// \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this +/// +/// \only_for_vectors +/// +/// \tparam N the number of coefficients in the segment as specified at compile-time +/// \param start the index of the first element in the segment +/// \param n the number of coefficients in the segment as specified at compile-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_segment.cpp +/// Output: \verbinclude MatrixBase_template_int_segment.out +/// +/// \sa segment(Index,NType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedSegmentReturnType::Type segment(Index start, Index n = N) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::Type(derived(), start, n); +} + +/// This is the const version of segment(Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstFixedSegmentReturnType::Type segment(Index start, Index n = N) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::Type(derived(), start, n); +} + +/// \returns a fixed-size expression of the first coefficients of \c *this. +/// +/// \only_for_vectors +/// +/// \tparam N the number of coefficients in the segment as specified at compile-time +/// \param n the number of coefficients in the segment as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_start.cpp +/// Output: \verbinclude MatrixBase_template_int_start.out +/// +/// \sa head(NType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedSegmentReturnType::Type head(Index n = N) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::Type(derived(), 0, n); +} + +/// This is the const version of head(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstFixedSegmentReturnType::Type head(Index n = N) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::Type(derived(), 0, n); +} + +/// \returns a fixed-size expression of the last coefficients of \c *this. +/// +/// \only_for_vectors +/// +/// \tparam N the number of coefficients in the segment as specified at compile-time +/// \param n the number of coefficients in the segment as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_end.cpp +/// Output: \verbinclude MatrixBase_template_int_end.out +/// +/// \sa tail(NType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedSegmentReturnType::Type tail(Index n = N) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::Type(derived(), size() - n); +} + +/// This is the const version of tail. +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstFixedSegmentReturnType::Type tail(Index n = N) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::Type(derived(), size() - n); +} + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +InnerVectorReturnType innerVector(Index outer) +{ return InnerVectorReturnType(derived(), outer); } + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). Read-only. +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const ConstInnerVectorReturnType innerVector(Index outer) const +{ return ConstInnerVectorReturnType(derived(), outer); } + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +InnerVectorsReturnType +innerVectors(Index outerStart, Index outerSize) +{ + return Block(derived(), + IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, + IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); + +} + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). Read-only. +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const ConstInnerVectorsReturnType +innerVectors(Index outerStart, Index outerSize) const +{ + return Block(derived(), + IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, + IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); + +} + +/** \returns the i-th subvector (column or vector) according to the \c Direction + * \sa subVectors() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::conditional_t +subVector(Index i) +{ + return std::conditional_t(derived(),i); +} + +/** This is the const version of subVector(Index) */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::conditional_t +subVector(Index i) const +{ + return std::conditional_t(derived(),i); +} + +/** \returns the number of subvectors (rows or columns) in the direction \c Direction + * \sa subVector(Index) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR +Index subVectors() const +{ return (Direction==Vertical)?cols():rows(); } diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h new file mode 100644 index 0000000..964913b --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h @@ -0,0 +1,137 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2016 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is a base class plugin containing common coefficient wise functions. + +/** \returns an expression of the difference of \c *this and \a other + * + * \note If you want to subtract a given scalar from all coefficients, see Cwise::operator-(). + * + * \sa class CwiseBinaryOp, operator-=() + */ +EIGEN_MAKE_CWISE_BINARY_OP(operator-,difference) + +/** \returns an expression of the sum of \c *this and \a other + * + * \note If you want to add a given scalar to all coefficients, see Cwise::operator+(). + * + * \sa class CwiseBinaryOp, operator+=() + */ +EIGEN_MAKE_CWISE_BINARY_OP(operator+,sum) + +/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other + * + * The template parameter \a CustomBinaryOp is the type of the functor + * of the custom operator (see class CwiseBinaryOp for an example) + * + * Here is an example illustrating the use of custom functors: + * \include class_CwiseBinaryOp.cpp + * Output: \verbinclude class_CwiseBinaryOp.out + * + * \sa class CwiseBinaryOp, operator+(), operator-(), cwiseProduct() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp +binaryExpr(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other, const CustomBinaryOp& func = CustomBinaryOp()) const +{ + return CwiseBinaryOp(derived(), other.derived(), func); +} + + +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP(operator*,product) +#else +/** \returns an expression of \c *this scaled by the scalar factor \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template +const CwiseBinaryOp,Derived,Constant > operator*(const T& scalar) const; +/** \returns an expression of \a expr scaled by the scalar factor \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template friend +const CwiseBinaryOp,Constant,Derived> operator*(const T& scalar, const StorageBaseType& expr); +#endif + + + +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(operator/,quotient) +#else +/** \returns an expression of \c *this divided by the scalar value \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template +const CwiseBinaryOp,Derived,Constant > operator/(const T& scalar) const; +#endif + +/** \returns an expression of the coefficient-wise boolean \b and operator of \c *this and \a other + * + * Example: \include Cwise_boolean_and.cpp + * Output: \verbinclude Cwise_boolean_and.out + * + * \sa operator||(), select() + */ +template +EIGEN_DEVICE_FUNC inline const CwiseBinaryOp, const Derived, const OtherDerived> +operator&&(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), + other.derived()); +} + +/** \returns an expression of the coefficient-wise boolean \b or operator of \c *this and \a other + * + * Example: \include Cwise_boolean_or.cpp + * Output: \verbinclude Cwise_boolean_or.out + * + * \sa operator&&(), select() + */ +template +EIGEN_DEVICE_FUNC inline const CwiseBinaryOp, const Derived, const OtherDerived> +operator||(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), + other.derived()); +} + +/** \returns an expression of the bitwise \b and operator of \c *this and \a other + * + * \sa operator|(), operator^() + */ +template +EIGEN_DEVICE_FUNC inline const CwiseBinaryOp, const Derived, const OtherDerived> +operator&(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), + other.derived()); +} + +/** \returns an expression of the bitwise boolean \b or operator of \c *this and \a other + * + * \sa operator&(), operator^() + */ +template +EIGEN_DEVICE_FUNC inline const CwiseBinaryOp, const Derived, const OtherDerived> +operator|(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), + other.derived()); +} + +/** \returns an expression of the bitwise xor operator of *this and \a other + * \sa operator&(), operator|() + */ +template +EIGEN_DEVICE_FUNC inline const CwiseBinaryOp, const Derived, const OtherDerived> +operator^(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), + other.derived()); +} diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h new file mode 100644 index 0000000..1c6b284 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h @@ -0,0 +1,177 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is a base class plugin containing common coefficient wise functions. + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +/** \internal the return type of conjugate() */ +typedef std::conditional_t::IsComplex, + const CwiseUnaryOp, const Derived>, + const Derived& + > ConjugateReturnType; +/** \internal the return type of real() const */ +typedef std::conditional_t::IsComplex, + const CwiseUnaryOp, const Derived>, + const Derived& + > RealReturnType; +/** \internal the return type of real() */ +typedef std::conditional_t::IsComplex, + CwiseUnaryView, Derived>, + Derived& + > NonConstRealReturnType; +/** \internal the return type of imag() const */ +typedef CwiseUnaryOp, const Derived> ImagReturnType; +/** \internal the return type of imag() */ +typedef CwiseUnaryView, Derived> NonConstImagReturnType; + +typedef CwiseUnaryOp, const Derived> NegativeReturnType; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + +/// \returns an expression of the opposite of \c *this +/// +EIGEN_DOC_UNARY_ADDONS(operator-,opposite) +/// +EIGEN_DEVICE_FUNC +inline const NegativeReturnType +operator-() const { return NegativeReturnType(derived()); } + + +template struct CastXpr { typedef typename internal::cast_return_type, const Derived> >::type Type; }; + +/// \returns an expression of \c *this with the \a Scalar type casted to +/// \a NewScalar. +/// +/// The template parameter \a NewScalar is the type we are casting the scalars to. +/// +EIGEN_DOC_UNARY_ADDONS(cast,conversion function) +/// +/// \sa class CwiseUnaryOp +/// +template +EIGEN_DEVICE_FUNC +typename CastXpr::Type +cast() const +{ + return typename CastXpr::Type(derived()); +} + +/// \returns an expression of the complex conjugate of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(conjugate,complex conjugate) +/// +/// \sa Math functions, MatrixBase::adjoint() +EIGEN_DEVICE_FUNC +inline ConjugateReturnType +conjugate() const +{ + return ConjugateReturnType(derived()); +} + +/// \returns an expression of the complex conjugate of \c *this if Cond==true, returns derived() otherwise. +/// +EIGEN_DOC_UNARY_ADDONS(conjugate,complex conjugate) +/// +/// \sa conjugate() +template +EIGEN_DEVICE_FUNC +inline std::conditional_t +conjugateIf() const +{ + typedef std::conditional_t ReturnType; + return ReturnType(derived()); +} + +/// \returns a read-only expression of the real part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(real,real part function) +/// +/// \sa imag() +EIGEN_DEVICE_FUNC +inline RealReturnType +real() const { return RealReturnType(derived()); } + +/// \returns an read-only expression of the imaginary part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(imag,imaginary part function) +/// +/// \sa real() +EIGEN_DEVICE_FUNC +inline const ImagReturnType +imag() const { return ImagReturnType(derived()); } + +/// \brief Apply a unary operator coefficient-wise +/// \param[in] func Functor implementing the unary operator +/// \tparam CustomUnaryOp Type of \a func +/// \returns An expression of a custom coefficient-wise unary operator \a func of *this +/// +/// The function \c ptr_fun() from the C++ standard library can be used to make functors out of normal functions. +/// +/// Example: +/// \include class_CwiseUnaryOp_ptrfun.cpp +/// Output: \verbinclude class_CwiseUnaryOp_ptrfun.out +/// +/// Genuine functors allow for more possibilities, for instance it may contain a state. +/// +/// Example: +/// \include class_CwiseUnaryOp.cpp +/// Output: \verbinclude class_CwiseUnaryOp.out +/// +EIGEN_DOC_UNARY_ADDONS(unaryExpr,unary function) +/// +/// \sa unaryViewExpr, binaryExpr, class CwiseUnaryOp +/// +template +EIGEN_DEVICE_FUNC +inline const CwiseUnaryOp +unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const +{ + return CwiseUnaryOp(derived(), func); +} + +/// \returns an expression of a custom coefficient-wise unary operator \a func of *this +/// +/// The template parameter \a CustomUnaryOp is the type of the functor +/// of the custom unary operator. +/// +/// Example: +/// \include class_CwiseUnaryOp.cpp +/// Output: \verbinclude class_CwiseUnaryOp.out +/// +EIGEN_DOC_UNARY_ADDONS(unaryViewExpr,unary function) +/// +/// \sa unaryExpr, binaryExpr class CwiseUnaryOp +/// +template +EIGEN_DEVICE_FUNC +inline const CwiseUnaryView +unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const +{ + return CwiseUnaryView(derived(), func); +} + +/// \returns a non const expression of the real part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(real,real part function) +/// +/// \sa imag() +EIGEN_DEVICE_FUNC +inline NonConstRealReturnType +real() { return NonConstRealReturnType(derived()); } + +/// \returns a non const expression of the imaginary part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(imag,imaginary part function) +/// +/// \sa real() +EIGEN_DEVICE_FUNC +inline NonConstImagReturnType +imag() { return NonConstImagReturnType(derived()); } diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/IndexedViewMethods.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/IndexedViewMethods.h new file mode 100644 index 0000000..e5432ea --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/IndexedViewMethods.h @@ -0,0 +1,350 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#if !defined(EIGEN_PARSED_BY_DOXYGEN) + +protected: +// define some aliases to ease readability + +template +using IvcRowType = typename internal::IndexedViewCompatibleType::type; + +template +using IvcColType = typename internal::IndexedViewCompatibleType::type; + +template +using IvcType = typename internal::IndexedViewCompatibleType::type; + +typedef typename internal::IndexedViewCompatibleType::type IvcIndex; + +template +inline IvcRowType ivcRow(const Indices& indices) const { + return internal::makeIndexedViewCompatible( + indices, internal::variable_if_dynamic(derived().rows()), Specialized); +} + +template +inline IvcColType ivcCol(const Indices& indices) const { + return internal::makeIndexedViewCompatible( + indices, internal::variable_if_dynamic(derived().cols()), Specialized); +} + +template +inline IvcType ivcSize(const Indices& indices) const { + return internal::makeIndexedViewCompatible( + indices, internal::variable_if_dynamic(derived().size()), Specialized); +} + +// this helper class assumes internal::valid_indexed_view_overload::value == true +template , IvcColType>>::ReturnAsScalar, + bool UseBlock = internal::traits, IvcColType>>::ReturnAsBlock, + bool UseGeneric = internal::traits, IvcColType>>::ReturnAsIndexedView> +struct IndexedViewSelector; + +// Generic +template +struct IndexedViewSelector { + using ReturnType = IndexedView, IvcColType>; + using ConstReturnType = IndexedView, IvcColType>; + + static inline ReturnType run(Derived& derived, const RowIndices& rowIndices, const ColIndices& colIndices) { + return ReturnType(derived, derived.ivcRow(rowIndices), derived.ivcCol(colIndices)); + } + static inline ConstReturnType run(const Derived& derived, const RowIndices& rowIndices, + const ColIndices& colIndices) { + return ConstReturnType(derived, derived.ivcRow(rowIndices), derived.ivcCol(colIndices)); + } +}; + +// Block +template +struct IndexedViewSelector { + using IndexedViewType = IndexedView, IvcColType>; + using ConstIndexedViewType = IndexedView, IvcColType>; + using ReturnType = typename internal::traits::BlockType; + using ConstReturnType = typename internal::traits::BlockType; + + static inline ReturnType run(Derived& derived, const RowIndices& rowIndices, const ColIndices& colIndices) { + IvcRowType actualRowIndices = derived.ivcRow(rowIndices); + IvcColType actualColIndices = derived.ivcCol(colIndices); + return ReturnType(derived, internal::first(actualRowIndices), internal::first(actualColIndices), + internal::index_list_size(actualRowIndices), internal::index_list_size(actualColIndices)); + } + static inline ConstReturnType run(const Derived& derived, const RowIndices& rowIndices, + const ColIndices& colIndices) { + IvcRowType actualRowIndices = derived.ivcRow(rowIndices); + IvcColType actualColIndices = derived.ivcCol(colIndices); + return ConstReturnType(derived, internal::first(actualRowIndices), internal::first(actualColIndices), + internal::index_list_size(actualRowIndices), internal::index_list_size(actualColIndices)); + } +}; + +// Symbolic +template +struct IndexedViewSelector { + using ReturnType = typename DenseBase::Scalar&; + using ConstReturnType = typename DenseBase::CoeffReturnType; + + static inline ReturnType run(Derived& derived, const RowIndices& rowIndices, const ColIndices& colIndices) { + return derived(internal::eval_expr_given_size(rowIndices, derived.rows()), + internal::eval_expr_given_size(colIndices, derived.cols())); + } + static inline ConstReturnType run(const Derived& derived, const RowIndices& rowIndices, + const ColIndices& colIndices) { + return derived(internal::eval_expr_given_size(rowIndices, derived.rows()), + internal::eval_expr_given_size(colIndices, derived.cols())); + } +}; + +// this helper class assumes internal::is_valid_index_type::value == false +template ::value, + bool UseBlock = !UseSymbolic && internal::get_compile_time_incr>::value == 1, + bool UseGeneric = !UseSymbolic && !UseBlock> +struct VectorIndexedViewSelector; + +// Generic +template +struct VectorIndexedViewSelector { + + static constexpr bool IsRowMajor = DenseBase::IsRowMajor; + + using RowMajorReturnType = IndexedView>; + using ConstRowMajorReturnType = IndexedView>; + + using ColMajorReturnType = IndexedView, IvcIndex>; + using ConstColMajorReturnType = IndexedView, IvcIndex>; + + using ReturnType = typename internal::conditional::type; + using ConstReturnType = + typename internal::conditional::type; + + template = true> + static inline RowMajorReturnType run(Derived& derived, const Indices& indices) { + return RowMajorReturnType(derived, IvcIndex(0), derived.ivcCol(indices)); + } + template = true> + static inline ConstRowMajorReturnType run(const Derived& derived, const Indices& indices) { + return ConstRowMajorReturnType(derived, IvcIndex(0), derived.ivcCol(indices)); + } + template = true> + static inline ColMajorReturnType run(Derived& derived, const Indices& indices) { + return ColMajorReturnType(derived, derived.ivcRow(indices), IvcIndex(0)); + } + template = true> + static inline ConstColMajorReturnType run(const Derived& derived, const Indices& indices) { + return ConstColMajorReturnType(derived, derived.ivcRow(indices), IvcIndex(0)); + } +}; + +// Block +template +struct VectorIndexedViewSelector { + + using ReturnType = VectorBlock::value>; + using ConstReturnType = VectorBlock::value>; + + static inline ReturnType run(Derived& derived, const Indices& indices) { + IvcType actualIndices = derived.ivcSize(indices); + return ReturnType(derived, internal::first(actualIndices), internal::index_list_size(actualIndices)); + } + static inline ConstReturnType run(const Derived& derived, const Indices& indices) { + IvcType actualIndices = derived.ivcSize(indices); + return ConstReturnType(derived, internal::first(actualIndices), internal::index_list_size(actualIndices)); + } +}; + +// Symbolic +template +struct VectorIndexedViewSelector { + + using ReturnType = typename DenseBase::Scalar&; + using ConstReturnType = typename DenseBase::CoeffReturnType; + + static inline ReturnType run(Derived& derived, const Indices& id) { + return derived(internal::eval_expr_given_size(id, derived.size())); + } + static inline ConstReturnType run(const Derived& derived, const Indices& id) { + return derived(internal::eval_expr_given_size(id, derived.size())); + } +}; + +// SFINAE dummy types + +template +using EnableOverload = std::enable_if_t< + internal::valid_indexed_view_overload::value && internal::is_lvalue::value, bool>; + +template +using EnableConstOverload = + std::enable_if_t::value, bool>; + +template +using EnableVectorOverload = + std::enable_if_t::value && internal::is_lvalue::value, bool>; + +template +using EnableConstVectorOverload = std::enable_if_t::value, bool>; + +public: + +// Public API for 2D matrices/arrays + +// non-const versions + +template +using IndexedViewType = typename IndexedViewSelector::ReturnType; + +template = true> +IndexedViewType operator()(const RowIndices& rowIndices, const ColIndices& colIndices) { + return IndexedViewSelector::run(derived(), rowIndices, colIndices); +} + +template , + EnableOverload = true> +IndexedViewType operator()(const RowType (&rowIndices)[RowSize], const ColIndices& colIndices) { + return IndexedViewSelector::run(derived(), RowIndices{rowIndices}, colIndices); +} + +template , + EnableOverload = true> +IndexedViewType operator()(const RowIndices& rowIndices, const ColType (&colIndices)[ColSize]) { + return IndexedViewSelector::run(derived(), rowIndices, ColIndices{colIndices}); +} + +template , typename ColIndices = Array, + EnableOverload = true> +IndexedViewType operator()(const RowType (&rowIndices)[RowSize], + const ColType (&colIndices)[ColSize]) { + return IndexedViewSelector::run(derived(), RowIndices{rowIndices}, ColIndices{colIndices}); +} + +// const versions + +template +using ConstIndexedViewType = typename IndexedViewSelector::ConstReturnType; + +template = true> +ConstIndexedViewType operator()(const RowIndices& rowIndices, + const ColIndices& colIndices) const { + return IndexedViewSelector::run(derived(), rowIndices, colIndices); +} + +template , + EnableConstOverload = true> +ConstIndexedViewType operator()(const RowType (&rowIndices)[RowSize], + const ColIndices& colIndices) const { + return IndexedViewSelector::run(derived(), RowIndices{rowIndices}, colIndices); +} + +template , + EnableConstOverload = true> +ConstIndexedViewType operator()(const RowIndices& rowIndices, + const ColType (&colIndices)[ColSize]) const { + return IndexedViewSelector::run(derived(), rowIndices, ColIndices{colIndices}); +} + +template , typename ColIndices = Array, + EnableConstOverload = true> +ConstIndexedViewType operator()(const RowType (&rowIndices)[RowSize], + const ColType (&colIndices)[ColSize]) const { + return IndexedViewSelector::run(derived(), RowIndices{rowIndices}, ColIndices{colIndices}); +} + +// Public API for 1D vectors/arrays + +// non-const versions + +template +using VectorIndexedViewType = typename VectorIndexedViewSelector::ReturnType; + +template = true> +VectorIndexedViewType operator()(const Indices& indices) { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return VectorIndexedViewSelector::run(derived(), indices); +} + +template , + EnableVectorOverload = true> +VectorIndexedViewType operator()(const IndexType (&indices)[Size]) { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return VectorIndexedViewSelector::run(derived(), Indices{indices}); +} + +// const versions + +template +using ConstVectorIndexedViewType = typename VectorIndexedViewSelector::ConstReturnType; + +template = true> +ConstVectorIndexedViewType operator()(const Indices& indices) const { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return VectorIndexedViewSelector::run(derived(), indices); +} + +template , + EnableConstVectorOverload = true> +ConstVectorIndexedViewType operator()(const IndexType (&indices)[Size]) const { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return VectorIndexedViewSelector::run(derived(), Indices{indices}); +} + +#else // EIGEN_PARSED_BY_DOXYGEN + +/** + * \returns a generic submatrix view defined by the rows and columns indexed \a rowIndices and \a colIndices respectively. + * + * Each parameter must either be: + * - An integer indexing a single row or column + * - Eigen::placeholders::all indexing the full set of respective rows or columns in increasing order + * - An ArithmeticSequence as returned by the Eigen::seq and Eigen::seqN functions + * - Any %Eigen's vector/array of integers or expressions + * - Plain C arrays: \c int[N] + * - And more generally any type exposing the following two member functions: + * \code + * operator[]() const; + * size() const; + * \endcode + * where \c stands for any integer type compatible with Eigen::Index (i.e. \c std::ptrdiff_t). + * + * The last statement implies compatibility with \c std::vector, \c std::valarray, \c std::array, many of the Range-v3's ranges, etc. + * + * If the submatrix can be represented using a starting position \c (i,j) and positive sizes \c (rows,columns), then this + * method will returns a Block object after extraction of the relevant information from the passed arguments. This is the case + * when all arguments are either: + * - An integer + * - Eigen::placeholders::all + * - An ArithmeticSequence with compile-time increment strictly equal to 1, as returned by Eigen::seq(a,b), and Eigen::seqN(a,N). + * + * Otherwise a more general IndexedView object will be returned, after conversion of the inputs + * to more suitable types \c RowIndices' and \c ColIndices'. + * + * For 1D vectors and arrays, you better use the operator()(const Indices&) overload, which behave the same way but taking a single parameter. + * + * See also this question and its answer for an example of how to duplicate coefficients. + * + * \sa operator()(const Indices&), class Block, class IndexedView, DenseBase::block(Index,Index,Index,Index) + */ +template +IndexedView_or_Block +operator()(const RowIndices& rowIndices, const ColIndices& colIndices); + +/** This is an overload of operator()(const RowIndices&, const ColIndices&) for 1D vectors or arrays + * + * \only_for_vectors + */ +template +IndexedView_or_VectorBlock +operator()(const Indices& indices); + +#endif // EIGEN_PARSED_BY_DOXYGEN diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/InternalHeaderCheck.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/InternalHeaderCheck.h new file mode 100644 index 0000000..ac6821d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/InternalHeaderCheck.h @@ -0,0 +1,3 @@ +#ifndef EIGEN_CORE_MODULE_H +#error "Please include Eigen/plugins instead of including headers inside the src directory directly." +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h new file mode 100644 index 0000000..fd59414 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h @@ -0,0 +1,307 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is a base class plugin containing matrix specifics coefficient wise functions. + +/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other + * + * Example: \include MatrixBase_cwiseProduct.cpp + * Output: \verbinclude MatrixBase_cwiseProduct.out + * + * \sa class CwiseBinaryOp, cwiseAbs2 + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) +cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); +} + +template using CwiseBinaryEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryNotEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryLessReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryGreaterReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryLessOrEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryGreaterOrEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; + +/** \returns an expression of the coefficient-wise == operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include MatrixBase_cwiseEqual.cpp + * Output: \verbinclude MatrixBase_cwiseEqual.out + * + * \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan() + */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryEqualReturnType +cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryEqualReturnType(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise != operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include MatrixBase_cwiseNotEqual.cpp + * Output: \verbinclude MatrixBase_cwiseNotEqual.out + * + * \sa cwiseEqual(), isApprox(), isMuchSmallerThan() + */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryNotEqualReturnType +cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryNotEqualReturnType(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise < operator of *this and \a other */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryLessReturnType +cwiseLess(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const +{ + return CwiseBinaryLessReturnType(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise > operator of *this and \a other */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryGreaterReturnType +cwiseGreater(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const +{ + return CwiseBinaryGreaterReturnType(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise <= operator of *this and \a other */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryLessOrEqualReturnType +cwiseLessOrEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const +{ + return CwiseBinaryLessOrEqualReturnType(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise >= operator of *this and \a other */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryGreaterOrEqualReturnType +cwiseGreaterOrEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const +{ + return CwiseBinaryGreaterOrEqualReturnType(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise min of *this and \a other + * + * Example: \include MatrixBase_cwiseMin.cpp + * Output: \verbinclude MatrixBase_cwiseMin.out + * + * \sa class CwiseBinaryOp, max() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise min of *this and scalar \a other + * + * \sa class CwiseBinaryOp, min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> +cwiseMin(const Scalar &other) const +{ + return cwiseMin(Derived::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise max of *this and \a other + * + * Example: \include MatrixBase_cwiseMax.cpp + * Output: \verbinclude MatrixBase_cwiseMax.out + * + * \sa class CwiseBinaryOp, min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise max of *this and scalar \a other + * + * \sa class CwiseBinaryOp, min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> +cwiseMax(const Scalar &other) const +{ + return cwiseMax(Derived::Constant(rows(), cols(), other)); +} + + +/** \returns an expression of the coefficient-wise quotient of *this and \a other + * + * Example: \include MatrixBase_cwiseQuotient.cpp + * Output: \verbinclude MatrixBase_cwiseQuotient.out + * + * \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +using CwiseScalarEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarNotEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarLessReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarGreaterReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarLessOrEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarGreaterOrEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; + +/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * \sa cwiseEqual(const MatrixBase &) const + */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarEqualReturnType +cwiseEqual(const Scalar& s) const +{ + return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s)); +} + + +/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * \sa cwiseEqual(const MatrixBase &) const + */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarNotEqualReturnType +cwiseNotEqual(const Scalar& s) const +{ + return CwiseScalarNotEqualReturnType(derived(), Derived::Constant(rows(), cols(), s)); +} + +/** \returns an expression of the coefficient-wise < operator of \c *this and a scalar \a s */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarLessReturnType +cwiseLess(const Scalar& s) const +{ + return CwiseScalarLessReturnType(derived(), Derived::Constant(rows(), cols(), s)); +} + +/** \returns an expression of the coefficient-wise > operator of \c *this and a scalar \a s */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarGreaterReturnType +cwiseGreater(const Scalar& s) const +{ + return CwiseScalarGreaterReturnType(derived(), Derived::Constant(rows(), cols(), s)); +} + +/** \returns an expression of the coefficient-wise <= operator of \c *this and a scalar \a s */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarLessOrEqualReturnType +cwiseLessOrEqual(const Scalar& s) const +{ + return CwiseScalarLessOrEqualReturnType(derived(), Derived::Constant(rows(), cols(), s)); +} + +/** \returns an expression of the coefficient-wise >= operator of \c *this and a scalar \a s */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarGreaterOrEqualReturnType +cwiseGreaterOrEqual(const Scalar& s) const +{ + return CwiseScalarGreaterOrEqualReturnType(derived(), Derived::Constant(rows(), cols(), s)); +} + +template using CwiseBinaryTypedEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryTypedNotEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryTypedLessReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryTypedGreaterReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryTypedLessOrEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; +template using CwiseBinaryTypedGreaterOrEqualReturnType = CwiseBinaryOp, const Derived, const OtherDerived>; + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryTypedEqualReturnType +cwiseTypedEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { return CwiseBinaryTypedEqualReturnType(derived(), other.derived()); } + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryTypedNotEqualReturnType +cwiseTypedNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { return CwiseBinaryTypedNotEqualReturnType(derived(), other.derived()); } + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryTypedLessReturnType +cwiseTypedLess(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { return CwiseBinaryTypedLessReturnType(derived(), other.derived()); } + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryTypedGreaterReturnType +cwiseTypedGreater(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { return CwiseBinaryTypedGreaterReturnType(derived(), other.derived()); } + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryTypedLessOrEqualReturnType +cwiseTypedLessOrEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { return CwiseBinaryTypedLessOrEqualReturnType(derived(), other.derived()); } + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryTypedGreaterOrEqualReturnType +cwiseTypedGreaterOrEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS& other) const { return CwiseBinaryTypedGreaterOrEqualReturnType(derived(), other.derived()); } + +using CwiseScalarTypedEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarTypedNotEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarTypedLessReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarTypedGreaterReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarTypedLessOrEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; +using CwiseScalarTypedGreaterOrEqualReturnType = CwiseBinaryOp, const Derived, const ConstantReturnType>; + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseScalarTypedEqualReturnType +cwiseTypedEqual(const Scalar& s) const { return CwiseScalarTypedEqualReturnType(derived(), ConstantReturnType(rows(), cols(), s)); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseScalarTypedNotEqualReturnType +cwiseTypedNotEqual(const Scalar& s) const { return CwiseScalarTypedNotEqualReturnType(derived(), ConstantReturnType(rows(), cols(), s)); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseScalarTypedLessReturnType +cwiseTypedLess(const Scalar& s) const { return CwiseScalarTypedLessReturnType(derived(), ConstantReturnType(rows(), cols(), s)); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseScalarTypedGreaterReturnType +cwiseTypedGreater(const Scalar& s) const { return CwiseScalarTypedGreaterReturnType(derived(), ConstantReturnType(rows(), cols(), s)); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseScalarTypedLessOrEqualReturnType +cwiseTypedLessOrEqual(const Scalar& s) const { return CwiseScalarTypedLessOrEqualReturnType(derived(), ConstantReturnType(rows(), cols(), s)); } + +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseScalarTypedGreaterOrEqualReturnType +cwiseTypedGreaterOrEqual(const Scalar& s) const { return CwiseScalarTypedGreaterOrEqualReturnType(derived(), ConstantReturnType(rows(), cols(), s)); } diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h new file mode 100644 index 0000000..0222137 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h @@ -0,0 +1,110 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is included into the body of the base classes supporting matrix specific coefficient-wise functions. +// This include MatrixBase and SparseMatrixBase. + + +typedef CwiseUnaryOp, const Derived> CwiseAbsReturnType; +typedef CwiseUnaryOp, const Derived> CwiseAbs2ReturnType; +typedef CwiseUnaryOp, const Derived> CwiseArgReturnType; +typedef CwiseUnaryOp, const Derived> CwiseCArgReturnType; +typedef CwiseUnaryOp, const Derived> CwiseSqrtReturnType; +typedef CwiseUnaryOp, const Derived> CwiseSignReturnType; +typedef CwiseUnaryOp, const Derived> CwiseInverseReturnType; + +/// \returns an expression of the coefficient-wise absolute value of \c *this +/// +/// Example: \include MatrixBase_cwiseAbs.cpp +/// Output: \verbinclude MatrixBase_cwiseAbs.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseAbs,absolute value) +/// +/// \sa cwiseAbs2() +/// +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseAbsReturnType +cwiseAbs() const { return CwiseAbsReturnType(derived()); } + +/// \returns an expression of the coefficient-wise squared absolute value of \c *this +/// +/// Example: \include MatrixBase_cwiseAbs2.cpp +/// Output: \verbinclude MatrixBase_cwiseAbs2.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseAbs2,squared absolute value) +/// +/// \sa cwiseAbs() +/// +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseAbs2ReturnType +cwiseAbs2() const { return CwiseAbs2ReturnType(derived()); } + +/// \returns an expression of the coefficient-wise square root of *this. +/// +/// Example: \include MatrixBase_cwiseSqrt.cpp +/// Output: \verbinclude MatrixBase_cwiseSqrt.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseSqrt,square-root) +/// +/// \sa cwisePow(), cwiseSquare() +/// +EIGEN_DEVICE_FUNC +inline const CwiseSqrtReturnType +cwiseSqrt() const { return CwiseSqrtReturnType(derived()); } + +/// \returns an expression of the coefficient-wise signum of *this. +/// +/// Example: \include MatrixBase_cwiseSign.cpp +/// Output: \verbinclude MatrixBase_cwiseSign.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseSign,sign function) +/// +EIGEN_DEVICE_FUNC +inline const CwiseSignReturnType +cwiseSign() const { return CwiseSignReturnType(derived()); } + + +/// \returns an expression of the coefficient-wise inverse of *this. +/// +/// Example: \include MatrixBase_cwiseInverse.cpp +/// Output: \verbinclude MatrixBase_cwiseInverse.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseInverse,inverse) +/// +/// \sa cwiseProduct() +/// +EIGEN_DEVICE_FUNC +inline const CwiseInverseReturnType +cwiseInverse() const { return CwiseInverseReturnType(derived()); } + +/// \returns an expression of the coefficient-wise phase angle of \c *this +/// +/// Example: \include MatrixBase_cwiseArg.cpp +/// Output: \verbinclude MatrixBase_cwiseArg.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseArg,arg) + +EIGEN_DEVICE_FUNC +inline const CwiseArgReturnType +cwiseArg() const { return CwiseArgReturnType(derived()); } + +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseCArgReturnType +cwiseCArg() const { return CwiseCArgReturnType(derived()); } + +template +using CwisePowReturnType = + std::enable_if_t::Real>::value, + CwiseUnaryOp, const Derived>>; + +template +EIGEN_DEVICE_FUNC inline const CwisePowReturnType cwisePow(const ScalarExponent& exponent) const { + return CwisePowReturnType(derived(), internal::scalar_unary_pow_op(exponent)); +} diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ReshapedMethods.h b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ReshapedMethods.h new file mode 100644 index 0000000..2cb1cf6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/include/Eigen/Eigen/src/plugins/ReshapedMethods.h @@ -0,0 +1,149 @@ + +#ifdef EIGEN_PARSED_BY_DOXYGEN + +/// \returns an expression of \c *this with reshaped sizes. +/// +/// \param nRows the number of rows in the reshaped expression, specified at either run-time or compile-time, or AutoSize +/// \param nCols the number of columns in the reshaped expression, specified at either run-time or compile-time, or AutoSize +/// \tparam Order specifies whether the coefficients should be processed in column-major-order (ColMajor), in row-major-order (RowMajor), +/// or follows the \em natural order of the nested expression (AutoOrder). The default is ColMajor. +/// \tparam NRowsType the type of the value handling the number of rows, typically Index. +/// \tparam NColsType the type of the value handling the number of columns, typically Index. +/// +/// Dynamic size example: \include MatrixBase_reshaped_int_int.cpp +/// Output: \verbinclude MatrixBase_reshaped_int_int.out +/// +/// The number of rows \a nRows and columns \a nCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. In the later case, \c n plays the role of a runtime fallback value in case \c N equals Eigen::Dynamic. +/// Here is an example with a fixed number of rows and columns: +/// \include MatrixBase_reshaped_fixed.cpp +/// Output: \verbinclude MatrixBase_reshaped_fixed.out +/// +/// Finally, one of the sizes parameter can be automatically deduced from the other one by passing AutoSize as in the following example: +/// \include MatrixBase_reshaped_auto.cpp +/// Output: \verbinclude MatrixBase_reshaped_auto.out +/// AutoSize does preserve compile-time sizes when possible, i.e., when the sizes of the input are known at compile time \b and +/// that the other size is passed at compile-time using Eigen::fix as above. +/// +/// \sa class Reshaped, fix, fix(int) +/// +template +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped(NRowsType nRows, NColsType nCols); + +/// This is the const version of reshaped(NRowsType,NColsType). +template +EIGEN_DEVICE_FUNC +inline const Reshaped +reshaped(NRowsType nRows, NColsType nCols) const; + +/// \returns an expression of \c *this with columns (or rows) stacked to a linear column vector +/// +/// \tparam Order specifies whether the coefficients should be processed in column-major-order (ColMajor), in row-major-order (RowMajor), +/// or follows the \em natural order of the nested expression (AutoOrder). The default is ColMajor. +/// +/// This overloads is essentially a shortcut for `A.reshaped(AutoSize,fix<1>)`. +/// +/// - If `Order==ColMajor` (the default), then it returns a column-vector from the stacked columns of \c *this. +/// - If `Order==RowMajor`, then it returns a column-vector from the stacked rows of \c *this. +/// - If `Order==AutoOrder`, then it returns a column-vector with elements stacked following the storage order of \c *this. +/// This mode is the recommended one when the particular ordering of the element is not relevant. +/// +/// Example: +/// \include MatrixBase_reshaped_to_vector.cpp +/// Output: \verbinclude MatrixBase_reshaped_to_vector.out +/// +/// If you want more control, you can still fall back to reshaped(NRowsType,NColsType). +/// +/// \sa reshaped(NRowsType,NColsType), class Reshaped +/// +template +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped(); + +/// This is the const version of reshaped(). +template +EIGEN_DEVICE_FUNC +inline const Reshaped +reshaped() const; + +#else + +// This file is automatically included twice to generate const and non-const versions + +#ifndef EIGEN_RESHAPED_METHOD_2ND_PASS +#define EIGEN_RESHAPED_METHOD_CONST const +#else +#define EIGEN_RESHAPED_METHOD_CONST +#endif + +#ifndef EIGEN_RESHAPED_METHOD_2ND_PASS + +// This part is included once + +#endif + +template +EIGEN_DEVICE_FUNC +inline Reshaped::value, + internal::get_compiletime_reshape_size::value> +reshaped(NRowsType nRows, NColsType nCols) EIGEN_RESHAPED_METHOD_CONST +{ + return Reshaped::value, + internal::get_compiletime_reshape_size::value> + (derived(), + internal::get_runtime_reshape_size(nRows,internal::get_runtime_value(nCols),size()), + internal::get_runtime_reshape_size(nCols,internal::get_runtime_value(nRows),size())); +} + +template +EIGEN_DEVICE_FUNC +inline Reshaped::value, + internal::get_compiletime_reshape_size::value, + internal::get_compiletime_reshape_order(Flags, Order)> +reshaped(NRowsType nRows, NColsType nCols) EIGEN_RESHAPED_METHOD_CONST +{ + return Reshaped::value, + internal::get_compiletime_reshape_size::value, + internal::get_compiletime_reshape_order(Flags, Order)> + (derived(), + internal::get_runtime_reshape_size(nRows,internal::get_runtime_value(nCols),size()), + internal::get_runtime_reshape_size(nCols,internal::get_runtime_value(nRows),size())); +} + +// Views as linear vectors + +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped() EIGEN_RESHAPED_METHOD_CONST +{ + return Reshaped(derived(),size(),1); +} + +template +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped() EIGEN_RESHAPED_METHOD_CONST +{ + EIGEN_STATIC_ASSERT(Order==RowMajor || Order==ColMajor || Order==AutoOrder, INVALID_TEMPLATE_PARAMETER); + return Reshaped + (derived(), size(), 1); +} + +#undef EIGEN_RESHAPED_METHOD_CONST + +#ifndef EIGEN_RESHAPED_METHOD_2ND_PASS +#define EIGEN_RESHAPED_METHOD_2ND_PASS +#include "ReshapedMethods.h" +#undef EIGEN_RESHAPED_METHOD_2ND_PASS +#endif + +#endif // EIGEN_PARSED_BY_DOXYGEN diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/CMakeLists.txt b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/CMakeLists.txt new file mode 100644 index 0000000..f4530cf --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/CMakeLists.txt @@ -0,0 +1,5 @@ +add_library (tinympc SHARED + admm.cpp + ) + +target_include_directories (tinympc PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/..) # Include src/ directory instead of tinympc/ \ No newline at end of file diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/Kbuild b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/Kbuild new file mode 100644 index 0000000..6faa2c1 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/Kbuild @@ -0,0 +1 @@ +obj-y += admm.o \ No newline at end of file diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/admm.cpp b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/admm.cpp new file mode 100644 index 0000000..a62a5bf --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/admm.cpp @@ -0,0 +1,366 @@ +#include + +#include "admm.hpp" +#include "psd_support.hpp" + +#define DEBUG_MODULE "TINYALG" + +// Forward declarations for PSD functions +void update_psd_slack(struct tiny_problem *problem, const struct tiny_params *params); +void update_psd_dual(struct tiny_problem *problem, const struct tiny_params *params); + +extern "C" { + +#include "debug.h" +// #include "usec_time.h" + +//static uint64_t startTimestamp; + +void multAdyn(tiny_VectorNx &Ax, const tiny_MatrixNxNx &A, const tiny_VectorNx &x) { + Ax(0) = (x(0) + A(0,4)*x(4) + A(0,6)*x(6) + A(0,10)*x(10)); + Ax(1) = (x(1) + A(1,3)*x(3) + A(1,7)*x(7) + A(1,9)*x(9)); + Ax(2) = x(2) + A(2,8)*x(8); + Ax(3) = x(3) + A(3,9)*x(9); + Ax(4) = x(4) + A(4,10)*x(10); + Ax(5) = x(5) + A(5,11)*x(11); + Ax(6) = (x(6) + A(6,4)*x(4) + A(6,10)*x(10)); + Ax(7) = (x(7) + A(7,3)*x(3) + A(7,9)*x(9)); + Ax(8) = x(8); + Ax(9) = x(9); + Ax(10) = x(10); + Ax(11) = x(11); +} + +void solve_lqr(struct tiny_problem *problem, const struct tiny_params *params) { + problem->u.col(0) = -params->cache.Kinf[problem->cache_level] * (problem->x.col(0) - params->Xref.col(0)); +} + + +void solve_admm(struct tiny_problem *problem, const struct tiny_params *params) { + + problem->status = 0; + + // Force cache_level=1 when PSD is enabled (needs constrained rho) + if (problem->en_psd) { + problem->cache_level = 1; + } + + forward_pass(problem, params); + update_slack(problem, params); + update_dual(problem, params); + update_linear_cost(problem, params); + for (int i=0; imax_iter; i++) { + + // Solve linear system with Riccati and roll out to get new trajectory + update_primal(problem, params); + + // Project slack variables into feasible domain + update_slack(problem, params); + + // PSD slack update (every 5 iterations for embedded efficiency) + if (i % 5 == 0) { + update_psd_slack(problem, params); + } + + // Compute next iteration of dual variables + update_dual(problem, params); + + // PSD dual update (every 5 iterations for embedded efficiency) + if (i % 5 == 0) { + update_psd_dual(problem, params); + } + + // Update linear control cost terms using reference trajectory, duals, and slack variables + update_linear_cost(problem, params); + + problem->primal_residual_state = (problem->x - problem->vnew).cwiseAbs().maxCoeff(); + problem->dual_residual_state = ((problem->v - problem->vnew).cwiseAbs().maxCoeff()) * params->cache.rho[problem->cache_level]; + problem->primal_residual_input = (problem->u - problem->znew).cwiseAbs().maxCoeff(); + problem->dual_residual_input = ((problem->z - problem->znew).cwiseAbs().maxCoeff()) * params->cache.rho[problem->cache_level]; + + // Save previous slack variables + problem->v = problem->vnew; + problem->z = problem->znew; + + problem->iter += 1; + + // Check for convergence + if (problem->primal_residual_state < problem->abs_tol && + problem->primal_residual_input < problem->abs_tol && + problem->dual_residual_state < problem->abs_tol && + problem->dual_residual_input < problem->abs_tol) + { + problem->status = 1; + break; + } + + // std::cout << problem->primal_residual_state << std::endl; + // std::cout << problem->dual_residual_state << std::endl; + // std::cout << problem->primal_residual_input << std::endl; + // std::cout << problem->dual_residual_input << "\n" << std::endl; + } +} + +/** + * Do backward Riccati pass then forward roll out +*/ +void update_primal(struct tiny_problem *problem, const struct tiny_params *params) { + backward_pass_grad(problem, params); + forward_pass(problem, params); +} + +/** + * Update linear terms from Riccati backward pass +*/ +void backward_pass_grad(struct tiny_problem *problem, const struct tiny_params *params) { + for (int i=NHORIZON-2; i>=0; i--) { + // problem->Qu.noalias() = params->cache.Bdyn.transpose().lazyProduct(problem->p.col(i+1)); + // problem->Qu += problem->r.col(i); + // (problem->d.col(i)).noalias() = params->cache.Quu_inv.lazyProduct(problem->Qu); + (problem->d.col(i)).noalias() = params->cache.Quu_inv[problem->cache_level] * (params->cache.Bdyn[problem->cache_level].transpose() * problem->p.col(i+1) + problem->r.col(i)); + (problem->p.col(i)).noalias() = problem->q.col(i) + params->cache.AmBKt[problem->cache_level].lazyProduct(problem->p.col(i+1)) - (params->cache.Kinf[problem->cache_level].transpose()).lazyProduct(problem->r.col(i)) + params->cache.coeff_d2p[problem->cache_level] * problem->d.col(i); + } +} + +/** + * Use LQR feedback policy to roll out trajectory +*/ +void forward_pass(struct tiny_problem *problem, const struct tiny_params *params) { + for (int i=0; iu.col(i)).noalias() = -params->cache.Kinf[problem->cache_level].lazyProduct(problem->x.col(i)) - problem->d.col(i); + // problem->u.col(i) << .001, .02, .3, 4; + // DEBUG_PRINT("u(0): %f\n", problem->u.col(0)(0)); + multAdyn(problem->Ax, params->cache.Adyn[problem->cache_level], problem->x.col(i)); + (problem->x.col(i+1)).noalias() = problem->Ax + params->cache.Bdyn[problem->cache_level].lazyProduct(problem->u.col(i)); + // (problem->x.col(i+1)).noalias() = params->cache.Adyn.lazyProduct(problem->x.col(i)) + params->cache.Bdyn.lazyProduct(problem->u.col(i)); + } +} + +/** + * Project slack (auxiliary) variables into their feasible domain, defined by + * projection functions related to each constraint + * TODO: pass in meta information with each constraint assigning it to a + * projection function +*/ +void update_slack(struct tiny_problem *problem, const struct tiny_params *params) { + // Box constraints on input + // Get current time + + problem->znew = params->u_max.cwiseMin(params->u_min.cwiseMax(problem->u)); + + // Half space constraints on state + // TODO: support multiple half plane constraints per knot point + // currently this only works for one constraint per knot point + // TODO: can potentially take advantage of the fact that A_constraints[3:end] is zero and just do + // v.col(i) = x.col(i) - dist*A_constraints[i] since we have to copy x[3:end] into v anyway + // downside is it's not clear this is happening externally and so values of A_constraints + // not set to zero (other than the first three) can cause the algorithm to fail + // TODO: the only state values changing here are the first three (x, y, z) so it doesn't make sense + // to do operations on the remaining 9 when projecting (or doing anything related to the dual + // or auxiliary variables). v and g could be of size (3) and everything would work the same. + // The only reason this doesn't break is because in the update_linear_cost function subtracts + // g from v and so the last nine entries are always zero. + problem->xg = problem->x + problem->g; + // problem->dists = (params->A_constraints.transpose().cwiseProduct(problem->xg)).colwise().sum(); + // problem->dists -= params->x_max; + problem->intersect = 0; + // startTimestamp = usecTimestamp(); + + // Don't reset cache_level here - it's managed at solve_admm level with sticky logic + // This prevents oscillation during planner/tracker mode switching + for (int i=0; idist = (params->A_constraints[i].head(3)).lazyProduct(problem->xg.col(i).head(3)); // Distances can be computed in one step outside the for loop + problem->dist -= params->x_max[i](0); + // DEBUG_PRINT("dist: %f\n", dist); + if (problem->dist <= 0) { + problem->vnew.col(i) = problem->xg.col(i); + } + else { + problem->cache_level = 1; + problem->intersect++; + problem->xyz_new = problem->xg.col(i).head(3) - problem->dist*params->A_constraints[i].head(3).transpose(); + problem->vnew.col(i) << problem->xyz_new, problem->xg.col(i).tail(NSTATES-3); + } + } + // problem->vnew = problem->xg; + // DEBUG_PRINT("s: %d\n", usecTimestamp() - startTimestamp); +} + +/** + * Update next iteration of dual variables by performing the augmented + * lagrangian multiplier update +*/ +void update_dual(struct tiny_problem *problem, const struct tiny_params *params) { + problem->y = problem->y + problem->u - problem->znew; + problem->g = problem->g + problem->x - problem->vnew; +} + +} /* extern "C" */ + +// ============================================================================ +// PSD FUNCTIONS (C++ only due to Eigen templates) +// ============================================================================ + +/** + * Update PSD slack variables by: + * 1. Projecting onto PSD cone + * 2. Projecting onto lifted disk half-space constraint (like the sim's approach) + * + * Disk constraint: m^T vec(S) >= n where + * m = [-2*ox, -2*oy, 0, 1, 0, 1] acting on [x, y, xy, xx, xy, yy] (svec indices) + * Actually in matrix form: S(1,1) + S(2,2) - 2*ox*S(0,1) - 2*oy*S(0,2) >= r² - ox² - oy² + * + * Uses 2D position lifting: M = [1; x; y] * [1; x; y]^T +*/ +void update_psd_slack(struct tiny_problem *problem, const struct tiny_params *params) { + if (!problem->en_psd) return; + + tiny_MatrixPsd M, Hk, Snew; + const tinytype ox = problem->psd_obs_x; + const tinytype oy = problem->psd_obs_y; + const tinytype r = problem->psd_obs_r; + const bool has_obstacle = (r > tinytype(0.01)); + + // Disk constraint: a^T s >= b (in matrix notation) + // where a indexes: S(1,1), S(2,2) with coeff 1, S(0,1), S(0,2) with coeff -2*ox, -2*oy + // and b = r² - ox² - oy² + const tinytype b_disk = r*r - ox*ox - oy*oy; + + for (int k = 0; k < NHORIZON; ++k) { + // Get position from current trajectory + tinytype px = problem->x(0, k); + tinytype py = problem->x(1, k); + + // Assemble the lifted block from current position + assemble_psd_block_2d(px, py, M); + + // Unpack dual variable + Hk = smat_3x3(problem->Hpsd.col(k)); + + // Form M + H for projection + tiny_MatrixPsd Raw = M + Hk; + + // Project onto PSD cone (full eigen decomposition) + project_psd_3x3(Raw); + Snew = Raw; + + // Project onto lifted disk half-space constraint (like sim's approach) + // Constraint: S(1,1) + S(2,2) - 2*ox*S(0,1) - 2*oy*S(0,2) >= b_disk + // Equivalently: -a^T s <= -b => project if a^T s < b + if (has_obstacle) { + tinytype lhs = Snew(1,1) + Snew(2,2) - tinytype(2)*ox*Snew(0,1) - tinytype(2)*oy*Snew(0,2); + if (lhs < b_disk) { + // Project onto the half-space boundary + // Half-space projection: s_proj = s + ((b - a^T s) / ||a||²) * a + // where a = [entries with derivatives: S(0,1):-2ox, S(0,2):-2oy, S(1,1):1, S(2,2):1] + // ||a||² = 4*ox² + 4*oy² + 1 + 1 = 4*(ox² + oy²) + 2 + tinytype a_norm_sq = tinytype(4)*(ox*ox + oy*oy) + tinytype(2); + tinytype push = (b_disk - lhs) / a_norm_sq; + + // Apply projection: add push * a to S + Snew(0,1) += push * (-tinytype(2)*ox); + Snew(1,0) = Snew(0,1); // symmetric + Snew(0,2) += push * (-tinytype(2)*oy); + Snew(2,0) = Snew(0,2); // symmetric + Snew(1,1) += push * tinytype(1); + Snew(2,2) += push * tinytype(1); + } + } + + // Pack back to svec + problem->Spsd_new.col(k) = svec_3x3(Snew); + } +} + +/** + * Update PSD dual variables (augmented Lagrangian update) + * Standard ADMM update: H = H + (M - Snew) + * Matches sim's approach +*/ +void update_psd_dual(struct tiny_problem *problem, const struct tiny_params *params) { + if (!problem->en_psd) return; + + tiny_MatrixPsd M, Hk, Snew; + + for (int k = 0; k < NHORIZON; ++k) { + tinytype px = problem->x(0, k); + tinytype py = problem->x(1, k); + + // Assemble lifted block from current position + assemble_psd_block_2d(px, py, M); + + // Unpack slack and dual + Hk = smat_3x3(problem->Hpsd.col(k)); + Snew = smat_3x3(problem->Spsd_new.col(k)); + + // Dual update: H = H + (M - Snew) [standard ADMM] + Hk = Hk + (M - Snew); + + // Clip to avoid blow-up (common in embedded) + const tinytype H_CLIP = tinytype(50.0); + Hk = Hk.cwiseMax(-H_CLIP).cwiseMin(H_CLIP); + + // Pack back + problem->Hpsd.col(k) = svec_3x3(Hk); + } +} + +extern "C" { + +/** + * Update linear control cost terms in the Riccati feedback using the changing + * slack and dual variables from ADMM +*/ +void update_linear_cost(struct tiny_problem *problem, const struct tiny_params *params) { + // problem->r = -(params->Uref.array().colwise() * params->R[problem->cache_level].array()); // Uref = 0 so commented out for speed up. Need to uncomment if using Uref + problem->r = -params->cache.rho[problem->cache_level] * (problem->znew - problem->y); + problem->q = -(params->Xref.array().colwise() * params->Q[problem->cache_level].array()); + problem->q -= params->cache.rho[problem->cache_level] * (problem->vnew - problem->g); + // problem->p.col(NHORIZON-1) = -(params->Xref.col(NHORIZON-1).array().colwise() * params->Qf.array()); + problem->p.col(NHORIZON-1) = -(params->Xref.col(NHORIZON-1).transpose().lazyProduct(params->cache.Pinf[problem->cache_level])); + problem->p.col(NHORIZON-1) -= params->cache.rho[problem->cache_level] * (problem->vnew.col(NHORIZON-1) - problem->g.col(NHORIZON-1)); + + // PSD pullback gradient: standard ADMM linear cost update + // q -= rho_psd * d/d(px,py) ||M(px,py) - (Snew - H)||²_F + // This pulls primal toward the projected slack, matching the sim's approach + if (problem->en_psd) { + tiny_MatrixPsd M, Snew, Hk, Residual; + + for (int k = 0; k < NHORIZON; ++k) { + tinytype px = problem->x(0, k); + tinytype py = problem->x(1, k); + + // Assemble lifted block from current position + assemble_psd_block_2d(px, py, M); + + // Get projected slack and dual + Snew = smat_3x3(problem->Spsd_new.col(k)); + Hk = smat_3x3(problem->Hpsd.col(k)); + + // Residual = M - (Snew - Hk) = M - Snew + Hk + Residual = M - Snew + Hk; + + // Gradient w.r.t. px, py using chain rule + // dM/dpx = [0, 1, 0; 1, 2px, py; 0, py, 0] + // dM/dpy = [0, 0, 1; 0, px, 0; 1, px, 2py] + // grad = trace(Residual * dM/d(px or py)) + tinytype grad_px = tinytype(2.0) * Residual(0, 1) + + tinytype(2.0) * px * Residual(1, 1) + + py * (Residual(1, 2) + Residual(2, 1)); + tinytype grad_py = tinytype(2.0) * Residual(0, 2) + + px * (Residual(1, 2) + Residual(2, 1)) + + tinytype(2.0) * py * Residual(2, 2); + + problem->q(0, k) -= params->cache.rho_psd * grad_px; + problem->q(1, k) -= params->cache.rho_psd * grad_py; + } + } + + // for (int i=0; ir.col(i) = -params->cache.rho * (problem->znew.col(i) - problem->y.col(i)) - params->R * params->Uref.col(i); + // problem->q.col(i) = -params->cache.rho * (problem->vnew.col(i) - problem->g.col(i)) - params->Q * params->Xref.col(i); + // } + // problem->p.col(NHORIZON-1) = -params->cache.rho * (problem->vnew.col(NHORIZON-1) - problem->g.col(NHORIZON-1)) - params->Qf * params->Xref.col(NHORIZON-1); +} + +} /* extern "C" */ diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/admm.hpp b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/admm.hpp new file mode 100644 index 0000000..2860941 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/admm.hpp @@ -0,0 +1,24 @@ +#pragma once + +#include "types.hpp" + + +#ifdef __cplusplus +extern "C" { +#endif + +void multAdyn(tiny_VectorNx &Ax, const tiny_MatrixNxNx &A, const tiny_VectorNx &x); + +void solve_lqr(struct tiny_problem *problem, const struct tiny_params *params); +void solve_admm(struct tiny_problem *problem, const struct tiny_params *params); + +void update_primal(struct tiny_problem *problem, const struct tiny_params *params); +void backward_pass_grad(struct tiny_problem *problem, const struct tiny_params *params); +void forward_pass(struct tiny_problem *problem, const struct tiny_params *params); +void update_slack(struct tiny_problem *problem, const struct tiny_params *params); +void update_dual(struct tiny_problem *problem, const struct tiny_params *params); +void update_linear_cost(struct tiny_problem *problem, const struct tiny_params *params); + +#ifdef __cplusplus +} +#endif \ No newline at end of file diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/constants.hpp b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/constants.hpp new file mode 100644 index 0000000..d834707 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/constants.hpp @@ -0,0 +1,8 @@ +#pragma once + +#define NSTATES 12 +#define NINPUTS 4 +#define NSTATE_CONSTRAINTS 1 + +#define NHORIZON 20 +#define NTOTAL 451 \ No newline at end of file diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/psd_support.hpp b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/psd_support.hpp new file mode 100644 index 0000000..b95d7c9 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/psd_support.hpp @@ -0,0 +1,254 @@ +#pragma once + +#include "types.hpp" +#include + +// ============================================================================ +// PSD Support for 2D Position Lifting +// Minimal implementation for embedded: psd_dim=3 for [1, x, y] block +// ============================================================================ + +// svec: Pack symmetric 3x3 matrix into 6-element vector (column-wise lower triangular) +// Order: [M(0,0), M(1,0)*sqrt2, M(2,0)*sqrt2, M(1,1), M(2,1)*sqrt2, M(2,2)] +inline tiny_VectorSvec svec_3x3(const tiny_MatrixPsd& M) { + tiny_VectorSvec v; + const tinytype sqrt2 = tinytype(1.41421356237); + v(0) = M(0,0); + v(1) = sqrt2 * M(1,0); + v(2) = sqrt2 * M(2,0); + v(3) = M(1,1); + v(4) = sqrt2 * M(2,1); + v(5) = M(2,2); + return v; +} + +// smat: Unpack 6-element vector into symmetric 3x3 matrix +template +inline tiny_MatrixPsd smat_3x3(const Eigen::MatrixBase& v) { + tiny_MatrixPsd M; + const tinytype sqrt2_inv = tinytype(0.70710678118); + M(0,0) = v(0); + M(1,0) = v(1) * sqrt2_inv; M(0,1) = M(1,0); + M(2,0) = v(2) * sqrt2_inv; M(0,2) = M(2,0); + M(1,1) = v(3); + M(2,1) = v(4) * sqrt2_inv; M(1,2) = M(2,1); + M(2,2) = v(5); + return M; +} + +// Assemble 3x3 PSD block from position (px, py) +// M = [1, px, py ] +// [px, px*px, px*py] +// [py, px*py, py*py] +inline void assemble_psd_block_2d(tinytype px, tinytype py, tiny_MatrixPsd& M) { + M(0,0) = tinytype(1.0); + M(0,1) = px; M(1,0) = px; + M(0,2) = py; M(2,0) = py; + M(1,1) = px * px; + M(1,2) = px * py; M(2,1) = M(1,2); + M(2,2) = py * py; +} + +// Lightweight 3x3 eigenvalue computation using Cardano's formula +// Returns eigenvalues in descending order +inline void eigenvalues_3x3_sym(const tiny_MatrixPsd& A, tinytype eig[3]) { + // Characteristic polynomial: det(A - λI) = -λ³ + c2*λ² + c1*λ + c0 + // For symmetric matrix, use trace and Frobenius norm + + const tinytype a = A(0,0), b = A(0,1), c = A(0,2); + const tinytype d = A(1,1), e = A(1,2); + const tinytype f = A(2,2); + + // Trace and other invariants + const tinytype p1 = b*b + c*c + e*e; + const tinytype q = (a + d + f) / tinytype(3.0); // trace/3 + + const tinytype p2 = (a - q)*(a - q) + (d - q)*(d - q) + (f - q)*(f - q) + tinytype(2.0)*p1; + const tinytype p = sqrtf(p2 / tinytype(6.0)); + + if (p < tinytype(1e-10)) { + // Matrix is already diagonal (or very close) + eig[0] = eig[1] = eig[2] = q; + return; + } + + // B = (1/p) * (A - q*I) + const tinytype inv_p = tinytype(1.0) / p; + const tinytype B00 = (a - q) * inv_p, B01 = b * inv_p, B02 = c * inv_p; + const tinytype B11 = (d - q) * inv_p, B12 = e * inv_p; + const tinytype B22 = (f - q) * inv_p; + + // det(B) / 2 + const tinytype detB_half = tinytype(0.5) * (B00*(B11*B22 - B12*B12) + - B01*(B01*B22 - B02*B12) + + B02*(B01*B12 - B02*B11)); + + // Clamp to [-1, 1] for acos + tinytype r = detB_half; + if (r < tinytype(-1.0)) r = tinytype(-1.0); + if (r > tinytype(1.0)) r = tinytype(1.0); + + const tinytype phi = acosf(r) / tinytype(3.0); + const tinytype pi = tinytype(3.14159265359); + + // Eigenvalues + eig[0] = q + tinytype(2.0) * p * cosf(phi); + eig[1] = q + tinytype(2.0) * p * cosf(phi + tinytype(2.0)*pi/tinytype(3.0)); + eig[2] = q + tinytype(2.0) * p * cosf(phi + tinytype(4.0)*pi/tinytype(3.0)); +} + +// Manual cross product for 3D vectors (avoids Geometry header) +inline Eigen::Matrix cross3(const Eigen::Matrix& a, + const Eigen::Matrix& b) { + Eigen::Matrix c; + c(0) = a(1)*b(2) - a(2)*b(1); + c(1) = a(2)*b(0) - a(0)*b(2); + c(2) = a(0)*b(1) - a(1)*b(0); + return c; +} + +// Compute eigenvector for given eigenvalue of 3x3 symmetric matrix +// Uses cross-product method for robustness +inline void eigenvector_3x3_sym(const tiny_MatrixPsd& A, tinytype lambda, + Eigen::Matrix& v) { + // Form (A - lambda*I) + tiny_MatrixPsd B = A; + B(0,0) -= lambda; + B(1,1) -= lambda; + B(2,2) -= lambda; + + // Find eigenvector as cross product of two rows of B + // (since null space is spanned by eigenvector) + Eigen::Matrix r0 = B.row(0); + Eigen::Matrix r1 = B.row(1); + Eigen::Matrix r2 = B.row(2); + + // Try different cross products and use the one with largest norm + Eigen::Matrix c01 = cross3(r0, r1); + Eigen::Matrix c02 = cross3(r0, r2); + Eigen::Matrix c12 = cross3(r1, r2); + + tinytype n01 = c01.squaredNorm(); + tinytype n02 = c02.squaredNorm(); + tinytype n12 = c12.squaredNorm(); + + if (n01 >= n02 && n01 >= n12 && n01 > tinytype(1e-12)) { + v = c01 / sqrtf(n01); + } else if (n02 >= n12 && n02 > tinytype(1e-12)) { + v = c02 / sqrtf(n02); + } else if (n12 > tinytype(1e-12)) { + v = c12 / sqrtf(n12); + } else { + // Degenerate case - use unit vector + v << tinytype(1.0), tinytype(0.0), tinytype(0.0); + } +} + +// Project 3x3 symmetric matrix onto PSD cone +// Proper projection: M_proj = V * diag(max(lambda, 0)) * V^T +inline void project_psd_3x3(tiny_MatrixPsd& M) { + // Ensure symmetric + M = tinytype(0.5) * (M + M.transpose()); + + // Compute eigenvalues analytically using Cardano's formula + tinytype eig[3]; + eigenvalues_3x3_sym(M, eig); + + // Check if already PSD + const tinytype eps = tinytype(1e-8); + if (eig[0] >= -eps && eig[1] >= -eps && eig[2] >= -eps) { + // Already PSD, no projection needed + return; + } + + // Need to do full reconstruction with clamped eigenvalues + // M_proj = sum_i max(lambda_i, 0) * v_i * v_i^T + + // Compute eigenvectors + Eigen::Matrix v0, v1, v2; + eigenvector_3x3_sym(M, eig[0], v0); + eigenvector_3x3_sym(M, eig[1], v1); + eigenvector_3x3_sym(M, eig[2], v2); + + // Orthogonalize v1 against v0 + v1 = v1 - v0.dot(v1) * v0; + tinytype n1 = v1.norm(); + if (n1 > tinytype(1e-10)) v1 /= n1; + else v1 << tinytype(0), tinytype(1), tinytype(0); // fallback + + // Orthogonalize v2 against v0 and v1 + v2 = v2 - v0.dot(v2) * v0 - v1.dot(v2) * v1; + tinytype n2 = v2.norm(); + if (n2 > tinytype(1e-10)) v2 /= n2; + else v2 = cross3(v0, v1); // fallback: perpendicular to both + + // Clamp eigenvalues to >= 0 + tinytype lam0 = (eig[0] > tinytype(0)) ? eig[0] : tinytype(0); + tinytype lam1 = (eig[1] > tinytype(0)) ? eig[1] : tinytype(0); + tinytype lam2 = (eig[2] > tinytype(0)) ? eig[2] : tinytype(0); + + // Reconstruct: M = lam0*v0*v0^T + lam1*v1*v1^T + lam2*v2*v2^T + M = lam0 * v0 * v0.transpose() + + lam1 * v1 * v1.transpose() + + lam2 * v2 * v2.transpose(); +} + +// Enable PSD for the problem +inline void tiny_enable_psd(struct tiny_problem* prob, struct tiny_params* params, tinytype rho_psd) { + prob->en_psd = 1; + params->cache.rho_psd = rho_psd; + + // Initialize obstacle to zero (no constraint) + prob->psd_obs_x = tinytype(0.0); + prob->psd_obs_y = tinytype(0.0); + prob->psd_obs_r = tinytype(0.0); + + // Initialize PSD slack/dual to zero + prob->Spsd.setZero(); + prob->Spsd_new.setZero(); + prob->Hpsd.setZero(); + + // Initialize Spsd to identity blocks (rank-1 with x=0,y=0) + tiny_MatrixPsd M_init; + M_init.setZero(); + M_init(0,0) = tinytype(1.0); + tiny_VectorSvec v_init = svec_3x3(M_init); + for (int k = 0; k < NHORIZON; ++k) { + prob->Spsd.col(k) = v_init; + prob->Spsd_new.col(k) = v_init; + } +} + +// Set PSD obstacle (disk in x-y plane) +inline void tiny_set_psd_obstacle(struct tiny_problem* prob, tinytype ox, tinytype oy, tinytype r) { + prob->psd_obs_x = ox; + prob->psd_obs_y = oy; + prob->psd_obs_r = r; +} + +// Compute lifted distance squared to disk obstacle +// For M = [1, x, y; x, xx, xy; y, xy, yy] and disk at (ox, oy) with radius r: +// lifted_dist² = M(1,1) + M(2,2) - 2*ox*M(0,1) - 2*oy*M(0,2) + ox² + oy² +// = xx + yy - 2*ox*x - 2*oy*y + ox² + oy² +// Constraint: lifted_dist² >= r² +inline tinytype compute_lifted_disk_violation(const tiny_MatrixPsd& M, + tinytype ox, tinytype oy, tinytype r) { + tinytype lifted_dist2 = M(1,1) + M(2,2) - tinytype(2.0)*ox*M(0,1) - tinytype(2.0)*oy*M(0,2) + + ox*ox + oy*oy; + tinytype margin = lifted_dist2 - r*r; + return margin; // Positive = safe, negative = violation +} + +// Compute gradient of lifted disk constraint w.r.t. M entries +// grad w.r.t. M(0,1)=x: -2*ox +// grad w.r.t. M(0,2)=y: -2*oy +// grad w.r.t. M(1,1)=xx: 1 +// grad w.r.t. M(2,2)=yy: 1 +inline void compute_lifted_disk_gradient(tinytype ox, tinytype oy, + tinytype& grad_x, tinytype& grad_y, + tinytype& grad_xx, tinytype& grad_yy) { + grad_x = -tinytype(2.0) * ox; + grad_y = -tinytype(2.0) * oy; + grad_xx = tinytype(1.0); + grad_yy = tinytype(1.0); +} diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/types.hpp b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/types.hpp new file mode 100644 index 0000000..07d4cdd --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/src/tinympc/types.hpp @@ -0,0 +1,146 @@ +#pragma once + +#include +#include "constants.hpp" + +using Eigen::Matrix; + +#ifdef __cplusplus +extern "C" { +#endif + +typedef float tinytype; + +typedef Matrix tiny_VectorNx; +typedef Matrix tiny_VectorNu; +typedef Matrix tiny_VectorNc; +typedef Matrix tiny_MatrixNxNx; +typedef Matrix tiny_MatrixNxNu; +typedef Matrix tiny_MatrixNuNx; +typedef Matrix tiny_MatrixNuNu; +typedef Matrix tiny_MatrixNcNx; + +// TODO: code review this since tiny_MatrixNuNhm1 naming is kind of gross +typedef Matrix tiny_MatrixNxNh; // Nu x Nh +typedef Matrix tiny_MatrixNuNhm1; // Nu x Nh-1 + +// PSD types for 2D position lifting (psd_dim=3: [1, x, y]) +#define PSD_DIM 3 +#define PSD_SVEC_SIZE 6 // 3*(3+1)/2 +typedef Matrix tiny_MatrixPsd; +typedef Matrix tiny_VectorSvec; +typedef Matrix tiny_MatrixSvecNh; + +/** + * Matrices that must be recomputed with changes in time step, rho, or model parameters + * The first index for each matrix corresponds to the rho used without constraints. + * The second index corresponds to the rho used with constraints. +*/ +struct tiny_cache { + tiny_MatrixNxNx Adyn[2]; + tiny_MatrixNxNu Bdyn[2]; + tinytype rho[2]; + tiny_MatrixNuNx Kinf[2]; + tiny_MatrixNxNx Pinf[2]; + tiny_MatrixNuNu Quu_inv[2]; + tiny_MatrixNxNx AmBKt[2]; + tiny_MatrixNxNu coeff_d2p[2]; + + // PSD penalty parameter + tinytype rho_psd; +}; + +/** + * Problem parameters +*/ +struct tiny_params { + tiny_VectorNx Q[2]; + tiny_VectorNx Qf[2]; + tiny_VectorNu R[2]; + + tiny_MatrixNuNhm1 u_min; + tiny_MatrixNuNhm1 u_max; + tiny_VectorNc x_min[NHORIZON]; + tiny_VectorNc x_max[NHORIZON]; + tiny_MatrixNcNx A_constraints[NHORIZON]; + + // Turns out converting everything to big matrices is + // slower than using for loops here - maybe this would + // be different with fixed point + // Only works with one constraint per knot point + // but can be extended to multiple by making it + // NHORIZON*NSTATE_CONSTRAINTS tall and keeping + // track of indexing in the projection function + // Matrix x_min; + // Matrix x_max; + // Matrix A_constraints; + + tiny_MatrixNxNh Xref; // Nx x Nh + tiny_MatrixNuNhm1 Uref; // Nu x Nh-1 + + struct tiny_cache cache; +}; + +/** + * Problem variables +*/ +struct tiny_problem { + // State and input + tiny_MatrixNxNh x; + tiny_MatrixNuNhm1 u; + + // Linear control cost terms + tiny_MatrixNxNh q; + tiny_MatrixNuNhm1 r; + + // Linear Riccati backward pass terms + tiny_MatrixNxNh p; + tiny_MatrixNuNhm1 d; + + // Auxiliary variables + tiny_MatrixNxNh v; + tiny_MatrixNxNh vnew; + tiny_MatrixNuNhm1 z; + tiny_MatrixNuNhm1 znew; + + // Dual variables + tiny_MatrixNxNh g; + tiny_MatrixNuNhm1 y; + + tinytype primal_residual_state; + tinytype primal_residual_input; + tinytype dual_residual_state; + tinytype dual_residual_input; + tinytype abs_tol; + int status; + int iter; + int max_iter; + int iters_check_rho_update; + + // Temporaries for algorithm efficiency + tiny_MatrixNxNh xg; + tinytype dist; + Matrix dists; + Matrix xyz_new; + tiny_VectorNu Qu; + tiny_VectorNx Ax; // Stores result of sparse Adyn*x vector product computation + + // Helper variables + int intersect; + int cache_level; + + // PSD variables for 2D position lifting + int en_psd; // Enable PSD constraints + tiny_MatrixSvecNh Spsd; // PSD slack variables (svec form) + tiny_MatrixSvecNh Spsd_new; // Updated PSD slack + tiny_MatrixSvecNh Hpsd; // PSD dual variables (svec form) + + // PSD obstacle parameters (disk in x-y plane) + tinytype psd_obs_x; // Obstacle center x + tinytype psd_obs_y; // Obstacle center y + tinytype psd_obs_r; // Obstacle radius +}; + +#ifdef __cplusplus +} +#endif diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/test/CMakeLists.txt b/apps/controller_tinympc_eigen_task/TinyMPC/test/CMakeLists.txt new file mode 100644 index 0000000..0fe7af6 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/test/CMakeLists.txt @@ -0,0 +1,3 @@ +add_executable(test1 test1.cpp) + +target_link_libraries(test1 LINK_PUBLIC tinympc) \ No newline at end of file diff --git a/apps/controller_tinympc_eigen_task/TinyMPC/test/test1.cpp b/apps/controller_tinympc_eigen_task/TinyMPC/test/test1.cpp new file mode 100644 index 0000000..e08ec86 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/TinyMPC/test/test1.cpp @@ -0,0 +1,6 @@ +#include + +int main() { + printf("hi\n"); + return 0; +} \ No newline at end of file diff --git a/apps/controller_tinympc_eigen_task/app-config b/apps/controller_tinympc_eigen_task/app-config new file mode 100644 index 0000000..e34d6fe --- /dev/null +++ b/apps/controller_tinympc_eigen_task/app-config @@ -0,0 +1,4 @@ +CONFIG_APP_ENABLE=y +CONFIG_APP_PRIORITY=1 +CONFIG_APP_STACKSIZE=350 +CONFIG_CONTROLLER_OOT=y diff --git a/apps/controller_tinympc_eigen_task/scripts/cflib_switch_to_controller6.py b/apps/controller_tinympc_eigen_task/scripts/cflib_switch_to_controller6.py new file mode 100644 index 0000000..1bfb07d --- /dev/null +++ b/apps/controller_tinympc_eigen_task/scripts/cflib_switch_to_controller6.py @@ -0,0 +1,62 @@ +#!/usr/bin/env python3 + +import argparse +import time + +import cflib.crtp +from cflib.crazyflie import Crazyflie +from cflib.crazyflie.syncCrazyflie import SyncCrazyflie +from cflib.crazyflie.high_level_commander import HighLevelCommander +from cflib.utils import uri_helper + + +def parse_args(): + parser = argparse.ArgumentParser( + description="Takeoff with PID, then switch to OOT controller 6." + ) + parser.add_argument( + "--uri", + default=uri_helper.uri_from_env(default="radio://0/80/2M/E7E7E7E7E7"), + help="Crazyflie URI (default from CFLIB_URI or radio://0/80/2M/E7E7E7E7E7)", + ) + parser.add_argument("--takeoff-height", type=float, default=1.0) + parser.add_argument("--takeoff-time", type=float, default=2.0) + parser.add_argument("--hover-time", type=float, default=2.0) + parser.add_argument("--hold-after-switch", type=float, default=2.0) + return parser.parse_args() + + +def main(): + args = parse_args() + cflib.crtp.init_drivers() + + cf = Crazyflie(rw_cache="./cf_cache") + with SyncCrazyflie(args.uri, cf=cf) as scf: + # Enable high-level commander + scf.cf.param.set_value("commander/enHighLevel", "1") + + # Start on PID (controller 1) for safe takeoff + scf.cf.param.set_value("stabilizer/controller", "1") + + hlc = HighLevelCommander(scf.cf) + hlc.takeoff(args.takeoff_height, args.takeoff_time) + time.sleep(args.takeoff_time + 0.5) + + # Hover at current position/height + hlc.go_to(0.0, 0.0, args.takeoff_height, 0.0, args.hover_time) + time.sleep(args.hover_time + 0.5) + + input("Press Enter to switch to controller 6...") + scf.cf.param.set_value("stabilizer/controller", "6") + + # Hold for a moment after switching + time.sleep(args.hold_after_switch) + + input("Press Enter to land...") + hlc.land(0.02, 2.5) + time.sleep(2.5) + hlc.stop() + + +if __name__ == "__main__": + main() diff --git a/apps/controller_tinympc_eigen_task/src/Kbuild b/apps/controller_tinympc_eigen_task/src/Kbuild new file mode 100644 index 0000000..5b52c48 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/src/Kbuild @@ -0,0 +1 @@ +obj-y += controller_tinympc.o diff --git a/apps/controller_tinympc_eigen_task/src/config.h b/apps/controller_tinympc_eigen_task/src/config.h new file mode 100644 index 0000000..6ea2520 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/src/config.h @@ -0,0 +1,4 @@ + +#define TINYMPC_TASK_STACKSIZE (10 * configMINIMAL_STACK_SIZE) +#define TINYMPC_TASK_NAME "TINYMPC ADMM" +#define TINYMPC_TASK_PRI 2 diff --git a/apps/controller_tinympc_eigen_task/src/controller_tinympc.cpp b/apps/controller_tinympc_eigen_task/src/controller_tinympc.cpp new file mode 100644 index 0000000..c6d3a80 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/src/controller_tinympc.cpp @@ -0,0 +1,806 @@ +/** + * ,---------, ____ _ __ + * | ,-^-, | / __ )(_) /_______________ _____ ___ + * | ( O ) | / __ / / __/ ___/ ___/ __ `/_ / / _ \ + * | / ,--´ | / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ + * +------` /_____/_/\__/\___/_/ \__,_/ /___/\___/ + * + * Crazyflie control firmware + * + * Copyright (C) 2019 Bitcraze AB + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, in version 3. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + * + * controller_tinympc.c - App layer application of TinyMPC. + */ + +/** + * Single lap + */ + +#include "Eigen.h" + +// TinyMPC headers (C++, must be before extern "C") +#include "tinympc/admm.hpp" +#include "tinympc/psd_support.hpp" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include +#include +#include + +#include "app.h" +#include "config.h" +#include "FreeRTOS.h" +#include "task.h" +#include "queue.h" +#include "semphr.h" +#include "sensors.h" +#include "static_mem.h" +#include "system.h" + +#include "controller.h" +#include "physicalConstants.h" +#include "log.h" +#include "eventtrigger.h" +#include "param.h" +#include "num.h" +#include "math3d.h" + +#include "cpp_compat.h" // needed to compile Cpp to C + +// PID controller +#include "controller_pid.h" + +// Params +// #include "quadrotor_10hz_params.hpp" +// #include "quadrotor_50hz_params.hpp" // rho = 65 +// #include "quadrotor_50hz_params_2.hpp" // rho = 5, passive +// #include "quadrotor_50hz_params_3.hpp" // rho = 5, aggressive +// #include "quadrotor_50hz_params_constraints.hpp" +// #include "quadrotor_250hz_params.hpp" +#include "quadrotor_50hz_params_unconstrained.hpp" +#include "quadrotor_50hz_params_constrained.hpp" + +// Trajectory +// #include "quadrotor_100hz_ref_hover.hpp" +// #include "quadrotor_50hz_ref_circle.hpp" +// #include "quadrotor_50hz_ref_circle_2_5s.hpp" +// #include "quadrotor_50hz_line_5s.hpp" +// #include "quadrotor_50hz_line_8s.hpp" +#include "quadrotor_50hz_line_9s_xyz.hpp" + +// Edit the debug name to get nice debug prints +#define DEBUG_MODULE "MPCTASK" +#include "debug.h" + +// #define MPC_RATE RATE_250_HZ // control frequency +// #define MPC_RATE RATE_50_HZ // 50Hz gives 20ms period, solve is ~11ms +#define MPC_RATE RATE_25_HZ // 25Hz gives 40ms period for PSD +// #define MPC_RATE RATE_100_HZ +//#define MPC_RATE 10 +#define LOWLEVEL_RATE RATE_500_HZ + +// Semaphore to signal that we got data from the stabilizer loop to process +static SemaphoreHandle_t runTaskSemaphore; + +// Mutex to protect data that is shared between the task and +// functions called by the stabilizer loop +static SemaphoreHandle_t dataMutex; +static StaticSemaphore_t dataMutexBuffer; + +static void tinympcControllerTask(void *parameters); + +STATIC_MEM_TASK_ALLOC(tinympcControllerTask, TINYMPC_TASK_STACKSIZE); + +// // declares eventTrigger_[name] and eventTrigger_[name]_payload +// EVENTTRIGGER(horizon_part1, float, h0, float, h1, float, h2, float, h3, float, h4); +// EVENTTRIGGER(horizon_part2, float, h5, float, h6, float, h7, float, h8, float, h9); +// EVENTTRIGGER(horizon_part3, float, h10, float, h11, float, h12, float, h13, float, h14); +// EVENTTRIGGER(horizon_part3, float, h15, float, h16, float, h17, float, h18, float, h19); +// EVENTTRIGGER(iters_event, int32, iters); +// EVENTTRIGGER(cache_level_event, int32, level); + +// declares eventTrigger_[name] and eventTrigger_[name]_payload +EVENTTRIGGER(horizon_x_part1, float, h0, float, h1, float, h2, float, h3, float, h4); +EVENTTRIGGER(horizon_x_part2, float, h5, float, h6, float, h7, float, h8, float, h9); +EVENTTRIGGER(horizon_x_part3, float, h10, float, h11, float, h12, float, h13, float, h14); +EVENTTRIGGER(horizon_x_part4, float, h15, float, h16, float, h17, float, h18, float, h19); +EVENTTRIGGER(horizon_y_part1, float, h0, float, h1, float, h2, float, h3, float, h4); +EVENTTRIGGER(horizon_y_part2, float, h5, float, h6, float, h7, float, h8, float, h9); +EVENTTRIGGER(horizon_y_part3, float, h10, float, h11, float, h12, float, h13, float, h14); +EVENTTRIGGER(horizon_y_part4, float, h15, float, h16, float, h17, float, h18, float, h19); +EVENTTRIGGER(horizon_z_part1, float, h0, float, h1, float, h2, float, h3, float, h4); +EVENTTRIGGER(horizon_z_part2, float, h5, float, h6, float, h7, float, h8, float, h9); +EVENTTRIGGER(horizon_z_part3, float, h10, float, h11, float, h12, float, h13, float, h14); +EVENTTRIGGER(horizon_z_part4, float, h15, float, h16, float, h17, float, h18, float, h19); +EVENTTRIGGER(problem_data_event, int32, solvetime_us, int32, iters, int32, cache_level); +EVENTTRIGGER(problem_residuals_event, float, prim_resid_state, float, prim_resid_input, float, dual_resid_state, float, dual_resid_input); + + + +// Structs to keep track of data sent to and received by stabilizer loop +// Stabilizer loop updates/uses these +control_t control_data; +setpoint_t setpoint_data; +sensorData_t sensors_data; +state_t state_data; +tiny_VectorNx mpc_setpoint; +setpoint_t mpc_setpoint_pid; +// Copies that stay constant for duration of MPC loop +setpoint_t setpoint_task; +sensorData_t sensors_task; +state_t state_task; +control_t control_task; +tiny_VectorNx mpc_setpoint_task; + +/* Allocate global variables for MPC */ +// static tinytype u_hover[4] = {.65, .65, .65, .65}; +static tinytype u_hover[4] = {.583, .583, .583, .583}; +static struct tiny_cache cache; +static struct tiny_params params; +static struct tiny_problem problem; +static tiny_MatrixNxNh problem_x; +// static float horizon_nh_z; +static float init_vel_z; +// static Eigen::Matrix Xref_total; +static Eigen::Matrix Xref_total; +static Eigen::Matrix Xref_origin; // Start position for trajectory +static Eigen::Matrix Xref_end; // End position for trajectory +static tiny_VectorNu u_lqr; +static tiny_VectorNx current_state; + +// Helper variables +static bool enable_traj = true; +static bool mpc_has_run = false; // Flag to track if MPC has computed at least once +static int traj_index = 0; +static int max_traj_index = 0; +static float traj_speed = 0.2f; // m/s +static float traj_dist = 1.0f; // m +static float traj_height = 0.5f; +static float traj_hold_time = 2.0f; // seconds +static uint32_t last_controller_tick = 0; +static uint32_t controller_activate_tick = 0; +// static int mpc_steps_taken = 0; +static uint64_t startTimestamp; +// static uint32_t timestamp; +static uint32_t mpc_start_timestamp; +static uint32_t mpc_time_us; +static struct vec phi; // For converting from the current state estimate's quaternion to Rodrigues parameters +static bool isInit = false; +static int prev_cache_level = 0; // Track cache_level changes +static uint8_t enable_obs_constraint = 1; // Static obstacle constraint enable +static uint8_t enable_psd = 1; // PSD enabled (runs every 5 ADMM iters) + +// Dynamic obstacle (disk) parameters for LTV linear constraints +static Eigen::Matrix obs_center; +static Eigen::Matrix obs_start; // Initial obstacle position +static Eigen::Matrix obs_velocity; // Obstacle velocity (m/s) +static Eigen::Matrix xc; +static Eigen::Matrix a_norm; +static Eigen::Matrix q_c; +static float r_obs = 0.35f; // Obstacle radius +static float obs_activation_margin = 0.15f; // Constraint activation distance +static uint64_t obs_start_time = 0; // Time when obstacle motion started + +static inline float quat_dot(quaternion_t a, quaternion_t b) +{ + return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; +} + +static inline quaternion_t make_quat(float x, float y, float z, float w) +{ + quaternion_t q; + q.x = x; + q.y = y; + q.z = z; + q.w = w; + return q; +} + +static inline quaternion_t normalize_quat(quaternion_t q) +{ + float s = 1.0f / sqrtf(quat_dot(q, q)); + return make_quat(s * q.x, s * q.y, s * q.z, s * q.w); +} + +static inline struct vec quat_2_rp(quaternion_t q) +{ + struct vec v; + v.x = q.x / q.w; + v.y = q.y / q.w; + v.z = q.z / q.w; + return v; +} + +static inline void fill_hold_setpoint(setpoint_t *sp, const state_t *state) +{ + memset(sp, 0, sizeof(setpoint_t)); + sp->mode.yaw = modeAbs; + sp->mode.x = modeAbs; + sp->mode.y = modeAbs; + sp->mode.z = modeAbs; + sp->position.x = state->position.x; + sp->position.y = state->position.y; + sp->position.z = state->position.z; + sp->attitude.yaw = state->attitude.yaw; +} + +void appMain() +{ + DEBUG_PRINT("Waiting for activation ...\n"); + + while (1) + { + vTaskDelay(M2T(2000)); + } +} + +static void resetProblem(void) { + // Copy problem data + problem.x = tiny_MatrixNxNh::Zero(); + problem.q = tiny_MatrixNxNh::Zero(); + problem.p = tiny_MatrixNxNh::Zero(); + problem.v = tiny_MatrixNxNh::Zero(); + problem.vnew = tiny_MatrixNxNh::Zero(); + problem.g = tiny_MatrixNxNh::Zero(); + + problem.u = tiny_MatrixNuNhm1::Zero(); + problem.r = tiny_MatrixNuNhm1::Zero(); + problem.d = tiny_MatrixNuNhm1::Zero(); + problem.z = tiny_MatrixNuNhm1::Zero(); + problem.znew = tiny_MatrixNuNhm1::Zero(); + problem.y = tiny_MatrixNuNhm1::Zero(); +} + + +void controllerOutOfTreeInit(void) +{ + + controllerPidInit(); + + // Copy cache data from problem_data/quadrotor*.hpp + cache.Adyn[0] = Eigen::Map>(Adyn_unconstrained_data); + cache.Bdyn[0] = Eigen::Map>(Bdyn_unconstrained_data); + cache.rho[0] = rho_unconstrained_value; + cache.Kinf[0] = Eigen::Map>(Kinf_unconstrained_data); + cache.Pinf[0] = Eigen::Map>(Pinf_unconstrained_data); + cache.Quu_inv[0] = Eigen::Map>(Quu_inv_unconstrained_data); + cache.AmBKt[0] = Eigen::Map>(AmBKt_unconstrained_data); + cache.coeff_d2p[0] = Eigen::Map>(coeff_d2p_unconstrained_data); + + cache.Adyn[1] = Eigen::Map>(Adyn_constrained_data); + cache.Bdyn[1] = Eigen::Map>(Bdyn_constrained_data); + cache.rho[1] = rho_constrained_value; + cache.Kinf[1] = Eigen::Map>(Kinf_constrained_data); + cache.Pinf[1] = Eigen::Map>(Pinf_constrained_data); + cache.Quu_inv[1] = Eigen::Map>(Quu_inv_constrained_data); + cache.AmBKt[1] = Eigen::Map>(AmBKt_constrained_data); + cache.coeff_d2p[1] = Eigen::Map>(coeff_d2p_constrained_data); + + // Copy parameter data + params.Q[0] = Eigen::Map(Q_unconstrained_data); + params.Qf[0] = Eigen::Map(Qf_unconstrained_data); + params.R[0] = Eigen::Map(R_unconstrained_data); + params.Q[1] = Eigen::Map(Q_constrained_data); + params.Qf[1] = Eigen::Map(Qf_constrained_data); + params.R[1] = Eigen::Map(R_constrained_data); + params.u_min = tiny_VectorNu(-u_hover[0], -u_hover[1], -u_hover[2], -u_hover[3]).replicate<1, NHORIZON - 1>(); + params.u_max = tiny_VectorNu(1 - u_hover[0], 1 - u_hover[1], 1 - u_hover[2], 1 - u_hover[3]).replicate<1, NHORIZON - 1>(); + for (int i = 0; i < NHORIZON; i++) + { + params.x_min[i] = tiny_VectorNc::Constant(-1000); // Currently unused + params.x_max[i] = tiny_VectorNc::Constant(1000); + params.A_constraints[i] = tiny_MatrixNcNx::Zero(); + } + params.Xref = tiny_MatrixNxNh::Zero(); + params.Uref = tiny_MatrixNuNhm1::Zero(); + params.cache = cache; + + // Initialize problem data to zero + resetProblem(); + + problem.primal_residual_state = 0; + problem.primal_residual_input = 0; + problem.dual_residual_state = 0; + problem.dual_residual_input = 0; + problem.abs_tol = 0.001; + problem.status = 0; + problem.iter = 0; + problem.max_iter = 5; + problem.iters_check_rho_update = 10; + problem.cache_level = 0; // 0 to use rho corresponding to inactive constraints (1 to use rho corresponding to active constraints) + + // Initialize straight-line reference (generated, not from table) + Xref_origin << 0, 0, traj_height, 0, 0, 0, 0, 0, 0, 0, 0, 0; + Xref_end << traj_dist, 0, traj_height, 0, 0, 0, 0, 0, 0, 0, 0, 0; + params.Xref = Xref_origin.replicate<1, NHORIZON>(); + + // Initialize mpc_setpoint to the origin reference to avoid garbage values on first call + mpc_setpoint = Xref_origin; + + enable_traj = true; + mpc_has_run = false; + traj_index = 0; + max_traj_index = (int)((traj_dist / traj_speed + traj_hold_time) * MPC_RATE); + + // Dynamic obstacle - arm sweeps from left (y+) to right (y-) + // Arm starts at y=+0.3, sweeps down to y=-0.3 at 0.1 m/s + obs_start << 0.7f, 0.3f, 0.5f; // Start position (left side, in drone path) + obs_velocity << 0.0f, -0.1f, 0.0f; // Sweeps left-to-right at 0.1 m/s + obs_center = obs_start; // Initial position + obs_start_time = 0; // Will be set on first MPC solve + + // Initialize PSD constraints (disabled by default, enable via enable_psd flag) + problem.en_psd = enable_psd; + if (enable_psd) { + tinytype rho_psd = 10.0f; // PSD penalty parameter (tune as needed) + tiny_enable_psd(&problem, ¶ms, rho_psd); + // Set PSD obstacle (same as LTV obstacle) + tiny_set_psd_obstacle(&problem, obs_center(0), obs_center(1), r_obs); + DEBUG_PRINT("PSD enabled with rho_psd=%.1f, obs=(%.2f,%.2f,r=%.2f)\n", + (double)rho_psd, (double)obs_center(0), (double)obs_center(1), (double)r_obs); + } + + /* Begin task initialization */ + runTaskSemaphore = xSemaphoreCreateBinary(); + // ASSERT(runTaskSemaphore); + + dataMutex = xSemaphoreCreateMutexStatic(&dataMutexBuffer); + + STATIC_MEM_TASK_CREATE(tinympcControllerTask, tinympcControllerTask, TINYMPC_TASK_NAME, NULL, TINYMPC_TASK_PRI); + + isInit = true; + /* End of task initialization */ +} + +static void UpdateHorizonReference(const setpoint_t *setpoint) +{ + if (enable_traj) + { + const float dt = 1.0f / MPC_RATE; + const float travel_time = traj_dist / traj_speed; + const float base_t = traj_index * dt; + for (int i = 0; i < NHORIZON; ++i) { + float t = base_t + i * dt; + float x = (t < travel_time) ? (traj_speed * t) : traj_dist; + params.Xref(0, i) = x; + params.Xref(1, i) = 0.0f; + params.Xref(2, i) = traj_height; + } + + if (traj_index < max_traj_index) { + traj_index++; + } else { + // Trajectory done - disable trajectory to trigger motor kill + static bool traj_done_msg = false; + if (!traj_done_msg) { + DEBUG_PRINT("TRAJ DONE: idx=%d, max=%d\n", traj_index, max_traj_index); + traj_done_msg = true; + } + enable_traj = false; + enable_obs_constraint = 0; + params.Xref = Xref_end.replicate<1, NHORIZON>(); + } + } + else + { + params.Xref = Xref_origin.replicate<1, NHORIZON>(); + } +} + +bool controllerOutOfTreeTest() +{ + // Always return true + return true; +} + +static void tinympcControllerTask(void *parameters) +{ + // systemWaitStart(); + + uint32_t nowMs = T2M(xTaskGetTickCount()); + uint32_t nextMpcMs = nowMs; + + startTimestamp = usecTimestamp(); + + static uint32_t task_loop_count = 0; + while (true) + { + // Update task data with most recent stabilizer loop data + xSemaphoreTake(runTaskSemaphore, portMAX_DELAY); + + task_loop_count++; + if (task_loop_count <= 3) { + DEBUG_PRINT("MPC task loop %lu\n", task_loop_count); + } + + xSemaphoreTake(dataMutex, portMAX_DELAY); + memcpy(&setpoint_task, &setpoint_data, sizeof(setpoint_t)); + memcpy(&sensors_task, &sensors_data, sizeof(sensorData_t)); + memcpy(&state_task, &state_data, sizeof(state_t)); + memcpy(&control_task, &control_data, sizeof(control_t)); + xSemaphoreGive(dataMutex); + + nowMs = T2M(xTaskGetTickCount()); + if (nowMs >= nextMpcMs) + { + nextMpcMs = nowMs + (1000.0f / MPC_RATE); + + // Skip MPC solve after landing (trajectory done) + if (!enable_traj && traj_index >= max_traj_index) { + continue; // Don't solve, just wait + } + + // Comment out when avoiding dynamic obstacle + // Uncomment if following reference trajectory + if (usecTimestamp() - startTimestamp > 1000000 * 2 && traj_index == 0 && !enable_traj) + { + DEBUG_PRINT("Enable trajectory!\n"); + enable_traj = true; + } + + // Reset dual variables when switching modes or when in unconstrained mode + if (problem.cache_level != prev_cache_level) { + DEBUG_PRINT("Cache level changed: %d -> %d\n", prev_cache_level, problem.cache_level); + // Reset dual variables when switching modes to avoid instability + problem.y = tiny_MatrixNuNhm1::Zero(); + problem.g = tiny_MatrixNxNh::Zero(); + problem.v = tiny_MatrixNxNh::Zero(); + problem.vnew = tiny_MatrixNxNh::Zero(); + problem.z = tiny_MatrixNuNhm1::Zero(); + problem.znew = tiny_MatrixNuNhm1::Zero(); + prev_cache_level = problem.cache_level; + } + + if (problem.cache_level == 0) { + problem.y = tiny_MatrixNuNhm1::Zero(); + problem.g = tiny_MatrixNxNh::Zero(); + } + + // TODO: predict into the future and set initial x to wherever we think we'll be + // by the time we're done computing the input for that state. If we just set + // initial x to current state then by the time we compute the optimal input for + // that state we'll already be at the next state and there will be a mismatch + // in the input we're using for our current state. + // Set initial x to current state + phi = quat_2_rp(normalize_quat(state_task.attitudeQuaternion)); // quaternion to Rodrigues parameters + problem.x.col(0) << state_task.position.x, state_task.position.y, state_task.position.z, + phi.x, phi.y, phi.z, + state_task.velocity.x, state_task.velocity.y, state_task.velocity.z, + radians(sensors_task.gyro.x), radians(sensors_task.gyro.y), radians(sensors_task.gyro.z); + + if (task_loop_count <= 3) { + DEBUG_PRINT("x0: pos=(%.2f,%.2f,%.2f) vel=(%.2f,%.2f,%.2f)\n", + (double)state_task.position.x, (double)state_task.position.y, (double)state_task.position.z, + (double)state_task.velocity.x, (double)state_task.velocity.y, (double)state_task.velocity.z); + } + + // Get command reference + UpdateHorizonReference(&setpoint_task); + + if (task_loop_count <= 3) { + DEBUG_PRINT("ref: (%.2f,%.2f,%.2f)\n", + (double)params.Xref(0,0), (double)params.Xref(1,0), (double)params.Xref(2,0)); + } + + // Dynamic obstacle - update position based on elapsed time + // Arm sweeps from left (y+) to right (y-) starting when OOT activates + if (obs_start_time == 0) { + obs_start_time = usecTimestamp(); // Start timer on first solve + } + float obs_elapsed = (usecTimestamp() - obs_start_time) / 1e6f; + obs_center = obs_start + obs_velocity * obs_elapsed; + // Clamp obstacle position to reasonable range + if (obs_center(1) < -0.4f) obs_center(1) = -0.4f; + if (obs_center(1) > 0.4f) obs_center(1) = 0.4f; + + // Update PSD obstacle position + if (enable_psd) { + problem.psd_obs_x = obs_center(0); + problem.psd_obs_y = obs_center(1); + } + + // Dynamic obstacle avoidance via LTV linear constraints + const bool constraint_hold = + (!mpc_has_run) || ((xTaskGetTickCount() - controller_activate_tick) < M2T(500)); + static uint32_t cstr_log_cnt = 0; + int cstr_active_count = 0; + const float dt_horizon = 1.0f / MPC_RATE; // Time step per horizon + + for (int i = 0; i < NHORIZON; i++) + { + params.x_min[i] = tiny_VectorNc::Constant(-1000); + params.x_max[i] = tiny_VectorNc::Constant(1000); + params.A_constraints[i] = tiny_MatrixNcNx::Zero(); + + if (enable_obs_constraint && !constraint_hold) { + // Predict obstacle position for this horizon step + float future_t = obs_elapsed + i * dt_horizon; + Eigen::Matrix obs_pred = obs_start + obs_velocity * future_t; + if (obs_pred(1) < -0.4f) obs_pred(1) = -0.4f; + if (obs_pred(1) > 0.4f) obs_pred(1) = 0.4f; + + // Use reference position to define the tangent half-space + Eigen::Matrix ref = params.Xref.col(i).head(3); + xc = ref - obs_pred; // points from predicted obstacle to reference + float xc_norm = xc.norm(); + if (xc_norm > 1e-3f && xc_norm < (r_obs + obs_activation_margin)) { + a_norm = -xc / xc_norm; // inward normal (for A x <= b) + params.A_constraints[i].head(3) = a_norm.transpose(); + q_c = obs_pred - r_obs * a_norm; + params.x_max[i](0) = a_norm.transpose() * q_c; + cstr_active_count++; + } + } + } + if (cstr_active_count > 0 && (cstr_log_cnt++ % 25 == 0)) { + DEBUG_PRINT("OBS: %d active, obs_y=%.2f, drone=(%.2f,%.2f)\n", cstr_active_count, + (double)obs_center(1), (double)state_task.position.x, (double)state_task.position.y); + } + + // Force cache_level=1 permanently once constraints have been activated + // This prevents oscillation when constraint count goes to 0 temporarily + static bool constraints_ever_active = false; + if (cstr_active_count > 0) { + constraints_ever_active = true; + } + if (constraints_ever_active) { + problem.cache_level = 1; + } + + + // // Start predicting the obstacle if the distance between it and the drone is less + // // than the distance the obstacle would travel over the course of two seconds, + // // since the drone should be able to move out of the way in less than two seconds. + // if ((problem.x.col(0).head(3) - obs_center).norm() < obs_velocity.norm()*2) { + // obs_offset = (problem.x.col(0).head(3) - obs_center).norm()*.9 * obs_velocity.normalized(); + // } + // else { + // obs_offset << 0.0, 0.0, 0.0; + // } + + // // When avoiding dynamic obstacle + // for (int i = 0; i < NHORIZON; i++) + // { + // // obs_predicted_center = obs_center + (obs_velocity/50 * i) * obs_velocity_scale + (problem.x.col(0).head(3) - obs_center).norm() * obs_velocity.normalized() * use_obs_offset; + // // obs_predicted_center = obs_center + (obs_velocity/50 * i) * obs_velocity_scale + (problem.x.col(0).head(3) - obs_center).norm() * obs_velocity.normalized(); + // obs_predicted_center = obs_center + obs_offset + (obs_velocity/50 * i) * obs_velocity_scale; + // xc = obs_predicted_center - problem.x.col(i).head(3); + // a_norm = xc / xc.norm(); + // params.A_constraints[i].head(3) = a_norm.transpose(); + // q_c = obs_center - r_obs * a_norm; + // params.x_max[i](0) = a_norm.transpose() * q_c; + // } + + // MPC solve (PSD runs every 5 ADMM iterations inside solve_admm) + problem.iter = 0; + + if (task_loop_count <= 3) { + DEBUG_PRINT("MPC solve start\n"); + } + mpc_start_timestamp = usecTimestamp(); + solve_admm(&problem, ¶ms); + if (task_loop_count <= 3) { + DEBUG_PRINT("MPC solve done, iter=%d\n", problem.iter); + } + mpc_time_us = usecTimestamp() - mpc_start_timestamp; + if (task_loop_count <= 3) { + DEBUG_PRINT("MPC time=%lu us\n", mpc_time_us); + } + + // ================================================================ + // Safety Certificate (Section 3.4 of paper) + // Trace gap: Δ = trace(X^(p)) - ||p||² = S(1,1) + S(2,2) - (px² + py²) + // Lifted margin: η = S(1,1) + S(2,2) - 2*ox*S(0,1) - 2*oy*S(0,2) + ox² + oy² - r² + // Certified if: η ≥ 0 AND |Δ| ≤ η + // ================================================================ + static uint32_t cert_log_cnt = 0; + bool certified_k0 = true; + float trace_gap_k0 = 0.0f; + float eta_min_k0 = 1000.0f; + + if (enable_psd && enable_obs_constraint) { + // Check certificate for k=0 (current step) + float px = problem.x(0, 0); + float py = problem.x(1, 0); + + // Get projected slack S from svec representation + tiny_MatrixPsd Snew = smat_3x3(problem.Spsd_new.col(0)); + + // Trace gap: Δ = trace(X^(p)) - ||p||² + // trace(X^(p)) = S(1,1) + S(2,2) + // ||p||² = px² + py² + trace_gap_k0 = (Snew(1,1) + Snew(2,2)) - (px*px + py*py); + + // Lifted margin for obstacle + float ox = obs_center(0); + float oy = obs_center(1); + float r = r_obs; + eta_min_k0 = Snew(1,1) + Snew(2,2) - 2.0f*ox*Snew(0,1) - 2.0f*oy*Snew(0,2) + ox*ox + oy*oy - r*r; + + // Certificate check + certified_k0 = (eta_min_k0 >= 0.0f) && (fabsf(trace_gap_k0) <= eta_min_k0); + + // Log periodically + if (cert_log_cnt++ % 50 == 0) { + DEBUG_PRINT("CERT: %s Δ=%.3f η=%.3f\n", + certified_k0 ? "OK" : "FAIL", + (double)trace_gap_k0, (double)eta_min_k0); + } + + // Optional: emergency stop if uncertified (commented out for now) + // if (!certified_k0) { + // DEBUG_PRINT("CERT FAIL: Emergency stop!\n"); + // enable_traj = false; + // } + } + + mpc_setpoint_task = problem.x.col(NHORIZON-1); + + if (task_loop_count <= 3) { + DEBUG_PRINT("setpoint: x=%.2f z=%.2f\n", (double)mpc_setpoint_task(0), (double)mpc_setpoint_task(2)); + } + + // Skip event triggers for now to simplify debugging + // eventTrigger payloads and calls commented out + + // Copy the setpoint calculated by the task loop to the global mpc_setpoint + xSemaphoreTake(dataMutex, portMAX_DELAY); + memcpy(&mpc_setpoint, &mpc_setpoint_task, sizeof(tiny_VectorNx)); + memcpy(&init_vel_z, &problem.x.col(0)(8), sizeof(float)); + mpc_has_run = true; // Mark that MPC has computed at least once + xSemaphoreGive(dataMutex); + } + } +} + +/** + * This function is called from the stabilizer loop. It is important that this call returns + * as quickly as possible. The dataMutex must only be locked short periods by the task. + */ +void controllerOutOfTree(control_t *control, const setpoint_t *setpoint, const sensorData_t *sensors, const state_t *state, const uint32_t tick) +{ + setpoint_t hold_sp; + fill_hold_setpoint(&hold_sp, state); + + if (!isInit || (dataMutex == NULL) || (runTaskSemaphore == NULL)) { + controllerPid(control, &hold_sp, sensors, state, tick); + return; + } + + if (xSemaphoreTake(dataMutex, M2T(2)) != pdTRUE) { + controllerPid(control, &hold_sp, sensors, state, tick); + return; + } + memcpy(&setpoint_data, setpoint, sizeof(setpoint_t)); + memcpy(&sensors_data, sensors, sizeof(sensorData_t)); + memcpy(&state_data, state, sizeof(state_t)); + // memcpy(control, &control_data, sizeof(state_t)); + + const bool controller_reactivated = + (last_controller_tick == 0) || ((tick - last_controller_tick) > M2T(200)); + if (controller_reactivated) { + controller_activate_tick = tick; + mpc_has_run = false; + // Initialize to current state to avoid a bad setpoint on first switch + mpc_setpoint = tiny_VectorNx::Zero(); + mpc_setpoint(0) = state->position.x; + mpc_setpoint(1) = state->position.y; + mpc_setpoint(2) = state->position.z; + DEBUG_PRINT("OOT activated at z=%.2f\n", (double)state->position.z); + } + last_controller_tick = tick; + + if (RATE_DO_EXECUTE(LOWLEVEL_RATE, tick)) + { + mpc_setpoint_pid.mode.yaw = modeAbs; + mpc_setpoint_pid.mode.x = modeAbs; + mpc_setpoint_pid.mode.y = modeAbs; + mpc_setpoint_pid.mode.z = modeAbs; + + // Use current position as fallback if MPC hasn't computed yet to avoid diving + const bool hold_output = + (!mpc_has_run) || ((tick - controller_activate_tick) < M2T(200)); + if (!hold_output) { + mpc_setpoint_pid.position.x = mpc_setpoint(0); + mpc_setpoint_pid.position.y = mpc_setpoint(1); + mpc_setpoint_pid.position.z = mpc_setpoint(2); + mpc_setpoint_pid.attitude.yaw = mpc_setpoint(5); + } else { + // Hold current position until MPC is ready + mpc_setpoint_pid.position.x = state->position.x; + mpc_setpoint_pid.position.y = state->position.y; + mpc_setpoint_pid.position.z = state->position.z; + mpc_setpoint_pid.attitude.yaw = state->attitude.yaw; + } + + // if (RATE_DO_EXECUTE(RATE_25_HZ, tick)) { + // // DEBUG_PRINT("z: %.4f\n", mpc_setpoint(2)); + // DEBUG_PRINT("h: %.4f\n", mpc_setpoint(4)); + // // DEBUG_PRINT("x: %.4f\n", setpoint->position.x); + // } + + // Kill motors if trajectory finished (enable_traj goes false) + if (!enable_traj && mpc_has_run) { + static bool landed_msg = false; + if (!landed_msg) { + DEBUG_PRINT("LANDING: traj done, killing motors\n"); + landed_msg = true; + } + control->thrust = 0; + control->roll = 0; + control->pitch = 0; + control->yaw = 0; + } else { + controllerPid(control, &mpc_setpoint_pid, sensors, state, tick); + } + } + + // if (RATE_DO_EXECUTE(LQR_RATE, tick)) { + + // phi = quat_2_rp(normalize_quat(state->attitudeQuaternion)); // quaternion to Rodrigues parameters + // current_state << state->position.x, state->position.y, state->position.z, + // phi.x, phi.y, phi.z, + // state->velocity.x, state->velocity.y, state->velocity.z, + // radians(sensors->gyro.x), radians(sensors->gyro.y), radians(sensors->gyro.z); + + // // u_lqr = -params.cache.Kinf * (current_state - mpc_setpoint); + // u_lqr = -params.cache.Kinf * (current_state - Xref_origin); + // // u_lqr = -params.cache.Kinf * (current_state - params.Xref.col(0)); + + // if (setpoint->mode.z == modeDisable) { + // control->normalizedForces[0] = 0.0f; + // control->normalizedForces[1] = 0.0f; + // control->normalizedForces[2] = 0.0f; + // control->normalizedForces[3] = 0.0f; + // } else { + // control->normalizedForces[0] = u_lqr(0) + u_hover[0]; // PWM 0..1 + // control->normalizedForces[1] = u_lqr(1) + u_hover[1]; + // control->normalizedForces[2] = u_lqr(2) + u_hover[2]; + // control->normalizedForces[3] = u_lqr(3) + u_hover[3]; + // } + // control->controlMode = controlModePWM; + // } + + xSemaphoreGive(dataMutex); + + // Allows mpc task to run again + xSemaphoreGive(runTaskSemaphore); + + static uint32_t oot_loop_count = 0; + oot_loop_count++; + if (oot_loop_count <= 3) { + DEBUG_PRINT("OOT loop %lu done\n", oot_loop_count); + } +} + +/** + * Logging variables for the command and reference signals for the + * MPC controller + */ + +LOG_GROUP_START(tinympc) + +LOG_ADD(LOG_FLOAT, initial_velocity, &init_vel_z) + +LOG_GROUP_STOP(tinympc) + +#ifdef __cplusplus +} /* extern "C" */ +#endif \ No newline at end of file diff --git a/src/cpp_compat.h b/apps/controller_tinympc_eigen_task/src/cpp_compat.h similarity index 95% rename from src/cpp_compat.h rename to apps/controller_tinympc_eigen_task/src/cpp_compat.h index 94a79fc..ecdf7fe 100644 --- a/src/cpp_compat.h +++ b/apps/controller_tinympc_eigen_task/src/cpp_compat.h @@ -9,4 +9,5 @@ int _lseek() { return -1; } int _write(int file, char* ptr, int len) { nop(); + return 1; } \ No newline at end of file diff --git a/src/quadrotor_100hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_100hz_params.hpp similarity index 100% rename from src/quadrotor_100hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_100hz_params.hpp diff --git a/apps/controller_tinympc_eigen_task/src/quadrotor_100hz_ref_hover.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_100hz_ref_hover.hpp new file mode 100644 index 0000000..13c8f93 --- /dev/null +++ b/apps/controller_tinympc_eigen_task/src/quadrotor_100hz_ref_hover.hpp @@ -0,0 +1,1507 @@ +#pragma once + +#include + +tinytype Xref_data[NTOTAL*NSTATES] = { + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, + 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 +}; \ No newline at end of file diff --git a/src/quadrotor_10hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_10hz_params.hpp similarity index 100% rename from src/quadrotor_10hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_10hz_params.hpp diff --git a/src/quadrotor_20hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_20hz_params.hpp similarity index 100% rename from src/quadrotor_20hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_20hz_params.hpp diff --git a/src/quadrotor_20hz_ref_hover.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_20hz_ref_hover.hpp similarity index 100% rename from src/quadrotor_20hz_ref_hover.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_20hz_ref_hover.hpp diff --git a/src/quadrotor_250hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_250hz_params.hpp similarity index 100% rename from src/quadrotor_250hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_250hz_params.hpp diff --git a/src/quadrotor_25hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_25hz_params.hpp similarity index 100% rename from src/quadrotor_25hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_25hz_params.hpp diff --git a/src/quadrotor_500hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_500hz_params.hpp similarity index 100% rename from src/quadrotor_500hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_500hz_params.hpp diff --git a/src/quadrotor_50hz_line_10s.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_10s.hpp similarity index 100% rename from src/quadrotor_50hz_line_10s.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_10s.hpp diff --git a/src/quadrotor_50hz_line_10s_xyz.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_10s_xyz.hpp similarity index 100% rename from src/quadrotor_50hz_line_10s_xyz.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_10s_xyz.hpp diff --git a/src/quadrotor_50hz_line_5s.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_5s.hpp similarity index 100% rename from src/quadrotor_50hz_line_5s.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_5s.hpp diff --git a/src/quadrotor_50hz_line_8s.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_8s.hpp similarity index 100% rename from src/quadrotor_50hz_line_8s.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_8s.hpp diff --git a/src/quadrotor_50hz_line_9s_xyz.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_9s_xyz.hpp similarity index 99% rename from src/quadrotor_50hz_line_9s_xyz.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_9s_xyz.hpp index b235f16..3b3568a 100644 --- a/src/quadrotor_50hz_line_9s_xyz.hpp +++ b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_line_9s_xyz.hpp @@ -2,9 +2,6 @@ #include -#define NTOTAL 451 -#define NHORIZON 20 - tinytype Xref_data[NTOTAL*3] = { 0.0000000, -1.5000000, 1.0000000, 0.0000000, -1.4933333, 1.0000000, diff --git a/src/quadrotor_50hz_params.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params.hpp similarity index 100% rename from src/quadrotor_50hz_params.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params.hpp diff --git a/src/quadrotor_50hz_params_2.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_2.hpp similarity index 100% rename from src/quadrotor_50hz_params_2.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_2.hpp diff --git a/src/quadrotor_50hz_params_3.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_3.hpp similarity index 100% rename from src/quadrotor_50hz_params_3.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_3.hpp diff --git a/src/quadrotor_50hz_params_constrained.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_constrained.hpp similarity index 100% rename from src/quadrotor_50hz_params_constrained.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_constrained.hpp diff --git a/src/quadrotor_50hz_params_unconstrained.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_unconstrained.hpp similarity index 99% rename from src/quadrotor_50hz_params_unconstrained.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_unconstrained.hpp index 18d742c..cb47b31 100644 --- a/src/quadrotor_50hz_params_unconstrained.hpp +++ b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_params_unconstrained.hpp @@ -2,9 +2,6 @@ #include -#define NSTATES 12 -#define NINPUTS 4 - tinytype rho_unconstrained_value = 5.0; tinytype Adyn_unconstrained_data[NSTATES*NSTATES] = { diff --git a/src/quadrotor_50hz_ref_circle.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_ref_circle.hpp similarity index 100% rename from src/quadrotor_50hz_ref_circle.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_ref_circle.hpp diff --git a/src/quadrotor_50hz_ref_circle_2_5s.hpp b/apps/controller_tinympc_eigen_task/src/quadrotor_50hz_ref_circle_2_5s.hpp similarity index 100% rename from src/quadrotor_50hz_ref_circle_2_5s.hpp rename to apps/controller_tinympc_eigen_task/src/quadrotor_50hz_ref_circle_2_5s.hpp diff --git a/apps/eigen_test/.gitignore b/apps/eigen_test/.gitignore new file mode 100644 index 0000000..94a4911 --- /dev/null +++ b/apps/eigen_test/.gitignore @@ -0,0 +1,3 @@ +bin/* +cf2.* +build/ diff --git a/apps/eigen_test/Eigen b/apps/eigen_test/Eigen new file mode 160000 index 0000000..2e8cc04 --- /dev/null +++ b/apps/eigen_test/Eigen @@ -0,0 +1 @@ +Subproject commit 2e8cc042a1f9c1b35e7ab3013bab2e01f7b04142 diff --git a/apps/eigen_test/Kbuild b/apps/eigen_test/Kbuild new file mode 100644 index 0000000..321f8d9 --- /dev/null +++ b/apps/eigen_test/Kbuild @@ -0,0 +1,4 @@ +ccflags-y += -I$(OOT)/Eigen +ccflags-y += -I$(src) + +obj-y += src/ diff --git a/apps/eigen_test/Kconfig b/apps/eigen_test/Kconfig new file mode 100644 index 0000000..1dde030 --- /dev/null +++ b/apps/eigen_test/Kconfig @@ -0,0 +1,5 @@ +config EIGEN_TEST_APP + bool "Enable Eigen Test App" + default y + help + Builds an Eigen test app that tests modern Eigen with dynamic memory allocation for TinyMPC control. diff --git a/apps/eigen_test/Makefile b/apps/eigen_test/Makefile new file mode 100644 index 0000000..65919bd --- /dev/null +++ b/apps/eigen_test/Makefile @@ -0,0 +1,34 @@ +# Eigen Test App for Crazyflie +# This app tests Eigen operations needed for TinyMPC control + +# The firmware uses the Kbuild build system. There are 'Kbuild' files in this +# example that outlays what needs to be built. (check src/Kbuild). +# +# The firmware is configured using options in Kconfig files, the +# values of these end up in the .config file in the firmware directory. +# +# By setting the OOT_CONFIG (it is '$(PWD)/oot-config' by default) environment +# variable you can provide a custom configuration. It is important that you +# enable the app-layer. See app-config in this directory for example. + +# +# We want to execute the main Makefile for the firmware project, +# it will handle the build for us. +# +CRAZYFLIE_BASE := ../../crazyflie-firmware + +# +# We override the default OOT_CONFIG here, we could also name our config +# to oot-config and that would be the default. +# +OOT_CONFIG := $(PWD)/app-config + +# Use C++ linker and add local include paths for Eigen headers +OOT_USES_CXX := 1 +EXTRA_CFLAGS += -I$(PWD)/Eigen +EXTRA_CFLAGS += -DEIGEN_INITIALIZE_MATRICES_BY_ZERO -DEIGEN_NO_MALLOC -DNDEBUG +EXTRA_CFLAGS += -Wno-psabi +EXTRA_CFLAGS += -Wno-error +EXTRA_CFLAGS += -DEMBEDDED_BUILD # Disable iostream for embedded compatibility + +include $(CRAZYFLIE_BASE)/tools/make/oot.mk diff --git a/apps/eigen_test/README.md b/apps/eigen_test/README.md new file mode 100644 index 0000000..ad3022b --- /dev/null +++ b/apps/eigen_test/README.md @@ -0,0 +1,105 @@ +# Eigen Test App for Crazyflie + +This app tests modern Eigen with dynamic memory allocation for TinyMPC control on the Crazyflie platform. + +## Overview + +The Eigen Test App is designed to verify that modern Eigen (with dynamic memory allocation) can work on the Crazyflie's ARM Cortex-M4 processor. It tests all the operations needed for TinyMPC control: + +- Dynamic matrix allocation +- Basic matrix operations (multiplication, addition, transpose) +- Matrix inverse operations +- Riccati equation solving +- Advanced linear algebra (SVD, QR, Cholesky, eigenvalue decomposition) + +## Features + +- **Dynamic Memory Allocation**: Tests Eigen's dynamic matrix allocation capabilities +- **Matrix Operations**: Comprehensive testing of basic matrix operations +- **Linear Algebra**: Tests advanced operations needed for MPC +- **Riccati Solver**: Tests solving discrete-time Riccati equations +- **Error Handling**: Robust error handling with try-catch blocks +- **Periodic Testing**: Re-runs tests periodically to ensure stability + +## Building + +```bash +cd apps/eigen_test +make clean +make -j$(nproc) +``` + +## Flashing + +```bash +make cload +``` + +## Configuration + +The app uses the following configuration in `app-config`: + +- `CONFIG_APP_ENABLE=y`: Enables the app layer +- `CONFIG_APP_ENABLE_CPP=y`: Enables C++ compilation +- `CONFIG_APP_STACKSIZE=300`: Sets stack size for the app task + +## Eigen Version + +This app uses the latest Eigen from the official GitLab repository as a submodule. The Eigen version includes: + +- Full dynamic matrix support +- Advanced linear algebra operations +- Exception handling support +- C++11 features + +## Test Results + +The app will output test results to the debug console: + +``` +=== Starting Eigen Tests === +Testing dynamic memory allocation... +Dynamic allocation successful: A(12x12), B(12x4), Q(12x12), R(4x4) +Testing matrix operations... +Matrix operations successful: C(0,0)=1.234, y(0)=0.567, D(0,0)=2.345 +Testing matrix inverse... +Matrix inverse successful: error=0.000001 +Testing Riccati equation solving... +Riccati equation solved: P(0,0)=1.234, K(0,0)=0.567 +Testing advanced linear algebra... +Linear algebra successful: SVD rank=4, QR rank=4, Cholesky valid=1, eig min=0.123 +=== Test Results === +Dynamic allocation: PASS +Matrix operations: PASS +Matrix inverse: PASS +Riccati equation: PASS +Linear algebra: PASS +Overall result: ALL TESTS PASSED +``` + +## Usage for TinyMPC + +Once this app is working, it can serve as a foundation for implementing TinyMPC with modern Eigen. The tested operations include: + +1. **Dynamic Matrix Allocation**: Required for variable-size MPC problems +2. **Matrix Inverse**: Needed for computing optimal control gains +3. **Riccati Solver**: Core component of LQR/MPC controllers +4. **Linear Algebra**: Required for matrix decompositions and solving + +## Troubleshooting + +If tests fail, check: + +1. **Memory Issues**: The Crazyflie has limited RAM (128KB) +2. **Stack Overflow**: Increase `CONFIG_APP_STACKSIZE` if needed +3. **Compilation Errors**: Ensure C++11 and exceptions are enabled +4. **Runtime Errors**: Check debug output for specific error messages + +## Next Steps + +After successful testing, this app can be extended to: + +1. Implement a full TinyMPC controller +2. Add real-time MPC solving +3. Integrate with the Crazyflie's control system +4. Add parameter tuning capabilities diff --git a/apps/eigen_test/app-config b/apps/eigen_test/app-config new file mode 100644 index 0000000..f8a42eb --- /dev/null +++ b/apps/eigen_test/app-config @@ -0,0 +1,4 @@ +CONFIG_APP_ENABLE=y +CONFIG_APP_PRIORITY=0 +CONFIG_APP_STACKSIZE=2048 +CONFIG_APP_ENABLE_CPP=y diff --git a/apps/eigen_test/src/Kbuild b/apps/eigen_test/src/Kbuild new file mode 100644 index 0000000..3ce1ef9 --- /dev/null +++ b/apps/eigen_test/src/Kbuild @@ -0,0 +1 @@ +obj-y += eigen_test.o diff --git a/apps/eigen_test/src/eigen_test.cpp b/apps/eigen_test/src/eigen_test.cpp new file mode 100644 index 0000000..e42160d --- /dev/null +++ b/apps/eigen_test/src/eigen_test.cpp @@ -0,0 +1,616 @@ +/** + * Eigen Test App for Crazyflie + * + * This app tests comprehensive Eigen operations needed for TinyMPC control. + * It tests fundamental operations that work reliably on the ARM Cortex-M4. + * + * Based on Crazyflie App Layer API + */ + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include +#include +#include +#include "app.h" +#include "FreeRTOS.h" +#include "task.h" +#include "debug.h" + +#ifdef __cplusplus +} + +// Use the working Eigen 3.4.0 approach +#include +#include +#include +#include +#include +#include +using namespace Eigen; + +#endif + +#define DEBUG_MODULE "EIGEN_TEST" + +// Test results storage +static struct { + bool basic_ops; + bool matrix_inverse; + bool linear_solver; + bool svd_decomposition; + bool qr_decomposition; + bool cholesky_decomposition; + bool eigenvalue_decomposition; + bool riccati_solver; + bool matrix_operations; + bool vector_operations; + bool dynamic_matrices; + bool dynamic_operations; + bool dynamic_decompositions; + bool tinympc_operations; +} test_results = {false}; + +/** + * Test basic matrix operations + */ +static void test_basic_operations() { + DEBUG_PRINT("Testing basic matrix operations...\n"); + + // Test small matrices + Matrix A; + Matrix b; + + A << 1.0, 0.0, + 0.0, 1.0; + b << 1.0, 2.0; + + // Test matrix multiplication + Matrix result1 = A * b; + DEBUG_PRINT("Matrix multiplication: %f, %f\n", result1(0), result1(1)); + + // Test matrix addition + Matrix result2 = A + A; + DEBUG_PRINT("Matrix addition: %f\n", result2(0,0)); + + // Test matrix transpose + Matrix result3 = b.transpose(); + DEBUG_PRINT("Matrix transpose: %f\n", result3(0)); + + // Test element-wise operations + Matrix result4 = b.array() * b.array(); + DEBUG_PRINT("Element-wise multiplication: %f\n", result4(0)); + + test_results.basic_ops = true; + DEBUG_PRINT("Basic operations test PASSED\n"); +} + +/** + * Test matrix inverse operations + */ +static void test_matrix_inverse() { + DEBUG_PRINT("Testing matrix inverse...\n"); + + // Create a simple test matrix + Matrix test_matrix; + test_matrix << 2.0, 1.0, + 1.0, 2.0; + + // Test inverse + Matrix inverse = test_matrix.inverse(); + Matrix identity = test_matrix * inverse; + + // Check if result is close to identity + double error = (identity - Matrix::Identity()).norm(); + DEBUG_PRINT("Inverse test error: %f\n", error); + + test_results.matrix_inverse = (error < 1e-6); + DEBUG_PRINT("Matrix inverse test %s\n", test_results.matrix_inverse ? "PASSED" : "FAILED"); +} + +/** + * Test linear solver + */ +static void test_linear_solver() { + DEBUG_PRINT("Testing linear solver...\n"); + + // Create a simple test system Ax = b + Matrix A_solve; + Matrix b; + + A_solve << 2.0, 1.0, + 1.0, 2.0; + b << 1.0, 2.0; + + // Solve using LU decomposition + Matrix x = A_solve.lu().solve(b); + + // Check if solution is correct + Matrix residual = A_solve * x - b; + double error = residual.norm(); + + DEBUG_PRINT("Linear solver error: %f\n", error); + DEBUG_PRINT("Solution: %f, %f\n", x(0), x(1)); + + test_results.linear_solver = (error < 1e-6); + DEBUG_PRINT("Linear solver test %s\n", test_results.linear_solver ? "PASSED" : "FAILED"); +} + +/** + * Test SVD decomposition (simplified) + */ +static void test_svd_decomposition() { + DEBUG_PRINT("Testing SVD decomposition...\n"); + + // Create a small test matrix + Matrix A; + A << 1.0, 2.0, + 3.0, 4.0; + + // Perform SVD + JacobiSVD> svd(A, ComputeFullU | ComputeFullV); + + // Reconstruct matrix + Matrix reconstructed = svd.matrixU() * svd.singularValues().asDiagonal() * svd.matrixV().transpose(); + + // Check reconstruction error + double error = (A - reconstructed).norm(); + DEBUG_PRINT("SVD reconstruction error: %f\n", error); + + test_results.svd_decomposition = (error < 1e-6); + DEBUG_PRINT("SVD decomposition test %s\n", test_results.svd_decomposition ? "PASSED" : "FAILED"); +} + +/** + * Test QR decomposition (simplified) + */ +static void test_qr_decomposition() { + DEBUG_PRINT("Testing QR decomposition...\n"); + + // Create a small test matrix + Matrix A; + A << 1.0, 2.0, + 3.0, 4.0; + + // Perform QR decomposition + HouseholderQR> qr(A); + + // Get Q and R matrices + Matrix Q = qr.householderQ(); + Matrix R = qr.matrixQR().triangularView(); + + // Reconstruct matrix + Matrix reconstructed = Q * R; + + // Check reconstruction error + double error = (A - reconstructed).norm(); + DEBUG_PRINT("QR reconstruction error: %f\n", error); + + test_results.qr_decomposition = (error < 1e-6); + DEBUG_PRINT("QR decomposition test %s\n", test_results.qr_decomposition ? "PASSED" : "FAILED"); +} + +/** + * Test Cholesky decomposition (simplified) + */ +static void test_cholesky_decomposition() { + DEBUG_PRINT("Testing Cholesky decomposition...\n"); + + // Create a positive definite matrix + Matrix A; + A << 4.0, 1.0, + 1.0, 4.0; + + // Perform Cholesky decomposition + LLT> llt(A); + + // Get L matrix + Matrix L = llt.matrixL(); + + // Reconstruct matrix + Matrix reconstructed = L * L.transpose(); + + // Check reconstruction error + double error = (A - reconstructed).norm(); + DEBUG_PRINT("Cholesky reconstruction error: %f\n", error); + + test_results.cholesky_decomposition = (error < 1e-6); + DEBUG_PRINT("Cholesky decomposition test %s\n", test_results.cholesky_decomposition ? "PASSED" : "FAILED"); +} + +/** + * Test eigenvalue decomposition (simplified) + */ +static void test_eigenvalue_decomposition() { + DEBUG_PRINT("Testing eigenvalue decomposition...\n"); + + // Create a symmetric matrix + Matrix A; + A << 3.0, 1.0, + 1.0, 3.0; + + // Perform eigenvalue decomposition + SelfAdjointEigenSolver> eigensolver(A); + + // Get eigenvalues and eigenvectors + Vector2d eigenvalues = eigensolver.eigenvalues(); + Matrix eigenvectors = eigensolver.eigenvectors(); + + // Reconstruct matrix + Matrix reconstructed = eigenvectors * eigenvalues.asDiagonal() * eigenvectors.transpose(); + + // Check reconstruction error + double error = (A - reconstructed).norm(); + DEBUG_PRINT("Eigenvalue decomposition error: %f\n", error); + DEBUG_PRINT("Eigenvalues: %f, %f\n", eigenvalues(0), eigenvalues(1)); + + test_results.eigenvalue_decomposition = (error < 1e-6); + DEBUG_PRINT("Eigenvalue decomposition test %s\n", test_results.eigenvalue_decomposition ? "PASSED" : "FAILED"); +} + +/** + * Test Riccati equation solver (simplified) + */ +static void test_riccati_solver() { + DEBUG_PRINT("Testing Riccati equation solver...\n"); + + // Simple discrete-time Riccati equation: P = A'PA - A'PB(B'PB + R)^(-1)B'PA + Q + // For a simple 2x2 system + Matrix A, Q, P; + Matrix B; + double R = 1.0; + + A << 0.9, 0.1, + 0.0, 0.9; + B << 0.0, 1.0; + Q << 1.0, 0.0, + 0.0, 1.0; + P << 1.0, 0.0, + 0.0, 1.0; + + // One step of Riccati iteration + double scalar_term = B.transpose() * P * B + R; + Matrix P_new = A.transpose() * P * A - + (1.0 / scalar_term) * A.transpose() * P * B * B.transpose() * P * A + Q; + + // Check if P_new is positive definite (simplified check) + bool is_positive_definite = (P_new(0,0) > 0) && (P_new.determinant() > 0); + + DEBUG_PRINT("Riccati P_new(0,0): %f\n", P_new(0,0)); + DEBUG_PRINT("Riccati det(P_new): %f\n", P_new.determinant()); + + test_results.riccati_solver = is_positive_definite; + DEBUG_PRINT("Riccati solver test %s\n", test_results.riccati_solver ? "PASSED" : "FAILED"); +} + +/** + * Test TinyMPC-specific Eigen operations + */ +static void test_tinympc_operations() { + DEBUG_PRINT("Testing TinyMPC-specific operations...\n"); + + // Typical MPC dimensions + int nx = 12; // states + int nu = 4; // inputs + int N = 10; // horizon + + // Create dynamic matrices similar to TinyMPC + MatrixXd Adyn(nx, nx); + MatrixXd Bdyn(nx, nu); + MatrixXd Q(nx, nx); + MatrixXd R(nu, nu); + VectorXd fdyn(nx); + + // Initialize with some values + Adyn.setIdentity(); + Adyn *= 0.9; + Bdyn.setRandom(); + Bdyn *= 0.1; + Q.setIdentity(); + R.setIdentity(); + R *= 0.01; + fdyn.setZero(); + + // Test matrix operations used in TinyMPC + MatrixXd rho_identity = 0.1 * MatrixXd::Identity(nx, nx); + MatrixXd Q_rho = Q + rho_identity; + VectorXd Q_diag = Q_rho.diagonal(); + + DEBUG_PRINT("Q_rho diagonal sum: %f\n", Q_diag.sum()); + + // Test lazyProduct and noalias (critical for performance) + MatrixXd result1(nx, nu); + result1.noalias() = Adyn.lazyProduct(Bdyn); + DEBUG_PRINT("Lazy product norm: %f\n", result1.norm()); + + // Test block operations + MatrixXd large_matrix(nx, N); + large_matrix.setRandom(); + VectorXd col_block = large_matrix.col(0); + MatrixXd row_block = large_matrix.row(0); + + DEBUG_PRINT("Col block norm: %f\n", col_block.norm()); + DEBUG_PRINT("Row block norm: %f\n", row_block.norm()); + + // Test head and tail operations + VectorXd vec(nx); + vec.setRandom(); + VectorXd head_vec = vec.head(nx-1); + double last_element = vec(Eigen::placeholders::last); + + DEBUG_PRINT("Head norm: %f, last element: %f\n", head_vec.norm(), last_element); + + // Test cwise operations + MatrixXd min_bounds(nx, N); + MatrixXd max_bounds(nx, N); + min_bounds.setConstant(-10.0); + max_bounds.setConstant(10.0); + + MatrixXd clamped = max_bounds.cwiseMin(min_bounds.cwiseMax(large_matrix)); + DEBUG_PRINT("Clamped matrix norm: %f\n", clamped.norm()); + + // Test dot product and projections + VectorXd a(nx); + VectorXd b(nx); + a.setRandom(); + b.setRandom(); + double dot_prod = a.dot(b); + double sq_norm = a.squaredNorm(); + + DEBUG_PRINT("Dot product: %f, squared norm: %f\n", dot_prod, sq_norm); + + // Test hyperplane projection (used in constraints) + VectorXd z = a; + double dist = (a.dot(z) - 5.0) / a.squaredNorm(); + VectorXd projected = z - dist * a; + + DEBUG_PRINT("Projected vector norm: %f\n", projected.norm()); + + // Test reshaping (used in codegen) + MatrixXd mat_2d(4, 3); + mat_2d.setRandom(); + VectorXd reshaped = mat_2d.reshaped(); + + DEBUG_PRINT("Reshaped vector size: %d\n", (int)reshaped.size()); + + test_results.tinympc_operations = true; + DEBUG_PRINT("TinyMPC-specific operations test PASSED\n"); +} + +/** + * Test vector operations (simplified) + */ +static void test_vector_operations() { + DEBUG_PRINT("Testing vector operations...\n"); + + // Test vector operations + Vector2d v1(1.0, 2.0); + Vector2d v2(3.0, 4.0); + + double dot_product = v1.dot(v2); + double norm = v1.norm(); + Vector2d normalized = v1.normalized(); + + DEBUG_PRINT("Dot product: %f\n", dot_product); + DEBUG_PRINT("Norm: %f\n", norm); + DEBUG_PRINT("Normalized(0): %f\n", normalized(0)); + + // Test vector arithmetic + Vector2d sum = v1 + v2; + Vector2d diff = v1 - v2; + Vector2d scaled = 2.0 * v1; + + DEBUG_PRINT("Sum(0): %f\n", sum(0)); + DEBUG_PRINT("Diff(0): %f\n", diff(0)); + DEBUG_PRINT("Scaled(0): %f\n", scaled(0)); + + test_results.vector_operations = true; + DEBUG_PRINT("Vector operations test PASSED\n"); +} + +/** + * Test dynamic matrices (CRITICAL for TinyMPC) + */ +static void test_dynamic_matrices() { + DEBUG_PRINT("Testing dynamic matrices...\n"); + + // Test dynamic matrix creation and resizing + MatrixXd A_dyn(2, 2); + A_dyn << 1.0, 2.0, + 3.0, 4.0; + + DEBUG_PRINT("Dynamic matrix size: %dx%d\n", (int)A_dyn.rows(), (int)A_dyn.cols()); + DEBUG_PRINT("Dynamic matrix(0,0): %f\n", A_dyn(0,0)); + + // Test resizing + A_dyn.resize(3, 3); + A_dyn << 1.0, 2.0, 3.0, + 4.0, 5.0, 6.0, + 7.0, 8.0, 9.0; + + DEBUG_PRINT("Resized matrix size: %dx%d\n", (int)A_dyn.rows(), (int)A_dyn.cols()); + DEBUG_PRINT("Resized matrix(2,2): %f\n", A_dyn(2,2)); + + // Test dynamic vector + VectorXd b_dyn(3); + b_dyn << 1.0, 2.0, 3.0; + + DEBUG_PRINT("Dynamic vector size: %d\n", (int)b_dyn.size()); + DEBUG_PRINT("Dynamic vector(1): %f\n", b_dyn(1)); + + // Test dynamic matrix-vector multiplication + VectorXd result_dyn = A_dyn * b_dyn; + DEBUG_PRINT("Dynamic matrix-vector result(0): %f\n", result_dyn(0)); + + test_results.dynamic_matrices = true; + DEBUG_PRINT("Dynamic matrices test PASSED\n"); +} + +/** + * Test dynamic operations (CRITICAL for TinyMPC) + */ +static void test_dynamic_operations() { + DEBUG_PRINT("Testing dynamic operations...\n"); + + // Test dynamic matrix operations + MatrixXd A_dyn(2, 2); + MatrixXd B_dyn(2, 2); + + A_dyn << 1.0, 2.0, + 3.0, 4.0; + B_dyn << 5.0, 6.0, + 7.0, 8.0; + + // Test dynamic matrix multiplication + MatrixXd C_dyn = A_dyn * B_dyn; + DEBUG_PRINT("Dynamic matrix multiplication(0,0): %f\n", C_dyn(0,0)); + + // Test dynamic matrix addition + MatrixXd D_dyn = A_dyn + B_dyn; + DEBUG_PRINT("Dynamic matrix addition(0,0): %f\n", D_dyn(0,0)); + + // Test dynamic matrix inverse + MatrixXd A_inv_dyn = A_dyn.inverse(); + MatrixXd identity_dyn = A_dyn * A_inv_dyn; + double error_dyn = (identity_dyn - MatrixXd::Identity(2, 2)).norm(); + DEBUG_PRINT("Dynamic matrix inverse error: %f\n", error_dyn); + + // Test dynamic linear solver + VectorXd b_dyn(2); + b_dyn << 1.0, 2.0; + VectorXd x_dyn = A_dyn.lu().solve(b_dyn); + VectorXd residual_dyn = A_dyn * x_dyn - b_dyn; + double solve_error = residual_dyn.norm(); + DEBUG_PRINT("Dynamic linear solver error: %f\n", solve_error); + + test_results.dynamic_operations = (error_dyn < 1e-6) && (solve_error < 1e-6); + DEBUG_PRINT("Dynamic operations test %s\n", test_results.dynamic_operations ? "PASSED" : "FAILED"); +} + +/** + * Test dynamic decompositions (CRITICAL for TinyMPC) + */ +static void test_dynamic_decompositions() { + DEBUG_PRINT("Testing dynamic decompositions...\n"); + + // Test dynamic SVD + MatrixXd A_dyn(2, 2); + A_dyn << 1.0, 2.0, + 3.0, 4.0; + + JacobiSVD svd_dyn(A_dyn, ComputeFullU | ComputeFullV); + MatrixXd reconstructed_dyn = svd_dyn.matrixU() * svd_dyn.singularValues().asDiagonal() * svd_dyn.matrixV().transpose(); + double svd_error = (A_dyn - reconstructed_dyn).norm(); + DEBUG_PRINT("Dynamic SVD error: %f\n", svd_error); + + // Test dynamic QR + HouseholderQR qr_dyn(A_dyn); + MatrixXd Q_dyn = qr_dyn.householderQ(); + MatrixXd R_dyn = qr_dyn.matrixQR().triangularView(); + MatrixXd qr_reconstructed = Q_dyn * R_dyn; + double qr_error = (A_dyn - qr_reconstructed).norm(); + DEBUG_PRINT("Dynamic QR error: %f\n", qr_error); + + // Test dynamic Cholesky (with positive definite matrix) + MatrixXd A_pd(2, 2); + A_pd << 4.0, 1.0, + 1.0, 4.0; + LLT llt_dyn(A_pd); + MatrixXd L_dyn = llt_dyn.matrixL(); + MatrixXd chol_reconstructed = L_dyn * L_dyn.transpose(); + double chol_error = (A_pd - chol_reconstructed).norm(); + DEBUG_PRINT("Dynamic Cholesky error: %f\n", chol_error); + + test_results.dynamic_decompositions = (svd_error < 1e-6) && (qr_error < 1e-6) && (chol_error < 1e-6); + DEBUG_PRINT("Dynamic decompositions test %s\n", test_results.dynamic_decompositions ? "PASSED" : "FAILED"); +} + +/** + * Print test summary + */ +static void print_test_summary() { + DEBUG_PRINT("\n=== EIGEN TEST SUMMARY ===\n"); + DEBUG_PRINT("Basic operations: %s\n", test_results.basic_ops ? "PASS" : "FAIL"); + DEBUG_PRINT("Matrix inverse: %s\n", test_results.matrix_inverse ? "PASS" : "FAIL"); + DEBUG_PRINT("Linear solver: %s\n", test_results.linear_solver ? "PASS" : "FAIL"); + DEBUG_PRINT("SVD decomposition: %s\n", test_results.svd_decomposition ? "PASS" : "FAIL"); + DEBUG_PRINT("QR decomposition: %s\n", test_results.qr_decomposition ? "PASS" : "FAIL"); + DEBUG_PRINT("Cholesky decomposition: %s\n", test_results.cholesky_decomposition ? "PASS" : "FAIL"); + DEBUG_PRINT("Eigenvalue decomposition: %s\n", test_results.eigenvalue_decomposition ? "PASS" : "FAIL"); + DEBUG_PRINT("Riccati solver: %s\n", test_results.riccati_solver ? "PASS" : "FAIL"); + DEBUG_PRINT("TinyMPC operations: %s\n", test_results.tinympc_operations ? "PASS" : "FAIL"); + DEBUG_PRINT("Vector operations: %s\n", test_results.vector_operations ? "PASS" : "FAIL"); + DEBUG_PRINT("Dynamic matrices: %s\n", test_results.dynamic_matrices ? "PASS" : "FAIL"); + DEBUG_PRINT("Dynamic operations: %s\n", test_results.dynamic_operations ? "PASS" : "FAIL"); + DEBUG_PRINT("Dynamic decompositions: %s\n", test_results.dynamic_decompositions ? "PASS" : "FAIL"); + DEBUG_PRINT("TinyMPC operations: %s\n", test_results.tinympc_operations ? "PASS" : "FAIL"); + + int passed = 0; + if (test_results.basic_ops) passed++; + if (test_results.matrix_inverse) passed++; + if (test_results.linear_solver) passed++; + if (test_results.svd_decomposition) passed++; + if (test_results.qr_decomposition) passed++; + if (test_results.cholesky_decomposition) passed++; + if (test_results.eigenvalue_decomposition) passed++; + if (test_results.riccati_solver) passed++; + if (test_results.tinympc_operations) passed++; + if (test_results.vector_operations) passed++; + if (test_results.dynamic_matrices) passed++; + if (test_results.dynamic_operations) passed++; + if (test_results.dynamic_decompositions) passed++; + if (test_results.tinympc_operations) passed++; + + DEBUG_PRINT("Overall: %d/14 tests passed\n", passed); + DEBUG_PRINT("========================\n\n"); +} + +/** + * Main test function + */ +static void run_eigen_tests() { + DEBUG_PRINT("Starting comprehensive Eigen tests...\n"); + + test_basic_operations(); + test_matrix_inverse(); + test_linear_solver(); + test_svd_decomposition(); + test_qr_decomposition(); + test_cholesky_decomposition(); + test_eigenvalue_decomposition(); + test_riccati_solver(); + test_tinympc_operations(); + test_vector_operations(); + test_dynamic_matrices(); + test_dynamic_operations(); + test_dynamic_decompositions(); + + print_test_summary(); +} + +/** + * App initialization + */ +void appMain() { + DEBUG_PRINT("Eigen Test App: Starting...\n"); + + // Run tests after a short delay + vTaskDelay(M2T(1000)); + + run_eigen_tests(); + + DEBUG_PRINT("Eigen Test App: Tests completed\n"); +} + +/** + * App test function + */ +void appTest() { + DEBUG_PRINT("Eigen Test App: Test function called\n"); +} + +#ifdef __cplusplus +#endif \ No newline at end of file diff --git a/crazyflie-firmware b/crazyflie-firmware index e81084d..de14ff9 160000 --- a/crazyflie-firmware +++ b/crazyflie-firmware @@ -1 +1 @@ -Subproject commit e81084df59f95329f92b03d44ebc70e35a0f8174 +Subproject commit de14ff9f08ae80cbb36ffd37859efc2bedfbf6bf diff --git a/src/TinyMPC b/src/TinyMPC deleted file mode 160000 index 3e960ef..0000000 --- a/src/TinyMPC +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 3e960efcb19756dee7b69c0866830318f885eb24 diff --git a/src/controller_tinympc.cpp b/src/controller_tinympc.cpp deleted file mode 100644 index ef0ad90..0000000 --- a/src/controller_tinympc.cpp +++ /dev/null @@ -1,662 +0,0 @@ -/** - * ,---------, ____ _ __ - * | ,-^-, | / __ )(_) /_______________ _____ ___ - * | ( O ) | / __ / / __/ ___/ ___/ __ `/_ / / _ \ - * | / ,--´ | / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ - * +------` /_____/_/\__/\___/_/ \__,_/ /___/\___/ - * - * Crazyflie control firmware - * - * Copyright (C) 2019 Bitcraze AB - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, in version 3. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see . - * - * - * controller_tinympc.c - App layer application of TinyMPC. - */ - -/** - * Single lap - */ - -#include "Eigen.h" - -#ifdef __cplusplus -extern "C" -{ -#endif - -#include -#include -#include - -#include "app.h" - -#include "FreeRTOS.h" -#include "task.h" -#include "queue.h" -#include "semphr.h" -#include "sensors.h" -#include "static_mem.h" -#include "system.h" - -#include "controller.h" -#include "physicalConstants.h" -#include "log.h" -#include "eventtrigger.h" -#include "param.h" -#include "num.h" -#include "math3d.h" - -#include "cpp_compat.h" // needed to compile Cpp to C - -// TinyMPC and PID controllers -#include "tinympc/admm.hpp" -#include "tinympc/tiny_api.hpp" -#include "controller_pid.h" - -// Params -// #include "quadrotor_10hz_params.hpp" -// #include "quadrotor_50hz_params.hpp" // rho = 65 -// #include "quadrotor_50hz_params_2.hpp" // rho = 5, passive -// #include "quadrotor_50hz_params_3.hpp" // rho = 5, aggressive -// #include "quadrotor_50hz_params_constraints.hpp" -// #include "quadrotor_250hz_params.hpp" -#include "quadrotor_50hz_params_unconstrained.hpp" -#include "quadrotor_50hz_params_constrained.hpp" - -// Trajectory -// #include "quadrotor_100hz_ref_hover.hpp" -// #include "quadrotor_50hz_ref_circle.hpp" -// #include "quadrotor_50hz_ref_circle_2_5s.hpp" -// #include "quadrotor_50hz_line_5s.hpp" -// #include "quadrotor_50hz_line_8s.hpp" -#include "quadrotor_50hz_line_9s_xyz.hpp" - -// Edit the debug name to get nice debug prints -#define DEBUG_MODULE "MPCTASK" -#include "debug.h" - -// #define MPC_RATE RATE_250_HZ // control frequency -// #define MPC_RATE RATE_50_HZ -#define MPC_RATE RATE_100_HZ -#define LOWLEVEL_RATE RATE_500_HZ - -// Semaphore to signal that we got data from the stabilizer loop to process -static SemaphoreHandle_t runTaskSemaphore; - -// Mutex to protect data that is shared between the task and -// functions called by the stabilizer loop -static SemaphoreHandle_t dataMutex; -static StaticSemaphore_t dataMutexBuffer; - -static void tinympcControllerTask(void *parameters); - -STATIC_MEM_TASK_ALLOC(tinympcControllerTask, SYSTEM_TASK_STACKSIZE); - -// // declares eventTrigger_[name] and eventTrigger_[name]_payload -// EVENTTRIGGER(horizon_part1, float, h0, float, h1, float, h2, float, h3, float, h4); -// EVENTTRIGGER(horizon_part2, float, h5, float, h6, float, h7, float, h8, float, h9); -// EVENTTRIGGER(horizon_part3, float, h10, float, h11, float, h12, float, h13, float, h14); -// EVENTTRIGGER(horizon_part3, float, h15, float, h16, float, h17, float, h18, float, h19); -// EVENTTRIGGER(iters_event, int32, iters); -// EVENTTRIGGER(cache_level_event, int32, level); - -// declares eventTrigger_[name] and eventTrigger_[name]_payload -EVENTTRIGGER(horizon_x_part1, float, h0, float, h1, float, h2, float, h3, float, h4); -EVENTTRIGGER(horizon_x_part2, float, h5, float, h6, float, h7, float, h8, float, h9); -EVENTTRIGGER(horizon_x_part3, float, h10, float, h11, float, h12, float, h13, float, h14); -EVENTTRIGGER(horizon_x_part4, float, h15, float, h16, float, h17, float, h18, float, h19); -EVENTTRIGGER(horizon_y_part1, float, h0, float, h1, float, h2, float, h3, float, h4); -EVENTTRIGGER(horizon_y_part2, float, h5, float, h6, float, h7, float, h8, float, h9); -EVENTTRIGGER(horizon_y_part3, float, h10, float, h11, float, h12, float, h13, float, h14); -EVENTTRIGGER(horizon_y_part4, float, h15, float, h16, float, h17, float, h18, float, h19); -EVENTTRIGGER(horizon_z_part1, float, h0, float, h1, float, h2, float, h3, float, h4); -EVENTTRIGGER(horizon_z_part2, float, h5, float, h6, float, h7, float, h8, float, h9); -EVENTTRIGGER(horizon_z_part3, float, h10, float, h11, float, h12, float, h13, float, h14); -EVENTTRIGGER(horizon_z_part4, float, h15, float, h16, float, h17, float, h18, float, h19); -EVENTTRIGGER(problem_data_event, int32, solvetime_us, int32, iters, int32, cache_level); -EVENTTRIGGER(problem_residuals_event, float, prim_resid_state, float, prim_resid_input, float, dual_resid_state, float, dual_resid_input); - - - -// Structs to keep track of data sent to and received by stabilizer loop -// Stabilizer loop updates/uses these -control_t control_data; -setpoint_t setpoint_data; -sensorData_t sensors_data; -state_t state_data; -tinyVector mpc_setpoint; -setpoint_t mpc_setpoint_pid; -// Copies that stay constant for duration of MPC loop -setpoint_t setpoint_task; -sensorData_t sensors_task; -state_t state_task; -control_t control_task; -tinyVector mpc_setpoint_task; - -/* Allocate global variables for MPC */ -// static tinytype u_hover[4] = {.65, .65, .65, .65}; -static tinytype u_hover[4] = {.583, .583, .583, .583}; -static TinyCache cache; -static TinyWorkspace work; -static TinySettings settings; -static TinySolver solver; -static tinyMatrix problem_x; -static float horizon_nh_z; -static float init_vel_z; -// static Eigen::Matrix Xref_total; -static Eigen::Matrix Xref_total; -static Eigen::Matrix Xref_origin; // Start position for trajectory -static Eigen::Matrix Xref_end; // End position for trajectory -static tinyVector u_lqr; -static tinyVector current_state; - -// Helper variables -static bool enable_traj = false; -static int traj_index = 0; -static int max_traj_index = 0; -// static int mpc_steps_taken = 0; -static uint32_t startTimestamp; -// static uint32_t timestamp; -static uint32_t mpc_start_timestamp; -static uint32_t mpc_time_us; -static struct vec phi; // For converting from the current state estimate's quaternion to Rodrigues parameters -static bool isInit = false; -static float obs_velocity_scale = 1; -static float use_obs_offset = 0; - -// Obstacle constraint variables -static Eigen::Matrix obs_center; -static Eigen::Matrix obs_predicted_center; -static Eigen::Matrix obs_velocity; -static Eigen::Matrix obs_offset; -static float r_obs = .5; - -static Eigen::Matrix xc; -static Eigen::Matrix a_norm; -static Eigen::Matrix q_c; - -static inline float quat_dot(quaternion_t a, quaternion_t b) -{ - return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; -} - -static inline quaternion_t make_quat(float x, float y, float z, float w) -{ - quaternion_t q; - q.x = x; - q.y = y; - q.z = z; - q.w = w; - return q; -} - -static inline quaternion_t normalize_quat(quaternion_t q) -{ - float s = 1.0f / sqrtf(quat_dot(q, q)); - return make_quat(s * q.x, s * q.y, s * q.z, s * q.w); -} - -static inline struct vec quat_2_rp(quaternion_t q) -{ - struct vec v; - v.x = q.x / q.w; - v.y = q.y / q.w; - v.z = q.z / q.w; - return v; -} - -void appMain() -{ - DEBUG_PRINT("Waiting for activation ...\n"); - - while (1) - { - vTaskDelay(M2T(2000)); - } -} - -static void resetProblem(void) { - // Copy problem data - work.x = tinyMatrix::Zero(NTOTAL, NHORIZON); - work.q = tinyMatrix::Zero(NTOTAL, NHORIZON); - work.p = tinyMatrix::Zero(NTOTAL, NHORIZON); - work.v = tinyMatrix::Zero(NTOTAL, NHORIZON); - work.vnew = tinyMatrix::Zero(NTOTAL, NHORIZON); - work.g = tinyMatrix::Zero(NTOTAL, NHORIZON); - - work.u = tinyMatrix::Zero(NINPUTS, NHORIZON-1); - work.r = tinyMatrix::Zero(NINPUTS, NHORIZON-1); - work.d = tinyMatrix::Zero(NINPUTS, NHORIZON-1); - work.z = tinyMatrix::Zero(NINPUTS, NHORIZON-1); - work.znew = tinyMatrix::Zero(NINPUTS, NHORIZON-1); - work.y = tinyMatrix::Zero(NINPUTS, NHORIZON-1); -} - - -void controllerOutOfTreeInit(void) -{ - - controllerPidInit(); - - solver.work = &work; - solver.cache = &cache; - solver.settings = &settings; - - // Copy cache data from problem_data/quadrotor*.hpp - cache.rho = rho_unconstrained_value; - cache.Kinf = Eigen::Map>(Kinf_constrained_data, NINPUTS, NSTATES); - cache.Pinf = Eigen::Map>(Pinf_constrained_data, NSTATES, NSTATES); - cache.Quu_inv = Eigen::Map>(Quu_inv_constrained_data, NINPUTS, NINPUTS); - cache.AmBKt = Eigen::Map>(AmBKt_constrained_data, NSTATES, NSTATES); - - // Copy/set workspace data - work.nx = NSTATES; - work.nu = NINPUTS; - work.N = NHORIZON; - work.Q = Eigen::Map(Q_constrained_data, NSTATES, 1); - work.R = Eigen::Map(R_constrained_data, NINPUTS, 1); - - tinyVector vec(4, 1); - vec << -u_hover[0], -u_hover[1], -u_hover[2], -u_hover[3]; - work.u_min = vec.replicate(1, NHORIZON - 1); - - tinyVector vec1(4, 1); - vec1 << 1 - u_hover[0], 1 - u_hover[1], 1 - u_hover[2], 1 - u_hover[3]; - work.u_max = vec1.replicate(1, NHORIZON - 1); - - // work.u_min = tinyVector(-u_hover[0], -u_hover[1], -u_hover[2], -u_hover[3]).replicate<1, NHORIZON - 1>(); - // work.u_max = tinyVector(1 - u_hover[0], 1 - u_hover[1], 1 - u_hover[2], 1 - u_hover[3]).replicate<1, NHORIZON - 1>(); - - for (int i = 0; i < NHORIZON; i++) - { - work.x_min(i) = -1000; // Fill with -1000 - work.x_max(i) = 1000; // Fill with 1000 - } - - work.Xref = tinyMatrix::Zero(NSTATES, NHORIZON); - work.Uref = tinyMatrix::Zero(NINPUTS, NHORIZON); - - // Initialize problem data to zero - resetProblem(); - - work.primal_residual_state = 0; - work.primal_residual_input = 0; - work.dual_residual_state = 0; - work.dual_residual_input = 0; - work.status = 0; - work.iter = 0; - - // // Copy reference trajectory into Eigen matrix - // Xref_total = Eigen::Map>(Xref_data).transpose(); - // Xref_total = Eigen::Map>(Xref_data).transpose(); - // Xref_origin << Xref_total.col(0).head(3), 0, 0, 0, 0, 0, 0, 0, 0, 0; // Go to xyz start of traj - // Xref_end << Xref_total.col(NTOTAL-1).head(3), 0, 0, 0, 0, 0, 0, 0, 0, 0; // Go to xyz start of traj - // Xref_origin << Xref_total.col(0), 0, 0, 0, 0, 0, 0, 0, 0, 0; // Go to xyz start of traj - // Xref_end << Xref_total.col(NTOTAL-1).head(3), 0, 0, 0, 0, 0, 0, 0, 0, 0; // Go to xyz start of traj - Xref_origin << 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0; // Always go to 0, 0, 1 (comment out enable_traj = true check in main loop) - - - enable_traj = false; - traj_index = 0; - max_traj_index = NTOTAL - NHORIZON; - - /* Begin task initialization */ - runTaskSemaphore = xSemaphoreCreateBinary(); - ASSERT(runTaskSemaphore); - - dataMutex = xSemaphoreCreateMutexStatic(&dataMutexBuffer); - - STATIC_MEM_TASK_CREATE(tinympcControllerTask, tinympcControllerTask, SYSTEM_TASK_NAME, NULL, SYSTEM_TASK_PRI); - - isInit = true; - /* End of task initialization */ -} - -static void UpdateHorizonReference(const setpoint_t *setpoint) -{ - if (enable_traj) - { - if (traj_index < max_traj_index) - { - // params.Xref = Xref_total.block(0, traj_index); - work.Xref.block<3, NHORIZON>(0,0) = Xref_total.block<3, NHORIZON>(0, traj_index); - traj_index++; - } - else if (traj_index >= max_traj_index) { - work.Xref = Xref_end.replicate<1, NHORIZON>(); - } - else - { - enable_traj = false; - } - } - else - { - work.Xref = Xref_origin.replicate<1, NHORIZON>(); - } -} - -bool controllerOutOfTreeTest() -{ - // Always return true - return true; -} - -static void tinympcControllerTask(void *parameters) -{ - // systemWaitStart(); - - uint32_t nowMs = T2M(xTaskGetTickCount()); - uint32_t nextMpcMs = nowMs; - - startTimestamp = usecTimestamp(); - - while (true) - { - // Update task data with most recent stabilizer loop data - xSemaphoreTake(runTaskSemaphore, portMAX_DELAY); - - xSemaphoreTake(dataMutex, portMAX_DELAY); - memcpy(&setpoint_task, &setpoint_data, sizeof(setpoint_t)); - memcpy(&sensors_task, &sensors_data, sizeof(sensorData_t)); - memcpy(&state_task, &state_data, sizeof(state_t)); - memcpy(&control_task, &control_data, sizeof(control_t)); - xSemaphoreGive(dataMutex); - - nowMs = T2M(xTaskGetTickCount()); - if (nowMs >= nextMpcMs) - { - nextMpcMs = nowMs + (1000.0f / MPC_RATE); - - // Comment out when avoiding dynamic obstacle - // Uncomment if following reference trajectory - if (usecTimestamp() - startTimestamp > 1000000 * 2 && traj_index == 0) - { - DEBUG_PRINT("Enable trajectory!\n"); - // enable_traj = true; - traj_index++; - } - - // TODO: predict into the future and set initial x to wherever we think we'll be - // by the time we're done computing the input for that state. If we just set - // initial x to current state then by the time we compute the optimal input for - // that state we'll already be at the next state and there will be a mismatch - // in the input we're using for our current state. - // Set initial x to current state - phi = quat_2_rp(normalize_quat(state_task.attitudeQuaternion)); // quaternion to Rodrigues parameters - work.x.col(0) << state_task.position.x, state_task.position.y, state_task.position.z, - phi.x, phi.y, phi.z, - state_task.velocity.x, state_task.velocity.y, state_task.velocity.z, - radians(sensors_task.gyro.x), radians(sensors_task.gyro.y), radians(sensors_task.gyro.z); - - // Get command reference - UpdateHorizonReference(&setpoint_task); - - r_obs = setpoint_task.acceleration.x; - obs_center(0) = setpoint_task.position.x; - obs_center(1) = setpoint_task.position.y; - obs_center(2) = setpoint_task.position.z; - - obs_velocity(0) = setpoint_task.velocity.x; - obs_velocity(1) = setpoint_task.velocity.y; - obs_velocity(2) = setpoint_task.velocity.z; - - // // When avoiding obstacle while tracking trajectory - // if (enable_traj) { - // // Update constraint parameters - // for (int i=0; iposition.x); - // } - - controllerPid(control, &mpc_setpoint_pid, sensors, state, tick); - } - - // if (RATE_DO_EXECUTE(LQR_RATE, tick)) { - - // phi = quat_2_rp(normalize_quat(state->attitudeQuaternion)); // quaternion to Rodrigues parameters - // current_state << state->position.x, state->position.y, state->position.z, - // phi.x, phi.y, phi.z, - // state->velocity.x, state->velocity.y, state->velocity.z, - // radians(sensors->gyro.x), radians(sensors->gyro.y), radians(sensors->gyro.z); - - // // u_lqr = -params.cache.Kinf * (current_state - mpc_setpoint); - // u_lqr = -params.cache.Kinf * (current_state - Xref_origin); - // // u_lqr = -params.cache.Kinf * (current_state - params.Xref.col(0)); - - // if (setpoint->mode.z == modeDisable) { - // control->normalizedForces[0] = 0.0f; - // control->normalizedForces[1] = 0.0f; - // control->normalizedForces[2] = 0.0f; - // control->normalizedForces[3] = 0.0f; - // } else { - // control->normalizedForces[0] = u_lqr(0) + u_hover[0]; // PWM 0..1 - // control->normalizedForces[1] = u_lqr(1) + u_hover[1]; - // control->normalizedForces[2] = u_lqr(2) + u_hover[2]; - // control->normalizedForces[3] = u_lqr(3) + u_hover[3]; - // } - // control->controlMode = controlModePWM; - // } - - xSemaphoreGive(dataMutex); - - // Allows mpc task to run again - xSemaphoreGive(runTaskSemaphore); -} - -/** - * Logging variables for the command and reference signals for the - * MPC controller - */ - -LOG_GROUP_START(tinympc) - -LOG_ADD(LOG_FLOAT, initial_velocity, &init_vel_z) - -LOG_GROUP_STOP(tinympc) - -#ifdef __cplusplus -} /* extern "C" */ -#endif \ No newline at end of file diff --git a/src/modules/src/sysload.c b/src/modules/src/sysload.c deleted file mode 100644 index 0519ecb..0000000 --- a/src/modules/src/sysload.c +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/src/utils/interface/cf_math.h b/src/utils/interface/cf_math.h deleted file mode 100644 index e69de29..0000000